Παρούσα γνώση επί των Culicoides spp. (Οικογένεια Ceratopogonidae) στην Ελλάδα: η περίπτωση του καταρροϊκού πυρετού
Παρούσα γνώση επί των Culicoides spp. (Οικογένεια Ceratopogonidae) στην Ελλάδα - η περίπτωση του καταρροϊκού πυρετού

Μεταπτυχιακή εργασία

Δημητρίου Θεοδώρα-Αρτεμίς

Τριμελής επιτροπή

Εμμανουήλ Νικόλαος
Καθηγητής Γ.Π.Α

Παπαδούλης Γεώργιος
Καθηγητής Γ.Π.Α

Περδίκης Διονύσιος
Επίκουρος Καθηγητής Γ.Π.Α
Ευχαριστίες

Πρώτα απ’ όλα, θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή της μεταπτυχιακής μου εργασίας, κ. Νικόλαο Εμμανουήλ, για την άριστη συνεργασία, την στήριξη και την πολύτιμη βοήθειά του κατά την εκπόνηση της παρούσας μεταπτυχιακής εργασίας.

Επιπλέον, θα ήθελα να ευχαριστήσω τα μέλη της επιτροπής, τον καθηγητή κ. Παπαδούλη Γεώργιο και τον επίκουρο καθηγητή Περδίκη Διονύσιο.

Επιπλέον, ένα μεγάλο ευχαριστώ για την ολοκλήρωση της μελέτης πρέπει να δοθεί σεόσους συμμετείχαν και αφιέρωσαν πολύτιμο χρόνο για την απάντηση του ερωτηματολογίου. Επίσης, ένα μεγάλο ευχαριστώ στους κ. Στουραΐτη και κ. Μαγγανά, οι οποίοι είχαν όλη την καλή διάθεση να μας βοηθήσουν για την πραγματοποίηση των δοκιμών της παγίδας.

Τέλος, θα ήθελα να ευχαριστήσω την οικογένεια μου, τον Άγγελο και τους φίλους μου γιατί, χάρη στην αμέριστη συμπαράσταση και αγάπη τους, κατάφερα να πραγματοποιήσω και να ολοκληρώσω με επιτυχία τις μεταπτυχιακές μου σπουδές.
Περιεχόμενα

Περίληψη .. vi
Abstract .. viii
ΓΕΝΙΚΟ ΜΕΡΟΣ .. x
1. Συστηματική Ταξινόμηση των Culicoides ... 1
2. Μορφολογία .. 2
 2.1 Αυγό .. 2
 2.2 Προνύμφη ... 3
 2.3 Νύμφη .. 4
 2.4 Ακμαίο ... 5
 Κεφαλή ... 5
 Κοιλία ... 9
3. Βιολογία των Culicoides spp. ... 11
 3.1 Η διατροφή των Culicoides spp. ... 12
 3.2 Βιολογικός κύκλος ... 14
 3.3 Διασπορά (διάδοση) των Culicoides spp. .. 16
4. Εστίες και περιοχές αναπαραγωγής ... 17
5. Η επίδραση των Culicoides spp. στην υγεία των ανθρώπων και των ζώων .. 19
 5.1 Η επίδραση των Culicoides spp. στην υγεία των ανθρώπων ... 19
 5.2 Η επίδραση των Culicoides spp. στην υγεία των ζώων ... 20
6. Καταπολέμηση και έλεγχος των Culicoides spp. ... 26
7. Παγίδευση των Culicoides spp. ... 31
 7.1 Light traps-Φωτοπαγίδες ... 31
 7.1.1 Mosquito triple trap .. 35
 7.2 Truck-traps .. 36
 7.3 Animal bait-traps και Aspirators (Ζώα-δολώματα για παγίδευση και αναρροφητήρες) 37
8. Ταυτοποίηση των ειδών Culicoides spp. .. 39
 8.1 Μορφολογική ταυτοποίηση .. 39
8.2 Γενετική ταυτοποίηση .. 46

ΕΙΔΙΚΟ ΜΕΡΟΣ .. 47

Σκοπός της μελέτης .. 48

Επιζωτία καταρροϊκού πυρετού 2014 στην Ελλάδα .. 48

Παρουσία γνώση των Culicoides στην Ελλάδα .. 49

Υλικά και μέθοδοι .. 52

Επεξεργασία και ανάλυση των δεδομένων .. 55

Αποτελέσματα ... 56

Ανάλυση των απαντήσεων του ερωτηματολογίου .. 58

Συμπεράσματα-συζήτηση .. 85

Παραρτήματα .. 87

Παραρτήμα 1 .. 87

Παραρτήμα 2 .. 89

Παραρτήμα 3 .. 90

Παράρτημα 4 .. 93

Παράρτημα 5 .. 94

Βιβλιογραφικές αναφορές .. 100
Περίληψη

Στην παρούσα εργασία παρουσιάστηκαν δεδομένα συστηματικής μορφολογίας, βιολογίας, οικονομικής σημασίας και αντιμετώπισης των Culicoides spp. Ιδιαίτερη αναφορά έγινε στην παρούσα γνώση για τη γένος αυτό στην Ελλάδα, δεδομένου του αυξημένου αριθμού κρουσμάτων καταρροϊκού πυρετού που παρουσιάσθηκαν στην χώρα τα τελευταία χρόνια.

Για την συλλογή στοιχείων από τις αρμόδιες Δ.Α.Ο.Κ συντάχθηκε σχετικό ερωτηματολόγιο (11 ερωτήσεις). Το ποσοστό ανταπόκρισης ήταν περίπου 38% και παρουσίαζε ικανοποιητικό βαθμό αντιπροσώπευσης.

Παρουσιάστηκαν διαφορετικά ποσοστά προσβολής με καταρροϊκό πυρετό όσον αφορά τις προβατοτροφικές και τις βοοτροφικές μονάδες. Στις μεν τα ποσοστά προσβολής κυμάνθηκαν μέχρι το 20% σε ορισμένες Περιφερειακές ενότητες, στις δε το μέγιστο ποσοστό προσβολής δεν ξεπερνούσε το 2%. Η μεγαλύτερη προσβολή στις προβατοτροφικές μονάδες παρουσιάσε ο Νομός Δράμας και χωρίς ουσιαστικό ποσοστό προσβολής παρουσίασαν οι Νομοί Λασιθίου και Πρεβέζης.

Σημαντικό επιδημιολογικό στοιχείο για την εξάπλωση της ασθένειας είναι ότι δεν παρατηρήθηκε έξαρση καταρροϊκού πυρετού κατά την διάρκεια της άνοιξης σε καμία από τις περιφερειακές ενότητες. Αντίθετα, η εποχή εμφάνισης της ασθένειας παρατηρήθηκε με ποσοστό 58% το φθινόπωρο και 42% το θέρος.

Σε όλες τις Περιφερειακές ενότητες διενεργήθηκαν επεμβάσεις με εντομοκτόνα ύστερα από την έξαρση του καταρροϊκού πυρετού. Αναλυτικότερα, το 95% αυτών χρησιμοποίησαν εντομοκτόνα απευθείας στα ζώα κατά αποκλειστικά με πυρεθρινοειδή σκευάσματα. Σε μικρότερο ποσοστό πραγματοποιήθηκαν επιπρόσθετες επεμβάσεις και στις ποτίστρες των ζώων καθώς και στο χώρο που διαβιούν τα ζώα.

Η συλλογή και ταυτοποίηση των εντόμων-φορέων (Culicoides spp.) πραγματοποιήθηκε μόνο σε μια Περιφερειακή ενότητα (Νομός Λακωνίας).

Ενδιαφέρον παρουσιάζουν οι απαντήσεις των Δ.Α.Ο.Κ ως προς την αιτιολογία της εμφάνισης του καταρροϊκού πυρετού στις διάφορες Δ.Α.Ο.Κ.

Δεδομένης της σπουδαιότητάς της έγκαιρης σύλληψης των εντόμων Culicoides spp. με παγίδες, πραγματοποιήθηκαν σχετικές δοκιμές εμπορικής παγίδας που κυκλοφορεί στην Ελλάδα. Αν και η παγίδα αυτή δύναται να συλλέξει μικρού μεγέθους δίπτερα, κανένα άτομο Culicoides δεν βρέθηκε σε αυτές στην περιοχή των δοκιμών (σταβλικές εγκαταστάσεις, Κουβαράς, Αττικής) και για το χρονικό διάστημα Ιούλιος-Σεπτέμβριος 2015 γεγονός που ίσως αντανακλά τις ξηρές συνθήκες της περιοχής.

Λέξεις κλειδιά: Culicoides spp., Καταρροϊκός πυρετός, Επιζωοτία 2014, Δ.Α.Ο.Κ, Παγίδες
Abstract

This paper presents data on systematics, morphology, biology, economic importance and control of *Culicoides* spp. (Diptera: Ceratopogonidae). Particular reference was made in the present knowledge concerning this genus in Greece, given the increased number of cases of bluetongue disease that recently occurred in the country.

In order to collect data from the relevant Regional Agricultural and Veterinary services, a suitable questionnaire was formed (consisting of 11 questions) sent to those. The response rate was about 38% showed a sufficient degree of representation.

Different occurrence rates of disease were presented concerning the sheep and cattle units (herds). The former ranged up to 20% while the latter did not exceed the 2%. The greatest occurrence was recorded in Drama Prefecture where Lasithi and Preveza once did not reach a substantial rate.

A meaningful epidemiological fact in terms of the disease’s occurrence is that no outbreak was recorded during spring in any of the regions whereas, the disease was observed in a percentage of 58% during the fall and 42% during the summer.

In all regions affected, treatments with various insecticides were performed due to the outbreak of the bluetongue.

In detail, in 95% of these the pesticides applied directly to the animals and were solely with pyrethroids. In fewer cases additional insecticide applications were made in the animal drinking places as well as in stables.

Of particular interest were the answers given by Regional Agricultural and Veterinary services concerning the etiology of bluetongue appearance in each region.

Considering the importance of early captures of *Culicoides* spp. with traps, relevant tests were made using a cheap and easily available commercial trap, called Mosquito triple trap. Those tests were conducted in two sheep stables at Kouvaras, Attica during the period (July-September 2015). Although those traps with certain modifications were capable to collect small-sized Diptera, no single Culicoides specimen was found in the test areas. This may reflect to the dry conditions prevailed at the region.

Word-keys: Culicoides spp., Bluetongue disease, Epizootic 2014, Regional Agricultural and Veterinary services, Traps
ΓΕΝΙΚΟ ΜΕΡΟΣ
1. Συστηματική Ταξινόμηση των Culicoides
Το γένος Culicoides με το κοινό όνομα σκνίπες περιλαμβάνει περί τα 1340 είδη, τα οποία είναι διαφορεμένα σε πολλά υπογένη (Παράρτημα 1). Η συστηματική ταξινόμηση του γένους αυτού είναι η ακόλουθη:

- Βασίλειο: Animalia
- Φύλο: Arthropoda
- Κλάση: Insecta
- Υπόκλαση: Pterygota
- Ομάδα: Endopterygota
- Τάξη: Diptera
- Υπόταξη: Nematocera
- Οικογένεια: Ceratopogonidae
- Υποοικογένεια: Ceratopogoninae
- Φυλή: Culicoidini

Από τα περιγραφέντα είδη, τα 39 ανήκουν σε απολιθώματα σε κεχριμπάρι από την περιοχή της Βαλτικής. Εμφάνιζαν παρόμοια στοματικά μόρια με τα σύγχρονα είδη, πράγμα που σημαίνει ότι το γένος έχει προσαρμοσθεί να τρέφεται με αίμα για περισσότερα από 90 εκατομμύρια χρόνια.

Η γεωγραφική εξάπλωση των ειδών του γένους Culicoides αφορά όλον τον κόσμο εκτός από την Ανταρκτική και την Νέα Ζηλανδία.

Είναι ιδιαίτερα μελετημένο γένος και απασχολεί όχι μόνο την επιστημονική κοινότητα αλλά κυρίως τους κτηνοτρόφους, καθώς είδη του μεταδίδουν σημαντικά νοσήματα στα ζώα με αποτέλεσμα να μειώνεται η παραγωγή. Μεταδίδουν επίσης σημαντικά νοσήματα στους ανθρώπους που οφείλονται σε πρωτόξωμα, έλμινθες και ιούς.
2. Μορφολογία

2.1 Αυγό

Το αυγό των εντόμων του γένους *Culicoides* είναι επίμηκης με σχήμα κυρτό σαν μπανάνα και οξείες άκρες. Η επιφάνεια των αυγών συνήθως είναι λεία ενώ σε ορισμένα είδη εμφανίζονται χαρακτηριστικά επάρματα με επαναλαμβανόμενη ή μη σχεδίαση.

Τα αυγά των ως άνω ειδών έχουν επιφάνεια που εμφανίζουν επάρματα σε αντίθεση με το *C. molestus* (Cribb, 1998). Η μορφολογία των αυγών ίσως υποδεικνύει την τοποθεσία ωοτοκίας του είδους. Ο Kariya (Kariya et al., 1989) πρότεινε ότι η μορφολογία του αυγού και συγκεκριμένα η τραχύτητα της επιφάνειας του συνδέεται με το ενδιαίτημα του είδους. Συγκεκριμένα, αυγά τα οποία είχαν επαναποθητεθεί σε ξηρές εστίες όπως σε χωνεμένη κοπριά, εμφάνιζαν διάσπαρτα επάρματα στην επιφάνεια τους (Kariya et al., 1989) τα οποία ίσως βοηθούσαν στην συγκράτηση της υγρασίας.

Το χρώμα των αυγών είναι καλυμμένο με λεπτή στρώση κόλλας, η οποία συγκρατεί τα αυγά μεταξύ τους αλλά και με το υπόστρωμα ωοθεσίας (Day et al., 1997)

Το μήκος τους κυμαίνεται από 278 έως 460 μμ. Ο χρωματισμός των νεοαποτιθέντων αυγών είναι συνήθως ωχρός, και γίνεται σκούρο γκρι έως καφέ μέσα σε σύντομο χρονικό διάστημα μετά την ωοτοκία όταν εκτεθούν στον ατμοσφαιρικό αέρα. Στο πρόσθιο άκρο των αυγών περιέχεται μεγάλος αριθμός μικρών πόρων για την ανταλλαγή αερίων (Day et al., 1997).

Το στάδιο του αυγού είναι το λιγότερο μελετημένο στον βιολογικό κύκλο των *Culicoides*. Περισσότερες έρευνες θα μπορούσαν να αποκαλύψουν φυλογενετικές και οικολογικές πληροφορίες για τα διάφορα είδη. Παρόλα αυτά δεν μπορεί χρησιμοποιηθεί ως διαγνωστικό χαρακτηριστικό για τον διαχωρισμό των ειδών.

Στην εικόνα 1, παρουσιάζεται το πλευρικό πρόσοψη του αυγού *Culicoides imicola* - 50 μμ. (Day et al., 1997).
2.2 Προνύμφη

Οι προνύμφες είναι κυλινδρικές και επιμήκες. Το στάδιο της προνύμφης ολοκληρώνεται 4 ηλικίες οι έχουν κοινά χαρακτηριστικά ενώ διαφέρουν μόνο στο μέγεθος.

Η μορφολογία των προνυμφών υποδεικνύει στοιχεία που σχετίζονται με το ενδιαίτημα τους. Τέτοια μορφολογικά χαρακτηριστικά είναι ο χρωματισμός του θώρακα και η παρουσία ή ό,τι πριν είναι στο στάδιο τμήμα τους.

Ορισμένες είδη δεν διαθέτουν τρίχες στο σώμα τους ενώ παράλληλα είναι λεπτομερές για να διευκολύνει η κίνηση τους μέσα στο νερό ή σε σπυρίδιτη υλικό διαβιού (υδρόβιες). Αρχικά το μήκος τους κυμαίνεται περίπου στο 1 mm και μόλις ολοκληρώσουν την ανάπτυξή τους (4 προνύμφικες ηλικίες) φτάνουν στα 5-7 mm. Είναι διάφανους όταν έχουν μόλις εκκολαφθεί ενώ οι άμεσες προνύμφες έχουν λευκό χρωματισμό σώματος με κίτρινη κεφαλή.

Είναι ευκέφαλες με 3 θωρακικά και 9 κοιλιακά τμήματα. Όλα τα τμήματα είναι καλώς διαχωρισμένα. Φέρουν ζέυγη τραχειών και η αναπνοή πραγματοποιείται δια του επιδερματίου.

Το πιο χαρακτηριστικό τμήμα στην κεφαλή της προνύμφης είναι ο επιφάρυγγας ο οποίος μαζί με τον υποφάρυγγα χρησιμοποιείται για την επεξεργασία (σύνθλιψη) της τροφής (Kettle et al., 1952). Στο στάδιο τμήμα εμφανίζονται κοντές ή μακριές τρίχες οι οποίες διευκολύνουν την κίνηση του σώματος καθώς και την σύλληψη τροφής.
2.3 Νύμφη
Η νύμφη έχει μήκος 2-4 mm και μοιάζει με τις νύμφες των υπόλοιπων εντόμων της υπόταξης Nematocera. Το σχήμα της είναι κυρτό με ανοιχτό καφέ έως μαύρου χρώματος σώμα. Τα περισσότερα είδη είναι υδρόβια, καστανού χρώματος και έχουν την δυνατότητα να κινούνται. Η νύμφη του υπογένους Avaritia, επειδή δεν έχει την ικανότητα να επιπλέει στην επιφάνεια του νερού βυθίζεται και πνίγεται σε αυτό (Nevill et al., 2007).

Τα μέρη που απαρτίζουν τις νύμφες των Culicoides είναι τα εξής: 1. η κεφαλή 2. ο θώρακας 3. η κοιλία. Στις εικόνες 5 έως 9 παρουσιάζονται τα τμήματα της νύμφης.

Η κεφαλή είναι μικρή και συγχωνευμένη με τον θώρακα. Φέρει ένα ζευγάρι προθωρακικών προεκβολών (κεράτιων) (Εικόνα 9) με τις οποίες αναπνέει η νύμφη. Τα προθωρακικά κεράτια έχουν επιφάνεια καλυμμένη με φολίδες. Αυτό είναι χαρακτηριστικό προσαρμογή των νυμφών σε συγκεκριμένα περιβάλλοντα (Fox, 1942). Η κοιλία είναι επιμήκης, χωρισμένη σε τμήματα και καταλήγει σε δυο άκανθες.

http://www.waterbugkey.vcsu.edu/php/genuskey.php?idnum=7&o=Ceratopogonidae1L&type=genus
2.4 Ακμαίο
Τα ακμαία είναι μικροσκοπικά και λεπτά έντομα μεγέθους 1-3 mm. Εμφανίζουν σεξουαλικό διμορφισμό.

Το σώμα τους διακρίνεται σε κεφαλή, θώρακα και κοιλία.

Κεφαλή
Η κεφαλή είναι ημισφαιρική με το πρόσθιο μέρος της περιοσότερο επίπεδο από το οπίσθιο (post-occupit) το οποίο είναι ευρύ. Το πάνω μέρος της κεφαλής (vertex: κορυφή) είναι αδιαφοροποιητό με διάσπαρτες τρίχες.

Φέρει ένα ζευγάρι εξογκωμένων σύνθετων οφθαλμών νεφροειδούς σχήματος το οποίο είναι ελαφρώς διαχωρισμένο, ενώ παράλληλα ο βαθμός διαχωρισμού του μπορεί να χρησιμοποιηθεί ως διαγνωστικός χαρακτήρας μεταξύ των ειδών. Μεταξύ των οφθαλμών, σε ορισμένα είδη υπάρχει μια μετωπική ραφή η οποία είναι απουσία από πολλά είδη (Battle et al., 1971). Το οματίδιο (ocelli) είναι φτωχά ανεπτυγμένο ενώ σε ορισμένες συγγενείς οικογένειες απουσιάζει πλήρως όπως για παράδειγμα στις οικογένειες της υποτάξης Culicomorpha (Wood et al., 1989). Οι βάσεις των κεραίων βρίσκονται στο πάνω μέρος της κεφαλής ενώ η περιοχή της κεφαλής που ονομάζεται επιστόμιο (λατινικά:clypeus) είναι κυρτή και διογκωμένη.
Τα στοματικά τους μόρια είναι νύσσοντας μυζητικού τύπου και πολύ καλά ανεπτυγμένα. Τα θηλυκά έχουν σαρκώδες το όνω χείλος.

Οι κεραίες των Culicoides προσφέρουν ταξινομικές, φυλογενετικές και οικολογικές πληροφορίες. Η κεραία αποτελείται από τρία τμήματα: την βάση (basal), το πρώτο μέρος της κεραίας (σκάπος: scape) το οποίο συνήθως αποκρύπτεται από το δεύτερο τμήμα της (μίσχος: pedicel), το οποίο είναι ιδιαίτερα μεγάλο στα αρσενικά και φέρει το αισθητήριο όργανο του Johnston και τέλος το μαστίγιο (flagellum), το οποίο αποτελείται από 13 τμήματα (flagellomeres) με διαφορετικά μήκη το κάθε τμήμα, τα οποία φέρουν τρίχες και διάφορα αισθητήρια όργανα.

Παρατηρείται σεξουαλικός διμορφισμός στις κεραίες των Culicoides. Διάφορα αισθητήρια οργανίδια με διάφορες ονομάσιες (sensilla chaetica, sensilla trichodea, sensilla basiconica, sensilla coeloconica, sensilla ampullaceal) υπάρχουν στις κεραίες και των δυο φύλων

Ένα σημαντικό διαγνωστικό χαρακτηριστικό με βάση τα αισθητήρια οργανίδα των κεραίων είναι ότι τα είδη τα οποία φέρουν το αισθητήριο οργανίδιο sensilla coeloconica στο 8-13 τμήμα του μαστιγίου τους είναι συνήθως ορνιθόφιλα είδη, ενώ αυτά που το φέρουν στο τμήμα 4-6 προτιμούν συνήθως θηλαστικά (Jammback, 1965). Το αισθητήριο οργανίδιο ανταποκρίνεται στις αλλαγές του περιβάλλοντος δηλαδή αντιδρά στις μεταβολές του CO2 και τις μεταβολές της υγρασίας του ατμοσφαιρικού αέρα(Wirth, 1978).

Δεν είναι πλήρως γνωστή η λειτουργία όλων των αισθητήριων οργανιδίων. Συγκεκριμένα, για το αισθητήριο οργανίδιο sensilla ampullaceal δεν είναι γνωστή η λειτουργία του, καθώς είναι δύσκολη η παρατήρηση του σε οπτικό μικροσκόπιο.

Εκατέρωθεν της προβοσκίδας, βρίσκονται οι κάτω γναθικές προσακτρίδες (maxillary palps) οι οποίες αποτελούνται από 5 επιμέρους τμήματα. Στα θηλυκά, το τρίτο τμήμα της προσακτρίδας είναι μεγαλύτερο και περισσότερο ανεπτυγμένο. Διαθέτουν μεγάλο αριθμό αισθητήριων οργανιδίων.

Τα στοματικά μόρια των Culicoides αποτελούνται από το άνω χείλος (labrum), άνω γνάθοι (mandibles), υποφάρυγγα (hypopharynx), εσωτερικούς λοβούς της κάτω γνάθου (laciniae of the maxilla) και κάτω χείλος (labium).

Η δομή των στοματικών μορίων παρέχει πολλές οικολογικές πληροφορίες. Στα είδη, τα οποία δεν νύσσουν απουσιάζουν τα εξής στοματικά εξαρτήματα: άνω χειλικές (labral), άνω γναθικές (mandibular), υποφαρυγγικές (hypopharyngeal) και κάτω γναθικές οδοντώσεις (lacinial teeth). Επιπλέον, το άκρο του άνω χείλους είναι σαρκώδες και όχι έντονα χιτινισμένο (Jammback, 1965). Οι οδοντώσεις της κάτω γνάθου μπορούν να χρησιμοποιηθούν για να προσδιορίσουν τον ξενιστή από τον οποίον τρέφονται τα Culicoides. Ελάχιστα είδη τρέφονται αποκλειστικά με ασπόνδυλους ξενιστές. Τα είδη αυτά διαθέτουν μεγάλες, ογκώδεις οδοντώσεις σε αντίθεση με τα είδη που τρέφονται με σπονδυλωτά (Borkent, 1995)

Εικόνα 12 Τμήμα κεραίας Παρουσία sensilla coeloconica στο XII, XIV και XV

Εικόνα 13 Απουσία άνω και κάτω γνάθου

Θώρακας

Ο θώρακας αποτελείται από τους σκληρίτες και από διάφορα προσαρτημένα εξαρτήματα (πόδια, πτέρυγες και αλτήρες) του προθώρακα, του μέσοθώρακα και του μεταθώρακα. Είναι κυρτός και προβάλλει πάνω από την κεφαλή (Χειμωνάς, 1974). Φέρει μαύρα στίγματα τα οποία είναι χαρακτηριστικά κάθε είδους. Το πρόνωτο (scutellum) είναι καλυμμένο από τρίχες ενώ το μετάνωτο (post-scutellum) είναι τοξωτό και γυμνό. Οι πλευρικές περιοχές δεν είναι καλυμμένες με τρίχες και αποτελούνται από αριθμό σκληριτών.

Τα πόδια είναι λεπτά. Αποτελούνται από το ισχίο (coxa), τροχαντήρα (trochanter), μηρός (femur), κνήμη (tibia), βασιταρσός (basitarsus) και ταρσός (tarsus). Ο τελευταίος δευτερευόντως χωρίζεται σε τέσσερα ταρσομερή με το τέταρτο τμήμα να φέρει ένα ξεύγος ονύχων. Ο μηρός είναι περισσότερο διογκωμένος. Όλο το πόδι είναι καλυμμένο από ακανθώδεις τρίχες. Η κνήμη του πρόσθιου και οπίσθιου ποδιού φέρουν εξαρτήματα για τον καθαρισμό (Linley et al., 1974).

Εικόνα 14 Παρουσία mandibles and maxilla

Οι πτέρυγες είναι μικρές, σχετικά πλατιές και καλύπτονται από σμήριγγες και από μικροσκοπικές τρίχες. Οι μορφολογία των κηλίδων που σχηματίζονται από τις τρίχες αυτές των πτερύγων αποτελούν το
βασικότερο στοιχείο στην ταυτοποίηση των ειδών (σελ.39). Τα σχέδια αυτά είναι αποτέλεσμα του μήκους και της πυκνότητας των τριχών στις επιφάνειες των πτερύγων (Blanton et al., 1979).

Όταν το έντομο αναπαύεται, οι πτέρυγες διπλώνουν σε επίπεδο πάνω από το σώμα τους, όπως οι λεπίδες του ψαλιδιού και προεκτείνονται πάνω από το μεγαλύτερο μέρος της κοιλίας (H.F. Van Emden, 2014)

Εικόνα 16 Χαρακτηριστική πτέρυγα C. Imicola8

Κοιλία
Η κοιλία αποτελείται από 10 τμήματα, με τα τμήματα II-IV να φέρουν αναπνευστικά τρήματα(Downes et al., 1981). Οι τεργίτες είναι καλά ανεπτυγμένοι σε σχέση με τους στερνίτες. Οι διατμηματικές μεμβράνες της υπεζοκώτας περιοχής δίνουν την δυνατότητα στα Culicoides να διαστέλλονται κατά την διάρκεια ενός γεύματος και κατά την ωογένεση.

Η κοιλία του ενήλικου θηλυκού είναι ευρεία και στενεύει προς το οπίσθιο μέρος ενώ του αρσενικού καταλήγει σε ένα ζεύγος οργάνων συγκράτησης με τα οποία χρησιμοποιούν για τη σύζευξη.

Τα εξωτερικά χαρακτηριστικά του θηλυκού γεννητικού συστήματος περιλαμβάνουν ένα ζεύγος γοναποφύσεων που βρίσκονται στον τεργίθη VII και ένα ζεύγος καλά ανεπτυγμένο ζεύγος αρθωτών κέρκων. Στα εσωτερικά χαρακτηριστικά περιλαμβάνονται οι σπερματοθήκες, ο αριθμός των οποίων διαφέρει στα διάφορα είδη του γένους.

Στα αρσενικά γεννητικά όργανα εμφανίζεται ο τεργίτης και ο στερνίτης IX συγχωνευμένα με ένα ζεύγος γοναποφύσεων, το οποίο χρησιμεύει να συγκρατεί το θηλυκό κατά την διάρκεια της σύζευξης.

3. Βιολογία των Culicoides spp.

Τα είδη του γένους Culicoides μπορούν να αποικίσουν στις περιοσότερες περιοχές του πλανήτη με εξαίρεση την περιοχή των πόλων, της Νέας Ζηλανδίας και της Ανταρκτικής (Borkent, 2004).

Όλα τα είδη είναι ολομετάβολλα και τα ενήλικα θηλυκά απαιτούν ένα πλούσιο γεώμα αίματος για την ωρίμανση των ωραίων τους. Υπάρχουν υστώδι είδη τα οποία είναι αυτόγονα, δηλαδή δεν απαιτούν αίμα για την πρώτη ωοτόκια τους όπως συμβαίνει στο C. warangi (Dyce et al., 1967) και στο C. barbosi (Kettle, 1969).

Η συντριπτική πλειονότητα των ειδών χρειάζονται αίμα για την ολοκλήρωση του βιολογικού τους κύκλου και στους ξενιστές περιλαμβάνονται τα θηλαστικά και πτηνά (Mellor et al., 2000). Παρόλα αυτά ένα ιδιαίτερα μικρό ποσοστό ειδών έχει ως αποκλειστικό ξενιστή τον άνθρωπο (Carpenter et al., 2013).

Τα περιοσότερα είδη παρουσιάζουν μια γενικά κατά τη διάρκεια της διάρκειας ένος έτους ενώ ορισμένα είδη σε συγκεκριμένες περιβαλλοντικές συνθήκες μπορούν να έχουν περιοσότερες γενιές.

Η διάρκεια ζωής των ακμαίων Culicoides είναι μικρή και μπορούν να επιζήσουν από 10 μέχρι 20 ημέρες. Περιστασιακά, μπορούν να ζήσουν και για μεγαλύτερες χρονικές περιόδους από 44 έως 90 μέρες.

Το μεγαλύτερο ποσοστό των Culicoides είναι ενεργό κατά το σούρουπο και τις πρώτες πρωϊνές ώρες (Blanton, 1979)

Ορισμένοι παράγοντες καθορίζουν την διακύμανση και την εξάπλωση του πληθυσμού των Culicoides. Αρχικά, σημαντική επίδραση έχει η θερμοκρασία του ατμοσφαιρικού αέρα. Είχε παρατηρηθεί σημαντική συσχέτιση μεταξύ της θερμοκρασίας αυτής και της δραστηριότητας των ειδών, της επιβίωσης των προνυμφικών σταδίων καθώς και της θνησιμότητας των ενήλικων έως σε εργαστηριακές συνθήκες και σε μελέτες πεδίου (Doninck, 2014). Με βάση τα αποτελέσματα μελέτης, έχει παρατηρηθεί ότι με την αύξηση της θερμοκρασίας, μειώνονταν ο χρόνος που χρειαζόταν να παραχθεί μια νέα γενεά. Συγκεκριμένα, για το είδος C. imicola η θήλυκα χρειάζονταν 34-56 μέρες στην θερμοκρασία 20°C, 15-21 μέρες σε θερμοκρασία 25°C και 11-16 μέρες σε θερμοκρασία 28°C από την πρώτη φορά που τράφηκαν με αίμα μέχρι την παραγωγή νέας γενεάς (Veronesi et al., 2009).

Το γεγονός της συσχέτισης αύξησης της θερμοκρασίας και διασποράς των Culicoides αποτελεί η εμφάνιση του καταρροϊκού πυρετού στην Μεσόγειο ύστερα από την επιζωοτία του 1998. Τα χαμηλότερα ορία κατανομής του C. imicola μέχρι το 1998 ήταν η Αλγερία, η Λιβύη και η Τουρκία. Θεωρείται ότι πριν από αυτή την αύξηση της θερμοκρασίας του πλανήτη τα όρια κατανομής μετατέθηκαν βορειότερα με αποτέλεσμα να ανακύψει το πρόβλημα του καταρροϊκού πυρετού και στην Μεσόγειο. Η υπόθεση αυτή δεν είναι πλήρως αποδεδειγμένη καθώς θεωρείται ότι οι φορείς του καταρροϊκού πυρετού υπήρχαν και πριν το 1998 στην Μεσόγειο αλλά δεν υπήρχε ενταντική δειγματοληψία για να εξακριβωθεί.
Μια δεύτερη σημαντική μεταβλητή η οποία επηρεάζει την εξάπλωση και την δυναμική του πληθυσμού είναι η υγρασία του εδάφους, εφόσον ένα μέρος του βιολογικού κύκλου των Culicoides ολοκληρώνεται στο ανώτερο στρώμα του εδάφους, με τις μεγαλύτερες συγκεντρώσεις ατελών σταδίων στα πρώτα 5 cm.

Τέλος, άλλοι σημαντικοί παράγοντες είναι η ταχύτητα του ανέμου, οι φυσικοχημικές ιδιότητες του εδάφους και η διαθεσιμότητα των ξενιστών οι οποίοι επηρεάζουν την αφθονία, την εποχικότητα και την διάρκεια ζωής των Culicoides.

Οι σκνίπες αυτές χρησιμοποιούν διάφορα ερεθίσματα για να εντοπίσουν τους ξενιστές τους. Το πιο σημαντικό ερέθισμα είναι η έκλυση διοξείδιου του άνθρακα. Καθώς το σπονδυλωτό εκπνέει, απελευθερώνεται διοξείδιο του άνθρακα με αποτέλεσμα να διεγείρεται το θηλυκό Culicoides και να κατευθύνεται προς τον ξενιστή (Bhasin et al., 2000).

3.1 Η διατροφή των Culicoides spp.
Τα ενήλικα θηλυκά Culicoides spp. τρέφονται από ένα μεγάλο εύρος οικόσιτων αλλά και άγριων ζώων -ξενιστών. Μελέτες κατέδειξαν ότι ορισμένα είδη Culicoides όπως το C. kibunensis φέρουν ως μοναδικό ξενιστή την κατεργασία του αιμοθηλυκού ενώ άλλα είδη ειδικεύονται στην παρεξονομή σαφές θηλυκό (π.χ C. dewulfi). Παρόλα αυτά υπάρχουν είδη με ευρύ φάσμα ξενιστών και τα οποία δεν μπορούν να ταξινομηθούν αποκλειστικά στις παραπάνω κατηγορίες όπως για παράδειγμα το C. obsuletus (Santiago-Alarcon et al., 2012).

Ο Meiswinkel και οι συνεργάτες του περιέγραφαν ότι τα είδη C. brevitarsis και C. dewulfi ότι μόνο τρέφονται από τις αγελάδες και τα άλλα χρησιμοποιούν και τα κόπρα τους για την οικονομία τους. Έχει αποδειχθεί ότι τα κοινά είδη Culicoides όπως το C. imicola, C. brevitarsis και το C. obsoletus τα οποία μπορούν να μεταδώσουν και σημαντικές ασθένειες έχουν ευρύ φάσμα εντομών αλλά παρουσία ιοβάτων και βοοειδών έχουν προτίμηση στους παραπάνω δύο ξενιστές (Bishop, 2015;Dzhafarov, 1964).

Στην Δανία αναλύθηκαν τα γεύματα διαφόρων ειδών Culicoides και εξήλθαν τα παρακάτω αποτελέσματα (Lassen et al., 2012).
Εικόνα 22 Διατροφικές συνήθειες Culicoides spp. στην Δανία (Lassen et al., 2012)

Παρατηρείται από την εικόνα 22 ότι τα περισσότερα είδη Culicoides προτιμούν ως κύριο ξενιστή τους τα βοοειδή. Πέντε είδη Culicoides τρέφονται και με αίμα ανθρώπου ενώ αποδείκνυται και από την μελέτη αυτή ότι το C. obsoletus έχει ευρύ φάσμα ξενιστών.

Ο ρυθμός διατροφής των ενήλικων εντόμων είναι μια φορά κάθε 3-5 ημέρες (Bravemann, 1988). Έχει υπολογιστεί ότι το C. obsoletus τρέφεται κάθε 4-4,9 ημέρες, ενώ το C. imicola κάθε 3,3-4,6 ημέρες (Braverman et al., 1985).

Η διάρκεια του γεύματος κυμαίνεται μεταξύ 4-8 λεπτών (Dzhafarov, 1964). Η ποσότητα του αίματος κάθε γεύματος διαφέρει ανάλογα με το είδος του εντόμου και εξαρτάται από το μέγεθος του. Μία ενδεικτική ποσότητα αίματος 0,03 μ (Muller et al., 1982)
3.2 Βιολογικός κύκλος

Όπως αναφέρθηκε ο βιολογικός κύκλος των *Culicoides* spp. περιλαμβάνει: το αυγό, τέσσερις προνυμφικές ηλικίες, τη νύμφη, το ακμαίο

![Culicoides life cycle](image)

Εικόνα 23 Βιολογικός κύκλος *Culicoides* spp. (Purse et al., 2005)

Για την ωρίμανση των ωοθηκών τους τα θηλυκά κατά κανόνα ένα πλούσιο γεύμα και για την ανάπτυξη περίπου 30 εως 450 ωών.

Πολλές εργαστηριακές μελέτες έχουν γίνει για τον καθορισμό του χρόνου εκκόλαψης των προνυμφών. Στον παρακάτω πίνακα αναφέρονται είδη *Culicoides* και ο χρόνος εκκόλαψης των προνυμφών μετά την ωοτοκία.

<table>
<thead>
<tr>
<th>Είδος</th>
<th>Έναρξη εκκόλαψης μετά την ωοτοκία</th>
<th>Θερμοκρασία</th>
<th>Μελέτη</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. obsoletus</td>
<td>30 ώρες</td>
<td>Απροσδιόριστη</td>
<td>Hill, 1947</td>
</tr>
<tr>
<td>C. varripenis</td>
<td>3 ημέρες</td>
<td>22°C</td>
<td>Mulleus et al., 1982</td>
</tr>
</tbody>
</table>

Η ωοτοκία των *Culicoides* spp. σπανίως έχει παρατηρηθεί στην φύση. Ο Meiswinkel και οι συνεργάτες του, παρατήρησαν θηλυκά *Culicoides* να ωοτοκούν σε νωπή κοπριά ελεφάντων (Meiswinkel et al., 1994).

Η προνύμφη του γένους *Culicoides* είναι υδρόβια και ζει συνήθως στο έδαφος. Άλλα ενδιαιτήματα στα οποία αναπτύσσονται οι προνύμφες είναι η λάσπη, η άμμος, η κοπριά και εδάφη καλυμμένα με ώμη. Η
προνύμφη 1η ηλικίας εκκολάπτεται σε 4-5 ημέρες σε θερμοκρασία 25\degree C. Έχει παρατηρηθεί ότι στο C. grisescens, η προνύμφη 1η ηλικίας εκκολάπτεται 7-8 μήνες μετά την ωοτοκία. Τρέφονται με βακτήρια, φύκη και μύκητες ενώ άλλα είδη είναι σαρκοφάγα και τρέφονται με μικροοργανισμούς και νηματώδεις όπως το C. furens (Hill, 1947). Η διάρκεια των τεσσάρων προνυμφικών ηλικιών διαφοροποιείται ανάλογα με το είδος και τις περιβαλλοντικές συνθήκες και διαρκεί από 4-5 μέρες έως και μερικές εβδομάδες (Meiswinkel, 1989).

Το μεγαλύτερο μέρος της ζωής των σκνιπών αυτών αποτελεί το προνυμφικό στάδιο καθώς στο στάδιο αυτό διαχειμάζει. Η διαχείμανση μπορεί να διαρκέσει 2 έως 3 εβδομάδες για το C. brevitarsis, 21 ημέρες για το C. imicola (Veronesi, 2009) και σχεδόν 1 χρόνο για το C. impunctatus. Η διάρκεια αυτή φαίνεται να επηρεάζεται αποκλειστικά από την πτώση της θερμοκρασίας και την διάρκεια της φωτόφασης και της σκοτόφασης. Το τέλος του προνυμφικού σταδίου ολοκληρώνεται με την αύξηση των θερμοκρασιών με αποτέλεσμα την ανάπτυξη του επόμενου σταδίου. Οι άριστες θερμοκρασίες για την ανάπτυξη των προνυμφών διαφέρουν στα διάφορα είδη και εξαρτάται από το περιβάλλον στο οποίο διαβιούν.

Για το νυμφικό στάδιο οι πληροφορίες είναι ιδιαίτερα μικρές. Μια μόνο εργασία αναφέρει διάρκεια ζωής 2 ημερών έως και 4 εβδομάδες (Kettle, 1990)

Η διάρκεια ζωής των ενηλίκων είναι λίγο μεγαλύτερη. Η διάρκεια ενηλικίων διαρκεί λίγες εβδομάδες έως και μερικούς μήνες. Το C. soronensis επέζησε για 28 ημέρες σε συνθήκες εργαστηρίου σε θερμοκρασία 30\degree C (Lysyk, 2007). O Boorman ανέφερε ότι σε συνθήκες εργαστηρίου το C. obsuletus επέζησε μέχρι 90 ημέρες (Boorman, 1991) και το C. brevitarsis μόλις 8,6 ημέρες (Kettle, 1975).

Η διαδικασία της σύζευξης των Culicoides είναι γνωστή για μερικά μόνο είδη. Για να επιτευχθεί η σύζευξη των ενήλικων, θα πρέπει να προηγηθεί ένα μικρό διάστημα ώστε αυτά να ωριμάσουν σεξουαλικά.

Η σύζευξη πραγματοποιείται με τη δύση του ηλίου όπου τα θηλυκά εισέρχονται στις περιοχές συγκέντρωσης (σμήνη) των αρσενικών και εκεί πραγματοποιείται η σύζευξη (Nielsen et al., 1975). Το είδος C. muleus πραγματοποιεί την σύζευξη στο έδαφος χωρίς να είναι απαραίτητη η ύπαρξη δημιουργίας σμηνών αρσενικών (Linley et al., 1972).

Όπως αναφέρθηκε, τα θηλυκά τρέφονται με αίμα αλλά επισκέπτονται και τα άνθη για να συλλέξουν νέκταρ. Πηγή ενέργειας για τα αρσενικά Culicoides αποτελεί μόνο το νέκταρ.
3.3 Διασπορά (διάδοση) των *Culicoides* spp.

Η διασπορά των εντόμων είναι δυνατή με δυο τρόπους (Sellers, 1992):

1. με την πτήση των ίδιων των εντόμων, η οποία πραγματοποιείται προς όλες τις κατευθύνσεις αλλά μόνο για κοντινή απόσταση και χωρίς την βοήθεια του ανέμου

2. με την πτήση των ίδιων των εντόμων αλλά και με την βοήθεια του ανέμου (αερογενώς) με αποτέλεσμα να απομακρύνονται 100km μακρύτερα από την αρχική τους θέση

Η πρώτη κατηγορία αναφέρεται και ως μικρής εμβέλειας διασπορά. Απουσία ανέμου ή με ταχύτητα ανέμου μικρότερη από 2 m/s, τα έντομα μπορούν να πετάξουν χωρίς βοήθεια για να καλύψουν τις ανάγκες τους, δηλαδή την εύρεση ξενιστή και την κατάλληλη θέση ωοτοκίας. Δεν υπάρχει ανάγκη να διανύσουν μεγάλες αποστάσεις. Συνήθως απομακρύνονται μέχρι 2km από την θέση νύμφωσης τους (Lillie, 1981). Ο Kettle (1951) παρατήρησε στο *C. impunctatus* ότι απομακρύνονταν από την εστία αναπαραγωγής 75 m ενώ σε περιοχή με ανοιχτό χώρο και χωρίς την παρουσία δέντρων η απόσταση αυξανόταν κατά 30 m. Τα *Culicoides* συνήθως πετούν κοντά στην επιφάνεια του εδάφους, όπου η ταχύτητα του ανέμου είναι μικρή και τα έντομα μπορούν να πετάξουν και να επιτελέσουν τις λειτουργίες τους χωρίς να παρασύρονται από τον άνεμο (Elbers et al., 2015).

Η δεύτερη κατηγορία αναφέρεται και ως μεγάλης εμβέλειας διασπορά. Τα έντομα διασπείρονται αρκετά χιλιόμετρα μακριά από την αρχική τους θέση και αυτό αποδίδεται στην παθητική μεταφορά τους μέσω του ανέμου. Ο Murray (1987) τοποθέτησε παγίδες σε ύψος 2m, 4m και 6 m από το έδαφος και συνέλεξε μεγάλο αριθμό *C. brevitarsis* στην παγίδα που βρισκόταν 6m από το έδαφος. Το αποτέλεσμα της έρευνας επιβεβαίωσε την θεωρία για δυνατή μεταφορά των *Culicoides* με τον άνεμο.

Μελέτες αποδεικνύουν ότι τα έντομα αυτά έχουν την ικανότητα να διατηρήσουν μια συγκεκριμένη πορεία μέσα στον δυνατό άνεμο και να προσεγγίσουν το έδαφος χωρίς να μειώνεται η ικανότητα τους να μεταδίδουν νοσήματα (Sanders et al., 2011).

Η διάδοση είναι ένα ιδιαίτερα σημαντικό επιδημιολογικό χαρακτηριστικό, καθώς μπορεί να προβλεφθεί και να προληφθεί μια πιθανή έξαρση επιδημίας με τα κατάλληλα προληπτικά μέτρα. Για τον λόγο αυτό, σημαντική στροφή των ερευνών δίνεται για την δημιουργία μοντέλων πρόβλεψης της διασποράς του εντόμου με τις υπάρχουσες περιβαλλοντικές συνθήκες.
4. Εστίες και περιοχές αναπαραγωγής

Οι περιοχές αναπαραγωγής των ειδών του γένους Culicoides έχουν λίγο μελετηθεί. Μπορούν να αναπαράγονται σε εδάφη με ευρύ φάσμα συνθηκών με την προϋπόθεση αυτά να είναι υγρά και ιδιαίτερα οργανικά για να επιτρέπεται η ανάπτυξη των προνυμφικών ηλικιών (Kettle, 1962).

Όσον αφορά το ποσοστό υγρασίας που χρειάζονται διαφέρει στα διάφορα είδη Culicoides. Ως παράδειγμα, υπάρχουν είδη που αναπτύσσονται μέσα στο νερό (Debeinham, 1989) ενώ έχουν καταγραφεί είδη που δεν μπορούν να κολυμπήσουν με αποτέλεσμα να αναπτύσσονται σε εδάφη πιο συνεκτικά και με χαμηλότερο ποσοστό υγρασίας (Nevill, 1967).

Η ποικιλία των περιοχών διαφέρει ως προς την κοκκομετρική τους σύσταση (αμμώδη έως πηλώδη), ως προς τα διαφορετικά επίπεδα αλατότητας, αλκαλικότητας και οξύτητας. Το C. obsoletus προτιμά εδάφη με μεγάλη αναλογία C:N, το οποίο αντικατοπτρίζει το βαθμό ανοργανοποίησης και αποσύνθεσης της οργανικής ύλης (Zimmer et al., 2010). Προτιμούν εδάφη με pH το οποίο κυμαίνεται μεταξύ των τιμών 4,1-9,4 (Uslu et al., 2010) Επιπλέον, παράγοντας που συμβάλλει για την καταλληλότητα μιας περιοχής ως εστία των Culicoides είναι το ποσοστό σκίασης της από την άμεση ηλιακή ακτινοβολία. Αναλυτικότερα, ο Zimmer (2014) ανέφερε ότι μεγαλύτερο ποσοστό προνυμφών εκκολάφθηκαν σε σημεία που σκιάζονταν περισσότερο. Πιθανολογείται ότι με μεγαλύτερη σκίαση υπάρχει μικρότερη πιθανότητα ξήρανσης του μέσου αναπαραγωγής (Zimmer et al., 2014).

Το βάθος στο οποίο αναπτύσσονται οι προνυμφικές ηλικίες εξαρτάται και επηρεάζεται από διάφορους παράγοντες. Παρατηρούνται συνήθως σε βάθος 0-10 cm (Zimmer et al., 2014) ενώ λίγα είδη έχουν παρατηρηθεί σε χαμηλότερα βάθη για παράδειγμα καταγράφηκε νύμφη του C. furens σε βάθος 15-45 cm από την επιφάνεια του εδάφους (Linley, 1966).

Η καλύτερη κατανόηση και γνώση των κατάλληλων εστιών αναπαραγωγής για κάθε είδος και ειδικότερα για τα είδη τα οποία εμπλέκονται στη μετάδοση ασθενειών και παρασίτων, αποτελεί απαραίτητη προϋπόθεση για την σωστή επίλυση και ανάπτυξη ολοκληρωμένης στρατηγικής αντιμετώπισης των Culicoids spp.

Αρκετές μελέτες έχουν πραγματοποιηθεί για την μελέτη των μέσων που αναπαράγονται τα Culicoides (Gonzalez et al., 2014; Zimmer et al., 2013; Cannon et al., 1966; Harrup et al., 2013; Foxi et al., 2010; Zimmer et al., 2013; Meinswinkel et al., 2014).

Ο Meiswinkel (2014) κατέταξε τις εστίες αναπαραγωγής των προνυμφικών στοδίων Culicoides σε τέσσερις βασικές κατηγορίες:

1. Κοπριά από μεγάλα θηλαστικά: Πολλά είδη Culicoides spp. προτιμούν για την εναπόθεση των αυγών τους φρέσκια κοπριά. Τα είδη αυτά μπορεί να είναι αποκλειστικά κοπροφιλικά είδη όπως το C. dewulfi και το C. chiopterus που προτιμούν κόπρανα βοοειδών (Kettle et al., 1952) είτε να έχουν μεγάλο εύρος προτιμήσεων για παράδειγμα το C. obsoletus, που μια από τις εστίες για να εναποθέσει τα αυγά του είναι η στεγνή κοπριά βοοειδών είτε η κοπριά αλόγων (Zimmer et al., 2010). Το C. bolitinos, το C. brevitarsis (Cannon et al., 1966) και το C. wadai προτιμούν κοπριά βοοειδών. Έχουν περιγραφεί είδη Culicoides που αναπαράγονται σε κόπρανα ζώων όπως οι ζέβρες, οι ελέφαντες, οι βουβάλοι και οι μαύροι και λευκοί ρινόκεροι (Nevill et al., 2007). Τουλάχιστον δέκα είδη Culicoides του υπογένους Avaritia, απαιτούν κοπριά για να ολοκληρώσουν τον βιολογικό τους κύκλο (Dyce et al., 1989). Στα κοπροφιλικά είδη του γένους Avaritia οι προνύμφες τους δεν παρουσιάζουν την χαρακτηριστική οφιοειδή κίνηση των Culicoides αλλά παρουσιάζουν μια αργή κάμψη του σώματος από το κεφάλι μέχρι την ουρά (Nevill, 1967). Επιπλέον ως αναφέρθηκε, δεν
έχουν την δυνατότητα να επιπλέουν και για τον λόγο αυτό πνίγονται όταν βρίσκονται σε επιφάνεια με μεγάλο ποσοστό υγρασίας (Nevill et al., 2007). Πιθανόν αυτό να αποτελούν τον λόγο προτιμήσεως των ειδών αυτών στην κοπριά και όχι τα υγρά υποστρώματα (π.χ λάσπη).

2. Σάπια φρούτα και σάπια φυτά: Η κατηγορία αυτή περιλαμβάνει σάπια φρούτα και άνθη, αποσυντεθειμένα φύλλα, στρώμα από φύλλα δέντρων, φύκια, μύκητες κ.λ.π. Τα περιβάλλοντα αυτά δεν έχουν ακόμα πλήρως διερευνηθεί αλλά ορισμένα είδη Culicoides έχουν βρεθεί να αναπτύσσονται σε σαπισμένα φυτά και σε σαπισμένα φρούτα (Blanton et al., 1978) για παράδειγμα το C. tuntifrutti και το C. pseudopallidipennis (Nevill et al., 2007). Το C. scoticus έχει βρεθεί να εκκολάπτεται σε μύκητα (Buxton, 1960). Προνύμφες του είδους C. lupicaris βρέθηκαν σε σαπισμένα φύλλα του φυτού Lathraea clandestina (Gonzalez et al., 2012).

3. Κουφάλες δέντρων, φυτά και κοιλότητες βράχων: Τα ενδιαιτήματα αυτά ποικίλουν από βαθιές, σκοτεινές γεμάτες νερό κοιλότητες έως ρηχές αλλά υγρές κοιλότητες στα δέντρα. Αναφέρεται από τον Meiswinkel ότι το 15% των Culicoides της Νότιας Αφρικής αναπτύσσονται σε τέτοιου είδους περιβάλλοντα και ότι η κύρια πηγή πρόσληψης αίματος των Culicoides είναι τα πτηνά που απαντούν εκεί (Meiswinkel et al., 2004). Το C. fagineus αναπτύσσεται σε τρύπες δέντρων (Dzahafarov et al., 1964) όπως και το C. marginalis και το C. purus (Kettle et al., 1980).

4. Τρεχούμενο νερό και έδαφος (λάσπη): Τα περισσότερα είδη Culicoides που έχουν καταγραφεί έως σήμερα αναπαράγονται στην λάσπη όπου περιβάλλουν κάθε είδους υδατοσυλλογές. Οι υδατοσυλλογές αυτές μπορούν να είναι καθαρά τρεχούμενα νερά είτε στάσιμες μολυσμένες λίμνες. Το έδαφος μπορεί να ποικίλλει ως προς την σύνθεση του. Μπορεί να είναι ψιλόκοκκη άμμο μέχρι πηλώδες έδαφος, εμπλουτισμένα συνήθως με φυτικά υπολείμματα (Meiswinkel et al., 2004).

Τα σημεία αναπαραγωγής διαφέρουν από είδος σε είδος. Αυτό είναι ιδιαίτερα σημαντικό στοιχείο για την γεωγραφική τους εξάπλωση. Επιπλέον είναι δυνατόν είδη να έχουν πολλά περιβάλλοντα αναπαραγωγής. Το C. nubeculosus (Meigen) βρίσκεται σε λασπώδεις εκτάσεις (Nielsen et al., 1975) και προτιμά περισσότερο εκτάσεις με ουδέτερο pH, με μέση αλατότητα και υψηλή συγκέντρωση Ca (Uslu et al., 2009). Το C. halophilus βρίσκεται σε παράκτιες αλμυρές και λασπώδεις επίπεδες εκτάσεις ενώ το C. pulicaris προτιμά κατάφυτα έλη με γλυκό νερό. Το είδος C. festivipennis Kieffer προτιμά λασπώδεις εκτάσεις πλούσιες σε οργανική ύλη, υψηλό pH και υψηλές συγκέντρωσεις σε P, K και Zn (Uslu et al., 2009). Το συγκεκριμένο είδος έχει την ικανότητα να αναπτύσσεται σε όλες τις εστίες. Είδη που δεν προτιμούν εδάφη πλούσια σε οργανική ύλη είναι το C. puncticolis και το C. riethi (Uslu et al., 2009). Το C. imicola προτιμά τα υγρά (αλλά όχι πλημμυρισμένα) εδάφη που είναι πλούσια σε θρεπτικές ουσίες (Meiswinkel, 1998).
5. Η επίδραση των *Culicoides* spp. στην υγεία των ανθρώπων και των ζώων

5.1 Η επίδραση των *Culicoides* spp. στην υγεία των ανθρώπων

Η επιτυχία των *Culicoides* ως ξενιστές διαφόρων ιών σχετίζεται με την δυναμική του πληθυσμού τους, την ικανότητα τους δηλαδή να σχηματίζουν τεράστιους πληθυσμούς, την ευκολία κατά την διασπορά τους και την αδυναμία καταπολέμησής τους λόγω του μικρού μεγέθους τους.

Ιοί και ηματώδεις είναι οι μόνοι οργανισμοί που μπορούν να μεταδώσουν οι σκνίπες αυτές στον άνθρωπο.

Ιοί που σχετίζονται με τα *Culicoides* spp.

Αρκετοί αρμποίοι έχουν απομονωθεί από τα ενήλικα *Culicoides*. Ο πιο σημαντικός ιός που μεταδίδεται στον άνθρωπο είναι ο ιός *Oropouche* (OROV).

Προκαλείται από έναν ιό που ανήκει στην οικογένεια Simbu της οικογένειας Bunyaviridae. Απομονώθηκε για πρώτη φορά το 1955 στο Τρινιτάδ.

Τα συμπτώματα που προκαλεί δεν απειλούν την ζωή των ανθρώπων. Είναι μια οξεία εμπύρετη νόσος με μυϊκούς πόνους όπου διαρκούν 2 έως 5 μέρες. Περισσότερο των 50% των περιστατικών περιλαμβάνουν συμπτώματα όπως πονοκέφαλος, ζαλάδες, φωτοφοβία και σε ορισμένες περιπτώσεις αρθραλγίες. Η ασθένεια μπορεί να εκληφθεί λανθασμένα ως δάγκειος πυρετός.

Ο κύριος φορέας του ιού αυτού είναι το *C. paraensis*. Το είδος αυτό ωοτοκεί στις τρύπες των δέντρων. Οι επιθέσεις του μπορούν να γίνουν εντός και εκτός της κατοικίας των ανθρώπων. Θηλυκά άτομα *C. paraensis* μπορούν να μεταδώσουν τον ιό 4 έως 6 μέρες μετά την μόλυνσή τους.

Ο OROV έχει απομονωθεί και από άλλα είδη διαφόρων ιών όπως το *Culex quinquefasciatus*, *Aedes serratus* και το *Coquillettidia venezuelensis*. Παρόλα αυτά ο κύριος και σημαντικότερος φορέας παραμένει το *C. paraensis*.

Νηματώδεις οι οποίοι μεταδίδονται μετα τα *Culicoides* spp.

Τρεις φιλάριες τους γένους *Mansonella* προκαλούν μολύνσεις στους ανθρώπους, οι οποίες αναφέρονται ως μανσονέλωση. Αυτές είναι οι εξής:
1. **Mansonella ozzardi**

Το *Mansonella ozzardi* είναι είδος νηματώδους που εμφανίζεται μόνο στον Νέο κόσμο (Κεντρική Αμερική, νησία της Καραϊβικής, Βόρεια ακτή της Νότιας Αμερικής, Βολιβία, Βραζιλία και Βόρεια Αργεντινή). Τα συμπτώματα τα οποία προκαλεί δεν εμφανίζουν κάποιες ιδιαίτερες παθολογικές επιπτώσεις. Ο νηματώδης παραμένει στα τριχοειδή αγγεία και στους ιστούς του υ δέρματος, προκαλώντας ερεθισμό. Ο κύριος φορέας του *Mansonella* είναι το *C. furens*. Δευτερεύοντα ρόλο στην μετάδοση του νηματώδη παίζουν το *C. barbosai* και το *C. paraensis*.

Ο νηματώδης προσλαμβάνεται από το έντομο όταν αυτό τρέφεται από μολυσμένο άνθρωπο. Εισέρχεται στο μεσέντερο του εντόμου και διεισδύει στους θωρακικούς μύς μέσα σε 24 ώρες. Εκεί αναπτύσσεται σε προνύμφη τρίτης ηλικίας μέσα στις επόμενες 6 έως 9 ημέρες και εισέρχεται στο κεφάλι και στα στοματικά μόρια. Στο στάδιο αυτό ο νηματώδης είναι μολυσματικός και μπορεί να μεταδοθεί από την σκνίπα όταν νύσσει κάποιον ξενιστή.

2. **Mansonella perstans**

Ο νηματώδης αυτός είναι περισσότερο διαδεδομένος στον παλιό κόσμο και συγκεκριμένα στη Δυτική, Ανατολική και Κεντρική Αφρική, στη Βραζιλία, στη Βόρεια Αργεντινή, στο Τρινιτάδ, στη Γουϊάνα και στο Σουρινάμ. Το *Mansonella perstans* μπορεί να θεωρηθεί και ως μη παθογόνο. Παραμένει στην κυκλοφορία του αίματος και το ενήλικο μπορεί να εισέρχεται ελεύθερα μέσα στις κοιλότητες. Τα συμπτώματα που προκαλεί είναι πρήξιμο των βλεφαρίδων, δακρύρροια, πυρετό, κνησμό κ.α. Τα περιστατικά φιλαριάσεων αντιμετωπίζονται με ivermectin και diethylcarbamazine. Το *C. austeni* και το *C. milnei* αποτελούν κύριους ενδιάμεσους ξενιστές του νηματώδους.

3. **Mansonella streptocerca**

Ο νηματώδης εμφανίζεται στα τροπικά δάση της Δυτικής και Κεντρικής Αφρικής και εκτείνεται από την Ακτή ελεφαντοστού και την Μπουργκίνα Φάσο έως το Κονγκό και το Ζαΐρ. Τα συμπτώματα που προκαλεί είναι ήπιες δερματικές εξανθήσεις. Ο κύριος φορέας θεωρείται το *C. grahamii*.

5.2 Η επίδραση των *Culicoides* spp. στην υγεία των ζώων

Ορισμένα είδη *Culicoides* προκαλούν σημαντικές οικονομικές απώλειες στην κτηνοτροφία καθώς μειώνεται η παραγωγή των ζώων λόγω σημαντικών ασθενειών που μεταδίδονται. Σε αυτές καταττάσονται διάφορα είδη πρωτοζώων, νηματιδικών και σημαντικών ιώσεων. Πρωτόζωα τα οποία μεταδίδονται με τα *Culicoides* spp.

Οι σκνίπες είναι φορείς μεγάλου αριθμού ειδών πρωτοζώων που ανήκουν στη γένη *Haemoproteus, Hepatocystis* και *Leucocytozoon*. Τα περισσότερα είδη προκαλούν ήπια γρίπη χωρίς ή με μικρή επίπτωση στους ξενιστές. Παράλληλα ορισμένα είδη, όπως το *Haemoproteus meleagridis* στις γαλοπούλες και το *Leucocytozoon caulleryi* στις όρνιθες, μπορούν να προκαλέσουν σημαντικά προβλήματα στην πτηνοτροφία. Ο βιολογικός κύκλος του πρωτοζώου περιλαμβάνει αρχικά την κατάποση του πρωτοζώου από τη γένη *Haemoproteus, Hepatocystis* και *Leucocytozoon*. Τα περισσότερα είδη προκαλούν ήπια γρίπη χωρίς ή με μικρή επίπτωση στους ξενιστές. Παράλληλα ορισμένα είδη, όπως το *Haemoproteus meleagridis* στις γαλοπούλες και το *Leucocytozoon caulleryi* στις όρνιθες, μπορούν να προκαλέσουν σημαντικά προβλήματα στην πτηνοτροφία. Ο βιολογικός κύκλος του πρωτοζώου περιλαμβάνει αρχικά την κατάποση του πρωτοζώου από το θηλυκό *Culicoides*. Αυτό βρίσκεται στην μορφή του γαμετοκυττάρου, που αποτελεί την αναπαραγωγική μορφή του πρωτοζώου. Στο μεσέντερο του εντόμου, τα γαμετοκύτταρα απελευθερώνονται και ενώνονται με το
ωοκινητό. Τότε το ωοκινητό ως ζυγωτό πλέον τυπικά εισχωρεί στην περιτροφική μεμβράνη και σχηματίζει την ωοκύστη στο εξωτερικό επιθήλιο του μεσεντέρου. Μέσα στην ωοκύστη παράγονται οι σποροζώιτες, οι οποίοι κατευθύνονται προς τους σιελογόνους αδένες. Ο σποροζώιτής είναι η μολύνουσα μορφή του παρασίτου και μεταδίδεται με το σάλιο του Culicoides στους ξενιστές. Η ανάπτυξη του πρωτοξώου μέσα στο Culicoides spp. διαρκεί 6 έως 10 ημέρες.

1. Γένος Haemoproteus

Περίπου 80 είδη Haemoproteus έχουν ονομασθεί και ταυτοποιηθεί. Είναι παράσιτοι κυρίως των πτηνών αλλά παρασιτούν και σε σαύρες, σκίουρους, μαϊμούδες και πιθήκους. Το Haemoproteus meleagridis στις γαλοπούλες μεταδίδεται κυρίως με το C. edeni ενώ το C. hunamni, C. arboricola, C. haematopotus και το C. knowltoni έχουν δευτερεύοντα ρόλο στην μετάδοση του πρωτοξώου.

Τα συμπτώματα που προκαλούνται από την μετάδοση του παρασίτου αυτού είναι αναιμία, μείωση της ανάπτυξης, φλεγμονή των καρδιακών μυών, καταστροφή της σπλήνας και του συκωτιού. Τα συμπτώματα αυτά είναι περισσότερα εμφανή στις όρνιθες μικρότερης ηλικίας.

2. Γένος Leucocytozoon

Το μοναδικό είδος τους γένους Leucocytozoon, το οποίο μεταδίδεται με σκνίπες της οικογένειας Cero-topogonidae είναι το Leucocytozoon caulleryi. Παρασιτεί στα πουλερικά και μεταδίδεται από το C. arakawae. Το πρωτόξωο αυτό είναι διαδεδομένο στην Ιαπωνία και στην Νότια-ανατολική Ασία και προκαλεί την ασθένεια poultry leucocytozoonosis (είδος ελονοσίας στα πουλερικά)

Νηματώδεις που μεταδίδονται με Culicoides spp.

Η πιο ευρέως διαδεδομένη ασθένεια που προκαλείται και ζώα από μετάδοση νηματωδών μέσω των Culicoides είναι η διαδοχική μολύνση των ιππών. Ο ιός ανήκει στον νηματότροφο Onchocerca cervicalis και οι φορείς του είναι κυρίως τα φυλάκια C. variipennis. Τουλάχιστον τρία ακόμα είδη Onchocerca τα οποία μολύνουν βοοειδή και άλογα θεωρείται ότι μεταδίδουν τα Culicoides. Τα C. pungens, C. marksi, C. actoni και C. brevitasris είναι ενδιάμεσοι φορείς του νηματώδους Onchocerca gibsoni των βοοειδών.

Ιοι που σχετίζονται με τα Culicoides spp.

Περισσότεροι από 35 αρμποϊοί μολύνουν οικόσιτα ζώα. Λίγοι από αυτούς όμως προκαλούν σημαντικές ασθένειες σε αυτά. Τα ίδια τα οποία πλήττονται από τους ιούς αυτούς είναι κυρίως τα βοοειδή, τα πρόβατα και τα άλογα.

1. Ιός της επιζωοτικής αιμορραγικής νόσου (Epizootic Hemorrhagic Disease-EHD)

Η EHD είναι από τις σημαντικότερες ασθένειες των ελαφιών στην Βόρεια Αμερική. Ο ιός ανήκει στους αρμποϊούς στην οικογένεια Reoviridae. 10 ορότυποι του ιού είναι γνωστοί παγκοσμίως. Ο κύριος φορέας του ιού είναι o C. soronensis.
Τα συμπτώματα της ασθένειας είναι παρόμοια με την ασθένεια του καταρροϊκού πυρετού. Για τον λόγο αυτό αναφέρεται απλά ως αιμορραγική ασθένεια είτε ως black tongue disease. Η κλινική εικόνα των μολυσμένων ζώων ποικίλλει ως προς τον βαθμό μόλυνσης, από ήπιες μολύνσεις έως και θνησιμότητα. Χαρακτηριστικά συμπτώματα είναι:

1. Ελαφριά μορφή: Έντονο οίδημα κεφαλής, λαιμού, γλώσσας, επιπεφυκότα και πνευμόνων
2. Οξεία μορφή: πυρετός, αδυναμία, ανορεξία, έντονη σιελόρροια, οίδημα προσώπου, υπερασπιστικά και βλενογγόνου της στοματικής κοιλότητας. Μπορεί να παρατηρηθούν έλκη στην περιοδοντική πλάκα, σκληρή υπερώα και γλώσσα, αιμορραγική διάρροια, αιματουρία, αφυδάτωση, θάνατος
3. Χρόνια μορφή: αλλοιώσεις στις χηλές

Εικόνα 24 Χαρακτηριστικό σύμπτωμα της ασθένειας EHD (Mississippi wildlife, fisheries & parks10)

2. Αφρικανική πανώλη των υποσαυρών(African horsesickness)

Η πανώλη αυτή οφείλεται σε ιό της οικογένειας Reoviridae παρόμοιος με τον ιό που προκαλεί την αιμορραγική νόσο στα ελάφια και την ασθένεια του καταρροϊκού πυρετού. Ο κύριος φορέας του AHS αποτελεί το C. imicola. Τα συμπτώματα της ασθένειας εμφανίζονται κυρίως στους ζέβρες, τα άλογα και σπάνια στα μουλάρια. Ταξινομούνται σε 4 κλινικές μορφές:

1. Πνευμονική ή υπεροξεία μορφή με συμπτώματα όπως πυρετός, κατάπτωση, έντονη εφίδρωση, δύσπνοια, στάση με ανοιχτά μπροστινά πόδια, σπασμοποιητικό βήχα και άφθονο αφρώδες έκκριμα από τη μύτη
2. Καρδιακή ή υπόξεια μορφή με συμπτώματα όπως υψηλό πυρετό και οίδημα στην περιοχή των ματιών, των χειλιών μέχρι το κάτω μέρος του λαιμού, τους όμοιους και τον θώρακα.
3. Μικτή μορφή με συμπτώματα της πνευμονικής και της καρδιακής μορφής. Στην μορφή αυτή η θνησιμότητα ανέρχεται στο 70% και επέρχεται σε 3-6 ημέρες από την εμφάνιση του πυρετού.

4. Ήπια ή υποκλινική μορφή με ήπια συμπτώματα όπως διαλείποντα πυρετό για 5-8 ημέρες

(Αφρικανική πανώλη υποσειόν, 2010)

3. Ο ιός του καταρροϊκού πυρετού (Bluetongue disease)

Είναι ένα λοιμώδες ιογενές νόσημα που μεταδίδεται από το γένος Culicoides. Το όνομα της (Bluetongue) υποδεικνύει ένα από τα πολύ χαρακτηριστικά συμπτώματα της ασθένειας αυτής (πρησμένη, κυανού χρώματος γλώσσα.)

Προσβάλλει όλα τα μηρυκαστικά, αλλά τα πρόβατα συνήθως εμφανίζουν κλινικά συμπτώματα. Οι αίγες προσβάλλονται σπάνια, και στα βοοειδή η μόλυνση είναι υποκλινική, και τα μολυσμένα βοοειδή σπάνια εκδηλώνουν κλινικά συμπτώματα. Ο ιός που προκαλεί την ασθένεια ανήκει στην οικογένεια Reoviridae. 24 σερότυποι του ιού έχουν ταυτοποιηθεί (OIE, 2008). Είναι νόσημα υποχρεωτικής δήλωσης και οι κτηνοτρόφοι οφείλουν να ενημερώσουν τις Τοπικές Κτηνιατρικές Αρχές σε περίπτωση εμφάνισης των συμπτωμάτων.

Κλινικά συμπτώματα

Πρόβατα

Ο καταρροϊκός πυρετός είναι νόσημα κυρίως των προβάτων σε περίπτωση όμως θετικών ορολογικών αποτελεσμάτων δεν θα πρέπει να γίνεται σύγχυση της κλινικής εκδήλωσης της νόσου με νοσήματα το οποίο έχουν παρόμοια κλινικά συμπτώματα (διαφορική διάγνωση).

Τα κλινικά συμπτώματα του καταρροϊκού πυρετού στα πρόβατα ποικίλουν από τα υπεροξέα έως υποκλινικά. Τα υπεροξέα κλινικά συμπτώματα αρχίζουν με αύξηση της θερμοκρασίας του σώματος η οποία μπορεί να διαρκέσει για μια εβδομάδα. Η περίοδος επώασης διαρκεί 4-8 ημέρες, πιθανώς επηρεάζεται από την ποσότητα του ιού που έχει προσληφθεί. Λόγω του ότι η κλινική εκδήλωση της νόσου στα πρόβατα συνήθως ακολουθεί τον πολλαπλασιασμό του ιού στα βοοειδή και τη διασπορά του από τα βοοειδή στα πρόβατα, η νόσος μπορεί να μην γίνει αντιλήπτη παρά έναν ή δύο μήνες αφότου το στέλεχος του ιού με παθογόνο δράση εισέλθει σε μια περιοχή. Ο κώδικας υγείας των ζώων του Διεθνούς Γραφείο Επιζωοτιών προσδιορίζει την περίοδο επώασης σε 40 ημέρες.

Εντός 24-36 ωρών από την εμφάνιση του πυρετού ο βλεννογόνος του στόματος εμφανίζεται υπεραιμικός. Αυτό ακολουθείται από σιάλορροια και διαυγές ορώδες ρινικό έκκριμα. Τελικά αποξηραίνεται κρούστα γύρω από τα ρουθούνια. Σε οξείες περιπτώσεις τα χείλη και η γλώσσα διογκώνονται σε μεγάλο βαθμό και το οίδημα μπορεί να επεκταθεί σε ολόκληρο το πρόσωπο, στα πτερύγια των ωτών και στην υπογνάθια περιοχή. Η υπεραιμική γίνεται εντονότερη και μικρές αλλοιώσεις εμφανίζονται στο βλεννογόνο του στόματος, της ρινός και στον επιπεφυκότα. Το κλινικό σύμπτωμα που δίνει και το όνομα στο νόσημα είναι η έντονη κυανωτική γλώσσα (μπλε).
Νεκρωτικές αλλοιώσεις παρατηρούνται στα ούλα, στα πλάγια της στοματικής κοιλότητας και στη γλώσσα 5-8 ημέρες από την εμφάνιση του πυρετού. Οι αλλοιώσεις αυτές επουλώνται βραδέως και στην επιφάνεια τους σχηματίζεται μεμβράνη από ορό και πύον (διφθεριτική μεμβράνη). Λόγω των αλλοιώσεων η αναπνοή του ζώου καθίσταται δύσκολη. Έντονη αιμορραγική διάρροια παρατηρείται σε μερικές περιπτώσεις. Επίσης μπορεί να παρατηρηθεί εμετός, ο οποίος μπορεί να έχει ως αποτέλεσμα εισροφητική βρογχοπνευμονία.

Αλλοιώσεις μπορεί να παρατηρηθούν σε ένα ή και τα τέσσερα πόδια στο τέλος της πυρετικής έξαρσης. Παρατηρείται έντονη ερυθρότητα και πετέχειες στην περιοχή της στεφάνης στο άνω τμήμα των χειλιών. Τα προσβεβλημένα ζώα στέκονται με κυρτωμένη τη ράχη και κινούνται με δυσκολία.

Παρατηρείται τάχεια και έντονη απώλεια σωματικού βάρους, αδυναμία εξαιτίας απώλειας της όρεξης και νέκρωση των μυών. Σπασμωδικές κινήσεις της κεφαλής και στροφή της κεφαλής και του λαιμού προς τη μία κατεύθυνση είναι το τελικό σύμπτωμα πριν το θάνατο.

Η θνησιμότητα ποικίλει σε πρόβατα που είναι εξαιρετικά ευαίσθητα μπορεί να φθάσει και το 70%. Οι θάνατοι μπορεί να συμβούν σε κάθε στάδιο της νόσου μέχρι και μετά από 1 μήνα από την εμφάνιση των πρώτων συμπτώματων. Η ανάρρωση στα ζώα που επιβιώνουν είναι παρατεταμένη. Παρατηρείται και απώλεια του μαλλιού, η οποία προστίθεται στην παραγωγή που χάνεται.

Μόλυνση των προβατίνων σε στάδιο εγκυμοσύνης μπορεί να οδηγήσει σε αποβολές ή γέννηση θνησιγενών αμνών, τα οποία μπορεί να έχουν και γενετικές ανωμαλίες.

Αίγες
Οι αίγες προσβάλλονται σπανιότερα σε σχέση με τα πρόβατα και όταν προσβληθούν τα συμπτώματα δεν είναι τόσο έντονα. Η παθογένεση της νόσου στις αίγες είναι όμοια με τα πρόβατα αλλά τα κλινικά συμπτώματα που παρατηρούνται είναι ηπιότερα.

Βοοειδή
Παρόλο που η μόλυνση των βοοειδών έχει μεγάλη επιδημιολογική σημασία εν τούτοις η νόσος είναι υποκλινική.

Αναφέρεται σε εργασία που προέρχεται από την Αμερική ότι μόνον το 0,01% των μολυσμένων βοοειδών εκδηλώνει κλινικά συμπτώματα. Παρατηρούνται φλεγμονή των βλεννογόνων και διαβρώσεις στον βλεννογόνο του στόματος και της ρινός, ελαφρά φλεγμονή των χειλιών και δυσκολία στη βάδιση. Μόλυνση των ζώων στα αρχικά στάδια της εγκυμοσύνης μπορεί να προκαλέσει πρόωρο εμβρυϊκό θάνατο και απορρόφηση του εμβρύου.

Εικόνα 25 Πρόβατο με οιδηματική, κυανή γλώσσα (Εγχειρίδιο καταρροϊκού πυρετού, 2010)

Εικόνα 26 Πρόβατο με σιελλόριο από αποτέλεσμα των πολλαπλών ελκών στη στοματική (Εγχειρίδιο καταρροϊκού πυρετού, 2010)
6. Καταπολέμηση και έλεγχος των Culicoides spp.

Η σωστή στρατηγική καταπολέμησης των Culicoides spp. απαιτεί πρωτίστως την ταυτοποίηση του είδους και δευτερευόντως την γνώση του βιολογικού τους κύκλου και των συνθηκών τους. Δεν είναι δυνατή η δημιουργία μιας σταθερής μεθοδολογίας καταπολέμησης των Culicoides ακόμα και αν αυτή αφορά μόνο ένα είδος. Αυτό αφορά στην ιδιαιτερότητα των ειδών να αναπαράγονται σε πολλά μέσα. Για παράδειγμα, το C. imicola το οποίο αποτελεί σημαντικό φορέα του καταρροϊκού πυρετού (BTV) και της ασθένειας AHSV, έχει ποικιλία όσων αφορά τους τόπους αναπαραγωγής του και πλέον εκτείνεται σε μεγάλη έκταση γεωγραφικά. Επιπλέον, για αρκετά χρόνια δεν ήταν γνωστός ο ρόλος του ως φορέας παθογόνων με αποτέλεσμα η αντιμετώπισή του να επικεντρωνόταν μόνο στην μείωση της όχλησης των ανθρώπων (Carpenter et al., 2008).

Οι τρόποι καταπολέμησης και οι ομοιοί ελέγχος των Culicoides spp. περιγράφονται από τον Carpenter και τους συνεργάτες του και είναι οι ακόλουθοι (Carpenter et al., 2008):

1. εφαρμογή εντομοκτόνων στις εστίες αναπαραγωγής των προνυμφών
2. περιβαλλοντικές παρεμβάσεις για την απομάκρυνση των εστιών αναπαραγωγής
3. καταπολέμηση των ενήλικων Culicoides spp. είτε στον χώρο σταβλισμού των ζώων είτε επί των ζώων
4. η αλλαγή του χρόνου σταβλισμού των ζώων

Σύγχρονες μελέτες εστιάζουν στον έλεγχο των Culicoides με την χρήση βιολογικών (Ansari et al., 2011) και μοριακών τεχνικών (Mills et al., 2015)

1. Εφαρμογή εντομοκτόνων στις εστίες αναπαραγωγής των προνυμφών

Η χρήση προνυμφοκτόνων για την μείωση του πληθυσμού των Culicoides αποτελεί το λιγότερο χρησιμοποιούμενο μέτρο καθώς η χρήση χημικών στις εστίες αναπαραγωγής των Culicoides (τρεχούμενο νερό, λίμνες κ.α) παρουσιάζουν αρνητικό αντίκτυπο στους υδρόβιους οργανισμούς. Παρόλα αυτά μελέτες για την εφαρμογή χημικών στο πεδίο έχουν διενεργηθεί (Wall et al., 1971; Hollbrook et al., 1984; Woodward et al, 1985) και τα αποτελέσματα τους παρουσιάζονται συνοπτικά στο παρακάτω πίνακα (Carpenter et al., 2008)

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Species</th>
<th>Application</th>
<th>Dosage</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloropyrifos</td>
<td>C. mellex</td>
<td>Granular</td>
<td>178 g/ha</td>
<td>100%*</td>
</tr>
<tr>
<td></td>
<td>C. varipennis</td>
<td>Granular</td>
<td>0.05–0.2 p.p.m.</td>
<td>100% (0.2 p.p.m.)†</td>
</tr>
<tr>
<td>Temelos</td>
<td>C. mellex</td>
<td>Granular</td>
<td>178 g/ha</td>
<td>86.7%*</td>
</tr>
<tr>
<td></td>
<td>C. varipennis (somorresis)</td>
<td>Granular</td>
<td>0.5–2.0 p.p.m.</td>
<td>> 98%†</td>
</tr>
<tr>
<td>Pyrethrins</td>
<td>C. varipennis (somorresis)</td>
<td>Spray, to pond margins</td>
<td>0.131 p.p.m.</td>
<td>> 99%‡</td>
</tr>
<tr>
<td></td>
<td>C. varipennis (somorresis)</td>
<td>Spray, to lake margins</td>
<td>182–1385 g/ha</td>
<td>> 94%‡</td>
</tr>
</tbody>
</table>

Εικόνα 27 Αποτελεσματικότητα 3 εντομοκτόνων στο πεδίο (Carpenter et al., 2008)
Παρόλο που η χρήση chlorpyrifos εμφανίζει 100% θνησιμότητα, προκαλεί τοξικότητες σε οργανισμούς μη-στόχους (Holbrook et al., 1984). Αντίστοιχα, προβλήματα εμφάνισαν οι οργανισμοί (πτηνά, ψάρια) από την έκθεση τους στο temefos. Από το πείραμα του Wall (1971) παρατηρήθηκε σημαντική μείωση της πανίδας της περιοχής (μεγάλη θνησιμότητα μικρών καβουριών και ψαριών).

Πειραματικά στο εργαστήριο έχουν χρησιμοποιηθεί ρυθμιστές ανάπτυξης (IGRs) σε πειράματα αντιμετώπισης των προνυμφών. Αν και τα αποτελέσματα των πειραμάτων ήταν εντυπωσιακά (θνησιμότητα κατά 90%) δεν έχουν πραγματοποιηθεί αντίστοιχα στο πεδίο (Carpenter et al., 2008).

Το εγκεκριμένο προνυμφοκτόνο το οποίο ενδείκνυται από το Υπουργείο Αγροτικής Ανάπτυξης και Τροφίμων της Ελλάδος είναι το Neporex (Cyromazine, Insect Growth Regulator), το οποίο είναι αποτελεί σκόνη επίπασης κοπροσωρού και στρώματος και δεν ενδείκνυται για άλλες εστίες αναπαραγωγής.

Χρησιμοποιήσεις εντομοκτόνων στις εστίες αναπαραγωγής για την απομάκρυνση των εστιών αναπαραγωγής, είδη (C. dewulfii, C. bolitinos κ.α). Η ivermectin έχει αποδειχθεί ότι σκοτώνει τα προνυμφικά στάδια των Culicoides spp. και η δράση του διαρκεί για 28 μέρες (Webster et al.,1992).

2. Περιβαλλοντικές παρεμβάσεις για την απομάκρυνση των εστιών αναπαραγωγής

Η μείωση ή η πλήρης απομάκρυνση των εστιών αναπαραγωγής αποτελεί ένα σημαντικό μέτρο καταστολής των πληθυσμών των Culicoides. Περιλαμβάνει τεχνικές διαχείρισης των εστιών αναπαραγωγής όπως μείωση των τρεχούμενων ή στάσιμων νερών γύρω από τους στάβλους των ζώων, απομάκρυνση της στρωμάτως και της κόπρου των ζώων, μείωση της αυτοφυούς βλάστησης ως πιθανή εστίας ορισμένων ειδών Culicoides γύρω από τους στάβλους.

Επιπλέον, οι χώροι της εκτροφής πρέπει να καθαρίζονται τακτικά και να καλύπτονται από άνυδρο ασβέστιο. Τα μέτρα αυτά χρησιμοποιούνται συμπληρωματικά με κάποια άλλη μέθοδο καταπολέμησης για παράδειγμα συμπληρωματικά της χημικής καταπολέμησης.

3. Καταπολέμηση των ενήλικων Culicoides spp. είτε στον χώρο σταβλισμού των ζώων είτε επί των ζώων

3i. Καταπολέμηση των ενήλικων Culicoides spp. στον χώρο σταβλισμού των ζώων

Η καταπολέμηση των ενήλικων ατόμων μπορεί να γίνει εντός και εκτός των κτηνοτροφικών εγκαταστάσεων. Εκτός των κτηνοτροφικών μονάδων εφαρμόζεται κυρίως στους κοπροσωρούς (βλ.1), στα οχήματα μεταφοράς των ζώων και στον εξοπλισμό της κτηνοτροφικής μονάδας. Βάση ενός εγχειριδίου του Υπουργείου το οποίο προορίζεται προς όλες τις κτηνιατρικές υπηρεσίες το εγκεκριμένο εντομοκτόνο για την χρήση επί αντικειμένων, σκευών και χώρων είναι το imperator με δραστική ουσία την permethrin. Επιπλέον, ενδείκνυται άσπρισμα όλων των εσωτερικών επιφανειών (ιδίως σε σκοτεινά και υγρά σημεία) με ασβέστη.

3ii Καταπολέμηση των ενήλικων Culicoides spp. επί των ζώων

Η καταπολέμηση των εντόμων επί των ζώων μπορεί να πραγματοποιηθεί είτε τοπικά με την χρήση εντομοκτόνων είτε με την χρήση απωθητικών για τη μείωση των επιθέσεων από τις σκνίπες. Η χρήση εντομοκτόνων τοπικά απαιτεί γνώση της βιολογίας του εχθρού που πρόκειται να αντιμετωπιστεί. Για παράδειγμα, από μελέτες που έχουν διενεργηθεί το C. imicola, το είδος αυτό προτιμά να τρέφεται από την ράχη και συγκεκριμένα από την περιοχή του μαύρου τριχώματος του μόσχου (Bravemann et al.,2004). Από τις παρατηρήσεις αυτές η εφαρμογή των εντομοκτόνων προαρμόζεται για το κάθε είδος ζώου και το κάθε είδος Culicoides διαφορετικά. Η εφαρμογή πυρεθρινοειδών στα πρόβατα πρέπει να γίνεται απευθείας στο δέρμα των ζώων καθώς το μαλλί λειτουργεί παρεμποδιστικά στην εξάπλωση της δραστικής.
Οι ουσίες (Mehlhorn et al., 2008). Σε πρόσφατη μελέτη που πραγματοποιήθηκε (Papadopoulos et al., 2010) παρατηρήθηκε ότι το C. nubeculosus προτιμά το δέρμα που βρίσκεται στην πλάτη του αλόγου με αποτέλεσμα στο σημείο αυτό το ποσοστό θνησιμότητας να είναι πολύ μεγαλύτερο από ότι στο δέρμα των ποδιών.

Εγκεκριμένα σκευάσματα για την χρήση επί των ζώων είναι τα εξής (κατά σειρά δραστικότητας στο C. imicola):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Butox, 75 (Deltamethrin)</td>
</tr>
<tr>
<td>Οδηγίες χρήσης:</td>
<td>Υγρό για επιχύσεις στη ράχη των ζώων</td>
</tr>
<tr>
<td>Επανάληψη:</td>
<td>κάθε 5 εβδομάδες</td>
</tr>
<tr>
<td>Παρατηρήσεις:</td>
<td>Ασφαλές για το γάλα και το κρέας. Μηδενικός χρόνος αναμονής</td>
</tr>
<tr>
<td>2.</td>
<td>Coopertix (Cyathrin)</td>
</tr>
<tr>
<td>Οδηγίες χρήσης:</td>
<td>Υγρό για επιχύσεις κατά μήκος της ράχης των ζώων</td>
</tr>
<tr>
<td>Επανάληψη:</td>
<td>κάθε 2 εβδομάδες</td>
</tr>
<tr>
<td>3.</td>
<td>Ectopor (Cypermethrin)</td>
</tr>
<tr>
<td>Οδηγίες χρήσης:</td>
<td>Υγρό για επιχύσεις κατά μήκος της ράχης των ζώων</td>
</tr>
<tr>
<td>Επανάληψη:</td>
<td>κάθε 2 εβδομάδες</td>
</tr>
<tr>
<td>4.</td>
<td>Cypor (Cypermethrin)</td>
</tr>
<tr>
<td>Οδηγίες χρήσης:</td>
<td>Υγρό για επιχύσεις κατά μήκος της ράχης των ζώων</td>
</tr>
<tr>
<td>Επανάληψη:</td>
<td>κάθε 7 εβδομάδες</td>
</tr>
<tr>
<td>Παρατηρήσεις:</td>
<td>Ιδιαίτερα αποτελεσματικό στα πρόβατα</td>
</tr>
<tr>
<td>5.</td>
<td>Stomoxin-P (Permethrin)</td>
</tr>
<tr>
<td>Οδηγίες χρήσης:</td>
<td>Διαλυτή σκόνη σε φακέλους των 25g. Διάλυση 1 φακέλου σε 10 lt νερό για εξωτερικό ψεκασμό των ζώων. Επανάληψη κάθε 1 εβδομάδα</td>
</tr>
<tr>
<td>Παρατηρήσεις:</td>
<td>Το σκεύασμα είναι τοξικό για τις μέλισσες και τα ψάρια</td>
</tr>
</tbody>
</table>

(Υπουργείο Αγροτικής Ανάπτυξης και Τροφίμων, 2010)

Η συστηματική εφαρμογή των εντομοκτόνων αφορά κυρίως την χρησιμοποίηση των ενέσιμων αβερμεκτίνων με ποικίλα, όχι όμως ικανοποιητικά αποτελέσματα στην Αυστραλία και τις Ηνωμένες Πολιτείες της Αμερικής (Πατακάκης, 2008; Reeves et al., 2009). Έχει παρατηρηθεί ότι ζώα στα οποία είχαν χορηγηθεί ενέσιμες αβερμεκτίνες ήταν λιγότερα ελκυστικά σε ορισμένα είδη Culicoides spp. (Sollai et al., 2007).
Η χρησιμοποίηση εντομοαπωθητικών για τη μείωση των επιθέσεων των Culicoides spp. στα διάφορα κτηνοτροφικά ζώα και στον άνθρωπο μπορεί να αποτελέσει σημαντικό μέρος ενός προγράμματος ολοκληρωμένης αντιμετώπισης του εχθρού. Ορισμένες μόνο δραστικές ουσίες έχουν βρεθεί κατάλληλες ως απωθητικά των Culicoides spp.

Αναλυτικότερα, το πιο γνωστό εντομοαπωθητικό είναι το σκεύασμα DEET (N,N-dietethyl-3-methylbenzamide). Έχει κατατάχθει από τον παγκόσμιο οργανισμό υγείας (WHO) ως επιλεκτικό εντομοαπωθητικό με ελαφριά τοξικότητα στα θηλαστικά (κυρίως αλλεργικές αντιδράσεις μόνο όταν αυτό χρησιμοποιείται εσφαλμένα) και με μικρή υπολειμματική δράση (Page, 2009). Είναι περισσότερο δραστικό από εντομοαπωθητικά των οποίων η βάση τους είναι φυτικής προέλευσης. O Braverman και οι συνεργάτες του (1997) εξέτασαν και συνέκρινα την αποτελεσματικότητα μιας σειράς απωθητικών (DEET, αιθέριο έλαιο ρίγανης, απωθητικό ψύλλων, απωθητικό ιπτάμενων εντόμων, Pyrethroid T) ενάντια στο C. imicola σε άλογα. Αποδείχθηκε ότι το DEET, το Ag1000 και το Pyrethroid T είχαν παρόμοια αποτελεσματικότητα με χρόνο δραστικότητας 4, 4 και 9 ώρες αντίστοιχα. Το λιγότερο αποτελεσματικό αποδείχθηκε το αιθέριο έλαιο της ρίγανης (Braverman et al., 1997).

Άλλες δραστικές ουσίες που έχουν χρησιμοποιηθεί έναντι των Culicoides είναι το ενεργό συστατικό KBR3023 κατά του C. impuncatus (Carpenter et al., 2005), το IR 3535 και το PMD. Το PMD αποτελεί απωθητικό φυτικής προέλευσης (ευκάλυπτος). Έχει δοκιμασθεί πειραματικά σε ανθρώπους και διαπιστώθηκε δραστικότητα έως 10 ώρες.

4. Η αλλαγή του χρόνου σταβλισμού των ζώων
Ο σταβλισμός των ζώων από το σούρουπο έως την αυγή έχει παρατηρηθεί ότι βοηθά στην μείωση των επιθέσεων των ζώων από τα Culicoides spp. Έχει διερευνηθεί ένα ευρύ φάσμα ξενιστών και περιοχών για παράδειγμα σε πρόβατα στην Μαλαισία, σε βοοειδή στην Αυστραλία, σε άλογα στην Νότια Αφρική.

Η επιτυχία της τεχνικής βασίζεται σε δυο σημαντικούς παράγοντες:

1. στη σωστή κατασκευή του στάβλου η οποία δεν επιτρέπει την είσοδο εντόμων (χωρίς οπές, μονωμένη, εντομοστεγανά παράθυρα κ.α)
2. στις προτιμήσεις των Culicoides spp. ως προς τη διαιτητική τους συμπεριφορά αν δηλαδή είναι είδη εξωφιλικά ή ενδοφιλικά

Το 2000 σε πείραμα που διεξήχθη από τον Meiswinkel και τους συνεργάτες του παρατηρήθηκε ότι ύστερα από τον σταβλισμό των αλόγων κατά την διάρκεια της νύχτας, μειώθηκαν οι επιθέσεις από το C. imicola ενώ υπήρξε αύξηση του αριθμού των επιθέσεων του C. bolitinos μέσα στον στάβλο. Ως εκ τούτου, σταβλισμός των ζώων σε περιοχή όπου ενδημεί το C. bolitinos αποτελεί λιγότερο αποτελεσματικό μέτρο.

5. Βιολογική καταπολέμηση
Η βιολογική καταπολέμηση για την αντιμετώπιση των προνυμφών και των ενήλικων Culicoides spp. βρίσκεται ακόμα σε πειραματικό στάδιο. Αναλυτικότερα, η πρώτη επιτυχημένη έρευνα πραγματοποιήθηκε το 2011 από τον Ansari και τους συνεργάτες του. Συγκεκριμένα, εξέτασαν την ευαισθησία των προνυμφικών σταδίων του C. nubeculosus σε 4 διαφορετικούς μύκητες (Metarhizium anisopliae, Beauveria bassiana, Isaria fumosorosea και Lecanicillium longisporum) σε εργαστηριακές αλλά και σε πραγματικές συνθήκες. Σημαντική μείωση του πληθυσμού υπήρξε ύστερα από 6 ημέρες μετά την έκθεση σε ξηρά κονίδια του μύκητα, ο οποίος επηρέασε κατάλληλα μετά την έκθεση σε ξηρά κονίδια των μυκήτων. Ο μύκητας Metarhizium anisopliae διαπιστώθηκε ο πιο θητειογόνος
και αποτελεσματικός μύκητας. Παρατίθενται εικόνες από την εξέλιξη της προσβολής του C. nubeculosus από κονίδια του μύκητα Metarhizium anisopliase (Ansari et al., 2011)

Πιο πρόσφατη μελέτη (Narladkar et al., 2015) απέδειξε ότι οι εντομοπαθογόνοι μύκητες Metarhizium anisopliase και Beauveria bassiana μπορούν να χρησιμοποιηθούν και για την θανάτωση προνυμφών του γένους Culicoides spp. Θάνατος των προνυμφών λόγω του μύκητα B. bassiana προκαλεί μεταχρωματισμό στο σώμα της προνύμφης και συγκεκριμένα πράσινο μεταχρωματισμό στο κέντρο του σώματος ενώ το κεφάλι και το ουραίο τμήμα γίνονται μαύρα (εικόνα 28) ενώ η κλινική εικόνα προνύμφης από τον μύκητα Metarhizium anisopliase είναι μεταχρωματισμός του σώματος και απολεπίσεις και καταστροφή του εντερικού σωλήνα (εικόνα 29)

Εικόνα 28 Εξέλιξη της προσβολής του C. nubeculosus από κονίδια του μύκητα Metarhizium anisopliase (Narladkar et al., 2015)

Ως επόμενο, τα τελευταία χρόνια οι μελέτες για την αντιμετώπιση των διπτέρων υγειονομικής σημασίας στρέφονται προς την χρησιμοποίηση ενδοσυμβιωτικών οργανισμών. Έχει διαπιστωθεί ότι το ενδοσυμβιωτικό βακτήριο Wolbachia pipientis βρίσκεται στους αρθρόποδους οργανισμούς και έχει την ικανότητα να εισβάλει και να πολλαπλασιάζεται στους πληθυσμούς Aedes aegypti και να σταματάει την μετάδοση του ιού (Δάγκειος πυρετός). Το γένος Culicoides είναι το λιγότερο μελετημένο γένος των διπτέρων σε ό,τι αφορά την συμβίωση τους με βακτηριακούς οργανισμούς. Παράλογα μεταξύ των 20 ειδών Culicoides με τα βακτήρια Wolbachia pipientis και Candidatus Cardinium, διαπιστώθηκε μικρή συγκέντρωση των βακτηρίων στους φυσικούς πληθυσμούς Culicoides (Mee et al., 2015). Περαιτέρω μελέτη είναι απαραίτητη.
7. Παγίδευση των Culicoides spp.
Η παγίδευση πληθυσμού Culicoides έχει κυρίως ως στόχο την ταυτοποίηση των εντόμων φορέων για την έγκαιρη αντιμετώπισή τους. Οι πιθανοί φορείς που υπάρχουν στην περιοχή τοποθέτησης των παγίδων και η γνώση της βιολογίας τους, είναι σημαντικοί παράμετροι που επηρεάζουν τον καθορισμό κατάλληλης τεχνικής παγίδευσης. Ενδείκνυται η χρησιμοποίηση συνδυασμού τεχνικών παγίδευσης για εύρος εξελικτικών με διαφορετικές διατροφικές συνήθειες (Ausvetplan).

Οι τύποι παγίδων ταξινομούνται στις εξής τρεις κατηγορίες:

7.1 Light traps-Φωτοπαγίδες
Για την παρακολούθηση των πληθυσμών αλλά και για την μαζική τους παγίδευση όταν βρίσκονται σε μικρούς πληθυσμούς χρησιμοποιούνται οι παγίδες Light traps. Το μεγαλύτερο ποσοστό των παγίδων αυτών δεν είναι κατασκευασμένες ειδικά για την σύλληψη Culicoides αλλά γενικότερα για την σύλληψη εντόμων που ανήκουν στην τάξη των διπτέρων (Culicidae κ.α).
Η παγίδευση των εντόμων γίνεται αποκλειστικά κατά την διάρκεια της νύχτας με μικρό ποσοστό εντόμων να παγιδεύεται κατά τη διάρκεια της ημέρας.

Οι παγίδες αυτές αποτελούνται από τα επιμέρους τμήματα:
• το κυρίως σώμα της παγίδας κατασκευασμένο συνήθως από πλαστικό ή τούλι
• τον μηχανισμό απορρόφησης
• το δοχείο συλλογής εντόμων
Η παραπάνω περιγραφή αποτελεί τον απλότερο τύπο παγίδας. Υπάρχουν πολλές παραλλαγές όσον αφορά το μέγεθος, το υλικό κατασκευής της παγίδας ακόμα και στην θέση τοποθέτησης των επιμέρους τμημάτων. Εμπορικά υπάρχουν 4 Light traps που χρησιμοποιούνται για τα Culicoides και περιγράφονται στην συνέχεια (Monerris et al., 2012).

a. Onderstepoort light trap

Η παγίδα κατασκευάστηκε από το Ινστιτούτο Γεωργικής μηχανικής (Institute of Agricultural Engineering) της Νότιας Αφρικής. Η παγίδα έχει βάρος 4 kg και είναι εξοπλισμένη με 30 cm σωλήνα το οποίο εκπέμπει 8 W υπεριώδη ακτινοβολία. Μπορεί να λειτουργεί με 12 V μπαταρία απουσία ρεύματος. Ο ανεμιστήρας απορρόφησης έχει ικανότητα μετατόπισης του άερα (air flow displacement capacity) 204,5+9,47 m3/min. Τα έντομα συλλέγονται σε ένα δοχείο χωρητικότητας 500 ml αλλά μπορούν να χρησιμοποιηθούν και δοχεία διαφορετικής χωρητικότητας και σχήματος. Το πλέγμα είναι κατασκευασμένο από πολυεστέρα και έχει διάμετρο οπών 2mm. Τοποθετείται γύρω από τα ανοίγματα των παγίδων για να εμποδίζεται η είσοδος μεγαλύτερων εντόμων.

Η παγίδα αυτή χρησιμοποιείται στην Νότια Αφρική από το 1970 και έπειτα και σε άλλες χώρες της Ευρώπης ακόμα και στην Ελλάδα (Πατακάκης, 2004)

![Εικόνα 31 Onderstepoort light trap (Venter et al., 2009)](image)

b. Mini CDC light trap

Η παγίδα σχεδιάστηκε και κατασκευάστηκε από την John Hoch Company (Gainesville FL, USA) και αρχικά είχε σχεδιαστεί για την συλλογή κουνουπιών. Είναι μια παγίδα σχετικά ελαφριά με βάρος 0,8 kg. Διαθέτει σωλήνα μήκους 15 cm και εκπέμπει 4 W υπεριώδη ακτινοβολία. Ο ανεμιστήρας απορρόφησης έχει ικανότητα μετατόπισης του άερα 11,6 m3/min. Τα έντομα συλλέγονται σε δοχείο χωρητικότητας 450 ml.
Αποφεύγεται η συλλογή μεγαλύτερων εντόμων με μεταλλικό φίλτρο με διάμετρο οπών 5mm. Η παγίδα αυτή χρησιμοποιείται κυρίως στην Ισπανία (Miranda et al, 2004) και την Πορτογαλία.

Εικόνα 32 Mini CDC light trap (Venter et al., 2009)

c. Rieb light trap

Η παγίδα σχεδιάστηκε από τον j.P Rieb το 1979. Έχει βάρος 1 kg και διαθέτει σωλήνα μήκους 15 cm και εκπέμπει 4 W λευκού φωτός. Η παγίδα χρησιμοποιήθηκε στην Γαλλία για παρακολούθηση του πληθυσμού αλλά τελικώς αντικαταστάθηκε από την Onderstepoort.

Εικόνα 33 Rieb light trap (Venter et al., 2009)
d. Pirbright light trap

Η παγίδα σχεδιάστηκε από τον John Boorman στο Ινστιτούτο Υγείας ζώων (IAH, Pirbright, UK). Η παγίδα έχει βάρος 2,5 kg και είναι εξοπλισμένη με 24 W λάμπα πυρακτώσεως. Τα έντομα συλλέγονται σε δοχείο όγκου 90 ml. Όπως και ο προηγούμενος τύπος παγίδας αντικαταστάθηκε από την παγίδα Onderstepoort.

Σε μελέτες που έχει διενεργηθεί σύγκριση μεταξύ των τεσσάρων τύπων Light traps αποτελεσματικότερη παρουσιάστηκε η παγίδα Onderstepoort ανεξαρτήτως του χρόνου διεξαγωγής των πειραμάτων (χειμώνα-καλοκαιρί) (Venter et al., 2009).

Πολλοί παράγοντες επηρεάζουν τον αριθμό των εντόμων που παγιδεύονται στις παγίδες τύπου Light traps. Αυτοί είναι οι κάτωθι:

1. Το ύψος τοποθέτησης της παγίδας. Επιλέγεται συνήθως ύψος 1,5 με 2 μέτρα από το έδαφος και κατά τέτοιο τρόπο ώστε να είναι ορατή από το μέρος που σταβλίζονται τα ζώα κατά την διάρκεια της νύχτας

2. Η ύπαρξη άλλων πηγών φωτός κοντά στην παγίδα καθώς είναι πιθανό να αποπροσανατολίσουν τα έντομα

3. Οι περιβαλλοντικές συνθήκες π.χ θερμοκρασία, ταχύτητα ανέμου, σχετική υγρασία

4. Μηχανικά εμπόδια μπροστά από την είσοδο της παγίδας, εμποδίζοντας την πτήση των εντόμων (Belton, 1967)

5. Η σχετική απόσταση μεταξύ των στάβλων.

Ένα επιπλέον χαρακτηριστικό που προστίθεται στις παγίδες Light traps για την βελτίωση των αποτελεσμάτων τους είναι η εκπομπή διοξειδίου του άνθρακα (CO₂) για την προσέλκυση μεγαλύτερου πληθυσμού εντόμων.
Όσον αφορά το χρώμα των λαμπτήρων που χρησιμοποιούνται στις παγίδες έχει αποδειχθεί ότι το υπεριώδες φως είναι 8-10 φορές περισσότερο ελκυστικό για τα Culicoides spp. από ότι το άσπρο φως. Έτσι αυξάνονται οι πιθανότητες σύλληψης ιδιαίτερα αν οι πληθυσμοί είναι ολιγάρηθροι (Wieser-Schimpf L. Et al, 1990). Παρόλα αυτά για το C. pulicaris και το C. dewulfi έχει αποδειχθεί ότι προσελκύονται σε μεγαλύτερα ποσοστά από τις παγίδες με πράσινη ακτινοβολία (570nm) (Hope et al, 2015).

Εικόνα 35 Φωτο-παγίδες με διάφορα μήκη κύματος (Hope et al, 2015)

Το μειονέκτημα των παγίδων αυτών είναι ότι δεν είναι αποτελεσματικές κατά την διάρκεια της ημέρας με αποτέλεσμα να μην συλλαμβάνονται Culicoides τα οποία δραστηριοποιούνται τις ώρες αυτές (C. actoni, C. Obsculetus και C. Yukonensis) με αποτέλεσμα να αλλοιώνεται ο πραγματικός αριθμός του πληθυσμού.

7.1.1 Mosquito triple trap

- Mosquito triple trap

Η παγίδα έχει βάρος 2 kg και είναι εξοπλισμένη με 28 W λάμπα πυρακτώσεως. Χαρακτηριστικά της παγίδας είναι τα εξής:

1. Φιλική προς το περιβάλλον, δεν περιέχει εντομοκτόνα
2. Μπορεί να χρησιμοποιηθεί τόσο σε εξωτερικό όσο σε εσωτερικό περιβάλλον
3. Ακίνδυνη για τον άνθρωπο και τα ζώα
Στην ελληνική αγορά εμφανίζεται η ως άνω παγίδα ως ικανή να παγιδεύει εκτός των κουνουπιών και διάφορες σκνίπες. Δεδομένης της μεγάλης σημασίας που έχει για την αντιμετώπιση των Culicoides η έγκαιρη παρατήρηση αυτών, παρουσιάζονται ορισμένα προκαταρκτικά στοιχεία αποτελεσματικότητα της ως άνω παγίδας, η οποία βρίσκεται σε πολύ καλή τιμή στο ελληνικό εμπόριο σε σχέση με άλλες πολύ ακριβείς παγίδες σε περιοχή της Αττικής (παραρτήματα 5 της παρούσας μελέτης)

7.2 Truck-traps
Η παγίδα αυτή σχεδιάστηκε και περιγράφηκε από τον Dyce et al το 1972. Η παγίδα βρίσκεται στην οροφή ενός αυτοκινούμενου φορτηγού συνήθως σε απόσταση 1,35 m από το έδαφος (Edwards, 1980). Έχει κωνικό σχηματισμό και αποτελείται από πλέγμα με πλάτος 91,5 cm στην μια άκρη του (Trap Responses of Flying Insects)(εικόνα 38). Χρησιμοποιούνται για να συλλαμβάνουν Culicoides spp κατά την διάρκεια της ημέρας με αποτέλεσμα να είναι δυνατή η παρατήρηση και η καταγραφή της ημερήσιας διακύμανσης των εντόμων.
7.3 Animal bait-traps και Aspirators (Ζώα-δολώματα για παγίδευση και αναρροφητήρες)

Αποτελεσματικό είδος παγίδευσης είναι τα ζώα-δολώματα και η χρήση κατάλληλων κλωβών κάλυψης. Τέτοιου είδους παγίδες επιτρέπουν στις σκνίπες να επιτίθονται στο ζώο ξενιστή με κανονικό τρόπο και σε πραγματικές συνθήκες περιβάλλοντος. Το δολωμένο ζώο καλύπτεται με κλωβό από PVC (εικόνα 39) και στην συνέχεια γίνεται συλλογή των δειγμάτων με ειδικούς αναρροφητήρες είτε απευθείας από τα δολωμένα ζώα (εικόνα 40) είτε από τον ειδικό κλωβό (εικόνα 41)
Εικόνα 38 Drop trap (Ayllon et al., 2014)

Εικόνα 39 Εφαρμογή αναρροφητήρα επί των ζώων (Ayllon et al., 2014)

Εικόνα 40 Εφαρμογή αναρροφητήρα (Ayllon et al., 2014)

Έτσι, από την παγίδευση των ατόμων Culicoides spp. θα πρέπει να υπάρξει η σωστή μεταχείριση των δειγμάτων για να μπορέσουν να γίνουν σωστά οι μορφολογικές ή οι μοριακές ταυτοποιήσεις (Animalhealth Australia, 2011). Οι μέθοδοι για την αποθήκευση των δειγμάτων είναι οι εξής:

- Διατήρηση των δειγμάτων σε αλκοόλη. Αν πρόκειται στα δείγματα να χρησιμοποιηθεί κάποια μοριακή τεχνική, συνίσταται η διατήρησή τους σε 100% αιθανόλη.
- Ψύξη των δειγμάτων είτε σε κατάψυξη είτε με υγρό άζωτο.
8. Ταυτοποίηση των ειδών Culicoides spp.

Η ταυτοποίηση των ειδών Culicoides παίζει σημαντικό ρόλο στην κατανόηση και στην επίλυση των προβλημάτων που δημιουργούν. Λόγω του ιδιαίτερα μικρού τους μεγέθους και της μεγάλης ποικιλομορφία τους, η ταυτοποίηση με την χρησιμοποίηση μορφολογικών χαρακτηριστικών απαιτεί χρόνο και εξειδικευμένο προσωπικό.

Εκτός από την άμεση ταυτοποίηση με μικροσκόπιο έχουν αναπτυχθεί και κατάλληλα λογισμικά για την ευκολότερη ταυτοποίηση των ειδών (Xper3-Παράτημα 3). Επιπροσθέτως γίνονται και μοριακές αναλύσεις στο μιτοχονδριακό DNA για την ταυτοποίηση των ειδών.

Αναλυτικότερα τα εργαλεία-μέθοδοι που χρησιμοποιούνται για την ταυτοποίηση των Culicoides είναι τα εξής:

8.1 Μορφολογική ταυτοποίηση

i. Μορφολογικός διαχωρισμός βάση των διαφορών των προνυμφικών σταδίων

Η μορφολογία των προνυμφικών σταδίων είναι το λιγότερο μελετημένο στάδιο. Ανέρχεται στο 13% των προνυμφών και στο 17% των νυμφών παγκοσμίως όπου έχουν περιγραφεί. Αυτό οφείλεται στην δυσκολία συλλογής των σταδίων (Borkent, 2014a).

Η απλότερη μέθοδος που χρησιμοποιείται για την ταυτοποίηση των προνυμφικών σταδίων είναι η συλλογή τους και η μελέτη των ενηλίκων που αναδύονται. Η ταυτοποίηση των ειδών μόνο από το στάδιο των προνυμφών έχει μελετηθεί από τον Nevill και τους συνεργάτες του, όπου περιέγραφαν και ταυτοποίησαν 2 Αφρικανικά είδη νυμφών Culicoides (Nevill et al., 2009).

Επιπλέον δημιουργήθηκαν κλείδες ταυτοποίησης για τα πρώϊμα στάδια των Culicoides αλλά αυτά αφορούν είδη συγκεκριμένων περιοχών. Αναλυτικότερα, ο Howarth δημιούργησε κλείδα για 62 είδη Culicoides στο στάδιο του ενήλικου θηλυκού αλλά και στο στάδιο της νύμφης για είδη που βρίσκονται στο Λάος (Howarth, 1985) ενώ ο Elson-Harris και οι συνεργάτες του περιέγραψαν και δημιούργησαν μια κλείδα για 23 είδη νυμφών Culicoides της Αυστραλίας (Elson-Harris et al., 1992). Τέλος, περιγράφηκαν και κλείδες ταυτοποίησης για προνύμφες Culicoides δημιούργησε ο Kettle και ο Lawson για 28 είδη Culicoides που βρέθηκαν στην Αγγλία (Kettle et al., 1952).

Παρόλα αυτά μεγαλύτερη έμφαση στις έρευνες δίνεται στην ανάπτυξη κλειδών ταυτοποίησης για τα ενήλικα άτομα, καθώς η παγίδευση τους είναι σαφώς ευκολότερη.

ii. Μορφολογικός διαχωρισμός βάση διαφορών στο ενήλικο άτομο

Η μεγαλύτερη πλειονότητα των ειδών του γένους Culicoides ταυτοποιούνται με βάση τα μορφολογικά χαρακτηριστικά των πτερύγων τους για παράδειγμα τις χαρακτηριστικές λευκές και σκοτεινόχροες κηλίδες, την ύπαρξη ή μη τριχών, την έντονη γράμμωση των νεύρων και το μέγεθος των πτερύγων (Henni et al., 2014). Τα χαρακτηριστικά αυτά είναι ίδια στα άτομα των ειδών και για τον λόγο αυτό μπορούν να χρησιμοποιηθούν για ταυτοποίηση. Τα αποτελέσματα των μελετών που έχουν δημοσιευθεί παρατίθενται στο Παράρτημα 2. Παράλληλα αυτά παρατηρούνται διαφοροποιήσεις μεταξύ των ατόμων των ίδιων ειδών όπως ανέφερε ο Pages στην μελέτη του. Παρατηρήθηκαν διαφορές μεταξύ 3 ατόμων C. newsteadi (Pages et al., 2009).

Η μελέτη των πτερύγων είναι μια ιδιαίτερη δύσκολη και απαιτητική εργασία. Παρατίθεται μια χαρακτηριστική εικόνα μιας πτέρυγας ενός ενήλικου θηλυκού Culicoides με τα επιμέρους τμήματα της.
Εικόνα 41 Πτέρυγα Culicoides spp. (Bellis et al., 2015)

Από αριστερά προς τα δεξιά τα τμήματα είναι τα εξής:

<table>
<thead>
<tr>
<th>Ελληνική συντομογραφία</th>
<th>Ελληνική μετάφραση</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell r1 (A)</td>
<td>1ο κερκιδικό κύτταρο</td>
</tr>
<tr>
<td>cell r2 (B)</td>
<td>2ο κερκιδικό κύτταρο</td>
</tr>
<tr>
<td>post stigmatic pale</td>
<td>Μεταστιγματική</td>
</tr>
<tr>
<td>spot</td>
<td>ωχρή κηλίδα</td>
</tr>
<tr>
<td>cell r5 (KK5)</td>
<td>5ο κερκιδικό κύτταρο</td>
</tr>
<tr>
<td>M1 vein (M1)</td>
<td>1ο μεσαίο νεύρο</td>
</tr>
<tr>
<td>cell m1 (AMK)</td>
<td>άνω μεσαίο κύτταρο</td>
</tr>
<tr>
<td>M2 vein (M2)</td>
<td>2ο μεσαίο νεύρο</td>
</tr>
<tr>
<td>cell m2 (KMK)</td>
<td>κάτω μεσαίο κύτταρο</td>
</tr>
<tr>
<td>cell m4 (ΩK)</td>
<td>ωλενικό κύτταρο</td>
</tr>
<tr>
<td>cu1 vein (ΩN)</td>
<td>ωλενικό νεύρο</td>
</tr>
<tr>
<td>anal cell (EK)</td>
<td>εδρικό ή πυγαίο κύτταρο</td>
</tr>
<tr>
<td>medio-cubical fork</td>
<td>ωλένια διχάλωση</td>
</tr>
<tr>
<td>(ΩΔ)</td>
<td></td>
</tr>
</tbody>
</table>

(Meiswinkel et al., 2004). Οι ελληνικές συντομογραφίες και η ελληνική μετάφραση από Πατακάκης, 2008 με ημέτερες τροποποιήσεις.
Με την μελέτη των παραπάνω μορφολογικών χαρακτήρων είναι δυνατή η ταυτοποίηση, ο διαχωρισμός των ατόμων *Culicoides* στα αντίστοιχα είδη και η δημιουργία κλειδών ταυτοποίησης των ενήλικων ατόμων.

Οι διαφορές των πτερύγων είναι εμφανείς για ορισμένα τμήματα των πτερύγων ενώ για άλλα είναι ιδιαίτερα δυσδιάκριτα και απαιτούν περαιτέρω διερεύνηση. Στην συνέχεια παρουσιάζονται πτέρυγες από τα υπογένη του γένους *Culicoides* με εκπροσώπους για την κάθε κατηγορία. Η παρουσίαση των εικόνων γίνεται βάση της έρευνας του Borkent, όπου κατατάσσει τα *Culicoides* σε 31 υπογένη τα οποία περιλαμβάνουν το 63% των υπάρχοντων ειδών ενώ 38 ομάδες ειδών δεν μπορούν να ταξινομηθούν. (Borkent, 2014a)

<table>
<thead>
<tr>
<th>Υπογένος</th>
<th>Είδος</th>
<th>Εμφάνιση πτέρυγας αντιπροσωπευτικού είδους στα διάφορα υπογένη</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anilomyia Vargas (1960)</td>
<td>C. covagarciai Ortiz, 1950</td>
<td>C. decor (Williston), 1896</td>
</tr>
<tr>
<td>Avaritia Fox (1955)</td>
<td>C. obsoletus (Meigen), 1818</td>
<td>C. obsoletus (Meigen), 1818</td>
</tr>
<tr>
<td>Cotocripus Brèthes (1912)</td>
<td>C. caridei (Brèthes), 1912 (=Cotocripus caridei Brèthes)</td>
<td>C. caridei (Brèthes), 1912</td>
</tr>
<tr>
<td>Genus</td>
<td>Species and Authors</td>
<td>Synonyms</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Culicoides Latreille in Mirzaeva and Isaev (1990)</td>
<td>C. punctatus (Meigen), 1804</td>
<td>C. punctatus (Meigen), 1804</td>
</tr>
<tr>
<td>Diphaomyia Vargas (1960)</td>
<td>C. baueri Hoffman, 1925</td>
<td>C. baueri Hoffman, 1925</td>
</tr>
<tr>
<td>Fastus Liu in Yu and Huang (2006)</td>
<td>C. alpigenus Yu and Liu, 2006</td>
<td>C. erairai Kono and Takahasi, 1940</td>
</tr>
<tr>
<td>Glaphiromyia Vargas (1960)</td>
<td>C. scopus Root and Hoffman, 1937</td>
<td>C. scopus Root and Hoffman, 1937</td>
</tr>
<tr>
<td>Haemophoructus Macfie (1925)</td>
<td>C. maculipennis (Macfie), 1925 (= Haemophoructus maculipennis Macfie)</td>
<td>C. maculipennis (Macfie), 1925</td>
</tr>
<tr>
<td>Haematomyidium Goeldi (1905)</td>
<td>C. paraensis (Goeldi), 1905 (= Haematomyidium paraensis Goeldi)</td>
<td>C. debilipalpis Lutz, 1913</td>
</tr>
<tr>
<td>Genus</td>
<td>Species and Synonyms</td>
<td>Authors and Year</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Hoffmania</td>
<td>C. insigne Lutz, 1913 (=C. inamollae Fox and Hoffman, 1944)</td>
<td>Fox (1948)</td>
</tr>
<tr>
<td>Macfiella</td>
<td>C. phlebotomus (Williston), 1896 (=Ceratopogon phlebotomus Williston)</td>
<td>Fox (1955)</td>
</tr>
<tr>
<td>Marksomyia</td>
<td>C. marksi Lee and Reye, 1953</td>
<td>Bellis and Dyce (2011)</td>
</tr>
<tr>
<td>Mataemyia</td>
<td>C. moingaensis Wirth and Blanton, 1953</td>
<td>Vargas (1960)</td>
</tr>
<tr>
<td>Meijerehelea</td>
<td>C. guttifer (de Meijere), 1907 (= Ceratopogon guttifer de Meijere)</td>
<td>Wirth and Hubert (1961)</td>
</tr>
<tr>
<td>Monoculicoides</td>
<td>C. nubeculosus (Meigen), 1830 (= Ceratopogon nubeculosus Meigen)</td>
<td>Khalaf (1954)</td>
</tr>
<tr>
<td>Genus</td>
<td>Species</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Oecacta</td>
<td>Poey (1853) C. furens (Poey), 1853 (= Oecacta furens Poey)</td>
<td>C. furens (Poey), 1853</td>
</tr>
<tr>
<td>Pontoculicoides</td>
<td>Remm in Remm and Zhogolev (1968)</td>
<td>C. tauricus Gutsevich, 1959</td>
</tr>
<tr>
<td>Psychophaeona</td>
<td>Philippi (1865) C. venezuelensis Ortiz and Mirsa, 1950 (= Psychophaeona pictipennis Philippi)</td>
<td>C. venezuelensis Ortiz and Mirsa, 1950</td>
</tr>
<tr>
<td>Remmia</td>
<td>Glukhova (1977) C. schultzei (Enderlein), 1908 (= Ceratopogon schultzei Enderlein)</td>
<td>C. oxystoma Kieffer, 1910</td>
</tr>
<tr>
<td>Silvaticulicoides</td>
<td>Glukhova (1977) C. fascipennis (Staeger) 1839 (= Ceratopogon fascipennis Staeger)</td>
<td>C. fascipennis Kieffer, 1919</td>
</tr>
<tr>
<td>Sinocoides Chu (1983)</td>
<td>C. hamiensis Chu, Qian and Ma, 1982</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Synhelea Kieffer (1925)</td>
<td>C. tropicalis Kieffer, 1913</td>
<td></td>
</tr>
<tr>
<td>C. tropicalis Kieffer, 1913 ♀</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritheoides Wirth and Hubert (1959)</td>
<td>C. flaviscutatus Wirth and Hubert, 1959</td>
<td></td>
</tr>
<tr>
<td>C. fulvithorax (Austen), 1912 ♀</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. mikros Dyce and Meiswinkel, 1995 ♀</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirthomyia Vargas (1973b)</td>
<td>C. segnis Campbell and Pelham-Clinton, 1960</td>
<td></td>
</tr>
<tr>
<td>C. segnis Campbell and Pelham-Clinton, 1960 ♀</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Με την ανάπτυξη της τεχνολογίας υπάρχει πλέον η δυνατότητα ταυτοποίησης των ειδών με την βοήθεια των ηλεκτρονικών υπολογιστών. Η πρώτη κλείδα ταυτοποίησης των Culicoides μέσω ηλεκτρονικού υπολογιστή δημιουργήθηκε από τον Mathieu και τους συνεργάτες του και είναι ελεύθερη διαθέσιμη μέσω διαδικτύου. Αποτελεί μια βάση δεδομένων από εικονογραφήσεις των περισσότερων ειδών της Δυτικής Παλαιαρκτικής περιοχής (Mathieu et al., 2012). Στο Παράρτημα 3 παρουσιάζεται η βάση δεδομένων IIKC με την βοήθεια του προγράμματος Xper3 και ο τρόπος λειτουργίας της.

Πέρα από τα μορφολογικά χαρακτηριστικά των πτερύγων, υπάρχουν και άλλα χαρακτηριστικά τα οποία λαμβάνονται υπόψη για την ταυτοποίηση όπως το μέγεθος του σώματος, ο αριθμός των αισθητήρων οργανιδίων στις κεραίες και η ακριβής τους θέση σε αυτές, το σχήμα των γεννητικών οργάνων του αρσενικού, το μέγεθος και ο αριθμός των σπερματοθηκών στα θηλυκά.
8.2 Γενετική ταυτοποίηση

Στις σύγχρονες μελέτες ταξινόμηση χρησιμοποιούνται ολοένα και περισσότερα γενετικά δεδομένα.

Υπάρχει σημαντική θετική συσχέτιση μεταξύ της απλής ταυτοποίησης με μορφολογικά χαρακτηριστικά και της ταυτοποίησης με γενετικά δεδομένα. Παρόλα αυτά, είναι δυνατόν να μην είναι δυνατή η διάκριση ενός είδους μόνο με γενετική ταυτοποίηση όπως στην περίπτωση του C. circumscriptus Kieffer (Ander et al., 2013).

Σύγχρονες ταυτοποιήσεις που βασίζονται σε διαφορετική μεθοδολογία από αυτές των προηγούμενων χρόνων (π.χ χρησιμοποίηση ισοενζύμων) έχουν ήδη προταθεί και πραγματοποιηθεί. Ο Kaufmann το 2012 χρησιμοποίησε το όργανο της φασματομετρίας MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization-Time of Flight) για να ταυτοποιήσει και να ταξινομήσει τις πρωτεϊνες των προνυμφών του C. nubeculosus (Kaufmann et al., 2012).

Η πιο γνωστή και πλέον χρησιμοποιούμενη μοριακή τεχνική για την ταυτοποίηση Culicoides βασίζεται στην χρήση της αλυσιδωτής αντίδρασης της πολυμεράσης (PCR). Το μεγαλύτερο ποσοστό των μελετών χρησιμοποιούν την ανάλυση της αλληλουχίας του μιτοχονδριακού DNA των εντόμων χρησιμοποιώντας σε κάθε περίπτωση συγκεκριμένους μοριακούς δείκτες.

- DNA barcoding

To DNA barcoding είναι μια ταξινομική μέθοδος η οποία χρησιμοποιεί μικρούς γεννητικούς δείκτες στο DNA ενός οργανισμού για να το ταξινόμησε στο είδος που ανήκει. Βασίζεται στην θεωρία ότι το κάθε είδος έχει μοναδική αλληλουχία DNA στο γονίδιο της κυτοχρωματικής οξειδάσης I (COI). Έχουν δημιουργηθεί τράπεζες γονιδιώματος (Barcode of Life Database και Consortium for the Barcode of Life) στις οποίες είναι καταχωρημένες οι αλληλουχίες των οργανισμών (Παράρτημα 4). Δίνει εξαιρετικές πληροφορίες κυρίως για είδη τα οποία μοιάζουν μεταξύ τους. Σημαντική συνεισφορά για την ταξινόμηση ειδών που είναι φορείς ασθενειών.

Αρκετές μελέτες έχουν πραγματοποιηθεί με την βοήθεια της COI αλληλουχίας για να διευκρινιστούν οι σχέσεις μεταξύ των ειδών του υπογένους Avaritia Fox και του C. latreille (Dallas et al., 2003). Παρόλα αυτά σύγχρονες μελέτες αποδεικνύουν ότι δεν είναι δυνατός πάντα ο διαχωρισμός δυο είδων συγγενικά όμων μεταξύ τους (Ander et al., 2012).

- ITS (Internal transcribed spacer)

Ως εναλλακτικός δείκτης ο οποίος χρησιμοποιείται για να διερευνηθούν οι γενετικές αποστάσεις και η δομή του πληθυσμού των Culicoides. Επιπροσθέτως, ITS δείκτες έχουν χρησιμοποιηθεί για να ταυτοποιηθούν φορείς του BTV από μεμονωμένα δείγματα και πληθυσμούς.

Για την ταυτοποίηση και τον προσδιορισμό της εξέλιξης και των φυλογενετικών σχέσεων μεταξύ των ειδών Culicoides είναι χρήσιμη η προσφορά των μοριακών δεικτών ITS1 (Perrin et al., 2006) και ITS2 (Gemulski et al., 2006).

- CAD

Ένας εναλλακτικός δείκτης ο οποίος χρησιμοποιείται ολοένα και περισσότερο στον προσδιορισμό των φυλογενετικών σχέσεων είναι το CAD γονίδιο. Αποτελεί συνήθως δευτερεύοντα δείκτη για τις μελέτες Culicoides.
ΕΙΔΙΚΟ ΜΕΡΟΣ
Σκοπός της μελέτης

Κύριος σκοπός της παρούσας εργασίας είναι η συλλογή άμεσων μέσω ερωτηματολόγου στοιχείων προς εξαγωγή συμπερασμάτων σε σχέση με το πρόβλημα της επιζωτίας του καταρροϊκού πυρετού το οποίο εμφανίστηκε με μεγάλη ένταση στην Ελλάδα το 2014. Μεταξύ άλλων τα θέματα της μελέτης αφορούσαν:

1. Την καταγραφή της συνολικής εικόνας που παρουσίαζαν οι διάφορες περιοχές της Ελλάδος όσον αφορά τον αριθμό των κτηνοτροφικών μονάδων (προβατοτροφικών, βοοειδών και άλλων) το ετος 2014 και του ποσοστού εμφάνισης σε αυτές της ασθένειας

2. Τον εντοπισμό της χρονικής περιόδου με την μεγαλύτερη εμφάνιση της νόσου ανά Περιφερειακή Ενότητα

3. Τις επεμβάσεις οι οποίες τυχόν χρησιμοποιήθηκαν για την αντιμετώπιση του φορέα του καταρροϊκού πυρετού

4. Την πραγματοποίηση ή μη συλλογής των εντόμων φορέων από τις αρμόδιες αρχές στις περιοχές των προσβολών

5. Την πρότερη εμπειρία των υπηρεσιών σε σχέση με παλαιότερα κρούσματα καταρροϊκού πυρετού

Επιζωτία καταρροϊκού πυρετού 2014 στην Ελλάδα

Το νόσημα επιβεβαιώθηκε για πρώτη φορά στο Δήμο Σπάρτης στην περιοχή Ξηροκάμπι (βλ. χάρτη1) τον Μάιο του 2014 σε εκτροφή αιγοπροβάτων, με κλινικά συμπτώματα μόνο στα πρόβατα και σχετικά μικρή νοσηρότητα και θνησιμότητα. Σύμφωνα με αρχεία που διατηρεί η Γενική Διεύθυνση Κτηνιατρικής του ΥΠ.Α.Α.Τ ήταν η πρώτη φορά που εντοπίστηκε καταρροϊκός πυρετός στην περιοχή Πελοπονησίου. Μέχρι τις 20 του Ιουνίου 2014 επιβεβαιώθηκαν 48 εστίες της νόσου στην Λακωνία, 11 στην Αρκαδία, 7 στην Μεσσηνία και από μία στους νομούς Κορινθίας και Αργολίδας. Οι εστίες στην Πελοπόννησο αυξήθηκαν σημαντικά μέχρι τις 11 Ιουλίου με επιβεβαιωμένες εστίες: 85 εστίες της νόσου στην Λακωνία, Αρκαδία, Μεσσηνία, Κορινθία, Αργολίδα και για πρώτη φορά το 2014 η πρώτη εστία στον Έβρο (ορότυπος εστίας καταρροϊκού πυρετού στα σύνορα της Βουλγαρίας). Σημαντική παρατήρηση ότι την περίοδο έξαρσης της πρώτης εστίας στον Έβρο υπήρξε και στα σύνορα της Βουλγαρίας. Η εμφάνιση της νόσου σε ολόκληρη την Ελλάδα μέχρι τις 22/07/2014 αφορούσε σε 237 εστίες εκ των οποίων:

- Στην Λακωνία 95, στην Μεσσηνία 23, στην Αργολίδα 5, στην Κορινθία 10, στην Ηλεία 1, στην Αχαΐα, στον Έβρο 4, στην Ροδόπη 2 και στην Ευρυτανία 2 εστίες.

Υπήρξαν επίσης επιβεβαιωμένες πάνω από 40 εστίες της νόσου στην Βουλγαρία κατά μήκος των συνόρων με την Βουλγαρία μέχρι το ύψος της Ζάνθης όσο και με τα σύνορα της Τουρκίας.

Επόμενες επιβεβαιωμένες εστίες αφορούν περιοχές της Φλώρινας (Άλωνα, Άνω Κλείνες) κατά τα τέλη του μήνα Ιουλίου όπως επίσης και στην Περιφεριακή ενότητα Καστοριάς (Μακροχώρι).

Εστίες που εμφανίστηκαν και επιβεβαιώθηκαν τους μήνες Σεπτέμβριο-Οκτώβριο ήταν στις περιοχές:

- Περιφέρεια Ηπείρου και συγκεκριμένα στην περιοχή της Πρέβεζας, της Άρτας και σε ένα μεγάλο μέρος της Θεσπρωτίας
- Χανιά

Κατά τα προηγούμενα έτη το νόσημα εμφανίζοταν περιοδικά (σχεδόν κατ' έτος) στα νησιά του Ανατολικού Αιγαίου (τελευταίες εστίες το 2012 σε Ρόδο, Κω, Κάλυμνο, Σάμο, Λέσβο, Χάλκη) ενώ το νόσημα έχει τουλάχιστο 10 χρόνια να εμφανιστεί στην ηπειρωτική Ελλάδα.

Παρούσα γνώση των Culicoides στην Ελλάδα

Στην Ελλάδα εκτός των σχετικών αναφορών σε κτηνιατρικά και άλλα συγγράμματα επί των Ceratopogonidae, η μελέτη των διπτέρων αυτών ξεκίνησε με την εμφάνιση του πρώτου κρούσματος του καταρροϊκού πυρετού (ορότυπος BTV 4) στο νησί της Λέσβου, τον Οκτώβριο του 1979. Ο πρώτος ερευνητής που μελέτησε το γένος Culicoides στην Ελλάδα ήταν ο John Boorman (Patakakis, 2004). Κατά την διάρκεια της μελέτης του συνέλεξε και ταυτοποίησε τουλάχιστον 17 είδη Culicoides.

Πρόγραμμα επιτήρησης του Καταρροϊκού πυρετού στην Ελλάδα για το 2015

Υπό την επίδραση του 2014, εγκρίθηκε η εφαρμογή Προγράμματος επιδημιολογικής επιτήρησης του Καταρροϊκού πυρετού (ΚΠ) στην Ελλάδα για το έτος 2015, με σχετική απόφαση του ΥΠΑΑΤ.

Στόχοι του προγράμματος ήταν:

- Η συστηματική έρευνα και διαφορική διάγνωση με εφαρμογή κατάλληλων εργαστηριακών τεχνικών του Καταρροϊκού Πυρετού στα βοοειδή μέσω της παθητικής και ενεργητικής επιτήρησης.
- Επί ορομετατροπής βοοειδούς – μάρτυρα, η άμεση διενέργεια περαιτέρω έρευνας (κλινική και εργαστηριακή) για τον αποκλεισμό ή μη της κυκλοφορίας του ιού του ΚΠ.
- Η έρευνα μέσω της εντομολογικής επιτήρησης του είδους και της διασποράς των ξενιστών Culicoides στη χώρα.

Όσον αφορά την εντομολογική επιτήρηση είναι υποχρεωτική η εγκατάσταση και η λειτουργία:

α) Μίας (1) τουλάχιστον εντομοπαγίδας σε εκτροφή βοοειδών, προβάτων ή αιγών στους (πρώην) νομούς: Χίου, Σάμου, Έβρου, Ξάνθης, Σερρών, Θεσσαλονίκης, Θεσπρωτίας και Ηρακλείου.

β) Δύο (2) τουλάχιστον εντομοπαγίδων σε δύο διαφορετικές εκτροφές βοοειδών, προβάτων ή αιγών στους (πρώην) νομούς Λέσβου (μία στη νήσο Λέσβο και μια στη νήσο Λήμνο) και Δωδεκανήσου (μία στη νήσο Ρόδο και μία στη νήσο Κω).

Η θέση εγκατάστασης της εντομολογικής επιτήρησης επιλέγεται με βάση, αφενός με τη διαθέσιμη υποδομή (παροχή ηλεκτρικού ρεύματος) και αφετέρου τη γειτονιά με πιθανούς βιότοπους των εντόμων-φορέων.

Ο αριθμός των εντομοπαγίδων ανά νομό, η θέση όπου θα τοποθετηθούν αλλά και η προσθήκη ενδεχομένως άλλων νομών στον κατάλογο μπορούν να διαφοροποιούνται ανάλογα με τα στοιχεία παρακολούθησης και την εκτίμηση του Αρμόδιου Εργαστηρίου. Για την τεκμηρίωση της εντομολογικής επιτήρησης στο νομό συμπληρώνονται και αποστέλλονται τα ανάλογα διοικητικά έγγραφα που περιλαμβάνονται στο Εγχειρίδιο εφαρμογής του προγράμματος του ΚΠ.

Τα αποτελέσματα της εντομολογικής επιτήρησης δεν είναι ακόμα διαθέσιμα προς κοινοποίηση στο κοινό.
Χάρτης 1 Πρώτη εστία Καταρροϊκού πυρετού- Ξηροκάμπι, Λακωνίας
Χάρτης 2 Εστία στον Έβρο 2014 Ζώνες ακτίνας 100 και 150 χλμ. γύρω από τις επιβεβαιωμένες εστίες

Υλικά και μέθοδοι
Ο σχεδιασμός του ερωτηματολογίου αποτέλεσε την πρώτη ενέργεια για την πραγματοποίηση της παρούσας μελέτης. Το ερωτηματολόγιο συνοδευόταν με σχετική επιστολή και περιλάμβανε 11 ερωτήσεις. Παρατίθεται η μορφή του ερωτηματολογίου και οι επιμέρους ερωτήσεις.
Ερωτηματολόγιο

1. Ποιος ο αριθμός των μονάδων μηρυκαστικών που κατά περίπτωση υπήρχαν στην περιοχή το 2014;
 Προβατοτροφικές
 Βοοτροφικές
 Άλλο (Δηλώστε)

2. Παρουσιάστηκε κάποιο πρόβλημα στις κτηνοτροφικές μονάδες της περιοχής σε σχέση με τον καταρροϊκό πυρετό;
 ΝΑΙ
 ΟΧΙ

3. Αν ναι, σε πόσες μονάδες κατά περίπτωση;
 Προβατοτροφικές
 Βοοτροφικές
 Άλλο (Δηλώστε)

4. Η περίοδος με την μεγαλύτερη εμφάνιση της νόσου ήταν:
 Άνοιξη
 Φθινόπωρο
 Θέρος

5. Άλλα από την εμφάνιση του καταρροϊκού πυρετού χρησιμοποιήθηκαν εντομοκτόνα ως ένας τρόπος αντιμετώπισής;
 ΝΑΙ
 ΟΧΙ

6. Αν ναι,
 (Α) Ποια εντομοκτόνα χρησιμοποιήθηκαν:
 Πυρεθρινοειδή
 Άλλα (δηλώστε)
 (Β) Σε ποια σημεία έγιναν οι εφαρμογές:
 Απευθείας στα ζώα
 Στις ποτίστρες
 Σε ολόκληρο το στάβλο
 Άλλο (Δηλώστε)

7. Έχουν συλλέχθει τα έντομα μεταδότες του νοσού στην περιοχή σας;
 ΝΑΙ
 ΟΧΙ

8. Εάν ναι, έχουν ταυτοποιηθεί τα είδη των εντόμων;
 ΝΑΙ
 ΟΧΙ

9. Αν ναι, ποια είναι αυτά:
 Δηλώστε:

10. Γνωρίζετε αν υπήρχαν στο παρελθόν κρούσματα καταρροϊκού πυρετού;
 ΝΑΙ
 ΟΧΙ

11. Αν όχι, ποια αποδίδεται την εμφάνισή το 2014;
 Εισαγωγή ζώων από περιοχές με καταρροϊκό πυρετό
 Άλλο (Δηλώστε)
Το ερωτηματολόγιο σχεδιάστηκε εξ’ αρχής για αποστολή προς τις Διευθύνσεις Αγροτικής Οικονομίας και Κτηνιατρικής (Δ.Α.Ο.Κ). Ο λόγος ήταν διπότος:

1. Με βάση τον κανονισμό (ΕΚ) αρ.1266/2007 της Ευρωπαϊκής επιτροπής, οι Διευθύνσεις Αγροτικής Οικονομίας και Κτηνιατρικής ορίζονται ως ο νόμιμος φορέας για την επίβλεψη και τον συντονισμό του προγράμματος επιτήρησης του καταρροϊκού πυρετού.

2. Συνολική γνώση επί του θέματος του καταρροϊκού πυρετού. Η επιτυχία στην ερμήνευση των αποτελεσμάτων του ερωτηματολογίου βασίζεται στη μη δυνατότητα απόκρυψης στοιχείων από τις Δ.Α.Ο.Κ.

Η περίπτωση αποστολής των ερωτηματολογίων απευθείας προς τις κτηνοτροφικές μονάδες αποτέλεσε πρωταρχική ιδέα για την εκτέλεση της έρευνας η οποία δεν επιτέλεστηκε. Οι λόγοι ήταν οι εξής:

1. Δεν θα ήταν δυνατή η συνολική αποτίμηση του προβλήματος του ΚΠ για το 2014.

2. Δύσκολος ο εντοπισμός μονάδων οι οποίες θα δύνανται να συμμετέχουν σε έρευνα εξ’ αποστάσεως.

3. Υπήρξε η πιθανότητα απόκρυψης στοιχείων λόγω φόβου περιοριστικών μέτρων με αποτέλεσμα την παραπλάνηση του αποτελέσματος της έρευνας.

Οι Διευθύνσεις στις οποίες αποστάλθηκαν ταχυδρομικώς τα ερωτηματολόγια της έρευνας ήταν οι εξής:

<table>
<thead>
<tr>
<th>Αιτωλοακαρνανίας</th>
<th>Ανατολικής Αττικής</th>
<th>Άρτας</th>
<th>Ημαθίας</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αργολίδος</td>
<td>Αττικής</td>
<td>Ζακύνθου</td>
<td>Ηρακλείου</td>
</tr>
<tr>
<td>Αρκαδίας</td>
<td>Γρεβενών</td>
<td>Θεσπρωτίας</td>
<td>Θεσσαλονίκης</td>
</tr>
<tr>
<td>Αχαΐας</td>
<td>Δράμας</td>
<td>Ιωαννίνων</td>
<td>Κιλκίς</td>
</tr>
<tr>
<td>Βοιωτίας</td>
<td>Δυτικής Αττικής</td>
<td>Καρδίτσας</td>
<td>Κυκλάδων</td>
</tr>
<tr>
<td>Ευβοίας</td>
<td>Έβρου</td>
<td>Κέρκυρας</td>
<td>Λασιθίου</td>
</tr>
<tr>
<td>Ευρυτανίας</td>
<td>Καβάλας</td>
<td>Κεφαλληνίας-Ικαρίας</td>
<td>Λευκάδας</td>
</tr>
<tr>
<td>Ηλεία</td>
<td>Καστοριάς</td>
<td>Κοζάνης</td>
<td>Πέλλας</td>
</tr>
<tr>
<td>Κορινθίας</td>
<td>Λέσβου</td>
<td>Λαρίσης</td>
<td>Πιερίας</td>
</tr>
<tr>
<td>Λακωνίας</td>
<td>Ξάνθης</td>
<td>Μαγνησίας - Σποράδων</td>
<td>Ρεθύμνου</td>
</tr>
<tr>
<td>Μεσσηνίας</td>
<td>Ροδόπης</td>
<td>Πρεβέζης</td>
<td>Σερρών</td>
</tr>
<tr>
<td>Φθιώτιδος</td>
<td>Σάμου</td>
<td>Τρικάλων</td>
<td>Χανίων</td>
</tr>
<tr>
<td>Φωκίδος</td>
<td>Χίου</td>
<td>Φλωρίνης</td>
<td>Κοζάνης</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Άρτας</th>
<th>Ημαθίας</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ζακύνθου</td>
<td>Ηρακλείου</td>
</tr>
<tr>
<td>Θεσπρωτίας</td>
<td>Θεσσαλονίκης</td>
</tr>
<tr>
<td>Ιωαννίνων</td>
<td>Κιλκίς</td>
</tr>
<tr>
<td>Καρδίτσας</td>
<td>Κυκλάδων</td>
</tr>
<tr>
<td>Κέρκυρας</td>
<td>Λασιθίου</td>
</tr>
<tr>
<td>Κεφαλληνίας-Ικαρίας</td>
<td>Λευκάδας</td>
</tr>
<tr>
<td>Κοζάνης</td>
<td>Πέλλας</td>
</tr>
<tr>
<td>Λαρίσης</td>
<td>Πιερίας</td>
</tr>
<tr>
<td>Μαγνησίας - Σποράδων</td>
<td>Ρεθύμνου</td>
</tr>
<tr>
<td>Πρεβέζης</td>
<td>Σερρών</td>
</tr>
<tr>
<td>Τρικάλων</td>
<td>Χανίων</td>
</tr>
</tbody>
</table>
Για την συλλογή των στοιχείων επιλέχθηκε εν τέλει η αποστολή το συμπληρωμένων ερωτηματολογίων μέσω ταχυδρομείου. Δεν ήταν δυνατός κάποιος άλλος τρόπος επικοινωνίας καθώς αρκετές διευθύνσεις δεν διέθεταν email είτε δεν τις είχαν καταχωρημένες στο διαδίκτυο.

Επεξεργασία και ανάλυση των δεδομένων
Ο σχεδιασμός της βάσης δεδομένων για την διαχείριση και την αξιολόγηση των δεδομένων πραγματοποιήθηκε στο πρόγραμμα Microsoft EXCEL 2010. Επιπλέον χρησιμοποιήθηκε το πρόγραμμα QGIS 2.2.0 για την δημιουργία των χαρτών κατανομής.

Η παρουσίαση των αποτελεσμάτων πραγματοποιείται με δυο τρόπους:

- Με την δημιουργία χαρτών που εμφανίζουν οπτικά την κατανομή των θετικών και των αρνητικών απαντήσεων
- Με την δημιουργία γραφημάτων εμφανίζοντας τα επιμέρους ποσοστά ως προς τα ερωτήματα
Αποτελέσματα
Όπως αναφέρθηκε σε προηγούμενη παράγραφο, στην έρευνα συμμετείχαν μόνο οι Διευθύνσεις Αγροτικής Οικονομίας και Κτηνιατρικής (Δ.Α.Ο.Κ) και συγκεκριμένα τις απαντήσεις του ερωτηματολογίου συμπλήρωσαν οι προϊστάμενοι του τμήματος Κτηνιατρικής.
Στην έρευνα ανταποκρίθηκαν 21 διευθύνσεις από τις 55, το οποίο αντιστοιχεί σε ποσοστό ήτοι το 38,2% αυτών.

![Diagram 1](image.png)

Διάγραμμα 1 Ποσοστό διευθύνσεων που συμμετείχαν στην έρευνα
Χάρτης 3 Χάρτης με τις Δ.Α.Ο.Κ που συμμετείχαν στην έρευνα

Στον χάρτη απεικονίζονται οι Διευθύνσεις που απάντησαν στην έρευνα και ήταν οι εξής:

<table>
<thead>
<tr>
<th>Βόλος</th>
<th>Λαμία</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δράμα</td>
<td>Μυτιλήνη</td>
</tr>
<tr>
<td>Καστοριά</td>
<td>Λάρισσα</td>
</tr>
<tr>
<td>Κοζάνη</td>
<td>Ζάχαρη</td>
</tr>
<tr>
<td>Κομοτηνή</td>
<td>Σπάρτη</td>
</tr>
<tr>
<td>Λασίθι</td>
<td>Φλώρινα</td>
</tr>
<tr>
<td>Λευκάδα</td>
<td>Έδεσσα</td>
</tr>
<tr>
<td>Πρέβεζα</td>
<td>Σέρρες</td>
</tr>
<tr>
<td>Τρίκαλα</td>
<td>Πάτρα</td>
</tr>
</tbody>
</table>
Ανάλυση των απαντήσεων του ερωτηματολογίου

ΕΡΩΤΗΣΗ 1: Ποιος ο αριθμός των μονάδων μηρυκαστικών που κατά περίπτωση υπήρχαν στην περιοχή το 2014?

Το διάγραμμα 2 απεικονίζει την κατανομή του αριθμού των προβατοτροφικών μονάδων στην Ελλάδα (περιοχές που συμμετείχαν) κατά το έτος 2014. Το μεγαλύτερο ποσοστό (33%) περιλαμβάνουν 1000 έως 2000 μονάδες ανά περιοχή Δ.Α.Ο.Κ. Το 10% των περιοχών διαθέτει πάνω από 6000 μονάδες (Ν.Αχαΐας).

![Diagram 2: Katanomi arithmou twn probatotropheikon monadwn](image)

Diagramma 2: Katanomi arithmou twn probatotropheikon monadwn

Το διάγραμμα 3 απεικονίζει τον ακριβή αριθμό των μονάδων στην κάθε περιοχή μελέτης. Συγκεκριμένα, τις περισσότερες προβατοτροφικές μονάδες κατέχει ο Ν. Αχαΐας όπως διαπιστώθηκε και στο διάγραμμα 2 με αριθμό μονάδων 6603 ενώ τις λιγότερες μονάδες κατέχει ο νομός Καστοριάς (157). Ο νομός Φθιώτιδας δεν απάντησε στο συγκεκριμένο ερώτημα του ερωτηματολογίου.
Διάγραμμα 3 Ακριβής αριθμός προβατοτροφικών μονάδων ανά περιφερειακή ενότητα

Ο αριθμός των βοστροφικών μονάδων είναι σαφώς μικρότερος από τον αντίστοιχο των προβατοτροφικών που υπάρχουν στην Ελλάδα το 2014. Το 24% των περιοχών περιέχουν 800 έως 1000 μονάδες στην περιφέρειά τους. Συγκεκριμένα, τις περισσότερες βοστροφικές μονάδες διαθέτει ο νομός Ροδόπης και τις λιγότερες ο νομός Λευκάδας (διάγραμμα 5)

Διάγραμμα 4 Κατανομή του αριθμού των βοστροφικών μονάδων

Ο αριθμός των βοστροφικών μονάδων είναι σαφώς μικρότερος από τον αντίστοιχο των προβατοτροφικών που υπάρχουν στην Ελλάδα το 2014. Το 24% των περιοχών περιέχουν 800 έως 1000 μονάδες στην περιφέρειά τους. Συγκεκριμένα, τις περισσότερες βοστροφικές μονάδες διαθέτει ο νομός Ροδόπης και τις λιγότερες ο νομός Λευκάδας (διάγραμμα 5)
Αντίστοιχα, στο διάγραμμα 5 απεικονίζεται ο ακριβής αριθμός των βοστροφικών μονάδων. Πρώτη θέση κατέχει ο νομός Ροδόπης με αριθμό μονάδων 1949 ενώ οι λιγότερες μονάδες καταγράφονται στο νομό Λευκάδας (29). Και σε αυτό το ερώτημα δεν απαντήθηκε από τον νομό Φθιώτιδας.

![Diagram](image)

Διάγραμμα 5 Ακριβής αριθμός βοστροφικών μονάδων ανά περιφερειακή ενότητα

Τρεις νομοί αναφέρθηκαν και σε αριθμό μονάδων με αγιοπρόβατα: ο νομός Καστοριάς με 170 μονάδες αγιοπροβάτων, ο νομός Ροδόπης με 195 μονάδες αγιοπροβάτων και ο νομός Σερρών με 448 μονάδες αγιοπροβάτων. Ο νομός Σερρών διαθέτει και 23 βουβαλοτροφικές μονάδες.

ΕΡΩΤΗΣΗ 2: Παρουσιάστηκε κάποιο πρόβλημα στις κτηνοτροφικές μονάδες της περιοχής σε σχέση με τον καταρροϊκό πυρετό;

Όλες οι Διευθύνσεις Αγροτικής Οικονομίας και Κτηνιατρικής απάντησαν θετικά στην ερώτηση.

ΕΡΩΤΗΣΗ 3: Αν ναι, σε πόσες μονάδες κατά περίπτωση;

Προβατοτροφικές Μονάδες

Ο αριθμός των μονάδων που προσβλήθηκαν με καταρροϊκό πυρετό διαφέρει σημαντικά. Υπήρχαν νομοί, οι οποίοι κατέγραψαν 1 μοναδικό κρούσμα καταρροϊκού πυρετού στις μονάδες τους ενώ σε άλλους νομούς το ποσοστό των κρουσμάτων τους φτάνει το 20%.

Διευκρινίζεται από συγκεκριμένες Δ.Α.Ο.Κ (Ν. Λάρισας, Ν. Κοζάνης, Ν. Σερρών) ότι σε ορισμένες περιοχές τα κρούσματα ενδεχομένως να ήταν περισσότερα χωρίς αυτό να έχει αποτυπωθεί στο ερωτηματολόγιο καθώς αφορούσε προσωπικές εκτιμήσεις των προϊσταμένων των Δ.Α.Ο.Κ και τούτο πιθανόν να οφείλεται στην μειωμένη ανταπόκριση των κτηνοτρόφων κατά τη διαδικασία καταγραφής των κρουσμάτων μέσω της λήψης δειγμάτων αίματος από τις αρμόδιες υπηρεσίες.
Οι νομοί Λασιθίου και Πρεβέζης παρουσίασαν ουσιαστικά μηδενικό ποσοστό κρουσμάτων καθόσον και στις δυο αυτές περιπτώσεις μια μόνο μόναδα παρουσίασε πρόβλημα καταρροϊκού πυρετού (διάγραμμα 6-7).

![Diagram 6: Percentage of incidence - Prefecture of Preveza](image)

![Diagram 7: Percentage of incidence - Prefecture of Lasithi](image)
Με ποσοστό 1% από το σύνολο των μονάδων στις οποίες παρουσιάστηκε καταρροϊκός πυρετός, παρουσιάζονται οι νομοί Σερρών και Ηλείας. Συγκεκριμένα, στο νομό Σερρών υπήρξαν επιβεβαιωμένες 14 με ΚΠ μονάδες ενώ στο νομό Ηλείας 44 (διάγραμμα 8-9)

Διάγραμμα 8 Ποσοστό προσβολής-Νομός Σερρών

Διάγραμμα 9 Ποσοστό προσβολής-Νομός Ηλείας
Με ποσοστό 2% επί των προσβεβλημένων μονάδων, παρουσιάζονται οι νομοί Τρικάλων και Κορίνθου (διάγραμμα 10-11). Ο ακριβής αριθμός των προσβεβλημένων μονάδων ήταν 66 και 26 μονάδες αντίστοιχα.

Διάγραμμα 10 Ποσοστό προσβολής-Νομός Τρικάλων

Διάγραμμα 11 Ποσοστό προσβολής-Νομός Κορίνθου
Με ποσοστά προσβολής 3%, 7% και 9% παρουσιάζονται αντίστοιχα οι νομοί Λάρισας, Φλώρινας, Καστοριάς και Κοζάνης (διάγραμμα 12-13-14-15)
Τέλος με ποσοστά προσβολής άνω του 10% παρουσιάζονται οι παρακάτω νομοί με το μεγαλύτερο ποσοστό προσβεβλημένων μονάδων να παρατηρείται στον Ν. Δράμας.

Διάγραμμα 14 Ποσοστό προσβολής-Νομός Καστοριάς

Διάγραμμα 15 Ποσοστό προσβολής-Νομός Κοζάνης
Διάγραμμα 16: Ποσοστό προσβολής-Νομός Ξάνθης

Νομός Ξάνθης

- 91% Χωρίς προσβολή
- 9% Με προσβολή

Διάγραμμα 17: Ποσοστό προσβολής-Νομός Λευκάδας

Νομός Λευκάδας

- 87% Χωρίς προσβολή
- 13% Με προσβολή

Διάγραμμα 17: Ποσοστό προσβολής-Νομός Λευκάδας
Διάγραμμα 18 Ποσοστό προσβολής-Νομός Μαγνησίας
Διάγραμμα 19 Ποσοστό προσβολής-Νομός Πέλλας
Διάγραμμα 20 Ποσοστό προσβολής-Νομός Ροδόπης

Διάγραμμα 21 Ποσοστό προσβολής-Νομός Δράμας
Το διάγραμμα 22 παρουσιάζει συγκεντρωτικά τα αποτελέσματα της έρευνας για το ερώτημα του ποσοστού προσβολής των προβατοτροφικών μονάδων στην Ελλάδα.

Διάγραμμα 22 Συγκεντρωτικά ποσοστά προσβολής

Μονάδες βοστροφικές

Σημαντικά λιγότερες είναι οι βοστροφικές μονάδες που παρουσίασαν πρόβλημα καταρροϊκού πυρετού το έτος 2014. Οι νομοί Τρικάλων, Λασιθίου, Μαγνησίας, Εύβοιας, Κορίνθου, Λάρισας, Αχαΐας και Ηλείας δεν παρουσίασαν πρόβλημα καταρροϊκού στις μονάδες τους. Οι νομοί Πέλλας, Φθιώτιδας και Λέσβου δεν απάντησαν στην συγκεκριμένη ερώτηση του ερωτηματολογίου. Οι υπόλοιποι νομοί (10) παρουσίασαν σχετικά μικρό ποσοστό κρουσμάτων το οποίο ανέρχεται στο 3% (μέγιστο).
Διάγραμμα 23 Ποσοστό προσβολής-Νομός Πρέβεζας

Διάγραμμα 24 Ποσοστό προσβολής-Νομός Καστοριάς

Διάγραμμα 25 Ποσοστό προσβολής-Νομός Ροδόπης

Διάγραμμα 26 Ποσοστό προσβολής-Νομός Δράμας

Διάγραμμα 27 Ποσοστό προσβολής-Νομός Λευκάδας

Διάγραμμα 28 Ποσοστό προσβολής-Νομός Κοζάνης
Διάγραμμα 29 Ποσοστό προσβολής-Νομός Ξάνθης

Διάγραμμα 30 Ποσοστό προσβολής-Νομός Λακωνίας
ΕΡΩΤΗΣΗ 4: Η περίοδος με την μεγαλύτερη εμφάνιση της νόσου ήταν:
Άνοιξη
Φθινόπωρο
Θέρος

Η ερώτηση αυτή, αφορά στον προσδιορισμό της περιόδου με την μεγαλύτερη εμφάνιση της νόσου έτσι όπως αντιλαμβάνεται από τους υπεύθυνους των Κτηνιατρικών αρχών. Η αντιστοιχία των αποτελεσμάτων εμφανίζεται στο διάγραμμα 33:
Στο 42% των ερωτηθέντων απάντησαν το «Θέρος» ενώ μεγαλύτερο ποσοστό κατά 16 μονάδες απάντησαν το «Φθινόπωρο». Καμία Δ.Α.Ο.Κ δεν παρατήρησε έξαρση καταρροϊκού πυρετού κατά την Άνοιξη. Ορισμένοι νομοί στην συγκεκριμένη ερώτηση απάντησαν ότι η ασθένεια παρουσίασε έξαρση όχι μια συγκεκριμένη μόνο εποχή αλλά ξεκινούσε το Θέρος και συνεχίζοταν το φθινόπωρο (Νομός Τρικάλων, Λασιθίου, Καστοριάς, Δράμας, Εύβοιας, Λέσβου, Ξάνθης, Λακωνίας, Φλώρινας, Ηλείας) (διάγραμμα 34)

Οι νομοί οι οποίοι απάντησαν ότι κατά την διάρκεια του θέρους παρατήρησαν την μεγαλύτερη εμφάνιση του καταρροϊκού πυρετού ήταν οι εξής:
χάρτης 4 περίοδος εμφάνισης καταρροϊκού πυρετού κατά τη διάρκεια του θέρους
Ο χάρτης 5 απεικονίζει με μπλε χρώμα τους νομούς που απάντησαν ότι κατά την διάρκεια του φθινοπώρου παρουσιάστηκε η μεγαλύτερη εμφάνιση του καταρροϊκού πυρετού και ήταν οι εξής νομοί:

- Νομός Τρικάλων
- Νομός Λασιθίου
- Νομός Καστοριάς
- Νομός Δράμας
- Νομός Λευκάδας
- Νομός Μαγνησίας
- Νομός Κοζάνης
- Νομός Εύβοιας
- Νομός Φθιώτιδας
- Νομός Λέσβου
- Νομός Μαγνησίας
- Νομός Κοζάνης
- Νομός Εύβοιας
- Νομός Φλώρινας
- Νομός Δράμας
- Νομός Κοζάνης
- Νομός Εύβοιας
- Νομός Φλώρινας
- Νομός Πέλλας
- Νομός Ξάνθης
- Νομός Λακωνίας
- Νομός Φλώρινας
- Νομός Έδεσσας
- Νομός Σερρών
- Νομός Αχαΐας
- Νομός Ηλείας
- Νομός Άρτας
- Νομός Λάρισας
- Νομός Σερρών
- Νομός Αχαΐας
- Νομός Τρίκαλων
- Νομός Σερρών
- Νομός Αχαΐας
- Νομός Ηλείας

Χάρτης 5 Περιοχές εμφάνισης καταρροϊκού πυρετού κατά το φθινόπωρο

[Map of Greece with blue highlighted regions showing where the highest fever incidence due to catarrhal fever was observed during the autumn]
ΕΡΩΤΗΣΗ 5: Ύστερα από την εμφάνιση του καταρροϊκού πυρετού χρησιμοποιήθηκαν εντομοκτόνα ως ένας τρόπος αντιμετώπισης;
Σε όλες τις περιοχές πραγματοποιήθηκε επέμβαση με εντομοκτόνα ύστερα από την εξακρίβωση των πρώτων κρουσμάτων καταρροϊκού πυρετού.

ΕΡΩΤΗΣΗ 6: Αν ναι,
(A) Ποια εντομοκτόνα χρησιμοποιήθηκαν:
Πυρεθρινοειδή
Άλλα (δηλώστε)

Η ερώτηση 6 αφορά την κατηγορία του χημικού σκευάσματος που χρησιμοποιείται για την αντιμετώπιση των εντόμων-φορέων. Κατά κύριο λόγο, οι ερωτώμενοι απάντησαν ότι χρησιμοποιούναν σκευάσματα με βάση τις πυρεθρίνες. Η μοναδική διαφορετική απάντηση, δόθηκε από τον προϊστάμενο της Δ.Α.Ο.Κ από τον νομό Λάρισας και ήταν τα οργανοφωσφωφικά.

ΕΡΩΤΗΣΗ 6: Αν ναι,
(B) Σε ποια σημεία έγιναν οι εφαρμογές:
Απευθείας στα ζώα
Στις ποτίστρες
Σε ολόκληρο το στάβλο
Άλλο (Δηλώστε)

Συνέχεια της ερώτησης, αφορά τα σημεία στα οποία εφαρμόστηκαν τα εντομοκτόνα για την κατάλληλη αντιμετώπιση των φορέων.
Το 95% των Δ.Α.Ο.Κ απάντησαν ότι έγινε επέμβαση απευθείας στα ζώα ύστερα από την έξαρση των κρουσμάτων καταρροϊκού πυρετού ενώ μόνο το 5% δηλαδή μια Δ.Α.Ο.Κ (Ν. Λευκάδας) απάντησε αρνητικά στην ερώτηση (διάγραμμα 35)

Διάγραμμα 35 Ποσοστό απαντήσεων «Απευθείας στα ζώα»
Επόμενη απάντηση που δόθηκε με ποσοστό 71%, ήταν η επέμβαση με εντοκτόνα σε ολόκληρο τον στάβλο που διαβιούν τα κτηνοτροφικά ζώα (διάγραμμα 36). 15 Δ.Α.Ο.Κ απάντησαν ότι πραγματοποιήθηκε επέμβαση με εντομοκτόνα στον στάβλο. Στον χάρτη εμφανίζονται συγκέκριμενα οι Δ.Α.Ο.Κ αυτές (χάρτης 6).

Ολόκληρο τον στάβλο

Διάγραμμα 36 Ποσοστό απαντήσεων «Ολόκληρο τον στάβλο»
Ακολουθεί η απάντηση «ποτίστρες» σε ποσοστό 14%. Το 86% των απαντήσεων δεν πραγματοποίησαν επεμβάσεις εντομοκτόνων στις ποτίστρες των ζώων (διάγραμμα 37). Ακολουθεί χάρτης με την κατανομή των απαντήσεων. Θετική απάντηση δόθηκε από τον νομό Σερρών, Φθιώτιδας και Κορίνθου

Ποτίστρες

Διάγραμμα 37 Ποσοστό απαντήσεων «Ποτίστρες»
Τέλος, μόνο 2 από τις Δ.Α.Ο.Κ επέλεξαν την επιλογή «άλλο» του ερωτηματολογίου. Συγκεκριμένα, η Δ.Α.Ο.Κ Λάρισας και η Δ.Α.Ο.Κ Αχαΐας, στις οποίες πραγματοποιήθηκε επέμβαση με εντομοκτόνα στον περιβάλλοντα χώρο και στα μεταφορικά μέσα αντίστοιχα. Το 90% των Δ.Α.Ο.Κ δεν πραγματοποίησαν επεμβάσεις σε κάποιο άλλο σημείο εφαρμογής (διάγραμμα 38)
Αναφέρομενη στα παραπάνω αποτελέσματα καταδεικνύεται ότι η επέμβαση στις περισσότερες των περιπτώσεων διενεργήθηκε σε περισσότερο του ενός σημεία.

ΕΡΩΤΗΣΗ 7: Έχουν συλλεχθεί τα έντομα μεταδότες του ιού στην περιοχή σας;

ΕΡΩΤΗΣΗ 8: Εάν ναι, έχουν ταυτοποιηθεί τα είδη των εντόμων;

ΕΡΩΤΗΣΗ 9: Αν ναι, ποια είναι αυτά:

Το 76% των περιπτώσεων δεν συλλέχθηκαν τα έντομα μεταδότες του ιού (διάγραμμα 39). Στις περιπτώσεις που αυτό πραγματοποιήθηκε, ταυτοποιήθηκαν από το εργαστήριο Παρασιτολογίας της Διεύθυνσης Κτηνιατρικού Κέντρου Αθηνών (ΚΚΙΑ). Στην έρευνα μας, μόνο η Δ.Α.Ο.Κ Λακωνίας απάντησε στο ερώτημα 9, απαντώντας ότι ταυτοποιήθηκε το γένος Culicoides.

Διάγραμμα 38 Ποσοστό απαντήσεων «Άλλο»

Διάγραμμα 39 Ποσοστό απαντήσεων «Συλλογή εντόμων»
ΕΡΩΤΗΣΗ 10: Γνωρίζετε αν υπήρχαν στο παρελθόν κρούσματα καταρροϊκού πυρετού;

Η ερώτηση αυτή αφορά την γνώση για παλαιότερα κρούσματα έτσι ώστε να γίνει αντιληπτή η αιτία της μεγάλης επιζωοτίας του 2014. Το 76% των Δ.Α.Ο.Κ, χαρακτηρίζουν ότι στην περιοχή τους δεν είχε εμφανιστεί παλαιότερα κρούσμα καταρροϊκού πυρετού ενώ το 24% αντιμετώπισαν και παλαιότερα πρόβλημα σε σχέση με τον καταρροϊκό πυρετό (διάγραμμα 40)

Οι περιοχές οι οποίες αντιμετώπισαν και στο παρελθόν πρόβλημα καταρροϊκού πυρετού φαίνονται στον παρακάτω χάρτη (χάρτης 8) και είναι οι εξής:

✓ Νομός Πρέβεζας
✓ Νομός Καστοριάς
✓ Νομός Κομοτηνής
✓ Νομός Μαγνησίας
✓ Νομός Λέσβου

Διάγραμμα 40 Ποσοστό απαντήσεων «Κρούσματα στο παρελθόν»
Χάρτης 8 Περιοχές που εμφάνισαν πρόβλημα καταρροϊκού πυρετού κατά το παρελθόν

ΕΡΩΤΗΣΗ 11: Αν όχι, που αποδίδεται την εμφάνισή το 2014;
Εισαγωγή ζώων από περιοχές με καταρροϊκό πυρετό
Άλλο (Δηλώστε)

Το 29% των ερωτηθέντων αποδίδουν την εμφάνιση του καταρροϊκού πυρετού το 2014 στην εισαγωγή άρρωστων ζώων από περιοχές με καταρροϊκό πυρετό. Το 71% των ερωτηθέντων αποδίδουν την αιτία της έξαρσης της επιζωοτίας σε άλλους παράγοντες και είναι οι κάτωθι:

1. Πιθανή αιτία εισόδου θεωρείται η αμμοθύελα και η λασποβροχή οι οποίες σημειώθηκαν το καλοκαίρι του 2014 και προέρχονταν από την Β. Αφρική (Δ.Α.Ο.Κ Κορίνθου)

2. Αλλαγή καιρικών συνθηκών. Η παρατεταμένη υγρασία ευνοεί την ανάπτυξη των εντόμων (Δ.Α.Ο.Κ Ξάνθης)
3. Στην μη εφαρμογή προγραμμάτων ελέγχου του πληθυσμού των εντόμων-ξενιστών (Culicoides spp.), με αποτέλεσμα την εξάπλωση της νόσου σε όλη την επικράτεια (Δ.Α.Ο.Κ Καστοριάς)

4. Στην μεγαλύτερη δραστηριότητα των εντόμων (Δ.Α.Ο.Κ Κομοτηνής – Δ.Α.Ο.Κ Πέλλας)

5. Στην υκανότητα των εντόμων-φορέων να μεταναστεύουν (Δ.Α.Ο.Κ Δράμας)

6. Στην μεταφορά των εντόμων με τον αέρα (Δ.Α.Ο.Κ Τρικάλων)

7. Η Δ.Α.Ο.Κ Λευκάδας απάντησε ως εξής:

«Η εμφάνιση μια πρωτογενούς εστίας καταρροϊκού πυρετού σε μια περιοχή μπορεί να αποδοθεί στην εισαγωγή ζώων-φορέων. Η εξάπλωση όμως της νόσου και η μετάπτωση της σε επιζωοτία οφείλεται:

- Στην μη έγκαιρη δήλωση, από πλευράς κτηνοτρόφων, των κρουσμάτων ασθενών ζώων, και κάποιες φορές, η σκόπιμη απόκρυψη αυτών για να μην υποστούν περιοριστικά υγειονομικά μέτρα στην εκτροφή τους και να αποφύγουν την δυσφήμιση των προϊόντων τους. Επίσης ο χειρισμός των νεκρών ζώων με τον μη ενταφιασμό των πτωμάτων θεωρείται ότι συνέτεινε στην εξάπλωση της νόσου

- Στην μη έγκαιρη λήψη δραστικών υγειονομικών μέτρων στις πρωτοεμφανιζόμενες εστίες και κυρίως στην αδυναμία άσκησης αυστηρού ελέγχου εφαρμογής αυτών από τις υπηρεσίες, λόγω έλλειψης προσωπικού και μέσων

- Στην εποχική έλλειψη φαρμακευτικών σκευασμάτων και εντομοκτόνων για τον περιορισμό των φορέων

- Στις ιδιαίτερες μετεωρολογικές συνθήκες που επικράτησαν το έτος 2014 που βοήθησαν στην ανάπτυξη και την μετανάστευση των εντόμων-φορέων»
Συμπεράσματα-συζήτηση

Η παρούσα εργασία αποσκοπούσε στην συλλογή δεδομένων σχετικά με την επιζωοτία του καταρροϊκού πυρετού στην Ελλάδα το έτος 2014.

Στο προηγούμενο κεφάλαιο παρουσιάστηκαν αναλυτικά τα αποτελέσματα από τις απαντήσεις σε σειρά ερωτημάτων που τέθηκαν σε όλες τις Δ.Α.Ο.Κ της χώρας.

Στην έρευνα ανταποκρίθηκαν συνολικά 22 από αυτές. Ποσοστό ανταπόκρισης 38,2% (διάγραμμα 1, χάρτης 3). Αν και το ποσοστό ανταπόκρισης δεν ήταν ιδιαίτερα μεγάλο, παρατηρούμε ότι γεωγραφικά ήταν αρκετά αντιπροσωπευτικό καθόσον μόνο από την περιοχή του Νοτιανατολικού Αιγαίου δεν συλλέχθηκαν στοιχεία.

Παρουσιάζονται συνολικά ο αριθμός των προβατοτροφικών και των βοοτροφικών μονάδων που υπήρχαν στις Περιφερειακές ενότητες το 2014. Το 33% αυτών περιλαμβάνουν 1000 έως 2000 προβατοτροφικές μονάδες, με τις περισσότερες να εμφανίζονται στο Νομό Αχαΐας, με 6603 μονάδες. Ακολουθεί ο Νομός Λάρισας με 6372 μονάδες (διάγραμμα 2-3). Οι βοοτροφικές μονάδες εμφανίζονται σημαντικά λιγότερες των προβατοτροφικών. Το 24% των Δ.Α.Ο.Κ περιλαμβάνουν 800 έως 1000 βοοτροφικές μονάδες. Οι νομοί με τις περισσότερες βοοτροφικές μονάδες είναι οι της Ροδόπης και Λέσβου με 1949 και 1518 μονάδες αντίστοιχα (διάγραμμα 4-5).

Όλες οι Δ.Α.Ο.Κ ανέφεραν ότι στις Περιφερειακές τους ενότητες παρουσιάστηκαν προβλήματα καταρροϊκού πυρετού. Το ποσοστό προσβολής στις προβατοτροφικές μονάδες κυμαίνονταν μηδαμινό έως 20% (διάγραμμα 22). Τα μεγαλύτερα ποσοστά εμφανίζονται στον Νομό Δράμας, Ροδόπης και Πέλλας (20%, 16% και 14% αντίστοιχα) ενώ νομοί όπως Λασιθίου και Πρεβέζης δεν παρουσιάζουν ουσιαστικά πρόβλημα με καταρροϊκό πυρετό.

Τα ποσοστά προσβολής των βοοτροφικών μονάδων ήταν μικρότερα σε σχέση με τα αντίστοιχα των προβατοτροφικών. Συγκεκριμένα, κυμαίνονταν μέχρι 3% το μέγιστο (διάγραμμα 23-32).

Σημαντική πληροφορία που εξήχθη από την έρευνα, ήταν ο εποχή εμφάνισης του καταρροϊκού πυρετού. Το 42% των Δ.Α.Ο.Κ παρατήρησαν έξαρση καταρροϊκού πυρετού κατά την διάρκεια του θέρους ενώ 58% αυτών παρατήρησαν έξαρση κατά την διάρκεια του φθινοπώρου. Σημειώνεται, ότι 48% των περιοχών παρατήρησαν ότι η εμφάνιση του καταρροϊκού κυμαινόταν από το θέρος μέχρι και το φθινόπωρο.

Μέτρα αντιμετώπισης του φορέα του καταρροϊκού πυρετού πραγματοποίησαν όλες οι Περιφερειακές ενότητες. Με εξαίρεση τον Νομό Λάρισας, οι υπόλοιπες Δ.Α.Ο.Κ πραγματοποίησαν ψεκασμούς με πυρεθρινοειδή σκεύασμα, το οποίο είναι σε συμφωνία με τις υποδείξεις του ΥΠ.Α.Α.Τ και με τη σχετική βιβλιογραφία.

Όσον αφορά τα σημεία στα οποία πραγματοποιήθηκαν οι ψεκασμοί, 95 % των Δ.Α.Ο.Κ χρησιμοποίησαν εντομοκτόνα απευθείας στα ζώα ενώ το 71% αυτών πραγματοποίησαν επεμβάσεις και σε ολόκληρο το στάβλο. Μικρό ποσοστό θετικών απαντήσεων δόθηκε για επεμβάσεις στις ποτίστρες. Αξιοσημείωτο είναι το γεγονός ότι σε ορισμένες έγιναν επεμβάσεις στα μέσα μεταφοράς των ζώων.

Η ανταπόκριση στην ερώτηση αν πραγματοποιήθηκαν παγιδεύσεις των εντόμων-φορέων ήταν σχεδόν μηδενική. Με εξαίρεση, την Δ.Α.Ο.Κ Λακωνίας, Κορίνθου, Σερρών,Λέσβου και Ξάνθης , οι υπόλοιπες δεν πραγματοποίησαν συλλήψεις παρά την ύπαρξη σχετικού προγράμματος παγιδοθετήσεων από το Υπ.Α.Α.Τ.
Μόνο το 24% των Δ.Α.Ο.Κ σημειώνουν την ύπαρξη προβλήματος καταρροϊκού πυρετού στην περιοχή διοίκησης τους τα παλαιότερα χρόνια και συγκεκριμένα πριν το 2014 (διάγραμμα 40).

Επιπλέον, με ποσοστό 29%, θεωρείται από τις Δ.Α.Ο.Κ ότι η έξαρση του καταρροϊκού πυρετού οφείλεται στην εισαγωγή ήδη άρρωστων ζώων στην επικράτεια τους. Οι υπόλοιπες Δ.Α.Ο.Κ αποδίδουν την αιτία έξαρσης του καταρροϊκού πυρετού στην περιοχή διοίκησης τους τα παλαιότερα χρόνια και συγκεκριμένα πριν το 2014 (διάγραμμα 40).

Επιπλέον, με ποσοστό 29%, θεωρείται από τις Δ.Α.Ο.Κ ότι η έξαρση του καταρροϊκού πυρετού οφείλεται στην εισαγωγή ήδη άρρωστων ζώων στην επικράτεια τους. Οι υπόλοιπες Δ.Α.Ο.Κ αποδίδουν την αιτία έξαρσης του καταρροϊκού πυρετού στην περιοχή διοίκησης τους τα παλαιότερα χρόνια και συγκεκριμένα πριν το 2014 (διάγραμμα 40).

Δεδομένης της μεγάλης σημασίας που έχει για την αντιμετώπιση του προβλήματος η σύλληψη με ειδικές παγίδες των εντόμων-φορέων και του γεγονότος ότι οι παγίδες αυτές είναι πολύ ακριβείς, μια πρώτη προσπάθεια δοκιμής για την αντιμετώπιση του προβλήματος η σύλληψη με ειδικές παγίδες των εντόμων-φορέων και του γεγονότος ότι οι παγίδες αυτές είναι πολύ ακριβείς, μια πρώτη προσπάθεια δοκιμής ενός τύπου φθηνής παγίδας που κυκλοφορεί στην ελληνική αγορά έδειξε ότι αυτή είναι ικανή να συλλέξει δίπτερα παρομοίου μεγέθους με τα Culicoides. Η μη σύλληψη από τις παγίδες αυτές κάποιου Culicoides envedoxeméwn na ofeileta ta epikratoush sàsthekeis tis periochis twn dokimów.
Παραρτήματα

Παράρτημα 1

Παρατίθεται κατάλογος με τα υπογένη του Culicoides spp. Ο οποίος ανανεώθηκε για τελευταία φορά στις 28 Φεβρουαρίου του 2012 (Borkent A., 2012)

http://wwx.inhs.illinois.edu/files/7413/4219/9567/CulicoidesSubgenera.pdf

Genus CULICOIDES Latreille

CULICOIDES Latreille, 1809: 251. Type species: *Culicoides punctatus* Latreille (= Ceratopogon punctatus Meigen), by monotypy

Υπογένη

AMOSSOVIA Glukhova, 1989: 226 (as subgenus of *Culicoides*). Type species: *Culicoides dendrophilus* Amo-sova, by original designation

ANILOMYIA Vargas, 1960: 37 (as subgenus of *Culicoides*). Type species: *Culicoides covagarciai* Ortiz, by original designation

AVARITIA Fox, 1955: 218 (as subgenus of *Culicoides*). Type species: *Ceratopogon obsoletus* Meigen, by original designation

COTOCRIPUS Brèthes, 1912: 451. Type species: *Cotocripus caridei* Brèthes, by monotypy

SILVICOLA Mirzoeva and Isaev, 1990: 98 (as subgenus of *Culicoides*). Type species: *Culicoides grisescens* Edwards, by original designation.

DIPHAOMYIA Vargas, 1960: 40 (as subgenus of *Culicoides*). Type species: *Culicoides baueri* Hoffman, by original designation.

DRYMODESMYIA Vargas, 1960: 40 (as subgenus of *Culicoides*). Type species: *Culicoides copiosus* Root and Hoffman, by original designation.

FASTUS Liu, in Yu et al., 2006: 1196 (as subgenus of *Culicoides*). Type species: *Culicoides alpigenus* Yu and Liu, by original designation.

GLAPHIROMYIA Vargas, 1960: 41 (as subgenus of *Culicoides*). Type species: *Culicoides scopus* Root and Hoffman, by original designation.

HAEMOPHORUCTUS Macfie, 1925: 349. Type species: *Haemophoructus maculipennis* Macfie, by monotypy

HAEMATOMYIDIUM Goeldi, 1905: 137. Type species: *Haematomyidium paraensis* Goeldi, by original designation.

HOFFMANIA Fox, 1948: 21 (as subgenus of *Culicoides*). Type species: *Culicoides inamollae* Fox and Hoffman (= Culicoides insignis Lutz), by original designation
JILINOCOIDES Chu, 1983: 28 (as subgenus of *Culicoides*). Type species: *Culicoides dunhuaensis* Chu, by original designation.

MACFIELLA Fox, 1955: 217 (as subgenus of *Culicoides*). Type species: *Culicoides marksi* Lee and Reye, by original designation.

MARKSOMYIA Bellis and Dyce, 2011: 36 (as subgenus of *Culicoides*). Type species: *Culicoides mojngaaensis* Wirth and Blanton, by original designation.

MATAEMYIA Vargas, 1960: 43 (as subgenus of *Culicoides*). Type species: *Culicoides mgingaensis* Wirth and Blanton, by original designation.

MEIJEREHELEA Wirth and Hubert, 1961: 23 (as subgenus of *Culicoides*). Type species: *Ceratopogon guttifer* de Meijere, by original designation.

MONOCULICOIDES Khalaf, 1954: 39 (as subgenus of *Culicoides*). Type species: *Ceratopogon nubeculosus* Meigen, by original designation.

NULLICELLA Lee, 1982: 165 (as subgenus of *Culicoides*). Type species: *Culicoides lasaensis* Lee, (by original designation).

OECACTA Poey, 1853: 238. Type species: *Oecacta furens* Poey, by monotypy.

PONTOCULICOIDES Remm, in Remm and Zhogolev, 1968: 840 (as subgenus of *Culicoides*). Type species: *Culicoides tauricus* Gutsevich, by original designation.

REMMIA Glukhova, 1977: 116 (as subgenus of *Culicoides*). Type species: *Ceratopogon schultz* Enderlein, by original designation.

SELFIA Khalaf, 1954: 38 (as subgenus of *Culicoides*). Type species: *Culicoides hieroglyphicus* Malloch, by original designation.

SILVATICULICOIDES Glukhova, 1977: 117 (as subgenus of *Culicoides*). Type species: *Ceratopogon fascipennis* Staeger, by original designation.

SINOCOIDES Chu, 1983: 26 (as subgenus of *Culicoides*). Type species: *Culicoides hamiensis* Chu, Qian and Ma, by original designation.

SYNHELEA Kieffer, 1925a: 423. Type species: *Culicoides tropicalis* Kieffer, designation by Wirth et al., 1980: 160.

TRITHECOIDES Wirth and Hubert, 1959: 2 (as subgenus of *Culicoides*). Type species: *Culicoides flaviscutatus* Wirth and Hubert, by original designation.

TOKUNAGAHELEA Dyce and Meiswinkel, 1995: 131 (as subgenus of *Culicoides*). Type species: *Culicoides mikros* Dyce and Meiswinkel, by original designation.

WIRTHOMYIA Vargas, 1973: 112 (as subgenus of *Culicoides*). Type-species *Culicoides segnis* Campbell and Pelham-Clinton, by original designation.
Identification aids to the *Culicoides* fauna by biogeographical region as defined by *Holt et al. (2013)*.

<table>
<thead>
<tr>
<th>Biogeographical region</th>
<th>Keys to the Culicoides fauna</th>
</tr>
</thead>
</table>
Παράρτημα 3

Το Xper3 αποτελεί μια ευέλικτη διαδικτυακή πλατφόρμα με την οποία είναι δυνατή η διαχείρηση δεδομένων και η αναγνώριση δειγμάτων. Η πλατφόρμα είναι διαθέσιμη και δωρεάν προς όλους. Τα δεδομένα μπορούν να μεταβληθούν από όλους τους ερευνητές με αποτέλεσμα να τελειοποιείται η βάση δεδομένων.

Με την χρησιμοποίηση του προγράμματος Xper3 δημιουργήθηκε το IKKC (Interactive identification key for female Culicoides) από τον Mathieu και τους συνεργάτες του. Αφορά αποκλειστικά την ταυτοποίηση των ειδών του γένους Culicoides spp. Το πρόγραμμα IKKC αποτελείται από δύο διαφορετικά κλειδιά ταυτοποίησης. Το πρώτο περιλαμβάνει την κλασσική διχοτομική κλείδα.

Παράδειγμα 1

ΒΗΜΑ 1: http://www.iikculicoides.net/

ΒΗΜΑ 2: Επιλέγουμε από το μενού την επιλογή Steromicroscope dichotomic key

ΒΗΜΑ 3: Στην συνέχεια, εμφανίζεται στην οθόνη η διχοτομική κλείδα των ειδών Culicoides
1. **WING: Pale or dark spots - Presence (?)**:
 - No pale spot cover the r-m crossvein => 2
 - Pale wing, only 1 dark spot => Close to C. stigma
 - 1 or more pale spots => Ε

2. **WING: Pale wing with only 2 dark areas on CuA1 and 2nd rad cell - Presence (?)**:
 - absence => 4
 - presence => brunnicans
 - presence AND presence of a dark area in the distal part of r3 => santonicus

3. **WING: r3, 4th pale costal spot versus 3rd dark costal spot - Size (?)**:
 - absence of at least one of two => 5
 - area of pale c.s. smaller than dark c.s. or approximatively equals => 6
 - area of pale c.s. bigger than dark c.s. => Ζ

4. **ABDOMEN: Spermathecae, abdominal sclerites - Presence**:
 - absence => C. spp.
 - presence => Close to C. reconditus

5. **WING: 2nd rad cell, covered by pale spot, costal-tip part (?)**:
 - wholly dark, homogenous => 9
 - less than 1/3 pale => 9
 - more than 1/3 => 10

6. **WING: M1, pale spot/band spanning the vein - Presence (?)**:
 - absence => 11
 - 1 pale spot in the median part of M1 => 12

7. **WING: 2nd rad cell, covered by pale spot, costal-tip part (?)**:
 - wholly dark, homogenous => 13

Αποτελείται από 76 παραμέτρους. Οι αριθμοί οι οποίοι εμφανίζονται με πράσινο χρώμα παραπέμπουν σε φωτογραφίες για την κάθε παράμετρο αντίστοιχα. Ο τρόπος με τον οποίο γίνεται η ταυτοποίηση αντιστοιχεί στον κλασσικό τρόπο ταυτοποίησης με κλείδα.

Παράδειγμα 2

Η δεύτερη και καινοτόμα επιλογή που δίνεται από το IICK είναι η διαδραστική διαδικτυακή κλείδα ταυτοποίησης.

ΒΗΜΑ 1: Ίδιο με παράδειγμα 1

ΒΗΜΑ 2: Επιλέγουμε από το μενού την επιλογή «Complete online key (slide mounted specimens)» και μεταφέρομαστε στην εξής σελίδα:
Στην αριστερή στήλη περιλαμβάνονται 20 παράμετροι, οι οποίοι επιλέγονται ανάλογα με το δείγμα που εξετάζεται. Είναι δυνατή η επιλογή περισσότερο από μιας παραμέτρου. Στην δεξιά στήλη εμφανίζονται τα είδη Culicoides spp.

Παράδειγμα: Παρουσιάζεται δείγμα Culicoides με πτέρυγες με το χαρακτηριστικό χαρακτηριστικό σκοτεινόχρωμο μοτίβο. Επιλέγετε η επιλογή από την αριστερή στήλη «Wing: pale or dark spots: presence». Υποτίθεται ότι δεν υπάρχει ωχρή κηλίδα στην διασταυρούμενη φλέβα. Επιλέγεται η επιλογή από την λίστα «No pale spot cover the r-m crossvein». Κάνοντας αναζήτηση με το συγκεκριμένο κριτήριο, δίνονται στην δεξιά στήλη τα αποτελέσματα.
33 είδη υπάρχουν με το χαρακτηριστικό των πτερύγων αυτό. Για να είναι ακριβέστερο το αποτέλεσμα θα πρέπει να επιλεχθούν περισσότεροι παράμετροι.

Παράρτημα 4

Barcode of Life Database και Consortium for the Barcode of Life

Αλληλουχία του γονιδιώματος του C. imicola, από δείγμα που συλλέχθηκε στο νησί της Ρόδου, Ελλάδα
Παράρτημα 5

Προκαταρτικά στοιχεία αποτελεσματικότητας σύλληψης Ceratopogonidae της παγίδας Mosquito triple trap σε δύο σταβλικές εγκαταστάσεις για την περιοχή Κουβαρά, Κερατέα Αττικής

- Στοιχεία περιοχής

Α’ σταβλική εγκατάσταση:
Β’ σταβλική εγκατάσταση:

- **Στοιχεία παγιδοθέτησης-δειγματοληψίας**

 Χρονική περίοδος παρατήρησης:

 19 Ιουλίου (Κυριακή): τοποθέτηση παγίδων στις σταβλικές εγκαταστάσεις

 23 Ιουλίου (Πέμπτη): Συλλογή δειγμάτων

 27 Ιουλίου (Δευτέρα): τοποθέτηση παγίδων στις σταβλικές εγκαταστάσεις

 31 Ιουλίου (Παρασκευή): Συλλογή δειγμάτων

 10 Αυγούστου (Δευτέρα): τοποθέτηση παγίδων στις σταβλικές εγκαταστάσεις

 15 Αυγούστου (Παρασκευή): Συλλογή δειγμάτων

 14 Σεπτεμβρίου (Δευτέρα): τοποθέτηση παγίδων στις σταβλικές εγκαταστάσεις

 18 Σεπτεμβρίου (Παρασκευή): Συλλογή δειγμάτων
Ο αριθμός των παγίδων που χρησιμοποιήθηκε στις δοκιμές σύλληψης ήταν 3. Μια παγίδα χρησιμοποιήθηκε στην σταβλική εγκατάσταση Α και 2 παγίδες χρησιμοποιήθηκαν στην σταβλική εγκατάσταση Β. Και στις δυο σταβλικές εγκαταστάσεις γινόταν ταυτόχρονα η συλλογή των δειγμάτων.

Κατά την δεύτερη επανάληψη της δειγματοληψίας παρουσιάστηκε βλάβη στην παγίδα Β της Β σταβλικής εγκατάστασης.

Όσον αφορά τις τροποποιήσεις των παγίδων, πραγματοποιήθηκε μετασχηματισμός στο άνω μέρος της παγίδας για μείωση των ανοιγμάτων, για να ελαχιστοποιηθεί ο αριθμός συλλογής μεγάλων εντόμων π.χ Lepidoptera. Ο τρόπος με τον οποίο αυτό πραγματοποιήθηκε ήταν με την χρησιμοποίηση τουλίνου πλέγματος το οποίο περιέβαλε την παγίδα και τοποθετούνταν κάθε φορά σε διαφορετική απόσταση από το διάτρητο τμήμα της παγίδας.

Υπό την συλλογή των δειγμάτων από το δοχείο παγίδευσης τοποθετούνταν σε ειδικά πλαστικά σωληνάρια με οινόπνευμα και στην συνέχεια μεταφέρονταν στο εργαστήριο.

Ακολουθούσε μέτρηση και διαχωρισμό των κατηγοριών των εντόμων. Τα έντομα μήκους κάτω 7 mm τοποθετούνταν σε αντικειμενοφόρους πλάκες σε σταγόνα γαλακτικού οξέος, προκειμένου να υπάρξει διάγεια, τοποθετούνταν εν συνεχεία σε κλίβανο θερμοκρασίας 50οC και εξετάζονταν στο οπτικό μικροσκόπιο.

• Αποτελέσματα

19 Ιουλίου-23 Ιουλίου Παγίδα: χωρίς τροποποιήσεις

<table>
<thead>
<tr>
<th>Σταβλική εγκατάσταση Α (1 παγίδα)</th>
<th>Σταβλική εγκατάσταση Β (2 παγίδες)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Έντομα</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>151</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>130</td>
</tr>
</tbody>
</table>
Εντόμα

<table>
<thead>
<tr>
<th>Εντόμα</th>
<th>Σταβλική εγκατάσταση Α (1 παγίδα)</th>
<th>Σταβλική εγκατάσταση Β (2 παγίδες)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidoptera</td>
<td>98</td>
<td>43</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>>100</td>
<td>>200</td>
</tr>
<tr>
<td>Chrysopidae</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Muscidae</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Εντόμο</td>
<td>Σταβλική εγκατάσταση Α (1 παγίδα)</td>
<td>Σταβλική εγκατάσταση Β (1παγίδα)</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diptera</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

10 Αυγούστου-15 Αυγούστου Παγίδες:

<table>
<thead>
<tr>
<th>Εντόμο</th>
<th>Σταβλική εγκατάσταση Α (1 παγίδα)</th>
<th>Σταβλική εγκατάσταση Β (1παγίδα)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidoptera</td>
<td>40</td>
<td>Δεν υπήρξαν δείγματα</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>>100</td>
<td>Δεν υπήρξαν δείγματα</td>
</tr>
<tr>
<td>Chrysopidae</td>
<td>10</td>
<td>Δεν υπήρξαν δείγματα</td>
</tr>
<tr>
<td>Muscidae</td>
<td>17</td>
<td>Δεν υπήρξαν δείγματα</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>0</td>
<td>Δεν υπήρξαν δείγματα</td>
</tr>
<tr>
<td>Diptera</td>
<td>1</td>
<td>Δεν υπήρξαν δείγματα</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>0</td>
<td>Δεν υπήρξαν δείγματα</td>
</tr>
</tbody>
</table>
14 Σεπτεμβρίου-18 Σεπτεμβρίου Παγίδες:

<table>
<thead>
<tr>
<th>Σταβλική εγκατάσταση A (1 παγίδα)</th>
<th>Σταβλική εγκατάσταση B (1 παγίδα)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Έντομα</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>27</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>52</td>
</tr>
<tr>
<td>Chrysopidae</td>
<td>3</td>
</tr>
<tr>
<td>Muscidae</td>
<td>12</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>0</td>
</tr>
<tr>
<td>Diptera</td>
<td>0</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>0</td>
</tr>
</tbody>
</table>

Αποτελέσματα

Η ύπαρξη δεδομένων σύλληψης διπτέρων πέρα των Ceratopogonidae αποτελεί θετικό αποτέλεσμα για την χρήση της παγίδας αυτής σε επόμενες εντομολογικές επιτηρήσεις. Η μη δυνατή σύλληψη ειδών του γένους Culicoides πιθανολογείται στις ξηροθερμικές συνθήκες στην περιοχή του Κουβαρά την εποχή των δοκιμών. Παρόλα αυτά, πιθανότητα διαφυγής εντόμων Ceratopogonidae από την βάση της παγίδας είναι πιθανό. Για τον λόγο αυτό, η αποτελεσματικότητα της Mosquito triple trap θα πρέπει να ερευνηθεί περαιτέρω με περισσότερες δοκιμές και σε περιοχές με αποδεδειγμένη ύπαρξη του εντόμου.

Animal health Australia. Notes on *Culicoides* trapping

Belton P, Puca T (1967) A comparison of different lights in traps for Culicoides (Diptera: Ceratopogonidae)

Cannon L. R. G., Reye E.J (1966) A larval habitat of the biting midge Culicoide brevitas Kieffer (Diptera: Ceratopogonidae)

Carpenter S, Groschup M, Garros C, Felippe-Bauer M, Purse B 2013 Culicoides biting midges, arboviruses and public health in Europe Antiviral Research 100 102-113

Collection of Culicoides spp. With four light traps models during different seasons in Balearic Islands Veterinary Parasitology 150-156

Dyce A.L., Murray M. D 1967 Aytogeny in Culicoides waringi lee and reye and Culicoides mackerrasi lee and reye (Diptera: Ceratopogonidae) from Australia with notes on breeding places and behaviour Australian Journal of Entomology Volume 6 Issue 2

Elbers A.R.W, Koenraadt C.J.M, Meiswinkel R. 2015 Mosquitoes and Culicoide biting midges: vector range and the influence of climate change

Foxi C., Delrio G. (2010) Larval habitats and seasonal abundance of Culicoides biting midges found in association with sheep in northern Sardinia, Italy Medical and Veterinary Entomology 24, 199-209

Harruo L.E, Purse B.V, Golding N., Mellor P.S, Carpenter S (2013) Larval development and emergence sites of farm-associated Culicoides in the United Kingdom Medical and veterinary Entomology 27, 441-449

Lillie TH, Marquardt WC, Jones RH: The flight range of Culicoides variipennis (Diptera, Ceratopogonidae). Can Entomol 1981, 113:419-426

Nevill H., Nevill E.M., Venter G.J. Description and comparison of the pupae of a further two Culicoides (Avaritia) species from the dung of large herbivores in South America (Diptera: Ceratopogonidae) Onderstepoort J. Vet. Res. 2009;76(3):277–284

Papadopoulos E., Rowlinson M., Bartram D., Carpenter S., Mellor P., Wall R (2010). Treatment of horses with cypermethrin against the biting flies Culicoides nubeculosus, Aedes aegypti and Culex quinquefasciatus Veterinary Parasitology 165-171

Sanders C.J, Selby R, Carpenter S, Reynolds D.R 2011 High-altitude flight of Culicoides biting midges Veterinary record

Veronesi E, Venter G.J, Labuschange K, Mellor P.S, Carpenter S 2009 Life-history parameters of Culicoides (Avaritia) imicola Kieffer in the laboratory at different rearing temperatures Veterinary Parasitology

Wall W.J., Marganian V.M. (1971) Control of Culicoides Melleus (COQ) (Diptera: Ceratopogonidae) with granular organophosphorus pesticides and the direct effect on other fauna Mosquito news 209

Zimmer J. Y., Losson B., Saegerman C., Francis F (2013) Beeding sites and species association of the main Bluetongue and Scmallenberg virus vectors, the Culicoides species (Diptera: Ceratopogonidae) in northern Europe Annales de la Société entomologique de France Vol. 49, No. 3, 335–344

Γεωργίου Κ. (2010) Αφρικανική Πανώλη των ιπποειδών. Υπουργείο Γεωργίας, Φυσικών Πόρων και Περιβάλλοντος

Εγχειρίδιο οδηγών εφαρμογής του προγράμματος επιτήρησης του καταρροϊκού πυρετού του προβάτου. 2010 Υπουργείο αγροτικής ανάπτυξης και τροφίμων

Πατακάκης Μ 2008. Μελέτη των διπτέρων εντόμων του γένους Culicoides στην Ελλάδα

Χειμωνάς Α.Χ. (1974). Κτηνιατρική Παρασιτολογία. Υπηρεσία Δημοσιευμάτων. Θεσσαλονίκη