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ABSTRACT

The study of frames associated with a spatial curve is an active research
field. More precisely, the attention has focused on adapted frames, whose
one of the vectors of the orthonormal triple coincides with the curve unit

frame (RMF) is useful for applications such as swept surfaces constructions
and animation, since it executes the least possible frame rotation along the
curve. Rational representation of RMF is desirable in computer aided design
applications. Hence, recent studies focus on rational rotation—minimizing
frames (RRMF's) and moreover on the identification, characterization and
construction of curves with RRMFs. The curves with rational adapted
frames are necessarily curves with rational unit tangent vector, known as

are two alternative models for the representation of PH curves. Rotation—
minimizing frames are not in general rational, even for PH curves. The
Euler-Rodrigues frame (ERF), which is always defined on a PH curve and
is rational by its construction, is a good reference for identifying rational
RMFs on PH curves. The ERF is not in general an RMF. The simplest
non—planar curves for which the ERF can be an RMF are of degree 7.

In the present thesis we give a characterization of degree 7 spatial PH
curves with rotation—minimizing Euler-Rodrigues frame using both the
quaternion and Hopf map forms. Further, we deal with the quintic PH
curves and investigate conditions under which a quintic is an RRMF curve
of particular type in terms of the quaternion and Hopf map form. Since
quaternion polynomials generate the hodographs of the PH curves, we also
focus on the study of the quaternion algebra and present results pertinent
in the study of RRMF curves. An algorithm for the roots of quadratic
quaternion polynomials is presented and used to analyze the root struc-
ture of polynomials that generate quintic curves with RRMFs. Finally, we

lvd
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prove that PH curves with non—primitive hodographs are those whose its
associated quaternion polynomial has a right complex factor and we see
that such curves are regular curves. Further, we give necessary and suffi-
cient conditions for a quaternion polynomial to have a right complex factor.
Throughout this study we also identify and characterize some particular
types of PH curves which are generated by others of lower degree.



ITEPIAHWH

H pehétn tov cvotnudtwy cuvtetayuévwy ¥ thaoiwy (frames) ta onola
optlovtar Thve o€ pla YweoxaUTUAN amoTehel Evar TOAD EVOLPEPOV ETLC TNUOVL-
%6 medio Epeuvag. TIo cuyxexpyeva, evolugepduacTe yio exelva Tow TAakoto To
omola etvar optoxavovixd xa ota omolo To €va amd TElo BLvOoUATO GUUTITTEL
UE TO EQATTOUEVO BLdvuoua TNG XouTtOANG, o€ xdde onuelo tng. Tétoln mhalolo
Tot 0VOUALOUUE TEOCUPUOCHEVA TAAOLOL 1o UETAUE) UTWY EVOLUPEROUNC TE LOLOUL-
TEQWC Yo T Thakotar EAGY IO TN TIEPLO TEOPTG (RMF) ta ontola €y ouv eEUEETXE
OTMUOVTIXES EQPUPUOYES, APOU EXTENODY TNV EAAYLOTN TEQICTROPT XAUTA UNXOG
e xaumOAng. Prrtéc avamapaotdoeic twv RME evan emduunteg otic eqop-
MOYEC, xou ETOL Ol TEAEUTALEG EQEUVES €Y 0LV ETUIXEVTPWUEL GTNY UEAETH TETOLWY
mhouoiov- mou xahovvtar RRME - xou xupiewe 6tov mpocdloploud, yapoxtnet-
OUO XAl XATUOKEVY| XOUTVAGY G Tor ontola umopolv va oplotoly RRMF mhaiota.
Autég ol xopumiAeg TEETEL AmUPUITATWS VoL VAL XOUTOAES UE PTTO EQUTTOUEVIXO
uovodlafo dtdvuoua, ol ontoleg ebvar YVWoTEC we xaumOAES pe Tudaydpela 060-
yeopruata (PH xoumiiec). Xenoylonoidhviag T TONUGOVUHO UE GUVTENECTES
teTpadxole aptipole (quaternions) ¥ evodhaxtxd tny onewxévion Hopf uro-
eolpe va avaropac thooupe Tic PH xaumiiec. ‘Ouwe, axodua xou otic PH xop-
nOieg éva RMF, Sev eivon névtote pnréd. To Euler-Rodrigues micico (ERF)
mou oplleton oe xdde PH xoumOAn xon elvon ex xatooxeunc pnto, anoteel uio
%ok avapopd Yo Tov tpocdoplod RRME otig PH xoumiiec. To ERF dev
ebvon ev yévet RMF. Ou uixpdtepou Baduod un eninedeg xoundieg yia g omoleg
t0 ERF unopel va etvor RMF etvor ot xaundieg Tou Boduoo.

Yy mapovoa datelBy) divouue éva yapaxtneloud twv PH xoumuiey Tou
Boduol otic omoleg o ERF ebvon éva RMF, yenowomoldvtag xou Tig 8%0 -
CODUVAUES LOPPES avVamoPdoTaoN Twv. Emmiéov, acyoroluacte pe Ti¢ PH
XUTOAES HoL Borduol xon epeuvolpEe TIc oLVITXES xdTw amd Tig onoleg uio Té-
Totor xoumOAn ebvor RRMFE ouyxexpwévne xotnyoplog. Enlong, peietdue ta
TOAUMYUUO UE GUVTEAEGTEC TETEAOIXOUS optdols, aol UECK AUTOY TWV To-
AoVOULY expedloupe To odoypedgnua twv PH xoumuidv xa tapoucidlouue
oyeTwd amotehéopata mou yag Pondolv otny perétn twv RRME xounuioy.
Axoépa mopoustdlouye €vay olyodprduo mou utoloyilel tig plleg Twv TOALVD-
ueVY 200V Borduod pE CUVTEAECTES TETPAUOLXOUS aptduols ot o omolog yernotuo-
moteiton oty uerétn 1wv RRME xounuiov Sou Baduot. Téhog, anodewviouye
otL ot PH xopunOAeg pe un mpwtoyevy| 000y papAuat Evor aUTEC GTIC OToleC TO
avTioTOLYO TOAUMVUUO UE CUVTEAECTEC TETEAOLXOUC aptluolc uécw Tou omoi-
ou expedleTar, €yet uryaduer| pilo xon TopaTnEoVUE OTL AUTES OL XUUTUAES Elvar
opohéc xoumviec. Emmicov, divouue plo teovi| xon avoryxodar cuvdixn yior €var
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TETOLO TOAUMVLUO Vo €YeL plor ToUAdyLoTov Uryadr plCa. Emimhéoy, dio uéoou
oUTHC TNG HEAETNG Tpooblopiloupe xat Y opoxTNEilOUUE XATOLEC CUYXEXPUIEVES
XA YOoplEC XOUTUAGY ToU “TapdryovTon” amd dAAES uxpdTEQOU Barduov.
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INTRODUCTION

The hodograph of a smooth parametric curve r(t) = (z(t), y(t), 2(t)) in R? is
the locus described by its derivative v/(t) = (2/(t),y/(t), 2/(t)). The geomet-
ric properties of hodographs may offer useful information for curve design
and analysis problems. In this thesis, we shall be concerned with polynomial
curves r(t) whose hodograph satisfy the Pythagorean condition

2?(t) + 2 () + 22 (t) = (1),

for some real polynomial o(t). These curves are called Pythagorean hodo-
graph (PH) curves and were first introduced by Farouki and Sakkalis in 1990
[30], as a special class of polynomial curves with significant properties in
Computational Geometry. By their definition, PH curves are distinguished
by the property that their “parametric speed”, i.e. the rate of change of the
arc length s with respect to the parameter t, is just a polynomial, rather than
the square root of polynomial, in . This feature dowers PH curves with
interesting computational advantages over “ordinary” parametric curves.
Some of them are cited below:

1. The polynomial arc length function

¢
s(t) = / [t/ (u)|du
0
admits exact computation [17].

2. The offsets r4(t) = r(t) + dn(t) to any planar PH curve, -i.e., loci of
points which have a constant distance from the curve- and the pipe or
canal surfaces that have a given spatial PH curve as a spine, admit
an exact rational parametrization [31, 30, 28].

E :/ k*ds
0

11

3. The energy integral



12 INTRODUCTION

i.e., the integral of the square of the curvature, has exact closed-form
evaluation.

4. Rational unit tangent, curvature, rational adapted frames, etc, can be
exactly computed.

5. Rotation-minimizing frames, which eliminate the “unnecessary” rota-
tion of the Frenet frame in the curve normal plane, may be exactly
derived. For spatial PH curves even though these involve logarithmic
terms [18], otherwise rational approximations are available [25].

Since in a variety of applications, such as robotics, animation, computer
graphics, motion control and swept surfaces constructions is desirable for the
shapes to be expressed by rational representations, PH curves are suited for
applications in computer aided design and manufacturing. More precisely,
in many of the above applications a basic problem appears to be the need to
describe the orientation of a rigid body that moves along a given trajectory.
This can be accomplished by invoking an orthonormal frame (f;, f5, f3) em-
bedded in the body to specify its orientation. Frames that incorporate the
unit tangent as one component are known as adapted and an additional de-
sirable property for their components is the rational dependence of the curve
parameter. The most familiar adapted frame is the Frenet frame (t,n,b)
[1] but it is often unsuitable for practical applications since it is not de-
fined at inflection points and moreover incurs an “unnecessary” rotation of
the normal plane vectors n, b around t. To address this problem, the con-
struction of rotation- minimizing adapted frames (RMF) (t, f1, f5) has been
the focus of recent research. The advantages of RMFs for construction of
swept surfaces were first studied by Klock [58] who characterized them as
solutions of first order differential equations. RMFs have the property of
minimum twist and makes them useful in several topics such as motion de-
sign and control in computer animations, robotics, and tool path planning
in CAD [80]. Numerical methods are often used [25, 58, 74, 59, 80, 81] to
approximate RMF's, since in general the unit vectors t, f;, f5 do not admit a
rational dependence of the curve parameter even if r(¢) is a polynomial or
rational curve.

In view of the above, it is clear that for CAD applications rational rep-
resentations are preferable in order to have exact computations. On the
other hand, RMF's are desirable since not only identify the orientation of a
moving body along a path but furthermore they possess the property of min-
imum variation. Therefore, an important “requirement” for computer aided
design applications is that an RMF be rationally dependent. This is the
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reason why there has been recently considerable interest [21, 24, 34, 32] in a
special subset of the PH curves, known as the rational rotation-minimizing
frame (RRMF) curves. These curves possess rational orthonormal adapted
frames (t,u,v), where t = r/(¢)/|r/(¢)| is the curve tangent and u, v span
the curve normal plane at each point, with a frame angular velocity w that
satisfies w - t = 0. All RRMF curves must be necessarily PH curves since
only PH curves have rational unit tangents and they may be characterized
by an algebraic conditions on the coefficients of the quaternion and Hopf
map representations [21, 23]. But the PH property alone does not ensure
the existence of a rational RMF. Although any spatial PH curve supports
an exact computation of RMF via integration of a rational function [18],
these RMFs do not have a rational dependence on the curve parameter be-
cause, in general, rational functions do not have rational integrals. Thus,
construction of curves that possess an RRMF is a difficult task since non-
linear constraints are involved and research is focusing on identifying con-
straints on the coefficients of PH curves which are necessary and sufficient
for rational RMF. More results on construction, applications and rational
approximations of RMF curves were investigated in [24, 25, 21, 32, 55] and
the citations therein.

In [7], Choi and Han introduced a special adapted frame, called ERF,
defined for any spatial PH curve, which is rational by construction and it
has non-singular behavior at inflection points. Unfortunately, the ERF is
not in general an RMF. Also in [7] conditions under which the ERF of a
PH curve can be an RMF were studied, and it was shown that:

e for PH cubics ERF and Frenet frame are the same
e the PH quintics which have rotation minimizing ERF are planar curves

e spatial PH curves for which the ERF can be RMF are of degree 7 at
least and such curves were shown to depend on 16 real parameters

Subsequently, Han [45] using the ERF as a key step for identifying RRMF's,
formulated an algebraic criterion characterizing RRMF curves of any (odd)
degree and furthermore proved that RRMF cubics are either planar or PH
curves with non—primitive hodographs. The simplest true spatial curves
with RRMFs are quintics and there were investigated in [34, 23, 21, 33].
More precisely, in [23] was first presented the existence of non-degenerate
RRMF quintics and characterized in terms of coefficient constraints in the
Hopf map representation. Later on, in [21] these conditions were replaced
by a simpler and more concise condition in terms of the coefficient of
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both quaternion and Hopf map representations. Finally, general degree
PH curves were treated in [32] and Han’s criterion was studied in case of
PH curves of arbitrary degree.

The focus of this thesis is on the identification and characterization of
some remarkable types of quintics and degree 7 PH curves with associated
rational frames of special interest. The structure of the thesis consists of
the following parts: the part which includes Chapters 2 through 4 and it
presents the basic theory of quaternion polynomials together with some
results pertinent to this research, and the other one includes Chapters 5
through 7 and presents the conditions which characterize some particular
types of RRMF curves.

We now briefly summarize the contents of each chapter. Chapter 2 is
devoted to the presentation of basic facts about quaternions and quaternion
polynomials. In particular, some classical and recent results on the roots
and the factorization of quaternion polynomials are given. In Chapter 3
we study the complex roots of quaternion polynomials. We give necessary
and sufficient conditions in terms of Bézout matrices for a quaternion to
have a complex, a spherical and a complex isolated root. Furthermore,
we give a bound for the size of the roots. Chapter 4 deals with quadratic
quaternion polynomials. We recall some known results on the factorization
of a quadratic quaternion polynomial and give conditions, in terms of real
variables, in order for a quadratic equation to have a special kind and specific
multiplicity of roots. In addition, we present a new algorithm for finding
the roots of a quadratic quaternion equation which is used to analyze the
root structure of the quaternion polynomial that generates quintic RRMF
curves. Chapter 5 summarizes some basic facts of the theory of adapted
frames and of PH curves. Chapter 6 is devoted to the study of PH curves
of degree 5 and 7 and gives necessary and sufficient conditions in terms of
their associated quaternion polynomial so that the curves are of a certain
type. Finally, in Chapter 7, we consider the problem of characterizing the
non—primitive hodographs generated by a primitive quaternion polynomial.

associated quaternion polynomial has a right complex factor. Although, in
general, we “avoid” having non—primitive hodographs, we are interested for
these where the PH curves are regular. Through the study of non—primitive
hodographs, we can see that there are RRMF curves which are “generated”
by others. Consequently, we give necessary and sufficient conditions for an
RRMF curve to be generated by another of lower degree in terms of its
associated quaternion polynomial and we study some of their geometrical
properties. Moreover, we apply the previous results in order to identify and
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characterize these specific types of quintics and degree 7 PH curves. The
latter, this leads to the construction of an RRMF curve by another of lower
degree.






CHAPTER 1

QUATERNIONS AND (QUATERNION
POLYNOMIALS

The purpose of this chapter is to recall some basic facts about quaternions
and quaternion polynomials which we shall use for the presentation of our
results. First, Section 1.1 introduces the concept of quaternion numbers
with some of their properties and Section 1.2 briefly reviews some basic
facts about quaternion polynomials. Then, Sections 1.3 and 1.4 are devoted
to root finding as well as the factorization of these polynomials. In order to
become more familiar with these concepts, some examples are presented as

well.

1.1 The skew field of quaternions

Recall that a ring R is called a division ring if every non—zero element of
R has a two-sided inverse. A division ring may be commutative, in which
case it is a field, or non—commutative, in which case it is a skew field. We
are concerned here with the most familiar example of a non—-commutative
division ring, namely, the ring of Hamilton’s quaternions.

Quaternions were first introduced by W. R. Hamilton in an attempt to
extend the set of complex numbers to higher dimensions. They differ from
the complex numbers since they involve three imaginary units, rather than
just one. Moreover, these three imaginary units are non—commutative, and

consequently the quaternion product is non—commutative. Apart from their

design, manufacturing and animation.
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18 CHAPTER 1

We begin by reviewing some basic definitions and properties of the

quaternions.
Definition 1.1 A quaternion is an expression of the form
Q= q + qi+ gj + gk,
where qo, q1, ¢2, ¢3 € R and i, j, k satisfy the multiplication rules
i’=j=k*=—-1, ij=-ji=k, jk=-kj=i, ki=-ik=j (1.1

We use calligraphic characters A, 3, . . . to denote quaternions, bold char-
acters a, b, ... for complex numbers (or vectors in R® — the meaning will
be clear from the context), and italic characters a, b, c, . .. for real numbers.
Also, the quaternion element i will always be identified with the imaginary
unit 1.

We denote by H the set of all quaternions. Let
Q=qo+ qii+ qj+ ¢gsk and P = py + pii + paj + psk

be two elements of H. The addition and the multiplication in H are defined

as follows:
Q+P=qy+po+ (¢ +p)i+ (g2+p2)j+ (g5 +ps)k

and

QP = (qopo — 101 — @2p2 — q3p3) + (qop1 + G1po + Qps — qsp2) i
+ (qop2 + @2po + asp1 — aips) § + (qops + ¢spo + ¢ip2 — ¢2p1) k.

The set H with these two operations is a division ring.

Every element of H\R is called a pure quaternion. For a given quaternion
Q, we call g = scal(Q) the scalar (or real) part of Q, and ¢1i + ¢oj +
sk = vect(Q) the vector (or imaginary) part of Q. Clearly, the set of real
numbers R and the set of complex numbers C are (commutative) subrings
of H, corresponding to the sets of quaternions with ¢; = ¢, = ¢3 = 0 and
g2 = q3 = 0 respectively. The quaternion ring defines a 4—dimensional

real vector space, with basis elements {1,1, j, k} when addition is performed
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By swapping qo, q1, ¢2, g3 and pg, p1, p2, p3 in the above formula, one can
verify that in general QP and PQ have identical scalar parts, but different
vector parts.

The conjugate Q* of Q = qo + q1i + ¢2j + g3k is defined by

Q" = qo — qui — @ — @k,
and it is easily seen that
Q" =QQ=q +q +¢ +q;
We call norm of Q the real number

9] = VQO* = \/q§+q§+q§+q§-

One can easily verify that
|QF = (scal(Q))” + |vect(Q)[*.

Further, for every Q,P € H we have

A quaternion U with [U| = 1 is called a unit quaternion. Any non-zero
quaternion Q has a multiplicative inverse, i.e. an element, denoted by @ !,

such that

Q'0=00"=1
The element Q' is unique and is given by
o=
Q]
A quaternion @ may be written as Q@ = (¢, q) where ¢ = scal(Q) and

Q" = (¢,—q), |1Q] = V& +aqf*.

The sum and product of given quaternions A = (a,a) and B = (b,b) may

be compactly expressed [70] as

A+B = (a+b,a+b), AB= (ab—a-b,ab+ba+axb),
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where - and x denote the usual vector dot and cross products in R3.

For brevity, we shall simply write ¢ and q for pure scalar and pure vector
quaternions of the form (¢,0) and (0, q).

We now introduce the notion of similarity for any two quaternions Q
and P.

Definition 1.2 Two quaternions Q and P are said to be similar and we

PS =S50.
It is easily verified that ~ is an equivalence relation. For every Q € H
the equivalence class of Q is the set

[Q]:={PeH: P~ 9}

The following proposition allows us to easily check whether or not two

quaternions are similar.

Proposition 1.1. Let @ and P be quaternions. Then Q@ ~ P if and only if
scal(Q) = scal(P) and [vect(Q)| = |vect(P)].

Proof: See [51]. B

Corollary 1.1. For a (pure) quaternion Q € H \ R, the equivalence class

| Q] always has infinitely many elements.

Similar quaternions can directly be identified using Proposition 1.1. The
complex number z = scal(Q) + |vect(Q)|1i is the only complex number
similar to @ with a positive imaginary part, and is called the complex similar
of Q. Note that, for a given quaternion Q, there are at most two complex
numbers in its equivalence class [ Q] — the complex numbers z and z*.

Now suppose @ € R. Then [ Q] = {Q}, which means that the equiva-

lence class contains only the single element Q. If Q ¢ R, then [ Q] always

[Q]={PeH: scal(P) = scal(Q) and |vect(P)| = |vect(Q)] }.
Obviously, we have Q* € [ Q] for all Q € H.
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Example 1.1.1 Let @ = 2 — i+ 3j — 2k. Then the equivalence class of Q

1S

[Q]={P c€H : scal(P) = 2 and |vect(P)| = V14 }.

The only complex numbers in [ Q] are ¢ = 2+ /141 and ¢* = 2 — V/141.

Remark 1.1. If we identify the quaternion Q = qy+q1i+¢2j+¢sk as a point
in R* and denote it as Q = (g, q1, @2, ¢3), then the set [ Q] of quaternions

in R* with center (qo,0,0,0) and radius |vect(Q)| = /¢ + ¢2 + ¢5. We use
this interpretation in the following section.

We list below some important properties of quaternions.

Proposition 1.2. [82] For any quaternions Q, P the following properties
hold:

[y

. |Q)? = |scal(Q)|* — |vect(Q)|? + 2 |scal(Q)| |vect(Q)].
2. 1QP + PP = 3(1Q+ PP+ Q- P?).

3. |1Ql =27

4. (Q+P)* # Q? + P?+2QP in general.

5. Q= |9Q|U, where U is a unit quaternion.

6. For any z € C we have jzj* = z* or jz = z*j, and kzk* = z* or
kz=z"k.

7. Q= Q% if and only if Q € R.

8. Fvery quaternion Q can be expressed in the form Q = z1 + zsj with
Z1,Zo € C.

9. Every quaternion Q can be written in the form Q = zi + kzy with
Z1,29 € C.
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Another useful concept is the characteristic polynomial of a quaternion
(76, 82]. It can be directly proved that the quaternion @ = qy+¢1i+¢j+gsk

satisfies the quadratic equation
olt) =t —2scal(Q)t + |Q]* = 0 (1.2)

with real coefficients. The real quadratic polynomial ¢g(t) is called the
characteristic polynomial of Q. We observe that the conjugate Q* also
satisfies this equation. Moreover, the converse of these statements is also
valid — i.e., if ¢ (t) = t* +2at + b is a real quadratic polynomial, then for
any quaternion P with scal(P) = —a and |P|? = b, both P and P* satisfy

0. These solutions have identical real (scalar) parts, and their imaginary
(vector) parts lie on the surface of a two—dimensional sphere in R3. Thus,
a quadratic polynomial over H may have infinitely many solutions and not
at most two, as in the case of a quadratic polynomial over a field. This fact

offers a first hint at the more—complicated structure of polynomials in HJ¢].

1.2 Quaternion polynomials

In this section we define polynomials with quaternion coefficients, and study
some of their key properties which will be used subsequently. As we shall see,
the ring of quaternion polynomials is also a non-commutative ring, since
the quaternions form a non—commutative division ring. This fact makes
the study of quaternion polynomials a fascinating topic that often involves
unusual and surprising results.

As usual, let R and C denote the fields of real and complex numbers,
and let H denote the non—commutative division ring of quaternions. Before
proceeding to the definition of quaternion polynomials we note that, due to
the non—commutative nature of this ring, there are several ways to define
such polynomials. The coefficients can be placed on the right, on the left,
or on both sides of the powers of the variable t. We adopt here the practice
of defining quaternion polynomials by always writing the powers of ¢ on the

right of the quaternion coefficients.
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Definition 1.3 A quaternion polynomial Q(¢) in the indeterminate ¢, is an

expression of the form

Qt) = Qut" + +Qﬁ+%—§:%ﬁ

with Qg, Q1,...,Q, € H. If Q,, # 0 we define the degree of Q(t), denoted
by deg Q(t), to be n. When Q,, = 1, we say that Q(t) is monic.

Remark 1.2. Q(t) can also be expressed in the following equivalent forms:
Q(t) = u(t) +iv(t) +jp(t) +kq(t),

Qt) = a(t) + kB(1),
with
aft) =wu(t) +iv(t) and B(t) = q(t) +ip(t) € C[t],
where u(t),v(t), p(t), q(t) € R[t].

We denote by HJt] the set of quaternion polynomials. The sum and the

product of two quaternion polynomials

ZQ# and Pt Zm?

=0
are defined as follows:
max(n,m) n-+m
Q( Ql + P and Q Z Z Q Pk
i=0 =0 j+k=i

For simplicity, we also write the product Q(t)P(t) as (QP)(t). Note also
that the variable ¢ is assumed to commute with all elements of H [62]. The
triple (H[t], +, x) is a non—commutative ring [48]. It is easily verified that

the invertible elements of H]t| are the constant polynomials.

Definition 1.4 The conjugate of Q(t) = Qut" + -+ + Qit + Qy is defined
by

Q' (t)=ut" + -+ Qit + Qp.
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Below are some of the properties of the conjugate polynomial.
Proposition 1.3. Given Q(t), P(t) € Hlt] the following properties hold:

1. (QP)(t) = P(t)Q" (1),

Proof: See [67]. B

Below we give the definition of the quasi—norm in the quaternion poly-

nomial ring.

Definition 1.5 [76] For Q(t) € HJt], the product Q(t)Q*(¢) is called the
quasi—norm of Q(t), denoted by N(Q(t)). Note that N(Q(t)) is a polyno-
mial with real coefficients.

Remark 1.3. Using the equivalent form of Q(t) = u(t) + iv(t) + jp(t) +
k q(t), we have

N(Q(1) = u?(t) +v*(t) +p(t) + ¢*(t).
Note that N(Q(t)) is often denoted with |Q(#)]?.
Example 1.2.1 If Q(t) = t? — jt +1i, then Q*(t) = t* + jt — i and the
N(Q(t)) = Q) Q*(t) = t* + > + 1.
The equivalent form Q(t) = t* +1i— jt likewise gives N(Q(t)) = t* + 1+ %,

Definition 1.6 For a polynomial
Qt) =Y _ Qit' € HJf|
i=0

and an element R € H we define the evaluation of Q(t) at ¢ = R to be the

element

QR) =3 QR € H.

=0
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It is important to observe that if we have H(t) = F(t)G(t) € H]t] for
F(t),G(t) € H[t], it does not follow that H(R) = F(R)G(R) for R € H, i.e.,
evaluation at ¢t = R is in general not a ring homomorphism from HJt] to H.

division rings.

Example 1.2.2 Consider the quaternion polynomials Q(t) = t—k, P(t) =

t — j. Then, we define
H(t) = Q)Pt)=(t-Kk)(t—j) ="~ (j+ k)t —i
The value of H(t) at t =k is
HEK) =k —(j+k)k—i=—1—1i,

but H(k) # Q(k)P(k) = (k — k)(k — j) = 0. Note, however, that for t = j
we have H(j) = — (j+k)j—i=0and Q§)P() =(G—k)(j—j) =0. In
this case, the values of H(t) and Q(t)P(t) agree, since t = j is - as we will
see - a root of H(t).

Proposition 1.4. Let Q(t), P(t) € H[t] and C € H. Then the following
hold:

1. (Q+P)(C)=Q(C)+P(C),

2. If Q(t) = Q,t", where Q, € H and n € N then (QP)(C) =
Q,P(C)Cn.

Proof: See [43]. B

Definition 1.7 Let Q(t), P(t) € H[t]. The polynomial Q(¢) is called a left
divisor (or left factor) of P(t) if there exists a polynomial D(t) € H such
that

The definition of right divisor (or right factor) is analogous. A polyno-
mial Q(t) is called a divisor of a P(t) if it is both a right and a left divisor
of P(t).
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Definition 1.8 [62] An element C € H is said to be a zero or root of
Q(t) € H[t) if Q(C) = 0.

The importance of the fact that evaluation does not preserve multipli-
cation is apparent in the consideration of roots. If R € H with F(R) = 0,
we cannot conclude that R is also a root of the product F(¢)G(t) for any
G(t). For instance, in Example 1.2.2, the fact that k is a root of Q(t) does
not imply that k is also a root of H(t) = Q(t)P(t).

The next proposition establishes a connection between zeros and right

divisors.

Proposition 1.5. An element C € H is a root of a non—zero polynomial
Q(t) € Ht] if and only if the polynomial t — C is a right divisor of Q(t).

Proof: See [62]. B

Remark 1.4. In view of the above proposition, the roots of a quaternion

polynomial are often called right roots.

Note that, in the non—commutative ring H the roots of a left divisor
D(t) are not necessarily roots of Q(t). The following proposition shows
that there is a relation between the zeros of a polynomial and the zeros
of its left divisors. Indeed, as we shall see, if Q(t) = P(t)G(t) € H[t] and
C € H is a zero of Q(t) but is not a zero of G(t), then its left divisor P(t)
must have a zero that it is similar (or conjugate) to C. Recall that H[t] is a
division ring, and any non—zero element C has a unique inverse, denoted by
ct

Proposition 1.6. Let Q(t) = P(t)G(t) € H[t] and C € H such that A :=
G(C)#0. Then
Q(C) = P(ACA ™ G(C).

In particular, if C is a root of Q(t) but not of G(t), then ACA™' is a root
of P(t).

Proof: See [62]. B

By the above proposition we straightway have the following corollary.
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Corollary 1.2. Let Q(t) = P(t)G(t) € H[t| and C € H. Then C is a root
of Q(t) if and only if either C is a root of G(t) or ACA™! is a root of P(t).
Corollary 1.3. IfC € H is a root of G(t) € H, then C is a root of P(t)G(t),
for any P(t) € Ht|.

We denote the set of all zeros of a polynomial Q(t) by Z(Q). By [72],

we have the following corollary, which characterizes the set of zeros of a
polynomial when it is specified as the product of two other polynomials.
Corollary 1.4. Let Q(t) = P(t)G(t) € H[t]. Then
Z(Q)=Z(G)U{CeH:G(C)#0 and G(C)CG(C) ' € Z(P)}.
Corollary 1.5. If P(C) # 0 is a unit in H then
Q(C)P(C) = Q(P(C)CP(C) HP(C).

Corollary 1.5 provides another way to evaluate Q(C) without the need
to explicitly write Q(t) = P(¢t)G(t) in power form (this corollary is valid for
any division ring).

Example 1.2.3 For Q(t) = t—k and P(t) = t—j, consider the quaternion
polynomial H(t) = Q(t)P(t) as in Example 1.2.2. We wish to evaluate
H(k) and H(j). Using Corollary 1.3, we have H(j) = 0 since P(j) = 0. Now
i —k

Pk)=k—j and Pk)'=(k—-j = 5

and using Corollary 1.5 we obtain
PR kPK)™" = (k—j)k(k—j)~" =]
and
H(k) = Q((k —j)k(k—j) )P(k) = Q(—j)P(k) = -1 -1,

in agreement with Example 1.2.2.

To illustrate Proposition 1.6, we present the following example.
Example 1.2.4 Let Q(t) = P(t)G(t) where P(t) =t—21iand G(t) = t+]j.
An easy calculation shows Q(21) = —4k # 0 even though P(21i) = 0. Thus,
21 is not a root of Q(t) even though ¢ — 21 is a factor of Q(¢). On the other

hand, Q(—j) = 0 and —j is a root of Q(t) since G(—j) = 0, i.e., —j is a root
of the right factor.
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1.3 Roots of quaternion polynomials

Because of the non—commutative nature of quaternion polynomials, finding
their roots is a challenging problem [38, 47, 50, 52, 57, 65, 69, 71, 72, 76]. In
the early 1940s, Niven and Eilenberg [64, 65, 15] dealt with the problem of
finding such zeros, and formulated the Fundamental Theorem of Algebra for
quaternions. Surprisingly, in contrast to complex polynomials, quaternion
polynomials may have infinitely many zeros. Consider, for instance, the
polynomial Q(¢) = ¢* 4+ 1 over H. Then Q(i) = Q(j) = Q(k) = 0. Hence
Q(t) has at least three roots, even though it is only quadratic. In fact, for
any unit quaternion C = cii + coj + c3k € H with ¢? + ¢ + ¢2 = 1, we have
C? = —(ci +c+c3) = —1, so C is also a root of Q(t). Such quaternions
are infinite in number, corresponding to points on the unit sphere in R3.
Hence, the polynomial Q(#) = #? + 1 has infinitely many roots.

Clearly, the root structure of polynomials with coefficients in a non—
commutative division ring is quite different from that of polynomials with
coefficients in a commutative ring. Research on polynomials over non—
commutative rings, and especially on the quaternion polynomial ring, has
attracted growing interest in recent years, resulting in a number of impor-
tant and unexpected results. Some of these results are summarized below,
to establish the context for results derived in subsequent chapters.

The following theorem gives a more precise result for the number of roots

of such polynomials.

Theorem 1.1. [42, 62] Let Q(t) € H[t] be of degree n. Then, all roots of
Q(t) belong to at most n conjugacy classes of H. Furthermore, the number

of roots of Q(t) is at most n, or infinite.

Theorem 1.2. [42] If Q(t) € Ht] is of degree n and has two distinct roots
in a conjugacy class of H, it has infinitely-many zeros in that class. In

particular, all elements belonging to that class are zeros of Q(t).

Remark 1.5. Recall that both Q and Q* are roots of the characteristic
polynomial (1.2) of a given quaternion Q. Thus, by the above theorem, all
elements of the equivalence class | Q| are solutions of the characteristic poly-

nomial pg(t) of Q. This polynomial is also called the minimal polynomial
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of the equivalence class [ @]. Clearly, by definition we have
wo(Z)=0 <<= Ze|[Q].

Pogorui and Shapiro [68] proved that any quaternion polynomial, has

two types of roots which are given below.

Definition 1.9 Suppose that Cy € H is a root of the quaternion polynomial
Q(t). If Cy ¢ R and has the property that Q(C) = 0 for all C € [Cy] we
say that Cy is a spherical root of Q(t). In that case, we say that Cp is a
generator of the spherical root [Cy|. Otherwise (i.e., Cy € R or it is not a
spherical root), it is called an isolated root of Q(t). The number of zeros of
Q(t) will be defined as the number of equivalence classes which possess at
least one zero of Q(t), i.e., the number of equivalence classes of spherical

roots, plus the number of isolated roots.

Remark 1.6. Note that, if Cy is a zero of Q(t), then either all elements in
[Co | are zeros or only Cy is a zero. For instance, in the case of a quaternion
polynomial Q(t) with real coefficients (i.e. a real polynomial), if there exists
zo € C\ R such that Q(zg) = 0, then z, is definitely a spherical root. Thus,
all complex roots of real polynomials are spherical roots of the corresponding

quaternion polynomials.

Pogorui and Shapiro [68] also showed that the total number of isolated
zeros plus twice the number of the spherical zeros cannot exceed the degree
of the polynomial. A more precise statement will be presented in the next
subsection. The following examples illustrate this result. The set of zeros
of each polynomial is not empty and the number of zeros does not exceed

its degree.
Example 1.3.1 [49] Consider the polynomial
Q) =0 +jt° +itt — 2 —jt—i
of degree n = 6. Janovskd and Opfer [49] show that Q(t) has the four
isolated roots
1

1
th=1, ta=-1, t3:§(1—i~j—k)7 t4=§(—1+i—j—k)

and the single spherical root t5 = [i].
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Example 1.3.2 [68] Consider the polynomials
Q) =t +it* + G+ D+ (k+ D +jt+k and Qu(t) = (£* + 12

In [68] it is found that Q;(t) has the isolated roots

1 1
= ——(1—j), to=—o(l—3), t;=k
1 \/Q( i), b \/5( i), s
together with the spherical root t; = [i]. Q(t), on the other hand, has
only the spherical root t = [i].

Topuridze [76] focuses on the study of monic quaternion polynomials
of degree n. Using the characteristic polynomial (1.2) of a quaternion, he

proved the following results.

Proposition 1.7. [76] Let Q(t) = t" + -+ + OQit + Qqy be a quaternion
polynomial, and C a given quaternion. Then either pc(t) divides Q(t) and
the whole equivalence class [C] is a spherical root of Q(t), or there is no

more than one root of Q(t) in [C].

Corollary 1.6. [76] The set of roots of Q(t) is infinite if and and only
if there exists A € H such that the characteristic polynomial of A divides
Q(t).

The following result emphasizes that the real polynomials exhibit a very

TOOtS.

Theorem 1.3. [76] Let Q(t) be a monic quaternion polynomial with real
coefficients. If Q(t) has at least one non—real root, then it has infinitely
many quaternion roots. In particular, the zero set of a real monic polynomial

over H s finite if and only if all roots of the polynomial are real.

Several authors have recently proposed algorithms to systematically
compute the roots of quaternion polynomials — including Serodio, Pereira,
and Vitoria [71], Pumplun and Walcher [69], Pogorui and Shapiro [68], Gen-
tili and Stoppato [38], Janovskd and Opfer [49], Feng and Zhao [37], and

Kalantari [57]. The methods in these papers deal with polynomials in which
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the quaternion coefficients are all on the left or the right of the powers of ¢.
Recall that in the present thesis we focus on the former case.

In the special case of monic quadratic quaternion polynomials, Huang
and So [47] gave explicit formulas for the roots. A different method was

subsequently proposed by Jia, Cheng and Zhao [52]. Recently, in [22] an al-

nions, separating the roots into two classes, generic roots (with distinct
scalar parts) and singular roots (with coincident scalar parts). As we shall
see in Chapter 6, the algorithm is used to characterize the root structure of
quadratic quaternion polynomials that generate quintic rational rotation—
minimizing frame curves.

As we shall see below, the problem of finding the roots of quaternion

polynomials is closely related to the factorization problem for H¢].

1.4 Factorization of quaternion polynomials

In this section we deal with the factorization of quaternion polynomials and
summarize some known results. First we shall see that, as in the case of
polynomials over fields, any polynomial over division ring can be written
as a product of linear polynomials. Recall that the roots of a quaternion

polynomial of degree n come from at most n equivalence classes.

Theorem 1.4. Let Q(t) = Qut" + -+ + Qq, where Qp, ..., Q, € H. Then,
there exist elements Cy,...,C, € H such that

Qt) = Qn(t = Co)(t = Copm1) -+ (= Ca).
Proof: See [38]. E

Theorem 1.5. (Gordon-Motzkin) Let Q(t) be a monic polynomial of
degree n in H[t]. Then, if

Qt) = (t=Co)(t = Cpa) -+ (E—=C1),

where Cy,,Cp1,...,C1 € H, any root of Q(t) is conjugate to some C;.
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Proof: See [62, Theorem 16.4]. B

Moreover, Serodio and Siu [72] proved that if the polynomial Q(#) is
decomposed into a product of linear factors as above, then the set of roots
of Q(t) is a subset of [C; JU[Cy]U---U[C, .

In Theorem 1.4, the element C; is a root of Q(t), but Cy,...,C,1,C, are

roots, we can see from [40, Theorem 2.3] the relation between the factors
and roots, and moreover we can find all roots of Q(¢) provided we know
its factorizations. Gentili and Struppa [40] also show that every quaternion
polynomial with coefficients on one side can be written as a product of linear
factors and special quadratic real factors, giving another concrete form for

the factorization of a quaternion polynomial.

Theorem 1.6. Let P(t) € Ht] be of degree n. Then there exist num-
bers p,my,...,m, € N and generators Cy, ... C, € H of the spherical roots
Sty S, of P(t), such that

P(t) = (t* — 2scal(Cy) t + |C1)*)™ -+ (#* — 2scal(C,) t + |C,|2)™ Q(1),

where Q(t) € H[t] has only isolated roots. Moreover, there exists a constant
A € H and r distinct 2—-dimensional spheres Sy, ..., S, and associated num-
bers ny,...,n. € N, where ny + -+ +n, =n — 2(my + --- +my,), together

with quaternions A;; € S, fori=1,...,r and j =1,...,n;, such that
Q) = At = App,) - - (t = Ap)(t = Ap1) -+ (E = Ap,) -+ - (= Ar2) (t — An)

o(t)=A (H ﬂ(t ~ Aij)> . (1.3)

Proof: See [40]. |

Example 1.4.1 Let P(t) be a polynomial of degree m = 8, with generators
of spherical roots C; = i and Cy = j + 1 such that m; = 2 and my = 1 and
isolated roots @y = j and Qs = (61 + 8j)/5 with ny = ny = 1. According to
the theorem, there exist r = 2 distinct spheres 57, S5 together with n; =1

quaternions Ay € Sy and ny = 1 quaternions Ay € Sy, such that

P(t) = (t* —2scal(i) t+[i|*)? (* —2scal(14+j) t+ |1+ (t — Az) (t— Ap).
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o If we set A;; = Q1 = j then Ay = (Qy — A11)Do(Qy — Ay1) ™! and

we have

6i+8) \6i+8j/6i+8 NV .
A21:< J—J) J( J—J) = 21.

5 ) 5

Hence,
P(t) = (2 + 1)%(t* — 2t + 2)(t — 2j)(t — i).

e If ./411 = QQ = (6i -+ 8j)/5 then

Ay = (91 — A1)Q1(Q) — An) ™!

ARCES ARG A
-------- j = il 5
4i — 3

5

and

5 5

, o e 4i — 3j 6i + 8j
2 2742
P(t) = (t*+1) (t—2t+2)(t— - )(t— )

Thus, we have two factorizations of P(t).

Remark 1.7. As we noticed, the number of factorizations of a quaternion

polynomial evidently depends on the number of its isolated roots.

We have said that, unlike the case of complex polynomials, the factoriza-
tion (1.3) is not unique. However, if a quaternion polynomial Q(¢) has only
one zero, its factorization is unique. More precisely, we have the following

result.
Theorem 1.7. The quaternion polynomial
Pt)=(t—=Cn)(t—Cphq) - (t—Cy),

where C; € [Cy]| for i = 1,...,n and Ciyy # Cf fori = 1,....n—1 has
a unique root, equal to C;. Moreover, the above factorization is the only

factorization of the polynomial P(t).
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Proof: See [40]. B

In the commutative case, the factors of a polynomial are directly related
to its roots and their multiplicities. In the ring H[¢], however, the factoriza-
tion is not unique and there is no “obvious” way to define the multiplicity
of a root. Gentili and Struppa [40] introduced the following definition of
multiplicity, for both the spherical and isolated roots of quaternion polyno-

mials.

Definition 1.10 Consider the factorization of the polynomial P(t) given

in Theorem 1.6. Let C;, ¢ = 1,...,n be the spherical roots corresponding
to the factors g, (t) = t* — 2scal(C;) t + |C;|* and 74, ..., 7, be the isolated
roots which are similar to Ajy,..., A, respectively. The multiplicity of

the spherical root C;, © = 1,...,n is defined to be the integer 2m; and the

multiplicity of the isolated root v; the number n;, ¢ =1,... 7.

Thus, if Q(t) is a quaternion polynomial of degree n, the sum of the mul-
tiplicities of its spherical and isolated roots is equal to n. Let Qy,..., Q, be
the isolated roots of Q(¢). Note that Q; may belong to the equivalence class
of one of the spherical roots, and that each of the quaternions Q,,..., Q,
may also belong to the equivalence class of one of the spherical roots of

Q(t).
Example 1.4.2 [68] Consider the polynomial
Qt) =" +it' + (j+ D' + (k+ D? +jt + k

In [68] it is found that Q;(¢) has three isolated roots

Q) =510 QM) =-—51-]) Qt)=k

and one spherical root Q4(¢) = [i]. Although k € [i], it is considered to

be an isolated root. Each isolated root has multiplicity 1, and the spherical

root has multiplicity 2.
Example 1.4.3 Let

P(t) = (t = k)t = j)(t = ).
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From the factorization we see directly that iis a root of P(t). Since j, k, € [i]
we note form Theorem 1.7 that i is the unique root of P(f). By Defini-
tion 1.10, it is of multiplicity 3.

Example 1.4.4 Consider the polynomial Q(¢) = t* + 1. By Theorem 3 it

Q) =t + 1= (t+i)(t —1i),

and this implies that all roots of Q(¢) are in [i] and thus i has multiplicity
2 as a root of Q(t).

The next result shows that, for a quaternion polynomial with known
spherical and isolated roots of known multiplicities, one can find all of its
factorizations. More precisely, one can find all factorizations of all the poly-

nomials that have the prescribed roots and corresponding multiplicities.

Theorem 1.8. The set of all quaternion polynomials with assigned spherical
roots Cy, ... Cs of multiplicity 2my, ... 2m4 and isolated roots Qy, ... Q, of
multiplicity ny, . .., n, comprises all polynomials P(t) that can be written in
the form

P(t) = (t2 — 2scal(Cy) t + }Cl_Ig)”ll e (t2 — 2scal(Cq) t + ]Cplz)m“” Q(t),

Here A is an arbitrary non-zero constant, Ay = Q1, and the quaternions
Aij for j =2,...,n1 are freely chosen in [ Q1] such that Ay ;41 # Aj; for

j=1,...n—1, and in general fori =2,... r we have
A = [(Fii - Fi)(Qi)] Qi [(Fia -+ Fi)(Qi)]

where

Fi(t) = (t = Agn,) - (t = Apa)(t — Agi)

fork=1,...r and A;; forj =2,...,n; are freely chosen in the equivalence
class [ Q] such that A; j1 # Aj; for j=1,...,n; — 1.
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Proof: See [40]. B

Note that in [38, 39, 40, 41] the results are presented for quaternion
polynomials with the powers of the variable on the left, and hence the
roots considered are left roots. The above results have been adjusted to
the case where the powers of the variable are to the right of the quaternion
coefficients, and the roots of the quaternion polynomials are therefore right
roots.

If a factorization of a quaternion polynomial has been constructed, the
following result shows how its isolated roots can be determined from this

factorization.
Theorem 1.9. [40] Let P(t) be a polynomial without spherical roots and let
P(t) = (t = Ap)(t — Apy) -+ (t — Ay)

be one of its factorizations. Then, the roots of P(t) can be obtained from
Ay, ... A, as follows. Clearly, Ay is a root. From Ay, and Ay yields the
T00%

A = (A3 — A) T A (A3 — A)).
In general, setting
AY = (AYD" = A ) AT AV = Ay)

fors=1,...,nand j = 1,...,s — 1, we obtain that the roots of P(t) are
given by
A‘gs—l) — (Ags—Q)* . Al)_lAgs_Q) (A(S—Z)* . ./41>

s

we have:
e A, =jis aroot since t — j is a right factor;

o AP = (A5 — A) A (A - A) = (<2k - §)TI2k(=2k - §) =
(8j+6k)/5,

° .Aff) = (Aé“* - Al)_lAgl)(Aél)* — A1), where

A = (A5 = Ao) 7 A (A5 — As) = (=31 + 1K) /5,
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and hence
4 _ (Bi-4k—5] 1 _3i+4k [3i—4k—5]j s
3 5 5 5

Remark 1.8. We see that A; = Aé” = j, ie., j is a double root -as

expected- since j is similar to i.
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CHAPTER 2

COMPLEX ROOTS OF
QUATERNION POLYNOMIALS

As we have seen, polynomials with quaternion coefficients have two kinds
of roots: isolated and spherical. A spherical root generates a class of roots
which contains only two complex numbers z and its conjugate z, and this
class can be determined by z. In this chapter we deal with the complex
roots of quaternion polynomials. Section 2.1 introduces the Bézout matrices
which we shall use for the presentation of our results. In Sections 2.2 and 2.3
we give necessary and sufficient conditions for a quaternion polynomial to
have a complex root, a spherical root and a complex isolated root. Finally,
in Section 2.4 we compute a bound for the size of the roots of a quaternion

polynomial.

2.1 Bézout Matrices

In 1971, Barnett computed the degree (resp. coefficients) of the greatest
common divisor of several univariate polynomials with coefficients in an
integral domain by means of the rank (resp. linear dependencies of the
columns) of several matrices involving their coefficients [2, 3]. In this section
we recall a formulation of Barnett’s results using Bézout matrices [12] which
we shall use for the presentation of our results. We could equally use another
formulation of Barnett’s results given in [12] or use another approach [36,
56, 78], but we have chosen the formulation with Bézout matrices since it
is more simple and quite efficient in computations.

Let F be a field of characteristic zero and P(z), Q(z) polynomials in

39



40 CHAPTER 2

Flz] with d = max{deg P,deg Q}. Consider the polynomial

P(@)Q(y) — P(y)Q(x) _ Z )

X —
Y i,j=0

The Bézout matriz associated to P(x) and Q(z) is:

Coo Co,d—1

Bez(P, Q) =

Ci-10 - Cd—1d-1
The Bezoutian associated to P(z) and Q(z) is defined as the determinant of
m = deg () and py the leading coefficient of P(x). If n > m, then
bez(P, Q) = (1" " R(P, Q).

where R(P, Q) is the well known Sylvester resultant of P(z) and Q(x) [3, 46].
Furthermore, we have bez(P, Q) = 0 if and only if deg(ged(P, @Q)) > 1.

Now, let P(x), Qi(z),...,Qr(x) be a family of polynomials in F[z] with
n =deg P and deg); < n — 1 for every j € {1,...,k}. Set

BQZ(Pv Ql)

Bp(Q1,...,Qr) = :
Bez(P, Qk)

We have the following formulation of Barnett’s theorem.
Lemma 2.1. Let D = ged(P,Q4,...,Qk)). Then
deg D =n —rank Bp(Q1,...,Qk).

Proof: See [12, Theorem 3.2]. |

Moreover, the matrix Bp(Q, ..., Q) can provide the greatest common
divisor of P(x), Q1(x),...,Qk(x) [12, Theorem 3.4].
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2.2 Complex Roots

In this section we give a necessary and sufficient condition for a quaternion
polynomial to have a complex root in terms of their coefficients.

Let Q(t) € H[t] \ C[t] be a monic polynomial with deg Q(t) = n > 1.
Then, there exist f(), g(t) € C[t] with f(¢) g(t) # 0 such that

ot) = £(t) + kg(t).
We write

f(t) = fi(t) +ifa(t) and  g(t) = g:(t) +iga(D),

where fi(t), f2(t), g1(t), 92(t) € R[t]. Since Q(t) is monic of degree n, we
have deg f; = degf = n and deg f, deg g1, deg ¢g» are smaller than n.
Set

D(t) = ged(f1(1), f2(t), 91(1), 92(t))  and  E(t) = ged(£(t), g(t)).

The polynomial D(t) divides fi(t) and fy(t), whence we get that D(¢) di-
vides f(¢). Similarly, we deduce that D(t) divides g(t). It follows that D(¢)
divides E(t).

Recall that Qg is a root of Q(t) if and only if t — Qy is a right factor of
Q(t), i.e. there exists G(t) € H[t] such that Q(t) = G(t)(t — Qp). We shall
determine the monic right factors of Q(#) in C[¢] having the highest degree.

Theorem 2.1. The only monic right factor of Q(t) in C[t] having the high-
est degree is Ei(t) and its degree is n—rankBez(f, g). Furthermore, if z € R,
then z is a root of Q(t) if and only if it is a root of D(t).

Proof: Let G(t) be a right factor of Q(¢) in C[t] having the highest degree.
Then, there are a(t), b(t) € C[t] such that O(t) = (a(t) + kb(t))G(t), and
thus f(t) = a(t)G(¢) and g(t) = b(t)G(¢). It follows that G(t) divides E(t).
On the other hand, there are f,(t),g;(t) € C[t] such that f(t) = f(¢t)E(t)
and g(t) = g1(t)E(t). Then Q(t) = (fi(t) + kg (t))E(t). Since G(t) divides
E(t), G(t) and E(t) are monic and G(t) is a highest degree right factor of
Q(t) in C[t], we deduce that G(t)=E(t).

n — rankBez(f, g).

By Lemma 2.1, we have deg E(t) =
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Suppose that z € R. Then Q(z) = 0if and only if f(z) = g(z) = 0. Since
f1(z), fo(2), 91(2), go(z) € R, we obtain that f(z) = g(z) = 0 is equivalent
to fi(z) = fo(z) = g1(z) = ¢2(z) = 0, and so D(z) = 0. E

Corollary 2.1. The polynomial Q(t) has a complex root if and only if we
have R(f,g) = 0 or equivalently bez(f, g) = 0.

Proof: By Theorem 2.1, Q(t) has a complex root if and only deg E(¢) > 0.
Further, we have that degE(f) > 0 if and only if R(f,g) = 0 which is
equivalent to bez(f,g) = 0. E

Corollary 2.2. The polynomial Q(t) has at most n—rankBez(f, g) complex

T001S.
Example 2.2.1 Consider the polynomial

Q) =4+ (=i—2J — k)t + (20 +j — 2k) t + 2.
Write Q(t) = f(t) + kg(t), where

f(t) =t —it® +2it+2 and g(t)=—-Q2i+ 1)+ ([i—-2)t

We have
f(z —g(x)f
(v)sy) — g(@)fy) _ (14-21) (—2? y+Hiz y* iz y oy iz y+20+2y—21).
T—y

and so we deduce

—2i 2 0
Bez(f, g) = (1 + 2i) 2 1421 i
0 i -1

We see that rankBez(f, g) = 2, and so Theorem 2.1 implies that Q(t) has
exactly one complex root. In fact, this root is ¢ = i. Furthermore, one of

the factorizations of Q(t) is
Qt) = (£ = 2j)(t = k)(t — ).

Since i is the only complex root of Q(t), the root i is isolated.
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The case of a quadratic quaternion equation has been studied in [22, 47,
52, 64]. The next corollary provides their solutions in the special case where

one of them is complex.

Corollary 2.3. Let Q(t) = t* + Bt + C be a quadratic polynomial of H[t] \
C[t] with no real factor. Set B = by +kec; and C = by + kg, where
by, by, co,c1 € C. Then Q(t) has one complex root if and only if

Cg — Cob1C1 + boC% = (.

In this case cocy # 0, and the roots of Q(t) are
a=-_  S=(a-P) Pla-7)
where P = —(bgcy/co + kcy).
Proof: Let f(t) = t* + byt + by and g(t) = ¢1t + ¢o. We have
R(f,g) = ci — cobic; + bec?

and by Corollary 2.1, Q(t) has a complex root if and only if the above
quantity is zero.

Suppose now that Q(¢) has a complex root q. If ¢; = 0, then the equality
R(f,g) = 0 implies ¢y = 0 and hence Q(t) € C[t] which is a contradiction.
Thus ¢; # 0. If ¢y = 0, then we deduce by = 0, and so ¢ is a factor of Q(¢)
which is a contradiction. Therefore cocy # 0.

By Theorem 2.1, we have g(q) = 0 and f(q) = 0. It follows that
q = —cgo/cy and f(t) = (t — by/q)(t — q). Thus, we have the factorization

Qt) = (t=P)(t —a),

where P = —(bgci/co+key). If P = @, then we have boc; /co+k ¢; = €y/€;.

It follows that ¢; = 0 which is a contradiction. Thus, [72, Lemma 1] yields
Q(t) = (t—(P—aa(P—a) ")t —(a—P)""Pla—P)).

Hence, the other root of Q(t) is S = (q — P*)"*P(q — P*). B

We finish this section with the following result.
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Proposition 2.1. Let P(t) be a monic quaternion polynomial of degree n

with n distinct complex roots. Then P(t) is a complex polynomial.

Proof: We use induction on the degree of P(t). Let deg P(t) = 1. Then
if C is a root of P(t), we have C € C so P(t) =t — C € C[t]. Suppose the
proposition holds for every monic quaternion polynomial of degree £ with
only complex roots. Let now P(t) be of deg P(t) = k + 1. We will show
that P(¢) must be a complex polynomial. Let Cy,...,Cryq be the distinct

complex roots of P(t). Then, we have
P(t) = Q(t)(t — Cr1) (2.1)

Since C; is not a root of the factor (t —Cgy1), by Proposition 1.6 we see that
the complex value

(Cy = Cry1)C1(Cq — Ck+1)-1

is a root of Q(t). Similar arguments show that the complex values
(Co = Cry1)Ca(Ca — Cryr) ™+, (Ch = Chyt )Ch(Cr — Crgr) ™!

must also be roots of Q(t). It can easily be seen that these complex values
are distinct numbers. Since Q(t) is a quaternion polynomial of degree k with
k distinct complex roots, the induction hypothesis indicates that it must be
a complex polynomial. But since Cj1 is a complex number, expression (2.1)
shows that the polynomial P(t), of degree k + 1, must also be a complex

polynomial. E

In the case where the roots of P(t) are not distinct, Proposition 3.1 does

not hold, as it can be seen from the following example.

Remark 2.1. Note that in case where the quaternion polynomial has a
multiple root the above result is not longer true. For example consider the
polynomial G(¢) = (¢t — k)(t —i). This polynomial has the single complex

root i, of multiplicity 2, but it is not a complex polynomial.

Corollary 2.4. If a quadratic polynomial in H[t| \ C[t] has two distinct

roots, then at least one of them is not complex.
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2.3 Spherical and Complex Isolated Roots

In this section, we give necessary and sufficient conditions for a quaternion
polynomial to have a spherical root or have a complex isolated root. First,

we consider the spherical roots.

Theorem 2.2. Let z € C\R and Q(t) € H[t]. The following are equivalent:
(a) z is a spherical root of Q(t).

(b) z and its conjugate z are common roots of £(t) and g(t).

(¢) z is a common root of f1(t), fo(t), g1(t), go(t).

Proof: If z is a spherical root of Q(¢), then its conjugate z is also a root of
Q(t). Thus, Theorem 2.1 implies that z and z are common roots of f(¢) and
g(t). If this holds, then the polynomial (¢ — z)(t — z) is a factor of f(¢) and
g(t). It follows that (¢t — z)(t — z) is a factor of fi(t), fo(t), g1(t), go(t).
Hence z is a common root of fi(t), fo(t), 1(t), g2(f). Finally, if z is a
common root of fi(t), fa(t), g1(t), g2(t), then z is also a common root of
F1(t), f2(t), g1(t), go(t). Hence z and z are roots of Q(t) and so, they define
the same spherical root. |

Corollary 2.5. If Q(t) has no real factor, then it has only isolated roots.

Proof: Suppose that Q(t) has a spherical root C. Then there is a complex
number z € [C]. It follows that z is a spherical root of Q(t) and so, Theorem
2.2(b) implies that z and its conjugate z are common roots of f(¢) and g(t).
Thus, the real polynomial (t—z)(t —z) is a common factor of f(¢) and g(t).
Therefore, Q(t) has the real factor (t — z)(t — z) which is a contradiction.
Hence Q(t) has only isolated roots.

i
Remark 2.2. Since a spherical root of Q(¢) has in its class a number
z € C\ R, Theorem 2.2 yields that we can find the spherical roots of Q(t)
by computing all the common complex roots of fi(t), fo(t), g1(t), g2(t).

Theorem 2.3. Suppose that the quaternion polynomial Q(t) has no real
root. The following are equivalent:

(a) The polynomial Q(t) has a spherical root.

(b) deg D(t) > 0.

(¢c) n > rank By (f2, 91, 92).
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Proof: Suppose that Q(t) has a spherical root C. Let z and z be the only
complex numbers of the class of C. Then we have Q(z) = Q(z), whence we
get

f(z) =f(z) =0 and g(z)=g(z)=0.

It follows that the real polynomial (t — z)(t — z) divides f(z) and g(z) and
hence D(t). Therefore deg D(t) > 0.

Conversely, suppose that deg D(¢) > 0. Then D(¢) has a root z € C.
If z € R, then z is a common root of fi(t), fo(t), 91(t), g2(t) and hence z is
a root of Q(t). Since Q(t) has no real root we have a contradiction. Thus
are roots of Q(t). By Theorem 2.2, the class of z is a spherical root of Q(t).

Finally, by Lemma 2.1 we have
deg D = n —rank By, (f2, g1, g2)
and so, the equivalence of (b) and (c¢) follows. E

Remark 2.3. In the above theorem, the hypothesis that Q(¢) has no real
root, implies that D(t) does not have a real root and so, if deg D > 0, then

we have that deg D is even.

Theorem 2.4. Suppose that the quaternion polynomial Q(t) has no real
root. The following are equivalent:

(a) The polynomial Q(t) has an isolated complex root.

(b) deg E > deg D.

(¢) rank Bez(f, g) < rank By, (fo, 91, 92).

Proof: Let z be an isolated complex root of Q(t). By Theorem 2.1, z is a
common root of f(¢) and g(t). Since the root z is isolated, z is not a common
root of these two polynomials. Thus, the real polynomial (t—z)(t—2) is not
a common factor of fi(t), fo(t), g1(t), g2(t). Hence z is not a root of D(t).
Since D(t) divides E(t), we deduce that deg E > deg D.

Conversely, suppose that deg E > deg D. Then E(t) has a complex root
z which is not a root of D(t). If z is a spherical root, then z is also a common
root of £(¢) and g(t). It follows that (t — z)(t — z) is a common factor of
f1(t), fa(t), g1(t), g2(t) and hence divides D(t). Therefore z is a root of D(t)
which is a contradiction. Thus, z is an isolated root of Q(%).
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By Lemma 2.1, we have
deg D =n —rank By, (f2, g1,92) and degE = n — rankBez(f, g).
Thus, we have deg E > deg D if and only if

rankBez(f, g) < rank By, (f2, 91, 92).

2.4 Bounds for the Size of the Roots

In [66, Section 4] some bounds for the roots of quaternion polynomials are
given. In this section we compute new bounds comparable with that given
in [66, Theorem 4.2] and which are better provided some addition hypothesis
on the coefficients of the polynomial (see Remark 2.4).
Let
Q(t) = Apt" + Ait" M + -+ A,

be a quaternion polynomial of degree n. We define the height of Q(t) to be
the quantity

We write O(f) = £(£) + kg(t), where £(t), g(t) € C[f], and
£(t) = f1(t) +ife(t),  g(t) = g1(t) +1iga(D),
where f1(£), fo(£), 91(t), galt) € RIf]. Set
Hy=min{H(f),H(g9)} and Hy=min{H(f), H(f2), H(g1), H(g2)}.

Theorem 2.5. Suppose that the polynomial Q(t) is monic and C is a root
of Q(t). If C is a spherical root, then

€| <1+ H,”.
If C is an isolated complex root, then

IC| <1+ H,.
In the general case, we have

IC| <1+ H(Q).
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Proof: Suppose that C is a spherical root of Q(t). Then thereisz € C\ R
in the class of C which is also a root of Q(t). By Theorem 2.2, z is a common

complex root of fi(t), fa(t), g1(t), g2(t). Thus, [63, Corollary 3] implies that

lz| <1+ H?f/z. Since |C| = |z|, we obtain |C] < 1+ H21/2‘

Suppose that C is an isolated root. If C € C, then Theorem 2.1 implies
that C is a common root of f(t) and g(t). Hence [63, Corollary 2] yields
IC| <1+ Hj.

Suppose next that C is an isolated non-complex root. If |C| < 1, then
the result is true. Suppose that |C| > 1. Since C is a root of Q(t), there is
G(t) € H[t] such that Q(t) = G(t)(t — C). Write

Gt)=t"""+Bit" 2+ -+ B,
Then
Q) =Gt)(t—-C) =t"+ (B, —C)t" ' + (By — BiC)t" > + - -+ B, _1B.
It follows that
A1 =8B —-C, Ay =B, —-B:C, A3=DB8B5—-0B:C,..., A, =DB,C.
Let ¢ be the smallest index such that H(G) = |B;|. Then we have
H(Q) 2 |Bi=B;1C| = [[Bi| = |Bi-1Cl| = [H(G)—|Bi1Bl| > |H(G)(1-|B|)],
whence we deduce the result. [

Remark 2.4. In case where Ay = 1, [66, Theorem 4.2] yields that the roots
C of Q(t) satisfy

IC] < max{l,z |Ail}
i=1

If >°"  J Al > 1+ H(Q), then Theorem 2.5 gives a better bound than the

one given in [66, Theorem 4.2].

Corollary 2.6. Let Q(t) € H[t] \ H be a monic polynomial. Then Q(t) has
at most a finite number of roots X of the form X = x1 + w91 + x37 + x4k,

where x1, To, T3, T4 are integers.



CHAPTER 3

QUADRATIC (QUATERNION
POLYNOMIALS

In this chapter we present some results on quadratic quaternion polynomi-

curves (RRMF curves). Section 3.1 presents some known results for the
factorization of a quadratic quaternion polynomial and Section 3.2 includes
conditions in terms of real variables which must be consistent in order for
a quadratic equation to have special kinds and specific multitude of roots.
Although several methods have been proposed for finding the roots of a
quadratic quaternion equation, the scalar—vector algorithm which is demon-
strated in Section 3.3 is simpler than others and is used to analyze the
root structure of a quadratic quaternion polynomial that generates quintic
RRMF curves.

3.1 Factorization of quadratic polynomials

Consider the monic quadratic quaternion polynomial

P(t) =t*+ Bt+C,
with at least one of B,C not complex. Suppose that the set of roots of
P(t) is infinite. Thus, Corollary 1.6 implies that there is A € H such that
its characteristic polynomial o(t) divides P(t). Since both P(t) and ¢(¢)
are monic quadratic polynomials, this implies that P(t) = ¢(t). Hence,
every monic quadratic quaternion polynomial with at least one non-real

coeflicient has at most two roots which are isolated.

Let C; € H be a root of P(t). Then,
P(t) = (t —Co)(t — C1), where Cy € H.

49
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Suppose first that P(t) is not a real polynomial.
Then, C; # C; and so, [72] implies that the polynomial P(t) can also be

written in the form
P(t) = [t=(C=CNC(C =€) 7] [t = (G = C)Ca(Cr = C5) ]
From the latter form, we directly obtain that the second root of P(t) is
(€1 —=C5)Ca (Cr = C5) 7"

If P(t) is a real polynomial, then all its roots lie on the equivalence
class [Cy ], i.e., in the sphere generated by Cy;. The following proposition

summarizes these results for quadratic quaternion polynomials, indicating

the relationship between factors and roots.

Proposition 3.1. Let P(t) = (t — Cy)(t — Cy) where C1,Co € H. Then, we

have:

1. If Cy is mot similar to Cy, i.e., C; does not belong to the equivalence

class of Cy, then P(t) has two distinct roots, namely
CQ and (CQ - Cf) Cl (Cz - Cf)_1
2. If Cy is similar to Cy but Cy # C5, then P(t) has the single root C,.
3. If Co = C} the zero set of P(t) is the entire equivalence class of Cy.

Remark 3.1. From the above, we observe that every quaternion polynomial
P(t) = t2+Pit+Py € H[t]\R[t] has either two distinct roots, or one double

root.
3.2 Roots of quadratic polynomials

nomials — i.e., polynomials with coefficients in H \ C — and our goal is
to find necessary and sufficient conditions in terms of the coefficients to

determine the number and nature of their roots.
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Recall that a non-real monic quadratic quaternion polynomial has either
two distinct isolated roots, or one double isolated root. Note also that a
monic quadratic polynomial in C[¢]\IR[¢] has only complex roots, and cannot
have roots in H \ C — this can be easily seen from cases 3 and 4 of [47,
Theorem 2.3].

In Corollary 2.3, we gave a necessary and sufficient condition for a
quaternion polynomial Q(t) € Ht] \ C[t] to have a complex root z. In
this case we have also given a specific formula for its roots. The other root
A of Q(t) will be necessarily complex or non-complex.

Suppose that

Q(t) = (t = B)(t — 2).

By Proposition 3.1, we have the following cases:
e 3 is similar to z. Then z is the only root of Q(t) of multiplicity 2.
e 3 is not similar to z. Then A # z and so, Q(t) has two distinct roots.

The form of A may be understood as follows. Suppose that B is not

similar to z. By
Q)= (t—B)(t —z) =12+ Qit + Qp

we obtain

Qi =—(B+z) and Qy= Bz
On the other hand, the roots of Q(t) are

z and A= (B"—2z)'B(B —2z).

Substituting B = — Q; — z and z = —cj/bj} into the latter expression, we
obtain

A= = (€1 + 2scal(—c3/b3)) " (Qy — ci/b3)(Q + 2scal(—c3 /b)),

which is also verified by Corollary 2.3. This special form of A holds under
the assumption that B is not similar to z.

In [47] Huang and So presented explicit formulas for the solutions of a
quadratic quaternion equation. Below we express these formulas in terms

of the real components of the coefficients of the quadratic equation.
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Theorem 3.1. Let Q(t) = t*+Bt+C € H[t]\C[t]. Set B = by+byi+bzj+bsk
and C = ¢y + coi + c3j + c4k, where b, c; € R fori=1,2,3,4. Then we have

the following cases.

1. The polynomial Q(t) has a double root if and only if vect(B) # 0,

[vectB)||vect(C)| — b—{)1|vect(8)]2 =0

L

and

[vect(B)|* 4 4cy |[vect(B)|> — 4|C|* = 0.

Furthermore, this root is complex if and only if
2b2(33 - 2[)362 - b4|V€Ct(B)|2 == 2b462 - 2b264 - bg!VGCt(B)V = 0.
In this case, the root is not a real number.

2. The polynomial Q(t) has two distinct roots, and at most one of them

is complex. In this case, Q(t) has exactly one complex root if and only
if
(03 — C41)2 - (63 - C4i)(b1 -+ le) (bg - b11> -+ (61 + Czl)(bg - b41)2 = (.

Proof: 1. Substituting B = by + byi+b3j+ bk and C = ¢ + i+ c3j+ ik
into the conditions for a double root in [47, Corollary 2.6] and combining

them, we obtain the first two conditions (a). Using [47, Theorem 2.3 (case

4)] we see that this double root is

v = _bQCQ + bgCg + b4C4 _b_g 4 b3(14 — b403 i+
T vect(B)|? 2 |vect(B)]?

b3 byca — bacy \ . by bacg — bzco
o el = I
( 2 " |vect<8>12>”( 2 " |vect<B>z2>

In order to have a complex root we set the coefficients of j and k equal to

zero, and we directly obtain the last two conditions in (a). In this case,

the root cannot be real. Indeed, since Q(t) can be written as Q(t) =

quaternion, then A4; must be similar to A, which is a contradiction.
2. If Q(t) has two distinct complex roots, then Proposition 2.1 implies

that Q(t) is a complex polynomial, which is not the case. So Q(t) cannot



QUADRATIC QUATERNION POLYNOMIALS 53

have distinct complex roots, and consequently at most one of them can be
complex. Thus, Proposition 2.1, after substituting B = (by +bai) + (b3 +b4i)j
and C = (¢q + i) + (c3 + c4i)j, gives the stated condition in (b). E

Remark 3.2. In Corollary 2.3 we give a necessary and sufficient condition
in order for a quadratic quaternion polynomial to have a complex root. In
the above Theorem we clarify this situation by giving more precise state-
ments. So we present the necessary and sufficient conditions for a quadratic
quaternion equation to have a double complex root or two distinct roots

and exactly one of them being complex.

Corollary 3.1. Let Q(t) = t* + Bt + C € H[t] \ C[t]. Then, Q(t) has at
least one non—complex root if and only if at least one of the four conditions
in Theorem 3.1(a) does not hold.

Proof: If at least one of the two first conditions of Theorem 3.1(a) does
not hold, then the polynomial Q(¢) does not have a double root, so it has
two distinct roots. Since Q(t) is a non—complex polynomial, at least one
of these roots is a non—complex number. In the case where at least one of
the last two conditions of Theorem 3.1(a) is not valid, then the double root
is not complex, and is thus a double quaternion root. Hence, if one of the
four conditions of Theorem 3.1(a) does not hold, then Q(t) has at least one

non—complex root.

has two distinct roots, then one of the first two conditions of Theorem 3.1(a)
is not valid. Also, if Q(¢) has a double root, then this root is not complex,
so one of the last two conditions of Theorem 3.1(a) does not hold. Thus,
in any case, at least one of the four conditions of Theorem 3.1(a) does not
hold. B

3.3 Scalar-vector algorithm for the roots of

quadratic quaternion polynomials

In this section we follow a different approach to computing the quaternion

sentation. We shall apply these results in a next section to analyze certain



54 CHAPTER 3

root properties of the quadratic quaternion polynomials that generate quin-
tic RRMF curves.

Because of widespread familiarity with the basic vector operations in R?

a highly accessible approach [70] to performing computations on them.
We consider, for given quaternion coefficients A, As, Ay, the quadratic
equation
Agt? + At + Ay = 0 (3.1)
in the quaternion variable t, where Ag, Ay # 0. There is no loss of generality
in assuming the quadratic equation (3.1) to be monic. Actually, the equation
(3.1) reduces to the form

> + Bt +C =0 (3.2)
through (left) multiplication with A, ' when A, # 0, and when A, = 0 it is

linear with the trivial solution t = — A;'A,. We also assume that Ag # 0

in (3.1), since otherwise this equation has the trivial solutions t = 0 and

t=— A;]Al

Remark 3.3. We note that, because of the non—commutative nature of the
quaternion product, the familiar “completing the square” process cannot be

employed to compute the roots of (3.1). In particular,
£ +Bt+C+# (t+3B?*-1iB+C,
since, in general, we have

(t+1B)? — 1B = + L(Bt+tB) # t* + Bt.

In the following the quaternion variable will be denoted by Q = (¢, q).

If we set B = (b,b), C = (¢,c), and Q@ = (¢,q), equation (3.2) may be

expressed in the scalar and vectors components

¢ —ld*+bg—b-q+c=0, (3.3)
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(2¢+b)q+gb+bxq+c =0, (3.4)
which are equivalent with a system of four quadratic equations in the scalar
part ¢ and (the three components of) the vector part q of Q.

Before studying the general solution of (3.2), we consider two special

cases:

e 1Ist cage: If B and C are both real i. e. b=c =0 ((3.2) has real
coefficients). In this case the solutions of (3.2) are summarized in the

following Lemma.

Lemma 3.1. When the coefficients B and C are both real, i.e., b =c = 0,

the solutions of the quadratic equation (3.2) are
e the double real root Q = (—b,0) when b* — 4c = 0;

(—b+ Vb? —4c¢,0) when b* — 4¢ > 0;

e the two real roots Q = %

are real numbers satisfying \* + p* +v* = 1, when b* — 4c < 0.
Proof: When b = ¢ = 0, equations (3.3)—(3.4) reduce to

P —la?+bg+ec=0 and (20+bq=0.

From the second equation we have that q = 0 or ¢ = — %—b. In the former
case, the first equation reduces to ¢> + bg + ¢ = 0, with no real roots if
b* —4c < 0; a double root ¢ = — b if b* — 4¢ = 0; and distinct roots
q= %(—b + V2 — 4¢) if b* — 4¢ > 0. In the latter case, the first equation
gives |q|* = ¢ — %bQ, which is satisfied by any vector of the form

q=iVic—0(Ni+pj+rk)

with A2 + 2 + 1% = 1 when b? — 4¢ < 0; by q = 0 when b* — 4¢ = 0; and by

no real vector when b% — 4¢ > 0. g

e 2nd case: If B and C are not both real. We distinguish two classes
of solutions (¢, q) to the system (3.3)—(3.4), namely, solutions with
(i) ¢ # — % b, and we shall call them generic and with (i) ¢ = — % b,

which we shall call singular quaternion roots of (3.1).
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Generic roots

If (¢, q) is a solution of class (i) with 2¢ + b # 0, then through the MAPLE,

equation (3.4) may be solved to express q in terms of ¢,b, ¢ and b, ¢ as

1 (2¢+b)bxc — (2¢+b)*c—(b-c)b
- - b . € .'r
1 2 +0b (2q + b)? + |b]? 1 (3.5)

By setting @ = (2¢ + b)? and substituting (3.5) into (3.3), further analysis

using MAPLE indicates that the latter equation can be factorized to obtain

(z + [b*)(2® + aga® + a1x +ag) = 0, (3.6)
where
ay = 2|b|* — b +4c,
a; = (|b]*=b*+4c) bl — |bb —2c?, (3.7)
ap = —(b|b]* —2b-c)*.

For a class (i) solution of equation (3.1), we must have z = (2¢ + b)? > 0,
since (2¢ + b)? # 0. So, by (3.6) we have that the cubic

22+ asx® + a1z + ag (3.8)

must possess a positive real root. Cardano’s method [77] offers a closed—
form solution for the roots of this cubic. However, useful information about
the number of its positive roots can be deduced, without actually computing

them, by using the Descartes Rule of Signs [77].
Lemma 3.2. If ay # 0, the cubic defined by (3.7)~(3.8) has one positive
real root.

Proof: Descartes Law of Signs states that the number of positive real
roots of a polynomial is less than the number of its coefficient sign changes

by an even amount. Now the cubic (3.8) is monic, and from (3.7) we have

Hence, the number of possible coefficient sign changes may be categorized!

as follows:

'We do not explicitly address the cases a1 = 0 or as = 0, since in these instances the

number of sign changes cannot exceed the indicated amounts.
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(a) there is one sign change if (a9, ay) has signature (4, +) or (+, —);

(b) there are two sign changes if (ag, a;) has signature (—, +).
We show that case (b) is impossible. From (3.7), the conditions as < 0 and
a; > 0 are equivalent to

b2—2tb]2 b2|b|2—]b}4—i-|bb—2c]2
T A ——— and c >

1 4]b]?

In order for these inequalities to hold, we must have
BIb[2 — 2|bl* > B*[b[? — [bf* + [bb — 2¢ 2,

or, equivalently,
bl* + |bb—2c]* < 0.

Since this is impossible, the cubic defined by (3.7)—(3.8) has one coefficient

sign change, and thus one positive real root, when ay # 0. B

Let p be the positive root of (3.8) when ag # 0. Since p = (2¢ +b)?, this
vields two distinct values

—b+
T\/ﬁ (3.9)
for the scalar parts ¢ of the roots Q of (3.1), with corresponding vector

q:

parts q specified by (3.5). Now using (3.9) we can re-write (3.5) as

bxc b il@_pc—k(b-c)b]
p+1bl2 2 p| 2 p+ |bl? ’

and thus from (3.9)—(3.10) the two quaternion roots of (3.1) can be expressed

q= (3.10)

as

Q—( b bxc _E)ii(E’@_anL(b.c)b)’ (3.11)
p+ b 2 VP \2T 2 p+|bl?

where p is the unique positive root of (3.8) with ag # 0.

Remark 3.4. If b and c are linearly dependent, the roots (3.11) reduce to

Q= ——(b b) + ﬁ(p,bb—Qc)

so the vector parts of both roots are also linearly dependent.
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Singular roots
For class (i) with 2¢+b = 0, we have ¢ = — £ b and equation (3.4) becomes
bxq=1bb - c.

Now the quantities b, b, ¢ cannot be freely specified if this equation is to

1bbl~b-c =0, (3.12)

which is equivalent to ap = 0 in (3.7), i.e., z = 0 is a root of (3.8). Note that
(3.12) is automatically satisfied when b = 0. However, equation (3.4) with
2q+b =0 and b = 0 can only be satisfied when we also have ¢ = 0, which
corresponds to the case of real coefficients treated in Lemma 3.1. When
condition (3.12) is satisfied with b # 0, we have

b Xxc
R AT 'b, 3.13
where « is a free parameter. Substituting (3.13) and ¢ = — % b into (3.3),

and noting that |b| # 0, then gives the quadratic equation
b|%y* + [b]% + [bxc]’+ 10’/ —c|b|* =0 (3.14)
in v. In order for (3.14) to have real roots, we require that
bl® —4[bxc|*—b*|bl* +4c|b* > 0, (3.15)
Now from (3.12) we have b?|b|* = 4 (b - ¢)?, and using the identity
b xcl* + (b-e)* = [b[*lcf*,
the condition (3.15) can be reduced to

bl* +4c|b* —4]|c]* > 0. (3.16)

In summary, class (ii) roots exist only when conditions (3.12) and (3.16)
are both satisfied, i.e., ap = 0 and (3.14) has a real root . The quaternion
roots of (3.1) can then be expressed as

_(_b bxc b VIb[' +dc[b —dc? ,
Q= (—5, “ﬂg-—§> + (07 TTbl? b) . (3.17)

Comparing (3.11) and (3.17), we see that singular roots differ from generic
roots in having identical scalar parts. If b and c are linearly dependent,

both roots have vector parts linearly dependent on b (see Remark 3.4).



QUADRATIC QUATERNION POLYNOMIALS 59

Double roots

In the generic case (ag # 0) the roots (3.11) are necessarily distinct, since
p > 0 and hence the scalar parts differ. In the singular case (ap = 0) the
roots (3.17) have coincident scalar parts, but their vector parts are usually
different since equation (3.14) generically yields two distinct v values in
expression (3.13).

Clearly, equation (3.1) admits a double root only in the singular case
when (3.12) is satisfied, with the further requirement that (3.14) has a
double root 7y, so that the vector parts (3.13) of the roots coincide, as
well as the scalar parts. Now equation (3.14) has a double root when its
discriminant vanishes, which means that (3.16) holds with equality. Hence,

the two conditions
Lpb =b-c  and  |b[*+4c|b]*=4|c| (3.18)

together specify when equation (3.1) has a double root. If these conditions
are satisfied, the double root is defined by the first term on the right hand

side of (3.17), and using the first condition in (3.18) it can be expressed as

b-c bxc b
= (+5F e 2) )

Note that, although b and ¢ do not appear explicitly in (3.19), the dou-
ble root depends on them implicitly through the satisfaction of conditions
(3.18).

3.4 Algorithm & computed examples

The preceding analysis of the roots of the quadratic quaternion equation

(3.1) is summarized in the following algorithm.
Algorithm
input: quaternion coefficients B = (b, b) and C = (¢, c)
1. if conditions (3.12) and (3.16) are both satisfied, go to step 4;

2. compute the unique positive real root p of the cubic (3.8);
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3. compute two quaternion roots from (3.11) and go to output;

4. if condition (3.16) is satisfied with equality go to step 6;

5. compute two quaternion roots from (3.17) and go to output;

6. compute the double quaternion root from (3.19);
output: two quaternion roots Q = (¢, q).
The following simple examples serve to illustrate the above algorithm.
Example 3.4.1 Consider the quadratic equation (3.1) with B = (0,j),
C = (0,k). Since b = c= 0 and b = j, ¢ = k the cubic (3.8) becomes

23422 -3z = 0,

with roots x = —3,0, 1. Thus, from the positive root we obtain (2¢+b)* = 1,
and hence ¢ = :i:%. Expression (3.5) then gives the corresponding vector
parts as q = 5(i —j F k). Hence, in this case, we have the generic right

roots
Q =1(1i-j-k) and Q =1(-1li-j+k), (3.20)
and one can easily verify that both satisfy 9% + (0,j) @ + (0,k) = 0.
Example 3.4.2 For equation (3.1) with the coefficients
B = (—2,%) and C = (2,'%) ,
the cubic (3.8) becomes
23 +62° =32 —4 =0,

with the positive root x = 1 and negative roots % (= 7++v33). The positive
root gives (2¢+b)? = 1, and since b = — 2 the roots have scalar parts ¢ = é
or % From (3.5), the corresponding vector parts are then q = % (—i+ V2 )

and — % i+ WV2j+ V2 k). Hence, we have the generic right roots
leé(l,—i—kﬂj) and QQZ%(&—i—Q\/Q_j—\/;Z_k)

and one can verify that, for the given coefficients, they both satisfy (3.1).
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Example 3.4.3 Consider now equation (3.1) with B = (2,j) and C = (1,).

Since b =2, ¢ =1 and b = ¢ = j, the cubic (3.8) becomes
2 4+22%+2 =0,

with roots x = —1, —1,0. Since none of these roots is positive, there are no
generic quaternion roots. For the root x = 0, we investigate the existence
of singular roots. Since b = 2 and b = ¢ = j, condition (3.12) is satisfied.
Equation (3.14) then becomes 72 + v = 0, with real solutions v = —1 and
0, for which (3.13) gives vector parts q = — j and q = 0 associated with the

scalar part ¢ = — %b = — 1. Hence, we have the two singular right roots
Ql = (_1/ _j) and QQ = (_1* 0) )
which both satisfy Q2% + (2,j) @ + (1,j) = 0.

Example 3.4.4 For equation (3.1) with B = (2,]) and C = (£,j + k) the
cubic (3.8) becomes
22+ 522 =0,

with roots = — 5,0, 0. Since this has no positive roots, equation (3.1) has
no generic quaternion roots in this case. For the singular root corresponding
to 2 = 0, the scalar part is ¢ = — % b = —1, and one can verify that both of
the conditions (3.18) are satisfied, so this must define a double quaternion

root. Equation (3.14) reduces to
VHy+: =0,

and has, as expected, the double root v = — % The corresponding vector

part is then determined as q =1 — —;— j from expression (3.13). Hence,

is the only quaternion root in this case, and it defines a double (right) root.
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CHAPTER 4

RATIONAL ROTATION—MINIMIZING
FRAME CURVES

A moving frame along a curve describes the orientation of a rigid body when
it moves along its trajectory. Frames that have the unit tangent vector
as one component are called adapted frames and among all the adapted
orthonormal frames, which can be defined on a curve, we focus on the
rotation—minimizing frame (RMF). Moreover, for practical reasons we wish
to have the rational dependence on the curve parameter and thus the Fuler—
Rodrigues frame and the rational RMF (RRMF) are introduced. The search
for curves with rational adapted frames is restricted to the particular class of
polynomial curves with a special structure-which they called Pythagorean—
hodograph (PH) curves-since only PH curves have rational unit tangents.
This chapter is a brief overview of the basic theory related to adapted frames
and to PH curves.

4.1 Spatial Pythagorean—hodograph curves

We shall begin this section by giving some basic definitions. Recall that a
polynomial space curve defined by x(t), y(t), z(t) € R[t] is the set
C = {(x(t), y(1), 2(t)) € R*|t € R}.
We denote by r the parametrization of C, i. e. the map is defined by
b ((t), y(t), 2(1)).
In the following we shall refer to the polynomial space curve C' by giving its

parametrization r(f). Here we focus on a special class of polynomial space

curves which are of great importance in practical applications.

63
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For a given space curve r(t) = (z(t), y(t), z(t)) the hodograph is its para-

metric derivative r'(t) = (2/(t),y'(t), 2/(t)) regarded as a curve in its own

exists a real polynomial o(¢) such that

2 (t) + y(t) + 22(t) = o2(t). (4.1)

shall mean any polynomial curve whose derivative is of the form (4.1).

By [8] and [13], the necessary and sufficient condition for the satisfaction
of (4.1) is that the real polynomials z'(t),y/(t), z/(t) must be expressible in
terms of other polynomials u(t),v(t), p(t), q(t) € R[¢] in the form

() = () () — () — @),
y(t) = 2[u(t)q(t) +v(t)p(t)]
Z(t) = 2[v(t)q(t) — u®)pt)]. (4.2)

The polynomial
o(t) = u*(t) + 0*(t) + p*(t) + ¢*(t) (4.3)

defines the parametric speed of the curve r(t), i.e., the rate of change ds/d¢
of its arc length s with respect to the curve parameter ¢t. Note that form
(4.2) can be written in several different ways, corresponding to permutations
of 2/ (t),y'(t), 2/ (t) and u(t), v(t), p(t), q(t). We shall say that the curve r(¢)
is called regular if |¢'(t)|(t) # 0, for all t. The fact that o(¢) is a polynomial
function (rather than the square-root of a polynomial) in ¢ is the source of
the advantageous properties of these curves.

If s=max[deg(u(t)), deg(v(t)), deg(p(t)), deg(q(t))], i.e., if the polynomi-
als u(t), v(t), p(t), q(t) are of degree s at most, then the PH curves obtained

are necessary of odd degree and we shall call them cubic, quintic and of 7
degree if s =1, s = 2 and s = 3, respectively.

A primitive hodograph r/(t) is characterized by the fact that ged((2/(t),
y'(t), Z(t)) = 1. Otherwise is called non-primitive. Primitive hodographs

are desirable in practice since at a common real root of 2/(t),y'(t), 2/(t)
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may incur a cusp i.e., irregular curve points where the hodograph vanishes,
or inflection points. This is why we consider polynomials u(t), v(t), p(t),
q(t) having ged(u(t),v(t), p(t), ¢(t)) = 1, since common real roots of these
polynomials incur cusps on the curve. In this work we always consider this
case. However, we can see in [20] that ged(u, v, p, ¢) = 1 does not ensure that
the hodograph is primitive. The hodograph components may have common
quadratic factors with complex conjugate roots even if ged(u, v, p,q) = 1. In

this case the hodograph 1’(¢) is non—primitive but the PH curve is regular

ie., |[r'(t)] # 0, for all real £. We shall study the case of non—primitive
hodographs in Chapter 7.

In [8] Choi et al. introduced two equivalent characterization of solutions
to condition (4.1) using the algebra of quaternions and the Hopf map which
are greatly useful in the research of spatial PH curves.

The quaternion formulation provides a very elegant and concise descrip-
tion of this structure which contributes to the development of basic algo-
rithms concerned with their construction, analysis, and applications of PH
curves.

If

A(t) = u(t) +iv(t) + jp(t) + kq(t) (4.4)

is a quaternion polynomial, then the product

r(t) = A()iA(t) = W(t)

+
<
o
~
o~
R

= p*(t) = *()]i
+u(t)p(t)]]
—u(t)p(t) | k (4.5)

generates a PH curve in R? (j or k can be interposed between A(t), A*(t)
in place of i, yielding a permutation of u(t),v(t), p(t), q(t). We may express
(4.5) as

r'(t) = [ABPU®) T U (1),

where U(t) = cos(6(t)/2) +n(t) sin(A(t)/2) is a unit quaternion expressed in
terms of an angle 6(t) and a unit vector n(t) [20]. The product U(t)i U*(t)
defines a spatial rotation of the vector i by angle 6(¢) about the axis vector
n(t), while the factor |A(¢)|* imposes a scaling of this rotated vector i,

Using the quaternion representation of r'(¢), we may sometimes express the
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quaternion polynomial A(¢) in the Bernstein form

A(t) = ;A (;) (1—t)*t, (4.6)

where s is the maximum of the degrees of u(t), v(t), p(t), q(t).
As an alternative to the quaternion representation, the Hopf map form

generates a Pythagorean hodograph from two complex polynomials

aft) = u(t) +iv(t), Bt) = q(t) +ip(t) (4.7)

through the expression

r'(t) = H(a(t),b(t)) = (|a(®)” — |B(t)[*. 2Re(a(t)B(1)). 2 Im(c(t)B(1)))
(4.8)
where H : C x C s R? is the Hopf map [20]. The parametric speed in this

o(t) = lat)]* + |B()]* = u*(t) + v*(t) + p*(t) + ¢ (t).

Note that the hodograph (4.8) is primitive if ged(a(t), b(¢)) = 1. Also note
that for a PH curve of degree n = 2s + 1 we may assume the polynomials

a(t),b(t) in Bernstein form as

2 S - 5

alt) = " — 1), ) — . — )5

() => a, (7> L=t b(t)=>_b (7) (1—1)"¢
r=0 r=0

The equivalence of (4.5) and (4.8) may be seen by setting A(t) = a(t) +

k B(t), and identifying the imaginary unit i with the quaternion element i.

See [20] for a more thorough treatment of these two representations.

Remark 4.1. By (4.5) we see that the hodograph r'(¢) of a PH curve is gen-
erated (or defined) by the quaternion polynomial A(¢). Thus, the family of
the curves r(t) can be obtained by integrating (4.5). For simplicity reasons,
in the following we shall sometimes say that the curve r(¢) is generated (or
is defined) by the polynomial A(t).

Remark 4.2. Recall that -as it is mentioned- throughout this work we will

always consider that ged(u(t),v(t), p(t), q(t)) = 1, unless otherwise stated.
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In case where the quaternion polynomial A(t), given by (4.4) which gener-
ates the hodograph of a PH curve, has ged(u(t), v(t), p(t), ¢(t)) = 1 will be
called primitive. Otherwise, A(t) is said to be non-primitive. Note that, by

Theorem 1.6, primitive quaternion polynomials have only isolated roots.

4.2 Adapted frames on space curves

An adapted frame (f;, 5, f5) on a space curve r(t) is an orthonormal basis
defined at each curve point, where f; coincides with the curve tangent t =
r’'/|t'| and 5, f3 span the normal plane, such that f; x f, = f3. The variation

of such a frame may be specified by its angular velocity
W = wlfl -+ Lu‘gfg + Cd3f3
through the differential relations
/ / /

where o(t) = |r'(t)

The magnitude and direction of the angular velocity define the instan-

is the parametric speed of r(t).

taneous angular speed |w| and the rotation axis w/|w| of the adapted frame
(fy, £y, £3). Now, if we choose a particular adapted frame (f;, 5, f3) reference,
then for any scalar function 6(¢) we can define another adapted frame [5]
by

(f1, cos@(t) £y + sin6(t) f5, —sin O(¢) f5 + cos () £3).

the reference frame, through 6(t) at each point of the curve. Therefore,

there are infinitely many adapted frames on a given space curve r(t).

4.2.1 Frenet adapted frame

The most ordinary adapted frame is the Frenet frame (t,h,b) which is
defined by

r r xr” r xr”
t. b =

e
I’ x 1| I’ x r”
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and describes [1] the intrinsic geometry of r(t). At each point of the curve
the principal normal vector h points toward the center of curvature and the
binormal b =t x h completes the frame. As it is known, the three orthog-
onal planes which spanned by the vectors (t,h), (h,b) and (b, t) are called
osculating, normal and rectifying planes at each point of r(t), respectively.

The angular velocity of the Frenet frame is given by the Darbouz vector

where s and 7 are the curvature and the torsion of the curve which are

given by
117

LS (r'xr")-r
|r’|3 ) - ]r’ % r//}2

K =

1] Frenet-Serret equations by considering (f3, f3) = (h, b) and use relations
(4.9). If we introduce the vector d in Frenet—Serret equations then we have

a more compact form for the derivatives t’, h/, b’ which are
t' = odxt, h' = od x h, b = od x b,

From the above relations we see that the rate of change of the Frenet
frame is the instantaneous rotation about the vector d with angular speed
|d| [20]. Although the Frenet frame is a common choice to describe a general
spatial motion of a rigid body, it is often not suitable for applications, since
its normal h and binormal b vectors may appear to execute a rotation
about the tangent vector t which is not desirable for the study of space
motions. Moreover, using the Frenet frame a problem which arises is from
the fact that it is not defined at points where the curvature s vanishes (i.e.,
at inflection points). Even though this problem can be overcome, a serious
care is required to avoid sudden reversals of the frame vectors at inflection
points. This disadvantage of the Frenet frame and the need to have a frame
which does not execute extra rotations on the normal plane, lead us to

search for frames with minimum amount of rotations along the curve, the
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(RMFs) are the ones which are of great interest in applications. If (f}, f,
f3) is an adapted frame, the characteristic property in order for this frame
to be RMF is that its angular velocity satisfies w - f; = 0, i.e., w has no

component along f;. This is equivalent to
f:f, = f3£, =10

which is the necessary and sufficient condition for the frame to be RMF. In
other words f5, f3 have no instantaneous rotation about f; or equivalently,
their derivatives f], 5 are always parallel to f;. This geometrically means
that the two normal vectors f,, f3 rotate as little as possible around f; and
thus RMFs minimize the amount of rotation along the curve. Having the
property of minimum twist makes RMFs very attractive in computer graph-
ics, swept surface constructions, motion design and other similar applica-
tions [24, 25, 55, 58, 74, 80, 81]. The Frenet frame (t, h, b) is not necessarily

tains the component 7t, which is generally non-zero for a spatial curve. In
relation to the Frenet frame, the RMF can be obtained from the vectors

h, b through a rotation in the normal-plane:

£5(t) _ CO? ¢ sing h(t) (4.10)
f5(t) —sing cos¢ b(t)
and f; = t. The angle ¢ = ¢(t) specifies the difference of the two frames
and it has the form [44]

g

O(t) = Po — /0 7(u)o(u) du, (4.11)

where ¢q is an arbitrary integration constant. Thus, due to the different
values for ¢q, there are infinitely many RMFs on a given space curve which
they differ from each other by a fixed angular displacement in the normal
plane at each point of curve. Obviously, the angular velocity of an RMF is

w = k b since in the expression of Darboux vector d the term 7t is omitted.
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dinary” polynomial or rational curves, a number of schemes have been pro-

posed to approximate the rotation minimizing frame of a given curve or to

frames. More results concerning the construction, applications and rational
approximations of curves with RMF are included in [21, 25, 32, 55, 24, 53,
54, 80]. However, for PH curves the integral (4.11) is a rational function
and thus admits closed—form integration [18]. So for any spatial PH curve
exact RMFs can be computed, but in general they incur transcendental
functions. Due to the preference of rational forms in computer aided de-
sign applications, since they admit exact and efficient computation, there

has been interest in constructing polynomial curves with rational rotation

4.3 Rational rotation—minimizing frames

As it is mentioned, great interest has recently emerged in identifying and
constructing curves that have rational RMFs . Such curves must be PH
curves, since only PH curves have rational unit tangents. The construction
of RRMF curves is thus essentially a matter of identifying constraints on
the coefficients of PH curves that are sufficient and necessary for a rational
RMF.

Therefore, our focus here is on the special class of PH curves with exact

rational rotation—minimizing frames (RRMF's), or RRMF curves.

4.3.1 Euler—Rodrigues frame

As we observed, the Frenet frame is not a good reference for identifying
rational RMFs because it is not rational and can exhibit singular behavior
at inflection points. In order to remedy these problems, in [7] a special

adapted frame has been introduced which is defined particularly on PH
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(1) ea(t) extty) = HIAAIZD DT 1)

Note that e; is the curve tangent, while e, e3 span the curve normal plane.

The ERF is not a geometrically intrinsic frame (it depends on the chosen
coordinate system) but it is rational by construction and always nonsingular
at inflection points. In [7] conditions were investigated under which the ERF

of a PH curve can be an RMF and it was proved that:

1. For PH cubics the ERF and the Frenet frame are the same
2. PH quintics which have rotation minimizing ERF are planar curves
3. Spatial PH curves for which the ERF is RMF are at least of degree 7.

The ERF (e, e, e3) is given in terms of the components u(t), v(t),

p(t), q(t) of A(t) by

o (u? + 02— p* = ¢®)i + 2(ug+vp)j + 2(vg —up)k
b u? +v2 4+ p? + g2 ’

o 2(vp —uq)i + (u? — v +p? —¢?)j + 2(uv+pg) k
? u? +v2 + p? + ¢? ’
2(up +vg)i + 2(pg —uv)j + (u? —v? —p* + ¢*) k
e = R, L (4.13)
us +ve -+ p*+q

a(t),b(t) we must have

f,(t) | 1 a’(t) — () —2a(t)b(t) e (t)

f(6) | a0 +02(1) | 2a(t)b(t)  a?(t) = b(t) | | es(t)
(4.14)

The importance of the ERF for identifying RRMF curves may be phrased

as follows.
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Theorem 4.1. [45] The PH curve defined by (4.4)—~(4.5) has a rational RMF
if and only if relatively prime polynomials a(t), b(t) exist, such that

w' —u'v—pg +p'q ab —a'b
vt +pi g at b

(4.15)

Note that the expression on the left in (4.15) is the component wy; = w-t

of the ERF angular velocity w in the direction of e; = f;, while that on the

ey, e3 onto fy, f3. Thus, condition (4.15) requires the existence of a rational
normal-plane rotation that exactly cancels the wy component of the ERF

angular velocity.
The difference in behavior of Frenet, Euler-Rodrigues and rotation-

minimizing frames is visualized in Fig. 4.1.

Wi NYYYYIYy.
117777707 /77777
LEY ¢¢yr)¢%%y‘///;///;/
L7

Fy

7
/

Frenet

Figure 4.1: The Frenet frame (left), Euler-Rodrigues frame (center) and the
rotation-minimizing frame (right). The unit tangent vector is common to all

frames and it is not shown here.

Remark 4.3. Note that the numerator and denominator of the expres-
sion on the left of (4.15) can be shortly expressed in terms of A(t) as
scal(A(t) i A" (¢)) and |A(f)|?, respectively.

As in [21], it is convenient to introduce the notations

uv’ —u'v —pg + p'q abl — a'b
uZ + v2 + p2 + g2 = {?L,‘U,p, (:I} = ["4} and ——- = [av b}

a? + b2
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An analysis of the structure of [u, v, p, q] and [a, b] is presented in [21] and
it is important for identifying RRMF curves. The Lemma below includes

some useful properties of these quotients, which are used in next chapters.

Lemma 4.1. Let a(t),b(t), c(t),d(t),e(t), f(t),g(t),h(t) € R]t], C € H, and
r=a+1if € C with g # 0. Then the following results hold.

1. Condition (4.15) remains unchanged if A is replaced by CA(t) for any
C #0.

2. [E,F,D,H] = le, f,d, h] £ [c,d], where
E+Fi+Gj+Hk=(e+ fi+gj+hk)(ct id).
In particular, [C, D] = [e, f] +[c,d], where C+iD = (e+1if)(c£ id).

3. If a+1ib, c+1id are primitive with [a,b] = [¢,d] then a+ib =z (c+1id)
for z € C.

Proof: See [35, Lemma 2.1].

In terms of the Hopf map representation (4.7)—(4.8), the RRMF condi-
tion (4.15) is equivalent to requiring the existence of a complex polynomial
w(t) = a(t) +ib(t), with ged(a(t),b(t)) = 1, such that

Im(@a’ +BF)  Im(ww)
a2+ 82 |w]?

(4.16)
Han [45] showed that rational RMFs cannot exist on PH cubics, except
on planar or on PH curves with non—primitive hodographs.

Remark 4.4. When w(t) is either a real polynomial or a constant, the
angle 0(t) between the ERF and RMF is constant. This is equivalent to

Im(aa’ +B88) =0 (4.17)

Since in the computation of the RMF appears an integration constant, we
may consider (4.17) as the condition identifying coincidence of the RMF
and ERF (ERF=RMF). Futher analysis of this condition was presented in
[7]. Note that in view of (4.15) condition (4.17) is equivalent to

scal(A(t)1.A™(t)) = 0. (4.18)
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Now in order to classify and characterize the RRMF curves we give the

following definition.

Definition 4.2 Let A(t) = wu(t) +iv(t) + jp(t) + kq(t), a(t) + ib(t) be
primitive polynomials of degrees n, m respectively, that satisfy (4.15). Then,
the PH/RRMF curve r(t), whose hodograph is v/(t) = A(t)i.A*(¢), will be
called of type (n,m) curve. Also, we say that the quaternion polynomial
A(t) has (is of) type (n,m).

Note that in the following chapters we are specially interested in RRMF
curves of type (n,0) which means that the ERF of the curve is RMF, at

each curve point.

Remark 4.5. By Lemma 4.1(3), we deduce that the degrees of polynomi-
als a(t),b(t) are uniquely determined. Thus the notion of the type is well
defined.

By [21, 23], it is known that the simplest non—planar curves with rational

RMF's are quintics defined by a quadratic quaternion polynomial
A(t) = Ag(1 — 1)* + A12(1 — 1)t + Axt? (4.19)
in (4.5), or quadratic complex polynomials

a(t) = ag(1—t)*+a2(1-t)t+eut?,  B(t) = By(1—1)?+8,2(1—t)t+B,t>

(4.20)
in (4.8). The following result characterizes the quintic RRMF curves of type
(2,2).

Theorem 4.2. The PH curve defined by (4.19) with Ay = 1 satisfies (4.15)
with a(t),b(t) quadratic if and only if the coefficients of A(t) satisfy the
constraint

vect(AriAp) = AriAlL (4.21)

Equivalently, the PH curve defined by (4.20) satisfies (4.16) with a(t), b(t)
quadratic if and only if the coefficients of a(t), B(t) satisfy the constraints

Re(agary — 5032) = |C¥1]2 - |/61|2 and 01052 + 01250 = 2 CV].B]-
(4.22)
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Proof: See [21, Propositions 3 and 4].

terpolating initial/final positions and orientations of a rigid body — was
presented in [24], using the RRMF quintics of type (2, 2) identified by this
theorem.

The RRMF curves of type (2,1) have a more intricate algebraic struc-
ture, with no simple characterization by coefficient constraints such as (4.21)
or (4.22).

4.4 Reduction to normal form

In this section we present a reduction that allows us to simplify the study
of RRMF curves. Recall that by [21], the analysis of spatial PH curves
can be simplified by an appropriate scaling/rotation transformation which
eliminates non-essential freedoms that do not influence the intrinsic nature
of the curves. We call this transformation reduction to normal form.

When a(t) = u(t) +iv(t), B(t) = q(t) +ip(t) define a PH curve with
hodograph r'(t) specified by (4.5), the map

{a(t)] . {ul T
ﬁ(ﬂ o by

defines a scaling/rotation of the hodograph in R? which does not change its

a(t) o
K ] (4.23)

intrinsic nature [21].
The following Lemma shows that transformation (4.23) does not influ-
ence the RRMF property of a spatial PH curve.

Lemma 4.2. If the RRMF condition (4.16) is satisfied by complex poly-
nomials o (t), B(t) and w(t), it is also satisfied upon replacing them by

py a(t) — T, B(t), pya(t) +my B(t) and nw(t), for any complex numbers
(1, 12) # (0,0) and n # 0.

Proof: See [34, Lemma 2.
By the following lemma, we may consider, without loss of generality that
u(t) =t"+ ... +ui(t) + ug and v(t), p(t), q(t) are of degree m — 1 at most.
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2

Lemma 4.3. Let a(t) = u(t) +iv(t), B(t) = q(t) +ip(t) be complex poly-
nomials, where u(t),v(t),p(t),q(t) € R[t] of degree m > 1. Then, complex
values py, po can be chosen such that, under the transformation (4.23) the

polynomials v(t), p(t), q(t) are of degree m — 1 at most.

Proof: See [34, Lemma 1].
We call the quadruple of polynomials (u(t),v(t), p(t), q(t)) of this form

normal.

Since every straight line and every planar PH curve is trivially an RRMF
curve, and we are interested in true space curves, when (4.5) or (4.8) define
straight line or planar curves we shall say that define degenerate spatial PH
curves. In [34] are presented the necessary and sufficient conditions under

which a spatial PH curve is a degenerate curve.

Proposition 4.1. Let a quaternion polynomial A(t) = u(t)+iv(t)+jp(t)+
k q(t) defined by the normal quadruple (u(t), v(t), p(t), q(t)) andr(t) be a PH
curve with hodograph v'(t) = A(t)iA*(t). Then

1. x(t) is a planar curve, other than a straight line, if and only if
(0" +¢°) (w’ = w'v) + (u” +v%) (pd —p'g) = 0 (4.24)

with (p(t), q(t)) # (0,0).

2. On the other hand, r(t) is a straight line if and only if (p(t),q(t)) =
(0,0)

Proof: See [34, page 218].
In normal—form, a degenerate RRMF curve is either a straight line or
planar curve that satisfies (4.24) and has torsion 7 = 0, while a proper

RRMF curve is a true space curve that does not satisfy (4.24) and has

T # 0.



CHAPTER 5

RRMF CURVES OF DEGREE 5
AND 7

In the present chapter we deal with some special classes of RRMF curves of
degree 5 and 7. For RRMF curves of degree 5 we will study curves of types
(2,2),(2,1) and (2,0) and for degree 7 RRMF curves we focus only on type
(3,0). Note that the RRMF curves of type (2,2) are the “simplest” non-
degenerate RRMF curves and they have been thoroughly analyzed before
in [21] and [32]. However, now we analyze these curves again from another
point of view. PH curves of type (m,0) with m = 2,3 satisfy (4.17) (or
(4.18)) and the ERF (e;, e, e3) is inherently rotation-minimizing and so
the rational normal-plane rotation (4.14) is not required. It has been shown
that PH quintics with this property, i.e., RRMF curves of type (2,0) are
degenerate. Choi and Han [7] proved that the simplest non-planar curves in
this category are of type (3,0), i.e., PH curves of 7 degree, and characterized
these curves in terms of sixteen real parameters.

The chapter is organized as follows: In Section 5.1 we review RRMF
quintics of type (2,1). We shall give the necessary and sufficient conditions
under which a PH curve satisfying (4.15) with deg(a(t),b(t)) = 1 and by
considering the polynomial A(t) expressed as a product of factors. As we
will see later on, the RRMF curves of type (2,1) are -in some way- “con-
nected” with a special class of PH curves of degree 7 which will be analyzed
in the next sections. Also, we study RRMF curves of type (2,0) and we
present a necessary and sufficient condition in terms of the factorization of
A(t) in order for a PH curve to be of type (2,0). In Section 5.2 an analysis
of the PH quintics curves of type (2,2) by using the material of Sections

strated. Finally, in Section 5.3 we introduce PH curves of degree 7 and we

7
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focus on RRMF curves of type (3,0). We present the equivalent conditions
under which a PH curve is of type (3,0), by considering .A(¢) in different
equivalent forms. At the same time we give a parametrization of all such

curves of type (3,0).

5.1 RRMF curves of type (2,1) and (2,0)

Let r(t) the PH curve generated by the quadratic quaternion polynomial
A(t). The goal of this section is to present the necessary and sufficient con-
ditions for a PH curve r(¢) to be of type (2,1) or (2,0) when the polynomial

A(t) is expressed in a factorization form

A(t) = (t = C1)(t — Cy), (5.1)
with
Ci=(¢,c1)=ap+ari+asj+aszk
and
Cy = (g, €2) = fo+ Bri+ Boj+ Bs k.
Let

w = scal(A(t) iA™ (1)) = wyt? + wit + wy, (5.2)
be the numerator on the left hand side in (4.15) and
o= |A®)]? = t' + 03t® + oot> + o1t + 0 (5.3)

be its denominator.

RRMF curves of type (2,1)

The quintic curve r(t) is of type (2,1) if and only if two relatively prime
linear polynomials a(t), b(t) exist such that

w _a(®V'(t) = d(t)b(t)

o a(t)?+b(t)?

Since a(t),b(t) are linear and relatively prime, by Lemmas 4.3 and 4.2

we may-without loss of generality-assume that a(t) = t — ag and b(t) = by
for ag, by € R with by # 0. Expanding (5.3) we obtain

03 = -2 (Cl -+ 632), 09 — iC]_iQ -+ |C2|2 -+ 401 Co,
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o1 = -2 (CﬂCQIQ -+ CQ}C1}2>, gg = |C1}2|CQ|2.
Since
At) =2 — (C1 + Co)t + C1Cy =
(tz — (01 -+ C2>t =+ C1Cy — C1 Co, —(Cl —+ C2>t + C1Co —+ Co Cq + Cc1 X CQ)

and
A" (t) = (2t — ¢ — ¢2, €1 + €3)

by substituting in (5.2) we have that w(t) has coefficients

wy = 1i-(c1+ c2),
wy = —2i-(cacy+cica+ €1 X Co),
Wy = i- HCQ]2C1 + |C1|2 Co + 202 Ccy X Co+ 2(C1 X CQ) X CQ}

Thus, the equality
w —b()

o 12— 2apt + a? + b}

is equivalent to

bo = —ws,
—b00'3 = W — 261/()11)2,
2 12
—booy = (ag + by)ws + wo — 2apwy,
—booy = (a2 + b})w; — 2apwy,
2, 72
—b()O'() = ((lo + bo)‘u}o.
Since by = —wq # 0, the system becomes
by = —wo,
W1 — WeO3y
ag = —F(F
2U)2
—booy = (aj + b3)wy + wo — 2apwy,
—b()()'l - (CLé + bé)wl - 2(1,()”(00,
2, 12
—booy = (ag + b5)wo.

and hence we obtain that curve r(¢) is of type (2,1) if and only if
Wy — Wy Oy
ag = ———— and by = —wy
2wy

and these values must satisfy the last three equations of the system.
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RRMF curves of type (2,0)

The PH curve r(t) is of type (2,0) i.e., has a rotation-minimizing ERF if
and only if w(t) = 0. The last condition is equivalent to
i- (C1+ C2> = 0,
—21- (CQC]_ +CiCo+ € X Cg) = 0,

i-[|CalPc) +1Ci)Pca+2cc; x e +2(ep X ¢) x 3] = 0. (5.5)
By substituting
Ci=ap+tajitajtak, Co=PpF+pi+ 0]+ 3k
into (5.5) we obtain
ar+ B =0, b+ P + axfls — fray =0

(as+B3) (a0 B2+ Pooz+ asPi — fzon) = (az + P2) (@03 + ooz + a1 B2 — fraz).
Recall that, as it is known from [7], the only PH quintics with rotation-
minimizing ERFs are planar curves.

We now express the polynomial of the form (5.1) as A(t) = u(t) +
iv(t) +jp(t) + kq(t) and we suppose that the curve r(t) is a straight line.
By Proposition 4.1, r(t) is a straight line if and only if p(t) = ¢(¢t) = 0. In
view of the above, the curve r(t) is a straight line of type (2,0) if and only
if

ar+p1 =0, aof + Poor + aafls — fraz =0
(a3 + B3) (P2 + Bova + azfr — Bzan ) = (aa+ B2) (o5 + Boaz + 1 B — Braz)
Qg+ P2 =10, aofa+ axfo+ azf —a1f; =0
az+ B3 =0, apfs+azfy+a1fy— af =0
The last equalities lead to
ay o oy
Bo B B B
i.e.,
Ci=)\C;, MNeR.
Note that if A = 1, then A(t) is non-primitive polynomial which is not the
case.

The above discussion is summarized as follows.
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Proposition 5.1. Let A(t) = (t—Cy)(t—Cq) with Cy, = ap+aq i+as j+ask,
Co = Bo+Bri+ Bej+ Bsk. Set w(t) = scal(A(t) iA™(t)) = wot? + wit + wy
and o(t) = |A{#)]? = t* + o3t® + 0at? + o1t + 0. Then, the PH curve r(t)
generated by the polynomial A(t) is

1. of type (2,1) if and only if the system

—~byoy = (aé + bé) Wy + wo — 2 agwy,
—byoy = (af+by)w; — 2agwy,
—bo og = (ag + bg) Wo
has the solution
Wy — Wa03
(GOJbO) = (17, —wz)‘

2w 2

2. of type (2,0) i.e., has a rotation-minimizing ERF if and only if the

following equalities hold
ap+ B =0, af + Boay + agfls — Baaz =0

(0634‘183) (&0[82‘*‘,800&2"‘0&3,81 —,83041) m (0624‘,82) (&0[83‘*‘,800&3"‘0&1,82—,81042) .

Moreover, this curve is a straight line if and only if

Ci=MC, MeR, A#L

Example 5.1.1 Let

2 14 5 7. 4 4
)y = (t+=-i+—j+-k)(t—-24+—-i+-j+-k
A(t) (+91+91+9)( +91+91+9)

be a quaternion polynomial which defines a PH quintic curve. We can easily

see that .

Wy = —50, wy, =0, wy=-—1,
125 100 700
O'()—?, 0'1——7 O’Q—?, 0'3——4
ag = 2, b() =1

and the system of Proposition 5.1 is verified by the values of ag, by. Thus,
A(t) defines an RRMF curve of type (2,1).
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Example 5.1.2 Let

1, V2, 1
)=(t— =i——=j— k)2
Al)=(t-5i-5Ji-5k
Then, applying Proposition 5.1 we take ag = 0 and by = —2 and the system

is verified. Thus, A(t) defines an RRMF curve of type (2,1).

5.2 Analysis of quintic RRMF curves of
type (2,2)

In this Section we apply the results of Sections 3.3 and 3.4 to analyze certain
root properties of the quadratic quaternion polynomials that generate quin-
tic RRMF curves. As it was shown in [21], the satisfaction of the constraint
(4.19), is sufficient and necessary for the PH quintic to be an RRMF curve
of type (2,2). In view of (4.21) one can ask whether the RRMF quintics
can be alternatively characterized by means of the special root structure
of the quaternion polynomials that generate them. The method which is
used in [21] to derive (4.21) does not easily extend to degree 7 or higher—
order degree PH curves, and perhaps a root—structure characterization of

the RRMF curves may offer an alternative approach to the study of the

As we shall see, the algorithm presented in Section 3.4 is used here to
characterize these polynomials in terms of their root structure. Moreover,
we shall prove that polynomials with a double quaternion root generate
degenerate quintic curves and for polynomials with distinct roots we shall
give a closed—form description of the roots in terms of uniform scale factor,
a quaternion with unit vector part, and a parameter 7 € [—1, +1].

Consider the PH curve defined by the quadratic quaternion polynomial
A(t) expressed in (4.19). To apply the method of Sections 3.3 and 3.4 to

determine the roots of (4.19) we write it in power form
At)=Dt* +Bt+C (5.6)

where

Ay =C, A =3B+C, A, =D+B+C. (5.7)
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We first give the next Lemma.

Lemma 5.1. If the polynomial A(t) is represented in power form, the con-
dition

vect(DiC*) = $ BiB"* (5.8)
on its coefficients is sufficient and necessary for the PH quintic specified by
(4.5) and (5.6) to be an RRMF' curve of type (2,2) .

Proof: We express A(t) in the Bernstein form (4.19). By Theorem 4.2 a
sufficient and necessary condition for the PH quintic to be an RRMF curve
satisfying (4.15) with deg(a(t),b(t)) = 2 is (4.21). Substituting (5.7) into

(4.21) and simplifying we obtain the result. E

By Lemma 4.3 we can assume, without loss of generality, that D = (1, 0)
and thus A(t) is expressed in normal form i.e., is monic. This assumption
does not influence the RRMF nature of a given PH curve, and does not
change the roots of (5.6) [22]. In the following we deal with curves specified
by

At) =t +Bt+C (5.9)

and (4.5). We write the scalar and vector parts of B as b and b = b,i +
byj + b.k, and of C as ¢ and ¢ = ¢,i+ ¢,j + c.k.
Recall that here we shall focus only on the case deg(a(t),b(t)) = 2 or

i

type (2,2) curves.
Proposition 5.2. A PH quintic defined by (4.5) and (5.9) is an RRMF
curve of type (2,2) if and only if C = (¢, c) can be expressed as

C= (=P +282), H¢i+bb+bixb)). (5.10)
where B = (b,b) and £ is a real parameter.

Proof: Using (5.8), the PH defined by (5.9) is an RRMF curve of type
(2,2) if and only if

citexi=1((b°=|b*)i+2b,b+2bbx1i). (5.11)

Taking the dot product of both sides with i, we get

c =1 = b +202), (5.12)
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and substituting this into (5.11) we obtain
(c—3bb—1b,ixb)xi=0.

Hence, we get
c:%(§i+bb+bzixb), (5.13)

where ¢ is a real parameter and the quaternion coefficient C = (¢, ¢) has the
stated form (5.10). B

Now any linear or planar locus is trivially an RRMF curve, and since
we are only interested in space curves, we first identify instances of b and
¢ that define straight lines or plane curves. These cases are discarded in
analyzing the roots of the polynomials A(t) that generate spatial RRMF

curves.

Proposition 5.3. With C given by (5.10), substituting (5.9) into (4.5) gen-
erates straight lines if and only if (b, b,) = (0,0), and planar curves other

Y

than straight lines if and only if b, =& = 0 and (b, b.) # (0,0).

Proof: With C specified by (5.10), the components of A(t) = u(t)+iv(t)+
jp(t) + kq(t) are given by

i~

(t) = + bt + 1 (b*+0b—b—b2),
v(t) = byt + L(E+bb,),

(t) = byt + 5 (bby, —byb.),

(t) = bt + L (bb. +byb,).

!

q

Since deg(u) = 2 and deg(v,p,q) < 2, by Lemma 4.3 we have that A(t)
is in normal form. Then, by Proposition 4.1, the curve defined by (4.5)
degenerates to a straight line if and only if (p(t),q(t)) = (0,0), for each ¢
and to a planar curve other than a straight line if and only if (4.24) holds
with (p(t),q(t)) # (0,0), for each ¢t. Obviously, (p(t),q(t)) = (0,0) if and
only if (by,b,) = (0,0) and thus this is a sufficient and necessary condition
for the curve to be a straight line. From the last equivalence we have that
(p(t),q(t)) # (0,0) if (b,,b.) # (0,0), and using MAPLE we find that (4.24)

becomes ) )
B by + b2

32 (C4t4 + Cgts + CQtQ + Clt + Co) = O (514)
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where

¢y = 48b,, ¢35 = 32(£+3b0b,),
co = 24206+ 30, +b2), ¢ = 24(V* +b2)(E+bb,),
o = Ab& + Ab(D? +302)E + by [3b" + 66702 — bl + (b2 + b2)?].

If (5.14) is satisfied, then from ¢4 we must have b, = 0. Substituting b, = 0,
we find using MAPLE that this condition reduces to
2 52

b: +b .
—%5(21‘,%)3 = (.

Since ng/ + b2 # 0, the condition for a planar curve (other than a straight
line) corresponds to b, = & = 0. Clearly, for b, =& = 0 and (b, b,) # (0,0)
condition (4.24) is satisfied. B

We have the following remarks concerning the degeneration of an RRMF

of type (2,2) to a straight line, or a plane curve other than a straight line.

Remark 5.1. The condition b, = b, = 0 for degeneration to a straight line

is automatically satisfied if b = 0.

Remark 5.2. When C is given by (5.10) with b, = b, = 0, the polynomial
(5.9) reduces to

Alt) = (P +bt+2(0*+03), [bt + 3(E+bb,)]1).

Thus, degeneration to a straight line occurs when A(t) is a complex poly-

nomial. If b, = £ = 0, on the other hand, we have
A(t) = (P +bt+ 20 =02 = b2), (t+1b)(bi+b.k)) |

so degeneration to a plane curve other than a straight line occurs when the

vector part of A(t) has no i component.

From Proposition 5.2, it is evident that the roots of a monic quadratic
quaternion polynomial A(¢) that defines an RRMF curve of type (2,2) de-

pend only on the quaternion coefficient B = (b, b) and the real parameter
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€. The coefficients (3.7) of the cubic (3.8) can be expressed in terms of b,
b, and ¢ as

az = [bP+2b7, = V(b +0;) —€,  a = —b;6, (5.15)

and we observe that these coefficients do not depend on b. In fact, the
cubic (3.8) has a very special structure when the quaternion polynomial
(5.9) satisfies condition (5.8), and thus generates a quintic RRMF curve of
type (2,2) through (4.5).

Lemma 5.2. For a monic quadratic quaternion polynomial (5.9) with C
given by (5.10), the cubic equation (3.8) specified by the coefficients (5.15)
admits the factorization

(22 4+ (b?+b2)ax — ) (x+b%) = 0. (5.16)

Proof: Expanding (5.16) yields the cubic (3.8) with the coefficients (5.15).
|

Thus, the computation of the roots of the quadratic quaternion polyno-
mials that generate RRMF curves of type (2,2) does not require solution of
a cubic equation, indicating a special structure to these quaternion roots.
If b, # 0 and £ # 0, the only positive root of (5.16) is

p = JETHBET R — L(b+82) (5.17)
and this determines two generic quaternion roots of A(t), specified by

Q:<_Q,M_E)ii(e’@_m) (5.18)
27 p+ b 2 VP \27 2 p+|bJ?

where p is the unique positive root of (3.8) with agy # 0.
If b, = 0 or £ = 0, however, then ay = 0 and .A(¢) may possess singular
roots. We first consider the case where x = 0 is a root of (5.16). The

following result characterizes the instance b, = & = 0.

Lemma 5.3. If the polynomial (5.9) with C given by (5.10) has a double
root, the RRMF curve of type (2,2) defined by (4.5) degenerates to a planar
curve or a straight line.
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Proof: With C given by (5.10), the conditions (3.18) for a double root

become
bt =0 and & + 20b,& — B2(202+ b2+ b2) = 0.

The first condition implies that b, = 0 or £ = 0, whereas the second con-
dition cannot be satisfied if b, = 0 # £ or b, # 0 = £, so we must have
b, = & = 0. By Proposition 5.3, the curve defined by (4.5) is a straight

line when (b,,b,) = (0.0) and a planar curve other than a straight line

Q = (—3b,0), and in the latter is @ = (= $b,—1 (b, j + b. k)). E

Consider now the cases in which just one of b, or £ is zero. If b, = 0 # &,
we obtain ¢ = 1 (b° — |b|*) and ¢ = 1 (£¢i+bb) from (5.12) and (5.13), and
thus |b|* + 4¢|b|*> — 4c|* = — &2 Since condition (3.16) is obviously not
satisfied, there are no singular roots. On the other hand, the quadratic

factor in (5.16) has a single positive real root

corresponding to the specialization b, = 0 of (5.17). Then, there are two
generic quaternion roots, defined with this p value in (3.11). Finally, when
& =0 # b, equation (3.14) reduces to

[bf* [bl*(y+3)* = (bl +03)] = 0,

and assuming that b # 0 (See Remark 5.1) it has the two solutions

=P b/ b]2 02

L 2|bf?

Then, expression (3.17) for the two singular roots reduces to

2: 2 2
o (_g b,|b[%i — (/b +bm)b> . <07 bx\/lb_§2+b§;b> (519

2 2 b2 2 b2

For the generic roots, with the positive root of (5.16) defined by (5.17)
when (b, &) # (0,0), we have

b-c =1, +0bb]),
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bxc=1(Ebxi+bbx(ixb)) = 1(b|bl’i—bb-¢ixb).
Substituting into (3.11) and simplifying gives the roots as
0 - ( b bbPi—02b—-Cixb b>

3 200 + [b]?) 2
1 i+ b Eb+pbyixb
i—(f,—pfw ¢ L palx > (5.20)
77 \2 2o+ [bP)

Lemma 5.4. The singular roots (5.19) are the formal limit of the generic
roots (5.20), as & — 0.

Proof: First, note from (5.17) that p — 0 as & — 0, and otherwise p
increases monotonically with |£]. Setting & = p = 0 in the first term of
(5.20), it clearly reduces to the first term of (5.19). Likewise, the scalar
part of the second term of (5.20) is zero when p = 0, and thus agrees with
the scalar part of the second term of (5.19). The vector part of the second
term in (5.20) requires more analysis. First, it is clear that the i and i x b
terms in this vector part vanish as p — 0. For the b term, we use (5.17) to

write £ in terms of p as

¢ =£p+ (b +b2)p,
and we have

: \/ b|2 + b2 /Ib]Z + b2
+ lim b{b ::‘:limbx pt b+ 05 b _:tb b “*'bmb‘

P02 plp+ BP) | e 200+ bR 2[bJ?

Hence, the generic roots (5.20) converge to the singular roots (5.19) as p — 0
(and hence £ — 0). B

Lemma 5.5. For each & value, the roots (5.20) scale linearly with the quater-
nion coefficient B = (b,b).

Proof: We invoke the parameter transformation & — 1 defined by
¢ =L(bf+102) tanv, (5.21)

specifying a one-to—one map between £ € (—oo, +00) and ¢ € (—-12'71', +%7r).

Then from (5.17) we have

p=L(bP+b)(sect) —1). (5.22)
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Hence £ — A*¢ and p — A\?p for each ¢ when B = (b,b) — A B = (\b, Ab)
and we see that the roots (5.20) then scale as Q — A\ Q. B

By Lemma 5.5, a particular scaling can be imposed on B = (b, b) without
altering the roots of equation (3.1) in an essential manner. For simplicity,

we assume henceforth that! |b] =1, i.e.,

12 12 2

by +b,+0; = 1. (5.23)
Now setting 7 = tan ¢ € [—1,+1] we have

27 1+ 72

tanw == ﬁ and sec 1[/' = ﬁ,

and we note that p = ¢ 7. Using (5.21)—(5.24), the scalar part of (5.20) can
then be written as

1 1402
= - |—-b+ Z 2
4 2(6 I 1_72), (5.25)

while the vector part reduces to
— b, (02 +72)i— (1+02)[(by —b.7)j+ (b, + b,7) k]
2(1+b272)

: [1402 (02 +72)i+0b,(1—72)[(b, — b.7)j+ (b, + b,7) k]
F sign(r) 1 _ 2 2(1—|—b}272) - )

q = (5.26)

Note that q does not depend on b. When 7 = 0, expressions (5.25)—(5.26)
agree with the singular roots (5.19) under the assumption |b| = 1. As
7 — +1, on the other hand, ¢ — +o00 and q increases without bound in the

direction +i. The preceding results may be summarized as follows.

Proposition 5.4. The quadratic quaternion polynomaials that generate quin-

Mg, q) where X > 0 is a scale factor, while ¢ and q depend on a real value
b, a unit vector b, and a real parameter T € [—1,+1] through expressions
(5.25)(5.26).

The above arguments are illustrated by means of the following example.

'Recall from Remark 5.1 that we require b # 0 for a true space curve.
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Example 5.2.1 With the choices

j+k
b:—l, b:%u le,

Proposition 5.2 gives, for an RRMF curve of type (2,2),
V2i—j—k
22
With B = (b,b), C = (¢, ¢), the polynomial A(t) = u(t)+v(t) i+p(t) j+q(t) k
defined by (5.9) has the components

c=20 and Cc =

1 2t —1 2t —1
wt) =2 —t, o)==, pt) = .oqt) = ,
(t) (t) 5 p(t) ol (1) W

and generates the Pythagorean hodograph

AP -6 +4t -1

-4 +682 -1
) =t =2834t, J(t) = ) =
() ? J() 2\/5

/)= 7

which satisfies (4.3)

with o(t) = t* — 263 + 2 — ¢ + 1, and (4.15) with a(t) = ¢* =t + §,
b(t) = 3. Since (r' xr”)-r"” # 0, the resulting RRMF quintic is a true space
curve. From (5.21) and (5.24) we obtain

V5 —1

tany = 2 and T = 5

so the scalar and vector parts of the roots Q = (¢, q) become

q:mm F(/5-1D)Yi-(3-V5)j- (1 +V5Hk

N 132

and one can verify that these roots satisfy (3.1) with

j+k> V2i—j—k
B=|(-1~— and C = |0 0] .
( V2 o ( 22

5.3 RRMF curves of type (3,0)

In this section we consider the circumstances under which spatial PH curves
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condition (4.16) is satisfied with Im(&ca’ +B83') = 0, and hence w(t) is just
a constant. As it is mentioned, for such curves the ERF is itself rotation-
minimizing, and hence the normal-plane rotation (4.14) is not required. As
originally shown by Choi and Han [7], the simplest non-planar curves in
this category occur for m = 3, and characterized these RRMF curves of
type (3,0) in terms of sixteen real parameters. A more concise characteri-
zation in terms of the Hopf map form is derived here, and a characteriza-
tion in terms of the coefficients of the real polynomials wu(t), v(t), p(t), ¢(t)

definining their hodograph is presented as well. An algorithm to construct

type (3,0) is also given in [26]. Furthermore, we shall give a much simpler
characterization of these degree 7 curves by a reduction to canonical form.
Note that the reduction to canonical form corresponds to a scaling/rotation
of the hodograph and thus it does not affect satisfaction of (4.15) or (4.16)
(21, 34].

5.3.1 Necessary and sufficient conditions in terms of
Hopf map representation
Our interest here is to find necessary and sufficient conditions for a PH

curve of type (3,0) when the quaternion polynomial A(t) is expressed in
the Hopf form

A(t) = a(t) + kB(1) (5.27)

with
a(t) = aghi(t) + a b3 (1) + cwb3(t) + asbi(t)

B(t) = /Bobg(t) + ﬁlb?(t) + ﬂzbg(ﬂ + /63b§(t) (5.

ot
b
[0's]
A

This curve is to have rotation - minimizing frame ERF if and only if
Im(aa’ + B3 = 0.

We substitute the above cubic complex polynomials into the last equation

and by using the rules of multiplication and derivative [29] we get
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Im(aa’ + Bﬁ” = 3lm(apa; + Boﬁﬂbg(t} + glm(aoaz + Boﬂz)b?(ﬂ
+%[3Im(alcx2 + B.8,) + Im(ayas + ByB3)b5(1)
—|—glm(61a3 + B185)b3(t) + 3Im(ccxs + B435)b; (¢).

and hence

3Im(@ s + B,3,) + Im(@exs + B,8;) = 0
These equations impose five reals constraints on the sixteen degrees of free-

dom in the complex coefficients («;, 3;) for i =0,...,3.

Remark 5.3. For the quaternion form (4.5), we can also use a cubic poly-
nomial

A(t) = .A()bg(t) + Alb?(t) + Agbg (t) + A;b%(f)

In terms of its quaternions coefficients, the conditions (5.29) for a rotation-

minimizing ERF become

3scal(A1A43%) + scal(ApiA;) = 0,
scal(A1A4%) = scal(AsiA}) = 0. (5.30)
The conditions (5.29) or (5.30) that identify rational ERFs are equivalent
to the constraints defined by equations (32)-(33) in [7].

We now derive an alternative to the characterization (5.29), in terms
of one real and two complex constraints on the coefficients of (5.28). For
brevity, we assume that Im(apas) # 0. This assumption is justified in

Remark 5.5.

Proposition 5.5. If Im(agas) # 0, the conditions (5.29) identifying rota-

tion minimizing ERFs on degree 7 PH curves are equivalent to

_ ]m(B:s/Bl)aO - ]m(30'81>043

]m(aoag)

(5.31)

1831
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_ Im(33,82)a0 - Im(goﬁz)ai’»

5.32

a2 [m(ﬁoag) ( )

Im(@gaes + BoBs) Im(cgas + 383,8,) = 0 (5.33)

Proof: We consider that conditions (5.29) are satisfied with Im(epas) #

0. Then by setting o; = u; +v;i and 3, = ¢; + p;i for i = 0,...,3 into the

first and fourth conditions in (5.29) we obtain

((131)1 - Q1T)3>Uo - (QOpl - qu?o)uz
UgUs — Uzl '
(03201 - (J1]93>U0 - (QOpl - Q1p0)’03
UpVs3 — UV ’
and since ¢zp; — q1p3 = Im(ﬁ?ﬁ]), Gop1 — (1Po = IIH(BO,B]), UQU3 — UV =
Im(@pas), we obtain expression (5.31) for oy = wy+wq i. Similar arguments

vV =

for the second and fifth condition in (5.29) yield expression (5.32) for ay =
ug + vgi. From (5.31) and (5.32) we take

Im(BOﬁl)Im(3362) - Im(ﬁ361)1m(30,82)

Im(ﬁoag)

Im(alag) =

and the numerator of this expression simplifies to give

T (@ vs) = Im(gﬁf g{;z(fl Ba) (5.34)

Substituting this into the third of equations (5.29) then, after some ma-
nipulation, yields condition (5.33). Conversely, let Im(@pas) # 0 and the
equations (5.31),(5.32) and (5.33) are satisfied. Multiplying (5.31) and its
conjugate by @y and a3 and taking the imaginary part then yields the
first and fourth conditions in (5.29). Finally, noting that (5.31),(5.32) and
(5.33) imply (5.34), multiplying out condition (5.33), substituting (5.34),
and simplifying we take

Im(@yoes) [3Im(a s + B3,8,) + Im(agas + By3;)] = 0.

Since Im(@pag) # 0, the third condition in (5.29) must hold. E

As in mentioned in Section 5.3, the reduction to normal form is used to
simplify the study of RRMF curves. Here we achieve simplification of the

conditions (5.29) by using the canonical form.



94 CHAPTER 5

Definition 5.1 The PH curve defined by (5.27) and (5.28) is in canonical
form if (e, By) = wi(1,0) with w; # 0, so that (e1(0), ex(0), e3(0)) =
(i,]. k)

A regular curve, with 1/(0) # 0, can always be mapped to canonical form
through a spatial rotation. Since the assumption of canonical form amounts
to the adoption of a special coordinate system, any results we deduce for

curves in canonical form must apply to PH curves in general position.

Remark 5.4. The definition of canonical form differs somewhat from prior
use [21], where the initial derivative r'(0) was mapped to the vector i. In
Definition 5.1 no scaling is invoked, since the parameter w; is used to adjust
It/(0)| = w?. Instead, a standard orientation of the normal-plane vectors

e,(0), e3(0) about the tangent e,(0) is imposed here.

Lemma 5.6. In canonical form with (e, 3,) = w;(1,0) the degree 7 PH
curves defined by (5.27) and (5.28) that have rotation-minimizing ERF's are

characterized by the conditions

_ Tm(,@;,@ ) o Im(,@ ,62)

, = Im(w;o5 + 35,3,) = 0. 5.35
Im(ag) ’ 27 Im( m(wiees + 33,5, (5-35)

Proof: The expressions for ay, o in (5.35) arise on setting (v, 3,) =
w;(1,0) in (5.31),(5.32) and (5.33). Also after this substitution in (5.33)
yields

w;Im (o) Im(wioes + 36,8,) = 0

and since Im(@paz) = w;Im(as) # 0, we obtain the third equation in (5.35).
L |

Recall that, since the reduction to canonical form corresponds to a spa-
tial rotation of the hodograph, it does not affect the satisfaction of (4.15).
We focus on canonical-form curves that satisfy (4.15) with «(¢), 5(f) con-
stant, so that Im(aa’ + B3) = 0. On such curves, characterized by the
above Lemma, the ERF is rotation-minimizing, and the normal-plane rota-

tion (4.14) is not required.
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Example 5.3.1 With w; = 1, the conditions (5.35) are satisfied by the

values

D

8
oy = 1, Q=g =g, az =2+31

ﬁOZO, /8]:_2_i7 62:3+2i; ﬁ3:1_2i

Then the polynomials which defines the Hopf map form of r/(¢) are

alt) = (1—8t+212 —126%) + (3t%)i
B(t) = (=6t +21t* — 1413) + (=3t + 12* — 11t%) i

and hence the expression
aa’ + BB = —8 + 151t — 1026t* + 2904t* — 3390t* + 1410#°

is a real polynomial, as required for a rotation-minimizing ERF. The com-

ponents z/(t),y/(t), 2/(t) of r'(t) and the parametric speed o(t) are

i

J

= 1 — 16t + 61> — 36t> — 186t* + 348t% — 164¢°,

= —12t + 1382 — 616¢> + 1232t* — 1020t° 4 27015,
= 6t — 72t% + 340t> — 788t* + 8761° — 3481,

= 1 — 16t + 151¢% — 68413 + 1452t — 13561 + 47015,

t
"(t

(
(
/(t
(

=

<=

b

I

)
)
)
)

ot

One can verify that [r/(f) x r”(t)] v (t) # 0, for each t and hence r/(¢) is a

true space curve.

with rotation-minimizing ERFs in (5.5) assumed that Im(epag) # 0. In
fact, this condition is necessary for space curve. For brevity, we consider it
in the case of canonical-form curves where it becomes Im(a3) # 0. For a
canonical-form curve with g = w; and B, = 0, from the first two conditions
in (5.29) we have w;Im(a;) = wlm(ay) = 0, and thus ag, ay, a € R, If

Im(e3) = 0, then the remaining three conditions in (5.29) become

Im(8,3,) = Im(B,8;) = Im(B,3;) = 0. (5.36)
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But, since E@'ﬂj = 3,8, — (B; x B;)j we have that Im(3,8;) = B, x
B, = 0 and thus 3, B, are linearly dependent (denoted by //). Similarly,
from the two remainder conditions of (5.36) we obtain that 3,//8, and
B,//Bs. Obviously, B,//B;. Note that from Im(3,3,) = 0 = —Im(B3,3,)
yields 3,//B, and finally B,//8,//B;. Therefore, B,,3,,B; are of the

(103 (t) + Lob(t) + I3b3(t)]exp( i), we see that r'(t) as defined by (4.8) lies
in the plane through the origin with unit normal n = (0, siny, —cos)).

5.3.2 Necessary and sufficient conditions in terms of

quaternion form

Let the polynomial A(t) = u(t) +iv(t) + jp(t) + kq(t) defines a PH curve
of degree 7. Now our focus is to find necessary and sufficient conditions in
terms of the coefficients of the polynomials u(t), v(t), p(t), q(t) in order for
the PH curve of degree 7 to have the ERF as RMF. Furthermore, we shall
give a parametrization of the set of these curves.

Like before, here we use the normal form of the real polynomials u(t), v(t),
p(t), q(t) in order to simplify the analysis without any influence in the in-
trinsic nature of a spatial PH curve. Thus, by using Lemma 4.3, we can

assume that

u(t) =3 + ugt? +ugt +ug,  v(t) = vot® + vit + vy,

p(t) = pot®> + pit +po,  q(t) = @t* + qt + q.

define a PH curve of degree 7 through (4.5). Our purpose is to characterize
and parametrize - in terms of the coefficients of the above polynomials - the
set V of the polynomials which define RRMF curves of type (3,0), i.e., the
curves of 7 degree which satisfy (4.18) or equivalently

w' —u'v—pqd +p'qg=0. (5.37)

In the following we shall identify the space V with the set of the RRMF
curves of type (3,0). After substituting w(t), v(t),p(t), q(t) to (5.37) we



RRMF CURVES OF DEGREE 5 AND 7 97

equivalently obtain

v =0,

vy = 0,

UgVo + Pog2 — p2go = 0,

u1vo + poqi = p1go = 0,
3vo + P12 — p2qi = 0. (5.38)

These relations are the sufficient and necessary conditions for PH curves
of degree 7 for which the ERF is RMF. Moreover, by solving the system
of the last three equation of (5.38) with unknowns py, qo, v9, we have the

following parametrization of V:

1 1 1

V={n=v=0p = P12 = P21, G0 = SUsy — SUG,
1 1
Vo = 3172611 - §P1<127 where p1, pa, q1, @2, Uo, Uy, uz € R}.

Since V' = V; U V3, U Vi, where V}, V,,, Vi, are the subset of straight lines,
true planar and true spatial curves respectively, below we shall distinct the
sets V; and V.

From Proposition 4.1, a curve r(t) of V is a planar curve other than a
straight line if and only if condition (4.24) is satisfied with (p(t),q(t)) #
(0,0). Combining (5.38) and (4.24) we have

v(t) =0, pogz—p2g0 =0, poqi —p1go =0, pigz —p2qu =0,  (5.39)

where at least one of pg, p1, P2, G0, 1, ¢2 is non-zero. The last conditions are

equivalent to

v(t) =0 and ap(t)+bq(t) =0, with (a,b) # (0,0) and (p(t),q(t)) # (0,0).
(5.40)

But in view of (5.38) and (5.40) we have that

v(t) =0 if and only if ap(t)+bq(t) =0
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Now, in order to characterize the set V; of straight lines we require
conditions (5.38) to be satisfied with p(t) = ¢(t) = 0. Thus, we easily see
that the set V; is defined by

v(t) = p(t) = q(t) = 0. (5.41)
Summarizing the previous results, a planar (included a straight line) PH
curve of degree 7 is of type (3,0) if and only if v(t) = 0. Then, the set
of true spatial curves Vi, consists of the curves which satisfy (5.38) with

v(t) # 0, ie., vy # 0. Hence, from (5.38) and from vy # 0 we deduce that

one parameterization of Vi is given by

o _ _ DP2q1 — P14ge o Poq2 — P2qo o Podr — P1qo
v =0, vg=0, V="F", U=3—, Y =3""—,
3 P21 — P1G2 P21 — P1G2
(5.42)
where ug, po, P1, P2, G0, q1, @2 are free real parameters.
Example 5.3.2 Choosing the values ug = 0, po = 1, p1 = —1, ps =
L go=0, g1 =2, ¢ = 11in (5.42) gives
] 2 1
Vo= 1, U4y =7, U = =,
0 1= 5 =g

and thus we obtain
3 2 2 2 9
u(t)=1t"—t +3 v(t) =1, p(t) =t"—t+1, q(t) =t"+2t

which satisfy (5.37).

The resulting hodograph components

, 1 10 . 59
2 () = t5 =20+ -t — = — 2+ 2,
v(t) T3t T3 g ek
8. 14.
y(t) = 28° 42t — gt“ + 3# — 2t + 2,
- 16 10 .,
Z(t) = 20— 4t + ?t:‘ -5t

define a primitive curve with ged(2'(¢),y/(t), 2/(t)) = 1 and satisfy
(1) +y" (1) + (1) = o’ (1),

where

2 ., AT .

=S — — P -4t 42

3 3 9 *

The hodograph defines a true space curve, as can be verified from the fact

that vy # 0.

o(t) =10+ 265 — 2
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5.3.3 Necessary and sufficient conditions in terms of

factorization

Now we consider the quaternion polynomial A(#) in factorization form and
we are interested in finding necessary and sufficient conditions in terms of

its factorization in order for the curve to be of type (3,0).

Proposition 5.6. Let A(t) = (t — C1)(t — Co)(t — C3) be a quaternion poly-
nomial that defines a PH curve r(t) of degree 7. Set Sy = Cy + Cy + Cs,
Sy = C1C3 + CoCq + C1Cy and Sy = C1CoCs. The curve has a rotation mini-
mizing ERF if and only if the following conditions hold

i-vect(S) =1-vect(Sy) =0
—31 - vect(S3) = vect(Sy)[vect(Sy) x i)]
i-vect(S3) scal(Sy) = vect(Sy)[vect(Ss) x i)]
[vect(S2) x 1] [scal(Sy)vect(S1) + 3vect(S3)] = 0

Proof: The polynomial A(t) defines a curve whose ERF is RMF if and
only if
scal(A(t)i.A™(t)) = 0. (5.43)

The polynomial A(t) = (¢t — Cy)(t — Ca)(t — C3) takes the form
A(t) = t* — Sit* + Syt — Ss.

We substitute the quaternion coefficients expressed in the scalar-vector form
Ci = (¢i,¢;), i =1,2,3 in the last form of A(t) and we have

A(t) = (£ —scal(S)) t* + scal(Sy) t — scal(S3),
—vect(S) t* + vect(Ss) t — vect(S3))

The conjugate of the derivative is
A*(t) = (317 — 2scal(S)) t + scal(Sy), 2 vect(Sy) t — vect(S,)).

Substituting the A(t) and A™(¢) to (5.43) we equivalently get the above
conditions. E






CHAPTER 6

NON—-PRIMITIVE HODOGRAPHS

In this chapter we present the condition under which a PH curve generated
by a primitive quaternion polynomial A(¢) has non—primitive hodograph
and we characterize such regular curves in terms of its associated polynomial
A(t). We also consider the problem of the generation of RRMF curves
from others of lower degree. In Section 6.1 we give necessary and sufficient
conditions for such curves to be generated by another of lower degree and
some of their geometrical properties are studied as well. In Section 6.2
we focus on some special cases of RRMF curves of degree 5 and 7 and
we present the conditions under which these classes of curves have non—
primitive hodographs. Recall that throughout this chapter we shall assume

that the polynomial A(t) is primitive.

6.1 Characterization of non—primitive

hodographs

Let A(t) = £(t)+kg(t), where £(t), g(t) € C[t], be a monic primitive quater-
nion polynomial of degree m and r'(t) = A(t)i.A*(¢) be the hodograph gen-
erated by A(t). Recall that the hodograph r'(t) = (2/(t),y'(t), Z/(t)) of a
PH curve r(t) is primitive if ged(2/(¢),y/(¢), 2/(t)) = 1. As it is mentioned
in Chapter 5, it is possible for a PH curve to be regular even when its

hodograph r'(t) is non—primitive.

Definition 6.1 A quaternion polynomial A(t) = u(t)+iv(t)+jp(t)+kq(t)
of degree > 1 (not necessarily primitive) is said to be right (left) reducible

over C if a complex polynomial c(t) € C[t] of degree > 1 exists, such that
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respectively, for some B(t) € H[t]. If A(t) is not right (left) reducible, it is

said to be right (left) irreducible over C, respectively.

Remark 6.1. It is easily seen that if a quaternion polynomial A(¢) is prim-
itive and right irreducible over C then every right root of A(t) belongs to
H\ C.

In the following by “reducible” (“irreducible”) we shall mean “right re-

ducible” (“right irreducible”) respectively

Theorem 6.1. The following statements are equivalent:

(a) The hodograph defined by (4.5) is non-primitive.

(b) A(t) = B(t)C(t), where B(t) € H[t] and C(t) is a non—constant polyno-
mial of C[t].

(c) ¥'(t) = f(t)B(t)iB*(t), where f(t) is a real monic polynomial with no
real roots and B(t) is a left facfor of A(t).

(d) Resultant,(£(t),g(t)) =

Proof: Suppose that the hodograph r'(¢) is not primitive. Then, there is

a real monic irreducible polynomial p(¢) which divides the polynomials

uP(t) + 07 (t) — p*(t) — (1), u(t)q(t) +v(t)p(t), v(t)q(t) — u(t)p(t).

The relations p(t)|u(t)q(t) + v(t)p(t) and p(t)|v(t)q(t) — u(t)p(t) imply
p(t)|u(t)at) +u(t)o(t)p(t) and p(t)[v*(t)q(t) — u(t)o(t)p(t)

and whence we get o(t)|(u?(t) + v*(t))q(t).

Suppose first that p(t) fq(t). Then, we have p(t)|u*(t) + v*(t), and so,
the relation p(t)|u?(t) + v2(t) — p?(t) — ¢*(t) yields p(t)|p*(t) + ¢*(t). If
©(t) = t — a, then the real number a is a root of p*(t) + ¢*(¢), and so a
common root of p(t) and ¢(¢). Similarly, a is a common root of u(t) and
v(t). Thus, we have ged(u(t), v(t), p(t),¢(t)) > 1 which is a contradiction.
Therefore, we have deg p(t) = 2.

(2)-

Next, suppose that o(t)|q(t). Thus, we have

plu(t) +v*(t) = p*(t),  pOl(®p(t), o) |u(t)p(t).
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If o(t) [p(t), then p(t)|v(t), p(t)|u(t) and the relation o(t)u?(t) + v*(t) —
p?(t) implies that o(t)|p(t), which is a contradiction. Therefore @(t)|p(t)
and so, we have p(t)|p?(t) + ¢*(t), whence follows that p(t)|p?(t) + ¢*(t). If
o(t) = t—a, ais a common root of u(t) and v(t), and since t—a|p(t), t—a|q(t)
we have ged(u(t),v(t),p(t),q(t)) > 1, which is a contradiction. Hence, we
have deg p(t) = 2. Therefore, in both cases, we have that p(¢)|u®(t) +v%(t),

o(®)|p*(t) + ¢*(t) and p(t) = (t —r)(t — 1), where r € C\ R and T is the
complex conjugate of r.

We remark that the divisibility relations

p@)|u(t)q(t) +v(®)p(t) and o(7)

v(t)q(t) — u(t)p(t)
can be equivalently presented by the relation
(t =)t —1)|(u(t) + v(t)i) (q(t) — p(t) i).

We also have
(t=r)(t—1)|(u(t)+v(t) 1) (u(t)—v(t) 1), (t—r)(t=T)[(q(t)+p(?)1) (¢(t)—p(?)1).

Suppose that t —r|u(t) +v(t)i. If t —r fg(t) +p(t) i, then t —r|q(t) —p(t) i
and so, t — T|q(t) + p(t)i. On the other hand, we have that the relation
t—r fq(t)+ p(t)iimplies t — T fq(t) — p(t)i. Thus, the relation (¢t —r)(t —
)| (u(t)+v(t)i)(q(t) —p(t) i) implies that ¢ —|u(t) +v(t) i. Thus, we deduce
that the polynomials u(t) + v(¢) i and ¢(f) + p(¢) i have a common complex
root. If t —r|q(t)+p(t) i, then we also have that u(t)+v(t)iand q(t) +p(t)1i
have a common complex root. Since A(t) = u(t) +v(t)i+ k(q(t) + p(t) i),
it follows that A(t) has a complex root.

Suppose that A(t) = B(t)C(t), where B(t) € H[t] and C(t) is a monic
polynomial of C[t] \ R[t] with deg C(¢) > 0. Then we have

r'(t) = f(t) B(t)iB"(t),

where f(t) = C(t)C*(t) is a real monic polynomial with non real root. It
follows that the hodograph r/(t) is non—primitive.
Thus, we have established the equivalence of propositions (a), (b) and

(¢). Finally, Corollary 2.1 provides the equivalence of (b) and (d).
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Corollary 6.1. The hodograph t'(t) is primitive if and only if the quater-

nion polynomial A(t) has no complex roots.
Corollaries 2.1 and 2.3 give immediately the following results.

Corollary 6.2. Suppose that the hodograph r'(t) is generated by the poly-
nomial A(t) = t* + Bt +C. Set B = by + kc; and C = by + kcg, where
bg, by, co,c1 € C. Then, v'(t) is non—primitive if and only if

2 2

Remark 6.2. From the proof of Theorem 6.1 we also conclude that if
the hodograph /() is non—primitive then the ged(z/(t),y'(f), 2/(¢)) has no
real roots. In other words, if ged(2'(t),y/(t), 2/(t)) has real root then the

Remark 6.3. Let A(t) = A, t" +--- + Ay and set A(t) = A(t)/A,. By
Theorem 2.1, we can write A(t) = B(t)c(t), where c(t) € C[t] and B(t) has
no right factor in C[t]. Thus, we have A(t) = (A, B(t))c(t).

Definition 6.2 We call level of non-primitivity of the hodograph r/(t), and

we denote by £(r'(t)), the maximum of the degrees of complex polynomials

B(t) c(t), with B(t) € H[t] and c(t) € C[t].
Note that the level of non—primitivity of a primitive hodograph is zero.

Theorem 6.2. The level of non—primitivity of the hodograph t'(t) generated
by the polynomial A(t) is

((r'(t)) = deg A — rankBex(f, g).

Since the polynomial B(#) generates the hodograph t'(t) = B(t)iB*(t)

we can give the following definition.

Definition 6.3 We say that a polynomial curve r(t) is generated by another
polynomial curve r(¢), and we write r(¢) > ©(t), if the hodograph of r(¢) is
a scalar polynomial multiple of #(¢) — i.e., r'(t) = f(¢) t/(¢) for some monic
real polynomial f(¢) with non real roots. We shall also say that the curve

r(t) generates the curve r(t).
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another PH curve, of lower degree. Such curves are defined by quaternion
polynomials A(t) that admit factorizations of the form A(t) = B(t) c(t),
where c¢(t) is a non constant complex polynomial with no real roots. Thus,
a PH curve r(t) is generated by another PH curve of lower degree if and
only if the level of non-primitivity of its hodograph r/(¢) is > 0. Theorems

6.2 and 6.1 with Corollary 6.2 give necessary and sufficient condition for it.

Proposition 6.1. The relation = is a partial ordering on the set of poly-

nomaial curves C'.

Proof: For every r(t) € C we clearly have r(t) = r(¢). Suppose that
r(t) = r(t) and r(t) = r(t). Then there are real monic polynomials f(t) and
g(t) with non real roots such that r'(t) = f(¢)t'(t) and 1/(t) = g(t)r'(¢).
Thus, we get 1'(t) = f(t)g(t)r'(t), whence we obtain f(t) = g(t) = 1.
Hence r(t) = £(t). Finally, suppose that ri(f) = ro(t) and ro(t) = r3(t). It
follows that there are real monic polynomials fi(¢) and fo(f) with non real
roots such that ri(t) = fi(t)rh(t) and ri(t) = fo(t)rs(¢). Thus, we have
v (t) = fi(t) fo(t)rs(t), whence we get ri(t) = r3(t). Therefore, the relation
> is reflexive, antisymmetric and transitive and so is a partial ordering on
C. B

Remark 6.4. The polynomial curves having primitive hodograph are the

minimal elements of this ordering.

6.1.1 Geometrical properties

Here we discuss the geometrical interpretation of a PH curve which is gener-
ated by another PH curve of lower degree. More precisely, we are interested
in finding the relation between these curves in the space and if the geomet-
rical properties of the one are transfered to the other. Also we wish to know
how these curves are represented and what relation do their graphs have.

Let r(t) be a PH curve defined by the quaternion polynomial

At) = u(t) +iv(t) +jpt) +kq(t)
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and r(t) be a PH curve of lower degree than r(t), defined by the quaternion
polynomial
B(t) = a(t) +i0(t) +jpt) + kq(t)

such that
r'(t) = f(t) B(t)iB*(t),

for some monic real polynomial f(¢) with no real roots. We assume that
(t,h,b), (e1, e, €3), k1(t), 71 (t), o1(t) and (£, 1, b), (&1, s, 83), ra(t), T(t),
o9(t) are the Frenet frame, Euler-Rodrigues frame, curvature, torsion and
parametric speed of r(¢), £(t) at each t, respectively.

It can be easily verified, that if the curve r(¢) is generated by the lower—
order curve 1(t), then it has, at each ¢, the same Frenet and Euler-Rodrigues
frame as the latter. Also the parametric speed of r(t) is equal to that of
r(t) multiplied by |f(¢)|, while the curvature and torsion of r(t) equal those
of #(t) divided by |f(¢)| and f(t), respectively.

Indeed, if we substitute ¥’ = f 1’ and its derivatives into the definitions
of the tangent, principal normal, and binormal,

r’ r' xr”’ r' xr”

t=—-, h= " xt, b= —_
|’ v’ x r”| ’ It/ xr”|’

and the parametric speed, curvature, and torsion,

I /I }I‘/ % I,//| (I‘l % I,//) 3 I,///
g = I, K = TE
’ 11./13 ’ |I‘/ X I,//|2

we obtain that

and

K1 1 T 1
O'l(t) = |f(t)| UQ(t), /1_2 == m, T_Q = m, for each t.

By Theorem 6.1 we have that that f(t) > O and so |f(¢)| = f(t),V t € R.
Thus, we may write that for the PH curves r(¢) and r(¢) we have

K1 T

9

Ko T2

for the corresponding points of r(¢) and #(t).
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Now we shall prove that e; = €1, e; = €5, e3 = €3, at each t. Indeed,
since 1/(t) = f(¢)1'(t) we have that

AW i A () = F(OB()B (), (6.1)
which is equivalently to

w¥(t) + 0 () = () = ¢*(t) = fO)[@%(8) +0*(t) — p*(t) — (1)),

u(t)q(t) +o(t)p(t) = f(t)[a(t)q(t) +o()p(t)],
v(t)g(t) —u(t)p(t) = f(t)[0(1)q(t) — at)p(t)). (6.2)
The above relations can be otherwise expressed in the form
AW 1A (t) = f(t)B(t)iB*(t)
A()JA () = f(t)B(t)jB(t),
Atk A*(t) = f(t)B(t)kB*(t) (6.3)
By multiplying (6.1) on the right with B(¢) yields
JA®) P 1A () B(t) = f(t) [B(1)]* A*(t) B(t) i
which implies that
LA [LA™(#) B(t)] = [ () [1B()]* |A*(1) B(t) il. (6.4)
Since f(t) > 0 and |1 A*(¢) B(t)| = |A*(t) B(t) i| the (6.4) gives
A = f(t) B (6.5)

Substituting (6.3) and (6.5) into (4.12) and simplifying we deduce that
e =€, e =6 and e3;=-e;, ateacht.

In the following we shall prove that if the r(¢) is a planar curve (other
than a straight line) then r(¢) is a planar curve and conversely. By

A(t) = B(t)(er(t) +ica(t))
= (@(t) +i0(t) +jp(t) + k(1)) (cr(t) +ica(t))

(a(t) +i0(t))(cr(t) +ica(t)) + (P(E) + kG(t))(er(t) +ica(t))
= U@)+iV(t) +jP(t) + kQ(1) (6.6)
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we have

Ut)+iV(t) = (at) +io(t))(a(t) +ica(t))
PO +kQ() = (5(t) +kq(t)(ea(t) +ies(t))

and using Lemma 4.1, the last relations imply

[UQ@), V(#)] = [a(t),0(t)] + [er(t), ca(t) ] (6.7)
and

[Q@), P(t)] = [4(t),p(t)] + [c1(t), ea(t) ] (6.8)
Suppose that r(¢) is planar, then by (4.24) we have that

a@)v'(t) —a'@o(t) _ qH)p'(t) — ¢(1)p(t)
u?(t) + 0%(t) () + (1)

which can be written as

La(t),o(t)] = [4(1), p(t)] (6.9)

By substituting (6.9) into (6.7) and (6.8) we take

[U@®), V(H)]=[Q), P(t)], (6.10)

and thus r(¢) is planar curve as well. Conversely, let r(t) is planar. Then
by (6.10), (6.7) and (6.8) yields (6.9), i.e., ¥(¢) is planar curve.

Now, if r(t) is straight line, we substitute p(t) = ¢(t) = 0 into (6.6) and
we take P(t) = Q(t) = 0 which means that r(¢) is a straight line too. The
converse is obvious by using an analogous argument.

Up to now, we have proved that r(t) is a planar curve if and only if ©(¢)
is a planar curve and r(¢) is a straight line if and only if 7#(¢) is a straight
line. Consequently, if r(¢) is a (true) space curve then ©(¢) is a (true) space
curve and conversely.

Concerning the RRMF condition, one can verify that r(¢) is RRMF curve
if and only if r(¢) is RRMF curve. Indeed, suppose that #(t) is RRMF. Then
there exists real polynomials by (t), bo(t) with ged(by(¢), b2(¢)) = 1 such that
[B(t)] = [b1(t), b2(t) . By

A(t) = B(t)(er(t) + ea(t) )



NON—PRIMITIVE HODOGRAPHS 109

implies

[A@D) ] = [B()] + [er(t), cat) ] (6.11)

and hence

[A®)] = [b1(), b2(8) | + [e1(t), c2(F) |-
From Lemma 4.1, [b1(¢),b2(¢) |4+ [c1(t), ca(t) ] = [a1(t), az(t) ] where ay(t) +
Pas(t) = (ba(t) +1ibo(f))(c1(t) +ica(t)) and thus [A(¢) | = [ai(t), ax(t) ], i.e.,
r(t) is an RRMF curve. Suppose now that r(f) is an RRMF curve, i.e.,
there exists dy(t),ds(t) € R[t] such that [ A(t)] = [di(t),da(t)]. By (6.11)

we have
[B(t)] = [di(t),d2(t)] = [e1(t), c2(D) ].

Again, in view of Lemma 4.1

[B(t)] = [f1(t), f2(t)]

where fi(t) +1 fa(t) = (di(t) +1da(t))(c1(t) —ica(t)), and thus £(¢) is also
an RRMF curve.

The above discussion is summarized as follows.

Proposition 6.2. Let r(t), v(t) be PH curves with hodograph defined by
the quaternion polynomials A(t) = u(t) +1iv(t) +jp(t) + kq(t) and B(t) =
u(t) +1i0(t) + jp(t) + kq(t), respectively, such that A(t) = B(t) C(t) with
C(t) € C[t]. Then

2. v(t) is planar, straight line and true space curve if and only if ©(t) is

likewise, respectively.

3. r(t) is an RRMF curve if and only if ¥(t) is RRMF.

K1 (t>7—2 (t) = K9 (t)Tl (t)

where k1(t), Ko(t) and 71(t) 72(t) are the curvature and torsion of r(t),

r(t) respectively.
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6.2 Non—primitive hodographs of RRMF

curves of degree 5 and 7

In this section we study RRMF curves of degree 5 and 7 whose hodographs
are non-primitive. More precisely, we deal with the special cases of the
RRMF curves of types (2, 1), (2,0) and (3,0). We, especially, are interested
in the last two types, since these curves possess the specific geometrical
property of having the ERF as an RMF and the curves of type (2,1) are

‘hose which -as we shall see- generate RR)] urves e (3,0).
those which -as we shall see- generate RRMF curves of type (3,0

6.2.1 Curves of type (2,1) and (2,0) with

non—primitive hodographs

The simplest example of two PH curves r(t), #(¢) such that r(t) = (¢) con-
cerns the case of a quintic r(¢) defined by a quadratic quaternion polynomial

A(t) that admits a factorization of the form
Alt) = Bt)(er(t) + ea(t) 1)

The PH quintic r(t) is generated by the PH cubic r(¢) defined by the hodo-
graph
v'(t) = B(t)iB*(t).

We shall give necessary and sufficient conditions under which an RRMF
quintic with non—primitive hodograph is of type (2,1). Moreover, we prove
that there not exists RRMF curves of type (2,0) with non—primitive hodo-
graph.

Consider the quaternion polynomial
A(t) = a(t) + kB(1), (6.12)

where a(t), 3(t) are considered be in canonical form i. e., a(t) is a monic
quadratic polynomial and B(t) a linear polynomial. We assume that A(t)

has one no real root. Then

at) = (t —z1)(t —2zy) and B(t) = c(t — zy) with c € C.
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Proposition 6.3. The above polynomial A(t) defines a non—primitive hodo-
graph of an RRMF curve of type (2,1) if and only if Im(z;) = 0. In
this case, the polynomial w(t) = a(t) + ib(t), with a(t) = t — Re(z2) and
b(t) = —Im(zy), satisfies condition (4.16). Furthermore, A(t) does not
define an RRMF curve of type (2,0).

Proof: The polynomial A(t) defines a hodograph of RRMF curve of type
(2,1) if and only if there exists a complex polynomial w(t) = a(t) + 1b(t)
with a(t) = t — ag, b(t) = by and ged(a(t),b(t)) = 1 such that condition
(4.16) is valid.

By setting z; = a; + ib;, i = 1,2 into a(t) and B(t) and substituting
a(t) and B(t) into the left part of (4.16), we obtain

Im(aa’ + BIBI) (bl + b2>t2 - 2({)1(1/2 + albg>t - b2|Z1t2 - b1]Z2|2 -+ ]C}ng

al?+182 [(t = a1)* + b% + [c][(t — a2)* + b3]
(6.13)
Using (6.13) condition (4.16) becomes
(b1 + bg)t2 — 2(b1a2 + (llbg)t — thZ1|2 — b1|Z2t2 + |C|2b2 _ —b()
(£ = a1)* + b7 + [c][(t — a2)* + b3] (t —ag)* + b
(6.14)

which is equivalent to

2 biag-+aibs . b2|z1]2+b1]Z2]2—|C|2b2
22 t b

by + b. bitbe b1tba — . (6.15
b o e TR [P =P + 8~ C—ap+i 1)

The denominator of the left side is a real polynomial of degree 4 and of the
right a polynomial of degree 2. Hence the numerator of the left is required

to be of degree 2 and so by + by # 0. We have the following two cases: either

blag + (leg _ {)2|21}2 + {)1|Zz|2 — ]CthQ .

t?—2 : t—ay)? + 02+ |c?
by + bo by + bo ( ) 1 el
and
b1+bg . —b()
(t—ag)2+b3 (t—ap)?+ b
or
. bias + ab bylz1|? + by|zo]? — |c|?b .
2 _ gha2 102, 2|21] 1]22] Ic] 2:(t—a2)2+b§

by +by by + by
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and
by + by B —by

(t= @)+ b+ el (t—ao)+0f
Thus condition (6.15) holds if and only if either

b1a2 + ale —
by + by b
b2|zl§2 + bl§z2|2 - !C¥Qb2 2 2 2
- = by + |c|” + a7,
bl + bQ 1 | | 1
bg = b;,
—b() == b] + bg,
ag = a9
or
b1a2 + a1b2 —
bi+by,
_bfsl tbfmf ey,
by + by 2 2
b = b +[cf,
bo == —(b1 + bg),
ag = aj.

Combining the third and fourth equation of the first system we obtain (b +
by)? = b3 and so by = 0 or by = —2by. By setting by = 0 we get the
solution (ag, by) = (ag, —bg). If by = —20by we have that by = 0 which is a
contradiction, since A(t) is primitive. Now by the fourth and third equation

of the second system we have

lc|* = b3 + 20y by (6.16)
and from the first equation we get a; = as. Substituting the last two
relations into the second we obtain by = 0 or by = —2by. For b; = 0

the second system has the solution (ag, by) = (aq, —bs) and by substituting
by = —2b, into the second equation we obtain 302 + |c|[*> = 0, which is a
contradiction. Hence, condition (6.15) holds if and only if b; = 0.

Now a PH curve generated by the quaternion polynomial (6.12) is of
type (2,0), if and only if

(b] + bg)t2 — 2(b1(lg -+ Cl]bg)t —+ bgiZ] |2 -+ Z)1|22!2 -+ 1C§262 = () (617)
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which is equivalent to the following system

bl - —bg
bl(I/Q + a1b2 = 0
b]|Z212+b2|Z1|2‘+‘ |C|2b2 = (
From the second equation we get by = 0 or a; = az. But since A(¢) is
primitive, by # 0 and hence we study only the case a; = ay. Substituting

the last relation and b; = —by into the third equation of the system we

obtain A(%) is a real polynomial A(¢), which is a contradiction. B

The following example shows how we can construct an RRMF curve of

is to show how we can identify such a curve by using Corollary 2.3.
Example 6.2.1 Choosing the values ¢ = 1, z; = 0 and z, = 1 — i, we have
At) = alt) + kB
= t(t —29) + k(t — 22)
= t* —t+it+k(t—1+1)
and A(t) defines a non—primitive hodograph of an RRMF curve of type
(2,1). Easily one can verify that
Im(aa’ + B3) —t? — 1 -1

QP+ (87 #2843 —2t+2 (t—12+1

and the complex polynomial w(t) which satisfy condition (4.16) is
w(t)=t—1+1i.
The resulting hodograph is
v'(t) = (2 (t),y' (1), 7 () =[t" =283 + 2 + 2t — 2, (1* — 2t + 2),0]

and its components define a curve with a non—primitive hodograph and
satisfies (4.3) where

o(t) =+ 1)(#* -2t +2)

The hodograph defines a planar curve, as can be verified by Propoition 4.1.
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Example 6.2.2 Let
Aty =t —t+2i(1 —t) — 2j + kt

be a quaternion polynomial which generates a hodograph of a quintic curve.
By using Corollary 2.3 yields that A(¢) has a complex root. The polynomial

can also be written as
At) =t —t+2i(1 —t) + k(t — 2i)

and by above expression we obtain that the common root of a(t), 3(t) is
zy = 21. Moreover, we get that z; = 1, i.e., Im(z;) = 0. So, the polynomial
A(t) defines an RRMF curve of type (2,1). Note that by Proposition 4.1

the curve is planar.

The following Proposition is motivated by the previous examples.

Proposition 6.4. Suppose that the polynomial (6.12) admits a factorization
of the form

A(t) = Bt)(t — 2) (6.18)

with z € C and defines the hodograph of the PH quintic curve r(t). Let v(t)
be the cubic defined by the polynomial B(t). Then

1. If #(t) is an RRMF curve then the quintic r(t) is an RRMF curve of
type (2,1).

2. The curve r(t) is an RRMF of type (2,1) if and only if it is planar.
Proof: 1. By (6.18) and Lemma 4.1, we get
[A®)] = [B(t)] + [t — 2] (6.19)

and if r(¢) is an RRMF cubic curve then r(¢) is planar and this implies [7]
that ERF=RMF. Thus [B(t)] = 0. Consequently, relation (6.18) implies

for z = ag + ibg,

and so A(t) defines an RRMF r(t) of type (2,1).
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2. Suppose that r(t) is an RRMF of type (2,1). Since the hodograph is

A(t) = '[72 - (]/Ot -+ ib()t +jb0 -+ k (t - (l()),

where zy = t — ag + iby. It is easily verified that A(t) satisfies condition
(4.24) and thus r(¢) is planar. Conversely, if r(t) is planar then by [34, Prop
2] a parameterization of A(t) is given by
A(t) =12 +ugt — (ug +7)r+
ifort + (ug +r)vy] +j (pit + vign — par) + k (@t — vipr — qir)
with r,uy, vy, p1,q are the free real variables. Expressing A(t) in power

form we prove that A(tf) verify (2.3) and thus r(¢) is an RRMF of type
(2,1). B

Remark 6.5. Combining (3) of Proposition 6.4 and (2) of Proposition 6.2
we straightway have that RRMF curves of type (2,1) which are generated

by cubics are only the planar ones.
Example 6.2.3 Let
Aty = +t+it+2jt —2k(t+2)
be a quaternion polynomial which defines the hodograph (Fig 7.1)
v(t) = (' =28 + 2 + 2t - 2,t (* — 2t +2),0)

of a quintic PH curve. By Corollary 2.3 and Proposition 6.4, the quintic

is an RRMF of type (2, 1) with non—primitive hodograph i.e., which is gen-
erated by a cubic curve. Since A(t) has a complex root can be expressed
as

At) = (t+ k)t -1+ i)
and we deduce that the hodograph of the cubic (Fig. 7.2) is

¥(t) = (t+ k)i(t + k)* = (#* — 1,2¢,0).

The family of the curves having the hodograph r'(t) are
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T
0.5

T

Figure 6.2 Curve #/(¢).

R tt
rt)=(—— —4+ =+ —2t+c¢, — —4— — 2?
" (5 273" T +62’C3>

where ¢, ¢o, c3 are constant and for ¢; = ¢o = ¢3 = 0 the graph is given in

Fig. 6.3. Similarly, the family of the curves r(t) are

3 )
f(t> - <§ —1+ Cllv tz + 0{27 (:g)

and for ¢} = ¢, = ¢4 = 0 the graph is given in Fig. 6.4.
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Figure 6.3 Curve r(t).

hodographs

In this section we study the set of degree 7 PH curves which they have a

We shall prove that these curves are generated only by PH curves of type
(2,1).

Also, we shall give a parametrization of these curves in terms of the
coefficients of type (2, 1) curves.



118 CHAPTER 6

Characterization of RRMF curves of type (3,0) with

non—primitive hodographs

Our purpose here is first to find which set of PH curves of degree 5 generates
the PH curves of type (3,0). Then, we shall characterize/parametrize the
set of the polynomials which defines the PH curves of type (3,0).

Let A(t) be a cubic quaternion polynomial with a right complex factor
A(t) = B(t)(t — z), (6.20)

where B(t) € H[t] \ C[t] and z € C\ R. The polynomial A(¢) generates the
hodograph /() of a PH curve of degree 7 and B(t) generates the hodograph

'(t) of the quintic one. We consider the following cases:

e 1st case: The polynomial B(t) is irreducible (level of non—primitivity

1).

Substituting
B(t) = t* 4+ uit 4+ up + i (vit + o) +j @t + ph) +k (¢t + q))

and
z=qa-+bi

into (6.20), A(t) is expressed as

At) = £ + (W) — a) £ + (uy — au’y — bvy) t — augy — by
+i[ (V) + )t + (v — av] + buy) t + bufy — av) ]
+3 [P + () — ap, + bay) t + by — ap) ]
+k g\t + (gh — ad, — b)) t — agh — bpy], (6.21)

If we consider that A(t) generates a PH curve of type (3,0) then conditions

(5.38) are satisfied by the polynomial A(t) and thus we have

vi+b o= 0,

vy — avy +buf = 0,

/

pidy — pb — phay — ba? = 3(buy — avyp),
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r o7 /
0 = bujuy — auv) — abuy + a®vjy + bg)d,

—apydy + aqypy + bpopy,

and

0 = buff — aupvy — abujuy + a*u)vy
2 1. wa 2 32 7
—b*ugv; + abvyv| + bgy — b qp)
/

+a*pod; + bpi — a*qyp’ + b pod,

The first two equations imply

— 1/ < — J—
b= —v] and a= 1

v,
—

1
(with b = —v] # 0 since z € C\ R) and substituting to the next three we
take the necessary and sufficient conditions for the coefficients of the 1’ in
order to generate an RRMF curve of type (3,0):

/2
(Y
VAV V] 1 (12 2N .« ’o ro 0
Pidy — Poqy + vi(py +¢7) = =3 (Uluu + YUy — U_,> )
1
1,02 3
U7 V¢ V¢
Pt 1%0 2,1 rot 0
—2uyuivy + o + 2ui vy + uyvy + 2
1 1

o
—vi(digo + P1po) — (?,? - uﬁ) pody + (vg — uy)gopy = 0,
1

/ P\ 2 I

Vg — ViU U

0 11 ro A /7 o ol __0%0 [ A

(—,U, > (uivg + Pody — Pido) + (vp — vyuy) ( o Tt Uo“1> +
1

20 ’os ) 2 P CI2N
vy (Pod) — qopy) + V(o5 + ag) — v’ (ug + vi°) = 0.

Remark 6.6. As we can observe the values of a and b depend only on the
coefficients of B(t) and ©(t) generates an RRMF curve of type (3,0), if the

polynomial B(t) is multiplied by a specific complex factor of the form
v}
t—z=1t— > +u) +v]i
v, , .

Now we shall determine the set of curves r'(t).
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Since A(t) = B(t)(t — z), Lemma 4.1 implies that

and since r(t) is of type (3,0), i.e. [A(t)] = 0 then

b
[B(t)] = [t — 2] = (Y
From the last relation, we see that #'(¢) is an RRMF curve of type (2,1).
Hence, we obtain that each RRMF curve of type (3,0) with non—primitive
hodograph is generated by an RRMF quintic of type (2,1). The question
that arises is if each RRMF of type (2,1) generates a PH curve of type
(3,0). In fact, using [34, Prop. 2] we can see that relations (22) and (23)
verify (6.22) and we deduce that each RRMF of type (2,1) generates an
RRMF curve of type (3,0). Hence, by (6.21), [34, Prop. 2] and due to the
fact that each PH curve of type (3,0) is generated by a PH of type (2,1)
and vice versa, we may represent the set of RRMF curves of type (3,0) -in

terms of the coefficients of the PH of type (2, 1)- as follows.

o = (u +a)of +a%),  w = -2ha—a +of

Vo = Vy = Vg = O7

po = p (v +a), p1=—-2pla,

2, 2
Q0 = ¢ (v* +a*), @ = —2qa,

pe =70, @=q. (6.22)
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or
davf (P + 47?)

(u) + 2a)? + P2 + p? + ¢?
WP (pf + af)

wy = (u) +a)(a®+vP) +

/ 2 2
up = —2uja—a’+v — -
() +2a)? + QP + p + qf
uy = uj—a
B2 2
- D (pf +ar)
0o = — , ; -
(U} + 2a)? + QP + p + ¢
v = 0
vy = 0

vy [(u) + 2a)qy + 3viph] + a[(u) + 2a)p) — 3viqi]
(W) + 2a)? + 9?2 + pP + ¢
4 [(uf + 2a)p} — 3viq]]
(v} + 2a)? + QP + p? + ¢

/ 12 L2 12
po = py(vf +a”) — 4y

p o= —2pia+

/

b2 = P
vi[(u) + 2a)p| — 3vidi] — a[(u} + 2a)¢; + 3vip)]
(uh + 2a)? + P + p2 + ¢
4 [(uf + 2a)q] + 3vip]
(u} + 2a)? + 9P + pi? + ¢
@ = q (6.23)

where a, uy, v, p|, ¢} are free variables with v} # 0.

ro 2 ”
g = ¢ (v +a®)+ 4]

G = —2q§a -+

Note that relations (6.22) arise from the equations (22) of [34, Prop.
2] which represent the planar curves of type (2,1) and equations (6.23)
result from relations (23) which represent the true space curves of type

(2,1). We recall that so far we have proved that each PH curve of type

(2,1) and conversely, each PH curve of type (2,1) generates a PH curve
of type (3,0). Also he have characterized the coefficients of the PH curve
of type (3,0) with non—primitive hodograph in terms of the coefficients of
the quintic which generates it, by given two different representation’s types
(6.22), (6.23) according to [34, Prop. 2].

In view of Proposition 6.2, the above results can be summarized as

follows.

Proposition 6.5. Let A(t) be a quaternion polynomial of the form (6.20)
which defines the hodograph v'(t) of an RRMF curve of type (3,0) and B(t)
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an irreducible one which generates the hodograph ¥'(t) of an RRMF quintic

curve. Then, the following hold

1. each curve r(t) is generated only by a curve v(t) of type (2,1) and
conversely, each RRMF curve of type (2,1) generates an RRMF of
type (3,0),

2. each planar of type (3,0) is generated by planar of type (2,1) and

conversely,

3. each true spatial RRMF of type (3,0) is generated by a true spatial
RRMF of type (2,1) and conversely.

Moreover, the set of polynomials which defines the planar curves r(t) is
expressed by equations (6.22) - in terms of the coefficients of the ©(t) - and

the set of true spatial curves is represented by equations (6.23).

By using equations (6.22) and (6.23) we can generate planar or true

space PH curves of type (3,0), as the example below shows.

Example 6.2.4 Choosing the values a = 1, v} = 2, v] = =1, pj = 0,

¢; = 1in (6.23) gives

80 54 ] 2 2
Uy = —. U3 —= —— Uo = Vp = ——— =
0 13’ 1 13’ 2 , Vo 13’ Po 13’
6 2 16
— . . :0 —_ — 4TI 5 :1,
y4 —13/ b2 y 4o 13’ q1 13’ q2 ;
and hence we have
. o 54 80 2 6 2 16 12
() =P+ —tt—, v(t) = —==, p(t) = —t+-—, q(t) =t"——t+—
u(t) = Pt —qgtdgg, vlt) = =33, pl) = 3t+gg, at) 1313

which satisfy (5.37). The resulting hodograph components are

- 108 84 5 4392 , 8280 6256

2(t) = 28—ttt t "

z'(t) + 3T 16 160 ' 160

yt) = 2t° - 0 ja_ 1164 + 4120, _ 50080 + Sl

yQ) = 13 137 169 2197 2197
12 16

5, 604, 9800 4064
13- 13 169 2197 2197
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and the hodograph define a true space curve, as can also be verified from the
fact that condition (6.14) is not satisfied. Note that the real polynomials
that define the quintic curve are given by relations (23) of [34, Proposition
2],

, 41 7 5
() =12+ 2t — —, V() =—t—3, p(t)=—==, qt)=1t— =
w(t) =17 +2t— o, V() =—t=3, p{t)=—13, ¢t E

and they do not satisfy (6.14), as we expected.

2).

Consider that the polynomial B(t) € Ht] \ C[t] has a right complex
factor and so B(t) = (t — Q)(t — w) with Q@ = 3¢ + s1i + s2j + s3k and
z=c+die C\R. Now relation (6.20) is expressed as

A=(t-Q)(t—w)(t—2),
and by Lemma 4.1 implies
Al =[t— Q]+t —w]+ [t —2]

Since [A(t)] = 0 by the above relation we get

S1 . d b
(t—s0)2+s+s3+s3  (t—c)2+d> (t—a)2+b?
which is valid if and only if
—s1=d+0b, sp=c=a, s +s5+s5=d> =", (6.24)

From (6.24) we have the following cases:
If d = b then (6.24) gives

and A(t) € R[t] which is contradiction since A(t) € H[t] \ Cl[t].
If d = —b from (6.24) implies that

s1 =0, vect(Q) = Im(w) = Im(z), scal(Q) = Re(w) = Re(z)



124 CHAPTER 6

which is equivalent to
Q~WwWr 2z,
But if w ~ z then the polynomial A(#) includes a real factor, which is a
contradiction since A(t) is primitive. Thus, this case is discarded.
Finally, we give some examples of RRMF curves of type (3,0) with non—

primitive hodographs.

Example 6.2.5 Consider the quaternion polynomial

55 5+V5,

Alt) = 3+ (VB —2) 87 + o t+v5—2+ o
»  3V5+5 3v5-5
k|24 210 A SR
+k |+ +(t t T >1}

which generates a PH curve r(t) of degree 7. By Theorem 6.1 and by

expressing A(f) in quaternion form we can see that conditions (5.38) are

hodograph. Moreover, since

5+v5
10

Vg = 7£ 0
the curve is a true space curve.

Example 6.2.6 Let the quaternion polynomial

5+2v5. 25-3V5 . 5—%5‘)
i j+ k

)= [t—2+5
A(t) ( + 5 + 5 + 3
15—-2v5. 154+3vV5. 3++V5
t i ; k| (t— 1)
(+ 50 't T (t—1)

We can easily see that A(t) satisfies conditions (5.43) and thus it generates
a PH curve of degree 7 with rotation minimizing ERF. The components

2'(t), y'(t), Z/(t) of ¥'(t) and parametric speed o(t) are

2 (t) = 5+ (2V5 —4)1°
J J

78 — 395 4+/5—10 43 — 18 /5

+ - ﬁt2+ \[5 t+ - ﬁ,

J

0-21v5 , 145 —30 .
+ = \/_t‘*—l- f, £

9)
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y'(t) =2t

)

- 13v5 =15 10—-2v5 . 12v/5-14 , 25 1-+56
o+ J; th+ 5\[t5+ \/: t2— \ft+ 2

5 5 5 5

5 14+/5 - 30
Z(t) = —2t"+(6—2\/5)t4+\/~+t5

8]
55-21v5 ,  14v5-20 25115
(525 \[ R V5

(21

J O

o(t) = t*+(2V5—4)t° +(4V5 -8t

105 — 425 . 50 — 21 /5
++ﬁt2+(2\/5—4)t+0+5.

+60—21\/5t4

The hodograph r/(t) which is generated by A(t) is non—primitive since A(t)
has a right complex factor and the curve r(t) is generated by another curve

r(¢) which its hodograph 1’/(¢) is defined by the quadratic quaternion poly-

nomial
54+2v5. 25—-3vV5. 5—+5
= [t—2 5 i j k
B(t) ( +5 + T R
15 — 25 15 + 3v/5 34+5
- 5 \/;i—f— D+ \/SJ+ +\/;k ,
20 40 8

One can verify that [rv/(t) x v”(¢)] - ©”(t) # 0, for each ¢ so r(t) is a true
space curve.
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CLOSURE

A moving frame along a curve describes the orientation of a rigid body along
its trajectory. Frames which characterized by the fact that one component
coincides with the curve unit tangent are called adapted frames. Rotation
minimizing frame (RMF) is an adapted frame of special interest because it
executes the least possible frame rotation along the curve. We are interested
for curves with rational rotation minimizing frames (RRMF curves) since

rational representations are preferred in practice. The search for RRMF

the quaternion and Hoph map forms. The Euler-Rodrigues frame (ERF) is
a key step in identifying RRMF curves since it is rational adapted frame
defined on any spatial PH curve. The ERF is not in general an RMF.
The first true spatial RRMF curves for which the ERF is itself rotation—
minimizing (ERF=RMF) are PH curves of degree 7.

In the present thesis we studied some certain types of RRMF curves of
degree 5 and 7. More particularly, we presented the sufficient and neces-

sary conditions for PH curves— in terms of the coefficients of their associ-

and (2,0). We also characterized the degree 7 PH curves with rotation-
minimizing ERFs, i.e., PH curves of type (3,0) using both the quaternion
and Hoph map forms. By using the Hoph map form the characterization
was determined in terms of one real and two complex constraints on the
curve coefficients. The complete categorization and characterization of all
RRMF curves of degree 5 and 7 is a topic that deserves further research.
Since the hodograph of a PH curve is defined through a quaternion poly-
nomial, we focused on the quadratic quaternion polynomials which gener-

ate PH curves of degree 5. More precisely, an algorithm to determine the

127
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sentation of quaternions and used to analyze the PH curves of type (2,2).
Furthermore, in this thesis we characterize the regular PH curves with non—
primitive hodographs and we proved that such curves generated by quater-
nion polynomials with a right complex factor. This was the motivation of
presenting the necessary and sufficient condition for a quaternion polyno-
mial in order to have a complex root. Finally, we characterize the sets of
types (2,1), (2,0) and (3,0) RRMF curves with non—primitive hodographs.
The study of RRMF curves of type (n,0) with n > 3 with non—primitive

hodographs could be a subject of future investigation.
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