Τμήμα Αξιοποίησης Φυσικών Πόρων & και Γ. Μηχανικής Μεταπτυχιακό πρόγραμμα Διαχείρισης Περιβάλλοντος

Εκτίμηση ωριαίων τιμών

πυκνότητας ροής

συστημάτων.

ακτινοβολίας μικρού

μήκους κύματος μέσω

ηλιακών φωτοβολταϊκών

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Μεταπτυχιακή Διατριβή Γεώργιου Στάμου

AOHNA 2012

Αφιερωμένο στην οικογένεια μου και στη Κορίνα.

Τριμελής επιτροπή

Επιβλέπων: Σταύρος Αλεξανδρής, Λέκτορας Γ.Π.Α.

Μέλος: Γεώργιος Παπαδάκης, Καθηγητής Γ.Π.Α

Μέλος: Χρίστος Καραβίτης, Επίκουρος καθηγητής Γ.Π.Α

ΠΡΟΛΟΓΟΣ

Το αντικείμενο και ο σκοπός αυτής της διατριβής επικεντρώνονται στην προσπάθεια προσέγγισης εκτίμησης της ολικής εισερχόμενης ακτινοβολίας μικρού μήκους κύματος (Rs) καθώς και της προσέγγισης της πραγματικής διάρκειας ηλιοφάνειας (n). Η προσέγγιση αυτή πραγματοποιήθηκε με την χρήση φωτοβολταϊκών πλαισίων των οποίων η τάση (Volt) και η κατανάλωση (Watt) κάτω από σταθερό φορτίο, χρησιμοποιήθηκαν για την εκτίμηση της ολικής εισερχόμενης ακτινοβολίας, σε συνδυασμό με ημίωρες μετρήσεις πυρανομέτρου που συλλέχτηκαν από τον Μικρομετεωρολογικό σταθμό που είναι εγκατεστημένος στον πειραματικό αγρό του Τομέα Διαχείρισης Υδάτινων Πόρων του Γεωπονικού Πανεπιστημίου Αθηνών. Η χρήση της μεθοδολογίας αυτής θα μπορούσε να παρέχει δεδομένα ολικής εισερχόμενης ακτινοβολίας καθώς και τον αριθμό ωρών πραγματικής ηλιοφάνειας σε περιοχές που είναι ήδη εγκατεστημένα φωτοβολταϊκά συστήματα ιδίου τύπου, την στιγμή που οι μετρήσεις και χρονοσειρές της ηλιακής εισερχόμενης ακτινοβολίας στον Ελλαδικό χώρο από τα εθνικά δίκτυα είναι σχεδόν ανύπαρκτες. Η χρήση δεδομένων ακτινοβολίας αποτελεί βασική κλιματική παράμετρο για την σύγχρονη Γεωργία και ειδικότερα στην διαχείριση νερού και την ακριβέστερη εκτίμηση του ρυθμού απώλειας νερού (εξατμισοδιαπνοής) από τις καλλιέργειες με τη χρήση πρότυπων κλιματικών μεθόδων.

<u>Ευχαριστίες</u>

Θα ήθελα να ευχαριστήσω θερμά τον επιβλέποντα της διατριβής αυτής Λέκτορα κ. Σταύρο Αλεξανδρή για την αμέριστη βοήθεια καθ' όλη τη διάρκεια της διατριβής αυτής αλλά περισσότερο θα ήθελα να τον ευχαριστήσω που σαν δάσκαλος με βοήθησε στη διεύρυνση της επιστημονικής μου γνώσης και στην ανάπτυξη ενός ευρύτερου τρόπου σκέψης. Ακολούθως θα ήθελα επίσης να εκφράσω τις ευχαριστίες μου στα υπόλοιπα δύο μέλη της τριμελούς επιτροπής τον Επίκουρο καθηγητή κ. Χρίστο Καραβίτη για τις πολύτιμες επιστημονικές συμβουλές του αλλά και Καθηγητή κ. Γεώργιο Παπαδάκη για τη βοήθεια του και τη συμμετοχή του στην τριμελή επιτροπή. Επίσης θα ήθελα να ευχαριστήσω Θέρμα τους φίλους και συναδέλφους Δημήτρη Τσεσμελή, Δημήτρη Σταματάκο και Νάντια Βασιλάκου για την σημαντική βοήθεια τους διαθέτοντας πολλές φορές τον πολύτιμο χρόνο τους, καθώς επίσης τον υποψήφιο διδάκτορα Γεώργιο Καλαποθαράκο και τον διδάκτορα Essam Mohamed για την βοήθεια του σε τεχνικά θέματα που αφορούν τα φωτοβολταϊκά συστήματα.

Τέλος θα ήθελα να ευχαριστήσω την οικογένεια μου που με στήριξε όλο αυτό το καιρό τόσο ηθικά όσο και υλικά.

Περιεχόμενα

Περίληψη	. 6
ΚΕΦΑΛΑΙΟ 1	. 7
1. Ακτινοβολία	. 7
1.1 Ποιοτικά χαρακτηριστικά και επιδράσεις	. 7
1.2. Συνιστώσες Ηλιακής ακτινοβολίας	10
1.2.1 Ημερήσια εκτίμηση της ακτινοβολίας στο όριο της γήινης ατμόσφαιρας Ra (Extraterrestrial radiation)	10
1.2.2 Ημερήσια θεωρητική ηλιοφάνεια Ν (Maximum daylight hours) Πραγματική ημερήσια ηλιοφάνεια n (actual duration of sunshine in a day)	11
1.2.3. Ολική εισερχόμενη ηλιακή ακτινοβολία Rs (Solar or Global Radiation)	12
ΚΕΦΑΛΑΙΟ 2	15
2. «Γεωμετρία» Ήλιου-Γης	15
ΚΕΦΑΛΑΙΟ 3	19
. 3. Γεωγραφικές συντεταγμένες ενός τόπου και η θέση του ήλιου	19
ΚΕΦΑΛΑΙΟ 4	22
4→ Ημιαγωγοί	22
4.1:Το μοντέλο δεσμών	22
4.2:Το μοντέλο των ζωνών Αγωγιμότητας και Σθένους	23
4.3. Νόθευση Πυριτίου (Doping)	24
4.4:Απορρόφηση του Φωτός από την Φ/Β κυψέλη	25
4.5:Ανασυνδυασμός οπών ηλεκτρονίων	26
4.6:Σύνδεση ημιαγωγών τύπων p-n	27
ΚΕΦΑΛΑΙΟ 5	28
5→Η Συμπεριφορά των Ηλιακών Κυττάρων	28
5.1:Επίδραση του φωτός	28
5.2:Φασματική απόκριση Φ/Β	32
5.3:Επίδραση της θερμοκρασίας στο Φ/Β Σύστημα	34
КЕФАЛАЮ 6	37
6→Θέση, όργανα και εξοπλισμός πειραματικού αγρού	37
6.1. Πειραματική θέση	37
6.2. Αισθητήρας προσπίπτουσας και ανακλώμενης ολικής ακτινοβολίας (albedometer) 🗧	38
6.3. Θερμοϋγρόμετρο Rotronic (MP 100 / 400Η)	39
6.4. Ανεμόμετρο κυπέλων (τύπου A100L2)	40
6.5: Φωτοβολταϊκό σύστημα (Solar World SW90)	40

6.6: Θερμοζεύγη (<i>thermocouples)</i> Χαλκού - Κονσταντάνης (<i>copper-constantan</i>) ή Τύπου) T
	41
6.7. Καταγραφικό δεδομένων – Datalogger (τυπού Campbell CR10x με πολυπλεξία AM416)	. 42
6.8: Διαιρέτης Τάσης (Voltage Divider)	44
ΚΕΦΑΛΑΙΟ 7	46
7→ Αποτελέσματα	46
7.1: Ημερήσιες και εποχιακές μεταβολές R₅	46
7.2. Συσχέτιση της τάσης εξόδου του Φωτοβολταϊκού (PV2) με τη ροή Rs κάτω από σταθερό φορτίο	. 50
7.3: Συσχέτιση τάσης φωτοβολταϊκού ΡV2με θερμοκρασία του PV2	. 52
7.4 Προσαρμογή σημείων με επιφανειακή παλινδρόμηση (<i>Trend surface analysis</i>)	53
7.5: Εύρεση συντελεστών μοντέλου	55
7.6 Έλεγχος εγκυρότητας του μοντέλου	. 57
ΚΕΦΑΛΑΙΟ 8:	59
8→Συνοπτικα συμπεράσματα	59
Παράρτημα	60
1. Πρωτογενή δεδομένα αγρό-μετρολογικού σταθμού	61
2.Προγραμμα λειτουργίας Datalloger και Multiplex αγρό-μετεωρολογικού σταθμού	. 70
3. Συνδεσμολογία Αισθητήρων με τον Dataloger και την Πολυπλεξία	. 77
3.1. Συνδεσμολογία Dataloger με πολυπλεξία (Multiplex M416)	. 77
3.2. Αισθητήρες συνδεδεμένοι με τον Dataloger CR10X	. 77
3.3. Αισθητήρες συνδεδεμένοι με την πολυπλεξία (Multiplex M416)	78
4. Διαιρέτης Τάσης	. 80
5. Δεδομένα ελέγχου εγκυρότητας του μοντέλου	82
6. Μεταδεδομένα σταθμών Εθνικής Μετεωρολογικής Υπηρεσίας	85
Βιβλιογραφία	90

Περίληψη

Η παρούσα μεταπτυχιακή μελέτη αποτελεί μια προσπάθεια προσέγγισης της ολικής μικρού μήκους κύματος εισερχόμενης ακτινοβολίας μέσω ενός αλγορίθμου ως συνάρτηση δεδομένων της τάσης εξόδου και κατανάλωσης φωτοβολταϊκών συστημάτων (Φ/Σ) κάτω από διάφορα σταθερά φορτία λειτουργίας. Αρχικά περιγράφονται τα ποιοτικά χαρακτηρίστηκα της ηλιακής ακτινοβολίας καθώς και τα γεωμετρικά χαρακτηριστικά της θέσης Γης-Ήλιου που καθορίζουν χρονικά την ένταση της προσπίπτουσας ηλιακήςακτινοβολίας σε ένα τόπο. Ακολούθως-περιγράφεται η αρχή λειτουργίας των φωτοβολταϊκών συστημάτων καθώς και η επίδραση του ηλεκτρομαγνητικού ηλιακού φάσματος σε αυτά. Τέλος υπολογίζονται οι σταθερές (συντελεστές) του πολυωνυμικού αλγόριθμου 2ου βαθμού που προέκυψε από την πολλαπλή συσχέτιση τριών μεταβλητών (Τάση, φορτίο, ακτινοβολία). Η χρονική διάρκεια περίοδος κατά την οποία πραγματοποιήθηκαν οι μετρήσεις είναι από τις 17/06/2011 έως τις 12/10/2011. Τέλος, βαθμονομήθηκε και ελέγχθηκε η εγκυρότητα της προτεινόμενης σχέσης και η ικανότητα της να προσεγγίζει τις πραγματικές τιμές της εισερχόμενης ηλιακής ακτινοβολίας και ηλιοφάνειας από την τάση και το εκάστοτε φορτίο των Φ/Σ .

Abstract

This Master thesis is an attempt to approach the Global radiation (incoming short wave) through an algorithm as a function of voltage and consumption data, using photovoltaic systems under different constant workloads. Initially described the qualitative characteristic of solar radiation and the geometry of the Sun-Earth position to determine the temporal intensity of the incident solar-radiation in one place. Subsequently, describes the operating principle of photovoltaic systems and the influence of the electromagnetic solar spectrum to the photovoltaic systems. Finally the calculated constants (coefficients) of the second degree polynomial algorithm resulting from cross correlation of three variables (voltage, load, radiation). The time period during those measurements was extracted, are from 17/06/2011 to 12/10/2011. Finally, is testing the validity of the proposed methodology and the ability to approximate the real values of incoming solar radiation and sunshine hours duration using actuals voltage and current load data of P / S. Finally, checked the validity of the proposed equation and real sunshine hours from voltage and current load of P/S.

ΚΕΦΑΛΑΙΟ 1

1. Ακτινοβολία

1.1 Ποιοτικά χαρακτηριστικά και επιδράσεις

Η πυκνότητα ροής ενέργεια που δέχεται η επιφάνεια της γης διαφέρει σημαντικά από την αντίστοιχη που παρατηρείται από τους δορυφόρους στο εξωτερικό όριο της ατμόσφαιρας (Extraterrestrial Radiation). Αυτό οφείλεται στην απορρόφηση ή σκέδαση στις διάφορες περιοχές του φάσματος από συστατικά της ατμοσφαιρικής στοιβάδας.

Ο ήλιος συμπεριφέρεται σαν μαύρο σώμα με θερμοκρασία επιφάνειας περίπου 5800 Κ. Η ακτινοβολία που εκπέμπει διανύει απόσταση κατά μέσο όρο 1,5Χ 10⁸ km (Αστρονομική μονάδα) μέχρι να φτάσει στη γη (Εικόνα 1.1.1). Η ενέργεια που μεταφέρει η δέσμη των ηλιακών ακτινών, μετρούμενη στο εξωτερικό όριο της ατμόσφαιρας σε επιφάνεια κάθετη στη διεύθυνσή τους, είναι ίση με 1367W m⁻², η οποία είναι γνωστή ως Ηλιακή Σταθερά.

Η εκπεμπόμενη ακτινοβολία από τον ήλιο περιλαμβάνει μήκη κύματος από 0,3 έως 3,0 μm και επιμερίζεται στην περιοχή του υπεριώδους (0,3-0,4 μm), του ορατού (0,4-0,7 μm) και του υπέρυθρου (0,7-3,0 μm), ενώ σε κάθε φασματική περιοχή η μεταφερόμενη ενέργεια διαφέρει (Εικόνα 1.1.2)

Η προσπίπτουσα ηλιακή ακτινοβολία, εμπεριέχει περίπου το 40-50 % της ολικής ενέργειας σε μήκη κύματος μεταξύ 0,4 και 0,7 μm. Η σύσταση της μεταβάλλεται καθώς διέρχεται μέσα από την ατμόσφαιρα και κατά τη διάρκεια μιας ηλιόλουστης μέρας φτάνει στη γήινη επιφάνεια με σύσταση κατά 10% υπεριώδη, 45% ορατή και 45% υπέρυθρη (Καρανδεινός 1995).

Εικόνα 1.1.1:Μέση απόσταση Ήλιου-Γης (AU)

Εικόνα 1.1.2: Φασματικο εύρος ηλεκτρομαγνητικής ακτινοβολίας και ορατό χρωματικό φάσμα

Εξαιρετικής βιολογικής σημασίας για την κατανομή της ακτινοβολίας είναι ο ρόλος του όζοντος, του διοξειδίου του άνθρακα και των υδρατμών. Το στρώμα του ατμοσφαιρικού όζοντος απορροφά δραστικά την υπεριώδη ακτινοβολία εξουδετερώνοντας με τον τρόπο αυτό τις καταστρεπτικές επιδράσεις της στους ζωντανούς ιστούς. Παράλληλα, το στρώμα του όζοντος και κυρίως οι υδρατμοί και το διοξείδιο του άνθρακα της ατμόσφαιρας απορροφούν σημαντικά ποσά υπέρυθρης ακτινοβολίας, η οποία σε μεγάλες δόσεις μπορεί επίσης να δημιουργήσει προβλήματα στο βιολογικό υλικό. Οι συγκεκριμένες ζώνες απορρόφησης του ηλεκτρομαγνητικού φάσματος (εκλεκτική απορρόφηση) παρουσιάζονται στο παρακάτω εικόνα 1.1.3

Εικόνα 1.1.3: Διάγραμμα φασματικής κατανομής της ηλιακής ενέργειας στην απώτερη ατμόσφαιρα και στην επιφάνεια της θάλασσας. (Figure 1: Solar irradiance spectrum at AM 0. Adapted from M. Pagliaro, G. Palmisano, and R. Ciriminna, Flexible Solar Cells, John Wiley, New York) (2008)

Η ακτινοβολία με μήκη κύματος από 3,0 έως 100 μm, καλείται μεγάλου μήκους κύματος, είναι θερμική εκπομπή (Ε) και εξαρτάται από τη θερμοκρασία Τ του σώματος που εκπέμπει. Τα περισσότερα φυσικά σώματα στη γη θεωρείται ότι συμπεριφέρονται ως μελανά σώματα με θερμοκρασία επιφάνειας γύρω στους 300°K (Idso et al. 1969). Μάλιστα, η πυκνότητα ροής μεγάλου μήκους κύματος ακτινοβολίας, Ε, μπορεί να υπολογιστεί από τη σχέση (Stefan-Boltzman)**(1.1.1)**: $E = \varepsilon \sigma T^4$ (1.1.1)

όπου:

ε: η εκπεμπτικότητα του σώματος με τιμές 0<ε<1 (ε = 1 για μελανό σώμα)

σ: η σταθερά των Stefan-Boltzman με τιμή 5,57 10-8 W m-2 °K-4

Τ: η θερμοκρασία του σώματος σε βαθμούς Kelvin, °K

Ε: η θερμική εκπομπή (W m⁻²)

1.2 Συνιστώσες Ηλιακής ακτινοβολίας

1.2.1 Ημερήσια εκτίμηση της ακτινοβολίας στο όριο της γήινης ατμόσφαιρας Ra (Extraterrestrial radiation)

Η λαμβανόμενη ηλιακή ακτινοβολία στο όριο της γήινης ατμόσφαιρας (R_a) έχει χαρακτηριστική τιμή για κάθε περιοχή, μεταβαλλόμενη εποχιακά και ημερήσια εξαρτώμενη από τη θέση και απόσταση του ήλιου καθώς και από τη διάρκεια της ημέρας. Συνεπώς είναι συνάρτηση του γεωγραφικού πλάτους (φ), της ημέρας του έτους (J) και της ώρας της ημέρας (για ωριαίες εκτιμήσεις απαιτείται και το γεωγραφικό μήκος).

Η R_a εκτείνεται σε ένα μεγάλο εύρος μήκους κύματος (200–5000 nm) με μέγιστο περίπου στα 500 nm. Το 47% της R_a βρίσκεται εντός του ορατού φάσματος της ακτινοβολίας (380 -780nm) και το 46% στο υπέρυθρο μέρος του φάσματος (IR) με μήκος κύματος μεγαλύτερο από 780 nm. Στην υπεριώδη περιοχή (UV) του φάσματος και σε μήκος κύματος μικρότερο του 380nm βρίσκεται το υπόλοιπο 7% της R_a .

$$R_{a} = \frac{24x60}{\pi} G_{sc} d_{r}(\omega_{s} \sin \phi \sin \delta + \cos \phi \cos \delta \sin \omega_{s}) =$$

$$= 37.6 d_{r} (\omega_{s} \sin \phi \sin \delta + \cos \phi \cos \delta \sin \omega_{s})$$
(1.2.1.1)

Όπου $R_a \sigma \epsilon [MJ/m^2 day]$

Η ηλιακή σταθερά $G_{sc} = 0.0820 \, [MJ/m^2min]$

 d_r η σχετική απόσταση Γης-Ηλίου (relative distance Earth-Sun)

$$d_r = 1 + 0.033 \cos\left(\frac{2\pi}{365} \cdot J\right) = 1 + 0.033 \cos\left(0.0172J\right)$$
 (1.2.1.2)

J ο αριθμός της ημέρας του έτους (Julian Day) (συμβολίζεται και DOY - Day of the Year)

J =1 έως 365 ή J = 1-366 για δίσεκτο έτος (leap year)

$$J = INT(275\frac{M}{9} - 30 + D) - 2$$
 (1.2.1.3)

Όπου Μ ο αριθμός του μήνα [1-12] και D η ημέρα του μήνα Εάν Μ<3, τότε J=J+2

Σε περίπτωση δίσεκτου έτους (M>2), τότε J=J+1

 $ω_s$ η γωνία την ώρα της δύσης του ηλίου (sunset hour angle) σε [rad]

$$\omega_{s} = \arccos(-\tan\varphi\tan\delta)$$
 (1.2.1.4)

 δ η ηλιακή απόκλιση (solar declination) σε [rad]

$$\delta = 0.409 \sin\left(\frac{2\pi}{365} \,\mathrm{J} - 1.39\right) = 0.409 \sin\left(0.0172 \,\mathrm{J} - 1.39\right) \tag{1.2.1.5}$$

φ το γεωγραφικό πλάτος σε [rad]

1.2.2 Ημερήσια θεωρητική ηλιοφάνεια N (Maximum daylight hours) Πραγματική ημερήσια ηλιοφάνεια n (actual duration of sunshine in a day)

Ημερήσια θεωρητική ηλιοφάνεια (N) είναι η μέγιστη δυνατή ηλιοφάνεια σε ώρες [hours] που θα μπορούσε να μετρηθεί σε μία τοποθεσία. κάτω από απόλυτα καθαρό ουρανό μια συγκεκριμένη ημέρα του έτους και μπορεί να εκτιμηθεί από την σχέση:

$$N = \frac{24}{\pi} \omega_s = 7.64 \omega_s$$
 (1.2.2.1)

N: (maximum daylight hours) [h]

 ω_s : η γωνία την ώρα της δύσης του ηλίου

Πραγματική ηλιοφάνεια (n) είναι η ηλιοφάνεια σε ώρες που θα μπορούσε να μετρηθεί κάτω από οποιεσδήποτε συνθήκες του ουρανού (π.χ. νεφοσκεπή ουρανό). Αποτελούσε μετρούμενη παράμετρο παλαιότερων τύπων μετεωρολογικών σταθμών (συνήθως με ηλιογράφο τύπου Campbell-Stokes Sunshine Recorder) για την μέτρηση της ακτινοβολίας. Ο λόγος n/N αποτελεί το κλάσμα ηλιοφάνειας (relative sunshine duration) και εκφράζει το ποσοστό νεφοκάλυψης της ατμόσφαιρας (απόλυτα καθαρός ουρανός n/N=1, με πυκνή νέφωση n/N=0.30)

1.2.3 Ολική εισερχόμενη ηλιακή ακτινοβολία Rs (Solar or Global Radiation)

Η \mathbf{R}_{s} μπορεί να μετρηθεί στους περισσότερους αγρό-μετεωρολογικούς σταθμούς με διάφορα ραδιόμετρα και πυρανόμετρα, απαιτείται όμως προσεκτική βαθμονόμηση και συντήρηση. Το φασματικό εύρος απόκρισης των αισθητήρων αναφέρεται στην μικρού μήκους κύματος ακτινοβολία (*short wave*) και είναι από 200 – 3000 nm με διαφοροποίηση ανάλογα με τον αισθητήρα. Η μέτρηση φυσικά αναφέρεται στην συνολική ακτινοβολία μικρού μήκους κύματος (άμεση και διάχυτη).

Σε περιπτώσεις που δεν υπάρχει **άμεση μέτρηση** της ολικής εισερχόμενης ακτινοβολίας μικρού μήκους κύματος R_s (από πυρανόμετρο) μπορεί να εκτιμηθεί από τις ώρες ηλιοφάνειας εάν είναι διαθέσιμες.

Η εκτίμηση της ροής της εισερχόμενης ολικής ακτινοβολίας (Angstrom,1924; Black et al. 1954),υπολογίζεται ως συνάρτηση της πραγματικής ημερήσιας ηλιοφάνειας (n) από την σχέση :

$$\mathbf{R}_{s} = \left(\mathbf{a}_{s} + \mathbf{b}_{s} \frac{\mathbf{n}}{\mathbf{N}}\right) \mathbf{R}_{a}$$
 (1.2.3.1)

 a_s : κλάσμα της εισερχόμενης ακτινοβολίας στο όριο της γήινης ατμόσφαιρας R_a . Για νεφοσκεπείς ημέρες το a_s είναι ≈ 0.25

 $a_s + b_s$:κλάσμα ακτινοβολίας για καθαρές ημέρες ≈ 0.75 και bs ≈ 0.50 για μέσες κλιματικές συνθήκες

n/N: κλάσμα ηλιοφάνειας []

n: ώρες πραγματικής ημερήσιας ηλιοφάνειας [hr]

R_a: Ακτινοβολία στο εξωτερικό της γήινης ατμόσφαιρας

Οι τιμές Angstrom a_s , b_s μπορεί να κυμανθούν εξαρτώμενες από τις ατμοσφαιρικές συνθήκες (υγρασία, σκόνη) και την ηλιακή απόκλιση (γεωγραφικό πλάτος, μήνα του έτους) και να διαφοροποιηθούν ανάλογα. Εάν δεν υπάρχουν διαθέσιμες τιμές ολικής ακτινοβολίας και βαθμονομήσεις αυτών των παραμέτρων για την περιοχή, τότε οι συνιστώμενες τιμές είναι a=0.25, και b=0.50. (Doorenbos and Pruitt, 1977)

Η γραφική απεικόνιση των συνιστωσών της ηλιακής ακτινοβολίας από το όριο της ατμόσφαιρας έως το έδαφος παρουσιάζεται στην Εικόνα 1.2.3.1

Εικόνα 1.2.3.1: Διάγραμμα ημερήσιου ισοζυγίου των συνιστωσών ηλιακής ακτινοβολίας σε μια επιφάνεια (Αλεξανδρής 2007)

 R_a : ακτινοβολία στο εξωτερικό όριο της ατμόσφαιρας R_{so} : ακτινοβολία καθαρού ουρανού R_s : ολική εισερχόμενη ακτινοβολία μικρού μήκους κύματος R_n : καθαρή ακτινοβολία μικρού και μεγάλου μήκους κύματος R_{ns} : καθαρή ακτινοβολία μικρού μήκους κύματος $R_{ns}=R_s \downarrow -R_s \uparrow$ R_{nl} : καθαρή ακτινοβολία μεγάλου μήκους κύματος R_{net} :Καθαρή ακτινοβολία στην επιφάνεια R_{net} = R_{ns} - R_{nl} G: ροή θερμότητας στο έδαφος

ΚΕΦΑΛΑΙΟ 2

2. «Γεωμετρία» Ήλιου-Γης

Με υψηλό βαθμό ακρίβειας η τροχιά της Γης γύρω από τον Ήλιο μπορεί να περιγραφεί ως ελλειψοειδείς με εκκεντρικότητα $e = \sqrt{a^2 - b^2} / a = 0,01673$, όπου α και b είναι, αντίστοιχα το μεγάλο ημιαξόνιο και μικρό ημιαξόνιο της ελλειπτικής τροχιάς, (Εικόνα 2.1). Η θέση του Ήλιου βρίσκεται σε μία από τις δύο ελλειπτικές εστίες (F1, F2). Το περιήλιο, που είναι η συντομότερη r_{min} απόσταση μεταξύ Ήλιου και της Γης, παρουσιάζεται γύρω από 3 Ιανουαρίου, ενώ το αφήλιο, που είναι η μεγαλύτερη r_{max} απόσταση μεταξύ Ήλιου και της Γης, είναι εγγεγραμμένη περίπου 4 Ιουλίου. Αυτοί οι χρόνοι δεν είναι σταθεροί, αλλά ποικίλλουν από χρόνο σε χρόνο. Συχνά, η μέση απόσταση μεταξύ της Γης και του Ήλιου προσεγγίζονται από την σχέση :

$$\alpha = \frac{r_{\max} + r_{\min}}{2} \, 1,496^* 10^8 \text{km}$$
(2.1)

Οι αποστάσεις r_{min} και r_{max} προσδιορίζονται από το ημιαξόνιο α μέσω της εκκεντρότητας ε και υπολογίζονται από τις σχέσεις:

$$r_{\min} = \alpha(1-e) = 1.478*10^8 \text{km}$$
 (2.2.1)

$$r_{max} = \alpha (1+e) = 1.521*10^{8} km$$
 (2.2.2)

Εικόνα 2.1:Απλοποιημένη ελλειπτική γεωμετρία της τροχιάς της Γης

Ξεκινώντας από την 1η Ιανουαρίου, δηλαδή τον Ιουλιανό αριθμό ημερών ένα (1) του χρόνου, ένα κανονικό έτος αριθμεί 365 ημέρες (για απλότητα δεν θα πάρουμε την εμφάνιση των δίσεκτων ετών υπόψη). Μια ιδιαίτερη μέρα του χρόνου στη συνέχεια επισημαίνεται με την αντίστοιχη τιμή της Ιουλιανής ημέρας (J) ή ημέρας του έτους (DOY).

Εισάγουμε τη γωνία περιστροφής της Γης (Γ) που ξεκινά την 1η Ιανουαρίου:

$$\Gamma = \frac{2\pi}{365} (J-1)$$
 (2.3)

Οπού η Γ εκφράζεται σε radians.

Κατά τη διάρκεια του έτους η γωνιακή απόσταση Ήλιου-Γης, η ηλιακή απόκλιση δ, και η λεγόμενη εξίσωση του χρόνου ΕΤ (Equation of Time) αλλάζει με περισσότερο ή λιγότερο αρμονικό τρόπο. Στη συνέχεια με απλές σχέσεις που αναπτύχθηκαν από τον Spencer (1971) οι οποίες είναι αρκετά ακριβείς για την αξιολόγηση των ποσοτήτων (α/r)²,δ και ΕΤ, όπου r είναι η πραγματική απόσταση μεταξύ του Ήλιου και της Γης. Ο όρος (a/r)² δίνεται από την σχέση:

$$\left(\frac{a}{r}\right)^2 = 1.000110 + 0.034221\cos\Gamma + 0.001280\sin\Gamma + 0.000719\cos\Gamma + 0.000077\sin\delta$$
 (2.4)

Με μέγιστο σφάλμα περίπου 10^{-4} και αν S₀ = 1367Wm⁻² είναι η ηλιακή σταθερά για τη μέση απόσταση μεταξύ Ήλιου και της Γης, η πραγματική ηλιακή σταθερά μεταβάλλεται ως συνάρτηση της Ιουλιανής ημέρας (J) και δίνεται από τη σχέση:

$$S_0(J)=S_0\left(\frac{a}{r(J)}\right)$$
 (2.5)

Σύμφωνα με την σχέση **(2.5)** η μέγιστη μεταβολή της S_0 (J) σε σχέση με S_0 έχει εύρος περίπου 3,3%.

Κατά τη διάρκεια ενός έτους, η θέση του ήλιου παίρνει πολύ διαφορετικές τιμές εξαιτίας της μεταβολής της ηλιακής απόκλισης (δ) (solar declination) σχέση **(1.2.1.5)**, δηλαδή μεταβάλλεται η γωνία που σχηματίζεται ανάμεσα στη νοητή ευθεία που ενώνει το κέντρο της γης με το κέντρο του ήλιου, και του επίπεδου του ισημερινού. Οι τιμές της ηλιακής απόκλισης είναι θετικές για το βόρειο ημισφαίριο και αρνητικές για το νότιο. Οι ακραίες της τιμές είναι +23.45° στις 21 Ιουνίου (θερινό ηλιοστάσιο για το βόρειο ημισφαίριο) και 23,45° στις 21 Δεκεμβρίου (χειμερινό ηλιοστάσιο του νοτίου ημισφαιρίου). Το περιήλιο P και της αφήλιο A, τα οποία βρίσκονται στο μεγάλο ημιαξόνιο της ελλειπτικής τροχιάς που διαγράφει η γη, σχηματίζουν μια γωνία ψ= 11°08' με τη νοητή γραμμή του ηλιοστασίου. Τα παραπάνω παρουσιάζονται γραφικά στην Εικόνα 2.2 και αναλυτικότερα σε σχήμα τριών διαστάσεων στην Εικόνα 2.3

Εικόνα 2.2: Σχηματική απεικόνιση, του κάθετου διανύσματος (n) ως προς το επίπεδο της ελλειπτικής τροχιάς της Γης, του διανύσματος περιστροφής της Γης (N) και της γωνίας ελλειπτικής τροχιάς (ε).

Εικόνα 2.3: Σχηματική απεικόνιση της γεωμετρίας Ήλιου-Γης. Ρ: περιήλιο, VE: εαρινή ισημερία, SS: θερινό ηλιοστάσιο, Α: αφήλιο, ΑΕ: φθινοπωρινή ισημερία, WS: χειμερινό ηλιοστάσιο, Ε: γωνία της εκλειπτικής, Ψ: γωνία μεταξύ των αποστάσεων (SS, WAS) και (Α, Ρ), Ν: τον φορέα κατά μήκος του άξονα περιστροφής της Γης, n: κάθετο διάνυσμα σε σχέση με επίπεδο της Γης και την ελλειπτικής της τροχιάς.

Θα πρέπει να παρατηρηθεί ότι το N διάνυσμα είναι καθορισμένο να δείχνει κατεύθυνση προς τον πολικό αστέρα. Στα ηλιοστάσια (SS,WS) τα διανύσματα N,n και η νοητή γραμμή που ενώνει το κέντρο του ήλιου με τα σημεία των ηλιοστάσιων βρίσκονται στο ίδιο επίπεδο, έτσι ώστε δ=± 23°27'. Στα σημεία ισημερία (δ= 0°), η νοητή γραμμή πού ενώνει το κέντρο της Γης και του Ήλιου είναι σε ορθή γωνία με τη γραμμή των ηλιοστασίων (SS, WS).

Όπως προαναφέρθηκε η ηλιακή απόκλιση δ είναι συνάρτηση της Ιουλιανής μέρας (J) και της οποίας η μεταβολή κατά τη διάρκεια του έτους παρουσιάζεται σχηματικά στην Εικόνα 2.4 :

Εικόνα 2.4: Μεταβολή της ηλιακής απόκλιση δ σε συνάρτηση με την Ιουλιανές ημέρες J, VE: εαρινή ισημερία, SS: το θερινό ηλιοστάσιο, ΑΕ: φθινοπωρινή ισημερία, WS: χειμερινό ηλιοστάσιο.

Γεωγραφικές συντεταγμένες ενός τόπου και η θέση του ήλιου

Ένα συγκεκριμένο σημείο P στην επιφάνεια της Γης προσδιορίζεται από το ζεύγος των γεωγραφικών συντεταγμένων (λ, φ), όπου λ είναι το γεωγραφικό μήκος και φ είναι το γεωγραφικό πλάτος. Σημειωτέον ότι το φ υπολογίζεται θετικά στο βόρειο ημισφαίριο και αρνητικά στο νότιο ημισφαίριο. Οι συντεταγμένες του Ήλιου σε σχέση με το σημείο P ορίζονται από την ηλιακή γωνία θ₀ η οποία ορίζεται και ως ζενίθ και το ηλιακό αζιμούθιο η οποία ορίζεται και ως γωνία φ₀. Αν ο Ήλιος βρίσκεται στο ζενίθ του έχουμε θ₀= 180°, ενώ εάν θ₀ = 90° τότε ο ήλιος τοποθετείται στον ορίζοντα, όπως στην Εικόνα 3.1. Το ηλιακό ύψος h υπολογίζεται από τη σχέση h = θ₀ π/2. και ορίζεται ως η γωνία που σχηματίζεται ανάμεσα στην κατεύθυνση του ήλιου και στον ορίζοντα. Αζιμούθιο φ₀ είναι η γωνία που σχηματίζεται πάνω στο οριζόντιο επίπεδο ανάμεσα στη προβολή της κατεύθυνσης του ήλιου και στον τοπικό μεσημβρινό βορρά - νότου. Το φ₀ = 0° όταν ο ήλιος είναι ακριβώς πάνω από τη νότια κατεύθυνση και φ₀ προσμετράτε θετικά στην κατεύθυνση προς τα ανατολικά. Η Εικόνα 3.2

Οι γωνίες θέσης (θ₀, φ₀) του Ήλιου που συνήθως δεν μετρούνται άμεσα και πρέπει να καθορίζονται από άλλες γνωστές οπτικές γωνίες. Χρησιμοποιώντας τους νόμους της σφαιρικής τριγωνομετρίας μπορεί να αποδειχθεί ότι οι ακόλουθες σχέσεις ισχύουν:

$$\cos(\pi - \vartheta_0) = \sin\phi\sin\delta + \cos\phi\cos\delta\cos H$$
 (3.1)

$$\cos\phi_0 = \frac{\cos(\pi - \theta_0)\sin\phi - \sin\delta}{\sin(\pi - \theta_0)\cos\phi}$$
(3.2)

Εικόνα 3.1:Συντεταγμένες καθορισμού της θέσης του ήλιου

Εικόνα 3.2:Η φαινόμενη ηλιακή τροχιά κατά τη διάρκεια της ημέρας. Η διακεκομμένη καμπύλη σηματοδοτεί την προβολή της ηλιακής διαδρομής πάνω στο οριζόντιο επίπεδο.

Στο ηλιακό μεσημέρι ανεξαρτήτου γεωγραφικού πλάτους η τιμή H=0. Σε αυτή την περίπτωση υπολογίζεται από την (3.1) (π -θ₀)=φ - δ. Στην ανατολή ή το ηλιοβασίλεμα σε οποιοδήποτε γεωγραφικό πλάτος θ₀=90 ° και H=Dh. Ο όρος Dh καλείται επίσης μέσο ημερήσιο μήκος, δεδομένου ότι είναι το ήμισυ του χρονικού διάστημα μεταξύ ανατολής και δύσης του ήλιου. Με εξαίρεση τους πόλους υπολογίζετε από την σχέση **(1.5.2α)**:

$$\cos D_h$$
=-tan ϕ tan δ (3.3)

Στον ισημερινό όλες τις ημέρες και κατά τις ισημερίες (δ=0) σε όλα τα γεωγραφικά πλάτη (με $\varphi \neq \pm 90^{\circ}$) βρίσκουμε Dh=90° ή 6 h. Το γεωγραφικό πλάτος της πολικής νύχτας βρίσκεται θέτοντας στην **(3.3)** Dh=0, έτσι ώστε tanφ=-cotδ (με δ \neq 0) και φ (πολική νύχτα)=90°-|δ| στο χειμερινό ημισφαίριο.

Η καθημερινή συνολική ηλιακή ακτινοβολία Qs που προσπίπτει σε μια οριζόντια επιφάνεια στην κορυφή της ατμόσφαιρας βρίσκεται με την ενσωμάτωση της εισερχόμενης ηλιακής ακτινοβολίας κατά τη διάρκεια της ημέρας. Συνδυάζοντας τα παραπάνω με τη σχέση **(2.5)** προκύπτει η σχέση:

$$Qs = So\left(\frac{a}{r(J)}\right)^2 \int_{-Dh}^{Dh} cos(\pi - \theta o) dt$$
 (3.4)

Δεδομένου ότι η γωνιακή ταχύτητα της Γης μπορεί να γραφτεί και Ω= dH / dt = 2π day⁻¹ και να υπολογίσουμε από την σχέση (3.4) μετά από κάποια απλή ενσωμάτωση της σχέσης (3.1) την παρακάτω σχέση:

Qs=So
$$\left(\frac{a}{r(J)}\right)^2 \frac{86400}{\pi}$$
 (Dhsin φ sin δ +cos φ cos δ sinDh)Jm⁻²day (3.5)

Οι μονάδες Dh εκφράζονται σε radians.

ΚΕΦΑΛΑΙΟ 4

4. Ημιαγωγοί

Το 1839 ο Becquerel παρατήρησε ότι ορισμένα υλικά, όταν εκτεθούν στο φως, παράγεται ηλεκτρικό ρεύμα (Becquerel, 1839). Αυτό είναι γνωστό ως το φωτοβολταϊκό φαινόμενο, και είναι η βάση της λειτουργίας των φωτοβολταϊκών στοιχείων ή ηλιακών κυττάρων.

Τα ηλιακά κύτταρα κατασκευάζονται από υλικά ημιαγωγών, δηλαδή υλικά που ενεργούν ως μονωτές σε χαμηλές θερμοκρασίες, αλλά ως αγωγοί όταν η ενέργεια της θερμότητας είναι διαθέσιμη. Προς το παρόν, τα περισσότερα ηλιακά κύτταρα βασίζονται στο πυρίτιο, δεδομένου ότι αυτή είναι η πιο ώριμη τεχνολογία. Ωστόσο, άλλα υλικά είναι στο στάδιο ενεργούς διερεύνησης και μπορεί να αντικαταστήσουν το πυρίτιο σε μακροπρόθεσμη βάση. Οι ηλεκτρικές ιδιότητες των ημιαγωγών μπορούν να εξηγηθούν με δύο μοντέλα, το μοντέλο των δεσμών και το μοντέλο των ζωνών.(Green 1992 and Neville, 1978.)

4.1 Το μοντέλο δεσμών

Το μοντέλο των δεσμών χρησιμοποιεί τους ομοιοπολικούς δεσμούς που ενώνουν τα άτομα πυριτίου για να περιγράψει συμπεριφορά των ημιαγωγών. Η Εικόνα. 4.1.1 παρουσιάζει τη σύνδεση και την κυκλοφορία των ηλεκτρονίων σε ένα πλέγμα κρύσταλλου πυριτίου.

Εικόνα 4.1.1:Μοντέλο Δεσμών

Σε χαμηλές θερμοκρασίες, οι δεσμοί είναι άθικτοι και το πυρίτιο συμπεριφέρεται ως μονωτής. Σε υψηλές θερμοκρασίες, μερικοί δεσμοί σπάνε και η σύνδεση μπορεί να συμβεί με δύο διεργασίες:

1. Τα ηλεκτρόνια από τους σπασμένους δεσμούς είναι ελεύθεροι να μετακινηθούν.

2. Τα ηλεκτρόνια από γειτονικούς δεσμούς μπορούν επίσης να στραφούν προς την «οπή» που δημιουργήθηκε από τον σπασμένο δεσμό, επιτρέποντας στο σπασμένο δεσμό ή οπή να διαδοθεί σαν να είχε θετικό φορτίο.

Η έννοια μιας κινούμενης οπής είναι ανάλογη με εκείνη μιας φυσαλίδας σε ένα υγρό. Παρά το γεγονός ότι στην πραγματικότητα το υγρό είναι που κινείται, είναι πιο εύκολο να περιγραφεί η κίνηση της φούσκας που πηγαίνει προς την αντίθετη κατεύθυνση.

4.2 Το μοντέλο των ζωνών Αγωγιμότητας και Σθένους

Το μοντέλο των ζωνών περιγράφει τη συμπεριφορά των ημιαγωγών από την άποψη των επιπέδων ενέργειας μεταξύ της στοιβάδας σθένους και της στοιβάδας αγωγής. Αυτό παρουσιάζετε στην Εικόνα. 4.2.1.

Εικόνα 4.2.1:Διέγερση ηλεκτρονίου από τη στοιβάδα σθένους στη στοιβάδα αγωγής.

Τα ηλεκτρόνια σε ομοιοπολικούς δεσμούς έχουν ενέργειες που αντιστοιχούν σε αυτή του φάσματος σθένους. ενώ στην ζώνη αγωγής τα ηλεκτρόνια είναι ελεύθερα, το ενεργειακό διάκενο (Eg) αντιστοιχεί στην ελάχιστη ενέργεια που απαιτείται για να απελευθερωθεί ένα ηλεκτρόνιο από ένα ομοιοπολικό δεσμό. Για να διεγερθούν τα ηλεκτρόνια στο επόμενο ενεργειακό φάσμα (φάσμα αγωγής) απαιτείται μεγάλη ενέργεια Eg που αντιστοιχεί στο σπάσιμο του ομοιοπολικού δεσμού. Τότε πραγματοποιείτε μεταπήδηση των ηλεκτρονίων στο φάσμα αγωγής και μπορούν να κινηθούν μέσα στο πλέγμα. Κάθε φορά που σπάει ένας δεσμός δημιουργείται ένα κενό στο πλέγμα που ονομάζεται οπή (hole). Καθώς ελευθερώνεται μία ενεργειακή στάθμη στο φάσμα σθένους κάποιο άλλο ηλεκτρόνιο από γειτονικό άτομο θα έρθει να πληρώσει την οπή αφήνοντας όμως μία άλλη οπή πίσω του.

4.3 Νόθευση Πυριτίου (Doping)

Είναι δυνατή η αλλαγή της ισορροπίας των ηλεκτρονίων και των οπών στο κρυσταλλικό πλέγμα του πυριτίου από τη νόθευση «doping» με άλλα άτομα. Τα άτομα με ένα περισσότερο ηλεκτρόνιο σθένους από τους ημιαγωγούς χρησιμοποιούνται για την παραγωγή υλικού «n-τύπου», ενώ τα άτομα με ένα λιγότερο ηλεκτρόνιο σθένους οδηγούν σε παραγωγή υλικού «p-τύπου». Τα παραγόμενα υλικά παρουσιάζονται στην εικόνα. 4.3.1

Εικόνα 4.3.1 Δομικά υλικά πυριτίου 'ητύπου' και 'ρ τύπου'

4.4 Απορρόφηση του Φωτός από την Φ/Β κυψέλη

Όταν το φως πέφτει πάνω σε υλικό ημιαγωγού, τα φωτόνια με ενέργεια (Eph) μικρότερη από την ενέργεια του ενεργειακού διάκενου (Eg) αλληλεπιδρούν μόνο ασθενώς με τον ημιαγωγό, περνώντας μέσα από αυτό σαν να ήταν διαφανής. Ωστόσο, τα φωτόνια με ενέργεια μεγαλύτερη από την ενέργεια του ενεργειακού διάκενου (Eph> Eg) αλληλεπιδρούν με τα ηλεκτρόνια των ομοιοπολικών δεσμών, αυξάνοντας την ενέργειά τους, σπάζουν δεσμούς και δημιουργούν ζεύγη ηλεκτρονίων-οπών, τα οποία μπορούν στη συνέχεια να μετακινηθούν ανεξάρτητα. Υψηλότερης ενέργειας φωτόνια απορροφούνται περισσότερο από τούς ημιαγωγούς ενώ τα φωτόνια χαμηλής ενέργειας δεν απορροφούνται τόσο έντονα όπως φαίνεται και στην εικόνα 4.4.1

Ημιαγωγός

Ο ρυθμός παραγωγής G των ζευγών ηλεκτρονίων-οπών (e-h) ανά μονάδα όγκου μπορεί να υπολογιστεί με τη σχέση:

$G = \alpha N e^{-\alpha x}$

όπου Ν είναι το φωτόνιο ροής (φωτόνια ανά μονάδα επιφανείας και ανά δευτερόλεπτο), α είναι ο συντελεστής απορρόφησης, και x είναι η απόσταση από την επιφάνεια. Η τιμή του α ως συνάρτηση του μήκους κύματος του φωτός παρουσιάζεται στην εικόνα. 4.4.2 για το πυρίτιο στα 300 Κ.

(4.4.1)

Εικόνα 4.4.1: Απορόφηση φωτονίων διαφορετικής ενέργειας από ημιαγωγό

Εικόνα 4.4.2: Ο συντελεστής απορρόφησης, α, του πυριτίου στα 300 Κ σε συνάρτηση με τον μήκος κύματος στο κενό του φωτός.

4.5 Ανασυνδυασμός οπών ηλεκτρονίων

Όταν το φως εξαφανισθεί, το σύστημα πρέπει να επιστρέψει σε μια κατάσταση ισορροπίας και το ζεύγος ηλεκτρόνιο-οπή που δημιουργήθηκε από το φως εξαφανίζεται. χωρίς καμία εξωτερική πηγή ενέργειας, με τα ηλεκτρόνια και τις οπές να μετακινούνται μέχρι να συναντηθούν και να ανασυνδυαστούν.

Τυχόν ελαττώματα ή ακαθαρσίες στο εσωτερικό ή στην επιφάνεια των ημιαγωγών προωθεί τον ανασυνδυασμό. Ο χρόνος διάρκειας ενός φορέα (ηλεκτρόνιο ή οπή) ηλεκτρικού φορτίου του υλικού ορίζεται ως ο μέσος χρόνος για ανασυνδυασμό μετά την παραγωγή ηλεκτρονίων-οπών. Για το πυρίτιο, αυτό είναι συνήθως 1 μs. Ομοίως, το μήκος διάχυσης του φορέα είναι η μέση απόσταση που ένας φορέας μπορεί να μετακινηθεί από το σημείο παραγωγής του μέχρι να ανασυνδυαστεί. Για το πυρίτιο, αυτό είναι συνήθως 100 έως 300 μm. Αυτές οι δύο παράμετροι που δίνουν ένδειξη της ποιότητας του υλικού και την καταλληλότητα για τη χρήση ηλιακών κυψελών. Ωστόσο, καμία ενέργεια δεν μπορεί να παραχθεί από ένα ημιαγωγών χωρίς διάταξη που προσδίδει κατεύθυνση στα κινούμενα ηλεκτρόνια. Ως εκ τούτου, λειτουργικά ηλιακά κύτταρα παράγονται συνήθως από το υλικό ημιαγωγών με την προσθήκη ενός διορθωτή επαφής p-n.

4.6 Σύνδεση ημιαγωγών τύπων p-n

Μια σύνδεση p-n σχηματίζεται από την ένωση ημιαγωγών n-τύπου και p-τύπου, όπως φαίνεται στην Εικόνα. 4.6.1.

Εικόνα. 4.6.1:Αναπαράσταση του σχηματισμού ηλεκτρικού πεδίου σε p-n

Όταν ένας ημιαγωγός τύπου p έρθει σε επαφή με έναν τύπου n , τότε εκατέρωθεν της επιφάνειας επαφής συμβαίνει διάχυση ηλεκτρονίων και διαφορά συγκέντρωσης τους. Έτσι η πλευρά p φορτίζεται αρνητικά και η n θετικά σχηματίζοντας ένα ισχυρό ηλεκτρικό πεδίο που εξισορροπεί τη διάχυση φορτίων Ta ρεύματα ισορροπίας Ιο και –Ιο είναι πολύ μικρής τάξης. Η περιοχή διάχυσης ονομάζεται και περιοχή απογύμνωσης διότι δεν περιέχει πρακτικά ελεύθερα ηλεκτρόνια ενώ η τάση της διόδου (Vb) είναι όπως θα δούμε και ο σημαντικότερος λόγος που κάνει τα ημιαγωγά υλικά ιδανικά για φωτοβολταικές εφαρμογές.

ΚΕΦΑΛΑΙΟ 5

5. Η Συμπεριφορά των Ηλιακών Κυττάρων

5.1 Επίδραση του φωτός

Ένα ηλιακό κύτταρο πυριτίου όπως προαναφέρθηκε είναι μια δίοδος που δημιουργείται από την ένωση δέσμης p-τύπου (συνήθως ενισχυμένα με βόριο) κα δέσμης n-type (συνήθως ενισχυμένα με φωσφόρο) του πυριτίου. Το φως λάμπει και τα κύτταρα μπορούν να συμπεριφερθούν με διάφορους τρόπους, όπως φαίνεται στην. Εικόνα 5.1.1. Για να μεγιστοποιηθεί της ονομαστικής ισχύος ενός ηλιακού κύτταρου, πρέπει να σχεδιασθεί με τέτοιο τρόπο ώστε να μεγιστοποιηθεί η επιθυμητή απορρόφηση (3) και η απορρόφηση μετά από την ανάκλαση στο εσωτερικό του κυττάρου

Εικόνα 5.1.1 Συμπεριφορά του φωτός που ακτινοβολεί σε μια ηλιακή κυψέλη. (1) Η αντανάκλαση στην κορυφή της επαφή. (2) Αντανάκλαση στην επιφάνεια των κυττάρων. (3) Επιθυμητή απορρόφηση. (4) Η αντανάκλαση στο κάτω μέρος του κυττάρου-ασθενώς απορροφούμενο φως μόνον. (5) Η απορρόφηση μετά από ανάκλαση. (6) Απορρόφηση στο πίσω μέρος της επαφής.

Μετά την παράγωγη ηλεκτρονίων-οπών, ένα ηλεκτρικό πεδίο Ê στη σύνδεση p-n σαρώνει τα ηλεκτρόνια στην πλευρά (n) και τις οπές στην πλευρά

(p). Η ιδανική ροή ηλεκτρονίων-οπών σε βραχυκυκλωμένο κύκλωμα παρουσιάζεται στην Εικόνα. 5.1.2. Ωστόσο, ορισμένα ζεύγη ηλεκτρονίων-οπών (e-h) χάνονται πριν από τη συλλογή, όπως παρουσιάζεται στην Εικόνα. 5.1.3

Εικόνα 5.1.2. Το ιδανικό κλειστό κύκλωμα ροή ηλεκτρονίων οπών σε μια επαφή p-n.

Εικόνα 5.1.3. Πιθανοί τρόποι ανασυνδυασμού των ηλεκτρονίων οπών ζευγών, που δείχνει «συλλογή» των μεταφορέων που δεν ανασυνδυάζονται.

Σε γενικές γραμμές, όσο πιο κοντά το σημείο παραγωγής των ηλεκτρονίων-οπών στην επαφή των δέσμιων p-n, τόσο μεγαλύτερη είναι η πιθανότητα της «συλλογής». «Οι συλλεγμένοι φορείς» είναι εκείνοι που δημιουργούν ένα πεπερασμένο ρεύμα όταν V=0. Οι πιθανότητες της συλλογής είναι ιδιαίτερα καλές, αν τα ζεύγη ηλεκτρονίων- οπών (e-h) παράγονται διάχυτα κατά μήκος της σύνδεσης των δεσμών p-n.

Το φως έχει ως αποτέλεσμα τη μετατόπιση της καμπύλης I-V κάτω στο τέταρτο τεταρτημόριο από το οποίο η ισχύς μπορεί να εξαχθεί από τη δίοδο, όπως παρουσιάζεται στο διάγραμμα. 5..1.1.

Η καμπύλη (I-V) χαρακτηρίζει το κύτταρο, με την απόδοση ισχύος της να είναι ίση με το εμβαδόν της περιοχής του ορθογωνίου που σχηματίζεται στο κάτω δεξιά τεταρτημόριο της εικόνας. 5.1.1. Αυτή η καμπύλη (I-V) συχνότερα εμφανίζεται αντιστρόφως, όπως παρουσιάζεται στην εικόνα 5.1.2, με την καμπύλη που δίνετε στο πρώτο τεταρτημόριο, να παράγεται από τη σχέση:

I= I_L- I₀[exp(
$$\frac{qV}{nKT}$$
)-1] (5.1.1)

Εικόνα 5.1.1. Η επίδραση του φωτός στα χαρακτηριστικά ρεύματος- τάσης μια επαφής p-n.

Εικόνα 5.1.2. Τυπική αναπαράσταση μιας καμπύλης ΙV, που παρουσιάζει το ρεύμα βραχυκύκλωσης (Isc) και την τάση ανοικτού κυκλώματος (Voc) σαν σημεία, καθώς και το σημείο μέγιστης ισχύος (Vmp, Imp).

Οι δύο οριακοί παράμετροι που χρησιμοποιούνται για τον χαρακτηρισμό της απόδοσης των ηλιακών κυττάρων για δεδομένη ακτινοβολία, θερμοκρασία λειτουργίας και περιοχή είναι (Shockley & Queisser, 1961):

- 1. Ρεύμα βραχυκύκλωσης (Isc)-το μέγιστο ρεύμα, σε μηδενική τάση. Στην ιδανική περίπτωση, αν V = 0, Isc = I_L. Να σημειωθεί ότι η I_{SC} είναι ευθέως ανάλογη με τη διαθέσιμη ηλιακή ακτινοβολία.
- Τάση ανοικτού κυκλώματος (Voc)-η μέγιστη τάση, με μηδενικό ρεύμα. Η τιμή του Voc αυξάνεται λογαριθμικά με αυξημένη ηλιοφάνεια. Αυτό το χαρακτηριστικό κάνει τα ηλιακά κύτταρα ιδανικά για φόρτιση της μπαταρίας.

Σημειώνεται ότι για ένταση ρεύματος Ι = 0 παράγεται η σχέση:

$$V_{\rm OC} = \frac{nKT}{q} \ln(\frac{I_L}{I_0} + 1)$$
 (5.1.2)

Για κάθε σημείο της καμπύλης (I-V), η παραγωγή έντασης και τάσης αποτελεί την απόδοση ισχύος για τη συγκεκριμένη κατάσταση λειτουργίας. Ένα ηλιακό κύτταρο μπορεί επίσης να χαρακτηριστεί από μέγιστο σημείο ισχύος του, όταν η παραγωγή Vmp × Imp είναι στη μέγιστη τιμή της. Η 31 μέγιστη ισχύς εξόδου ενός κυττάρου δίδεται γραφικά από το μεγαλύτερο ορθογώνιο που δίνεται γραφικά στην καμπύλης I-V.

5.2 Φασματική απόκριση Φ/Β

Τα ηλιακά κύτταρα ανταποκρίνονται σε μεμονωμένα φωτόνια του φωτός που προσπίπτουν και απορροφώντας τα παράγουν ένα ζεύγος ηλεκτρόνιου-οπής, υπό την προϋπόθεση ότι η ενέργεια φωτονίου (E_{ph}) είναι μεγαλύτερη από την ενέργεια του ενεργειακού διάκενου (Eg).Η ενέργεια φωτονίου άνω των (Eg). γρήγορα διαχέεται ως θερμότητα, όπως φαίνεται στην Εικόνα. 5.2.1

Εικόνα. 5.2.1: Διάχηση ενεργείας φωτονίου ως θερμότητα στο ηλιακό κύτταρο

Η κβαντική απόδοση (QE) από μια ηλιακή κυψέλη ορίζεται ως ο αριθμός των ηλεκτρονίων που κινούνται από τη στοιβάδα σθένους στη στοιβάδα αγωγής ανά τυχαίο φωτόνιο. Τα πιο μεγάλα μήκη κύματος περιορίζονται από το ενεργειακό διάκενο (Eg).. Μέγιστη χρήση μπορεί να γίνει μόνο από εισερχόμενη ηλιακή ακτινοβολία, εάν το ενεργειακό διάκενο είναι της τάξης 1,0 έως 1,6 eV. Αυτή η επίδραση στην πράξη περιορίζει τη μέγιστη δυνατή απόδοση των ηλιακών κυττάρων στο 44% (Shockley & Queisser, 1961). Το ενεργειακό διάκενο του πυριτίου, είναι κοντά στο 1,1 eV, το βέλτιστο, ενώ εκείνο του αρσενικούχου γάλλιου που είναι της τάξης 1,4 eV, είναι καλύτερο. Στην εικόνα 5.2.2 παρουσιάζεται η εξάρτηση της κβαντικής απόδοσης, ιδανικά από το ενεργειακό διάκενο (Eg).

Εικόνα 5.2.2:Περιορισμοί της κβαντικής απόδοσης ζώνης διάκενου ηλιακών κυττάρων του πυριτίου.

Ενδιαφέρον παρουσιάζουν επίσης η φασματική απόκριση των ηλιακών κυττάρων που δίδεται από τα Αμπέρ (Α) που παράγονται ανά Watt του φωτός που προσπίπτει όπως παρουσιάζεται και στο διάγραμμα 5.2.2. Στην ιδανική περίπτωση, αυτό αυξάνει ανάλογα με το μήκος κύματος. Ωστόσο, σε μικρά μήκη κύματος, τα κύτταρα δεν μπορούν να χρησιμοποιήσουν όλη την ενέργεια των φωτονίων, ενώ σε μεγάλα μήκη κύματος, η χαμηλή απορρόφηση του φωτός σημαίνει ότι τα περισσότερα φωτόνια απορροφώνται σε μεγάλο βαθμό από τη συλλογή που πραγματοποιείτε στη σύνδεση του κυττάρου, με το καθορισμένο μήκος διάχυσης του υλικού των κυττάρων να περιορίζει την απόκριση του κυττάρου.

Η φασματική απόκριση (SR) μπορεί να υπολογιστεί με το παρακάτω σχέση:

$$SR = \frac{Isc}{Pin(\lambda)} = \frac{q \times n_e}{\frac{h_c}{\lambda} + n_{ph}} = \frac{q\lambda}{h_c} EQE$$
(5.2.1)

όπου ne είναι η ροή των ηλεκτρονίων, ανά μονάδα χρόνου, που ρέει σε ένα εξωτερικό κύκλωμα σε συνθήκες κλειστού κυκλώματος και I_{sc} είναι το ρεύμα κλειστού κυκλώματος, N_{ph} είναι η ροή των φωτονίων της προσπίπτουσας λ μήκους κύματος ακτινοβολίας στο κύτταρο ανά μονάδα χρόνου, Pin είναι η τυχαία φωτεινή ενέργεια και EQE = (1 - R) × IQE είναι η εξωτερική αποδοτικότητα, η οποία διαφέρει από την εσωτερική κβαντική απόδοση (IQE)

διότι η εν λόγω αποκλείει το κλάσμα, R, του φωτός που αντανακλάται από την άνω επιφάνεια. SR-0 ως λ-0, διότι υπάρχουν λιγότερα φωτόνια σε κάθε watt προσπίπτοντος φωτός.

Αυτή η ισχυρή εξάρτηση του μήκους κύματος και της ανταπόκρισης του ηλιακού κυττάρου κάνει την απόδοση των κυττάρων με τη σειρά του να εξαρτάται σε μεγάλο βαθμό από το φασματικό περιεχόμενο του φωτός του ήλιου. Επιπλέον, οι οπτικές απώλειες και οι απώλειες ανασυνδυασμού σημαίνουν ότι τα πραγματικά κύτταρα μπορούν μόνο να προσεγγίσουν τα ιδανικά.

κύματος

5.3 Επίδραση της θερμοκρασίας στο Φ/Β Σύστημα

Η θερμοκρασία λειτουργίας των ηλιακών κυττάρων καθορίζεται από τη θερμοκρασία του περιβάλλοντος αέρα, από τα χαρακτηριστικά της μονάδας στην οποία είναι έγκλειστα , από την ένταση του ηλιακού φωτός που προσπίπτει πάνω στην μονάδα, καθώς και από άλλες μεταβλητές, όπως η ταχύτητα του ανέμου.

Το ρεύμα πλήρωσης Ι₀ υπό σκοτάδι αυξάνεται όσο αυξάνεται η θερμοκρασία και υπολογίζεται από τη σχέση:
$$I_0 = BT^{\gamma} exp(\frac{-E_{g0}}{kT})$$
 (5.3.1)

όπου Β είναι ανεξάρτητο από τη θερμοκρασία, Eg₀ είναι η γραμμική προέκταση μηδενικής θερμοκρασίας του ενεργειακού διάκενου των ημιαγωγών που αποτελούν το κύτταρο (Green, 1992) και γ περιλαμβάνει τις θερμοκρασιακές αλληλεξαρτήσεις των υπολοίπων παραμέτρων που καθορίζουν την I₀.

Το ρεύμα κλειστού κυκλώματος (I_{sc}) αυξάνεται με τη θερμοκρασία, δεδομένου ότι η ενέργεια του διάκενου (E_g) μειώνεται και περισσότερα φωτόνια έχουν αρκετή ενέργεια για να δημιουργήσουν ζεύγη ηλεκτρονίωνοπών (e-h), ωστόσο αυτό έχει μικρή επίδραση. Για το πυρίτιο η σχέση αυτή είναι :

$$\frac{1}{I_{sc}}\frac{dI_{sc}}{dT} \approx +0,0006^{\circ}\mathrm{C}^{-1}$$
 (5.3.2)

Το κύριο αποτέλεσμα της αύξησης της θερμοκρασίας των ηλιακών κύτταρων πυριτίου είναι η μείωση της τάσης ανοικτού κυκλώματος (V_{oc}), επίσης αυξάνεται ο συντελεστής επαναπλήρωσης με αποτέλεσμα να πραγματοποιούνται περισσότερες επανασυνδέσεις φορέων. Οι επιδράσεις αυτές απεικονίζονται στην εικόνα. 5.3.1.

Tάση (volt)

Εικόνα 5.3.1:Η επίδραση της θερμοκρασιακής για τα χαρακτηριστικά Ι-V ενός ηλιακού κύτταρου

Η θερμοκρασιακή εξάρτηση της τάσης ανοικτού κυκλώματος V_{oc} για το πυρίτιο έχει προσεγγιστεί από τις ακόλουθες εξισώσεις:

$$\frac{dV_{oc}}{dT} = \frac{-[V_{go} - V_{oc} + \gamma(\kappa T/q)]}{T} \approx -2mV/^{0}C$$
(5.3.3)

$$\frac{1}{V_{oc}} \frac{dV_{oc}}{dT} \approx -0.003 \,^{0}\text{C}^{-1}$$
(5.3.4)

Για το πυρίτιο, η επίδραση της θερμοκρασίας στη μέγιστη ισχύ (P_{mp}) αποδίδεται από την σχέση:

$$\frac{1}{P_{mp}}\frac{dP_{mp}}{dT}\approx -(0.004-0.005)^{0}\mathrm{C}^{-1}$$
(5.3.5)

Όσο υψηλότερη είναι η τιμή τάσης ανοικτού κυκλώματος V_{oc}, τόσο μικρότερη είναι η αναμενόμενη θερμοκρασιακή εξάρτηση. Οι επιδράσεις της θερμοκρασίας συζητήθηκαν αναλυτικά από Emery et al. (1996), King et al. (1997) και Radziemska (2003).

ΚΕΦΑΛΑΙΟ 6

6 Θέση, όργανα και εξοπλισμός πειραματικού αγρού

6.1 Πειραματική θέση

Οι γεωγραφικές συντεταγμένες που είναι εγκατεστημένος ο σταθμός είναι οι (37°59'9.26 B 23°42'26.09 A) και το σημείο εγκατάστασης του παρουσιάζεται στην Εικόνα 1. Ο σταθμός είναι εξοπλισμένος με αισθητήρες για την καταγραφή ατμοσφαιρικών παραμέτρων (Θερμοκρασία, υγρασία, ακτινοβολία, φωτοσυνθετική ακτινοβολία κ.α) πάνω από μια δεκαετία και για το πείραμα προστέθηκαν και τα δυο (2) φωτοβολταϊκά πλαίσια όπως παρουσιάζεται στην Εικόνα 6.1.1 παρακάτω. Επίσης, οι μετρήσεις των ατμοσφαιρικών παραμέτρων κατά την περίοδο του πειράματος παραπείθονται στο παράρτημα

Εικόνα 6.1.1:Δορυφορίκη φωτογραφία της θέσης εγκατάστασης του σταθμού από το Google

Earth

Εικόνα 6.1.2:Φωτογραφίκη απεικόνιση του πειραματικού σταθμού.

6.2 Αισθητήρας προσπίπτουσας και ανακλώμενης ολικής ακτινοβολίας (albedometer)

To LP PYRA 06 albedometer είναι ένα όργανο υψηλής ακρίβειας (ISO secondary standard) για τη μέτρηση της μικρού μήκους κύματος ακτινοβολίας, Rs, σε λ = 305-2800 nm. Ανάλογα με τη σύνδεση των αισθητήρων είναι δυνατή η μέτρηση της ανακλαστικότητας (albedo) της επιφάνειας, ή των επιμέρους ροών ακτινοβολίας (προσπίπτουσας στην επιφάνεια και ανακλώμενης από αυτή). Οι θόλοι που βρίσκονται στην κάτω και την πάνω επιφάνεια του οργάνου είναι συμμετρικοί και είναι κατασκευασμένοι από ειδικό γυαλί (K5), ενώ στο εσωτερικό του οργάνου υπάρχει κατάλληλο υλικό για την συγκράτηση της υγρασίας. Το λευκό χρώμα του οργάνου χρησιμοποιείται για να προστατεύσει το όργανο από υπερθέρμανση και φέρει ενσωματωμένη φυσαλίδα για να την καλή οριζόντια τοποθέτησή του. Η αρχή λειτουργίας του αισθητήρα βασίζεται στο θερμοηλεκτρικό φαινόμενο, που οδηγεί στην δημιουργία μιλιβολταϊκού σήματος με ένταση ανάλογη της ποσότητας της προσπίπτουσας ηλιακής ακτινοβολίας. Η ευαισθησία του οργάνου είναι 10 μV / (W m⁻²) και μπορεί να καταγράψει ροές ενέργειας μέχρι 2000 W m⁻². Ανεκτό εύρος θερμοκρασιών είναι από -40 έως +80°C (για θερμοκρασίες -10°C έως +40°C το σφάλμα δεν υπερβαίνει το ±1%). Το σφάλμα στις μετρήσεις εξαρτάται από τη γωνία πρόσπτωσης των ηλιακών ακτινών και είναι μικρότερο από ±10 W m⁻² για κάθε 1000 W m⁻² πυκνότητα ροής προσπίπτουσας ακτινοβολίας στην περίπτωση καλής οριζοντίωσης.

Εικόνα 6.2.1: LP PYRA 06 albedometer

6.3 Θερμοϋγρόμετρο Rotronic (MP 100 / 400H).

Για τη μέτρηση της θερμοκρασίας και της σχετικής υγρασίας χρησιμοποιήθηκε ο αισθητήρας MP 100H/400H με διπλό αισθητήρα τύπου 50Y. Ο αισθητήρας αυτός μπορεί να μετρά ταυτόχρονα τη θερμοκρασία και τη σχετική υγρασία της ατμόσφαιρας και βρίσκεται μέσα σε φυσικά αεριζόμενο περίβλημα, που τον προστατεύει από τις βροχοπτώσεις και την ακτινοβολία. Ο μετρητής αποτελεί ένα όργανο υψηλής ακρίβειας και αντοχής (ενδείκνυται η υπαίθρια χρήση του). Μπορεί να καταγράψει θερμοκρασίες από -40 έως +60 °C και τιμές σχετικής υγρασίας από 0 έως 100%. Η μέτρηση της σχετικής υγρασίας στηρίζεται στην εκπομπή μιλιβολταϊκού σήματος από έναν πυκνωτή πολυμερούς λεπτού φιλμ. Ένα πολύ λεπτό διηλεκτρικό πολυμερές στρώμα απορροφά τα μόρια του νερού μέσω μεταλλικού ηλεκτροδίου, μεταβάλλοντας τη χωρητικότητα του πυκνωτή ανάλογα με την τιμή της σχετικής υγρασίας. Η ακρίβεια του οργάνου είναι ±1.5% για την σχετική υγρασία και ±0.2% για την θερμοκρασία στους 23 °C, ενώ το σφάλμα που εισέρχεται από την επίδραση της θερμοκρασίας είναι +0.15% για τις αρνητικές τιμές και +1% για τις θετικές τιμές.

Εικόνα 6.3.1: Θερμοϋγρόμετρο (τύπου MP 100H / 400H) και κάλυμα προστασίας από την ακτινοβολία

6.4. Ανεμόμετρο κυπέλων (τύπου A100L2)

Ο τύπος του χρησιμοποιούμενου αισθητήρα για τη μέτρηση της ανεμοταχύτητας είναι A100L2 της Vector Instruments. Είναι ανεμόμετρο κυπέλων υψηλής ακρίβειας και ανθεκτικότητας κατασκευασμένος από ανθεκτικό πλαστικό, ατσάλι και αλουμίνιο. Κατατάσσεται στα όργανα Α΄ τάξεως (IEC61400-12-1). Συνδέεται σε αναλογικό κανάλι του datalogger και καταναλώνει μικρή ποσότητα ενέργειας. Λειτουργεί σε ανεμοταχύτητες μεγαλύτερες από 0.15 m s⁻¹, ενώ μπορεί να καταγράφει και τιμές μεγαλύτερες από 75 m s⁻¹. Το θερμοκρασιακό εύρος λειτουργίας του οργάνου κυμαίνεται μεταξύ –30 και +70 °C. Η ακρίβειά του είναι 1% για ταχύτητες μεταξύ 20 και 110 kts και 2% για ταχύτητες μικρότερες από 20 ή μεγαλύτερες από 110 kts.

Εικόνα 6.4.1: Ανεμόμετρο κυπέλων (τύπου Α100L2)

6.5 Φωτοβολταϊκό σύστημα (Solar World SW90).

Χρησιμοποιήθηκαν δύο (2) φωτοβολταϊκά συστήματα. Το πρώτο φωτοβολταϊκό σύστημα τοποθετήθηκε υπό γωνία 38° (PV1), για να είναι δυνατή η συλλογή της κάθετα προσπίπτουσας ακτινοβολίας η οποία είναι η μεγαλύτερης εντάσεως ακτινοβολία για το γεωγραφικό πλάτος των περίπου 38° στο οποίο είναι τοποθετημένος ο πειραματικός σταθμός. Το δεύτερο φωτοβολταϊκό σύστημα τοποθετήθηκε υπό γωνία 0° (PV2) γωνία υπό την οποία είναι τοποθετημένο και το πυρανόμετρο το οποίο μετρά την R_s για να είναι δυνατή η σύγκριση των μετρήσεων του φωτοβολταϊκού συστήματος και του .πυρανομέτρου Για κάθε φωτοβολταϊκό σύστημα η μέγιστη ισχύς είναι P_{max}= 90 W (± 10%), ενώ τα αντίστοιχα μεγέθη τάσης και έντασης του παραγόμενου ηλεκτρικού ρεύματος είναι V_{mp} =18 V και I_{mp} =5,1 A. Επίσης, για πυκνότητα ροής προσπίπτουσας ακτινοβολίας 1000 W m⁻², η τάση ανοικτού κυκλώματος είναι V_{oc} =22,3V και η ένταση βραχυκυκλωμένου κυκλώματος I_{sc} =5,4A,επίσης για πυκνότητα ροής προσπίπτουσας ακτινοβολίας 1000 W m⁻² και θερμοκρασία κελιών του φωτοβολταϊκού 25 °C. Οι διαστάσεις κάθε φωτοβολταϊκού συστήματος είναι 1.216 mm × 556 mm × 34 mm και περιέχει 36 μονοκρυσταλλικά κελιά από σιλικόνη

Εικόνα 6.5.1:Φωτοβολταϊκά πλαίσια (τύπου Solar World SW90)

6.6 Θερμοζεύγη (thermocouples) Χαλκού - Κονσταντάνης (copperconstantan) ή Τύπου Τ

Τα θερμοηλεκτρικά ζεύγη ή θερμοζεύγη (thermocouples) αποτελούν ένα εξαιρετικά διαδεδομένο είδος ανιχνευτών θερμοκρασίας. Αποτελούνται από δύο σύρματα διαφορετικών μετάλλων, τα οποία είναι ενωμένα σε δύο σημεία. Η λειτουργία των θερμοζευγών στηρίζεται στο φαινόμενο του θερμοηλεκτρισμού (thermoelectricity), ή αλλιώς φαινόμενο Seebeck (Seebeck effect). Αναπτύσσουν θερμοηλεκτρική τάση περίπου 40 μV/°C. Κανένα καλώδιο δεν είναι μαγνητικό. Το θερμοζεύγος αυτό θα πρέπει να χρησιμοποιείται σε μεγάλα μήκη καλωδίου (100 έως 200 φορές η διάμετρος) και να τίθενται σε περιβάλλον σταθερής θερμοκρασίας. Το σχήμα του είναι κυλινδρικό με διάμετρο 1 mm. Το θερμοκρασιακό εύρος λειτουργίας του είναι μεταξύ -200 έως 350 °C. Έχει ακρίβεια καλύτερη από ±1%.

Εικόνα 6.6.1:Θερμοζεύγη (thermocouples) Χαλκού - Κονσταντάνης (copper-constantan)

6.7 Καταγραφικό δεδομένων – Datalogger (τύπου Campbell CR10x με πολυπλεξία AM416)

Ο datalogger Campbell CR10x (εικόνα 6.7.1) χρησιμοποιείται για την αποθήκευση δεδομένων αλλά και το συγχρονισμό των οργάνων. Απαιτείται προγραμματισμός, που καθορίζεται από τον αριθμό και το είδος των αισθητήρων. 110 Διαθέτει 6 διαφορικά ή δώδεκα αναλογικά κανάλια. Μέσω του datalogger καθορίζεται ο ρυθμός λήψης μετρήσεων καθώς και η συχνότητα αποθήκευσης τους. Συνδέεται με σειριακή θήρα του H/Y για την αποθήκευση των δεδομένων και έχει δυνατότητα τηλεματικής σύνδεσης του σταθμού. Λειτουργεί με επαναφορτιζόμενη μπαταρία, η οποία μπορεί να συνδεθεί με ηλεκτρικό ρεύμα ή κατάλληλο φωτοβολταϊκό σύστημα, ώστε να εξασφαλιστεί η συνεχής λειτουργία. Λειτουργεί ικανοποιητικά σε θερμοκρασίες από –35 °C έως +65 °C, με ακρίβεια ± 0,1% σε θερμοκρασίες από–25 °C έως +50 °C και ±0,05% από 0 °C έως +40 °C. Ο χρόνος απόκρισης των αισθητήρων κυμαίνεται από 2,6 έως 25,9 ms, ανάλογα με τη συνδεσμολογία των οργάνων.

Η πολυπλεξία AM416 (εικόνα 6.7.2) της Campbell Scientific Inc xχρησιμοποιείται για την επέκταση του αριθμού των καναλιών αλλά και του αριθμού των αισθητήρων, που μπορούν να συνδεθούν με το αυτόματο καταγραφικό. Είναι πλήρως συμβατή με το CR10x. Λειτουργεί άρτια σε θερμοκρασίες από -25 °C έως +50 °C και σε σχετικές υγρασίες από 0 έως 95%. Οι διαστάσεις της είναι 16,5 x 20,8 x 3.8 cm.

SE 7 8 9 10 11 12 DIFF 7	5V 5V G G SW 12V CTRL G 12V POWER CS I/O SV 5V G G SW 12V IN	
	CR10X WIRING PANEL	
SE 1 2 3 4 5 6 DIFF G G H L AGH L AGH AGE2 G	P1 6 P2 6 C8 C7 C6 C5 C4 C3 C2 C1 6 12V 12V	
		G NO.

Εικόνα 6.7.2: Πολυπλεξία ΑΜ416

6.8 Διαιρέτης Τάσης (Voltage Divider).

Ο διαιρέτης τάσης ή διαιρέτης δυναμικού είναι μία απλή διάταξη κυκλώματος η οποία αποτελείται από δύο αντιστάτες συνδεδεμένες εν σειρά, στα άκρα των οποίων εφαρμόζεται η τάση εισόδου. Ως τάση εξόδου λαμβάνεται η διαφορά δυναμικού ανάμεσα στους ακροδέκτες της μίας εκ των δύο αντιστάσεων. Οι τιμές που μπορεί να πάρει η τάση εξόδου κυμαίνονται από το 0 έως την τάση εισόδου. Η ανάλυση του κυκλώματος ενός διαιρέτη τάσης είναι αρκετά απλή. Σύμφωνα με την θεωρία των ηλεκτρικών κυκλωμάτων, η ένταση του ρεύματος που διαρρέει το κύκλωμα των δύο αντιστατών εν σειρά προκύπτει από την διαίρεση της τάσης που εφαρμόζεται στα άκρα του κυκλώματος προς το άθροισμα των τιμών των εν σειρά αντιστάσεων. Η τάση εξόδου είναι ουσιαστικά η τάση που αναπτύσσεται στα άκρα της δεύτερης αντίστασης. Η τάση αυτή μπορεί να βρεθεί εάν πολλαπλασιάσουμε το ρεύμα που διαρρέει την αντίσταση επί την τιμή της. Ο συλλογισμός αυτός μπορεί να δοθεί μαθηματικά με τους ακόλουθους τύπους:

Ρεύμα εισόδου:I=
$$\frac{V_{in}}{R_1 + R_2}$$

Τάση εξόδου:V_{out}=IR=V_{in} $\frac{R_2}{R_1 + R_2}$

Εικόνα 6.8:(1)Το κυκλωματικό διάγραμμα ενός διαιρέτη τάσης: Vin: Τάση εισόδου Vout: Τάση εξόδου R1, R2: Ηλεκτρικές αντιστάσεις,(2)Φωτογραφική απεικόνιση διαιρέτη τάσης πειραματικού σταθμού

Στον πειραματικό σταθμό χρησιμοποιήθηκε ένας διαιρέτης (R₁= 10Ω, R₂=100Ω) τάσης για να προστατέψει την είσοδο του datalogger με τον οποίο μετράμε την τάση των φωτοβολταϊκών. Η είσοδος του datalogger μπορεί να δεχθεί μια τάση μέχρι το πολύ 2,5V. Στα φωτοβολταϊκά πλαίσια που χρησιμοποιήθηκαν η τάση ανοικτού κυκλώματος Voc φθάνει τα 22,1V για αυτό χρησιμοποιήθηκε ένας διαιρέτης τάσης με κλίμακα 1/10 (R₁= 10Ω, R₂=100Ω). Με την χρήση λοιπόν του διαιρέτη τάσης ο datalogger λάμβανε μέγιστη τάση εισόδου έως 2,2V. Στο παράρτημα (Σελ.84-85)παρουσιάζεται πως υπολογίστηκε ο συντελεστής που χρησιμοποιήθηκε για την μετατροπή της τάσης εισόδου στο datalogger στην τάση εξόδου του φωτοβολταϊκού πλαισίου. Τέλος ο τρόπος σύνδεσης των οργάνων και του εξοπλισμού παρουσιάζεται λεπτομερώς στο παράρτημα (Σελ.81-83)

ΚΕΦΑΛΑΙΟ 7

7. Αποτελέσματα

7.1 Ημερήσιες και εποχιακές μεταβολές Rs

Η πυκνότητα ροής ακτινοβολίας στη γήινη επιφάνεια καθορίζεται από τη θέση του ήλιου σε σχέση με τον ορίζοντα και την εποχιακή γωνιακή απόκλιση της γης και ως εκ τούτου διαφοροποιείται σε ωριαία, ημερήσια και εποχιακή βάση. Η καθαρότητα της ατμόσφαιρας επηρεάζει σημαντικά την ποσότητα αλλά και την ποιότητα του ηλιακού φωτός που φτάνει στη γήινη επιφάνεια, ενώ η παρεμβολή νεφών στην κατεύθυνση των ηλιακών ακτινών είναι ίσως ο καθοριστικότερος παράγοντας στην διαμόρφωση των τελικών παρατηρήσεων της Rs. Για το Γεωπονικό Πανεπιστήμιο Αθηνών και για τη θέση του πειραματικού σταθμού οι ημερήσιες μεταβολές της Rs ακτινοβολίας για τους τέσσερις (4) διαδοχικούς μήνες που πραγματοποιήθηκε η εργασία παρουσιάζεται στις παρακάτω εικόνες(7.1.1,2,3,4)

Εικόνα 7.1.1:Ημερήσιες μεταβολές της πυκνότητας ροής εισερχόμενης μικρού μήκους κύματος ακτινοβολίας (*Rs*) (Ιούνιος του 2011)

Εικόνα 7.1.2: Ημερήσιες μεταβολές της πυκνότητας ροής εισερχόμενης μικρού μήκους κύματος ακτινοβολίας (Rs)(Ιούλιος 2011)

Εικόνα 7.1.3:Ημερήσιες μεταβολές της πυκνότητας ροής εισερχόμενης μικρού μήκους κύματος ακτινοβολίας (Rs)(Αύγουστος 2011

Εικόνα 7.1.4:Ημερήσιες μεταβολές της πυκνότητας ροής εισερχόμενης μικρού μήκους κύματος ακτινοβολίας (Rs)(Σεπτέμβριος 2011)

Στον πίνακα 7.1.1 εμφανίζονται οι μέσες τιμές των κυρίων μετεωρολογικών παρατηρήσεων για το χρονικό διάστημα από Ιούνιο έως Σεπτέμβριο του 2011

Πίνακας 7.1.1. Μέσες τιμές παρατηρήσεων ολικής ακτινοβολίας και θερμοκρασίας στο μικρομετεωρολογικό σταθμό του τομέα Δ.Υ.Π για το διάστημα από 1 Ιούνιου έως 31 Σεπτεμβρίου του 2011

Μήνας	Μέση R₅	Μέση Μέγιστη R₅	Μέση Θερμοκρασία	Μέση Μέγιστη Θερμοκρασία	Μέση Ελάχιστη Θερμοκρασία
	W/m ²	W/m ²	°C	°C	°C
Ιούνιος	277	930	24.6	30.1	18.5
Ιούλιος 306		918	28.9	34.5	22.3
Αύγουστος	269	871	28.4	33.6	22.2
Σεπτέμβριος	212	764	25.7	31.6	19.1

Για τα έτη 2007 έως και το 2010 η μέση ημερησία τι ωριαία διακύμανση της Rs για τις τέσσερις εποχές εμφανίζεται στα 4 διαγράμματα της εικόνας (7.1.5), με τις μέσες τιμές της R_s να κυμαίνονται 91 W/m² για το χειμώνα, 232 W/m² για την άνοιξη, 290 W/m² και 177 W/m² για το φθινόπωρο.

τεσσάρων εποχών του χρόνου

7.2 Συσχέτιση της τάσης εξόδου του Φωτοβολταϊκού (PV2) με τη ροή Rs κάτω από σταθερό φορτίο

Η συσχέτιση της τάσης του φωτοβολταϊκού (PV2) το οποίο λειτουργούσε υπό κάτω από σταθερό φορτίο (75Watt,55Watt,35Watt,20Watt) σε αντίστοιχες χρονικές περιόδους, εμφανίζεται να με την Rs περιγράφεται ικανοποιητικά από τις γραμμές τάσης στη εικόνα (7.2.1):

Εικόνα 7.2.1:Συσχέτηση του Rs σε σχέση με την τάση εξόδου του PV2 κάτω από διαφορετικές καταναλώσεις(75W,55W,35W,20W)

Όπου:

Rs-75: Η μέτρηση της ροής ακτινοβολίας Rs για λειτουργία του PV2 υπό κατανάλωση 75Watt

Rs-55: Η μέτρηση της ροής ακτινοβολίας Rs για λειτουργία του PV2 υπό κατανάλωση 55Watt

Rs-35: Η μέτρηση της ροής ακτινοβολίας Rs για λειτουργία του PV2 υπό κατανάλωση 35Watt

Rs-20: Η μέτρηση της ροής ακτινοβολίας Rs για λειτουργία του PV2 υπό κατανάλωση 20Watt

Οι πολυωνυμικές εξισώσεις που περιγράφουν την συσχέτιση της τάσης του PV2 με το Rs, εκφράζεται με τις παρακάτω εξισώσεις. Επίσης παρατίθεται και ο συντελεστής (R²) για κάθε περίπτωση.

 $Rs-75=f(x) = 135,71+175,52 PV2 +9,743 PV2^{2} (R^{2}=0,955)$ $Rs-55=f(x) = 122,61 + 106,11 PV2+ 3,77 PV2^{2} (R^{2}=0,952)$ $Rs-35=f(x) = 66,33 -52,5 PV2-0,932 PV2^{2} (R^{2}=0,98)$ $Rs-20=f(x) = 34,381 + 24,87 PV2+ 0,283PV2^{2} (R^{2}=0,978)$

Οι συσχετίσεις για το φωτοβολταϊκό πάνελ το όποιο είναι τοποθετημένο σε γωνία 0⁰ παρουσιάζουν καλύτερο συντελεστή συσχέτισης (R²) λόγο του ότι το πυρανόμετρο το R_s είναι τοποθετημένο οριζόντια. Για το φωτοβολταϊκό PV1 πλαίσιο το οποίο είναι τοποθετημένο υπό κλίση πραγματοποιείτε μια συσχέτιση των τάσεων με φωτοβολταϊκό PV2. Η γραμμική συσχέτιση παρουσιάζεται στην εικόνα (7.2.2)

Εικόνα 7.2.2: Γραμμική παλινδρόμηση του PV2 σε σχέση με το PV1για καταναλώσεις (75,55,35,20 Watt)

Η παραπάνω συσχέτιση κρίνεται απόλυτα ικανοποιητική (R²=0,90) και δίνεται από την ακόλουθη σχέση:

$PV2(Volt)=f(x) = 0,308 + 0,818 PV1 + (R^2=0,90)$ (7.2.1)

Αυτή η παλινδρόμηση εμφανίζει το οριζόντιο φωτοβολταϊκό PV2 να αποδίδει μια τάση εξόδου μειωμένη κατά 19% κάτω από όλα τα φορτία κατανάλωσης σε σχέση με το PV1 (38°). Η τιμή του γεωγραφικού πλάτους των 38° αποτελεί μια μέση τιμή του Ελλαδικού χώρου (35° - 41°) Αντίστοιχες μετρήσεις μεταξύ ζεύγους πυρανομέτρων σε διαφορετικά γεωγραφικά πλάτη (Κρήτη, Θεσσαλία και Ξάνθη, αδημοσίευτες μετρήσεις) έδωσαν ένα εύρος διακύμανσης ±2.5% τιμή που δεν επηρεάζει την χρήση των υπολογιζόμενων κλασμάτων ακτινοβολίας στα πεδία εφαρμογής που προτείνονται από υτή την εργασία (π.χ. υπολογισμός εξατμισοδιαπνοής)

7.3 Συσχέτιση τάσης φωτοβολταϊκού PV2με θερμοκρασία του PV2

Η σχέση της τάσης εξόδου του φωτοβολταϊκού PV2 με την θερμοκρασία του πλαισίου σε σχέση με την θερμοκρασία πρότυπης¹ λειτουργίας (STC=25°C) εμφανίζεται στην εικόνα (7.3.1). Η συσχέτιση αναφέρεται στο φωτοβολταϊκό PV2 με κατανάλωση (55 Watt). Είναι εμφανής η μεταβολή της θερμοκρασίας του πλαισίου που φθάνει έως και 55°C σε προσπίπτουσα ακτινοβολία 1000W/m².

Διάγραμμα 7.3.1: Συσχέτιση της τάση του φωτοβολταϊκού PV2σε σχέση με την αύξηση της θερμοκρασία του PV2 υπό κατανάλωση 55 Watt

¹(STC) standard test conditions : Συνθήκες αναφοράς λειτουργίας φωτοβολταϊκών συστημάτων για ακτινοβολία 1000 W/m², AM 1,5 στην θερμοκρασία 25 ° C.

7.4 Προσαρμογή σημείων με επιφανειακή παλινδρόμηση (Trend surface analysis)

Γενικά υπάρχουν δύο ομάδες τεχνικών για την εκτίμηση των σημείων πλέγματος πάνω σε μια επιφάνεια από διάσπαρτες παρατηρήσεις. Η πρώτη ονομάζεται σφαιρική προσαρμογή (global fit), η οποία υπολογίζει μια αλγεβρική συνάρτηση που περιγράφει μια επιφάνεια καλυπτόμενη από ολόκληρη την περιοχή παρατηρήσεων, δίνοντας υπολογιστικές τιμές στους κόμβους του πλέγματος. Η δεύτερη ονομάζεται τοπική προσαρμογή (local fit) υπολογίζει την επιφάνεια στους διαδοχικούς κόμβους του πλέγματος χρησιμοποιώντας μια σφαιρική επιλογή των πλησιέστερων σημείων δεδομένων. Η ανάλυση της τάσης μιας επιφάνειας είναι ευρέως εφαρμοζόμενη διαδικασία, που χρησίμου την προσαρμογής μιας επιφάνειας. Τα δεδομένα τεχνική της σφαιρικής προσεγγίζονται από μια πολυωνυμική επέκταση των συντεταγμένων των δεδομένων ελέγχου και οι συντεταγμένες του πολυωνύμου προσδιορίζονται με μέθοδο ελαχίστων τετραγώνων της απόκλισης από την περιγραφόμενη τάση της επιφάνειας, είναι το ελάχιστο σε κάθε εκτιμούμενο κόμβο.(Draper and Smith1981; Shasua and Toelg,1997; Gallier, 2000).

Οι πολυωνυμικές συναρτήσεις που περιγράφουν την τάση μίας επιφάνειας συμπεριφέρονται ικανοποιητικά στις περισσότερες κατανομές δεδομένων. Η επιλογή πολυωνυμικών συναρτήσεων επιφανειών μεγαλύτερων του δευτέρου βαθμού (τρίτου, τετάρτου, πέμπτου κλπ.) γενικά δίνει καλύτερες προσαρμογές δεδομένων στην κεντρική περιοχή της κατανομής τους αλλά στις ακραίες περιοχές (οριακές τιμές) μπορεί να δώσει τιμές που διαφοροποιούνται πολύ από τα αρχικά δεδομένα, αν και αυτό μπορεί να μην συμβαίνει σε περιπτώσεις που η συνολική διασπορά των παρατηρήσεων είναι μικρή.

Κατόπιν επαναληπτικής διερεύνησης πολλαπλών συσχετίσεων πρωτογενών μετεωρολογικών μετρήσεων και μετρήσεων τάσης φωτοβολταϊκού πάνελ που λειτουργούσε κάτω από κατανάλωση που μεταβαλλόταν με το πέρας κάποιας χρονικής περιόδου, διαπιστώνεται ότι η επιλογή μιας πολυωνυμικές συσχέτισης επιφάνειας δευτέρου βαθμού (Quadratic surface regression) έδινε τα καλλίτερα αποτελέσματα εκτιμήσεων, με σύγχρονη επιβεβαίωση από τα στατιστικά μεγέθη Η επιλεγόμενη μορφή της εξίσωσης επιφάνειας έχει την ακόλουθη μορφή:

$Z=f(x,y)=k_0+k_1y+k_2y^2+k_3x+k_4xy+k_5x^2$

Όπου Ζ αντιπροσωπεύει τις εκτιμήσεις της R_s ακτινοβολίας και τα Χ και Υ αντιπροσωπεύουν τις εξαρτώμενες μεταβλητές τάση (Volt) φορτίο και (watt) την του φωτοβολταϊκού πάνελ αντίστοιχα. Τα αποτελέσματα των δύο απεικονίσεων 'local fit και Global fit,(εξίσωση 7.5.1) εμφανίζονται στην εικόνα 7.4

Εικόνα 7.4: Χωρική καταγραφή απεικόνισης (3D)(α)της επιφάνειας με σφαιρική προσέγγιση των πλησιέστερων διαδοχικών σημείων(Local fit) (β) της γενικής γραμμικής σχέσης(Quadratic surface regression Global fit)

7.5 Εύρεση συντελεστών μοντέλου.

Για την εύρεση των συντελεστών του νέου εμπειρικού μοντέλου πραγματοποιήθηκαν μετρήσεις των παραμέτρων της εξαρτώμενης μεταβλητής Z (R_s), μεταβλητής X (Volt) και μεταβλητής Y (Watt) από την 169 Ιουλιανή ημέρα (17 Ιουνίου 2011) έως την 285 Ιουλιανή ημέρα (12 Οκτώβριου 2011).

Στο ακόλουθο ροόγραμμα εμφανίζεται συνοπτικά η διαδικασία υπολογισμού των συντελεστών. Για την όλη διαδικασία χρησιμοποιήθηκε το γεωστατικό υπολογιστικό πρόγραμμα Surfer (Version 10)

Εικόνα 7.5.1: Ροόγραμμα υπολογισμού συντελεστών

Η γενική δευτεροβάθμια σχέση (7.5.1) δίνει τις προβλεπόμενες τιμές της ακτινοβολία Rs_{est} σαν συνάρτηση της τάσης V((Volt) και της κατανάλωσης C (Watt) του επιφανειακού πολυωνύμου της σχέσης εκτιμώντας τους έξι άγνωστους συντελεστές B_i, i=0,1,2,3,4,5,καθώς και την σημαντικότητα των στατιστικών τους μεγεθών(Inter-Variable Correlation and Covariance)

 $Rs_{est} = f(X,Y) = B_0 + B_1 C + B_2 C^2 + B_3 V + B_4 C V + B_5 V^2$ (7.5.1)

B ₀ =-39.22483	B ₁ =1.4290353	B ₂ =0.0255764
B3 =49.179206	B4 =0.8070473	B5 =-2.2572950

Οι ισοδυναμικές γραμμές της ακτινοβολίας Rs_{est} όπως προκύπτουν από την εξίσωση (7.5.1)παρουσιάζονται στην εικόνα 7.5.2,

Εικόνα 7.5.2:Ισοδυναμικές γραμμές ακτινοβολίας Rsest

Τα στατιστικά μεγέθη της συσχέτισης και της συνδιακίμανσης εμφανίζονται στους πίνακες 7.5.1 :

	Πίνακας 7	.5.1: Στατια	στικά δεδομένα	ι συσχέτισης και	συνδιακίμανσης
--	-----------	---------------------	----------------	------------------	----------------

	Σ	Συσχέτισι	1	Συνδιακίμανση					
	V	С	Rs	V	С	Rs			
V	1.000	-0.345	0.760	21.78	23.78	1038.36			
С		1.000	0.181		217.86706	782.04			
Rs			1.000			85743.106			

7.6 Έλεγχος εγκυρότητας του μοντέλου

Η μεθοδολογία που ακολουθήθηκε ελέγχτηκε για την εγκυρότητα της από ανεξάρτητες τιμές ακτινοβολίας R_s καθώς και για τις ημερήσιες τιμές ωρών πραγματικής ηλιοφάνειας για την αντίστοιχη περίοδο δέκα (10) ημερών απο 4 Ιουνίου 2011 έως 14 Ιουνίου 2011 (Julian Days 155-165)

Στην εικόνα 7.6.1 παρουσιάζεται η συσχέτιση μεταξύ των τιμών μετρούμενης R_s και των εκτιμούμενης ακτινοβολίας Rs_{est} από την προτεινόμενη σχέση 7.5.1 Ο συντελεστής γραμμικής παλινδρόμησης 0,98 δείχνει πολύ εξαιρετική προσέγγιση των προβλεπόμενων τιμών σε σχέση με τις πραγματικές μετρήσεις. Άρα συμπεραίνεται ότι η χρήση των δεδομένων τάσης και φορτίου από ένα φωτοβολταϊκό σύστημα θα μπορούσε να εκτιμήσει me μεγάλη ακρίβεια την ακτινοβολία R_s συνάρτηση της τάσης εξόδου και του φορτιού του από έγγραφες δεδομένων αρχείου(raw data).

Εικόνα 7.6.1: Διάγραμμα συσχέτισης (Rs vs Rsest)

Υπολογίστηκαν οι ωριαίες τιμές ηλιοφάνειας από τις προβλεπόμενες τιμές ακτινοβολίας Rs_{est} και οι τιμές οι οποίες προέκυψαν στη συνέχεια αθροιστήκαν δίνοντας την προβλεπόμενη πραγματική ηλιοφάνεια n_{est} για το συγκεκριμένο δεκαήμερο (Πίνακας 7.6). Στη συνέχεια πραγματοποιήθηκε συσχέτιση της προβλεπόμενης πραγματικής ηλιοφάνειας n_{est} με την πραγματική ηλιοφάνεια n (Εικόνα 7.6.2) και διαπιστώθηκε πλήρη ταύτιση των συσχετιζόμενων τιμών. Αυτό το αποτέλεσμα θα μπορούσε να συμβάλει στην πλήρωση τιμών ακτινοβολίας σε περιοχές που έχουν εγκατασταθεί φωτοβολταϊκά συστήματα ιδίου τύπου. Στον πίνακα 7.6 παρατηρείται πλήρης ταύτιση των τιμών της προβλεπόμενης πραγματικής ακτινοβολίας και της πραγματικής ακτινοβολίας που μετρήθηκε από το πυρανόμετρο.

DOY	n (H)	n _{est} (H)
155	11	11
156	12	12
157	10.5	10.5
158	12	12
159	11	11
160	12	12
161	11.5	11.5
162	11.5	11.5
163	8.5	8.5
164	10	10
165	10	10

Πίνακας 7.6: Τιμές πραγματικής και προβλεπόμενης πραγματικής ηλιοφάνειας για ένα δεκαήμερο

Εικόνα 7.6.1: Συσχέτιση n_{est} n

ΚΕΦΑΛΑΙΟ 8:

8. Συνοπτικά συμπεράσματα

Σύμφωνα με τα αποτελέσματα που αναλύθηκαν στο προηγούμενο κεφάλαιο προκύπτουν τα ακόλουθα σημαντικά συμπεράσματα:

- Η προτεινόμενη εξίσωση (7.5.1) δίνει πολύ καλή προσέγγιση (R²=0,98)της ολικής προσπίπτουσας ακτινοβολίας μικρού μήκους κύματος (R_s) από τιμές φωτοβολταϊκού συστήματος τύπου μονοκρυσταλλικού σε περιοχές όπου η έλλειψη των δεδομένων ακτινοβολίας δυσχεραίνει την εκτίμηση των παραμέτρων του υδατικού ισοζυγίου. Συγκεκριμένα, η ακτινοβολία R_s αποτελεί βασική παράμετρο για την εκτίμηση της εξατμισοδιαπνοής.
- Οι καλύτερες εκτιμήσεις παρατηρήθηκαν στην περίπτωση που τα φωτοβολταϊκά συστήματα λειτουργούσαν κάτω από φορτίο βέλτιστης λειτουργίας.
- Επιπλέον, ο προσδιορισμός των ωρών πραγματικής ηλιοφάνειας (actual daylight hours) έδωσε πλήρη ταύτιση των συσχετιζόμενων τιμών για το διάστημα ενός δεκαημέρου με πλήρη ηλιοφάνεια (βήμα εκτίμησης ±0,5hr). Το εύρος των λαμβανόμενων παρατηρήσεων δεν μας έδωσε τη δυνατότητα συσχέτισης τιμών πραγματικής ηλιοφάνειας κατά τη διάρκεια νεφοσκεπών ημερών.
- Διαπιστώθηκε ότι η εκτίμηση των τιμών πραγματικής ηλιοφάνειας
 βρίσκεται στα επίπεδα εκτιμήσεων ηλιογράφων Campbell Stokes.
- Δε διαπιστώθηκε καλή εκτίμηση των λαμβανομένων τιμών της ηλιακής ακτινοβολίας όταν το φωτοβολταϊκό σύστημα λειτουργούσε κάτω από ελάχιστο φορτίο (15-25 Watt). Η απόκλιση στην εκτίμηση κυμαίνεται από 15 έως 30% για φορτίο μικρότερο των 25Watt.
- Τέλος, θεωρούμε ότι η συγκεκριμένη μεθοδολογία εάν ακολουθηθεί και σε διαφορετικούς τύπους εγκατεστημένων φωτοβολταϊκών συστημάτων θα μπορούσε να δώσει ακριβές μετρήσεις ηλιακής ακτινοβολίας Rs με ποιοτικά χαρακτηριστικά πυρανομέτρων.

Παράρτημα

1. Πρωτογενή δεδομένα αγρό-μετρολογικού σταθμού.

YEAR	DAY (J)	TIME	TIME (Cº)	RH (%)	WS 2m (m/sec)	Rs (W/m²)	PV1 (Volt)	PV2 (Volt)	PV1(Temp) (Cº)	PV2(Temp) (Cº)
2011	169	30	20,56	68,17	0,027	0	-0,003	-0,004	7,45	5,833
2011	169	100	19,57	74,6	0,008	0	-0,004	-0,004	6,481	4,986
2011	169	130	20,11	66,82	0,196	0	-0,004	-0,004	7,45	5,686
2011	169	200	20,18	66,86	0,119	0	-0,005	-0,004	6,789	5,004
2011	169	230	19,82	68,71	0,02	0	-0,004	-0,003	6,841	4,803
2011	169	300	19,44	68,24	0,093	0	-0,004	-0,004	6,97	4,913
2011	169	330	19,36	68,75	0,044	0	-0,004	-0,004	6,793	4,623
2011	169	400	18,61	71,6	0,087	0	-0,004	-0,004	6,296	4,457
2011	169	430	18,99	69,53	0,081	0	-0,004	-0,004	6,592	4,549
2011	169	500	18,64	71,3	0,037	0	-0,003	-0,002	6,284	4,306
2011	169	530	17,93	74,8	0,069	0	0,003	0,005	6,008	4,377
2011	169	600	18,23	73,7	0,058	6,289	0,016	0,022	7,23	5,322
2011	169	630	20	65,11	0,085	94,4	0,031	0,068	10,96	7,37
2011	169	700	21,96	59,18	0,153	189	0,04	0,173	14,96	13,84
2011	169	730	23,67	54,04	0,311	285,5	0,058	0,299	16,25	23,56
2011	169	800	25,17	45,3	0,186	393,1	0,133	0,426	22,26	29,85
2011	169	830	26,58	41,11	0,242	488,8	0,315	1,072	28,88	32,72
2011	169	900	27,48	37,65	0,365	579,5	0,846	2,906	33,98	40,16
2011	169	930	28,19	38,26	0,81	662,6	1,778	3,868	36,22	42,49
2011	169	1000	28,25	44,7	1,043	731	2,769	4,727	37,89	42,89
2011	169	1030	28,09	48,48	1,317	799	3,836	5,635	38,03	43,58
2011	169	1100	28,61	46,49	1,221	855	4,885	6,459	39,24	45,41
2011	169	1130	29,34	44,49	1,343	894	5,798	7,08	38,88	46,29
2011	169	1200	29,96	41,74	1,397	919	6,509	7,47	39,11	46,53
2011	169	1230	29,94	44,12	1,704	878	6,366	6,947	37,99	44,36
2011	169	1300	29,5	46,27	1,952	828	6,263	6,557	36,76	42,08
2011	169	1330	30,14	43,01	1,471	907	7,33	7,43	38,96	45,78
2011	169	1400	30,7	40,3	1,485	875	7,13	7,04	39,01	46,21
2011	169	1430	30,58	38,85	1,77	829	6,732	6,433	37,85	44,18
2011	169	1500	30,62	39,45	1,999	742	5,584	5,266	36,71	42,06
2011	169	1530	30,45	39,24	1,996	703	4,971	4,734	36,11	41,59
2011	169	1600	30,48	40,68	2,01	592,5	3,581	3,423	35,14	39,05
2011	169	1630	29,67	46,65	1,923	511	2,754	2,534	33,19	36,61
2011	169	1700	28,22	56,06	1,951	423,3	1,783	1,653	31,12	33,33
2011	169	1730	28,38	46,05	1,542	327,1	0,833	0,81	29,73	30,97
2011	169	1800	28,33	47,37	1,455	231,2	0,309	0,329	26,63	27,63
2011	169	1830	27,38	52,55	1,403	139,7	0,126	0,147	22,99	23,61
2011	169	1900	26,75	55,33	1,384	64,35	0,051	0,065	19,98	20,35
2011	169	1930	25,76	61,12	1,244	9,52	0,021	0,024	17,93	17,4
2011	169	2000	25	63,54	0,972	0	0,002	0,002	16,68	15,66
2011	169	2030	24,67	63,83	0,698	0	-0,003	-0,004	15,51	14,21
2011	169	2100	24,45	64,53	0,507	0	-0,004	-0,004	14,42	12,99
2011	169	2130	24,34	63,01	0,402	0	-0,004	-0,004	13,44	11,85
2011	169	2200	23,2	68,04	0,049	0	-0,003	-0,003	11,79	10,36

YEAR	DAY (J)	TIME	TIME (Cº)	RH (%)	WS 2m (m/sec)	Rs (W/m²)	PV1 (Volt)	PV2 (Volt)	PV1(Temp) (Cº)	PV2(Temp) (Cº)
2011	169	2230	21,72	73,6	0,01	0	-0,004	-0,004	10,64	9,1
2011	169	2300	20,93	77	0	0	-0,003	-0,004	9,9	8,45
2011	169	2330	20,68	77,3	0,002	0	-0,004	-0,004	9,72	8,3
2011	169	2400	20,53	74,6	0,016	0	-0,003	-0,004	9,12	7,52
2011	170	30	20,08	73,9	0	0	-0,005	-0,004	8,61	6,893
2011	170	100	20,55	70,1	0,04	0	-0,004	-0,004	8,99	6,904
2011	170	130	21,58	65,88	0,015	0	-0,004	-0,004	8,89	6,501
2011	170	200	21,47	64,68	0,063	0	-0,004	-0,004	9,2	6,638
2011	170	230	21,52	64,24	0,019	0	-0,004	-0,004	8,87	6,32
2011	170	300	20,87	66,51	0,049	0	-0,003	-0,004	8,58	6,326
2011	170	330	20,58	68,73	0,021	0	-0,003	-0,004	8,17	6,097
2011	170	400	20,06	69,81	0,008	0	-0,003	-0,004	7,93	5,953
2011	170	430	19,14	75,1	0	0	-0,003	-0,004	7,35	5,733
2011	170	500	18,55	77,2	0,015	0	-0,002	-0,003	7,05	5,518
2011	170	530	20,16	67,82	0,201	0	0,003	0,005	8,67	6,352
2011	170	600	20,82	67,23	0,084	6,844	0,017	0,022	9,77	7,4
2011	170	630	21,52	65,9	0,026	93	0,033	0,064	12,63	10,34
2011	170	700	23,96	59,13	0,107	187,8	0,041	0,174	17,53	18,6
2011	170	730	25,02	55	0,189	283,4	0,062	0,304	18,45	26,02
2011	170	800	26,54	51,34	0,188	384,1	0,134	0,413	23,31	31,26
2011	170	830	27,26	50,56	0,411	478,6	0,306	1,001	28,56	33,3
2011	170	900	27,48	49,94	0,83	565,8	0,792	2,723	32,31	38,15
2011	170	930	28,15	49,08	0,786	648,1	1,727	3,742	35,57	42,16
2011	170	1000	28,47	50,95	1,139	733	2,775	4,721	37	43,48
2011	170	1030	28,99	48,9	0,959	801	3,861	5,662	38,15	45,85
2011	170	1100	29,47	50,32	1,07	855	4,898	6,472	38,91	47,24
2011	170	1130	29,77	49,23	1,402	897	5,811	7,07	38,29	46,71
2011	170	1200	29,52	50,02	1,597	921	6,539	7,48	37,73	45,84
2011	170	1230	29,85	47,46	1,758	932	7,08	7,68	28,67	45,92
2011	170	1300	29,9	47,06	1,953	927	7,34	7,64	27,87	44,99
2011	170	1330	30,04	45,69	2,054	901	7,25	7,3	28,1	44,28
2011	170	1400	30,31	43,32	1,92	862	6,926	6,784	28,61	44,09
2011	170	1430	30,76	40,93	2,07	814	6,439	6,158	29,04	43,4
2011	170	1500	30,34	41,79	2,197	757	5,759	5,41	31,93	41,61
2011	170	1530	29,98	42,01	1,955	696,4	5,034	4,664	36	41,07
2011	170	1600	30,35	40,34	1,963	616,6	4,069	3,724	39,87	39,81
2011	170	1630	29,5	45,01	2,129	528,1	2,987	2,722	36,93	36,36
2011	170	1700	29,05	49,3	2,042	438,2	1,948	1,799	34,6	33,73
2011	170	1730	28,99	44,37	1,748	341,6	0,954	0,923	31,42	31,11
2011	170	1800	29,13	42,57	1,515	244,6	0,341	0,368	28,36	28,29
2011	170	1830	28,94	42,04	1,628	151,5	0,137	0,163	22,52	24,52
2011	170	1900	28,43	43,49	1,245	71,5	0,053	0,072	20,23	21,55
2011	170	1930	27,78	45,83	0,938	12,75	0,022	0,027	17,34	18,61
2011	170	2000	26,64	49,6	0,637	0	0,003	0,003	15,35	16,27
2011	170	2030	25,7	53,8	0,194	0	-0,003	-0,003	13,02	14,03
2011	170	2100	23,83	62,23	0,026	0	-0,004	-0,004	11,36	11,74
2011	170	2130	22,79	67,05	0,032	0	-0,004	-0,004	10,34	10,66

YEAR	DAY (J)	TIME	TIME (C°)	RH (%)	WS 2m (m/sec)	Rs (W/m²)	PV1 (Volt)	PV2 (Volt)	PV1(Temp) (Cº)	PV2(Temp) (Cº)
2011	170	2200	22,22	70,3	0,039	0	-0,004	-0,004	9,55	9,76
2011	170	2230	21,8	72,4	0,043	0	-0,003	-0,004	8,93	9,15
2011	170	2300	21,46	72,6	0,023	0	-0,004	-0,005	8,36	8,44
2011	170	2330	21,1	73,4	0,004	0	-0,003	-0,003	7,85	7,78
2011	170	2400	20,81	74,3	0,009	0	-0,003	-0,004	7,56	7,52
2011	204	30	25,62	51,58	0,171	0	-0,006	-0,006	12,71	11,43
2011	204	100	24,38	55,46	0,088	0	-0,006	-0,006	11,6	10,23
2011	204	130	23,45	57,3	0,111	0	-0,006	-0,006	10,76	9,37
2011	204	200	22,87	60,11	0,058	0	-0,006	-0,006	10,05	8,8
2011	204	230	22,32	59,83	0,038	0	-0,006	-0,006	9,29	7,91
2011	204	300	22,24	58,74	0,061	0	-0,006	-0,006	9,09	7,61
2011	204	330	22,68	59,37	0,185	0	-0,006	-0,006	9,07	7,66
2011	204	400	22,33	60,77	0,069	0	-0,005	-0,006	8,68	7,33
2011	204	430	22,01	58,58	0,101	0	-0,006	-0,006	8,45	7,13
2011	204	500	22,57	55,26	0,027	0	-0,006	-0,006	8,66	7,21
2011	204	530	22,15	57,95	0,039	0	0	0	8,41	7,05
2011	204	600	21,81	60,55	0,077	0,342	0,013	0,016	8,66	7,03
2011	204	630	22,71	60,19	0,064	60,82	0,031	0,049	11,19	9,25
2011	204	700	25,65	55,3	0	158,4	0,044	0,192	15,82	16,06
2011	204	730	28,19	45,95	0,073	249,8	0,07	0,546	18,95	24,07
2011	204	800	29,64	37,97	0,207	348,5	0,164	0,885	25,8	30,19
2011	204	830	30,3	35,78	0,536	448,3	0,455	1,425	29,61	37,78
2011	204	900	30,98	34,34	0,748	542,9	1,611	3,556	38,17	38,92
2011	204	930	31,38	34,64	1,174	628,6	3,135	5,924	40,5	40,72
2011	204	1000	31,51	35,08	1,552	703	4,847	7,52	41	42,51
2011	204	1030	31,62	37,4	1,422	769	6,617	8,97	41,67	45,11
2011	204	1100	32,37	33,62	1,329	823	8,42	10,31	44,15	47,44
2011	204	1130	32,96	32,23	1,506	863	10,03	11,35	45,57	48,48
2011	204	1200	33,15	32,28	1,769	891	11,39	12,11	45,71	48,21
2011	204	1230	33,21	30,48	1,532	904	12,38	12,5	46,16	48,36
2011	204	1300	33,51	28,98	1,92	896	12,83	12,43	46,56	48,04
2011	204	1330	33,9	27,57	1,768	873	12,86	12,02	47,11	48,66
2011	204	1400	33,94	25,66	2,068	837	12,43	11,21	46,15	47,33
2011	204	1430	33,9	27,55	2,024	785	11,5	10,07	45,57	46,44
2011	204	1500	33,69	28,4	2,118	674,7	8,96	7,63	43,27	43,86
2011	204	1530	33,47	33,84	2,145	612,4	7,67	6,38	41,8	42,08
2011	204	1600	32,74	35,05	2,227	548	6,314	5,156	39,89	39,68
2011	204	1630	32,73	37,1	1,836	477,2	4,929	3,962	38,92	38,28
2011	204	1700	32,28	38,98	1,941	395,4	3,409	2,694	37,59	35,64
2011	204	1730	31,67	43,73	2,118	307,1	1,929	1,485	34,96	32,17
2011	204	1800	30,59	49,35	1,859	213,6	0,71	0,542	31,59	28,7
2011	204	1830	29,17	56,05	2,012	125,4	0,208	0,191	26,46	24,51
2011	204	1900	28,3	60,44	1,255	48,77	0,076	0,076	22,51	21,4
2011	204	1930	27,62	64,42	0,713	4,738	0,027	0,027	19,5	18,67
2011	204	2000	26,81	71	0,682	0	0,002	0,002	17,26	16,57
2011	204	2030	26,37	74,2	0,416	0	-0,005	-0,005	15,71	14,81

YEAR	DAY (J)	TIME	TIME (Cº)	RH (%)	WS 2m (m/sec)	Rs (W/m²)	PV1 (Volt)	PV2 (Volt)	PV1(Temp) (C°)	PV2(Temp) (Cº)
2011	204	2100	26,47	65,04	0,246	0	-0,005	-0,006	14,88	13,79
2011	204	2130	26,41	57,84	0,291	0	-0,006	-0,006	13,95	12,7
2011	204	2200	25,93	55,53	0,062	0	-0,006	-0,006	12,84	11,52
2011	204	2230	24,34	63,68	0,021	0	-0,005	-0,006	11,57	10,31
2011	204	2300	23,88	63,93	0,023	0	-0,006	-0,006	11,3	9,94
2011	204	2330	23,96	60,36	0,078	0	-0,006	-0,006	11,16	9,76
2011	204	2400	23,21	63,98	0	0	-0,006	-0,006	10,24	8,97
2011	205	30	22,9	65,89	0,005	0	-0,006	-0,006	9,96	8,53
2011	205	100	22,83	64,51	0,014	0	-0,006	-0,006	9,72	8,25
2011	205	130	24,79	54,83	0,161	0	-0,006	-0,006	10,83	9,36
2011	205	200	25,47	54,72	0,042	0	-0,006	-0,006	10,71	9,39
2011	205	230	24,9	56,41	0,047	0	-0,006	-0,006	10,05	8,54
2011	205	300	25,08	54,15	0,255	0	-0,006	-0,006	11,29	10,07
2011	205	330	23,98	60,17	0,003	0	-0,006	-0,006	9,75	8,61
2011	205	400	23,7	54,55	0,1	0	-0,006	-0,006	10,3	8,95
2011	205	430	23,94	52,32	0,106	0	-0,006	-0,006	10,19	8,9
2011	205	500	23,6	52,03	0,038	0	-0,006	-0,006	9,64	8,4
2011	205	530	22,51	53,35	0,022	0	-0,001	0	8,49	7,06
2011	205	600	22,98	48,18	0,086	0,635	0,013	0,016	9,84	8,31
2011	205	630	23,44	49,43	0,016	55,99	0,033	0,051	11,46	9,71
2011	205	700	25,47	46,18	0,075	152,2	0,046	0,18	15,75	15,92
2011	205	730	27,91	41,33	0,068	247,4	0,071	0,527	18,79	24,15
2011	205	800	28,59	41,5	0,452	347,4	0,163	0,88	25,2	29,06
2011	205	830	29,31	42,99	0,616	447,1	0,445	1,377	28,81	36,94
2011	205	900	29,77	42,7	1,113	544,2	1,608	3,466	36,5	36,86
2011	205	930	30,25	40,9	0,988	623,9	3,103	5,811	40,1	40
2011	205	1000	30,74	38,59	1,325	697,2	4,771	7,33	40,66	42,43
2011	205	1030	31,15	37,42	1,447	761	6,517	8,76	41,25	44,18
2011	205	1100	31,42	37,1	1,427	805	8,14	9,86	43,31	46,1
2011	205	1130	32,3	36,12	1,336	841	9,7	10,85	45,37	48,17
2011	205	1200	33,09	34,89	1,613	870	11,05	11,62	45,97	48,33
2011	205	1230	33,03	34,09	1,864	876	11,85	11,87	46,05	47,88
2011	205	1300	33,43	32,18	1,705	867	12,24	11,77	46,54	48,07
2011	205	1330	33,82	31,99	1,671	856	12,52	11,61	47,38	49,05
2011	205	1400	33,63	33,13	2,139	826	12,18	10,95	45,83	47,38
2011	205	1430	33,33	30,21	2,102	785	11,46	10,02	45,16	46,06
2011	205	1500	33,61	28,11	2,15	730	10,4	8,81	44,65	45,38
2011	205	1530	33,04	30,15	2,325	658,4	8,77	7,28	42,55	42,92
2011	205	1600	32,99	30,07	2,192	579,5	7,06	5,745	41,37	41,43
2011	205	1630	32,99	30,96	1,894	496,6	5,347	4,279	39,64	39,55
2011	205	1700	32,62	34,59	1,917	405,6	3,631	2,844	38,48	36,7
2011	205	1730	32,03	33,42	1,737	306,7	2,032	1,532	36,46	33,71
2011	205	1800	31,7	35,09	1,646	213,5	0,727	0,537	32,82	30,02
2011	205	1830	30,61	42,88	1,769	128,8	0,22	0,199	27,94	26,12
2011	205	1900	29,42	53,28	1,574	44	0,072	0,073	23,18	22,46

YEAR	DAY (J)	TIME	TIME (Cº)	RH (%)	WS 2m (m/sec)	Rs (W/m ²	PV1 (Volt)	PV2 (Volt)	PV1(Temp) (Cº)	PV2(Temp) (Cº)
2011	205	1930	28.3	57.16	0.913	1.449	0.022	0.022	19.96	19.36
2011	205	2000	27,87	58,36	0,916	0	0,001	0,001	18,37	17,64
2011	205	2030	27,13	65,29	0,801	0	-0,005	-0,005	17	16,3
2011	205	2100	26,87	57,34	0,215	0	-0,006	-0,006	15,33	14,3
2011	205	2130	26,07	52,99	0,033	0	-0,006	-0,006	13,79	12,55
2011	205	2200	25,03	56,06	0,021	0	-0,006	-0,006	12,79	11,45
2011	205	2230	24,39	59,03	0,016	0	-0,005	-0,006	12,08	10,69
2011	205	2300	24,01	61,25	0,019	0	-0,006	-0,006	11,59	10,24
2011	205	2330	23,75	62,7	-0,001	0	-0,006	-0,006	11,11	9,64
2011	205	2400	23,47	60,7	0,066	0	-0,005	-0,006	10,9	9,59
2011	268	30	18,51	56,32	0,015	0	-0,004	-0,004	5,424	3,918
2011	268	100	17,63	59,01	0,042	0	-0,004	-0,004	4,773	3,311
2011	268	130	17,31	60,07	0,011	0	-0,004	-0,004	4,355	3,043
2011	268	200	17,21	61,37	0,02	0	-0,004	-0,004	4,052	2,628
2011	268	230	16,86	62,73	0,023	0	-0,004	-0,004	3,81	2,506
2011	268	300	16,82	62,36	0,04	0	-0,004	-0,004	3,792	2,405
2011	268	330	17,14	62,46	0,018	0	-0,003	-0,004	3,747	2,315
2011	268	400	16,84	64,53	0,005	0	-0,003	-0,004	3,389	1,811
2011	268	430	16,46	66,98	0,013	0	-0,003	-0,004	3,098	1,688
2011	268	500	16,24	68,5	0,02	0	-0,004	-0,004	3,018	1,546
2011	268	530	16,36	68,87	0,083	0	-0,004	-0,004	3,156	1,77
2011	268	600	16,56	68,65	0,166	0	-0,004	-0,004	3,245	1,817
2011	268	630	19,76	56,07	0,345	0	0,004	0,005	5,943	3,995
2011	268	700	21,82	52,64	0,723	1,935	0,032	0,035	8,99	8,03
2011	268	730	22,75	51,36	0,773	100,8	0,1	0,105	12,28	11,11
2011	268	800	23,61	49,25	0,592	139,3	0,59	0,098	18,23	12,93
2011	268	830	25,13	41,48	0,523	298,9	2,258	1,248	21,61	16,13
2011	268	900	26,53	36,13	0,641	393,4	4,233	2,952	30,22	25,66
2011	268	930	27,08	29,73	1,566	477	7,7	7,43	28,53	29,38
2011	268	1000	27,54	30,47	1,588	549,9	11,15	12,1	31,69	31,99
2011	268	1030	27,67	32,27	1,618	606,5	16,53	14,47	33,49	33,61
2011	268	1100	28,12	33,12	1,731	655,2	17,15	15,82	35,87	35,18
2011	268	1130	28,66	31,52	1,831	691,2	17,4	16,36	37,63	36,3
2011	268	1200	28,94	28,14	2,421	725	17,69	16,78	37,13	35,8
2011	268	1230	29,02	28,08	2,494	739	17,76	16,89	38,19	36,36
2011	268	1300	28,98	28,87	2,251	726	17,77	16,81	38,36	36,4
2011	268	1330	29,05	30,1	2,014	699,4	17,67	16,54	39,47	37,03
2011	268	1400	29,35	29,38	1,899	649,6	17,49	15,9	39,85	37,28
2011	268	1430	29,34	27,83	1,83	595,5	17,43	14,79	38,53	35,67
2011	268	1500	29,32	27,26	1,886	524,6	17,18	12,26	37,1	34,36
2011	268	1530	29,45	27,42	1,714	448	16,66	9,39	36,17	33,2
2011	268	1600	28,91	28,25	2,132	366,4	14,58	6,53	32,88	29,94
2011	268	1630	28,8	28,26	1,718	268,9	9,56	3,778	31,11	27,82
2011	268	1700	28,42	29,78	1,739	171,5	6,025	1,552	28,4	24,73
2011	268	1730	27,9	31,12	1,409	85,5	2,237	0,324	25,26	21,5
2011	268	1800	26,86	35,06	1,39	15,38	0,209	0,071	19,87	18,21
2011	268	1830	25,83	38,53	1,604	0	0,011	0,009	16,73	16,08

YEAR	DAY (J)	TIME	TIME (C°)	RH (%)	WS 2m (m/sec)	Rs (W/m ²	PV1 (Volt)	PV2 (Volt)	PV1(Temp) (Cº)	PV2(Temp) (Cº)
2011	268	1900	25,21	42,1	1,487	0	-0,003	-0,004	15,37	14,8
2011	268	1930	24,64	45,14	1,177	0	-0,004	-0,004	14,4	13,79
2011	268	2000	24,43	45,81	1,31	0	-0,004	-0,004	13,91	13,3
2011	268	2030	24,36	46,21	1,04	0	-0,004	-0,004	13,34	12,72
2011	268	2100	23,99	48,72	1,01	0	-0,004	-0,004	12,9	12,29
2011	268	2130	23,9	49,7	0,975	0	-0,003	-0,004	12,71	12,05
2011	268	2200	23,9	50,34	1,074	0	-0,004	-0,004	12,73	12,13
2011	268	2230	23,88	50,15	0,862	0	-0,004	-0,004	12,39	11,75
2011	268	2300	23,55	51,97	0,854	0	-0,004	-0,004	11,94	11,17
2011	268	2330	22,68	53,61	0,365	0	-0,004	-0,004	10,63	9,87
2011	268	2400	20,66	61,05	0,062	0	-0,004	-0,004	8,3	7,16
2011	269	30	20,23	61,5	0,141	0	-0,004	-0,004	8,1	6,88
2011	269	100	21,31	57,24	0,393	0	-0,004	-0,004	9,01	7,94
2011	269	130	21,58	58,19	0,242	0	-0,003	-0,005	8,61	7,61
2011	269	200	20,41	62,13	0,205	0	-0,004	-0,004	7,45	6,366
2011	269	230	20,6	58,17	0,291	0	-0,005	-0,004	7,93	6,874
2011	269	300	20,8	60	0,236	0	-0,004	-0,004	7,56	6,453
2011	269	330	19,52	66,6	0,19	0	-0,004	-0,005	6,733	5,508
2011	269	400	20,13	61,43	0,3	0	-0,004	-0,004	7,47	6,135
2011	269	430	20,05	63,48	0,237	0	-0,004	-0,003	6,82	5,67
2011	269	500	19,24	65,44	0,349	0	-0,004	-0,004	6,6	5,5
2011	269	530	18,73	67,78	0,239	0	-0,004	-0,004	6,274	5,11
2011	269	600	18,24	69,97	0,066	0	-0,003	-0,003	5,751	4,537
2011	269	630	19,32	64,6	0,321	0	0,004	0,005	6,952	5,704
2011	269	700	21,98	57,87	0,797	3,478	0,034	0,039	10,3	9,56
2011	269	730	22,68	56,2	1,016	81,5	0,103	0,108	12,76	12,02
2011	269	800	23,27	54,74	1,344	127,2	0,477	0,155	16,51	13,62
2011	269	830	23,8	52,83	1,838	272,5	1,94	1,36	18,7	15,74
2011	269	900	24,25	51,77	1,678	364,4	3,81	2,783	24,36	21,71
2011	269	930	25,15	47,7	1,659	447,7	7,3	6,835	26,1	26,38
2011	269	1000	26,1	43,06	1,706	532,4	11	11,33	29,72	29,6
2011	269	1030	26,9	36,49	1,896	601,4	16,45	14,18	31,53	31,32
2011	269	1100	26,91	37,45	2,587	656,7	17,3	15,87	32,4	31,75
2011	269	1130	27,04	37,13	2,265	687,2	17,58	16,44	33,87	32,63
2011	269	1200	27,37	36,24	2,259	701	17,67	16,61	35,14	33,48
2011	269	1230	27,46	36,11	2,082	693,6	17,64	16,51	36,04	34,1
2011	269	1300	27,79	35,33	2,117	707	17,67	16,62	37,42	35,26
2011	269	1330	27,62	35,43	2,383	652,3	17,65	15,94	35,34	33,23
2011	269	1400	27,79	35,05	2,24	652,4	17,69	16,02	36,9	34,23
2011	269	1430	27,82	34,91	2,084	541,3	17,26	12,75	34,73	32,22
2011	269	1500	27,86	33,96	2,176	530,5	17,33	12,37	35,12	32,49
2011	269	1530	27,68	33,01	2,289	440,5	16,7	8,97	33,04	30,31
2011	269	1600	27,2	33,55	2,031	298,7	11,11	4,53	29,73	26,96
2011	269	1630	26,49	33,49	1,698	198,2	6,061	2,187	26,51	23,63
2011	269	1700	26,27	34,95	1,92	194,6	6,166	1,959	26,03	22,94
2011	269	1730	25,96	38,54	1,216	100,4	2,31	0,465	23,77	20,21
2011	269	1800	24,79	41,19	1,66	18,4	0,117	0,082	17,71	16,71

YEAR	DAY (J)	TIME	TIME (C°)	RH (%)	WS 2m (m/sec)	Rs (W/m ²	PV1 (Volt)	PV2 (Volt)	PV1(Temp) (Cº)	PV2(Temp) (Cº)
2011	269	1830	23,54	46,03	1,603	0	0,014	0,013	14,87	14,33
2011	269	1900	22,79	48,97	1,298	0	-0,003	-0,004	13,22	12,67
2011	269	1930	22,29	49,79	1,346	0	-0,003	-0,004	12,25	11,67
2011	269	2000	22,19	49,5	1,003	0	-0,004	-0,004	11,65	11,06
2011	269	2030	22,1	47,39	1,573	0	-0,003	-0,004	11,43	10,87
2011	269	2100	21,88	46,39	1,321	0	-0,004	-0,004	10,92	10,34
2011	269	2130	21,81	44,69	1,027	0	-0,004	-0,004	10,59	9,9
2011	269	2200	21,78	44,86	1,416	0	-0,004	-0,004	10,65	10,02
2011	269	2230	21,73	46	1,238	0	-0,004	-0,004	10,56	9,99
2011	269	2300	21,41	49,82	1,14	0	-0,004	-0,004	10,2	9,6
2011	269	2330	21,09	53,75	1,3	0	-0,003	-0,004	10,13	9,56
2011	269	2400	20,92	52,77	1,172	0	-0,004	-0,004	9,78	9,19
2011	278	30	17,14	65,8	0,03	0	-0,004	-0,004	3,669	2,319
2011	278	100	16,56	66,01	0,07	0	-0,004	-0,005	3,555	2,12
2011	278	130	16,56	65,89	0,034	0	-0,004	-0,004	3,211	1,588
2011	278	200	16,74	63,96	0,281	0	-0,004	-0,004	3,8	2,205
2011	278	230	16,6	66,04	0,023	0	-0,004	-0,004	3,038	1,654
2011	278	300	15,42	69,43	0,059	0	-0,004	-0,005	2,026	0,857
2011	278	330	15,77	66,95	0,054	0	-0,004	-0,003	2,28	0,817
2011	278	400	15,18	68,59	0,076	0	-0,004	-0,004	1,717	0,277
2011	278	430	14,83	70,4	0,043	0	-0,004	-0,004	1,338	-0,096
2011	278	500	15,61	66,67	0,242	0	-0,004	-0,004	2,496	1,067
2011	278	530	16,25	64,27	0,327	0	-0,004	-0,004	3,101	1,305
2011	278	600	15,92	65,58	0,125	0	-0,004	-0,004	2,148	0,413
2011	278	630	15,82	65,28	0,259	0	0,002	0,002	2,636	1,065
2011	278	700	15,92	65,82	0,115	0,273	0,05	0,048	3,239	1,567
2011	278	730	16,14	67,15	0,047	28,76	0,194	0,146	5,121	2,713
2011	278	800	18,32	59,53	0,237	82,5	1,277	1,418	9,22	7,33
2011	278	830	20,81	54,01	0,328	244,3	6,207	6,224	16,33	16,2
2011	278	900	22,13	51	0,342	326,3	9,31	6,586	21,76	21,48
2011	278	930	23,2	47,01	0,428	404,2	9,7	13	27,71	26,35
2011	278	1000	24	44,8	0,522	480,5	14,73	17,89	32,53	30,77
2011	278	1030	24,62	43,59	0,638	537,8	18,5	18,15	36,21	34,05
2011	278	1100	25,14	42,21	0,525	552	17,45	17,04	38,39	36,46
2011	278	1130	26,03	39,02	0,925	640,1	18,6	18,36	41,41	38,57
2011	278	1200	26,29	37,56	0,948	648,7	18,26	17,8	42,37	39,65
2011	278	1230	26,7	36,16	1,03	559,5	16,99	15,85	40,95	38,07
2011	278	1300	25,92	36,8	0,619	279,8	11,52	10,05	28,35	28,32
2011	278	1330	26,78	35,03	0,806	547,5	16,62	15,69	40,43	38,07
2011	278	1400	25,95	40,96	1,144	224,4	8,44	6,87	27,98	27,51
2011	278	1430	24,91	46,92	2,063	360	15,02	13,13	28,5	26,86
2011	278	1500	25,11	46,83	1,788	417,5	16,4	15,15	31,53	29,31
2011	278	1530	25,71	44,33	1,359	380,4	18,4	16,48	34,36	30,15
2011	278	1600	25,54	44,8	1,354	291,1	17,99	12,06	31,22	27,25
2011	278	1630	25,35	44,94	1,279	201	16,03	6,497	27,88	24,39
2011	278	1700	24,78	48,18	0,838	120	8,85	2,696	24,53	21,35
2011	278	1730	24,03	51,35	0,661	42,36	2,19	0,371	19,95	17,21

YEAR	DAY (J)	TIME	TIME (C°)	RH (%)	WS 2m (m/sec)	Rs (W/m ²	PV1 (Volt)	PV2 (Volt)	PV1(Temp) (Cº)	PV2(Temp) (Cº)
2011	278	1800	23,18	54,05	0,312	1,077	0,1	0,064	14,75	13,59
2011	278	1830	22,53	54,57	0,313	0	0,004	0,002	12,24	11,22
2011	278	1900	22,14	56,52	0,437	0	-0,005	-0,005	11,49	10,52
2011	278	1930	21,71	57,98	0,224	0	-0,004	-0,004	10,05	8,88
2011	278	2000	20,56	62,51	0,033	0	-0,005	-0,004	7,94	6,586
2011	278	2030	20,38	64,23	0,076	0	-0,004	-0,004	7,97	6,604
2011	278	2100	20,58	65,31	0,182	0	-0,004	-0,004	8,26	7,22
2011	278	2130	20,36	66,35	0,26	0	-0,004	-0,005	7,93	6,961
2011	278	2200	20,14	66,47	0,215	0	-0,004	-0,004	7,7	6,841
2011	278	2230	19,69	67,43	0,276	0	-0,005	-0,004	6,981	5,883
2011	278	2300	19,25	66,97	0,059	0	-0,004	-0,004	6,322	5,202
2011	278	2330	17,84	73,9	0,012	0	-0,004	-0,004	4,889	3,752
2011	278	2400	16,44	79,6	0,006	0	-0,004	-0,004	4,124	2,985
2011	279	30	16,12	79,3	0,053	0	-0,005	-0,004	4,097	2,834
2011	279	100	17,88	63,71	0,239	0	-0,005	-0,004	4,048	3,118
2011	279	130	17,36	66,58	0,339	0	-0,004	-0,004	4,485	2,959
2011	279	200	16,71	67,04	0,12	0	-0,004	-0,004	3,357	1,72
2011	279	230	15,57	69,46	0,04	0	-0,004	-0,004	2,125	0,6
2011	279	300	14,55	66,44	0,08	0	-0,003	-0,004	1,441	0,117
2011	279	330	15,24	59,67	0,115	0	-0,004	-0,004	1,572	-0,346
2011	279	400	15,12	60,24	0,062	0	-0,004	-0,005	0,775	-1,17
2011	279	430	14,85	60,59	0,051	0	-0,004	-0,004	0,714	-1,229
2011	279	500	14,69	60,04	0,117	0	-0,004	-0,005	1,003	-0,863
2011	279	530	15,03	58,26	0,08	0	-0,004	-0,004	1,4	-0,684
2011	279	600	14,5	61,37	0,016	0	-0,004	-0,004	0,381	-1,64
2011	279	630	14,32	59,46	0,116	0	0,003	0,002	0,766	-1,06
2011	279	700	15,22	55,37	0,18	0	0,044	0,04	2,063	0,07
2011	279	730	15,95	54,88	0,198	33,64	0,161	0,124	4,565	2,894
2011	279	800	17,3	51,68	0,173	99	1,146	1,41	7,11	5,825
2011	279	830	19,97	44,61	0,239	258,1	6,754	6,691	15,58	15,55
2011	279	900	21,78	40,58	0,337	346,2	9,31	6,564	21,38	21,45
2011	279	930	22,99	38,32	0,444	428,2	9,2	13,13	27,67	27,16
2011	279	1000	24,02	35,81	0,434	493,6	14,54	17,98	33,35	31,77
2011	279	1030	25,23	30,64	0,423	553,7	18,25	18,17	37,96	35,61
2011	279	1100	25,92	26,86	0,61	605,2	18,23	18,24	41,34	38,41
2011	279	1130	26,59	25,63	0,569	643,2	18,18	18,23	44,21	41,04
2011	279	1200	27,24	24,53	0,733	662,6	18,18	18,21	45,57	42,35
2011	279	1230	27,56	23,64	0,998	664,8	18,18	18,27	45,89	41,76
2011	279	1300	27,97	24,51	1,033	644	18,15	18,21	45,98	41,52
2011	279	1330	27,56	30,5	1,54	618	18,33	18,32	42,85	38,74
2011	279	1400	26,91	35,6	1,69	575,3	18,42	18,29	40,94	36,82
2011	279	1430	26,31	34,37	2,025	522,3	18,52	18,22	38,3	33,84
2011	279	1500	26,57	31,88	1,704	452,6	18,39	17,76	37,45	32,34
2011	279	1530	26,54	30,98	1,482	370,4	18,23	16,41	35,33	30,3
2011	279	1600	26,65	28,44	1,438	288,4	17,96	12,11	32,7	27,81
2011	279	1630	26,13	32,22	1,385	202,2	17,13	6,658	29,16	24,65

YEAR	DAY (J)	TIME	TIME (C°)	RH (%)	WS 2m (m/sec)	Rs (W/m ²)	PV1 (Volt)	PV2 (Volt)	PV1(Temp) (Cº)	PV2(Temp) (Cº)
2011	279	1700	25,61	32,06	1,369	116,4	11,63	2,451	25,29	21,14
2011	279	1730	25,14	32,78	0,913	40,36	3,154	0,344	20,61	17,25
2011	279	1800	23,77	41	0,992	0,363	0,076	0,048	14,77	13,74
2011	279	1830	22,52	47,66	0,782	0	0,003	0,002	12,32	11,5
2011	279	1900	22,2	51,13	1,081	0	-0,004	-0,005	11,59	10,81
2011	279	1930	21,89	53,09	0,919	0	-0,004	-0,005	10,6	9,77
2011	279	2000	21,61	54,04	0,69	0	-0,004	-0,005	9,77	8,92
2011	279	2030	20,8	57,65	0,19	0	-0,004	-0,005	7,92	6,682
2011	279	2100	19,76	62,19	0,062	0	-0,004	-0,005	6,795	5,433
2011	279	2130	18,26	67,53	0,008	0	-0,004	-0,004	5,388	4,207
2011	279	2200	17,09	69,74	0,001	0	-0,004	-0,005	4,454	3,083
2011	279	2230	16,28	72,7	0,004	0	-0,005	-0,004	3,778	2,439
2011	279	2300	15,75	74,4	0	0	-0,003	-0,005	3,293	1,929
2011	279	2330	15,88	74,6	0,033	0	-0,004	-0,004	3,177	1,933
2011	279	2400	17,5	68,63	0,045	0	-0,004	-0,004	3,439	2,29

2.Προγραμμα λειτουργίας Datalloger και Multiplex αγρόμετεωρολογικού σταθμού.

;{CR10} :-----;PROGRAM CREATED AND TRANSFERED ON 11-04-2008 ;-----*Table 1 Program 01:20 Execution Interval (seconds) 1: Internal Temperature (P17) 1:21 Loc [ITEMP] 2: Batt Voltage (P10) 1:9 Loc [BAT 1 ; SENSOR MP101A ROTRONIC **;TEMPERATURE & RELATIVE HUMIDITY / CHANELS** 3: Volt (SE) (P1) 1:1 Reps 2:35 2500 mV 50 Hz Rejection Range 3:5 SE Channel 4:1 Loc [TEMP] 5:0.100 Mult 6: 0.0 Offset :-----;TEMPERATURE MEASUREMENTS CH-5 AT THE TIME 8:00,14:00 & 20:00 :-----4: If time is (P92) 1: 480 Minutes (Seconds --) into a 2: 1440 Interval (same units as above) 3:30 Then Do 5: Z=X (P31) 1:1 X Loc [TEMP] 2:11 Z Loc [Temp_8] 6: End (P95) 7: If time is (P92) 1:840 Minutes (Seconds --) into a 2: 1440 Interval (same units as above) Then Do 3:30 8: Z=X (P31) 1:1 X Loc [TEMP] 2:12 Z Loc [Temp_14] 9: End (P95) 10: If time is (P92) 1: 1200 Minutes (Seconds --) into a 2: 1440 Interval (same units as above) 3: 30 Then Do
```
11: Z=X (P31)
       X Loc [TEMP ]
  1:1
        Z Loc [ Temp_20 ]
  2:13
12: End (P95)
;-----
; RELATIVE HUMIDITY CH-6
;-----
13: Volt (SE) (P1)
1:1
     Reps
2:35
      2500 mV 50 Hz Rejection Range
3:6
     SE Channel
     Loc [ RH
4:2
              1
5:0.100 Mult
6: 0.0
     Offset
14: If (X<=>F) (P89)
1:2
     X Loc [ RH
               ]
2:3
     >=
3:100
      F
      Then Do
4:30
15: Z=F (P30)
1:100 F
2:00
      Exponent of 10
3:2
     Z Loc [ RH
               1
16: End (P95)
;-----
;WIND SPEED A100L2 SR-5195
17: Volt (SE) (P1)
1:1
     Reps
2:5
     2500 mV Slow Range
3:7
     SE Channel
4:5
     Loc [WS_2m ]
5:.0309 Mult
6:0
     Offset
;-----
;-----multiplexer activation-----
26: Do (P86)
1:45
      Set Port 5 High
27: Do (P86)
      Pulse Port 4
1:74
:-----
;ALBEDOMETER LP PYRA 06 SN:09030110
;-----
```

28: Volt (SE) (P1) 1:1 Reps 2:3 25 mV Slow Range 3:1 SE Channel 4:19 Loc [RSUP] 5:71.275 Mult 6: 0.0 Offset 29: If (X<=>F) (P89) 1:19 X Loc [RSUP] 2:4 < F 3: 0.0 4:30 Then Do 30: Z=F (P30) 1:0.0F 2:00 Exponent of 10 3:19 Z Loc [RSUP] 31: End (P95) 32: Volt (SE) (P1) 1:1 Reps 2:3 25 mV Slow Range 3:2 SE Channel 4:20 Loc [RSDOWN] 5:71.839 Mult 6: 0.0 Offset 33: If (X<=>F) (P89) 1:20 X Loc [RSDOWN] 2:4 < 3: 0.0 F Then Do 4:30 34: Z=F (P30) 1:0.0 F 2:00 Exponent of 10 3:20 Z Loc [RSDOWN] 35: End (P95) :-----;SOLAR PANELS ;-----36: Volt (SE) (P1) 1:1 Reps 2:5 2500 mV Slow Range 3:3 SE Channel 4:17 Loc [SUN1 1 5:.00928 Mult 6: 0.0 Offset

37: Volt (SE) (P1)
1: 1 Reps
2: 5 2500 mV Slow Range
3: 4 SE Channel
4: 18 Loc [SUN2]
5: .00942 Mult
6: 0.0 Offset

38: Do (P86) 1: 74 Pulse Port 4

;------;THERMOCOUPLES TYPE T (COPPER-CONSTANTAN)

- ;-----
- 40: Thermocouple Temp (SE) (P13)
- 1:1 Reps
- 2: 31 2.5 mV 50 Hz Rejection Range
- 3: 2 SE Channel
- 4:01 Type T (Copper-Constantan)
- 5: 21 Ref Temp (Deg. C) Loc [ITEMP]
- 6: 22 Loc [tem2]
- 7: 1.0 Mult
- 8: 0.0 Offset
- 41: Thermocouple Temp (SE) (P13)
- 1:1 Reps
- 2: 31 2.5 mV 50 Hz Rejection Range
- 3:3 SE Channel
- 4:01 Type T (Copper-Constantan)
- 5: 21 Ref Temp (Deg. C) Loc [ITEMP]
- 6: 102 Loc [tem3]
- 7: 1.0 Mult
- 8: 0.0 Offset

42: Thermocouple Temp (SE) (P13)

- 1:1 Reps
- 2: 31 2.5 mV 50 Hz Rejection Range
- 3:4 SE Channel
- 4:3 Type K (Chromel-Alumel)
- 5: 21 Ref Temp (Deg. C) Loc [ITEMP]
- 6:23 Loc [IRTEMP]
- 7:1.0 Mult
- 8: -10.5 Offset

43: Do (P86) 1:55 Set Port 5 Low

;------;------ MEASUREMENTS ------:----- 44: If time is (P92) 1:0000 Minutes (Seconds --) into a 2:30 Interval (same units as above) 3:10 Set Output Flag High 45: Set Active Storage Area (P80)^17815 1:1 Final Storage Area 1 2:101 Array ID 46: Real Time (P77)^9241 1: 1220 Year, Day, Hour/Minute (midnight = 2400) 47: Average (P71)^25733 1:1 Reps 2:1 Loc [TEMP 1 48: Average (P71)^23130 1:1 Reps 2:2 Loc [RH] 49: Average (P71)^27200 1:1 Reps 2:5 Loc [WS_2m] 53: Average (P71) 1:1 Reps 2:19 Loc [RSUP] 54: Average (P71) 1:1 Reps 2:20 Loc [RSDOWN] 55: Average (P71) 1:1 Reps 2:17 Loc [SUN1 1 56: Average (P71) 1:1 Reps 2:18 Loc [SUN2 1 57: Average (P71) 1:1 Reps 2:22 Loc [tem2 1 58: Average (P71) 1:1 Reps 2:102 Loc [tem3] 61: Sample (P70) 1:1 Reps 2:1 Loc [TEMP]

62: If time is (P92) 1:0000 Minutes (Seconds --) into a 2:1440 Interval (same units as above) Set Output Flag High 3:10 63: Set Active Storage Area (P80)^17471 1:1 Final Storage Area 1 2:102 Array ID 64: Real Time (P77)^12321 1: 1220 Year, Day, Hour/Minute (midnight = 2400) 65: Average (P71)²⁷³⁴⁵ 1:1 Reps 2:1 Loc [TEMP 1 66: Average (P71)^16879 1:1 Reps 2:2 Loc [RH] 67: Average (P71)^17366 Reps 1:1 2:5 Loc [WS_2m] 69: Maximize (P73)²¹⁵⁰³ 1:1 Reps 2:10 Value with Hr-Min 3:1 Loc [TEMP] 70: Minimize (P74)^19929 1:1 Reps 2:10 Value with Hr-Min 3:1 Loc [TEMP] 71: Maximize (P73)^21988 1:1 Reps 2:10 Value with Hr-Min 3:2 Loc [RH] 72: Minimize (P74)^4026 1:1 Reps 2:10 Value with Hr-Min 3:2 Loc [RH 1 74: Sample (P70)^20295 1:1 Reps 2:11 Loc [Temp_8] 75: Sample (P70)^9703 1:1 Reps 2:12 Loc [Temp_14] 76: Sample (P70)^15005 1:1 Reps

2:13 Loc [Temp_20] 77: Average (P71) 1:1 Reps 2:3 Loc [RS 1 ;-----*Table 2 Program 02: 0.0000 Execution Interval (seconds) *Table 3 Subroutines **End Program** -Input Locations-1 TEMP 181 2 RH 152 5 WS_2m 121 6 WS_PAN 121 7 PAN 121 9 BAT 10110 res1 111 11 Temp_8 111 12 Temp_14 111 13 Temp_20 111 14 Volt_PAN 100 15 TEMP_smpl 1 0 0 16____000 17 SUN1 111 18 SUN2 111 19 RSUP 122 20 RSDOWN 122 21 ITEMP 131 22 tem2 111 23 IRTEMP 101 24 _____ 1 0 0 25 _____ 1 0 0 26_____000 27 _____ 0 0 0 28 _____ 0 0 0 100 Y 1 0 0 101 TEM1 100102 tem3 111 103 IRT 100 104 100 -Program Security-0000 0000 0000 -Mode 4--Final Storage Area 2-0

3. Συνδεσμολογία Αισθητήρων με τον Dataloger και την Πολυπλεξία

3.1. Συνδεσμολογία Dataloger με πολυπλεξία (Multiplex M416)

Multiplex

Κόκκινο καλώδιο:12V Μαύρο καλώδιο: GND Κυανό καλώδιο: CLK Πράσινο καλώδιο :RES Λευκό καλώδιο 1:Shield COM Λευκό καλώδιο:12 Shield COM Ροζ καλώδιο:H₂ COM Μπλε καλώδιο:L₂ COM Καφέ καλώδιο:H₁ COM

Dataloger CR10X

Κόκκινο καλώδιο:12V (SDM)Μαύρο καλώδιο: G (SDM)Κυανό καλώδιο:C4Πράσινο καλώδιο:C5Λευκό καλώδιο 1:GΛευκό καλώδιο 2:GΡοζ καλώδιο:H (DIFF 2)Μπλε καλώδιο:L (DIFF 2)Καφέ καλώδιο:H (DIFF 1)ΥΚίτρινο καλώδιο:L (DIFF 1)

3.2. Αισθητήρες συνδεδεμένοι με τον Dataloger CR10X

Sensor MP101A ROTRONIC SN:387186008 (Temperature and Relative Humidity)

Λευκό καλώδιο: SE Channel 6 (Humidity) Κίτρινο καλώδιο: SE Channel 5 (Temperature) Μαύρο καλώδιο: Ground Καφέ καλώδιο: 12 V

Mult RH=0,1 Mult Temp=0,1

Wind Speed A100L2 SR-5195

Πράσινο καλώδιο: SE Channel 7	
Μπλε καλώδιο: Ground	
Κίτρινο καλώδιο: Analog Ground	
Κόκκινο καλώδιο: 12V	
Mult=0,0309	

3.3. Αισθητήρες συνδεδεμένοι με την πολυπλεξία (Multiplex M416)

Albedometer LP PYRA 06

Κόκκινο καλώδιο: H_1 (Sere 1) Πράσινο καλώδιο: L_1 (Sere 1) Καφέ καλώδιο: Shield Γκρι καλώδιο: Shield

Mult RSup=71,275 Mult Rsdown=71,839

Panels SW 90Watts (Συνδεδεμένο με την πολυπλεξία μέσω διαιρέτη τάσης)

<u>PV1</u> Πράσινο καλώδιο: H₂ (Sere 1) Μαύρο καλώδιο (κοινό):Shied

<u>PV2</u> Μπλέ καλώδιο:L₂ (Sere 1) Μαύρο καλώδιο (κοινό):Shied

Temp Constantane (Copper)

<u>PVTemp1</u> Καφέ καλώδιο:L₁ (Sere 2) Λευκό καλώδιο (κοινό):Shield

<u>PVTemp2</u> Καφέ καλώδιο:H₁ (Sere 2) Λευκό καλώδιο (κοινό):Shield

Mult=1.0

Albedometer LP PYRA 06

4. Διαιρέτης Τάσης

PV1 (in) Volt	PV1 (out) Volt
22.5	2.426
21.07	2.273
19.78	2.133
18.392	1.9832
16.151	1.7418
14.198	1.5311
12.156	1.3113
11.154	1.2031
10.12	1.0915
9.074	0.9786
8.81	0.9501
7.586	0.8184
6.031	0.6504
5.117	0.552
4.024	0.4341
3.048	0.3288
2.048	0.2208
1.368	0.1471
0.7	0.07552
0.42	0.04601

Πίνακες δεδομένων τάσης εισόδου και εξόδου από τον διαιρέτη τάσης

Διάγραμμα 4.1: Διάγραμμα υπολογισμού τάσης εισόδου στον datalloger για το φωτοβολταϊκό πλαίσιο κλίσεως 38° (PV1)

Διάγραμμα 4.2: Διάγραμμα υπολογισμού τάσης εισόδου στον datalloger για το φωτοβολταϊκό πλαίσιο κλίσεως 0°(PV2)

5. Δεδομένα ελέγχου εγκυρότητας του μοντέλου

DOY	Time	PV(Volt)	C(W)	Rs	Rsest	n(h/2)	nest(h/2)
155	600	0.025	75	8.02	107.4192	0	0
155	630	0.069	75	74.2	112.2996	0	0
155	700	0.173	75	159.6	123.8002	0.5	0.5
155	730	0.314	75	255	139.3145	0.5	0.5
155	800	0.433	75	359.1	152.3382	0.5	0.5
155	830	1.027	75	451.8	216.3915	0.5	0.5
155	900	2.839	75	558.6	401.9451	0.5	0.5
155	930	3.854	75	654.7	499.4067	0.5	0.5
155	1000	4.828	75	736	588.5584	0.5	0.5
155	1030	5.854	75	813	677.8378	0.5	0.5
155	1100	7.36	75	911	800.2779	0.5	0.5
155	1130	8.24	75	940	867.0836	0.5	0.5
155	1200	5.44	75	703	642.3847	0.5	0.5
155	1230	8.05	75	942	852.9555	0.5	0.5
155	1300	7.75	75	931	830.3163	0.5	0.5
155	1330	7.4	75	885	803.3903	0.5	0.5
155	1400	7.94	75	947	844.7017	0.5	0.5
155	1430	2.663	75	482	384.5722	0.5	0.5
155	1500	3.722	75	587.1	486.995	0.5	0.5
155	1530	2.388	75	448.3	357.147	0.5	0.5
155	1600	0.059	75	47.25	111.1912	0	0
155	1630	0.385	75	221.2	147.0926	0.5	0.5
155	1700	1.507	75	391.7	266.988	0.5	0.5
155	1730	0.278	75	185.6	135.3619	0.5	0.5
155	1800	0.096	75	92	115.29	0	0
155	1830	0.143	75	134.6	120.4878	0.5	0.5
155	1900	0.059	75	51.89	111.1912	0	0
155	1930	0.012	75	0.48	105.9756	0	0
156	600	0.02	75	4.242	106.8641	0	0
156	630	0.086	75	79	114.1829	0	0
156	700	0.22	75	172.3	128.9816	0.5	0.5
156	730	0.377	75	275.9	146.2174	0.5	0.5
156	800	0.462	75	379.8	155.5024	0.5	0.5
156	830	1.136	75	476.5	227.9724	0.5	0.5
156	900	3.192	75	578.2	436.3681	0.5	0.5
156	930	4.176	75	667.2	529.3538	0.5	0.5
156	1000	5.203	75	755	621.7409	0.5	0.5
156	1030	6.118	75	826	700.0416	0.5	0.5
156	1100	6.561	75	853	736.5931	0.5	0.5
156	1130	7.58	75	926	817.307	0.5	0.5
156	1200	8.08	75	956	855.1971	0.5	0.5
156	1230	8.21	75	976	864.8636	0.5	0.5

DOY	Time	PV(Volt)	C(W)	Rs	Rsest	n(h/2)	nest(h/2)
156	1300	7.56	75	924	815.768	0.5	0.5
156	1330	7.61	75	937	819.6123	0.5	0.5
156	1400	7.25	75	913	791.6813	0.5	0.5
156	1430	6.669	75	872	745.3698	0.5	0.5
156	1500	5.636	75	794	659.2657	0.5	0.5
156	1530	4.56	75	710	564.4551	0.5	0.5
156	1600	3.338	75	601.5	450.4409	0.5	0.5
156	1630	2.116	75	484.1	329.6852	0.5	0.5
156	1700	1.605	75	428.5	277.1902	0.5	0.5
156	1730	0.799	75	328	191.9937	0.5	0.5
156	1800	0.469	75	267.4	156.2656	0.5	0.5
156	1830	0.195	75	159.7	126.2268	0.5	0.5
156	1900	0.042	75	27.27	109.3059	0	0
156	1930	0.019	75	3.498	106.7531	0	0
157	600	0.024	75	7.45	107.3082	0	0
157	630	0.041	75	33.17	109.1949	0	0
157	700	0.067	75	66.72	112.078	0	0
157	730	0.103	75	105.1	116.0648	0	0
157	800	0.379	75	300	146.4362	0.5	0.5
157	830	1.105	75	464.5	224.6842	0.5	0.5
157	900	2.95	75	566.3	412.83	0.5	0.5
157	930	3.746	75	640	489.2575	0.5	0.5
157	1000	4.916	75	738	596.4023	0.5	0.5
157	1030	5.659	75	797	661.2353	0.5	0.5
157	1100	5.395	75	778	638.4845	0.5	0.5
157	1130	7.16	75	906	784.6072	0.5	0.5
157	1200	7.38	75	923	801.835	0.5	0.5
157	1230	7.81	75	949	834.8766	0.5	0.5
157	1300	7.57	75	933	816.5377	0.5	0.5
157	1330	7.15	75	909	783.8189	0.5	0.5
157	1400	6.412	75	851	724.3981	0.5	0.5
157	1430	6.325	75	847	717.2312	0.5	0.5
157	1500	4.57	75	709	565.3603	0.5	0.5
157	1530	4.364	75	689.4	546.622	0.5	0.5
157	1600	3.395	75	605.5	455.909	0.5	0.5
157	1630	2.477	75	516.2	366.0602	0.5	0.5
157	1700	1.55	75	416.2	271.4698	0.5	0.5
157	1730	0.731	75	316.4	184.6718	0.5	0.5
157	1800	0.286	75	209.5	136.2408	0.5	0.5
157	1830	0.114	75	99.3	117.2818	0	0
157	1900	0.044	75	35.01	109.5277	0	0
157	1930	0.024	75	7.35	107.3082	0	0
158	600	0.05	75	42.22	110.1932	0	0
158	630	0.087	75	90.7	114.2936	0	0

DOY	Time	PV(Volt)	C(W)	Rs	Rsest	n(h/2)	nest(h/2)
158	700	0.209	75	180.1	127.7699	0.5	0.5
158	730	0.322	75	257.1	140.192	0.5	0.5
158	800	0.481	75	363.1	157.5734	0.5	0.5
158	830	1.063	75	422.7	220.2223	0.5	0.5
158	900	3.16	75	586.9	433.2708	0.5	0.5
158	930	4.024	75	664.3	515.2756	0.5	0.5
158	1000	5.177	75	730	619.4607	0.5	0.5
158	1030	5.059	75	737	609.0739	0.5	0.5
158	1100	6.786	75	879	754.8184	0.5	0.5
158	1130	6.601	75	868	739.8499	0.5	0.5
158	1200	7.46	75	931	808.0455	0.5	0.5
158	1230	7.39	75	925	802.6129	0.5	0.5
158	1300	6.523	75	808	733.4925	0.5	0.5
158	1330	5.471	75	753	645.0662	0.5	0.5
158	1400	4.589	75	683.1	567.0789	0.5	0.5
158	1430	2.488	75	477.2	367.1593	0.5	0.5
158	1500	0.225	75	168.1	129.5323	0.5	0.5
158	1530	0.449	75	252.4	154.0844	0.5	0.5
158	1600	4.802	75	705	586.2343	0.5	0.5
158	1630	1.736	75	413.1	290.7602	0.5	0.5
158	1700	0.581	75	281.3	168.4466	0.5	0.5
158	1730	0.49	75	269.7	158.5538	0.5	0.5
158	1800	0.181	75	143.3	124.6829	0.5	0.5
158	1830	0.16	75	147.1	122.3653	0.5	0.5
158	1900	0.064	75	59.77	111.7455	0	0
158	1930	0.017	75	4.896	106.531	0	0

6. Μεταδεδομένα σταθμών Εθνικής Μετεωρολογικής Υπηρεσίας

ΛΙΣΤΑ ΜΕΤΕΩΡΟΛΟΓΙΚΩΝ ΣΤΑΘΜΩΝ ΕΜΥ 2010

AP WMO	ONOMA	ΓΕΩΓ.ΠΛΑΤΟΣ &ΜΗΚΟΣ	γψοΣ	ΠΕΡΙΟΔΟΣ ΛΕΙΤΟΥΡΓΙΑΣ	ΩΡΕΣ ΠΑΡΑΤΗΡΗΣΗΣ			h	ETE	ΩPC	NOR	IKE		PAM	ETP	01			KATHFOPIA	καταστάση
						NEDH	ANEMOL	NEGOTH	0EP	BEP. EAX	OEP. MET.	EXET YIPASIA	YETOL	KAPOL	HNODANEIA	AKTINOBONIA	EATMIDH	BEP. EAABOYI		
672		38 37N 21 23E	24.0	1956	00,03,06,09,12,15			•		•		•	•		•			•	ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	
665	ΑΓΧΙΑΛΟΣ	39 13N 22 48E	12.2	1956	00,03,06,09,12,15	•		٠		•	1		•	•				ų.	ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	
736	AITINA	37 44N 23 25E	3.0	1974	06,12,18		•	•	•	•	٠	•	•	•					KAIMATOAOFIKOE	S
692	AIFIO	38 14N2204E	64.0	1974	06,12,18		•	•	•	•	•	•	•	•					ΚΛΙΜΑΤΟΛΟΓΙΚΟΣ	
681	ΑΙΔΗΨΟΣ	38 51N 23 03E	0.0	1974-2001	tora se sacista a tam sa			•	•	•	•	•	•	•	1.1					ΚΛΕΙΣΤΟΣ
643	AKTIO(ПРЕВЕZA)	35 58N 20 46E	2.0	1971	00,03,06,09,12,15			•	•	•	٠	•	•	116) (*					ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
627	ANEEANPOYTIONH	40 51N 25 56E	2.5	1951	00,03,06,09,12,15			•	•	•	•	•	٠	•	•		•		ΚΥΡΙΟΣ ΣΥΝΟΓΤΙΚΟΣ	
674	ΑΛΙΑΡΤΟΣ	38 23N 23 06E	110.0	1967-2001	hole	•		•	•	•				•		•	•	•		ΚΛΕΙΣΤΟΣ
700	ANABPYTA	38 04N 23 48E	290.0	1975-1986	Manager and starting						•					-			S	ΚΛΕΙΣΤΟΣ
682	ANAPABIAA	37 55N 21 17E	11.1	1959	00,03,06,09,12,15		•	•	•	•	•	•	•	•	•	•	•	•	ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
752	ANOFEIA	35 17N 24 53E	740.0	1975-2004	anna an Stanson an A									•	1				8	ΚΛΕΙΣΤΟΣ
687	ΑΡΑΞΟΣ	38 08N 21 25E	14.8	1955	00,03,06,09,12,15 ,18,21		•	•	•	•	•	•		•	•				ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	
666	ΑΡΑΧΩΒΑ	38 28N 22 34E	950.0	1976	06,12,18			•	•		•	•	•						ΚΛΙΜΑΤΟΛΟΓΙΚΟΣ	3
724	ΑΡΓΟΣ(ΠΥΡΓΕΛΑ)	37 36N 22 48E	11.2	1900	06,09,12,18		•	•	•	•	•	•	•	•	•	•		•	ΓΕΩΡΓΙΚΟΣ	
685	ΑΡΓΟΣΤΟΛΙ	38 11N 20 29E	21.2	1970	03,06,09,12,15,18		•	•	•	•	•	•			•				ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	lunar and
656	APTA(TIOAH)	39 10N 22 59E	39.0	1961-1995			•	•	•	•	•	•	•	•				•		ΚΛΕΙΣΤΟΣ
654	APTA(ΦIΛOΘEH)	37 36N 2247E	10.5	1976	06,09,12,18		•		•8	•	•	•	•			•	•	•	ΓΕΩΡΓΙΚΟΣ	1
799	ΑΣΠΡΟΠΥΡΓΟΣ	38 04N 23 33E	6.5	1984-1989							•	•	•		1				220 0 M Col 2 Col 200	ΚΛΕΙΣΤΟΣ
655	ΑΣΤΡΟΣ	37 24N 22 43E	25.0	1974	06,12,18				•	•	•	•	•	•			•		ΚΛΙΜΑΤΟΛΟΓΙΚΟΣ	
739	ΑΣΤΥΠΑΛΑΙΑ	36 32N 26 22E	73.0	1 margaretteren 1	9.12	1.		•				•								Surger records
640	AYAIQTEL	39 47N 19 40E	132.0	1975-1991							•	•			1.1					ΚΛΕΙΣΤΟΣ
745	ΒΑΜΟΣ	35 25N 24 14E	240.0	1975-1996				•		•	•	•	•	•					1	ΚΛΕΙΣΤΟΣ
671	BEAO(KOPINOIAS)	39 59N 22 46E	19.0	1987	06,09,12,15,18	•	•					•				•	•	•	ΓΕΩΡΓΙΚΟΣ	Company
661	BOAOE	39 22N 22 57E	2.6	1956-1988			•	•	•		•	•	•	a.	0.1				A CONTRACTOR OF A	ΚΛΕΙΣΤΟΣ
709	BYTINA	37 40N 22 12E	1014.0	1974-1978				•	•		•	•								ΚΛΕΙΣΤΟΣ

AP.WMO	ONOMA	ΓΕΩΓ.ΠΛΑΤΟΣ &ΜΗΚΟΣ	γψοΣ	ΠΕΡΙΟΔΟΣ ΛΕΙΤΟΥΡΓΙΑΣ	ΩΡΕΣ ΠΑΡΑΤΗΡΗΣΗΣ			h	IETE	ΩΡΟ	NOR	IKE		PAM	ETP	01	xu		KATHFOPIA	καταστάση
						NEDH	ANEMOL	NEODIH	0EP	GEP. EAX.	GEP. MET.	EXET.YTPAEIA	YETOE	KAIPOL	HNODANEIA	AKTINOBOMA	EEATMIDH	BEP. EAAOVI		
753	ΓΟΡΤΥΣ	35 03N 24 56E	180.0	1975-2010	06,12,18		•			•			•	•					ΚΛΙΜΑΤΟΛΟΓΙΚΟΣ	ΚΛΕΙΣΤΟΣ
737	LA DEIO	36 45N 22 33E	27	1979-2010			•		•	•	•	•	•	•				-	the second se	ΚΛΕΙΣΤΟΣ
693	ΔΕΣΦΙΝΑ	38 25N 22 32E	590.0	1961	06.09.12.18		•			•	•	•	•	•				1	ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	2
688	ΔΙΑΒΟΛΙΤΣΙ	37 17N 21 57E	108.0	1974	06,12,18		•							•					ΚΛΙΜΑΤΟΛΟΓΙΚΟΣ	
657	ΔΟΜΟΚΟΣ	39 08N 22 18E	615.0	1975-2002			•			•	•		•	•	-					ΚΛΕΙΣΤΟΣ
840	AOEATO	41 06N 24 25E	86.91	2010	06.09.12.18					•		2.	•	•					ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	
607	ΔΡΑΜΑ	4109N 24 09E	103.7	1975-2009		•			•				•	•						ΚΛΕΙΣΤΟΣ
618	ΕΔΕΣΣΑ	40 47N 22 02E	237.0	1975	06,12,18					•				•					ANASTOAH	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
718	ΕΛΕΥΣΙΝΑ	38 04N 23 33E	30.0	1958	00,03,06,09,12,15	1	•		•	•	•	•	-						ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	
716	EAAHNIKO	37 54N 23 45E	10.0	1955	00,03,06,09,12,15 ,18,21	•	•	•	•	•	•	•	•		•				ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
719	ZAKYNGOZ	37 47N 20 54E	10.0	1982	03,06,09,12,15,18	•	•	•	•	•	•		٠	•					ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	
705	ZAKYNOOZ(TIOAH)	37 47N 20 54E	3.0	1956-1982	and a second		•	•	•	•	•		•	•						ΚΛΕΙΣΤΟΣ
761	ΖΑΡΟΣ	35 07N 24 54E	343.0	1976-2010	06,12,18	•	•			•	•	•	•	•		0.0			ΚΛΙΜΑΤΟΛΟΓΙΚΟΣ	ΚΛΕΙΣΤΟΣ
754	HPAKAEIO	35 20N 25 11E	37.0	1955	00,03,06,09,12,15 ,18,21		•	•	•	•	•		•	•	•				ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
626	ΘΑΣΟΣ	40 47N 24 23E	2.0	1975-1999	1			•	10					•		(-)				ΚΛΕΙΣΤΟΣ
744	GHPA	36 25N 25 26E	33.0	1974	03,06,09,12,15,18	•	•	•	•	•	•		•	•	•					
756	IEPARETPA	35 00N 25 44E	18.0	1955	06,09,12,18	٠		•	•	•	•			•	•				ΓΕΩΡΓΙΚΟΣ	9
779	IKAPIA(A/A)	37 40N 26 20E	20.0	1995	06,09,12,15,18	•	•			•	•	•	•	•					AEPONAYTIKOZ	Engine and the second
720	IKAPIA(TIOAH)	37 37N 26 18E	20.0	1980-1994			•			•	•			•						ΚΛΕΙΣΤΟΣ
642	IDANNINA	39 40N 20 51E	483.0	1956	00,03,06,09,12,15 ,18,21	•	•	•	•		•		•	•	•		•	•••	ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	
625	KABANA(AM/NAZ)	40 56N 24 23E	60.0	1956-1984	and the second second		•	•		•	•		•	•					Contraction Sector Sector Sector	KAEISTOS
608	KABAAA(TIOAH)	40 57N 24 00E	5.0	1986	06,12,18					•	•	¢	•	•					KAIMATOAOFIKOE	
694	KANABPYTA	38 02N 22 05E	731.0	1975-1999						•	•		•	•		1.1				KAEITTOT
726	KANAMATA	37 04N 22 06E	7.9	1956	00,03,06,09,12,15 ,18,21	•	•	•		•		•		•	•			•	ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	
644	КАЛАМПАКА	39 42N 21 38E	222.0	1974-2003			•			•	•	٠		•						KAEITTOE

AP.WMO	ONOMA	ΓΕΩΓ.ΠΛΑΤΟΣ 8ΜΗΚΟΣ	γψοΣ	ΠΕΡΙΟΔΟΣ ΛΕΙΤΟΥΡΓΙΑΣ	ΩΡΕΣ ΠΑΡΑΤΗΡΗΣΗΣ	Ì.,		N	IETE	ωρο	ovol	IKE		PAM	ETP	ю			KATHFOPIA	καταστάση
						HEBH	ANEMOL	NEODDH	0EP	GEP. EMX.	BEP. MET.	EXET.YTPAIJA	YETOL	KAIPOL	HNOGANEIA	AKTINOBOMA	EEATMEDH	GEP. EAADOVE		
833	καλυμιος(Α/Δ)	36 57N 26 58E	228 27	2006	WORKING HOURS OF SPA		•	•	•	•	•	•	•	•					ΑΕΡΟΝΑΥΤΙΚΟΣ	
647	KAPAITIA	39 22N 20 48E	111.1	1988-1991				•	•	•	•	•		•						ΚΛΕΙΣΤΟΣ
765	καρπαθοζ(Α/Δ)	35 31N 27 12E	7.0	1990	00,03,06,09,12,15 ,18,21	•	3 8	4	1.	-		-		196					ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
748	KAPTAGOI(TOAH)	35 30N 27 13E	9.0	1971-1995		•	•	•	•		•	•	•	٠						ΚΛΕΙΣΤΟΣ
678	KAPTIENHZI	38 54N 21 47E	1001.0	1981-1990			•	•	•	•	•	•	•							ΚΛΕΙΣΤΟΣ
703	KAPYITOI	38 01N 24 25E	10.0	1975-1993	S. manual S.		•	•	•	•	•	•	•		8.1				2	ΚΛΕΙΣΤΟΣ
770	KAIOI(AVA)	25 25N 26 55E	14.8	1989	6.09		•	•	•	•	•	•	•	٠					ΑΕΡΟΝΑΥΤΙΚΟΣ	
760	ΚΑΣΤΕΛΛΙ	35 12N 25 20E	332	1976	00,03,06,09,12,15 ,18,21	•	•	•	•	•	•	•	•	1.					ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	
767	KATTEAOPIZO	36 07N 29 34E	145.4	1986	12.15		•	•	•	•		•	•						ΑΕΡΟΝΑΥΤΙΚΟΣ	
614	ΚΑΣΤΟΡΙΑ	40 27N 21 17E	660.0	1980	06,09,12,15,18		•	•	•	•	•	•	•	1.	•				ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
641	KEPKYPA	39 37N 19 55E	2.0	1955	00,03,06,09,12,15 ,18,21		•	•	•		•	•	•	•			•		ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
632	KOZANH	40 17N 21 47E	625.0	1955	06.09,12,15,18	•	•	•				•		•					ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	
610	KOMOTHNH	41 07N 25 24E	30.0	1955-1983			•	•	•	•	•		•	•	•	•	•	•		ΚΛΕΙΣΤΟΣ
628	KONITZA	40 03N 20 44E	542.2	1975	06,09,12,15,18			•	•	•			•		•	1		•	KAIMATOAOFIKOZ	
712	KOPINGOE	37 56N 22 57E	14.4	1970-1984			•	•	•	•	•	•	•	•	•		•	•		ΚΛΕΙΣΤΟΣ
843	KYOHPA(A/A)	36 17N 23.01E	316.6	1986	WORKING HOURS OF SPA	•			e.		•		•						ΑΕΡΟΝΑΥΤΙΚΟΣ	
743	KYOHPA	36 08N 23 08E	165.9	1995-2010		1.	•	•		•	•	•	•						1	ΚΛΕΙΣΤΟΣ
683	KYMH	38 38N 24 06E	2211	1956-1990	Satura and the second	•	•	•	•		•	•	•	•		12				KAEISTOS
742	κοτ	36 48N 27 06E	127.1	1981	00,03,06,09,12,15 ,18,21	•	•	•	•	•	•	•	•	•					KYPIOZ ZYNOTTIKOZ	
740	ΚΩΣ(ΠΟΛΗ)	36 48N 27 06E	1.9	1961-1981			•		•	•	•	•	•							KAEITTOT
675	AAMIA	38 51N 22 24E	14.3	1970	03,06,09,12,15,18 ,21	*	•	.*	•	10		•	19		300			٠	ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
648	ΛΑΡΙΣΑ	39 39N 22 26E	71.0	1955	00,03,06,09,12,15 ,18,21		•		•	•			1.	•			3.8	•	ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	
768	ΛΕΡΟΣ	37 10N26 48E	11.0	1986	6.09		•	•				•	•			1			ΑΕΡΟΝΑΥΤΙΚΟΣ	Second and the second of the
669	ΛΕΥΚΑΔΑ(ΝΗΣΙ)	38 50N 20 43E	1.0	1975-1997	C. C			•	•	•	•	•	•						S	KAEISTOS

AP.WMO	ONOMA	ΓΕΩΓ.ΠΛΑΤΟΣ &ΜΗΚΟΣ	γψοΣ	ΠΕΡΙΟΔΟΣ ΛΕΙΤΟΥΡΓΙΑΣ	ΟΡΕΣ ΠΑΡΑΤΗΡΗΣΗΣ			1.	ETE	OPC	onor	IKE	Е ПА	PAM	ETP	ю			KATHFOPIA	καταστάση
						NEDH	ANEMOL	NEGODH	0EP	GEP. EAX	BEP. MET.	EXET.YTPADA	YETOI	KAIPOL	HNOGANEIA	AKTINOBOMA	EEATMEH	BEP. EAABOYI		
676	AFYKAAA(@@/AAT)	38 55N 22 00E	390.0	1974-1990									•		-			-		KAEITTOT
727	ΛΕΟΝΙΔΙΟ	37 10N 22 51E	21	1981-2007											-		-			KAEIZTOZ
650	AHMNOT	39 45N 2514E	3.0	1974	00,03,06,09,12,15	•	•	•	•	•	•	•	•	•	•				ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
651	AHMNOZ(MYPINA)	39 53N 25 04E	13.0	1956-1973					•		•		•	•						KAEITTOT
677	ΛΙΔΩΡΙΚΙ	38 31N 22 08E	600.0	1975-1995		•	•	•	•	•	•		•	•						ΚΛΕΙΣΤΟΣ
680	ΜΑΡΑΘΩΝΑΣ	38 03N 24 01E	1.4	1986-2003	5	0.00			•	•	•		•	•	0.0			-	÷	ΚΛΕΙΣΤΟΣ
708	ΜΕΓΑΡΑ	38 00N 23 21E	36.0	1975-1991	Same services and				•				•	•				-		ΚΛΕΙΣΤΟΣ
734	MEGONH	36 50N 2142E	53.0	1956	03,06,09,12,15,18	•	•	•	•	•		•	•	•	•				ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
686	ΜΕΣΣΟΛΟΓΓΙ	38 22N 21 25E	2.0 198	1982	06,09,12,18	•						+	•	•					ΚΛΙΜΑΤΟΛΟΓΙΚΟΣ	
838	ΜΗΛΟΣ(Α/Δ)	36 43N 24 27E	183	1987	WORKING HOURS OF SPA				·	•	•	•		•					ΑΕΡΟΝΑΥΤΙΚΟΣ	
738	MHAOE	36 44N 24 26E	164	1955-2010												1		-	AEPONAYTIKOT	KAEIZTOZ
622		40 31N 22 58E	40	1959	00,03,06,09,12,15		•	•		•	•	•		•	•		•	•	ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
750	ΜΥΚΟΝΟΣ	37 26N 25 21E	123.0	1989	06,09,12,15,18		•		•		•		•	•			•		ΑΕΡΟΝΑΥΤΙΚΟΣ	
667	MYTIAHNH	39 04N 26 36E	42	1955	03,06,09,12,15,18		•	•	•	•	•	•	•	•	•		•	•	ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
832		37 06N 2523E	9.0	1992	WORKING HOURS OF SPA		•	•	•		•	•							ΑΕΡΟΝΑΥΤΙΚΟΣ	
732	NAEOZ	37 06N 25 23E	9.0	1955	06,09,12,15,18,21	•	•	•	•	•	•	•	•	•	•				ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
673	NAYTIAKTOE	38 23N 21 50E	15.0	1977	06,09,12,18	•		•	•	•	•	•	•	•		1			ΚΛΙΜΑΤΟΛΟΓΙΚΟΣ	
713	ΝΑΥΠΛΙΟ	37 24N 2248E	1.5	1975-1988		0.11	•	•		•	•	•	•	•		1.13				KAEITTOT
701	Ν.ΦΙΛΑΔΕΛΦΕΙΑ	38 03N 23 40E	12.0	1955-2010			•	•	•	•	•	•	•	•		•				KAEITTOT
609	EANOH	41 08N 24 53E	82.0	1975	06,12,18		•	•	•	•	•		•	•					κλιματολογικός	Submationed in
600	OPETTIADA	41 49N 26 31E	43.0	1975-1992	Construction of the	•	•	•	•	•		•	•	•	12					KAEITTOT
698	MAIANIA	37 57N 23 52E	152.0	1974-1983	2		•		•	•			•	•		0.112				KAEITTOT
751	TIANAIOXOPA	35 14N 23 41E	10.0	1974-2003	Stan and the second					•			•	•					Bernard Barris Contract	KAEITTOT
766	ΠΑΡΟΣ(Α/Δ)	37 00N 25 07E	33,33	1987	06,09,12,15,18		•		•	•			•			1.1			AEPONAYTIKOZ	
731	ΠΑΡΟΣ(ΠΟΛΗ)	37 05N 25 09E	1.0	1975-1995			•			•			•							KAEISTOS

AP.WMO	ONOMA	ΓΕΩΓ.ΠΛΑΤΟΣ &ΜΗΚΟΣ	γψοΣ	ΠΕΡΙΟΔΟΣ ΛΕΙΤΟΥΡΓΙΑΣ	ΩΡΕΣ ΠΑΡΑΤΗΡΗΣΗΣ				IETE	ΩPC	onor	IKE:		PAM	ETP	01			KATHFOPIA	κατασταση
						HEBH	AVENOL	NEGODH	96P	BEP. EMX	GEP. MET.	DET YTPAJA	YETOL	KAIPOE	HNODANEIA	AKTINOBOAIA	EATMEH	BEP. EAABOYI		
689	ПАТРА	38 15N 21 44E	1.0	1955-2003						•	•	1.			•	-	-			ΚΛΕΙΣΤΟΣ
835	TAXH MELAPONIA/A	37 58N 23 21E	3.66	2005	06.09.12.15.18								•		-		-	-	ΑΕΡΟΝΑΥΤΙΚΟΣ	
717	ΠΕΙΡΑΙΑΣ	37 56N 23 38E	20	1956-2010								1.	•		-		-	-		KAEITTOT
637	ΠΟΛΥΓΥΡΟΣ	40 23N 23 26E	545.0	1979-1992		1		•		1.	•	1.	•		-	-	-	-	t	KAEITTOT
638	ΠΟΤΙΔΑΙΑ	40 14N 23 21E	20	1977-2010													-	-		KAEDTOX
616	ΠΤΟΛΕΜΑΙΔΑ	40 31N 21 41E	601.0	1975-1997		-						1.			-	-	-	-		KAEITOT
707	ΠΥΡΓΟΣ	37 40N 21 25E	13.0	1975	06.09.12.18							1.							ΓΕΟΡΓΙΚΟΣ	
735	PACHNA	38 01N 24 00E	60	1972-1983									•		-	-	-	-		KAEITOT
758	PEGYMNO	35 21N 24 31E	16.1	1957-2009												-	1.	•	1	KAEITOT
749	ΡΟΔΟΣ	36 24N 28 05E	34.7	1955	00,03,06,09,12,15	•	•	•	•	•	•	•	•	•	•				ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
723	ΣΑΜΟΣ	37 41N 26 54E	6.0	1978	03,06,09,12,15,18	•	•	: •		•	•	۰	•	•					ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	
721	ZAMOI(ROAH)	37 45N 26 52E	49.0	1955-1978			•	•		•				•		100				ΚΛΕΙΣΤΟΣ
620	ΙΕΔΕΙ	40 32N 22 01E	51.9	1955-1972	Market Landson		•	•		•	•	•		•		1.1			E	KAEITOT
606	ΣΕΡΡΕΣ	41 04N 23 31E	34.0	1971	06,09,12,15,18	٠	•		•		•	•	•	•	•	•	•		ΓΕΩΡΓΙΚΟΣ	
757	ΣΗΤΕΙΑ	35 12N 26 06E	114.5	1960	03,06,09,12,15,18	•	•	•	•	•	•	•	•	•	•		•		ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	
670	ZIKYONA	38 14N 22 00E	150.0	1981-1987		•	•	•	•	•	•						•			KAEITTOT
660	ΣΚΙΑΘΟΣ	39 11N 23 30E	15.0	1986	6.09	•	•	•	•	•	•	•	•	•		12.1			ΑΕΡΟΝΑΥΤΙΚΟΣ	
662	ΣΚΟΠΕΛΟΣ	39 07N 23 44E	11.2	1956-2006		•	•	•	•	•	•	•	•	•						KAEITTOT
646	ΣΚΟΤΙΝΑ	40 00N 22 30E	1.5	1983-2003	Construction of the second	•	•	•		•	•		•	•					16	KAEITTOT
684	IKYPOI	38 54N 24 33E	4.6	1955	00,03,06,09,12,15 ,18,21	•	•	•	•	•	•	•	•	•					ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
746	ΣΟΥΔΑ	35 33N 24 07E	140.0	1958	00,03,06,09,12,15 ,18,21	•	•	•	•	•	•	•	•	•	•				ΚΥΡΙΟΣ ΣΥΝΟΠΤΙΚΟΣ	
611	ΣΟΥΦΛΙ	41 12N 2617E	15.0	1973-2008		8 8	•	•	•	•	•	•	•	•					1	KAEISTOS
725	ENAPTH	37 04N 22 25E	212.0	1974	06,12,18		•	•		•			•						ΚΛΙΜΑΤΟΛΟΓΙΚΟΣ	
741	ENATA(BENIZEAOE)	37 58N 23 55E	67.0	1974	00,03,06,09,12,15 ,18,21	•	•	•	•	•	•	•	•	•					ΔΕΥΤ.ΣΥΝΟΠΤΙΚΟΣ	
729	ΣΠΕΤΣΕΣ	37 15N 23 09E	4.0	1974	06,12,18		•	•		•	٠		•				1.1		ΚΛΙΜΑΤΟΛΟΓΙΚΟΣ	Surger and the second
711	ΣΤΕΦΑΝΙΟ	37 45N 22 50E	960.0	1975-2009			•	•	•	•		•	•		•				1	KAEITTOT
774	ΣΥΡΟΣ	37 25N 24 57E	72.0		06,09,12,15,18		•	•					•						ΑΕΡΟΝΑΥΤΙΚΟΣ	
730	ΣΥΡΟΣ(ΠΟΛΗ)	27 25N 24 57E	70.0	1991	06,09,12,15,18		•	•	•	•	•	•	•	•					AEPONAYTIKOE	

Βιβλιογραφία

- 1. Angstrom AK., (1924). Solar and atmospheric radiation. Q J R Met Soc;20:121±6.
- Becquerel, E. (1839), 'Memoire sur les effets electriques produits sous l'influence es rayons solaires (Note on the electric effects produced under the influence of sunlight)', *Comptes Rendus Hebdomadaires des Suances de l'Acadımie des Sciences*, IX, pp. 561–567; 'Recherches sur les effits de la radiation chimique de la lumiθre solaire, au moyen des courants lectriques (Studies of the effect of actinitic radiation of sunlight by means of electric currents)', *Bibliotheque Universelle de Geneve*, XXII
- 3. Doorenbos, J., and Pruitt, W.O., (1977). Guidelines for predicting crop water requirements: Rome, Italy, Food and Agricultural Organization of the United Nations, FAO Irrigation and Drainage 24, 2nd ed., 156 p..
- 4. Green, M.A. (1982), 'Accuracy of analytical expressions for solar cell fill factors', *Solar Cells*, **7**, pp. 337–340.
- 5. Green, M.A. (1992), *Solar Cells: Operating Principles, Technology and System Applications*, University of NSW, Kensington, Australia
- 6. Burdick Emery, K., , J., Caiyem, Y., Dunlavy, D., Field, H., Kroposki, B. & Moriarty, T. (1996), in Proc. 25th IEEE Photovoltaic Specialists Conference
- 7. Idso, S.B. and Jackson, R.B., (1969). Thermal radiation from the atmosphere. *J. Geophys* Res. 74: 5397–5403.
- 8. King, D. L., Kratochvil, J. A. & Boyson, W. E. (1997), in Proc. 26th IEEE Photovoltaic Specialists Conference, Anaheim, 30 September–3 October 1997, IEEE, New York
- 9. Neville, R.C. (1978), *Solar Energy Conversion: The Solar Cell*, Elsevier, Amsterdam.
- 10. Radziemska, E. (2003), 'The effect of temperature on the power drop in crystalline silicon solar cells', *Renewable Energy* **28**(1), pp. 1–12.
- 11. Shockley, William; Queisser, Hans J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics, Vol. 32, p.510-519

- 12. Spencer, J. W., 1971: Fourier series representation of the position of the sun *Search*,2,172.
- 13. Stefan, J.: Über die Beziehung zwischen der Wärmestrahlung und der Temperatur, in: Sitzungsberichte der mathematischnaturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften, Bd. 79 (Wien 1879), S. 391-428
- 14. Wenham S.R. M.A., Green M.E. Watt R. Corkish (2007): APPLIED PHOTOVOLTAICS Earthscan in the UK and USA ,pp:32-40,pp:43-51
- 15. Zdunkowski Wilford, Thomas Trautmann, Andreas Bott (2007): RADIATION IN THE ATMOSPHERE A. Course in Theoretical Meteorology Cambridge University,pp:8-14
- 16. Αλεξανδρής Σταύρος (2003) Συγκριτική αξιολόγηση μεθόδων εκτίμησης εξατμισοδιαπνοής κάτω από τις ελληνικές συνθήκες. Διδακτορική διατριβή. Γεωπονικό Πανεπιστήμιο Αθηνών
- 17. Αλεξανδρής Σταύρος (2010) Σημειώσεις Εργαστήριου Μικρομετεωρολογίας Γεωπονικό πανεπιστήμιο Αθηνών
- 18. Καρανδεινός Μ., 1995. Στοιχεία Οικολογίας . Γεωπονικό Πανεπιστήμιο Αθηνών.
- 19. Προύτσος Νίκος (2010) Μικρομετεωρολογία και διαθέσιμο νερό φυλλοβόλου δασούς. Διδακτορική διατριβή. Γεωπονικό πανεπιστήμιο Αθηνών