ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
Τμήμα Επιστήμης Τροφίμων και Διατροφής του Άνθρωπου
Εργαστήριο Μικροβιολογίας και Βιοτεχνολογίας Τροφίμων

ΜΕΤΑΠΤΥΧΙΑΚΗ ΜΕΛΕΤΗ

«Τεχνοοικονομική μελέτη παραγωγής ηλεκτρικού οξέος από απόβλητα της βιομηχανίας χάρτου και χαρτοπολτού»

ΠΜΣ: Επιστήμη & Τεχνολογία Τροφίμων & Διατροφή του Άνθρωπου
ΚΑΤΕΥΘΥΝΣΗ: Βιοδιεργασίες Τροφίμων και Βιοδιυλιστήρια
Επιβλέπων: Κουτίνας Αποστόλης, Επίκουρος Καθηγητής
Σακελλαρίου Δ. Αλέξανδρος
Αθήνα, 2016
ΜΕΤΑΠΤΥΧΙΑΚΗ ΜΕΛΕΤΗ

«Τεχνοοικονομική μελέτη παραγωγής ηλεκτρικού οξέος από απόβλητα της βιομηχανίας χάρτου και χαρτοπολτού»

Επιβλέπων:
Κουτίνας Αποστόλης, Επίκουρος Καθηγητής

Εξεταστική Επιτροπή:
Ιωάννης Κούκος, Επίκουρος Καθηγητής
Κουτίνας Αποστόλης, Επίκουρος Καθηγητής
Παπανικολάου Σεραφείμ, Επίκουρος Καθηγητής

Σακελλαρίου Δ. Αλέξανδρος
ΑΘΗΝΑ 2016
Περίληψη

Η εκμετάλλευση ανανεώσιμων πηγών άνθρακα προς παραγωγή χημικών ουσιών αποτελεί αντικείμενο έρευνας της τελευταίας δεκαετίας. Το ηλεκτρικό οξύ, ένα δικαρβοδυναμικό οξύ με 4 άτομα άνθρακα, αποτελεί πρόδρομη ουσία για την παραγωγή διαφόρων προϊόντων όπως πολυεστέρων, ρητίνων, χρώστικων ουσιών, φαρμακευτικών ειδών και πρόσθετων τροφίμων.

Η παρούσα διπλωματική έργασία μελετά το σχεδιασμό και την οικονομική αποτίμηση μίας μονάδας παραγωγής ηλεκτρικού οξέος, διαφόρων δυναμικότητων (1,000 τ, 10,000 τ και 30,000 τ) μέσω ζύμωσης αποβλήτων προερχόμενων από την βιομηχανία χάρτου και χαρτοπολτού και ειδικότερα του Spent Sulphite Liquor (SSL). Η διεργασία αποτελείται από δύο τμήματα, το upstream και το downstream. Στο upstream τμήμα της διεργασίας λαμβάνει χώρα η βιοτεχνολογική παραγωγή του ηλεκτρικού οξέος. Ειδικότερα, το τμήμα upstream αποτελείται από μία διάταξη υπερδιήθησης, βιοαντιδραστήρα παραγωγής εμβολίου, σύστημα αποστείρωσης της τροφοδοσίας, διάφορους εναλλάκτες θερμότητας και τη διάταξη των βιοαντιδραστήρων. Η τροφοδοσία αποτελείται από το απόβλητο SSL. Ο μικροοργανισμός που χρησιμοποιείται για την παραγωγή ηλεκτρικού οξέος είναι o Basfia succiniciproducens. Η διεργασία της ζύμωσης διαρκεί 68 ώρες και το υγρό ζύμωσης μετά το πέρας των 68 ωρών περιέχει ηλεκτρικό οξύ σε συγκέντρωση 27.52 g·L⁻¹ καθώς και άλλα οργανικά οξέα, σε μορφή αλάτινων του νατρίου. Το διάλυμα της ζύμωσης οδεύει προς το τμήμα downstream όπου γίνεται η ανάκτηση και ο καθαρισμός του τελικού προϊόντος. Η διεργασία του downstream ξεκινά με την απομάκρυνση της βιομάζας και άλλων στερεών συστατικών από το διάλυμα ηλεκτρικού οξέος, μέσω φυγοκεντρικού διαχωριστή. Στη συνέχεια, γίνεται αποχρωματισμός του υγρού ζύμωσης σε στήλες ενεργού άνθρακα. Ακολουθεί επεξεργασία σε στήλες που περιέχουν ιόντοεναλλακτική ρητίνη όπου τα άλατα του νατρίου, που έχουν παραχθεί στη ζύμωση, μετατρέπονται σε οργανικά οξέα. Το τελικό στάδιο καθαρισμού περιλαμβάνει την εξάτμιση μεγάλου μέρους του νερού που περιέχεται στο ρεύμα τροφοδοσίας. Ακολουθούν οι διεργασίες της κρυσταλλοποίησης και της ζημίας που έπεσε για παραλαμβάνεται το τελικό προϊόν, δηλαδή οι κρύσταλλοι ηλεκτρικού οξέος. Το κόστος παγίου κεφαλαίου ανέρχεται στα 16.3 M$ 86.1 M$ και 183.3 M$ για κάθε δυναμικότητα αντίστοιχα. Το συνολικό κόστος παραγωγής εκτιμάται στα 10.4 M$ g⁻¹, 58.8 M$ g⁻¹ και 127.1 M$ g⁻¹. Η τιμή πώλησης ώστε η επένδυση να θεωρηθεί βιώσιμη για κάθε δυναμικότητα εκτιμάται στα 12.1 $·kg⁻¹, 6.8 $·kg⁻¹ και 4.9 $·kg⁻¹ αντίστοιχα. Η συγκεκριμένη διεργασία που μελετήθηκε κρίνεται μη ανταγωνιστική σε σχέση με τις τρέχουσες μεθόδους παραγωγής ηλεκτρικού οξέος.

Λέξεις κλειδιά: ηλεκτρικό οξύ, τεχνοοικονομική μελέτη, ρητίνες ιοντοεναλλαγής, Basfia succiniciproducens, μικροβιακές ζημώσεις, Spent Sulphite Liquor.
Abstract

The exploitation of renewable carbon sources for production of chemicals is being investigated in the last decades. Succinic acid, a dicarboxylic acid with 4 carbon atoms, is a precursor in the production of various products such as polyesters, resins, dyes, pharmaceuticals and food additives. This thesis studies the design and economic evaluation of a succinic acid production plant of various capacities (1,000 t, 10,000 t and 30,000 t) through the fermentation of waste arising from the paper and pulp industry and in particular of Spent Sulphite Liquor (SSL). The process consists of two sections, upstream and downstream. In the upstream section of the process the biotechnological production of succinic acid takes place. Specifically, the upstream part comprises of an ultrafiltration unit, an inoculum preparation bioreactor, a feed sterilization system, various heat exchangers and the biofermentors. The main feed consists of the SSL waste. The microorganism used for the production of succinic acid is *Basfia succiniciproducens*. The fermentation process lasts 68 hours and the fermentation broth at the end of the 68 hours contains succinic acid at a concentration of 27.52 g L⁻¹, and other organic acids, in the form of sodium salts. The process of downstream starts with the removal of the biomass and other solids from the fermentation broth by a centrifugal separator. Then, the fermentation broth is discolored in activated carbon columns. Afterwards, it passes through columns containing an ion exchange resin where the sodium salts, produced in the fermentation, are converted into organic acids. The final purification step involves the evaporation of most of the water contained in the feed stream. Lastly, the succinic acid crystals are recovered via the processes of crystallization and drying. The fixed capital cost is 16.3 M$, 86.1 M$ and 183.3 M$ for every capacity respectively. The total production cost is estimated at 10.4 M $ y⁻¹, 58.8 M $ y⁻¹ and 127.1 M $ y⁻¹. The selling price of succinic acid where the investment is considered viable for each capacity is estimated at 12.1 $ kg⁻¹, 6.8 $ kg⁻¹ and 4.9 $ kg⁻¹ respectively. This process is considered non-competitive in comparison to the current succinic acid production processes.

Keywords: succinic acid, techno-economic study, ion exchange resins, *Basfia Succiniciproducens*, microbial fermentation, Spent Sulphite Liquor
Περιεχόμενα

Κεφάλαιο 1. Το Ηλεκτρικό Οξύ .. 7

1.1 Βιοδιαλυτική και Platform Chemicals ... 7
 1.1.1 Γενικές Πληροφορίες .. 7
 1.1.2 Εκμετάλλευση C6 και C6/C5 σάκχαρων 8

1.2 Το Ηλεκτρικό Οξύ ... 10
 1.2.1 Ιδιότητες .. 10
 1.2.2 Παγκόσμια Αγορά ... 11
 1.2.3 Συμβατικές μέθοδοι παραγωγής .. 11

1.2.4 Μεταβολική μονοπάτια παραγωγής ηλεκτρικού οξέος μέσω μικροβιακών ζυμώσεων ... 12
 1.2.5 Μικροβιακό Παραγωγοί Ηλεκτρικού Οξέος 13

1.2.6 Πρώτες Όλες .. 14

1.2.7 Spent Sulfite Liquor ... 15

1.3 Μηχανική Διεργασιών Ζυμώσεων ... 15

1.4 Μέθοδοι Διαχωρισμού και Ανάκτησης .. 16

1.5 Ανακάλυψη Βιβλιογραφίας ... 20

Κεφάλαιο 2. Προσπεξεργασία Αποβλήτου και Διεργασία Ζύμωσης 21

2.1 Εισαγωγή ... 21

2.2 Διεργασία Ζύμωσης .. 25
 2.2.1 Σχεδιασμός Βιοαντιδραστήρων ... 25
 2.2.2 Κοστολόγηση Βιοαντιδραστήρων ... 26

2.3 Αραίωση ... 27

2.4 Μονάδα Υπερδιήθησης .. 28

2.5 Ψύξη .. 30

2.6 Παραγωγή Εμβολίου .. 30
 2.6.1 Παραγωγή Εμβολίου .. 30
 2.6.2 Αποστείρωση Ρεύματος Θεραπευτικών Συστατικών 31
 2.6.3 Κοστολόγηση Αποστείρωσης ... 33

2.7 Ανάδευση ... 33

2.8 Κατανάλωση CO2 .. 34
2.9 Παραγόμενη Θερμότητα από την Αντίδραση ... 34
2.10 Ψύξη Αντιδραστήρων ... 35
2.7 Παραμετρική Ανάλυση ... 35
 2.7.1 Δυναμικότητα Παραγωγής 1,000 t ανά έτος ... 35
 2.7.2 Δυναμικότητα Παραγωγής 30,000 t ανά έτος ... 37

Κεφάλαιο 3. Ανάκτηση και Καθαρισμός Προϊόντος .. 38
 3.1 Εισαγωγή ... 38
 3.2 Φυγόκεντρος ... 39
 3.2.1 Σχεδιασμός Φυγόκεντρου ... 39
 3.2.2 Κόστολογνηση Φυγόκέντρησης ... 40
 3.3 Στήλες Ενεργού Άνθρακα ... 40
 3.3.1 Σχεδιασμός Στηλών Ενεργού Άνθρακα .. 40
 3.3.2 Κοστολόγνηση Στηλών Ενεργού Άνθρακα .. 41
 3.4 Στήλες Ιοντοενιαλαγής .. 42
 3.4.1 Σχεδιασμός Στηλών Ιοντοενιαλαγής ... 42
 3.4.2 Αναγέννηση στηλών ... 43
 3.4.3 Κοστολόγνηση Διεργασίας Ιοντοενιαλαγής .. 43
 3.5 Τελικό στάδιο καθαρισμού .. 44
 3.5.1 Mechanical Vapor Recompression Evaporator .. 44
 3.5.2 Κρυσταλλοποιητής .. 46
 3.5.3 Επανατήρας Ψιχασμού .. 46
 3.5.4 Σύνοψη τελικού σταδίου καθαρισμού ηλεκτρικού οξέος – Παρουσίαση αποτελεσμάτων47
 3.5.5 Κοστολόγνηση Τελικού Σταδίου Καθαρισμού ... 49
 3.6 Παραμετρική Ανάλυση ... 52
 3.6.1 Δυναμικότητα Παραγωγής 1,000 t ανά έτος .. 52
 3.6.2 Δυναμικότητα Παραγωγής 30,000 t ανά έτος .. 53

Κεφάλαιο 4. Οικονομική Ανάλυση ... 54
 4.1 Εισαγωγή ... 54
 4.2 Εκτίμηση Κόστους Παγίου Κεφαλαίου .. 54
 4.3 Εκτίμηση Συνολικού Κόστους Παραγωγής (TPC) ... 55
 4.4 Αξιολόγηση Επενδυτικών Σχεδίων .. 57

Κεφάλαιο 5. Συμπεράσματα - Προτάσεις ... 62

ΠΑΡΑΡΤΗΜΑ 1A – Υπολογισμοί Κεφαλαίου 2 .. 67
Π-1A.1 Υπολογισμός ογκομετρικής παροχής και σύστασης ρευμάτων upstream.................................67
Π-1A.2 Υπολογισμός θερμοκρασίας κατά την ανάμιξη ρευμάτων U-1, U-2. ...69
Π-1A.3 Υπολογισμός συνολικού εμβαδού μεμβρανών υπερδιήθησης ..69
Π-1A.5 Αποστείρωση..70
Π-1A.6 Ανάδευση..73
Π-1A.7 Κατανάλωση CO₂..74
Π-1A.8 Παραγόμενη θερμότητα από την αντίδραση ...74
Π-1A.9 Ψύξη Αντιδραστήρων ..75
ΠΑΡΑΡΤΗΜΑ 1Β – Υπολογισμοί Κεφαλαίου 3..76
Π-1B.1 Φυγόκεντρος ..76
Π-1B.2. Στήλες Ενεργού Άνθρακα ..76
Π-1B.3. Στήλες Ιοντοεναλλαγής ..78
ΠΑΡΑΡΤΗΜΑ 1Γ – Τελικό Στάδιο Καθαρισμού - Λογισμικό Βελτιστοποίησης.................................81
Κώδικας λογισμικού GAMS..89
Βιβλιογραφία ..95
Κεφάλαιο 1. Το Ηλεκτρικό Οξύ

1.1 Βιοδιυλιστήρια και Platform Chemicals

1.1.1 Γενικές Πληροφορίες

Τις τελευταίες δεκαετίες παρατηρείται μία προσπάθεια να μεταπετάσσουμε από τη σημερινή οικονομία που βασίζεται στην εκμετάλλευση των ορυκτών καυσίμων, προς μία αειφόρο οικονομία που θα στηρίζεται στην εκμετάλλευση της βιομάζας. Οι κύριοι λόγοι που μας ωθούν προς αυτή τη μετάβαση είναι οι εξής.

Η ανάγκη ανάπτυξης μίας περιβαλλοντικά, οικονομικά και κοινωνικά βιώσιμης παγκόσμιας οικονομίας.

Η προοπτική ότι τα ορυκτά καύσιμα θα φτάσουν τα ερχόμενα χρόνια στην αιχμή της παραγωγής τους με αποτέλεσμα την ραγδαία άνοδο της τιμής τους.

Η επιθυμία πολλών χωρών να σταματήσουν την εξάρτησή τους από τα εισαγόμενα ορυκτά καύσιμα και να τα αντικαταστήσουν με εξοχικές ενεργειακές πηγές.

Το παγκόσμιο πρόβλημα της κλιματικής αλλαγής και η επιτακτική ανάγκη για μείωση των εκπομπών αερίων του θερμοκηπίου.

Η ανάγκη τόνωσης της τοπικής και αγροτικής ανάπτυξης.

Ο βασικός παράγοντας στην επίπεδη μίας οικονομίας που στηρίζεται στην εκμετάλλευση της βιομάζας είναι η ανάπτυξη βιοδιυλιστηρίων που θα προσφέρουν αποτελεσματικούς και οικονομικούς αποδοτικούς τρόπους επεξεργασίας βιολογικών πρώτων υλών προς την παραγωγή βιοχημικών προϊόντων και η εύκολη ενσωμάτωσή τους στις ήδη υπάρχουσες υποδομές. Αν και η παγκόσμια παραγωγή βιοχημικών και βιοπολυμερών εκτιμάται περί τους 50 εκατομμύρια τόνους [E. Jong, 2012], η εμπορική παραγωγή τέτοιων προϊόντων είναι περιορισμένη λόγω της χαμηλής τιμής ορυκτών πρώτων υλών σε συνδυασμό με τη βελτιστοποιημένη διαδικασία παραγωγής αυτών των διεργασιών. Η μεγάλη διακύμανση στην τιμή των ορυκτών καυσίμων και η όλη αυξανόμενη ζήτηση για περιβαλλοντικά φιλικά προϊόντα ανοίγει νέους δρόμους για τα βιοχημικά προϊόντα. Ωστόσο, η βιομηχανία αντιμετωπίζει την παραγωγή χημικών και πολυμερών από ανανεώσιμες πηγές με ολόκληρα και αυξανόμενο ενδιαφέρον.

Η κατηγοριοποίηση των βιοδιυλιστηρίων στηρίζεται σε 4 κύρια χαρακτηριστικά [E. Jong, 2012]: Platforms (κύρια ενδιάμεσα όπως C5-C6 υδρογονάνθρακες, συνθετικό αέριο, λιγνίνη, πυρολυτικό υγρό).

Προϊόντα (βιοκαύσιμα, χημικά και υλικά προϊόντα).
Пρώτη ύλη (βιομάζα προερχόμενη από αγροτικές, βιομηχανικές και οικιακές πηγές).
Διεργασίες (θερμοχημικές, χημικές, βιοχημικές και μηχανικές διεργασίες).

Από αυτά τα χαρακτηριστικά το κυρίτερο είναι τα platforms καθώς αποτελούν τα βασικά ενδιάμεσα μεταξύ της πρώτης ύλης και του τελικού προϊόντος και μπορούν να χρησιμοποιηθούν για να συνδέουν διαφορετικούς τύπους βιοδιυλιστηρίων και αγορών.
Τα platforms μπορούν να παραχθούν από μεμονωμένα άτομα άνθρακα όπως το βιοαέριο ως σύνθετες ροές C5 και C6 υδρογονανθράκων προερχόμενες από ημικυτταρίνη, υδρογονανθράκες C6 από άμυλο, σακχαρόζη ή κυτταρίνη, λιγνίνη, έλαια (από φυτά ή φύκη), οργανικά διαλύματα και πυροηλεκτρικό υγρά. Αυτές οι θεμελιώδεις χημικές ενώσεις μπορούν να μετατραπούν σε ένα ευρύ φάσμα εμπορεύσιμων προϊόντων μέσω συνδυασμού θερμικών, βιολογικών και χημικών διεργασιών.

Η παραγωγή βιοχημικών προϊόντων δεν είναι κάτι καινούριο. Αξιοσημείωτα τέτοια προϊόντα είναι το μη βρώσιμο άμυλο, οι ίνες κυτταρίνης και τα παράγωγα κυτταρίνης, τα έλαια, τα λιπαρά οξέα και διάφορα προϊόντα ζύμωσης όπως η αιθανόλη και το κιτρικό οξύ.

Παρόλα αυτά, η πλειοψηφία των οργανικών χημικών και πολυμερών προέρχεται από ορυκτές πρώτες ύλες. Η παγκόσμια παραγωγή προϊόντων αυτών είναι περίπου 330 εκατομμύρια τόννοι [E. Jong, 2012]. Τα κύρια δομικά στοιχεία είναι η μεθανάλη, το αιθυλένιο, το προπυλένιο, το βουταδένιο, το βενζόλιο, το τολουένιο και το ξυλόλιο. Αυτά τα δομικά στοιχεία μετατρέπονται κατά βάση σε πολυμερή και πλαστικά αλλά και σε ένα τεράστιο αριθμό προϊόντων με συγκεκριμένες χρήσεις και ιδιότητες. Από τεχνικής άποψης, όλα τα υλικά που προέρχονται από τα ορυκτά καύσιμα μπορούν να παραχθούν μέσω βιοδιεργασιών. Ως μέρος, το κόστος παραγωγής βιοχημικών προϊόντων υπερβαίνει κατά πολύ αυτό των αντίστοιχων πετροχημικών. Αυτό απορρέει από την υψηλή τιμή πρώτων υλών που χρησιμοποιούνται σε τέτοιες διεργασίες, καθώς και από το κόστος αυτό καθ’ αυτό των διεργασιών που είναι υψηλό. Επίσης, για τα νέα αυτά προϊόντα πρέπει να αποδειχθεί ότι έχουν ισάξια χρηστικότητα και μικρότερο περιβαλλοντικό αντίκτυπο.

1.1.2 Εκμετάλλευση C6 και C6/C5 σάκχαρων

Σάκχαρα με 6 άτομα άνθρακα γίνονται διαθέσιμα από την επεξεργασία σακχαρόζης ή την υδρόλυση του αμύλου και της κυτταρίνης όπου και παράγεται γλυκόζη. Η γλυκόζη αποτελεί την κύρια πρώτη ύλη ζύμωσης με τελικά προϊόντα είτε δομικά χημικά (platform chemicals), είτε εξειδικευμένα χημικά (specialty chemicals).

Μίγματα C6 και C5 υδρογονανθράκων γίνονται διαθέσιμα από την υδρόλυση της ημικυτταρίνης. Η μικροβιακή ζύμωση αυτών έχει τη δυνατότητα παραγωγής των ιδίων προϊόντων όπως η ζύμωση σακχάρων C6.

Ο αριθμός των δομικών χημικών στοιχείων που γίνονται διαθέσιμα μέσω ζύμωσης των ανωτέρω υποστρωμάτων είναι σημαντικός. Οι μικροβιακές ζυμώσεις χρησιμοποιούνται ευρέως από τις χημικές βιομηχανίες και η παραγωγή προϊόντων ζύμωσης (αμινοξέα, ένζυμα, οργανικά οξέα, βιταμίνες, αντιβιοτικά, ξαθάνη κ.α.) ανέρχεται στους 8 εκατομμύρια τόννους ετησίως και η αγορά αυτών να υπερβαίνει τα 22 δισεκατομμύρια δολάρια [E4tech, RE-CORD and WUR, 2015].

Η εξέλιξη της επιστήμης της βιοτεχνολογίας μας επιτρέπει πλέον να εξετάζουμε την παραγωγή νέων προϊόντων ζύμωσης με πολλά υποσχόμενες οικονομικές και εμπορικές δυνατότητες. Στον Πίνακα 2.1 φαίνονται τα κυρίοτερα από αυτά τα προϊόντα καθώς και οι πολύπλευρες δυνατότητες χρήσης τους.
Πίνακας 1.1: Κύρια βιοχημικά προϊόντα [E4tech, RE-CORD and WUR, 2015]			
Προϊόν	Κύριες Αγορές	Κόστος σε σχέση με ορυκτές πρώτες ύλες	Μείωση εκπομπών αερίων του θερμοκηπίου
Ακρυλικό οξύ	αντικατάσταση ευρέως χρησιμοποιούμενων χημικών ενδιάμεσων	20-48% φθήνιστερο του αντίστοιχου πετροχημικού όταν εμπορευματοποιηθεί	>70%
Αδυτικό οξύ	αντικατάσταση πρώτης ύλης για παραγωγή νύλο 6,6 και πολυουρεθανών	ανεμένεται να είναι οικονομικά ανταγωνιστικό λόγω μικρότερων κεφαλαιακών δαπανών	70-95%
1,4 – βουταννηδίλη (BDO)	αντικατάσταση της πετροχημικής παραγόμενης BDO προς παραγωγή πολυμερών	15-30% μικρότερο και ανταγωνιστικό σε τιμές πετρελαίου 45 $/βαρέλι	70-117% ανάλογα με τη διεργασία
Φαρνεσένιο	μαλακτικά, ανθετικά ελαστικά, καύσιμα αεριωθούμενων με παρόμοιες ιδιότητες της C15 ισοπαράφινης	ελκυστικό όσων αφορά τα μαλακτικά, κοντά στην τιμή αγοράς στα ελαστικά, υψηλό στο καύσιμα	80%
2,5 – φουράν – δικαρβοξελικό οξύ	αντικαταστάθηκε του TPA για παραγωγή νέων πολυαιθυλικών φουρανικών πολυμερών. Εφαρμογή σε μπουκάλια ποτών	υψηλό λόγω μικρής κλίμακας παραγωγής, δεν έχει εμποροποιηθεί ακόμα	45-68%
Ισοβουτένιο	ελαστικά αυτοκινήτων, πρόδρομο προσθέτων σε καύσιμα και λαπαντικά. Δύναται να χρησιμοποιηθεί ως αντιοξειδωτικό σε τρόφιμα	Μπορεί να είναι κερδοφόρο για υπηρέτες τιμές πετρελαίου και ειδικές συνθήκες της αγοράς	20-80%
Πόλυ-υδρόξυλο αλκανουστέρες (PHAs)	Πλήρως βιοδιασπόμενοι, χρήση σε ιατρικά ράμματα, οι εύκολα ρυθμιζόμενες ιδιότητες του καθιστού δυνατή τη χρήση του στην βιομηχανία πλαστικών	Υψηλό κόστος. Ενδέχεται να μειωθεί μέσω ενσωμάτωσης σε εργοστάσια ζάχαρης	20% από άμυλο, 80% από ζαχαροκάλαμο, 90% από λιγνοκουταρινούχα πρώτη ύλη
Πολυαιθυλενίο (PE)	αντικατάσταση πετροχημικού PE προς παραγωγή πλαστικών, κύρια εφαρμογή σε συσκευασίες	Υψηλότερη κατά 30-60% του πετροχημικού PE. Αύξηση της παραγωγής μπορεί να οδηγήσει σε πτώση της τιμής	50% από ζαχαροκάλαμο, μεγαλύτερη από λιγνοκουταρινούχες πηγές
Πολυγάλακτικό οξύ (PLA)	κατάλληλο για συσκευασίες, μονώσεις και ίνες. Ανθετικό, βιοδιασπόμενο και με χαμηλή τοξικότητα	Σχετικά υψηλότερο των αντίστοιχων πετροχημικών	30-70%
Ηλεκτρικό οξύ	αντικατάσταση ορυκτών και αδυτικού οξέος σε ρητίνες, πλαστικοποιητές και πολυεστερικές πολυόλες	ίσο με το αντίστοιχο πετροχημικού από το 2013	75-100% ανάλογα με την πρώτη ύλη και τη διεργασία
1.2 Το Ηλεκτρικό Οξύ

1.2.1 Ιδιότητες

Το ηλεκτρικό οξύ ή αλλώς 1,4 βουτανοδιοξίκο οξύ, είναι ένα φυσικό οργανικό δικαρβοξυλικό οξύ με τέσσερα άτομα άνθρακα. Απαντά σε πολλά φυτικά είδη, στα περισσότερα φρούτα και λαχανικά αλλά και στο ηλεκτρό (κεχριμπάρι) από όπου πήρε και το όνομά του. Είναι ενδιάμεσο ενός κύκλου μεταβολισμού σακχάρων σε ζώντες οργανισμούς μεγάλης βιολογικής σημασίας (κύκλος κιτρικού οξέος – κύκλος του Krebs), μέρος της διαδικασίας κατά την οποία οι ζωντανοί οργανισμοί μετατρέπουν την τροφή σε ενέργεια. Σε κανονικές συνθήκες είναι σε μορφή άχρωμης κρυσταλλικής σκόνης με σημείο τήξης τους 187 - 189°C. Είναι ευδιάλυτο στο νερό αλλά ελάχιστα διαλυτό στην αιθανόλη, τον αιθέρα και την ακετόνη. Είναι ουσιαστικά αδιάλυτο στο βενζόλιο και τον τετραχλωράνθρακα [https://el.wikipedia.org/]

Τα χαρακτηριστικά και οι ιδιότητές του δίνονται στον πίνακα 2.2:

Το ηλεκτρικό οξύ βρίσκει πολλές εφαρμογές. Το συγκεκριμένο χημικό καθώς και οι επιθυμητές του ιδιότητες είναι γνωστές εδώ και πολλά χρόνια. Στον γεωργικό τομέα είναι γνωστό ως ρυθμιστής αυξήσης και χρησιμοποιείται στην επεξεργασία σπόρων και τη ριζοβολία φυτών. Στη βιομηχανία τροφίμων το ηλεκτρικό οξύ χρησιμοποιείται ως ενισχυτής γεύσης σε αναψυκτικά, παράγοντας μαλάκωσης του ψωμιού και καταλύτης για την προετοιμασία καρυκευμάτων. Θεωρείται ασφαλές χημικό και έχει εγκριθεί από τον οργανισμό “US Food and Drug Administration”. Στην φαρμακευτική βιομηχανία το ηλεκτρικό οξύ δρα ως αντικαρκινογενής παράγοντας. Στη χημική βιομηχανία, το ηλεκτρικό οξύ είναι πρόδρομη ουσία για την παραγωγή πολλών προϊόντων υψηλής αξίας όπως της 1,4 – βουτανοδιοξίλης, του τετραυδροφουρανίου, της γ-βουτυρολακτόνης και της 2-πυρρολιδινόνης. Τέλος, μια από της πιο ελπιδοφόρες χρήσεις του είναι ως πρόδρομη ουσία για την παραγωγή διάφορων πολυεστέρων όπως το ηλεκτρικό πολυβουτυλένιο [K. Cheng et al, 2012].

![Schéma 1.1: Μοριακή απεικόνιση ηλεκτρικούξεος](https://el.wikipedia.org/)

Πίνακας 1.2: Ιδιότητες ηλεκτρικού οξέος [https://el.wikipedia.org/]

<table>
<thead>
<tr>
<th>Χημικός τύπος</th>
<th>C₄H₆O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μοριακό βάρος</td>
<td>118,09 g mol⁻¹</td>
</tr>
<tr>
<td>Σημείο τήξης</td>
<td>187 – 189 °C</td>
</tr>
<tr>
<td>Σημείο βρασμού</td>
<td>235 °C</td>
</tr>
</tbody>
</table>
1.2.2 Παγκόσμια Αγορά

Λόγω των πολύπλευρων εφαρμογών του η χρήση του ηλεκτρικού οξέος ως platform chemical αυξάνεται τα τελευταία χρόνια. Η ετήσια παγκόσμια παραγωγή του το 2013 ήταν 38 χιλιάδες τόνοι με εκτιμήσεις να προβλέπουν αύξηση του ρυθμού παραγωγής του ως και 18 % μέχρι το 2016. Η ετήσια αγορά βιοπαραγόμενου ηλεκτρικού οξέος στη βάση ετήσιων εσόδων εκτιμήθηκε στα 108 Μ$ για το 2013 ενώ το πετροχημικός παραγόμενο (40 χιλιάδες τόνοι ετησίως) στα 100 Μ$. Το βιολογικά παραγόμενο ηλεκτρικό οξύ έχει τιμή περί τα 2860 $/τ σε αντίθεση με το πετροχημικός παραγόμενο που έχει τιμή 2500 $/τ. Οι δύο μεγαλύτερες αγορές ηλεκτρικού οξέος είναι η Β. Αμερική και η Ευρώπη με 31% και 35% ποσοστό ζήτησης και ακολουθεί η περιοχή της Ασίας όπου εκτιμάται ότι η ζήτηση θα αυξηθεί τα επόμενα χρόνια λόγω της αυξημένης ζήτησης από χώρες όπως η Κίνα και η Ινδία [Y. Cao et al, 2013].

Σαν platform chemical το ηλεκτρικό οξύ έχει μια εκτιμώμενη αγορά 7-10 δισεκατομμυρίων, συμπεριλαμβανομένων 4 δισεκατομμυρίων από τη χρήση του προς παραγωγή 1,4 βουτανόδιολης, τετραυδροφουρανίου και γ-βουτυρολακτόνης. Αλλο ένα σημαντικό παράγωγο του ηλεκτρικού οξέος είναι το ηλεκτρικό πολυβουτυλένιο που χρησιμοποιείται για την παραγωγή πλαστικών με τιμή πώλησης 4500 $/τ [E4tech, RE-CORD and WUR, 2015].

1.2.3 Συμβατικές μέθοδοι παραγωγής

Το ηλεκτρικό οξύ παραδοσιακά παράγεται μέσω χημικών μεθόδων χρησιμοποιώντας παραφίνη, μαλεϊκό ανυδρίτη, ακετυλένιο ή ακρυλικό οξύ ως αρχικό υλικό. Η οξείδωση της παραφίνης είναι η κυριότερη μέθοδος παραγωγής του. Μέσω κατάλυσης με Mn ή Ca, η παραφίνη οξειδώνεται σε ένα μείγμα δικαρβοξυλικών οξέων. Μετά από απόσταση με ατμό το ηλεκτρικό οξύ, που βρίσκεται στην υγρή φάση, μπορεί να κρυσταλλοποιηθεί. Με αυτή τη μέθοδο η απόδοση παραγωγής και η καθαρότητα του τελικού προϊόντος είναι σχετικά χαμηλές.

Μια άλλη συμβατική προσέγγιση παραγωγής ηλεκτρικού οξέος που χρησιμοποιείται ευρέως είναι η υδρογόνωση μαλεϊκού ανυδρίτη. Η διεργασία αυτή προϋποθέτει τη χρήση καταλυτών όπως Pd και Ru και απαιτεί συνθήκες υψηλής θερμοκρασίας και πίεσης, γεγονός που την καθιστά μη φιλική προς το περιβάλλον.

Η ηλεκτρολυτική αναγωγή μαλεϊκού ανυδρίτη σε όξινο μέσο οδηγεί και αυτή στην παραγωγή ηλεκτρικού οξέος. Ενώ αυτή η διεργασία μπορεί να διεξάχει σε ήπιες συνθήκες και ο ρυθμός παραγωγής είναι υψηλός, η μεγάλη κατανάλωση ηλεκτρικής ενέργειας που απαιτείται αυξάνει το κόστος παραγωγής και την καθιστά μη ελκυστική.

Αν και έχουν εξεταστεί και άλλες μέθοδοι χημικής σύνθεσης ηλεκτρικού οξέος, όπως η καταλυτική προσθήκη ακετυλενίου και ακρυλικού οξέος, με χρήση φθηνότερων πρώτων υλών, η βιομηχανική εφαρμογή τους απέχει αρκετά από το να πραγματοποιηθεί. Σε συνδυασμό με την συνεχόμενη μείωση των διαθέσιμων ορυκτών καυσίμων και την όλο και αυξανόμενη τιμή του πετρελαίου αυτές οι
συμβατικές μέθοδοι παραγωγής ηλεκτρικού οξέος από πετροχημικά καθίστανται κοστοβόρες και ζημιωγόνες για το περιβάλλον. Έτσι οδηγούμαστε στην αναζήτηση νέων μεθόδων παραγωγής του χημικού αυτού [Y. Cao et al, 2013].

1.2.4 Μεταβολικά μονοπάτια παραγωγής ηλεκτρικού οξέος μέσω μικροβιακών ζυμώσεων

Στα βιοσυστήματα, το ηλεκτρικό οξύ αποτελεί ένα σημαντικό ενδιάμεσο για τον κυτταρικό μεταβολισμό. Επιπρόσθετα, υπάρχει η δυνατότητα να αποτελεί ένα από τα τελικά προϊόντα αναερόβιων ζυμώσεων. Για αυτό το λόγο είναι εφικτή η παραγωγή ηλεκτρικού οξέος από βιοδιεργασίες ώστε να αντικατασταθούν οι συμβατικές πετροχημικές μέθοδοι. Οι βιοδιεργασίες προσφέρουν αρκετά πλεονεκτήματα συγκρινόμενες με τις χημικές διεργασίες καθότι συνήθως χρησιμοποιούνται ανανεώσιμες πρώτες ύλες και παράγονται πολύ λιγότερα τοξικά παραπροϊόντα. Σε μια έκθεση του Υπουργείου Ενέργειας των Η.Π.Α το ηλεκτρικό οξύ κατατάσσεται πρώτο μεταξύ των 12 χημικών προστιθέμενης αξίας παραγόμενων από βιομάζα.

Το τυπικό βιοσυνθετικό μονοπάτι παραγωγής ηλεκτρικού οξέος από γλυκόζη, σε αερόβιες και αναερόβιες συνθήκες, συνοψίζεται στο σχήμα 2.2. Αρχικά, η γλυκόζη μέσω της γνωστής μεταβολικής οδού της γλυκόλυσης μετατρέπεται πρώτα σε φωσφορο-ενυλ-πυροσταφυλικό (PEP) και έπειτα σε πυροσταφυλικό οξύ. Στην αναερόβια ζύμωση το PEP και το πυροσταφυλικό μετατρέπονται με τη δράση ενζυμών και την προσθήκη CO2 σε οξαλοξικό οξύ το οποίο εν συνεχεία μετατρέπεται σε μηλικό, φουμαρικό και εν τέλει ηλεκτρικό οξύ. Κατά την αερόβια ζύμωση, το πυροσταφυλικό οξύ εισέρχεται στον κύκλο των τρικαρβοξυλικών οξέων όπου και μετατρέπεται, με διαδοχικές αντιδράσεις, σε ηλεκτρικό οξύ. Πέραν του ηλεκτρικού οξέος σε αυτά τα μεταβολικά μονοπάτια παράγονται και άλλα οξέα όπως τα μυρμηκικό, γαλακτικό και οξικό οξύ [Y. Cao et al, 2013].
Σχήμα 1.2: Αναερόβια και αερόβια καταβολική οδός της γλυκόζης προς σχηματισμό ηλεκτρικού οξέος [Y. Cao et al, 2013].

1.2.5 Μικροβιακοί Παραγωγοί Ηλεκτρικού Οξέος

Μέχρι σημείως έχει βρεθεί μια πληθώρα μικροοργανισμών ικανών να παράγουν ηλεκτρικό οξύ. Αυτοί οι μικροοργανισμοί είναι είτε φυσικοί παραγωγοί ηλ. οξέος είτε προϊόντα βιοτεχνολογικής μετατροπής. Τα κυρίωτερα γένη που αποδεδειγμένα παράγουν ηλ. οξύ φαίνονται στον Πίνακα 1.3:
Πίνακας 1.3: Σύναψη μικροοργανισμών που παράγουν ηλεκτρικό οξύ [Y. Cao et al, 2013].

<table>
<thead>
<tr>
<th>Τύπος</th>
<th>Γένος</th>
<th>Απαίτηση σε ξυμόγονο</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φυσικοί παραγωγοί</td>
<td>Βακτήριο</td>
<td>Actinobacillus succinogenes</td>
</tr>
<tr>
<td></td>
<td>Βακτήριο</td>
<td>Anaerobiospirillum succiniproducens</td>
</tr>
<tr>
<td></td>
<td>Βακτήριο</td>
<td>Mannheimia succiniproducens</td>
</tr>
<tr>
<td></td>
<td>Βακτήριο</td>
<td>Bacteroides fragilis</td>
</tr>
<tr>
<td></td>
<td>Βακτήριο</td>
<td>Enterococcus faecalis</td>
</tr>
<tr>
<td></td>
<td>Βακτήριο</td>
<td>Klebsiella pneumoniae</td>
</tr>
<tr>
<td></td>
<td>Βακτήριο</td>
<td>Succinovibrio dextrinosolvens</td>
</tr>
<tr>
<td></td>
<td>Βακτήριο</td>
<td>Bacteroides fragilis</td>
</tr>
<tr>
<td></td>
<td>Βακτήριο</td>
<td>Aspergillus niger</td>
</tr>
<tr>
<td></td>
<td>Βακτήριο</td>
<td>Paecilomyces variotii</td>
</tr>
<tr>
<td></td>
<td>Βακτήριο</td>
<td>Penicillium simplicissimum</td>
</tr>
</tbody>
</table>

Γενετικά τροποποιημένοι: Βακτήριο: **Escherichia coli** | προεραιτικώς αναερόβιο |
| | Βακτήριο | **Corynebacterium glutamicum** | αυστηρά αναερόβιο |
| | Ζύμη | **Saccharomyces cerevisiae** | προεραιτικώς αναερόβιο |

Όπως γίνεται εύκολα κατανοητό έχει μελετηθεί μια πληθώρα μικροοργανισμών για την παραγωγή ηλεκτρικού οξέος με διάφορα πλεονεκτήματα και μειονεκτήματα να παρουσιάζονται κατά τη χρήση του καθενός. Κάποιοι από τους μικροοργανισμούς αυτούς εμφανίζουν μεγάλη ανοχή στην ουσιωτική πίεση που οφείλεται σε υψηλές συγκεντρώσεις ηλεκτρικού οξέος αλλά χρειάζονται ακριβή υπόστρωμα ζύμωσης. Άλλοι μπορούν να καλλιεργηθούν ευκολότερα αλλά παρουσιάζουν μικρότερες αποδόσεις παραγωγής και ούτο καθεξής. Κατά κανόνα πάντως, τα βακτήρια προτιμώνται των μυκητών και των ζυμών.

1.2.6 Πρώτες Ύλες

Γενικά, η γλυκόζη είναι η κύρια πηγή άνθρακα για ζυμώσεις προς παραγωγή ηλ.οξέος. Αν και η γλυκόζη βρίσκεται σε αφθονία, η σχετικά υψηλή τιμή της αυξάνει το κόστος παραγωγής. Επιπρόσθετα, η γλυκόζη παράγεται μέσω της υδρόλυσης του αμύλου. Για αυτό το λόγο δεν θεωρείται ελκυστική πρώτη ύλη διότι ανταγωνίζεται την παραγωγή τροφής. Για την ανάπτυξη μιας αειφόρου βιοτεχνολογικής διεργασίας παραγωγής ηλ.οξέος πρέπει να χρησιμοποιούνται χαμηλής αξίας υποστρώματα τα οποία ενδεχομένως προέρχονται από απόβλητα και είναι μη βρώσιμα.

Ένα από αυτά τα υποστρώματα είναι η γλυκερόλη η οποία είναι παραπροϊόν της βιομηχανίας παραγωγής δυοτίζελ και βρίσκεται σε πολύ μεγάλες ποσότητες. Η βιοτεχνολογική παραγωγή ηλ.οξέος από γλυκερόλη είναι μια ελκυστική διεργασία, εφόσον παράγει ένα χημικό υψηλής προστιθέμενης αξίας από μια χαμηλής ως και μηδενικής αξίας πρώτη ύλη. Έχει διαπιστωθεί ότι η βιομετατροπή γλυκερόλης σε ηλ.οξύ είναι δυνατή από τους *A.succiniproducens*, *A.succinogenes* και γενετικώς τροποποιημένα στελέχη *E.coli*.

Η ξυλόζη αποτελεί μια ανανεώσιμη πηγή άνθρακα η οποία μπορεί να προέλθει από την κατεργασία λιγνουταρινούχου βιομάζας. Η ζύμωση της ξυλόζης προς ηλ.οξύ είναι δυνατή από διάφορα στελέχη
όπως τα A.succinogenes και B.succiniproducens. Φυσικά η χρήση καθαρής ξυλόδες ως υπόστρωμα δεν είναι οικονομικά συμφέρουσα οπότε εξετάζεται η χρήση υδρολυμάτων βιομάζας, δηλαδή δεύτερης γενιάς υποστρωμάτων. Ένα από αυτά είναι και το reúma αποβλήτων που προέρχεται από τη βιομηχανία παραγωγής ξυλοπολτού ή αλλιώς Σpent Sulfite Liquor (SSL).

1.2.7 Spent Sulfite Liquor

Το συγκεκριμένο απόβλητο προέρχεται από την διεργασία επεξεργασίας ξύλου προς παραγωγή χαρτοπολτού. Το κύριο στάδιο της παραγωγής του χαρτοπολτού είναι αυτό της θειώδους πολτοποίησης. Το στάδιο αυτό διεξάγεται υπό ζόντες συνθήκες (pH 1-2) στο θερμοκρασιακό εύρος των 135 έως 145 °C για 12 ώρες σε χωνευτήρες διαλείποντος έργου με την χρήση υδατικού διαλύματος SO2 και MeHSO3, όπου Με μπορεί να είναι Ca, Mg, Na ή NH4. Μεγάλες ποσότητες νερού απαιτούνται ώστε να αφαιρεθούν όλες οι προσμείες από τον πλούσιο σε κυτταρινή πολτό.

Το reúma με τις προσμείες που προκύπτει, ονομάζεται Spent Sulfite Liquor (SSL) και περιέχει κυρίως λιγνοσουλφονικές ουσίες, σάκχαρα με πέντε και έξι άτομα άνθρακα, μεθανόλη, οξικό οξύ, φουρφουράλη, χαμηλού μοριακού βάρους φαινολικές ενώσεις, διάφορα βαρέα μέταλλα και άλλες ουσίες οι οποίες περιέχονται στο ξύλο. Λόγω παρουσίας αυτών των σακχάρων το συγκεκριμένο απόβλητο θεωρείται ως πιθανό υπόστρωμα για ζυμώσεις προς παραγωγή ηλεκτρικού οξέος.

Το SSL είναι το μόνο υδρόλομα λιγνοκυτταρινούχου βιομάζας διαθέσιμο σε μεγάλες ποσότητες. Η ετήσια παγκόσμια παραγωγή του υπερβαίνει τα 90 δισεκατομμύρια λίτρα [J. Rousseau, 1993].

1.3 Μηχανική Διεργασιών Ζυμώσεων

Η μηχανική ζυμώσεων αποτελεί το θεμέλιο λίθο για την βιομηχανοποίηση παραγωγής ηλεκτρικού οξέος μέσω βιοδιεργασιών. Η διεργασία ζύμωσης προς παραγωγή ηλ.οξέος έχει μελετηθεί εκτενώς τα τελευταία χρόνια αλλά εμφανίζονται ακόμα προβλήματα τα οποία πρέπει να εξερευνηθούν.

Τα συστατικά του υποστρώματος και οι παράμετροι που επηρεάζουν τη ζύμωση αποτελούν τα βασικότερα σχεδιαστικά χαρακτηριστικά που οδηγούν σε υφιστάμενες αποδόσεις. Εφόσον το υπόστρωμα της ζύμωσης, ειδικά αν προέρχεται από απόβλητα, περιέχει μια πληθώρα συστατικών και πιθανών παρεμποδιστών, η επίδραση του κάθε συστατικού και οι αλληλεπιδράσεις μεταξύ τους πρέπει να εξεταστούν. Για αυτό το λόγο υπάρχει συνεχιζόμενη έρευνα σε πειραματικό επίπεδο για τον καθορισμό του ιδανικότερου υποστρώματος για αυτές τις ζυμώσεις.

Αλλες παράμετροι της ζύμωσης όπως ο ρυθμός τροφοδοσίας CO2, η θερμοκρασία, το pH και το διαλυμένο οξυγόνο έχουν σημαντική επίδραση. Θεωρητικά απαιτείται ένα mole CO2 για την παραγωγή ενός mole ηλεκτρικού οξέος. Η βελτιωτική της των μερικών πιέσεων κατά την παροχή CO2 θα βελτιώσει την παραγωγή. Η θερμοκρασία ζύμωσης πρέπει να καθορίζεται ανάλογα με το στάδιος που χρησιμοποιείται κάθε φορά. Επιπρόσθετα, καθώς η ουσοπρόβλεψη ηλ.οξέος προκαλεί πτώση της τιμής του pH στο υγρό ζύμωσης, θα πρέπει το τελευταίο να ρυθμιζόταν ώστε να αντιστοιχεί στις βέλτιστες συνθήκες [Y. Cao et al, 2013].
Η πλειονότητα των βιοδιεργασιών προς παραγωγή ηλ.οξέος αυτή τη στιγμή αφορά αναερόβιες συνθήκες. Δυστυχώς, οι αναερόβιες ζυμώσεις εμφανίζουν εγγενείς προβλήματα όπως μεγάλο χρόνο διπλασιασμού, αργή αφομοίωση άνθρακα και χαμηλό ρυθμό σχηματισμού του προϊόντος. Αυτά τα εμπόδια είναι δύσκολα να υπερκερατούν.

Οι ζυμώσεις γίνονται σε συνθήκες batch ή semi-batch. Παρ’όλα αυτά η εφαρμογή συνεχών συνθηκών στη διεργασία εκτιμάται ότι θα δώσει καλύτερα αποτελέσματα. Για την εφαρμογή τέτοιων συνθηκών όμως θεωρείται απαραίτητη η χρήση βιοαντιδραστήρων με ανακύκλωση κυττάρων και ενσωματωμένο σύστημα διαχωρισμού με μεμβράνες.

Το τελικό στάδιο παραγωγής ηλεκτρικού οξέος αφορά τη διεργασία ανάκτησης και καθαρισμού του από το υγρό ζύμωσης. Αυτή η διεργασία έχει εκτιμηθεί ώστε αποτελεί περισσότερο από το 50% του κόστους παραγωγής του από μικροβιακές ζυμώσεις. Για να θεωρηθεί ανταγωνιστική η παραγωγή ηλεκτρικού οξέος μέσω διεργασιών έναντι των ήδη υπάρχοντων πετροχημικών μεθόδων, η διεργασία του downstream πρέπει να γίνει οικονομικά και ενεργειακά αποδοτικότερη.

Στον ακόλουθο πίνακα παρουσιάζονται συνοπτικά κάποια από τα πιο ενδιαφέροντα αποτελέσματα που αφορούν τις ζυμώσεις προς παραγωγή ηλεκτρικού οξέος.

Πίνακας 1.4: Ειποκόπηση βιβλιογραφίας όσον αφορά τις ζυμώσεις προς παραγωγή ηλ. οξέος

<table>
<thead>
<tr>
<th>Στέλεχος</th>
<th>Πρώτη ύλη</th>
<th>Παραγωγή ηλ. οξέος</th>
<th>Reference</th>
</tr>
</thead>
</table>
| *E. coli* | γλυκόζη | 15.6 g L\(^{-1}\)
1.3 mol mol\(^{-1}\) glucose | A. Sanchez et al., 2005 |
| *E. coli* | γλυκόζη | 28.2 g L\(^{-1}\)
1.13 mol/mol glucose | H. Wu et al., 2007 |
| *E. coli* | γλυκόζη | 35.6 g L\(^{-1}\)
Απόδοση 89% | H. Lin et al., 2005 |
| *S. cerevisiae* | γλυκόζη | 3.62 g L\(^{-1}\)
0.11 mol mol\(^{-1}\) glucose | A. Raab et al., 2010 |
| *A. succiniciproducens* | γλυκόζη | 52.4 g L\(^{-1}\)
1.16 mol mol \(^{-1}\) glucose | S. Lee et al., 2006 |
| *A. succiniciproducens* | γλυκόζη,
γλυκερόλη | 29.6 g L\(^{-1}\)
απόδοση 97% | P. Lee et al., 2001 |
| *A. succinogenes* | γλυκόζη | 33.9 g L\(^{-1}\)
απόδοση 86% | Urbance et al., 2004 |

1.4 Μέθοδοι Διαχωρισμού και Ανάκτησης

Οι μέθοδοι διαχωρισμού που προτείνονται κατά την ανάκτηση του ηλεκτρικού οξέος είναι η απευθείας κρυσταλλοποίηση, η κατακρήμνιση, ο διαχωρισμός με μεμβράνες, η εκχύλιση, η χρήση ρητινών ιοντοεναλλαγής και ο in situ διαχωρισμός.

Κατά την απευθείας κρυσταλλοποίηση, μετά την απομάκρυνση της βιομάζας και άλλων προσμίξεων μέσω φυγοκέντρησης και επεξεργασίας με ενεργό άνθρακα, η ανάκτηση του ηλεκτρικού οξέος γίνεται με απευθείας απόσταξη-κρυσταλλοποίηση υπό κενό. Το pH του υγρού ζύμωσης ρυθμίζεται στο 4.2 με
Η μέθοδος της κατακρήμνισης με προσθήκη Ca(OH)₂ ή CaO έχει επίσης μελετηθεί. Με αυτή τη μέθοδο σχηματίζεται άλας ασβεστίου του ηλεκτρικού οξέος το οποίο απομονώνεται από το υγρό ζύμωσης μέσω φιλτραρίσματος. Το άλας αυτό αντιδρά με πυκνό διάλυμα θειικού οξέος και σχηματίζεται ηλεκτρικό οξύ. Το τελικό προϊόν παραλαμβάνεται έπειτα από καθαρισμό με ενεργό άνθρακα ή ρητίνες ιοντοεναλλάξης και γίνεται συμπύκνωση αυτού μέσω κρυσταλλοποίησης με εξάτμιση. Κατά την διεργασία της κατακρήμνισης χρειάζονται μεγάλες ποσότητες Ca(OH)₂, CaO και H₂SO₄. Αυτά τα αντιδραστήρια δεν μπορούν να επαναχημενοποιηθούν, γεγονός που αυξάνει το λειτουργικό κόστος της διεργασίας. Άλλο ένα μειονέκτημα της μεθόδου αυτής είναι ότι παράγονται μεγάλες ποσότητες θειικού ασβεστίου το οποίο δεν μπορεί να πωληθεί άμεσα αλλά χρειάζεται και αυτό καθαρισμό. Το κυρίωτερο πλεονέκτημα της μεθόδου είναι ότι μπορεί να ενσωματωθεί σε ήδη υπάρχοντες βιομηχανικές μονάδες που τη χρησιμοποιούν για παραγωγή γαλακτικού και κιτρικού οξέος. Επίσης, έχει εξεταστεί το ενδεχόμενο κατακρήμνισης με αμμωνία με καλό ρυθμό ανάκτησης (93%). Αυτή η μέθοδος όμως απαιτεί υψηλή κατανάλωση ενέργειας και προκαλεί διάβρωση στον εξοπλισμό λόγω των χαμηλών τιμών pH και των υψηλών θερμοκρασιών που εφαρμόζονται [Datta et al., 1992, Berglund et al., 1999; Yedur et al., 2001].

Η μέθοδος διαχωρισμού με μεμβράνες (μικροδιήθηση, υπερδιήθηση ή/και ανανοδιήθηση) και ηλεκτροδιάλυση έχει δοκιμαστεί για τον καθαρισμό και την ανάκτηση του ηλεκτρικού οξέος. Σε αυτή την τεχνική το υγρό ζύμωσης επεξεργάζεται διαδοχικά με μικροδιήθηση, υπερδιήθηση και απορρόφηση με ενεργό άνθρακα. Το pH του διηθήματος ρυθμίζεται στο 2-3.5 και συμπυκνώνεται υπό κενό στους 65 °C για να απομακρυνθεί το νερό και το οξύ οξύ. Έπειτα μέσω κρυσταλλοποίησης παράγονται οι κρύσταλλοι ηλεκτρικού οξέος με καθαρότητα περίπου 99.5% και απόδοση 75%. Άμα ενταχθεί και η νανοδιήθηση σε αυτή τη διεργασία πάλι έχουμε προϊόν υψηλής καθαρότητας (99.4%). Μια διεργασία καθαρισμού του ηλεκτρικού οξέος περιλαμβάνει αφαλάτωση μέσω ηλεκτροδιάλυσης και ηλεκτροδιάλυση μέσω δυτικών μεμβράνων. Κατά την ηλεκτροδιάλυση όλα τα φορτισμένα σωματιδία περνάνε από τη μεμβράνη και δημιουργείται ένα διάλυμα ηλεκτρικού νατρίου. Έπειτα μέσω των δυτικών μεμβράνων δημιουργείται το ηλεκτρικό οξύ. Η απόδοση αυτής της μεθόδου κυμάεται στο 60%. Μειονεκτήματα αυτής της μεθόδου είναι το κόστος του εξοπλισμού και η χαμηλή απόδοση. Επίσης, παρατηρείται σημαντικό λειτουργικό κόστος λόγω κορεσμού των μεμβράνων και ανάγκης καθαρισμού ή αλλαγής τους [Yao et al., 2008; Wu et al., 2011; Glassner and Datta, 1992].
Η μέθοδος ανάκτησης και καθαρισμού ηλεκτρικού οξέος μέσω εκχύλισης εμφανίζει τα πλεονεκτήματα της υψηλής απόδοσης και της χαμηλής κατανάλωσης ενέργειας συγκριτικά με άλλες μεθόδους. Οι διαλύτες που μπορούν να χρησιμοποιηθούν περιλαμβάνουν αλιφατικούς υδρογονάνθρακες, αλιφατικές αλκόλες, κετόνες κ.α. Όμως οι παραδοσιακές μέθοδοι εκχύλισης υγρού-υγρού απαιτούν μεγάλες ποσότητες διαλύτη. Για να αποφευχθεί αυτό έχει προταθεί η μετατροπή του ηλεκτρικού οξέος σε καρβοξυλικό σύμπλοκο και μετά εφαρμογή εκχύλισης. Αυτή η μέθοδος ονομάζεται περιφραστικά εκχύλιση με οργανικό διάλυτη και αμίνες (reactive extraction). Η εφαρμογή αυτής της διεργασίας με ένα βήμα προκατεργασίας όπου οι οργανικές προσμιές του υγρού ζύμωσης (οξικό, μυρμηγικό, γαλακτικό οξύ κ.α.) απομακρύνονται με τη χρήση tri-n-octylamine σε 1-octanol παρουσιάζει καθαρότητα 99.8% και απόδοση 73.1 wt% [Huh et al., 2006].

Μια άλλη μέθοδος που έχει εξεταστεί είναι η οξίνιση και εστεροποίηση του υγρού ζύμωσης. Κατά τη διεργασία αυτή έπειτα από φυγοκέντρωση και απομάκρυνση του νερού παραλαμβάνονται άλατα ηλεκτρικού οξέος στη μορφή υγρών κρυστάλλων. Τα άλατα αυτά τοποθετούνται σε αιθανόλη και περίσσεια θειικού οξέος οπότε και μετατρέπονται σε οξέα και εστεροποιούνται. Το διάλυμα που λαμβάνεται περιέχει ηλεκτρικό οξύ, μονοαιθυλικό ηλεκτρικό άλας, και διαιθηλή ηλεκτρικό άλας. Αυτό εστεροποιείται πάλι με τελική απόδοση ανάκτησης προϊόντος 95% [Orjuela et al., 2011].

Στη βιβλιογραφία έχουν προταθεί πολλές μέθοδοι καθαρισμού και ανάκτησης ηλεκτρικού οξέος με ρητίνες ιοντοενναλαγής, alumina, silica και ζεόλίθους. Τα ιδανικά χαρακτηριστικά ενός μέσου απορρόφησης είναι η μεγάλη χωρητικότητα, η δυνατότητα αναγέννησης και η επιλεκτικότητα όσων αφορά το προϊόν. Τα αποτελέσματα που απαντώνται στη βιβλιογραφία με χρήση τέτοιων μεθόδων πουκίλλουν. Η απορρόφηση με ρητίνη ανιονικής ιοντοενναλαγής αλκαλικού τύπου, με μετέπειτα εφαρμογή κρυσταλλοποίησης μέσω εξάτμισης, εμφανίζει καθαρότητα 99% στο τελικό προϊόν. Η χρήση της ρητίνης XUS 40285 σε μια πληρωμένη στήλη έδειξε απορρόφηση του ηλεκτρικού οξέος. Με αναγέννηση με θερμό νερό το ηλεκτρικό οξύ συμπτινώθηκε από 10 g L⁻¹ σε 40-110 g L⁻¹. Όμως μετά από 10 κύκλους αναγέννησης η ρητίνη έπαιρε να έχει την ίδια απόδοση [Nam et al, 2011; Straatho et al., 2010].

Τέλος, έχει εξεταστεί ο in situ διαχωρισμός του ηλεκτρικού οξέος από το υγρό ζύμωσης μέσα στους βιοαντιδραστήρες παραγωγής του. Γνωρίζουμε ότι η υψηλή συγκέντρωση ηλεκτρικού οξέος δρα παρεμποδιστικά στη ζύμωση. Μια ιδανική μέθοδος απευθείας ανάκτησης ηλεκτρικού οξέος προϋποθέτει ελάχιστη προσθήκη χημικών, καμία επιπλέον απαίτηση σε ενέργεια πέραν της κανονικής λειτουργίας και μη παρεμόδιση της βιομάζας ώστε αυτή να συνεχίσει να παράγει ηλεκτρικό οξύ. Η ταυτόχρονη ζύμωση και απομάκρυνση ηλεκτρικού οξέος μελετήθηκε με την απευθεία προσθήκη σε διφασικό βιοαντιδραστήρα του συμπλομμερούς Hytrel 8206. Το pH ρυθμίστηκε στο 3.6 με προσθήκη θειικού οξέος. Παρατηρήθηκε ότι μετά από κάποια ώρα λειτουργίας σταμάτησε η παραγωγή ηλεκτρικού οξέος και βιομάζας. Επίσης, έχει εξεταστεί η προσθήκη ανιονικής ρητίνης ιοντοενναλαγής και υπόστρωμα γλυκόζης. Τα αποτελέσματα αυτής της μεθόδου είναι πολύ υποσχόμενα καθώς υπήρξε
παραγωγή ηλεκτρικού οξέος ακόμα και μετά από 126 ώρες ζύμωσης με απόδοση 0.52 g g⁻¹ και παραγωγικότητα 1.3 g L⁻¹ h⁻¹ [Heburn and Daugulis, 2012; Li et al., 2011].

Η σύνοψη των παραπάνω μεθόδων φαίνεται στον Πίνακα 1.5.

Πίνακας 1.5: Μέθοδοι ανάκτησης και καθαρισμού ηλεκτρικού οξέος

<table>
<thead>
<tr>
<th>Μέθοδος</th>
<th>Πλεονεκτήματα</th>
<th>Μειονεκτήματα</th>
<th>κόστος/δυνατότητα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Απευθείας Κρυστάλλοποιήση</td>
<td>λίγες λειτουργικές μονάδες</td>
<td>χαμηλές αποδόσεις και καθαρότητα, μεγάλη κατανάλωση ενέργειας, απαιτείται αφαλάτωση και απομάκρυνση πρωτεϊνών</td>
<td>δεν είναι πλήρως έτοιμη για εμπορική εφαρμογή</td>
</tr>
<tr>
<td>Κατακρήμνιση με Ca(OH)₂ ή CaO</td>
<td>μικρά τεχνολογικά εμπόδια και χαμηλό ρίσκο</td>
<td>απαιτείται χρήση μεγάλης ποσότητας χημικών χωρίς δυνατότητα επαναχρησιμοποίησής τους,</td>
<td>έτοιμη για εμπορική εφαρμογή, μεγάλο λειτουργικό κόστος</td>
</tr>
<tr>
<td>με αμμωνία</td>
<td>χαμηλή παραγωγή παραπομπών και δυνατότητα επαναχρησιμοποίησης του αντιδραστηρίου</td>
<td>μεγάλη κατανάλωση ενέργειας και κίνδυνος διάβρωσης του εξοπλισμού</td>
<td>πρέπει να μελετηθεί πιλοτικά, μεγάλο κόστος εξοπλισμού, εύκολη διαδικασία scale up</td>
</tr>
<tr>
<td>Διαχωρισμός με μεβράνες</td>
<td>συνδυασμός μεθόδων υπερδιήθησης εμφανίζει υψηλή απόδοση και καθαρότητα</td>
<td>γρήγορος κορεσμός των μεμβρανών</td>
<td>πολύ υψηλό κόστος εξοπλισμού, έτοιμη για εμπορική εφαρμογή</td>
</tr>
<tr>
<td>Εκχύλιση</td>
<td>υψηλή απόδοση χαμηλή κατανάλωση ενέργειας</td>
<td>σύνθετη διεργασία, δεν έχει βρεθεί κατάλληλος διαλύτης, υψηλό κόστος προμήθειας διαλύτη, απαραίτητη απομάκρυνση πρωτεϊνών και αλάτων πριν την εκχύλιση</td>
<td>σημαντικό λειτουργικό κόστος, δυσκολία στο scale up</td>
</tr>
<tr>
<td>Ρητίνες Ιοντοεναλλαγής</td>
<td>ευκολία στο scale up</td>
<td>το οινοτελειωτικό μέσο απαιτεί συχνή αναγέννηση με μεγάλες ποσότητες οξέων ή αλκαλίων</td>
<td>η έρευνα βρίσκεται ακόμα σε αρχικό στάδιο</td>
</tr>
<tr>
<td>in situ Διαχωρισμός</td>
<td>βελτιώνει την τελική συγκέντρωση προϊόντος, μειώνει την παρεμπόδιση κατά τη ζύμωση</td>
<td>πολυσύνθετη διεργασία, απαιτείται μεγάλη ποσότητα οξέων ή αλκαλίων κατά την αναγέννηση των προσφορητικών μέσων</td>
<td>πρέπει να μελετηθεί πιλοτικά</td>
</tr>
</tbody>
</table>
1.5 Ανασκόπηση Βιβλιογραφίας

Στη δημοσίευση του S. Vaswani, 2010, εξετάζεται η παραγωγή ηλεκτρικού οξέος μέσω ζύμωσης με το μικροοργανισμό *Manheimnia succiniproducens* με υπόστρωμα γλυκόδη και απόδοση 52.43 g ηλεκτρικού οξέος ανά λίτρο. Η δυναμικότητα παραγωγής του εργοστασίου ορίστηκε στους 37,500 τόνους/έτος. Η ανάκτηση και ο καθαρισμός του προϊόντος έγιναν με τη μέθοδο reactive extraction. Η κεφαλαιακή επένδυση υπολογίστηκε στα 123.1 M$. Τέλος, η τιμή πώλησης του ηλεκτρικού οξέος ορίστηκε στα 2.86 $/kg.

Στη δημοσίευση των A. Vlysidis et al., 2011, εξετάζεται ο σχεδιασμός και η οικονομική ανάλυση της διεργασίας ανάκτησης ηλεκτρικού οξέος μέσω διάλυσης και οξίνης αλάτινων ηλεκτρικού οξέος σε αιθανόλη, ακολουθούμενη από reactive distillation για το σχηματισμό εστέρων ηλεκτρικού οξέος. Παρουσιάζονται αποτελέσματα για διαφορετικές δυναμικότητες εργοστασίου (13 – 55 εκατομμύρια kg ηλ.οξέος/έτος) και διάφορες τιμές απόδοσης (50 – 100 kg m⁻³). Για δυναμικότητα 54.9 εκατομμυρίων κιλών ανά έτος και απόδοση 100 kg m⁻³ υπολογίστηκε ότι απαιτείται επένδυση κεφαλαίου 75 M$ και κόστος παραγωγής 1.85 $/κιλό παραγόμενου ηλεκτρικού οξέος. Τέλος, η απαιτούμενη τιμή πώλησης του διαιθυλικού ηλεκτρικού, για ετήσια επιστροφή επένδυσης 30%, υπολογίστηκε στα 1.57 $ ανά κιλό.

Στη δημοσίευση των K. Lam et al., 2013, γίνεται τεχνο-οικονομική ανάλυση της παραγωγής ηλεκτρικού οξέος, σε πιλοτική κλίμακα, μέσω ζύμωσης αποβλήτων αρτοποιείων. Η πιλοτική αυτή εγκατάσταση είχε δυνατότητα μετατροπής 1 τόνου/ημέρα αποβλήτων σε ηλεκτρικό οξύ. Συνολικά παράγοντα 25,388 kg κρυστάλλου ηλεκτρικού οξέος, Χρησιμοποιήθηκε ο μικροοργανισμός *A. Succinogenes* με απόδοση 0.55 g ηλεκτρικού οξέος ανά g άρτου. Για την ανάκτηση του ηλεκτρικού οξέος χρησιμοποιήθηκαν ρητίνες ιοντοεναλλαγής. Η κεφαλαιακή επένδυση υπολογίστηκε στα 1,118,243 $ και το συνολικό κόστος παραγωγής 230,750 $/έτος. Η τιμή πώλησης του ηλεκτρικού οξέος ορίστηκε στα 9 $/kg και τα συνολικά έσοδα ανήλθαν στα 374,041 $/έτος καθιστώντας την επένδυση συμφέρουσα.

Στη δημοσίευση των C. Efe et al., 2013, εξετάζεται η διεργασία παραγωγής ηλεκτρικού οξέος μέσω αερόβιας ζύμωσης με ένα υποθετικό στέλεχος του μικροοργανισμού *Sacharomyces Cerevisiae* σε pH 4 με υπόστρωμα σαχαρόζη από ζαχαροκάλαμο και απόδοση 13.7 g ηλεκτρικού οξέος ανά λίτρο. Ο καθαρισμός και η ανάκτηση του προϊόντος γίνεται με προσοφημητικές μεμβράνες. Η δυναμικότητα παραγωγής ορίστηκε στους 30 kt/έτος, Η τιμή πώλησης του ηλεκτρικού οξέος ώστε να θεωρείται κερδοφόρα υπολογίστηκε στα 2.26 $/kg.
Κεφάλαιο 2. Προεπεξεργασία Αποβλήτου και Διεργασία Ζύμωσης

2.1.1 Εισαγωγή

Στην παρούσα εργασία θα εξετάσουμε την παραγωγή ηλεκτρικού οξέος μέσω μικροβιακής ζύμωσης του Spent Sulfite Liquor (SSL) από το μικροοργανισμό Basfia succiniproducens.

Η παραγωγή του ηλεκτρικού οξέος αποτελείται από δύο στάδια. Αρχικά, έχουμε το upstream που περιλαμβάνει την προεπεξεργασία του αποβλήτου SSL και έπειτα τη ζύμωση σε βιοαντιδραστήρες προς παραγωγή ηλεκτρικού οξέος. Ακολουθεί η διεργασία ανάκτησης και καθαρισμού του ηλεκτρικού οξέος (downstream) ώστε να παραλάβουμε το τελικό προϊόν υψηλής καθαρότητας (= 99%).

Στην παρούσα μελέτη, επιλύονται τα ισοζύγια μάζας και ενέργειας της διεργασίας, ορίζοντας η δυναμικότητα παραγωγής και ο χρόνος λειτουργίας του εργοστασίου και σε συνδυασμό με τα διαθέσιμα πειραματικά δεδομένα διασταυρολογείται ο απαραίτητος μηχανολογικός εξοπλισμός, υπολογίζοντας τις ποσότητες πρώτων υλών, βοηθητικών παροχών και προϊόντων και γίνεται κοστολόγηση των παρατάσεων, έχοντας πάντα υπ’ όψιν την ελαχιστοποίηση του κόστους. Τέλος, γίνεται οικονομική ανάλυση της διεργασίας όπου και υπολογίζονται χρηματοοικονομικοί δείκτες όπως το κεφάλαιο επένδυσης, το συνολικό ετήσιο κόστος παραγωγής, τα έσοδα και η καθαρή παρούσα αξία.

2.1.2 Αρχικές Παραδοχές

Η μονάδα παραγωγής ηλεκτρικού οξέος που σχεδιάστηκε αποτελεί μια προέκταση ήδη υπάρχουσας μονάδας παραγωγής ξυλοπολτού η οποία προμηθεύει απευθείας την πρώτη ύλη, δηλαδή το απόβλητο SSL, στην εγκατάστασή μας.

Σαν βάση για όλους τους υπολογισμούς επιλέγεται η δυναμικότητα παραγωγής ηλεκτρικού οξέος στους 10,000 τόνους ετησίως και η λειτουργία της βιομηχανικής μονάδας στις 7,920 ώρες ανά έτος. Παράλληλα, με τα ίδια δεδομένα, γίνεται σχεδιασμός της διεργασίας για δυναμικότητες παραγωγής 1,000 και 30,000 τόνων ετησίως.

2.1.3 Πειραματικά Δεδομένα

Τα διαθέσιμα πειραματικά δεδομένα (in house data) αφορούν τη ζύμωση προς παραγωγή ηλεκτρικού οξέος με τον μικροοργανισμό Basfia succiniproducens σε υπόστρωμα SSL. Η ζύμωση γίνεται σε ασυνεχείς συνθήκες (batch), σε αναερόβιο περιβάλλον, με παροχή Ο₂ και διαρκεί 68 ώρες. Θεωρούμε ότι μετά το πέρας των 68 ώρων έχουν καταναλωθεί όλα τα διαθέσιμα σάκχαρα. Τα κύρια χαρακτηριστικά της ζύμωσης παρουσιάζονται στον Πίνακα 2.1 και τα απαραίτητα θερμικά συστατικά
στον Πίνακα 2.2. Επιπρόσθετα, τα χαρακτηριστικά του αποβλήτου όπως αυτό εξέρχεται της γειτνίαζουσας μονάδας επεξεργασίας χάρτου και χαρτοπολτού παρουσιάζονται στον Πίνακα 2.3.

Πίνακας 2.1: Πειραματικά δεδομένα ζύμωσης

<table>
<thead>
<tr>
<th>Ολικά σάκχαρα</th>
<th>48.8 g L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λιγνοσουλφονικές ουσίες</td>
<td>12.1 g L⁻¹</td>
</tr>
<tr>
<td>Απόδοση</td>
<td>0.56 g – η.ο./g καταναλωθέντων σακχάρων</td>
</tr>
<tr>
<td>Ηλεκτρικό οξύ</td>
<td>27.52 g L⁻¹</td>
</tr>
<tr>
<td>Χρόνος ζύμωσης</td>
<td>68 h</td>
</tr>
<tr>
<td>Θερμοκρασία</td>
<td>37 °C</td>
</tr>
</tbody>
</table>

Πίνακας 2.2: Θρεπτικά συστατικά

Yeast extract	5 g L⁻¹
NaH₂PO₄ H₂O	1.16 g L⁻¹
Na₂HPO₄	0.31 g L⁻¹
NaCl	1 g L⁻¹
MgCl₂ 6H₂O	0.2 g L⁻¹
CaCl 2H₂O	0.2 g L⁻¹

Πίνακας 2.3: Χαρακτηριστικά αποβλήτου SSL

<table>
<thead>
<tr>
<th>Ολικά σάκχαρα</th>
<th>176.4 g L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ξυλόζη</td>
<td>128.1 g L⁻¹</td>
</tr>
<tr>
<td>Γαλακτόζη</td>
<td>21.47 g L⁻¹</td>
</tr>
<tr>
<td>Γλυκόζη</td>
<td>19.27 g L⁻¹</td>
</tr>
<tr>
<td>Μαννόζη</td>
<td>7.41 g L⁻¹</td>
</tr>
<tr>
<td>Αραβινόζη</td>
<td>0.18 g L⁻¹</td>
</tr>
</tbody>
</table>

| Λιγνοσουλφονικές ουσίες | 458.94 g L⁻¹ |
| Θερμοκρασία | 80 °C |

2.1.4 Περιγραφή Upstream

Η διεργασία παραγωγής του ηλεκτρικού οξέος ξεκινάει με την προεπεξεργασία του αποβλήτου SSL ώστε αυτό να αποκτήσει τα ιδανικά για τη ζύμωση χαρακτηριστικά. Η προεπεξεργασία περιλαμβάνει την αραίωση του αρχικού ρεύματος ώστε να είναι δυνατή η μετέπειτα επεξεργασία του σε μονάδες υπερδύθησης με μεμβράνες 3 kDa. Η υπερδύθηση αποσκοπεί στην απομάκρυνση των λιγνοσουλφονικών ουσιών που δρουν παρεμποδιστικά στη ζύμωση. Επειτα, το ρεύμα ψύχεται στην ιδανική για τη ζύμωση θερμοκρασία των 37 °C. Παράλληλα, γίνεται η παραγωγή του εμβολίου σε βιοαντιδραστήρες παραγωγής εμβολίου, χρησιμοποιώντας το ίδιο υπόστρωμα SSL, και αποστείρωνται το ρεύμα τροφοδοσίας που περιέχει τα θρεπτικά συστατικά. Τέλος, τα ρεύματα αναμιγνύονται και
οδηγούνται στους βιοαντιδραστήρες. Οι ποσότητες των αντιδρών και προϊόντων της ζύμωσης
παρουσιάζονται στον Πίνακα 2.4. Είναι σημαντικό να αναφερθεί ότι τα προϊόντα βρίσκονται σε μορφή
αλάτων νατρίου.

Πίνακας 2.4: Συγκεντρώσεις καταναλωθέντων και παραγόμενων κατά την αντίδραση ουσιών

<table>
<thead>
<tr>
<th>Αντιδρώντα</th>
<th>Συγκέντρωση g L⁻¹</th>
<th>Mw</th>
<th>moles</th>
<th>Προϊόντα</th>
<th>Συγκέντρωση g L⁻¹</th>
<th>Mw</th>
<th>moles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ξυλόζη</td>
<td>C₃H₁₀O₅</td>
<td>35.45</td>
<td>150</td>
<td>0.236</td>
<td>Ηλεκτρικό οξύ</td>
<td>C₄H₂O₄</td>
<td>27.52</td>
</tr>
<tr>
<td>Γαλακτόζη</td>
<td>C₆H₁₂O₆</td>
<td>5.95</td>
<td>180</td>
<td>0.033</td>
<td>Οξικό οξύ</td>
<td>C₂H₄O₂</td>
<td>8.02</td>
</tr>
<tr>
<td>Γλύκόζη</td>
<td>C₆H₁₂O₆</td>
<td>5.34</td>
<td>180</td>
<td>0.03</td>
<td>Γαλακτικό οξύ</td>
<td>C₃H₆O₃</td>
<td>3.77</td>
</tr>
<tr>
<td>Μανόζη</td>
<td>C₆H₁₂O₆</td>
<td>2.05</td>
<td>180</td>
<td>0.011</td>
<td>Μυρμηκικό οξύ</td>
<td>CH₂O₂</td>
<td>2.43</td>
</tr>
<tr>
<td>Αραβινόζη</td>
<td>C₅H₁₀O₅</td>
<td>0.048</td>
<td>150</td>
<td>0.0003</td>
<td>Βιομάζα</td>
<td>CH₁₈O₃N₀₂</td>
<td>3.5</td>
</tr>
<tr>
<td>Yeast extract</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Διοξείδιο του</td>
<td></td>
<td>10.25</td>
<td>44</td>
<td>0.233</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>άνθρακα</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Στο σχήμα 2.1 απεικονίζεται το τμήμα του upstream και στον πίνακα 2.5 παρουσιάζονται η σύσταση και
tα χαρακτηριστικά των κυρίων ρευμάτων αυτού του τμήματος της διεργασίας όπως υπολογίστηκαν στο
παράρτημα Π-1Α.

Πίνακας 2.5: Σύσταση και χαρακτηριστικά ρευμάτων (TS: Total Sugars, LS: Lignosulfonates, SA: succinic acid)

<table>
<thead>
<tr>
<th>Ρεύμα</th>
<th>Σύσταση (g L⁻¹)</th>
<th>Παροχή (m³ h⁻¹)</th>
<th>Θερμοκρασία (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(U-1)</td>
<td>TS - 176.1</td>
<td>32.74</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>LS - 458.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(U-2)</td>
<td>νερό</td>
<td>61.78</td>
<td>25</td>
</tr>
<tr>
<td>(U-3)</td>
<td>TS - 61</td>
<td>94.52</td>
<td>45.51</td>
</tr>
<tr>
<td></td>
<td>LS - 158.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(U-4)</td>
<td>TS – 12.38</td>
<td>12.38</td>
<td>37</td>
</tr>
<tr>
<td>(U-5)</td>
<td>TS – 61</td>
<td>16.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS – 165.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(U-6)</td>
<td>TS – 61</td>
<td>77.6</td>
<td>43.65</td>
</tr>
<tr>
<td></td>
<td>LS – 15.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(U-7)</td>
<td>>></td>
<td>>></td>
<td>37</td>
</tr>
<tr>
<td>(U-8)</td>
<td>από πίνακα 3.2</td>
<td>9.7</td>
<td>>></td>
</tr>
<tr>
<td>(U-9)</td>
<td>TS – 15</td>
<td>9.7</td>
<td>>></td>
</tr>
<tr>
<td>(U-11)</td>
<td>από πίνακα 3.2</td>
<td>9.7</td>
<td>>></td>
</tr>
<tr>
<td>(U-12)</td>
<td>TS – 48.8</td>
<td>97</td>
<td>>></td>
</tr>
</tbody>
</table>
Σχήμα 2.1: Σχηματική αναπαράσταση Upstream

Στη συνέχεια αυτού του κεφαλαίου θα παρουσιαστούν ξεχωριστά τα στοιχεία εξοπλισμού που απαρτίζουν το στάδιο του upstream. Θα γίνει διασταυρολόγηση αυτών και θα υπολογιστούν οι βοηθητικές παροχές που εμπλέκονται στη διεργασία και τέλος, θα κοστολογηθούν. Όλοι οι υπολογισμοί παρουσιάζονται αναλυτικά στο Παράρτημα 1A.
Στην τελευταία παράγραφο παρουσιάζεται η διασταυρολόγηση και κοστολόγηση του εξοπλισμού που αφορά τις δυναμικότητες παραγωγής των 1,000 και 30,000 τόνων ετησίως.
2.2 Διεργασία Ζύμωσης

2.2.1 Σχεδιασμός Βιοαντιδραστήρων

Η μονάδα είναι σχεδιασμένη να λειτουργεί 7,920 ώρες το χρόνο και να παράγει 10,000 τόνους ηλεκτρικού οξέως ετησίως.

Οι αντιδραστήρες που χρησιμοποιούνται στη ζύμωση είναι ασυνεχούς λειτουργίας (batch). Για το σχεδίασμό τους λαμβάνονται υπ’ όψιν ο χρόνος καθαρισμού και προετοιμασίας, ο χρόνος φόρτωσης, ο χρόνος ζύμωσης και ο χρόνος εκφόρτωσης. Το ζητούμενο είναι να επιτευχθεί συνεχής λειτουργία στην έξοδο των βιοαντιδραστήρων που θα τροφοδοτεί το στάδιο καθαρισμού και ανάκτησης του ηλεκτρικού οξέως (downstream).

Για τον υπολογισμό του χρόνου εκφόρτωσης (t_{ul}) γίνονται οι ακόλουθοι υπολογισμοί, επιλέγοντας τους κατάλληλους χρόνους καθαρισμού ($t_{pr} = 1$ ώρα), φόρτωσης ($t_{i} = 5$ ώρες) και τον αριθμό των βιοαντιδραστήρων ($N = 8$).

\[
t_{i} + t_{pr} + t_{f} + t_{ul} = t_{ul}N \\
5 + 1 + 68 + t_{ul} = t_{ul}8 \\
t_{ul} = 10.57h
\]

Οπότε, η συνολική διάρκεια ενός batch είναι $t_{batch} = 84.57$ h

Ο αριθμός των εκφορτώσεων που πραγματοποιούνται σε 7,920 h συμπίπτει με τον αριθμό των batch.

\[
N_{batches} = \frac{7920}{t_{ul}} = 749 \text{ batches ανά έτος}
\]

Τελικά, ο ενεργός όγκος του κάθε βιοαντιδραστήρα υπολογίζεται λαμβάνοντας υπ’ όψιν την ετήσια δυναμικότητα παραγωγής και την απόδοση της ζύμωσης.

\[
V_{w} = \frac{10,000,000 \text{ kg}}{27.52 \text{ kg/m}^{3} \times 749 \text{ batches}} = 485 \text{ m}^{3}
\]

Ο ενεργός όγκος αποτελεί το 80% του συνολικού όγκου βιοαντιδραστήρα οπότε $V = 606 \text{ m}^{3}$ με $h = 14.56 \text{ m}$ και $d = 7.28 \text{ m}$.

Τα χαρακτηριστικά ενός βιοαντιδραστήρα παρουσιάζονται στον Πίνακα 2.6:
Πίνακας 2.6: Χαρακτηριστικά βιοαντιδραστήρα

<table>
<thead>
<tr>
<th>Συντηλεσία</th>
<th>Ωγκός</th>
<th>Βιοαντιδραστήρα</th>
<th>Κόστος ανά μονάδα</th>
<th>Συνολικό κόστος</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>606</td>
<td>0.673</td>
<td>5.385</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>533</td>
<td>0.623</td>
<td>5.607</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>471</td>
<td>0.577</td>
<td>5.77</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>424</td>
<td>0.543</td>
<td>5.973</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>386</td>
<td>0.513</td>
<td>6.156</td>
<td></td>
</tr>
</tbody>
</table>

Η διεργασία της ζύμωσης γίνεται σε 8 βιοαντιδραστήρες, ενεργού όγκου 485 m³ ο καθένας, και διαρκεί συνολικά 68 ώρες. Ο χρόνος φόρτωσης επιλέγεται να είναι 5 h και ο χρόνος εκφόρτωσης ισούται με 10.57 ώρες. Συνολικά, στον ένα χρόνο λειτουργίας του εργοστασίου λαμβάνουν χώρα 749 batches. Πριν την εισαγωγή του ρεύματος τροφοδοσίας στους βιοαντιδραστήρες, αυτό αναμιγνύεται με το εμβόλιο και τα απαραίτητα για τη ζύμωση θερμικά στοιχεία.

2.2.2 Κοστολόγηση Βιοαντιδραστήρων

Η επιλογή του αριθμού των βιοαντιδραστήρων έγινε με βάση τους περιορισμούς στον μέγιστο όγκο τους (≤600 m³) και το κόστος προμήθειας το οποίο υπολογίζεται με βάση την εξίσωση 2.1 που αφορά προμήθεια ζυμωτήρα κατασκευασμένου επί τόπου χωρίς αναμίκτη, με σερπαντίνα ψυκτικού SS315.

\[C_p = \left(\frac{CEPCI_{2014}}{CEPCI_{2009}} \right) \left(\frac{400,000}{300^{0.6}} \right) V^{0.6} = 673,129 \text{\$} \]

\[V = 606 \text{ m}^3 \]

Για 8 βιοαντιδραστήρες το συνολικό κόστος προμήθειας ανέρχεται στα 5.385 M\$.

Στον Πίνακα 2.7 καθώς και στο διάγραμμα 2.1 παρουσιάζονται τα αποτελέσματα κοστολόγησης ανάλογα με τον αριθμό των βιοαντιδραστήρων:

Πίνακας 2.7: Χαρακτηριστικά και κόστος βιοαντιδραστήρων
Διάγραμμα 2.1: Σχέση κόστους προμήθειας - αριθμού αντιδραστήρων

Όπως ήταν αναμενόμενο η διάταξη με τους 8 βιοαντιδραστήρες έχει το μικρότερο κόστος προμήθειας. Δεν εξετάζουμε διατάξεις με λιγότερους αντιδραστήρες καθότι υπάρχουν περιορισμοί στον μέγιστο όγκο τους (≤600 m³).

2.3 Αραίωση

Το στάδιο της προεπεργασίας ξεκινάει με αραίωση του ρεύματος τροφοδοσίας με την προσθήκη νερού. Η αραίωση είναι αναγκαία για να μειώσει η συγκέντρωση των σακχάρων και λιγνοσουλφονικών ουσιών ώστε να καταστεί δυνατή η διεργασία υπερδιήθησης με μεμβράνες. Επίσης, μειώνεται η θερμοκρασία του ρεύματος τροφοδοσίας από τους 80 °C στους 45.51 °C όπως φαίνεται στο παράρτημα Π-1A.2. Τα χαρακτηριστικά των ρευμάτων σε αυτή τη φάση της διεργασίας παρουσιάζονται στον Πίνακα 2.8.

Πίνακας 2.8: Χαρακτηριστικά ρευμάτων κατά την αραίωση

<table>
<thead>
<tr>
<th>Ρεύμα</th>
<th>Παροχή (m³ h⁻¹)</th>
<th>Σύσταση (g L⁻¹)</th>
<th>Θερμοκρασία (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-1</td>
<td>32.74</td>
<td>TS – 176.1</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS – 458.94</td>
<td></td>
</tr>
<tr>
<td>U-2</td>
<td>61.78</td>
<td>νερό</td>
<td>25</td>
</tr>
<tr>
<td>U-3</td>
<td>94.52</td>
<td>TS – 61</td>
<td>45.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS – 158.38</td>
<td></td>
</tr>
</tbody>
</table>

Το κόστος του νερού που χρησιμοποιείται για την αραίωση υπολογίζεται στην εξίσωση 2.2. λαμβάνοντας υπ’ όψιν ότι η τιμή του νερού ανά κυβικό μέτρο είναι 0.067 $ [Ι. Κούκος, 2007, “Εισαγωγή στο σχεδιασμό χημικών εργοστασίων].

2.2. \(C_w = 61.78 \frac{m^3}{h} \times 5h \times 749 \text{batches} \times 0.067 \frac{\$,}{m^3} = 15,500 \frac{\$,}{y} \)
2.4 Μονάδα Υπερδιήθησης

Η υπερδιήθηση του αποβλήτου είναι μια αναγκαία διεργασία, η οποία προηγείται της ζύμωσης, ώστε να απομακρυνθεί η μεγάλη αρχική ποσότητα των περιεχόμενων στο απόβλητο λιγνοσουλφονικών ουσίων οι οποίες δρούν παρεμποδιστικά στην παραγωγή ηλεκτρικού οξέος. Η υπερδιήθηση γίνεται σε διατάξεις με μεμβράνες των 3 kDa οι οποίες έχουν τη δυνατότητα να κατακρατούν τις λιγνοσουλφονικές ουσίες με μεγαλύτερο μοριακό βάρος.

Ένα μεγάλο πλεονέκτημα που προσφέρει η χρήση αυτών των μεμβράνων είναι ότι παράλληλα με τις λιγνοσουλφονικές ουσίες κατακρατούνται και οι μικροοργανισμοί που ενδεχομένως βρίσκονται στο απόβλητο. Έτσι επιτυγχάνεται και η αποστείρωση της τροφοδοσίας χωρίς να χρειάζεται η κοστοβόρος διεργασία αποστείρωσης με θέρμανση.

Στην έξοδο των μονάδων υπερδιήθησης δημιουργούνται 2 φεύγεια. Το κύριο φεύγειο τροφοδοσίας και ένα φεύγειο πλούσιο σε LS. Η ολική συγκέντρωση σακχάρων παραμένει σταθερή ενώ η συγκέντρωση των λιγνοσουλφονικών ουσίων μειώνεται. Τα χαρακτηριστικά των ρευμάτων παρουσιάζονται στον Πίνακα 2.9.

Το πλούσιο σε λιγνοσουλφονικές ουσίες ρεύμα (U-5) υφίσταται περαιτέρω επεξεργασία με Ca(OH)₂ (over-liming) και είναι διαθέσιμο ως προϊόν.

Πίνακας 2.9: Χαρακτηριστικά ρευμάτων εισερχόμενων και εξερχόμενων από τις μονάδες υπερδιήθησης

<table>
<thead>
<tr>
<th>Ρεύμα</th>
<th>Παροχή (m³ h⁻¹)</th>
<th>Σύσταση (g L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-3</td>
<td>94.52</td>
<td>TS – 61, LS – 158.7</td>
</tr>
<tr>
<td>U-5</td>
<td>16.92</td>
<td>TS – 61, LS – 165.07</td>
</tr>
<tr>
<td>U-6</td>
<td>77.6</td>
<td>TS – 61, LS – 15.12</td>
</tr>
</tbody>
</table>

Το κυριότερο σχεδιαστικό χαρακτηριστικό μιας μονάδας υπερδιήθησης είναι η απαραίτητη συνολική επιφάνεια μεμβράνης. Η επιφάνεια αυτή εξαρτάται από την παροχή τροφοδοσίας ανά ώρα καθώς και από το ρυθμό διαπερατότητας της μεμβράνης, εγγενείς χαρακτηριστικοί του κάθε τύπου μεμβράνης. Στην περίπτωση μας επιλέγονται μεμβράνες με δυνατότητα συγκράτησης ουσιών μοριακού βάρους 3 kDA. Η τιμή της διαπερατότητας αυτών των μεμβράνων αντλήθηκε από τη βιβλίογραφία και είσταται με 25 L m⁻² h⁻¹ [H.W. Blanc, D.S. Richardson, 1996, “Biochemical Engineering”].

Το συνολικό απαραίτητο εμβαδόν μεμβράνης Α υπολογίζεται στην παράγραφο Π-1Α.3 του παραρτήματος και ισούται με 3,781 m². Επιλέγεται να εγκατασταθούν 4 μονάδες υπερδιήθησης με 945 m² μεμβράνης στην κάθε μία. Η επιλογή αυτή έγινε με βάση τους περιορισμούς στο μέγεθος των μονάδων αυτών (A ≤ 1000 m²) και λαμβάνοντας υπ’ όψιν το συνολικό κόστος όπως φαίνεται παρακάτω.

Το κόστος προμήθειας της μονάδας υπερδιήθησης υπολογίζεται από την Εξίσωση 2.3 [H. Blanch, D.Clark, 1996, Biochemical Engineering]:
2.3. \(C_{\text{m1}} = 1468 \left(\frac{\text{CEPCI}_{2014}}{\text{CEPCI}_{1988}} \right) A^{0.89} = 1468 \left(\frac{576.1}{343} \right) 945^{0.89} \text{ m}^2 = 1.1 \text{ M$} \\

Στον Πίνακα 2.10 καθώς και στο διάγραμμα 2.2 παρουσιάζονται τα χαρακτηριστικά και τα αποτελέσματα κοστολόγησης ανάλογα με τον αριθμό μονάδων υπερδιήθησης που μπορούν να επιλεγούν.

Πίνακας 2.10: Χαρακτηριστικά και κόστος προμήθειας μονάδων υπερδιήθησης

<table>
<thead>
<tr>
<th>Αριθμός μονάδων</th>
<th>Εμβαδόν μεμβράνης ανά μονάδα (m²)</th>
<th>Κόστος μίας μονάδας (M$)</th>
<th>Συνολικό κόστος προμήθειας (M$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>945</td>
<td>1.1</td>
<td>4.387</td>
</tr>
<tr>
<td>5</td>
<td>756</td>
<td>0.899</td>
<td>4.497</td>
</tr>
<tr>
<td>6</td>
<td>630</td>
<td>0.764</td>
<td>4.589</td>
</tr>
<tr>
<td>7</td>
<td>540</td>
<td>0.667</td>
<td>4.667</td>
</tr>
<tr>
<td>8</td>
<td>472</td>
<td>0.592</td>
<td>4.735</td>
</tr>
<tr>
<td>9</td>
<td>420</td>
<td>0.533</td>
<td>4.797</td>
</tr>
<tr>
<td>10</td>
<td>378</td>
<td>0.485</td>
<td>4.853</td>
</tr>
</tbody>
</table>

Διάγραμμα 2.2: Μεταβολή κόστους αγοράς μονάδων υπερδιήθησης

Όπως προαναφέρθηκε δεν είναι δυνατή η χρησιμοποίηση λιγότερων μονάδων με μεγαλύτερο εμβαδόν ανά μονάδα λόγω των περιορισμών που υπάρχουν στο μέγεθος αυτών (A<1000 m²).

Πέραν του κόστους της κάθε μονάδας υπερδιήθησης πρέπει να υπολογιστεί και το κόστος προμήθειας των μεμβρανών το οποίο ανέρχεται στα 2005 ανά τετραγωνικό μέτρο. Οπότε:

Κόστος Προμήθειας μεμβρανών = 0.756 M$

Θεωρούμε ότι οι μεμβράνες θα πρέπει να αντικαθίστανται κάθε χρόνο.
2.5 Ψύξη

Όπως προαναφέρθηκε, το ρεύμα τροφοδοσίας, μετά από την υπερδιήθηση, βρίσκεται στους 45.51 °C. Η ζύμωση όμως γίνεται στους 37 °C οπότε το ρεύμα πρέπει να ψυχθεί. Αυτό θα γίνει σε έναν εναλλάκτη θερμότητας τύπου κελύφους αυλών ο οποίος μέσω νερού ψύξης θα χαμηλώσει τη θερμοκρασία της τροφοδοσίας. Η σχεδιαστικές εξισώσεις που διέπουν τη λειτουργία ενός εναλλάκτη θερμότητας παρουσιάζονται στο Παράρτημα 1A.4.

Τα χαρακτηριστικά λειτουργίας του εναλλάκτη παρουσιάζονται στον Πίνακα 2.11.

Πίνακας 2.11: Χαρακτηριστικά λειτουργίας εναλλάκτη κελύφους-αυλών (P-3/HX-101)

| Παροχή ρεύματος τροφοδοσίας εισόδου - εξόδου | 77.6 m3h$^{-1}$ | Θερμοκρασία ρεύματος τροφοδοσίας εισόδου | $T_{\text{in}(U-6)} = 45.51$ °C | Θερμοκρασία ρεύματος τροφοδοσίας εξόδου | $T_{\text{out}(U-6)} = 37$ °C | Παροχή νερού ψύξης | 42.8m3h$^{-1}$ | Θερμοκρασία νερού ψύξης εισόδου | $T_{\text{w in}(HX-101)} = 20$ °C | Θερμοκρασία νερού ψύξης εξόδου | $T_{\text{w out}(HX-101)} = 32$ °C | Εμβαδόν εναλλάκτη | $A_{(HX-101)} = 60.7$ m2 |

Το κόστος αγοράς του εναλλάκτη αυτού έγινε με βάση το ηλεκτρονικό εργαλείο υπολογισμού κόστους των Peters, Timmerhaus & West για εναλλάκτη κελύφους-αυλών από χάλυβα και εμβαδόν 77.6 m2 και η τιμή προσαρμόστηκε με βάση τους δείκτες CEPCI όπως φαίνεται στην εξίσωση 2.3.

2.3. $C_{P_{HX-1012014}} = C_{P_{HX-1012002}} \left(\frac{\text{CEPCI}_{2014}}{\text{CEPCI}_{2002}}\right) = 8,659\left(\frac{576.1}{390.4}\right) = 12,778$

Επιπρόθετα, γνωρίζοντας ότι το κόστος του νερού ψύξης είναι 0.014 $ m^3$[1. Κούκος, 2007, "Εισαγωγή στο σχεδιασμό χημικών εργοστασίων"], υπολογίζεται το ετήσιο κόστος του νερού ψύξης όπως φαίνεται στην εξίσωση 2.4.

2.4. $C_{w_{HX-105}} = L_{w_{HX-105}} \times t_i \times \text{batches} \times \text{price} = 42.8 \frac{m^4}{h} \times 5h \times 549\text{batches} \times 0.014 \frac{\text{S}}{m^3} = 1,645 \frac{\text{S}}{y}$

2.6 Παραγωγή Εμβολίου

2.6.1 Παραγωγή Εμβολίου

Ο όγκος του εμβολίου που είναι απαραίτητος για τη ζύμωση αποτελείται 10% του ενεργού όγκου του βιοαντιδραστήρα. Η παραγωγή του εμβολίου γίνεται σε βιοαντιδραστήρες με παρόμοιες συνθήκες με αυτές της κύριας ζύμωσης.

Στο ρεύμα τροφοδοσίας για την παραγωγή του εμβολίου πρέπει να υποστεί την ίδια προκατεργασία όπως το κύριο ρεύμα της διεργασίας. Στους αντιδραστήρες παραγωγής του εμβολίου θέλουμε η
συγκέντρωση σακχάρων να είναι 15 g L⁻¹. Αρχικά, γίνεται αραίωση του ρεύματος με νερό ώστε η συγκέντρωση σακχάρων να φτάσει στην επιθυμητή τιμή και έπειτα το απόβλητο επεξεργάζεται στην υπάρχουσα διάταξη υπερδίψης ώστε να απομακρυνθούν οι λιγνοσουλφόνικες ουσίες και να επιτευχθεί αποστείρωση. Στον Πίνακα 2.12 φαίνονται τα ρεύματα τροφοδοσίας που αφορούν την παραγωγή του εμβολίου και τα χαρακτηριστικά τους:

Πίνακας 2.12: Χαρακτηριστικά ρευμάτων παραγωγής εμβολίου

<table>
<thead>
<tr>
<th>Ρεύμα</th>
<th>Παροχή (m³h⁻¹)</th>
<th>Σύσταση (g L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U-4)</td>
<td>11.8</td>
<td>TS – 12.33</td>
</tr>
<tr>
<td>(U-9)</td>
<td>9.7</td>
<td>TS – 15</td>
</tr>
</tbody>
</table>

Ο χρόνος φόρτωσης του αντιδραστήρα επιλέγεται να είναι 5 ώρες και η ζύμωση διαρκεί 10 ώρες. Μετά το πέρας των 10 ωρών το εμβόλιο αναμίγνυται με το κύριο ρεύμα τροφοδοσίας πριν την είσοδο στους βιοαντιδραστήρες.

Τα χαρακτηριστικά του βιοαντιδραστήρα εμβολίου υπολογίζονται με τον ίδιο τρόπο που ακολουθήθηκε κατά τον υπολογισμό των χαρακτηριστικών των βιοαντιδραστήρων και παρουσιάζονται στον πίνακα 2.13.

Πίνακας 2.13: Χαρακτηριστικά αντιδραστήρα εμβολίου

<table>
<thead>
<tr>
<th>Παράμετρος</th>
<th>Τιμή</th>
</tr>
</thead>
<tbody>
<tr>
<td>ενεργός όγκος</td>
<td>$V_{wp} = 48.5$ m³</td>
</tr>
<tr>
<td>συνολικός όγκος</td>
<td>$V_{ip} = 58.2$ m³</td>
</tr>
<tr>
<td>ύψος</td>
<td>$h_{ip} = 6.66$ m</td>
</tr>
<tr>
<td>διάμετρος</td>
<td>$d_{ip} = 3.33$ m</td>
</tr>
</tbody>
</table>

Το κόστος του βιοαντιδραστήρα εμβολίου υπολογίζεται με βάση την εξίσωση 2.5. που αφορά ζυμωτήρες κατασκευασμένους επί τόπου, χωρίς αναμίκτη, με σερπαντινά ψυκτικού και υλικό κατασκευής SS316.

$$2.5. \quad C_{p,i} = \left(\frac{CEPCI_{2014}}{CEPCI_{2009}} \right) \left(\frac{400,000}{300^{0.6}} \right) V^{0.6} = \left(\frac{576.1}{522} \right) \left(\frac{400,000}{300^{0.6}} \right) 48.5^{0.6} = 165,026$$

Ο αναμίκτης δεν συμπεριλαμβάνεται στο κόστος προμήθειας καθότι οι ανάγκες της ζύμωσης για ανάδειξη είναι μικρές και επαρκή η φυσική ανάδειξη που δημιουργείται λόγω παροχής CO₂.

2.6.2 Αποστείρωση Ρεύματος Θρεπτικών Συστατικών

Η σύσταση του ρεύματος των θρεπτικών συστατικών παρουσιάζεται στον Πίνακα 2.2. Το ρεύμα αυτό, U-8, αποτελείτο 10% του ενεργού όγκου του βιοαντιδραστήρα και έχει παροχή 9.7 m³h⁻¹ και θερμοκρασία 20 °C.
Το συγκεκριμένο ρεύμα υφίσταται αποστείρωση πριν την χρησιμοποίησή του. Ένα τυπικό διάγραμμα ροής διεργασίας αποστείρωσης παρουσιάζεται στο Σχήμα 2.2. Η αποστείρωση αποτελείται από 2 εναλλάκτες θερμότητας και ένα holding tube. Η αποστείρωση διαρκεί 20 s σε θερμοκρασία 140 °C.

Αρχικά, στον 1ο εναλλάκτη, γίνεται εναλλαγή θερμότητας μεταξύ του ρεύματος εισόδου στην αποστείρωση και του ρεύματος εξόδου από το holding tube. Επειτα το ρεύμα θερμαίνεται με ατμό χαμηλής πίεσης 160 °C, μένει για 20 s στο holding tube για να επιτευχθεί η απαραίτητη θανάτωση μικροοργανισμών και εξέρχεται της διάταξης.
Οι υπολογισμοί που αφορούν την αποστείρωση παρουσιάζονται στο Παράρτημα Π-1A.5.

![Diagram](image)

Σχήμα 2.2 Διάγραμμα ροής αποστείρωσης

Αρχικά, γίνεται εναλλαγή θερμότητας μεταξύ του ρεύματος εισόδου στην αποστείρωση και του ρεύματος εξόδου από το holding tube. Επειτα το ρεύμα θερμαίνεται με ατμό χαμηλής πίεσης 160 °C, μένει για 20 s στο holding tube για να επιτευχθεί η απαραίτητη θανάτωση μικροοργανισμών και τέλος ψύχεται με νερό ψύξης 20 °C.
Τα χαρακτηριστικά της διεργασίας αποστείρωσης παρουσιάζονται στον Πίνακα 2.14.

Πίνακας 2.14: Χαρακτηριστικά διεργασίας αποστείρωσης (P-6/ST-101)

<table>
<thead>
<tr>
<th>οποιοσδήποτε εναλλάκτης</th>
<th>$T_{\text{sin}} = 20^\circ\text{C}$, $T_{\text{ster1}} = 83^\circ\text{C}$</th>
<th>$T_{\text{ster2}} = 140^\circ\text{C}$, $T_{\text{sout}} = 37^\circ\text{C}$</th>
<th>$A_{\text{st1}} = 11.6$ m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ος εναλλάκτης</td>
<td>$T_{\text{ster1}} = 83^\circ\text{C}$</td>
<td>$T_{\text{ster2}} = 140^\circ\text{C}$</td>
<td>$F_{\text{steam}} = 1.13$ m^3h^{-1}</td>
</tr>
<tr>
<td>holding tube</td>
<td>residence time = 20 s</td>
<td>$u = 5.4$ ms^{-1}</td>
<td>$d_{\text{tube}} = 0.025$ m</td>
</tr>
</tbody>
</table>
2.6.3 Κοστολόγηση Αποστείρωσης

Το κόστος αγοράς των εναλλακτικών έγινε με βάση το ηλεκτρονικό εργαλείο υπολογισμού κόστους των Peters, Timmerhaus & West για εναλλάκτες κελών-αυλών από χάλυβα και εμβαδόν 11.6m² και 5.1 m² αντίστοιχα και η τιμή προσαρμόστηκε με βάση τους δείκτες CEPCI όπως φαίνεται στις εξισώσεις 2.5, 2.6.

\[
2.5. \quad C_{P\text{,nov}\text{1\text{,2014}}} = C_{P\text{,nov\text{1\text{,2002}}}} \left(\frac{\text{CEPCI}_{2014}}{\text{CEPCI}_{\text{jan\text{,2002}}}} \right) = 3.818 \left(\frac{576.1}{390.4} \right) = 5.630 \text{$}
\]

\[
2.6. \quad C_{P\text{,nov\text{2\text{,2014}}} = C_{P\text{,nov\text{2\text{,2002}}}} \left(\frac{\text{CEPCI}_{2014}}{\text{CEPCI}_{\text{jan\text{,2002}}}} \right) = 3.011 \left(\frac{576.1}{390.4} \right) = 4.440 \text{$}
\]

Το κόστος αγοράς του holding tube έγινε με βάση το ηλεκτρονικό εργαλείο υπολογισμού κόστους των Peters, Timmerhaus & West για συγκολλημένους σωλήνες Sch. 40 από ανοξείδωτο ατσάλι διαμέτρου 0.025 m και μήκους 108 m αντίστοιχα και η τιμή προσαρμόστηκε με βάση τους δείκτες CEPCI όπως φαίνεται στην εξίσωση 2.7.

\[
2.7. \quad C_{P\text{,holding\text{tube\text{,2014}}} = C_{P\text{,holding\text{tube\text{,2002}}}} \left(\frac{\text{CEPCI}_{2014}}{\text{CEPCI}_{\text{jan\text{,2002}}}} \right) = 7.326 \left(\frac{576.1}{390.4} \right) = 10.810 \text{$}
\]

Επιπρόσθετα, γνωρίζοντας ότι το κόστος του ατμού χαμηλής πίεσης είναι 12.68 $ t^{-1}[l. Κούκος, 2007, "Εισαγωγή στο σχεδιασμό χημικών εργοστασίων", υπολογίζεται το ετήσιο κόστος του ατμού από την εξίσωση 2.8.

\[
2.8. \quad C_{\text{stream\text{,\text{steam}}} = F_{\text{\text{steam}}} \times \text{batches} \times \text{price} = 1.13 \frac{\ell}{h} \times 749 \text{batches} \times 12.68 \frac{\text{S}}{t} = 10.732 \frac{\text{S}}{y}
\]

2.7 Ανάδευση

Σημαντική παράμετρος όσον αφορά το κόστος του βιοαντιδραστήρα είναι η ανάδευση. Οι σχεδιαστικές εξισώσεις που αφορούν τον αναμίκτη παρουσιάζονται στο Παράρτημα-1A.6.

Στον Πίνακα 2.15 παρουσιάζονται τα χαρακτηριστικά του αναμίκτη.

Πίνακας 2.15: Χαρακτηριστικά αναμίκτη

<table>
<thead>
<tr>
<th>Παράμετρος</th>
<th>Στηρίζοντας</th>
<th>Στηρίζοντας</th>
</tr>
</thead>
<tbody>
<tr>
<td>διάμετρος προπέλας</td>
<td>1.8 m</td>
<td></td>
</tr>
<tr>
<td>αριθμός στροφών</td>
<td>N = 200 rpm</td>
<td></td>
</tr>
<tr>
<td>αριθμός προπελών</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ειδική κατανάλωση ισχύος</td>
<td>1.1 kW m⁻³</td>
<td></td>
</tr>
<tr>
<td>κατανάλωση ενέργειας</td>
<td>P = 525 kW</td>
<td></td>
</tr>
<tr>
<td>παραγόμενο έργο</td>
<td>128.5 x 10⁶ kJ ανά batch</td>
<td></td>
</tr>
</tbody>
</table>
Το κόστος προμήθειας του αναμίκτη υπολογίζεται από την εξίσωση 2.9.

2.9. \[C_{p,w} = \left(\frac{CEPCI_{2014}}{CEPCI_{2009}} \right) \frac{580,000}{800hp} \times \frac{576.1}{522} \times \frac{704hp}{800hp} = 563,300 \text{ $} \]

Το συνολικό κόστος για την προμήθεια 8 αναδευτήρων είναι 4.5 M$

Γνωρίζοντας το κόστος της ηλεκτρικής ενέργειας υπολογίζεται το ετήσιο κόστος κατανάλωσης ηλεκτρικής ενέργειας κατά την ανάδευση υπολογίζεται από την εξίσωση 2.10.

2.10. \[\text{Cut}_{av} = 68 \frac{h}{\text{batch}} \times 749 \text{ batches} \times 525 \text{kW} \times 0.06 \frac{\text{S}}{\text{kWh}} = 1.6 \text{M$} \]

2.8 Κατανάλωση CO₂

Όπως έχει προαναφερθεί, η ζύμωση γίνεται σε αναερόβιες συνθήκες με παροχή διοξειδίου του άνθρακα.

Από διαθέσιμα πειραματικά δεδομένα (in-house data) είναι γνωστό ότι για να παραχθεί 1 mole ηλεκτρικού οξέος πρέπει να καταναλωθεί 1 mole CO₂. Με αυτό υπ’ όψιν υπολογίζοντας τα χαρακτηριστικά της παροχής του CO₂ στο Παράρτημα 1A.7. και παρουσιάζοντας στον Πίνακα 2.16.

Πίνακας 2.16: Χαρακτηριστικά παροχής CO₂

απαίτηση CO₂	0.151 g L⁻¹ h⁻¹
κατανάλωση CO₂	0.233 mol L⁻¹
παροχή	80 kg h⁻¹
παροχή ανά batch	5.44 t ανά batch

Το διοξείδιο του άνθρακα προμηθεύεται από εξειδικευμένες εταιρείες οι οποίες παρέχουν και τις δεξαμενές αποθήκευσης του. Έτσι το κόστος αποθήκευσης συμπεριλαμβάνεται στο κόστος προμήθειας. Το ετήσιο κόστος προμήθειας CO₂ υπολογίζεται στην εξίσωση 2.11.

2.11. \[C_{CO₂} = \frac{5.44}{\text{batch}} \times 749 \text{ batches} \times 150 \frac{\text{S}}{\text{t}} = 611,184 \frac{\text{S}}{\text{y}} \]

2.9 Παραγόμενη Θερμότητα από την Αντίδραση

Από τα διαθέσιμα πειραματικά δεδομένα γνωρίζουμε επακριβώς τα moles σακχάρων που καταναλώνονται, καθώς και τα moles ηλεκτρικού οξέος και παραπροιόντων που παράγονται (Πίνακας 2.4). Τα δεδομένα καθώς και ο υπολογισμός της παραγόμενης από την αντίδραση θερμότητας παρουσιάζεται στον Παράρτημα Π-1A.8.
Το συνολικό ποσό θερμότητας που παράγεται από την αντίδραση κατά τη διάρκεια ενός batch είναι 155.99 x 10^6 kJ.

2.10 Ψύξη Αντιδραστήρων

Κατά τη ζύμωση παράγεται θερμότητα και λόγω της ανάδειξης και λόγω των αντιδράσεων που λαμβάνουν χώρα όπως έχει υπολογιστεί στις ενότητες 3.7 και 3.9. Η θερμότητα αυτή πρέπει να απαγόρευται ώστε να διατηρούμε το υγρό ζύμωσης στη θερμοκρασία των 37 °C.

Οι υπολογισμοί που αφορούν την ψύξη των αντιδραστήρων παρουσιάζονται στο Παράρτημα Π-1Α.9.

Τα χαρακτηριστικά της ψύξης των αντιδραστήρων παρουσιάζονται στον Πίνακα 2.17.

Πίνακας 2.17: Χαρακτηριστικά ψύξης αντιδραστήρων

<table>
<thead>
<tr>
<th>Παροχή νερού ψύξης</th>
<th>82.29 m³ h⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θερμοκρασία νερού</td>
<td>εισόδος: 20 °C</td>
</tr>
<tr>
<td></td>
<td>έξοδος: 32 °C</td>
</tr>
</tbody>
</table>

Θεωρούμε ότι η διαθέσιμη από τους αντιδραστήρες επιφάνεια εναλλαγής θερμότητας είναι επαρκής για να γίνεται αυτή η αναγωγή.

Τέλος, υπολογίζεται το ετήσιο κόστος νερού ψύξης σύμφωνα με την εξίσωση 2.12.

\[2.12. \ C_w = 82.29 \frac{m^3}{h} \times 68 \frac{h}{batch} \times 749 \text{batches} \times 0.014 \frac{S}{m^3} = 58,677 \frac{S}{y} \]

2.7 Παραμετρική Ανάλυση

Στο κεφάλαιο αυτό παρουσιάζονται τα αποτελέσματα σχεδιασμού και κοστολόγησης που αφορούν τις δυναμικότητές παραγωγής ηλεκτρικού οξέος των 1,000 και 30,000 t ανά έτος. Η μεθοδολογία που ακολουθήθηκε είναι αντίστοιχη με αυτή για το σχεδιασμό της μονάδας παραγωγής 10,000 t ανά έτος.

2.7.1 Δυναμικότητα Παραγωγής 1,000 t ανά έτος

Η σύσταση και τα χαρακτηριστικά των κύριων ρευμάτων σε αυτή τη δυναμικότητα, στο στάδιο του upstream, παρουσιάζονται στον Πίνακα 2.18. Τα συγκεντρωτικά αποτελέσματα σχεδιασμού και κοστολόγησης για αυτή τη δυναμικότητα παρουσιάζονται στον Πίνακα 2.19.
Πίνακας 2.18: Χαρακτηριστικά κυρίων ρευμάτων (1,000 t ανά έτος)

<table>
<thead>
<tr>
<th>Ρεύμα</th>
<th>Παροχή (m3 h$^{-1}$)</th>
<th>Σύσταση (g L$^{-1}$)</th>
<th>Θερμοκρασία (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-1</td>
<td>11.45</td>
<td>TS – 176.4</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS – 458.8</td>
<td></td>
</tr>
<tr>
<td>U-2</td>
<td>21.68</td>
<td>νερό</td>
<td>25</td>
</tr>
<tr>
<td>U-3</td>
<td>33.13</td>
<td>TS – 61</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS – 158.3</td>
<td></td>
</tr>
<tr>
<td>U-5</td>
<td>5.93</td>
<td>TS – 61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS – 165.07</td>
<td></td>
</tr>
<tr>
<td>U-6</td>
<td>27.2</td>
<td>TS – 61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS – 15.12</td>
<td></td>
</tr>
<tr>
<td>U-12</td>
<td>34</td>
<td>TS – 48.8</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS – 12.1</td>
<td></td>
</tr>
</tbody>
</table>

Πίνακας 2.19: Αποτελέσματα σχεδιασμού και κοστολόγησης

<table>
<thead>
<tr>
<th>Στοιχείο εξοπλισμού</th>
<th>Χαρακτηριστικά</th>
<th>Κόστος προμήθειας/κόστος πρώτων υλών/βοηθητικών παροχών</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ανάμιξη</td>
<td>$F_w = 21.68$</td>
<td>$1,154 , $, y^{-1}$</td>
</tr>
<tr>
<td>Υπερδιήθηση</td>
<td>2 units</td>
<td>$\text{εξοπλισμό} - 0.799 , M</td>
</tr>
<tr>
<td></td>
<td>$A = 662.6 , m^2$ ανά μονάδα</td>
<td>$\text{μεμβρανό} - 0.265 , M</td>
</tr>
<tr>
<td>Εναλλάκτης θερμότητας – Ψύξη</td>
<td>$F_w = 15.87 , m^3h^{-1}$</td>
<td>$\text{εξοπλισμό} - 6,826 , $$</td>
</tr>
<tr>
<td></td>
<td>$A = 18.54 , m^2$</td>
<td>$\text{νερό} , \text{ψύξης} - 237 , $$</td>
</tr>
<tr>
<td>Αντιδραστήρας παραγωγής εμβολίου</td>
<td>$V = 20.4$</td>
<td>88,300 $, $</td>
</tr>
<tr>
<td>Αποστείρωση</td>
<td>$F_{steam} = 138 , \text{kg} , \text{h}^{-1}$</td>
<td>Ατμού - 1,872 $, \text{$y}^{-1}$</td>
</tr>
<tr>
<td></td>
<td>$A_1 = 18 , m^2$</td>
<td>$\text{εξοπλισμό} - 18,450 , $, \text{y}^{-1}$</td>
</tr>
<tr>
<td></td>
<td>$A_2 = 2 , m^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$l_{holding , tube} = 88 , m$</td>
<td></td>
</tr>
<tr>
<td>Βιοαντιδραστήρες</td>
<td>3 units</td>
<td>$1.05 , M</td>
</tr>
<tr>
<td></td>
<td>$t_{pr} = 1 , h$, $t_i = 5 , h$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$t_f = 68 , h$, $t_w = 37 , h$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$N_{batches} = 214$ ανά έτος</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_w = 170 , m^3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V = 212.5 , m^3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$h = 10.2 , m$, $d = 5.1 , m$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$F_{CO2} = 25.76 , \text{kg} , \text{h}^{-1}$</td>
<td>70,000 $, \text{$y}^{-1}$</td>
</tr>
<tr>
<td></td>
<td>$F_w = 15.87 , m^3h^{-1}$</td>
<td>3,218 $, \text{$y}^{-1}$</td>
</tr>
<tr>
<td>Αναμίκτης</td>
<td>$di = 1.28 , m$</td>
<td>$\text{εξοπλισμό} - 183,400 , $$</td>
</tr>
<tr>
<td></td>
<td>$P = 57 , kW$</td>
<td>$\text{ηλεκτρικής ενέργειας} - 49,525 , $$</td>
</tr>
</tbody>
</table>

Όπως φαίνεται από τον πίνακα, επιλέχθηκε η εγκατάσταση 3 βιοαντιδραστήρων. Ενώ ήταν δυνατή η εγκατάσταση 2 αντιδραστήρων μεγαλύτερου όγκου, επιλέχθηκε να εγκατασταθούν 3 διότι προσφέρουν μεγαλύτερη ασφάλεια και ευελιξία σε περίπτωση επιμόλυνσης.
2.7.2 Δυναμικότητα Παραγωγής 30,000 t ανά έτος

Η σύσταση και τα χαρακτηριστικά των κύριων ρευμάτων σε αυτή τη δυναμικότητα, στο στάδιο του upstream, παρουσιάζονται στον Πίνακα 2.20. Τα συγκεντρωτικά αποτελέσματα σχεδιασμού και κοστολόγησης για αυτή τη δυναμικότητα παρουσιάζονται στον Πίνακα 2.21.

Πίνακας 2.20: Χαρακτηριστικά κυρίων ρευμάτων (30,000 t ανά έτος)

<table>
<thead>
<tr>
<th>Ρεύμα</th>
<th>Παραγωγή (m³ h⁻¹)</th>
<th>Σύσταση (g L⁻¹)</th>
<th>Θερμοκρασία (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-1</td>
<td>29.98</td>
<td>TS – 176.4</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS – 458.8</td>
<td></td>
</tr>
<tr>
<td>U-2</td>
<td>56.74</td>
<td>νερό</td>
<td>25</td>
</tr>
<tr>
<td>U-3</td>
<td>86.72</td>
<td>TS – 61</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS – 158.3</td>
<td></td>
</tr>
<tr>
<td>U-5</td>
<td>15.52</td>
<td>TS – 61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS – 165.07</td>
<td></td>
</tr>
<tr>
<td>U-6</td>
<td>71.2</td>
<td>TS – 61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS – 15.12</td>
<td></td>
</tr>
<tr>
<td>U-12</td>
<td>89</td>
<td>TS – 48.8</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS – 12.1</td>
<td></td>
</tr>
</tbody>
</table>

Πίνακας 2.21: Αποτελέσματα σχεδιασμού και κοστολόγησης

<table>
<thead>
<tr>
<th>Στοιχείο εξοπλισμού</th>
<th>Χαρακτηριστικά</th>
<th>Κόστος προμήθειας/κόστος πρώτων υλών/βοηθητικών παροχών</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ανάμιξη</td>
<td></td>
<td>46,759 $ y⁻¹</td>
</tr>
<tr>
<td>Υπερδιάθεση</td>
<td>4 units</td>
<td>εξοπλισμού – 4.064 M$</td>
</tr>
<tr>
<td></td>
<td>A = 867.2 m²/unit</td>
<td>μεμβρανών – 0.694 M$</td>
</tr>
<tr>
<td>Εναλλάκτης θερμότητας – Ψύξη</td>
<td>3 units</td>
<td>εξοπλισμού – 12,581 $</td>
</tr>
<tr>
<td></td>
<td>Fw = 50.59 m³h⁻¹</td>
<td>νερού ψύξης – 8,712 $</td>
</tr>
<tr>
<td>Αντιδραστήρας παραγωγής εμβολίου</td>
<td>6 units</td>
<td>0.481 M$</td>
</tr>
<tr>
<td></td>
<td>V = 55.6 m³</td>
<td></td>
</tr>
<tr>
<td>Αποστείρωση</td>
<td>Fsteam = 361 kg h⁻¹</td>
<td>ατμού - 56,303 $ y⁻¹</td>
</tr>
<tr>
<td></td>
<td>A1 = 10.56 m²</td>
<td>εξοπλισμού – 18.000 $</td>
</tr>
<tr>
<td></td>
<td>A2 = 4.64 m²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lholding tube = 98 m</td>
<td></td>
</tr>
<tr>
<td>Βιοαντιδραστήρες</td>
<td>24 units</td>
<td>15.31 M$</td>
</tr>
<tr>
<td></td>
<td>tpr = 1 h, t₁ = 5 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tr = 68 h, tul = 3.22 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natches=2,460 ανά έτος</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vw = 443 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V = 554 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h=14.12 m, d=7.06 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FCO₂ = 75 kg h⁻¹</td>
<td>1.88 M$ y⁻¹</td>
</tr>
<tr>
<td></td>
<td>Fw = 57.46 m³h⁻¹</td>
<td>0.135 M$ y⁻¹</td>
</tr>
</tbody>
</table>

| Αναμίκτης | Di = 1.7 m | εξοπλισμού – 11.04 M$ |
| P = 429 kW | ηλεκτρικής ενέργειας – 4.28 M$ | |
Κεφάλαιο 3. Ανάκτηση και Καθαρισμός Προϊόντος

3.1 Εισαγωγή

Η ανάκτηση και ο καθαρισμός του τελικού προϊόντος, δηλαδή των κρυστάλλων ηλεκτρικού οξέος, γίνεται σε συνεχείς συνθήκες ροής (continuous process).

Αρχικά, το ρεύμα που εξέρχεται των βιοαντιδραστήρων διέρχεται μέσα από μία ηφαιστειακή ενεργειακή κατάσταση με ρητίνη ηλεκτρικού οξέος και να απομακρυνθεί η βιομάζα και όταν αυξάνεται η υπολείμματα προϊόντος έχουν παραμείνει στο υγρό. Επειτα, το ρεύμα διέρχεται μέσα από στήλες ενεργειακού ύδατος για να αποχωριστεί και να προσορθηθούν οι εναπομείνασες πρωτεΐνες και λιγνοσύλφοδικές ουσίες. Στη συνέχεια το ρεύμα τροφοδοσίας οδηγείται σε στήλες που περιέχουν ρητίνες ιοντοεναλλαγής όπως τα παραγόμενα στη ζύμωση άλατα μετατρέπονται σε οργανικά οξέα.

Το τελικό στάδιο καθαρισμού περιλαμβάνει τις διεργασίες της συμπίνωσης, της κρυσταλλοποίησης και την ξήρανσης. Κατά τη συμπίνωση τα πτητικότερα του ηλεκτρικού οξέα (γαλακτικό, οξικό, μυρμηκικό) εξατμίζονται, καθώς έχουν χαμηλότερη σημεία βρασμού. Επίσης, μειώνεται η ογκομετρική παροχή που οδηγείται στις επόμενες διατάξεις και κατεπέκταση αυξάνεται η συγκέντρωση του ηλεκτρικού οξέος. Κατά την κρυσταλλοποίηση σχηματίζονται οι κρύσταλλοι ηλεκτρικού οξέος. Τέλος, οι κρύσταλλοι αυτοί οδηγούνται προς ξηραντισμό για να παραλάβουμε το τελικό προϊόν.

Στο σχήμα 3.1 παρουσιάζεται σχηματικά το τμήμα του downstream και στον πίνακα 3.1 παρουσιάζονται οι σύσταση και τα κύρια χαρακτηριστικά των ρευμάτων αυτού του τμήματος της διεργασίας.

Πίνακας 3.1: Σύσταση και χαρακτηριστικά ρευμάτων

<table>
<thead>
<tr>
<th>Ρεύμα</th>
<th>Σύσταση (g L⁻¹)</th>
<th>Παροχή (t h⁻¹)</th>
<th>Θερμοκρασία (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D-1)</td>
<td>από πίνακα 3.4</td>
<td>45.88</td>
<td>37</td>
</tr>
<tr>
<td>(D-2)</td>
<td>biomass</td>
<td>0.138</td>
<td></td>
</tr>
<tr>
<td>(D-3)</td>
<td>SA – 27.6</td>
<td>45.74</td>
<td></td>
</tr>
<tr>
<td>(D-7)</td>
<td>SA – 27.6</td>
<td>45.74</td>
<td>50</td>
</tr>
<tr>
<td>(D-8)</td>
<td>SA – 28.78</td>
<td>53.05</td>
<td>50</td>
</tr>
<tr>
<td>(D-9)</td>
<td>>></td>
<td>>></td>
<td>97.31</td>
</tr>
<tr>
<td>(D-11)</td>
<td>SA - 180</td>
<td>8.48</td>
<td>100</td>
</tr>
<tr>
<td>(D-12)</td>
<td>SA – 36.15</td>
<td>7.26</td>
<td>4</td>
</tr>
<tr>
<td>(D-13)</td>
<td>SA crystals + humidity</td>
<td>1.83</td>
<td></td>
</tr>
<tr>
<td>(D-17)</td>
<td>SA crystals</td>
<td>1.22</td>
<td></td>
</tr>
</tbody>
</table>
Σχήμα 3.1: Σχηματική αναπαράσταση downstream

Στο παρόν κεφάλαιο θα παρουσιαστούν ξεχωριστά τα στοιχεία εξοπλισμού που απαρτίζουν το στάδιο του downstream. Θα γίνει διασταυρολογήση αυτών και θα υπολογιστούν οι βοηθητικές παροχές που εμπλέκονται στη διεργασία και τέλος, θα κοστολογηθούν. Όλες οι σχεδιαστικές εξισώσεις παρουσιάζονται αναλυτικά στο Παράρτημα 1B.

Στην τελευταία παράγραφο παρουσιάζεται η διασταυρολογήση και κοστολόγηση του εξοπλισμού που αφορά τις δυναμικότητες παραγωγής των 1,000 και 30,000 τόνων ετησίως.

3.2 Φυγόκεντρος

3.2.1 Σχεδιασμός Φυγόκεντρου

Μετά την έξοδο από τους βιοαντιδραστήρες το ρέμα τροφοδοσίας, δηλαδή το υγρό ζύμωσης, πρέπει να φυγόκεντρησε ώστε να απομακρυνθεί η βιομάζα. Τα τεχνικά χαρακτηριστικά και οι συνθήκες λειτουργίας αντλήθηκαν απευθείας από διαθέσιμες φυγόκεντρους της αγοράς (εταιρία AlfaLaval, μοντέλο FEUX-214). Στην περίπτωση μας επιλέχθηκε η εγκατάσταση μίας φυγόκεντρου τύπου nozzle discharge που καλύπτει τις ανάγκες της διεργασίας.

Κατά την έξοδο από τη φυγόκεντρο δημιουργούνται 2 ρεύματα. Ένα ρεύμα είναι η βιομάζα που χαρακτηρίζεται ως απόθεμα, και το κυρίως ρεύμα της διεργασίας που οδηγείται προς περαιτέρω επεξεργασία. Στην έξοδο μεταβάλλεται ελαφρά η συγκέντρωση ηλεκτρικού οξέος. Ο υπολογισμός της
ποσότητας βιομάζας καθώς και των παροχών των ρευμάτων παρουσιάζεται στο παράρτημα Π-1Β.1. Τα χαρακτηριστικά των ρευμάτων παρουσιάζονται στον Πίνακα 3.2.

Πίνακας 3.2: Χαρακτηριστικά ρευμάτων εισόδου - εξόδου φυγοκέντρου

<table>
<thead>
<tr>
<th>Ρεύμα</th>
<th>Παροχή (m³ h⁻¹)</th>
<th>Συγκέντρωση ηλ. οξέος (g L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-1</td>
<td>45.88</td>
<td>27.52</td>
</tr>
<tr>
<td>D-2</td>
<td>0.138</td>
<td>-</td>
</tr>
<tr>
<td>D-3</td>
<td>45.74</td>
<td>27.6</td>
</tr>
</tbody>
</table>

Η ισχύς της φυγοκέντρου είναι 90 kW [FEUX-214 centrifuge specifications, Alfa Laval].

3.2.2 Κόστολόγηση Φυγοκέντρησης

Το κόστος της φυγοκέντρου εξαρτάται από την ισχύ της. Για τύπο “Solids Discharging Nozzle Centrifuge” ισχύς 90 kW το κόστος υπολογίζεται από το ηλεκτρονικό εργαλείο υπολογισμού κόστους των Peters, Timmerhaus & West και προσαρμόζεται στο έτος 2014 με βάση του δείκτης CEPCI όπως φαίνεται στην εξίσωση 3.1.

3.1. \[C_{P_{\text{out}}} = C_{P_{\text{in}}} \times \left(\frac{CEPCI_{\text{2014}}}{CEPCI_{\text{Jan2002}}} \right) = 197,081 \times \left(\frac{576.1}{390.4} \right) = 290,900 \] $€$

Επίσης, γνωρίζοντας το συνολικό χρόνο λειτουργίας του εργοστασίου ανά έτος, και το κόστος της ηλ. ηλεκτρικής ενέργειας, υπολογίζεται το κόστος της ηλ. ενέργειας που καταναλώνεται στη φυγοκέντρο στην εξίσωση 3.2.

3.2. \[C_{\text{electric}} = 90kW \times 7920 \times 0.06 \times \frac{\$}{\text{kWh}} = 42,768 \frac{\$}{\text{y}} \]

3.3 Στήλες Ενεργού Άνθρακα

3.3.1 Σχεδιασμός Στηλών Ενεργού Άνθρακα

Το ρεύμα τροφοδοσίας πρέπει να αποχωριστεί σε στήλες ενεργού άνθρακα. Η διεργασία μπορεί να παρουσιαστεί σε 2 διαφορετικές διατάξεις. Είτε λειτουργία των στηλών σε σειρά, είτε παράλληλα. Στο σύστημα που εξετάζουμε επιλέγεται να λειτουργήσουμε τις στήλες παράλληλα, με καθοδική ροή, καθ’ ότι δεν θα απαιτεί η ακριβής συγκέντρωση κάποιου συγκεκριμένου συστατικού αλλά ο αποχωρισμός του ρεύματος τροφοδοσίας. Χρησιμοποιείται κοκκώδης ενεργός άνθρακας (GAC – Granular Activated Carbon).

Οι σχεδιαστικές εξισώσεις που διέπουν τη λειτουργία των στηλών ενεργού άνθρακα παρουσιάζονται στο παράρτημα Π-1Β.2.
Στην διεργασία μας γνωρίζουμε από πειραματικά δεδομένα ότι ο απαιτούμενος χρόνος επαφής κενής κλίνης για να γίνει ο απαραίτητος αποχωρισμισμός είναι 1 ώρα. Επιλέγεται να λειτουργούν 3 στήλες παράλληλα. Τα χαρακτηριστικά λειτουργίας και οι σχεδιαστικές παράμετροι των στηλών ενεργού άνθρακα παρουσιάζονται στον Πίνακα 3.3.

Πίνακας 3.3: Χαρακτηριστικά Στηλών Ενεργού Άνθρακα

<table>
<thead>
<tr>
<th>Αριθμός στηλών</th>
<th>3 units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ογκομετρική παροχή ανά στήλη</td>
<td>Ω = 15.25 m³h⁻¹</td>
</tr>
<tr>
<td>Χρόνος επαφής κενής κλίνης</td>
<td>EBCT = 1 h</td>
</tr>
<tr>
<td>Ογκός ενεργού άνθρακα ανά στήλη</td>
<td>Ωc = 15.25 m³</td>
</tr>
<tr>
<td>Μήκος κλίνης (bed depth)</td>
<td>Λ = 9.83 m³</td>
</tr>
<tr>
<td>Ογκός στήλης</td>
<td>Ω = 22.87 m³</td>
</tr>
<tr>
<td>Εμβαδόν εγκάρσιας διατομής</td>
<td>Α = 1.53 m²</td>
</tr>
<tr>
<td>Διάμετρος, ύψος στήλης</td>
<td>d = 1.4 m, h = 14.86 m</td>
</tr>
</tbody>
</table>

3.3.2 Κοστολόγηση Στηλών Ενεργού Άνθρακα

Το κόστος προμήθειας των στηλών ενεργού άνθρακα αντλείται από το ηλεκτρονικό εργαλείο υπολογισμού κόστους των Peters, Timmerhaus & West για στήλες με πληρωτικό υλικό διαμέτρου 1.4m και ύψους 14.86 mπισκασκευασμένες από χάλυβα και προσαρμόζεται στο έτος 2014 σύμφωνα με την εξίσωση 3.3.

\[
3.3. \quad C_{P_{\text{anc}}} = C_{P_{\text{anc}}}^{0} \left(\frac{\text{CEPCI}_{2014}}{\text{CEPCI}_{\text{Jan2002}}} \right) = 90,134 \left(\frac{576.1}{390.4} \right) = 133,000 \frac{\$}{\text{column}}
\]

Το συνολικό κόστος προμήθειας 3 στηλών είναι 399,000$. Θεωρούμε ότι ο ενεργός άνθρακας αναγεννάται 1 φορά το χρόνο, κατά τη διάρκεια της περιόδου που το εργοστάσιο παραμένει ανενεργό.

Η οικονομικότητα λύση που προτείνεται από τη βιβλιογραφία για την αναγέννηση του ενεργού άνθρακα είναι η θερμική επανενεργοποίηση [Adsorption Design Guide, U.S. Army Corps of Engineers, 2001]. Αυτή η διεργασία λαμβάνει χώρα εκτός του εργοστασίου (off-site regeneration). Ο κορεσμένος ενεργός άνθρακας επαναενεργοποιείται σε ένα φούρνο όπου γίνεται οξείδωση των προσαρμογμένων οργανικών υστών οι οποίες με τον τρόπο αυτό απομακρύνονται από την επιφάνειά του. Αν ο έλεγχος της διεργασίας είναι αποτελεσματικός, η χωρητικότητα προσαρόφησης του επαναενεργοποιημένου άνθρακα θα είναι η ίδια με τον αρχικό. Το κόστος της αναγέννησης εκτιμάται ως 60% της τιμής αγοράς του GAC.

Το κόστος προμήθειας του ενεργού άνθρακα και το ετήσιο κόστος αναγέννησης υπολογίζονται στις εξισώσεις 3.4 και 3.5, ορίζοντας ως μέση τιμή αγοράς του GAC τα 500 $ ανά τόνο.

\[
3.4. \quad C_{\text{GAC}} = m_{\text{GAC}} \times 500 \frac{\$}{\text{t}} = 18.39t \times 500 \frac{\$}{\text{t}} = 9,195\$
\]
3.5. \[C_{\text{regeneration, GAC}} = m_{\text{GAC}} \times 0.6 \times 500 \frac{S}{t} = 18.29 \times 0.6 \times 500 \frac{S}{t} = 5,490 \frac{S}{y} \]

3.4 Στήλες Ιοντοεναλλαγής

3.4.1 Σχεδιασμός Στηλών Ιοντοεναλλαγής

Η διεργασία ιοντοεναλλαγής αποσκοπεί στη μετατροπή των οργανικών αλάτων του νατρίου, που βρίσκονται διαλυμένα στο υγρό της ζύμωσης, σε οργανικά οξέα τα οποία είναι πτητικές ουσίες και μπορούν να διαχωριστούν ευκολότερα κατά το στάδιο της συμπύκνωσης που ακολουθεί. Στην διεργασία αυτή χρησιμοποιήθηκε μια κατιονική ρητίνη σουλφονικού τύπου.
Κατά το σχεδιασμό των στηλών ιοντοεναλλαγής λήφθηκαν υπ’ όψιν διάφορα περιορισμοί που αφορούν τις προδιαγραφές λειτουργίας της ρητίνης Amberlite IR-120-H που χρησιμοποιήθηκε. Οι προδιαγραφές της ρητίνης που μας αφορούν παρουσιάζονται στον Πίνακα 3.4.

Πίνακας 3.4: Προδιαγραφές ρητίνης Amberlite IR-120-H [Product data sheet, Lenntech]

Ολική δυνατότητα εναλλαγής	1.8 eq L⁻¹ (H⁺ form)
ελάχιστο ύψος κλίσης ρητίνης	0.7 m
παροχή ανά στήλη (service flow rate)	5 – 40 BV h⁻¹
bed expansion	40% \(V_{\text{resin}} \)

Οι σχεδιαστικές εξισώσεις των στηλών ιοντοεναλλαγής παρουσιάζονται στο Παράρτημα Π-1Β.3. Επιλέγουμε την παράλληλη λειτουργία 11 στηλών. Τα χαρακτηριστικά λειτουργίας των στηλών ιοντοεναλλαγής παρουσιάζονται στον Πίνακα 3.5.

Πίνακας 3.5: Χαρακτηριστικά λειτουργίας στηλών ιοντοεναλλαγής

αριθμός στηλών	11 units
Ογκομετρική παροχή ανά στήλη	\(Q_{\text{resin column}} = 4.16 \text{ m}^3 \text{ h}^{-1} \)
ύψος στρώματος ρητίνης	\(h_{\text{resin}} = 3 \text{ m} \)
όγκος στήλης	\(V_{\text{column}} = 1.16 \text{ m}^3 \)
διάμετρος ύψος στήλης	\(d_{\text{resin}} = 0.6 \text{ m}, h_c = 4.38 \text{ m} \)
δυνατότητα ιοντοεναλλαγής	\(0.256 \text{ L}_{\text{resin}} \text{ BV h}^{-1} \)
χρόνος κορεσμού στήλης	\(t_{\text{resin}} = 47 \text{ min} \)

Επιλέξθηκε ύψος κλίσης 3 m. Δεν έχουμε τη δυνατότητα να επιλέξουμε μεγαλύτερο ύψος κλίσης διότι η πτώση πίεσης θα επηρεάσει τη διεργασία. Επίσης, επιλέξθηκε SFR = 5 BV h⁻¹. Αν επιλέγαμε μεγαλύτερες τιμές SFR τότε η ρητίνη θα εξαντλούνταν σε μερικά λεπτά και θα ήθελε πιο πολλές στήλες σε λειτουργία και εντατικότερο ρυθμό αναγέννησης. Ο χρόνος κορεσμού του όγκου ρητίνης ανά στήλη είναι 47 λεπτά. Αυτό σημαίνει ότι ανά 47 λεπτά θα πρέπει να γίνεται αναγέννηση της ρητίνης.
3.4.2 Αναγέννηση στηλών

Από τις προδιαγραφές της ρητίνης αντλούμε δεδομένα που αφορούν την αναγέννηση αυτών. Αυτά παρουσιάζονται στον πίνακα 3.6. Αρχικά, στη στήλη ιοντοεναλλαγής τροφοδοτείται ένα ρεύμα που περιέχει θεικό οξύ. Επειτα ακολουθεί γρήγορο ξέπλυμα της ρητίνης με νερό.

Πίνακας 3.6: Αναγέννηση [AmberliteIR-120-H Product data sheet, Lenntech]

<table>
<thead>
<tr>
<th>μέσο αναγέννησης</th>
<th>H₂SO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>συγκέντρωση μέσου αναγέννησης</td>
<td>0.7 – 6 %</td>
</tr>
<tr>
<td>ελάχιστος χρόνος επαφής</td>
<td>30 min</td>
</tr>
<tr>
<td>fast rinse</td>
<td>2 -4 BV</td>
</tr>
</tbody>
</table>

Οι εξισώσεις που αφορούν την διεργασία της αναγέννησης των στηλών ιοντοεναλλαγής παρουσιάζονται στο Παράρτημα Π-1Β.3. Τα χαρακτηριστικά της αναγέννησης των στηλών παρουσιάζονται στον Πίνακα 3.7.

Πίνακας 3.7: Χαρακτηριστικά διεργασίας αναγέννησης

<table>
<thead>
<tr>
<th>συγκέντρωση H₂SO₄</th>
<th>3 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>παροχή ρεύματος αναγέννησης</td>
<td>0.0176m³ h⁻¹</td>
</tr>
<tr>
<td>ποσότητα H₂SO₄ ανά κύκλο αναγέννησης και ανά στήλη</td>
<td>29.74 kg</td>
</tr>
<tr>
<td>αριθμός κύκλων αναγέννησης ανά έτος</td>
<td>10,110 Κύκλοι έτος</td>
</tr>
<tr>
<td>παροχή νερού ξεπλύματος</td>
<td>L_{waterreg} = 0.111m³ min⁻¹</td>
</tr>
</tbody>
</table>

Το ξέπλυμα της ρητίνης με νερό διαρκεί 15 λεπτά και συνολικά διοχετεύονται 2 BV νερού.

Θεωρούμε ότι με αυτή τη διαδικασία γίνεται πλήρης αναγέννηση της ρητίνης.

3.4.3 Κοστολόγηση Διεργασίας Ιοντοεναλλαγής

Για να έχουμε τη δυνατότητα αναγέννησης των στηλών χωρίς να χρειάζεται να σταματά τη διεργασία επιλέγουμε την εγκατάσταση 22 στηλών ώστε ενόσω λειτουργούν οι μισές να αναγεννώνται οι υπόλοιπες.

Το κόστος προμήθειας των στηλών ιοντοεναλλαγής αντλείται το ηλεκτρονικό εργαλείο υπολογισμού κόστους των Peters, Timmerhaus & West για στήλες με πληρωτικό υλικό, διαμέτρου 0.6 m και ύψους 4.38m κατασκευασμένες από χάλυβα και προσαρμόζεται στο έτος 2014 σύμφωνα με την εξίσωση 3.6.

$$3.6. C_{P_{	ext{res,colum}}} = C_{P_{	ext{res,colum}}}^0 \left(\frac{CEPCI_{2014}}{CEPCI_{\text{jan2002}}} \right) = 12,149 \left(\frac{576.1}{390.4} \right) = 17,930 \frac{\text{dollars}}{\text{column}}$$

Το συνολικό κόστος προμήθειας 22 στηλών είναι 394,400 $
Το κόστος προμηθείας της ρητίνης υπολογίζεται από την εξίσωση 3.7.

$$3.7. \ C_{resin} = V_r \times 22 \text{columns} \times \rho_{resin} \times \frac{1000}{t} \frac{\$}{m^3} = 0.83m^3 \times 22 \times 1.639 \frac{t}{m^3} \times 1,000 \frac{\$}{t} = 29,900\$$$

όπου, ρ_{resin}: πυκνότητα της ρητίνης = $1.639 \frac{t}{m^3}$

Τέλος, το κόστος της αναγέννησης που εξαρτάται από τις ποσότητες H_2SO_4 και νερού που χρησιμοποιείται υπολογίζεται στις εξισώσεις 3.8 και 3.9 αντίστοιχα.

$$3.8. \ C_{H_2SO_4} = M_{H_2SO_4} \times \frac{10,110}{y} \times 11 \frac{cycles}{y} \times \frac{0.28}{kg} = 926,000 \frac{\$}{y}$$

$$3.9. \ C_w = L_{water} \times 15 \frac{min}{cycle} \times \frac{10,110}{y} \times 11 \frac{cycles}{y} \times \frac{0.06}{m^3} \times \frac{11,100}{$}$$

3.5 Τελικό στάδιο καθαρισμού

Οι διεργασίες της συμπύκνωσης, της κρυσταλλοποίησης και της ξήρανσης που ακολουθούν αποσκοπούν στον καθαρισμό του προϊόντος και την τελική παραλαβή του σε μορφή κρυστάλλων. Αρχικά, γίνεται συμπύκνωση του ρεύματος τροφοδοσίας σε έναν εξατμιστήρα μηχανικής επανασυμπίεσης ατμού (Mechanical Vapor Recompression Evaporator – MVR), ώστε να μειωθεί ο όγκος του ρεύματος και να εξατμιστούν τα πτητικότερα του ηλεκτρικού οξέα που βρίσκονται στο διάλυμα της ζύμωσης (οξικό, γαλακτικό, μυρμηκικό).

Ακολούθως, το ρεύμα ψύχεται σε κρυσταλλοποιητή ώστε να δημιουργηθούν κρύσταλλοι ηλεκτρικού οξέος.

Τέλος, οι κρύσταλλοι οδηγούνται σε έναν ξηραντήρα ψεκασμού για να απομακρυνθεί η υγρασία και να παραλάβουμε καθαρούς κρυστάλλους ηλεκτρικού οξέος.

Οι τρεις αυτές διεργασίες αντιμετωπίζονται συνδυαστικά διότι τα χαρακτηριστικά μεγέθη τους αλληλοεπηρεάζονται. Ετσι δημιουργήθηκε ένα πρόγραμμα βελτιστοποίησης στο λογισμικό GAMS ώστε να λάβουμε τις ιδανικές τιμές λειτουργίας και διαστάσεων με βάση την ελαχιστοποίηση του κόστους. Ο κώδικας παρουσιάζεται στο παράρτημα 2. Παρακάτω περιγράφεται η λειτουργία αυτών των διατάξεων και παρουσιάζονται τα αποτελέσματα που αντλήθηκαν από τη διαδικασία βελτιστοποίησης μέσω του λογισμικού. Τέλος, γίνεται κοστολόγηση του εξοπλισμού.

3.5.1 Mechanical Vapor Recompression Evaporator

Η λειτουργία ενός MVR στηρίζεται στην απομάκρυνση του ατμού που εξατμίζεται από το ρεύμα τροφοδοσίας, τη συμπίεση αυτού με μηχανικά μέσα και τη χρήση αυτού του υψηλής πίεσης ατμού, που έχει υψηλότερη θερμοκρασία κορεσμού, ως μέσο για την εξάτμιση. Η μικρή διαφορά ενθαλπίας
των ατμών στην πλευρά συμπύκνωσης και βρασμού είναι η θεωρητική ενέργεια που απαιτείται για να γίνει η εξάτμιση. Για να είναι δυνατή η μηχανική συμπίεση χρησιμοποιείται συμπιεστής με ηλεκτρικό κινητήρα.

Η χρήση τέτοιου είδους εξατμιστήρα έχει το τεράστιο πλεονέκτημα της μηδενικής απαίτησης σε ατμό. Η πιο σημαντική παράμετρος που πρέπει να λάβουμε υπ’ όψιν κατά το σχεδιασμό είναι η θερμοκρασιακή διαφορά στην οποία μπορεί να λειτουργήσει η διάταξη, η οποία εξαρτάται από το βαθμό συμπίεσης. Για αυτό, πριν την είσοδο του εξατμιστήρα εγκαθίσταται ένας εναλλάκτης θερμότητας κελύφους-αυλών για να αυξήσει τη θερμοκρασία του ρεύματος σε αποδεκτές τιμές λειτουργίας του MVR.

Για να προσομοιώσουμε τη λειτουργία ενός MVR στο λογισμικό βελτιστοποίησης θεωρήσαμε ότι η λειτουργία του είναι παρόμοια με ενός falling film evaporator με τη συμπίεση του ατμού να λαμβάνει χώρα σε έναν centrifugal rotary compressor. Οι σχεδιαστικές εξισώσεις του εξατμιστήρα MVR παρουσιάζονται στο Παράρτημα 1Γ.

Στο σχήμα 3.2 παρουσιάζεται σχηματικά η λειτουργία ενός MVR.

Σχήμα 3.2: Τυπική διάταξη MVR [Wastewater treatment by MVR evaporation brochure, EPCON]

Στη διάταξη μας έχουμε 2 εναλλάκτες θερμότητας κελύφους-αυλών που προηγούνται του εξατμιστήρα. Στον πρώτο εναλλάκτη τροφοδοτούμε τον ατμό που παρήχθη κατά την εξάτμιση ώστε να αυξήσουμε τη θερμοκρασία του ρεύματος τροφοδοσίας. Ο δεύτερος εναλλάκτης δρα ως προθερμαντήρας και χρησιμοποιώντας ατμό χαμηλής πίεσης ανεβάζει τη θερμοκρασία του ρεύματος τροφοδοσίας σε τιμές αποδεκτές για τη λειτουργία του MVR.
3.5.2 Κρυσταλλοποιητής

Η κρυσταλλοποίηση είναι μια διεργασία κατά την οποία μειώνεται η διαλυτότητα των ουσιών που περιέχονται στο ρεύμα τροφοδοσίας μέσω αλλαγής θερμοκρασίας. Αποτέλεσμα της μείωσης της διαλυτότητας είναι η δημιουργία κρυστάλλων ηλεκτρικού οξέος.

Στην περίπτωση μας το ρεύμα τροφοδοσίας εισέρχεται στον κρυσταλλοποιητή όπου και ψύχεται στους 4 °C. Γνωρίζουμε, από πειραματικές μετρήσεις, ότι η διαλυτότητα του ηλεκτρικού οξέος σε αυτή τη θερμοκρασία είναι 36.15 g L\(^{-1}\).

Ως ψυκτικό μέσο χρησιμοποιείται διάλυμα νερού-αιθυλικής γλυκόλης 30% το οποίο εισέρχεται στη διεργασία σε θερμοκρασία -13.7°C. Στην έξοδο του κρυσταλλοποιητή δημιουργούνται δύο ρεύματα. Ένα ρεύμα κρυστάλλων ηλεκτρικού οξέος με ένα ποσοστό υγρασίας 50% και ένα υγρό ρεύμα με συγκέντρωση ηλεκτρικού οξέος 36.15 g L\(^{-1}\) το οποίο επανατροφοδοτείται στην είσοδο του εξατμιστήρα.

Οι σχεδιαστικές εξισώσεις και οι παράμετροι λειτουργίας του κρυσταλλοποιητή παρουσιάζονται στο Παράρτημα Π-1Γ.

3.5.3 Ξηραντήρας Ψεκασμού

Οι ξηραντήρες ψεκασμού χρησιμοποιούνται για την γρήγορη ξήρανση ουσιών. Η τροφοδοσία που περιέχει υγρασία, ψεκάζεται από ειδικές βαλβίδες σε ένα θάλαμο και οι σταγόνες ξηραίνονται από θερμό αέρα ενός πέντε στο θάλαμο του ξηραντήρα. Οι ξηραντήρες αυτού του τύπου είναι εξοπλισμένοι με συλλέκτες και σακκόφυτρα όπου γίνεται η συλλογή του τελικού προϊόντος.

Στην περίπτωση μας το ρεύμα κρυστάλλων που εξέρχεται του κρυσταλλοποιητή, με 50% περιεχόμενη υγρασία, εισέρχεται στον ξηραντήρα όπου αέρας που έχει θερμανθεί σε έναν εναλλάκτη θερμότητας, απορροφά την υγρασία των κρυστάλλων ηλεκτρικού οξέος. Στην έξοδο του ξηραντήρα έχουμε το τελικό προϊόν της διεργασίας, δηλαδή τους καθαρούς κρυστάλλους ηλεκτρικού οξέος.

Η σημαντικότερη σχεδιαστική παράμετρος αυτού του στοιχείου εξοπλισμού είναι η ποσότητα υγρασίας που πρέπει να εξατμίζεται ανά ώρα η οποία καθορίζει την ποσότητα θερμού αέρα που τροφοδοτείται στη διάταξη και κατ’ επέκταση την ποσότητα ατμού που απαιτείται για τη θέρμανση του αέρα αυτού. Οι σχεδιαστικές εξισώσεις και οι παράμετροι λειτουργίας του ξηραντήρα ψεκασμού παρουσιάζονται στο Παράρτημα Π-1Γ.
3.5.4 Σύνοψη τελικού σταδίου καθαρισμού ηλεκτρικού οξέος – Παρουσίαση αποτελέσματων

Όπως προαναφέρθηκε, οι τρεις αυτές διεργασίες αντιμετωπίστηκαν συνδυαστικά διότι οι μεταβλητές και τα χαρακτηριστικά μεγέθη τους αλληλοεπηρεάζονται.

Συνοπτικά, η παροχή και η συγκέντρωση εξόδου του ηλεκτρικού οξέος στην έξοδο του εξατμιστήρα αρχικά καθορίζει την ποσότητα ατμού που απαιτείται και την επιφάνεια εναλλαγής θερμότητας. Επιπρόσθετα, αυτά τα μεγέθη επηρεάζουν την ποσότητα ψυκτικού στον κρυσταλλοποιητή καθώς και την παραγωγή κρυστάλλων (τόνους/ημέρα) που αποτελούν τα χαρακτηριστικά μεγέθη αυτού του στοιχείου εξοπλισμού. Τέλος, η παροχή κρυστάλλων που εισέρχεται στον ηραντήρα ψεκασμού καθορίζει το ποσό υγρασίας που πρέπει να εξατμιστεί και την παροχή αέρα και κατ’ επέκταση ατμού που θερμαίνει τον αέρα αυτό, καθώς και το απαιτούμενο μέγεθος εναλλάκτη, ώστε να παραλάβουμε τους ξηρούς κρυστάλλους ηλεκτρικού οξέος.

Τα αποτελέσματα του σχεδιασμού παρουσιάζονται στον Πίνακα 3.8.

Πίνακας 3.8: Αποτελέσματα σχεδιασμού τελικού σταδίου καθαρισμού

<table>
<thead>
<tr>
<th>Εξατμιστήρας MVR</th>
<th>Ισχυρισμένα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δεδομένα</td>
<td></td>
</tr>
<tr>
<td>L_5</td>
<td>45,740 kg h⁻¹</td>
</tr>
<tr>
<td>W_5</td>
<td>27.6 g L⁻¹</td>
</tr>
<tr>
<td>T_5</td>
<td>37 °C</td>
</tr>
<tr>
<td>c_pl</td>
<td>4.25 kJ kg⁻¹°C⁻¹</td>
</tr>
<tr>
<td>H_g</td>
<td>1.819 kJ kg⁻¹°C⁻¹</td>
</tr>
<tr>
<td>T_steam</td>
<td>160 °C</td>
</tr>
<tr>
<td>U_1</td>
<td>3200 kJ h⁻¹ m⁻²°C⁻¹</td>
</tr>
<tr>
<td>d_SA</td>
<td>1.56 kg L⁻¹</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Αποτελέσματα Σχεδιασμού</th>
<th>Πρώτη Εναλλάκτη (P-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_7</td>
<td>53,048 kg h⁻¹</td>
</tr>
<tr>
<td>w_7</td>
<td>28.778 g L⁻¹</td>
</tr>
<tr>
<td>T_5, T_7</td>
<td>37 °C, 49.91 °C</td>
</tr>
<tr>
<td>A_p</td>
<td>26.72 m²</td>
</tr>
<tr>
<td>L_10</td>
<td>44,566.9 kg h⁻¹</td>
</tr>
<tr>
<td>T_10, T_6</td>
<td>100 °C, 60 °C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Αποτελέσματα Σχεδιασμού</th>
<th>Βέρτη Εναλλάκτη (P-18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_8</td>
<td>53,048 kg h⁻¹</td>
</tr>
<tr>
<td>w_8</td>
<td>28.778 g L⁻¹</td>
</tr>
<tr>
<td>T_8, T_9</td>
<td>60 °C, 97.31 °C</td>
</tr>
<tr>
<td>A_p</td>
<td>52.83 m²</td>
</tr>
<tr>
<td>F_steamP-18</td>
<td>5,107.76 kg h⁻¹</td>
</tr>
<tr>
<td>T_steamP-18</td>
<td>160 °C</td>
</tr>
</tbody>
</table>

47
<table>
<thead>
<tr>
<th>Εξατμιστήριας MVR</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L<sub>D-10</sub></td>
<td>53,048 kg h<sup>-1</sup></td>
<td>ρυθμός ροής τροφοδοσίας εισόδου</td>
</tr>
<tr>
<td>W<sub>D-10</sub></td>
<td>28.778 g L<sup>-1</sup></td>
<td>συγκέντρωση ηλ. οξέος στο στρώμα L<sub>D-10</sub></td>
</tr>
<tr>
<td>L<sub>D-11</sub></td>
<td>8,481.173 kg h<sup>-1</sup></td>
<td>ρυθμός τροφοδοσίας εξόδου</td>
</tr>
<tr>
<td>W<sub>D-11</sub></td>
<td>180 g L<sup>-1</sup></td>
<td>συγκέντρωση ηλ. οξέος στο στρώμα L<sub>D-11</sub></td>
</tr>
<tr>
<td>T<sub>D-9</sub></td>
<td>97.31<sup>°</sup>C</td>
<td>θερμοκρασία εισόδου ρεύματος L<sub>D-9</sub></td>
</tr>
<tr>
<td>T<sub>D-11</sub></td>
<td>100<sup>°</sup>C</td>
<td>θερμοκρασία εξόδου ρεύματος L<sub>D-11</sub></td>
</tr>
<tr>
<td>T<sub>compression</sub></td>
<td>102.29<sup>°</sup>C</td>
<td>θερμοκρασία ατμού μετά τη συμπίεση</td>
</tr>
<tr>
<td>kWh</td>
<td>1021.03 kW</td>
<td>κατανάλωση ενέργειας κατά τη συμπίεση</td>
</tr>
<tr>
<td>A<sub>P-16</sub></td>
<td>62.11 m<sup>2</sup></td>
<td>επιφάνεια εναλλαγής θερμότητας</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Κρυστάλλοποιητής</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δεδομένα</td>
</tr>
<tr>
<td>T<sub>cryst</sub></td>
</tr>
<tr>
<td>T<sub>inEthGl</sub></td>
</tr>
<tr>
<td>c<sub>pSA</sub></td>
</tr>
<tr>
<td>c<sub>pCA</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Αποτελέσματα Σχεδιασμού</th>
</tr>
</thead>
<tbody>
<tr>
<td>L<sub>D-13</sub></td>
</tr>
<tr>
<td>L<sub>D-12</sub></td>
</tr>
<tr>
<td>L<sub>ethGl</sub></td>
</tr>
<tr>
<td>T<sub>ethGl</sub></td>
</tr>
<tr>
<td>M<sub>SA</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Έναρξης Ψηκασμού</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δεδομένα</td>
</tr>
<tr>
<td>c<sub>pcryst</sub></td>
</tr>
<tr>
<td>H<sub>d0</sub></td>
</tr>
<tr>
<td>H<sub>d1</sub></td>
</tr>
<tr>
<td>T<sub>air room</sub></td>
</tr>
<tr>
<td>T<sub>air in</sub></td>
</tr>
<tr>
<td>T<sub>air out</sub></td>
</tr>
<tr>
<td>T<sub>steam</sub></td>
</tr>
<tr>
<td>U<sub>4</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Αποτελέσματα Σχεδιασμού</th>
</tr>
</thead>
<tbody>
<tr>
<td>L<sub>D-17</sub></td>
</tr>
<tr>
<td>L<sub>humidity</sub></td>
</tr>
<tr>
<td>L<sub>air</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Εναλλάξτης θερμότητας</th>
</tr>
</thead>
<tbody>
<tr>
<td>F<sub>steamP-17</sub></td>
</tr>
<tr>
<td>A<sub>p-17</sub></td>
</tr>
</tbody>
</table>
3.5.5 Κοστολόγηση Τελικού Σταδίου Καθαρισμού

Για την κοστολόγηση του εξοπλισμού δημιουργήθηκαν διαγράμματα με τιμές κόστους προμήθειας είτε από το βιβλίο των Peters, Timmerhaus “Σχεδιασμός και οικονομική μελέτη εγκαταστάσεων για μηχανικούς” είτε από το ηλεκτρονικό εργαλείο υπολογισμού κόστους των Peters, Timmerhaus & West. Αυτό έγινε ώστε να μπορεί το κόστος να εισαχθεί ως εξίσωση στο πρόγραμμα βελτιστοποίησης.

![Diagram 3.1](image1.png)

Διάγραμμα 3.1: Κόστος Συμπιεστή (centrifugal rotary compressor – carbon steel)

![Diagram 3.2](image2.png)

Διάγραμμα 3.2: Κόστος εξατμιστήρα (falling film evaporator – carbon steel, μέγιστη πίεση λειτουργίας 505 kPa)
Διάγραμμα 3.3: Κόστος Κρυσταλλοποιητή

Στην διεργασία μας κινούμαστε μεταξύ 10-25 t ανά ημέρα παραγωγής κρυστάλλων όπου από το διάγραμμα παίρνουμε αρκετά συναφή αποτελέσματα όσον αφορά το κόστος

Διάγραμμα 3.4: Κόστος Ξηραντήρα Ψεκασμού

Διάγραμμα 3.5: Κόστος εναλλακτών θερμότητας κελύφους – αυλών (carbonsteel)
Τελικά, το κόστος κάθε στοιχείου εξοπλισμού προσαρμόζεται στο έτος 2014 σύμφωνα με τους κατάλληλους δείκτες CEPCI. Τα αποτελέσματα της κοστολόγησης παρουσιάζονται στον Πίνακα 3.9.

Πίνακας 3.9: Κόστος προμήθειας εξοπλισμού τελικού σταδίου καθαρισμού

<table>
<thead>
<tr>
<th>Στοιχείο εξοπλισμού</th>
<th>Κόστος Προμήθειας ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>εναλλάκτης κελύφους-αυλών P-10</td>
<td>15,300</td>
</tr>
<tr>
<td>εναλλάκτης κελύφους-αυλών P-18</td>
<td>17,200</td>
</tr>
<tr>
<td>συμπιεστής</td>
<td>486,000</td>
</tr>
<tr>
<td>εξατμιστήρας</td>
<td>516,500</td>
</tr>
<tr>
<td>κρυσταλλοποιητής</td>
<td>162,700</td>
</tr>
<tr>
<td>εναλλάκτης κελύφους-αυλών P-17</td>
<td>34,700</td>
</tr>
<tr>
<td>ζημαντήρας Ψεκασμού</td>
<td>444,700</td>
</tr>
</tbody>
</table>

Το κόστος των βοηθητικών παροχών υπολογίζεται με βάση τις ακόλουθες εξισώσεις.

3.10. Κόστος Ατμού Χαμηλής Πίεσης

\[
C_{\text{steam P-10}} = F_{\text{steam P-10}} \times 7,920h \times 0.01268 \frac{S}{kg} = 513,000 \frac{S}{y}
\]

3.11. Κόστος Ατμού Υψηλής Πίεσης

\[
C_{\text{steam P-18}} = F_{\text{steam P-18}} \times 7,920h \times 0.01664 \frac{S}{kg} = 442,100 \frac{S}{y}
\]

3.12. Κόστος κατανάλωσης ηλεκτρικής ενέργειας

\[
C_{\text{comp}} = kW \times 7920h \times 0.06 \frac{S}{kWh} = 485,200 \frac{S}{y}
\]

3.13. Κόστος ψυκτικού μέσου

\[
C_{\text{glycol}} = m_{\text{glycol}} \times 1.1 \frac{S}{kg} = 8,780 \frac{S}{y}
\]

Στον Πίνακα 3.10 παρουσιάζεται το ετήσιο κόστος βοηθητικών παροχών κατά το τελικό στάδιο καθαρισμού.

Πίνακας 3.10: Κόστος Βοηθητικών Παροχών

<table>
<thead>
<tr>
<th>Τύπος παροχής</th>
<th>Κόστος ($/μονάδα)</th>
<th>Ετήσιο κόστος ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ατμός χαμηλής πίεσης (160 °C)</td>
<td>12,68 $ t^{-1}</td>
<td>513,000</td>
</tr>
<tr>
<td>ατμός υψηλής πίεσης (260 °C)</td>
<td>16,64 $ t^{-1}</td>
<td>442,100</td>
</tr>
<tr>
<td>ψυκτικό μέσο (γλυκόλη)</td>
<td>1.1 $ kg^{-1}</td>
<td>8,780</td>
</tr>
<tr>
<td>ηλεκτρική ενέργεια</td>
<td>0.06 $ kWh^{-1}</td>
<td>485,200</td>
</tr>
</tbody>
</table>
3.6 Παραμετρική Ανάλυση

Στο κεφάλαιο αυτό παρουσιάζονται τα αποτελέσματα σχεδιασμού και κοστολόγησης που αφορούν τις δυναμικότητες παραγωγής ηλεκτρικού οξέος των 1,000 και 30,000 t ανά έτος. Η μεθοδολογία που ακολουθήθηκε είναι αντίστοιχη με αυτή για το σχεδιασμό της μονάδας παραγωγής 10,000 t ανά έτος.

3.6.1 Δυναμικότητα Παραγωγής 1,000 t ανά έτος

Τα αποτελέσματα σχεδιασμού και κοστολόγησης για αυτή τη δυναμικότητα παρουσιάζονται στον Πίνακα 3.11.

Πίνακας 3.11: Αποτελέσματα σχεδιασμού και κοστολόγησης (1,000 t ανά έτος)

<table>
<thead>
<tr>
<th>Στοιχείο Εξοπλισμού</th>
<th>Χαρακτηριστικά</th>
<th>Κόστος προμήθειας, πρώτων υλών, βοηθητικών παροχών</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φυγόκεντρος</td>
<td>ισχύς P = 22 kW</td>
<td>εξοπλισμού – 199,828 $ ηλεκτρικής ενέργειας – 10,450 $/γ</td>
</tr>
<tr>
<td>Στήλη Ενεργού Ανθρακά</td>
<td>ενεργός άνθρακα V_c = 4.59 m³</td>
<td>εξοπλισμού – 34,200 $ ενεργού άνθρακα – 4,590 $</td>
</tr>
<tr>
<td>Στήλες Ιοντοεναλλαγής</td>
<td>2 στήλες που λειτουργούν εναλλάξ</td>
<td>εξοπλισμού – 35,000 $ ρητίνης – 1,820 $ H₂SO₄ – 141,540 $ νερό ξεπλύματος – 1,100 $/γ</td>
</tr>
<tr>
<td></td>
<td>ογκος στήλης V = 6.80 m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d = 1.07 m, h = 7.49 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>μήκος κλίνης L = 5.06 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Αναγέννηση</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10,110 κύκλοι</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₂SO₄ - 50 kg/κύκλο</td>
<td></td>
</tr>
<tr>
<td></td>
<td>νερό ξεπλύματος – 1.82 m³/κύκλο</td>
<td></td>
</tr>
<tr>
<td>Εξατμιστήρας Τριών Βαθμίδων</td>
<td>A₁ = 9.59 m², A₂ = 13.69 m², A₃ = 23.64 m²</td>
<td>εξοπλισμού – 574,800 $ ατμού – 365,500 $/γ</td>
</tr>
<tr>
<td></td>
<td>F_{steam} = 2,773 kgh⁻¹</td>
<td></td>
</tr>
<tr>
<td>Κρυσταλλοποιητής</td>
<td>Σχηματισμός Κρυστάλλων – 122.59 kgh⁻¹</td>
<td>εξοπλισμού– 112,600 $</td>
</tr>
<tr>
<td>Ξηραντήρας Ψεκασμού</td>
<td>Απομακρυνόμενη Υγρασία – 61.29 kgh⁻¹ Παροχή Θερμού Αέρα – 714 kgh⁻¹</td>
<td>εξοπλισμού – 166,000 $</td>
</tr>
<tr>
<td>Εναλλάκτης Θερμότητας</td>
<td>A = 14.37 m²</td>
<td>εξοπλισμού – 6,100 $ ατμού – 44,400 $/γ</td>
</tr>
<tr>
<td></td>
<td>F_{steam} = 337 kgh⁻¹</td>
<td></td>
</tr>
</tbody>
</table>

Για το σχεδιασμό της διεργασίας σε αυτή τη δυναμικότητα επιλέχθηκε η εγκατάσταση ενός falling film εξατμιστήρα τριών βαθμίδων αντί του MVR για λόγους οικονομίας.
Τα αποτελέσματα σχεδιασμού και κοστολόγησης για αυτή τη δυναμικότητα παρουσιάζονται στον Πίνακα 3.12.

Πίνακας 3.12: Αποτελέσματα σχεδιασμού και κοστολόγησης (30,000 t ανά έτος)

<table>
<thead>
<tr>
<th>Στοιχείο Εξοπλισμού</th>
<th>Χαρακτηριστικά</th>
<th>Κόστος προμήθειας, πρώτων υλών, βοηθητικών παροχών</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φυγόκεντρος</td>
<td>ισχύς P = 160 kW</td>
<td>εξοπλισμού – 388,300 $ ηλεκτρικής ενέργειας – 76,000 $/γ</td>
</tr>
<tr>
<td>Στήλες Ενεργού Άνθρακα</td>
<td>Αριθμός Στηλών - 6 Ενεργός Άνθρακα V_c = 22.96 m³/στήλη Όγκος στήλης V = 34.44 m³ d = 1.8 m, h = 13.54 m μήκος κλίνης L = 9 m</td>
<td>εξοπλισμού – 970,000 $ Ενεργού Άνθρακα – 137,800 $</td>
</tr>
<tr>
<td>Στήλες Ιοντοεναλλαγής</td>
<td>64 στήλες που λειτουργούν εναλλάξ Όγκος ρητίνης V_resin = 0.85 m³/στήλη Όγκος στήλης V = 1.28 m³ d = 0.6 m, h = 4.38 m Αναγέννηση 10,110 κύκλοι H₂SO₄ = 47.15 kg/κύκλο Νερό Ξεπλύματος = 1.7 m³/κύκλο</td>
<td>εξοπλισμού – 1,15 $ Ρητίνη – 89,160 $ H₂SO₄ – 4,270,000 $/γ Νερό Ξεπλύματος – 33,000 $/γ</td>
</tr>
<tr>
<td>Εναλλάκτης κελύφους-συλών</td>
<td>A = 80.5 m²</td>
<td>εξοπλισμού – 15,200 $</td>
</tr>
<tr>
<td>Προθερμαντήρας</td>
<td>A = 202.4 m² F_{steam} = 19,567 kgh⁻¹</td>
<td>εξοπλισμού – 27,600 $ Ατμού – 1,965,000 $/γ</td>
</tr>
<tr>
<td>Εξατμιστήρας MVR</td>
<td>Συμπιεστής: ισχύς – 3,076 kW Εξατμιστήρας: A = 187m²</td>
<td>εξοπλισμού: Συμπιεστής – 1,044,200 $ Εξατμιστήρας – 951,800 $ Ηλεκτρικής ενέργειας - 1,461,700 $</td>
</tr>
<tr>
<td>Κρυσταλλοποιητής</td>
<td>Σχηματισμός Κρυστάλλων – 3,664 kg h⁻¹</td>
<td>εξοπλισμού – 335,000 $</td>
</tr>
<tr>
<td>Ξηραντήρας Ψεκασμού</td>
<td>Απομακρυνόμενη Υγρασία – 1,832 kg h⁻¹ Παροχή Θερμού Αέρα – 21,354 kg h⁻¹</td>
<td>εξοπλισμού – 760,500 $</td>
</tr>
<tr>
<td>Εναλλάκτης Θερμότητας</td>
<td>2 units A = 429.5 m²/εναλλάκτη F_{steam} = 10,077 kgh⁻¹</td>
<td>εξοπλισμού – 92,000 $ Ατμού – 1,328,000 $/γ</td>
</tr>
</tbody>
</table>
Κεφάλαιο 4. Οικονομική Ανάλυση

4.1 Εισαγωγή

Στο παρόν κεφάλαιο παρουσιάζεται η οικονομική ανάλυση της διεργασίας. Στα κεφάλαια 2 και 3 έχουν υπολογιστεί το κόστος προμήθειας εξοπλισμού καθώς και το κόστος των πρώτων υλών και βοηθητικών παροχών για κάθε στάδιο της διεργασίας και για τις 3 διαφορετικές δυναμικότητες. Στις ακόλουθες ενότητες, συνοψίζονται τα παραπάνω. Επιπρόσθετα, υπολογίζονται καίριοι οικονομικοί δείκτες όπως το κόστος παγίου κεφαλαίου (FCI) και το συνολικό κόστος παραγωγής (TPC). Τέλος, με αυτά τα δεδομένα γίνεται αξιολόγηση της κάθε επένδυσης και σύγκριση μεταξύ των τριών δυναμικότητων.

4.2 Εκτίμηση Κόστους Παγίου Κεφαλαίου

Το κόστος παγίου κεφαλαίου (FCI – fixed capital investment) έχει άμεση σχέση με το κόστος προμήθειας του μηχανολογικού εξοπλισμού της διεργασίας και υπολογίζεται με βάση την εξίσωση 4.1. Στον πίνακα 4.1. παρουσιάζονται συγκεντρωτικά τα κόστη προμήθειας του εξοπλισμού για κάθε δυναμικότητα.

4.1. $FCI \geq 5C_p$

Πίνακας 4.1: Συνολικό κόστος προμήθειας εξοπλισμού (C_p)

<table>
<thead>
<tr>
<th>Στοιχείο Εξοπλισμού</th>
<th>1,000 t y⁻¹ Cp (M$ - 2014)</th>
<th>10,000 t y⁻¹ Cp (M$ - 2014)</th>
<th>30,000 t y⁻¹ Cp (M$ - 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Υπερδιύθηση(P-1)</td>
<td>2 units – 0.799</td>
<td>4 units – 4.387</td>
<td>4 units – 4.064</td>
</tr>
<tr>
<td>Εναλλάκτης Θερμότητας (ψύξη) (P-3)</td>
<td>0.007</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td>Βιοαντιδραστήρας Εμβολίου (P-5)</td>
<td>0.088</td>
<td>0.165</td>
<td>3 units – 0.481</td>
</tr>
<tr>
<td>Διάταξη Αποστείρωσης (P-6)</td>
<td>0.018</td>
<td>0.021</td>
<td>0.018</td>
</tr>
<tr>
<td>Ζυμωτήρες(P-2)</td>
<td>3 units – 1.05</td>
<td>8 units – 5.385</td>
<td>24 units – 15.31</td>
</tr>
<tr>
<td>Αναδευτήρες (AG – 101)</td>
<td>3 units – 0.183</td>
<td>8 units – 4.5</td>
<td>24 units – 11.04</td>
</tr>
<tr>
<td>Φυγόκεντρο(P-7)</td>
<td>0.200</td>
<td>0.291</td>
<td>0.388</td>
</tr>
<tr>
<td>Στήλες Ενεργού Άνθρακα (P-8)</td>
<td>0.034</td>
<td>3 units – 0.354</td>
<td>6 units – 0.970</td>
</tr>
<tr>
<td>Στήλες Ιοντοεναλλαγής (P-9)</td>
<td>2 units – 0.035</td>
<td>22 units – 0.394</td>
<td>64 units – 1.15</td>
</tr>
<tr>
<td>Διάταξη Εξατμιστήρα 3 βαθμίδων (P-16)</td>
<td>0.575</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>εναλλάκτης (P-15)</td>
<td>-</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>προθερμαντήρας (P-18)</td>
<td>-</td>
<td>0.017</td>
<td>0.028</td>
</tr>
<tr>
<td>compressor</td>
<td>-</td>
<td>0.486</td>
<td>1.044</td>
</tr>
<tr>
<td>MVR (P-16)</td>
<td>-</td>
<td>0.516</td>
<td>0.952</td>
</tr>
<tr>
<td>Κρυσταλλοποιητής (P-11)</td>
<td>0.113</td>
<td>0.163</td>
<td>0.335</td>
</tr>
<tr>
<td>Ξηραντήρας Ψεκασμού (P-12)</td>
<td>0.165</td>
<td>0.445</td>
<td>0.761</td>
</tr>
<tr>
<td>Εναλλάκτης Θερμότητας(P-17)</td>
<td>0.006</td>
<td>0.035</td>
<td>2 units – 0.092</td>
</tr>
<tr>
<td>Συνολικό Κόστος</td>
<td>3.273</td>
<td>17.232</td>
<td>36.661</td>
</tr>
<tr>
<td>FCI</td>
<td>16.365</td>
<td>86.16</td>
<td>183.305</td>
</tr>
</tbody>
</table>
4.3 Εκτίμηση Συνολικού Κόστους Παραγωγής (TPC)

Тο συνολικό κόστος παραγωγής TPC αποτελείται από τα άμεσα κόστη DC, τις πάγιες δαπάνες FC και τα γενικά έξοδα GE όπως:

4.2) Total Production Cost

\[
DC = C_{RM} + C_{UT} + C_{WT} + 1.33C_{OL} + 0.1FCI \\
FC = 0.25FCI \\
GE = 0.2TPC
\]

Τελικά,

\[
TPC = 1.25(C_{RM} + C_{UT} + C_{WT}) + 1.66C_{OL} + 0.44FCI
\]

Παρακάτω παρουσιάζονται το κόστος πρώτων υλών \(C_{RM} \), το κόστος βοηθητικών παραχών \(C_{UT} \), το κόστος άμεσης εργασίας \(C_{OL} \) και το κόστος επεξεργασίας αποβλήτων για κάθε δυναμικότητα.

Πίνακας 4.2: Κόστος Πρώτων Υλών \(C_{RM} \)

<table>
<thead>
<tr>
<th>Δυναμικότητα</th>
<th>1,000 t y^{-1}</th>
<th>10,000 t y^{-1}</th>
<th>30,000 t y^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Πρώτη Υλη</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Μεμβράνες</td>
<td>200 $/m^2</td>
<td>1,325 m^2 y^{-1}</td>
<td>3,780 m^2 y^{-1}</td>
</tr>
<tr>
<td>Yeast Extract</td>
<td>2,000 $/t</td>
<td>181.7 t y^{-1}</td>
<td>1,817 t y^{-1}</td>
</tr>
<tr>
<td>NaH₂PO₄H₂O</td>
<td>2,205 $/t</td>
<td>42.15 t y^{-1}</td>
<td>421 t y^{-1}</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>2,205 $/t</td>
<td>11.26 t y^{-1}</td>
<td>112 t y^{-1}</td>
</tr>
<tr>
<td>NaCl</td>
<td>280 $/t</td>
<td>36.33 t y^{-1}</td>
<td>363 t y^{-1}</td>
</tr>
<tr>
<td>MgCl₂ 6H₂O</td>
<td>371 $/t</td>
<td>7.27 t y^{-1}</td>
<td>72.68 t y^{-1}</td>
</tr>
<tr>
<td>CaCl 2H₂O</td>
<td>406 $/t</td>
<td>7.27 t y^{-1}</td>
<td>72.68 t y^{-1}</td>
</tr>
<tr>
<td>CO₂</td>
<td>150 $/t</td>
<td>466 t y^{-1}</td>
<td>4,074 t y^{-1}</td>
</tr>
<tr>
<td>Ενεργός Άνθρακας</td>
<td>500 $/t</td>
<td>9.18 t</td>
<td>36.6 t</td>
</tr>
<tr>
<td>Ρητίνη</td>
<td>1,000 $/t</td>
<td>2.98 t</td>
<td>29.9 t</td>
</tr>
<tr>
<td>Ιοντοεναλλαγής</td>
<td></td>
<td>0.003</td>
<td>0.03</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>280 $/t</td>
<td>505.5 t y^{-1}</td>
<td>5,096 t y^{-1}</td>
</tr>
<tr>
<td>Αιθυληκήλυκόλη</td>
<td>1,000$/t</td>
<td>-</td>
<td>8.79 t y^{-1}</td>
</tr>
</tbody>
</table>
Πίνακας 4.3: Κόστος Βοηθητικών Παροχών C_{υτ}

<table>
<thead>
<tr>
<th>Δυναμικότητα</th>
<th>1,000 t y(^{-1})</th>
<th>10,000 t y(^{-1})</th>
<th>30,000 t y(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Βοηθητική Παροχή</td>
<td>Κόστος (M$)</td>
<td>Ετήσια Κατανάλωση (t y(^{-1}))</td>
<td>Ετήσιο Κόστος (M$)</td>
</tr>
<tr>
<td>Νερό Ψύξης</td>
<td>0.014 $/t</td>
<td>24.68 x 10(^3) t y(^{-1})</td>
<td>4.3 x 10(^6) t y(^{-1})</td>
</tr>
<tr>
<td>Νερό κοινής χρήσης</td>
<td>0.067 $/t</td>
<td>33. t y(^{-1})</td>
<td>64.3 x 10(^4) t y(^{-1})</td>
</tr>
<tr>
<td>Ηλεκτρική Ενέργεια</td>
<td>0.06 t/kWh</td>
<td>9.99 x 10(^5)</td>
<td>35.4 x 10(^6) kWh</td>
</tr>
<tr>
<td>Ατμός υψηλής πίεσης</td>
<td>16.64 $/t</td>
<td>24.6 x 10(^4) t y(^{-1})</td>
<td>26.5 x 10(^4) t y(^{-1})</td>
</tr>
<tr>
<td>Ατμός χαμηλής πίεσης</td>
<td>12.68 $/t</td>
<td>1.09 t y(^{-1})</td>
<td>41.94 x 10(^3) t y(^{-1})</td>
</tr>
</tbody>
</table>

| Σύνολο | 0.493 | 3.204 | 8.724 |

Στον Πίνακα 4.4, παρουσιάζεται η απαίτηση σε εργαζόμενους ανά βάρδια και ανά στοιχείο εξοπλισμού.
Η εκτίμηση των απαιτήσεων σε άμεση εργασία έγινε με βάση τη μέθοδο Ulrich στην οποία δίνονται εκτιμήσεις για τους απαιτούμενους εργαζόμενους ανά βάρδια για διάφορα στοιχεία εξοπλισμού.

Πίνακας 4.4: Απαίτηση σε εργαζόμενους

<table>
<thead>
<tr>
<th>Δυναμικότητα</th>
<th>1,000 t y(^{-1})</th>
<th>10,000 t y(^{-1})</th>
<th>30,000 t y(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Στοιχείο Εξοπλισμού</td>
<td>Απαιτούμενοι Εργαζόμενοι ανά βάρδια</td>
<td>Αριθμός Στοιχείων</td>
<td>Αριθμός Στοιχείων</td>
</tr>
<tr>
<td>Υπερδύψηθηση</td>
<td>2.0</td>
<td>0.4</td>
<td>4.0</td>
</tr>
<tr>
<td>Εναλλάκτες Θερμότητας</td>
<td>3.0</td>
<td>0.3</td>
<td>4.0</td>
</tr>
<tr>
<td>Βιοαντιδραστήρας</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Εμβολίου</td>
<td>3.0</td>
<td>3.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Ζυμωτήρες</td>
<td>1.0</td>
<td>3.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Φυγόκεντρος</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Στήλες Ενεργού Άνθρακα</td>
<td>0.2</td>
<td>0.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Στήλες Ιοντοεναλλαγής</td>
<td>0.2</td>
<td>0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Εξατμιστήρας</td>
<td>0.3</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Κρυσταλλοποιητής</td>
<td>0.16</td>
<td>0.16</td>
<td>1.0</td>
</tr>
<tr>
<td>Έπραπατήρας Ψεκασμού</td>
<td>0.74</td>
<td>0.74</td>
<td>1.0</td>
</tr>
</tbody>
</table>

| Σύνολο | 6.52 = 7 | 15.4 = 16 | 37.4 = 38 |
Η κάθε μονάδα απαιτεί συνολικά 21 βάρδιες την εβδομάδα. Αν υποθέσουμε 5 βάρδιες την εβδομάδα ανά εργαζόμενο προκύπτει ότι χρειαζόμαστε 4.5 εργαζόμενους ανά θέση εργασίας. Το κόστος της εργασίας προκύπτει αν θεωρήσουμε ένα μέσο μισθό ανά μήνα 2,300 $/μήνα.

Πίνακας 4.5: Κόστος Άμεσης Εργασίας C\text{el}

<table>
<thead>
<tr>
<th>Δυναμικότητα</th>
<th>1,000 t (t^{-1})</th>
<th>10,000 t (t^{-1})</th>
<th>30,000 t (t^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σύνολο Εργαζομένων</td>
<td>32</td>
<td>72</td>
<td>171</td>
</tr>
<tr>
<td>Συνολικό Κόστος Άμεσης Εργασίας (M$)</td>
<td>0.883</td>
<td>1.99</td>
<td>4.72</td>
</tr>
</tbody>
</table>

Όσον αφορά τα απόβλητα της διεργασίας αυτά είναι η βιομάζα από τη φυγοκέντρηση και το νερό από το στάδιο αναγέννησης των ηττινών και την εξάτμιση. Θεωρούμε ότι αυτά τα απόβλητα απαιτούν πρωτογενή επεξεργασία πριν απορριφτούν.

Το κόστος επεξεργασίας αποβλήτων παρουσιάζεται στο πίνακα 4.6.

Πίνακας 4.6: Επεξεργασία Αποβλήτων C\text{w}

<table>
<thead>
<tr>
<th>Δυναμικότητα</th>
<th>1,000 t (t^{-1})</th>
<th>10,000 t (t^{-1})</th>
<th>30,000 t (t^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>είδος</td>
<td>Κόστος</td>
<td>οποιοσ</td>
<td>παραγωγή (M $)</td>
</tr>
<tr>
<td>αποβλήτου</td>
<td>επεξεργασίας</td>
<td></td>
<td></td>
</tr>
<tr>
<td>βιομάζα</td>
<td>36 $/t</td>
<td>128 t (t^{-1})</td>
<td>64 (10^3) m³ (m^3) (t^{-1})</td>
</tr>
<tr>
<td>νερό</td>
<td>56 $/1000 m³</td>
<td>0.005</td>
<td>0.004</td>
</tr>
<tr>
<td>Σύνολο</td>
<td></td>
<td>0.009</td>
<td>0.096</td>
</tr>
</tbody>
</table>

Τελικά, έχοντας αυτά τα δεδομένα μπορούμε να υπολογίσουμε το TPC για κάθε δυναμικότητα:

Πίνακας 4.7: Συνολικό Κόστος Παραγωγής C\text{P}

<table>
<thead>
<tr>
<th>Δυναμικότητα</th>
<th>1,000 t (t^{-1})</th>
<th>10,000 t (t^{-1})</th>
<th>30,000 t (t^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC (M $)</td>
<td>10.404</td>
<td>58.87</td>
<td>127.131</td>
</tr>
</tbody>
</table>

4.4 Αξιολόγηση Επενδυτικών Σχεδίων

Η απόφαση έγκρισης ή απόρριψης ενός επενδυτικού σχεδίου βασίζεται πάντα στα πιθανά οφέλη ή ζημιές που συνδέονται με τη λήψη της σχετικής απόφασης. Ένας από τους συνηθέστερους ποσοτικούς δείκτες που χρησιμοποιείται ως οδηγός για τη λήψη τέτοιων αποφάσεων είναι η καθαρή παρούσα αξία (NPV – Net Present Value).
Κάθε επένδυση συνεπάγεται μια αρχική δαπάνη η οποία επιφέρει στη συνέχεια μια συνεχή ροή εσόδων για πεπερασμένο χρονικό διάστημα. Προκειμένου να υπολογιστεί κατά πόσο η συγκεκριμένη επένδυση επιφέρει κέρδη ή ζημιές θα πρέπει όλες οι χρηματικές ροές (CF - Cash Flows) να αναχθούν στο ίδιο χρονικό σημείο. Συνήθως πρακτική είναι η αναγωγή όλων των χρηματικών ροών στην αρχή του επενδυτικού σχεδίου και η άθροισή τους. Το αποτέλεσμα καλείται καθαρή παρούσα αξία και μπορεί να υπολογιστεί από την ακόλουθη σχέση.

4.3. \[NPV = \sum_{k=0}^{n} \frac{CF_k}{(1 + \rho)^k} = \sum_{k=0}^{n} CF_k PVIF(\rho, k) \]

όπου \(CF_k \) είναι η χρηματική ροή που λαμβάνει χώρα στην περίοδο \(k \), \(n \) είναι ο συνολικός αριθμός περιόδων και \(\rho \) συμβολίζει τον απαιτούμενο ρυθμό επιστροφής. Κάθε σχέδιο που έχει θετική NPV θεωρείται ότι επιφέρει κέρδη περισσότερα από τα αναμενόμενα για την εταιρεία. Εάν NPV=0 τότε η επένδυση αποδίδει την ελάχιστη αποδεκτή απαιτούμενη απόδοση ενώ αν NPV<0, αν και δεν συνεπάγεται αυτόματα απώλεια χρημάτων, η επένδυση μπορεί να αποφέρει κέρδη λιγότερα από τα αναμενόμενα, οπότε και απορρίπτεται.

Στην συγκεκριμένη εργασία, μεταβάλλοντας την τιμή πώλησης του ηλεκτρικού οξέος, εξετάσαμε για κάθε δυναμικότητα πότε η NPV γίνεται οριακά θετική. Αυτό παρουσιάζεται στα διάγραμμα 4.1 -4.3.

Τα έσοδα της διεργασίας προκύπτουν κατά βάση από την πώληση του ηλεκτρικού οξέος. Ενα επιτρόποθετο έσοδο θεωρείται η πώληση των λιγνοσουλφοφυκών ουσιών που απομακρύνονται από το στάδιο της υπερδιήθησης. Η τιμή πώλησης και τα έσοδα από αυτή τη χρηματοροπή παρουσιάζονται στον πίνακα 4.8.

Πίνακας 4.8: Έσοδα πώλησης λιγνοσουλφοφυκών ουσιών

<table>
<thead>
<tr>
<th>Δυναμικότητα</th>
<th>Ετήσια Παραγωγή (t \ y^{-1})</th>
<th>Τιμή ($ t^{-1})</th>
<th>Ετήσια Έσοδα ($ t^{-1})</th>
<th>Ετήσια Έσοδα (\text{€} t^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000 (t \ y^{-1})</td>
<td>2,508</td>
<td>350</td>
<td>0.879</td>
<td></td>
</tr>
<tr>
<td>10,000 (t \ y^{-1})</td>
<td>10,464</td>
<td>350</td>
<td>3.66</td>
<td></td>
</tr>
<tr>
<td>30,000 (t \ y^{-1})</td>
<td>31,357</td>
<td>350</td>
<td>10.97</td>
<td></td>
</tr>
</tbody>
</table>

Κατά τον υπολογισμό της NPV θεωρήσαμε χρόνο λειτουργίας του εργοστασίου 15 χρόνια, με τα 3 πρώτα να αφορούν την περίοδο κατασκευής του. Επιτρόποθετο, ο απαιτούμενος ρυθμός επιστροφής επιλέχθηκε ίσος με 10%.

Τα αποτελέσματα για κάθε δυναμικότητα παρουσιάζονται στα διαγράμματα 4.1 – 4.3.
Διάγραμμα 4.1. Μεταβολή NPV (1,000 t y⁻¹)

Διάγραμμα 4.2. Μεταβολή NPV (10,000 t y⁻¹)
Διάγραμμα 4.3. Μεταβολή NPV (30,000 t y⁻¹)

Στο διάγραμμα 4.4 παρουσιάζεται η μεταβολή της NPV και για τις 3 δυναμικότητες ώστε να έχουμε μια πιο ξεκάθαρη εικόνα της μεταβολής ανάλογα με την αύξηση της τιμής πώλησης του ηλεκτρικού οξέος και της αύξησης της δυναμικότητας.

Διάγραμμα 4.4. Μεταβολή NPV για 3 δυναμικότητες

Παρατηρείται ότι η αλλαγή στην τιμή πώλησης επηρεάζει πολύ πιο έντονα την NPV όσο αυξάνεται η δυναμικότητα παραγωγής.

Για κάθε δυναμικότητα, η τιμή πώλησης ηλεκτρικού οξέος όπου η NPV γίνεται οριακά θετική παρουσιάζεται στον Πίνακα 4.9.
Το περιττό χρόνο ως ουσία είναι εξαιρετικά κινδύνος για την έμπνευση και την επιθετική λήψη απόφασης. Επομένως, οι αξιόλογοι για την ανάλυση της δυναμικής σύμπτωσης περισσότερο χρησιμοποιούνται ως ερμηνευτική και εξοπλιστική δεξαμενή.

Στο παρακάτω πίνακα παρουσιάζεται η διαφορά κόστους παραγωγής ανά kg προϊόντος σε κάθε δυναμικότητα.

<table>
<thead>
<tr>
<th>Πίνακας 4.10. Κόστος παραγωγής ανά kg προϊόντος</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δυναμικότητα</td>
</tr>
<tr>
<td>κόστος παραγωγής/ kg ηλ. οξέος ($/kg)</td>
</tr>
</tbody>
</table>

Πάλι, όπως ήταν αναμενόμενο, το κόστος παραγωγής μειώνεται όσο μεγαλώνει η δυναμικότητα της μονάδας.
Κεφάλαιο 5. Συμπεράσματα - Προτάσεις

Στο παρόν κεφάλαιο παρουσιάζονται τα συμπεράσματα όπως αυτά προκύπτουν από την ανάλυση που έγινε στα προηγούμενα κεφάλαια.

Το κύριο συμπέρασμα είναι ότι η παραγωγή ηλεκτρικού οξέος μέσω ζύμωσης αποβλήτων προερχόμενων από τη βιομηχανία χάρτου και χαρτοπολτού δεν είναι μία οικονομικά συμφέρουσα διεργασία, συγκρινόμενη φυσικά με τις άλλες υπάρχουσες πετροχημικές μεθόδους παραγωγής ηλεκτρικού οξέος.

Στο σχήμα 5.1. παρουσιάζεται η ποσοστιαία συνεισφορά του κάθε είδους εξόδων στο συνολικό κόστος παραγωγής. Ωστόσο, είναι άμεση κόστη (DC) και οι πάγιες δαπάνες (FC) συνεισφέρουν εξίσου στο συνολικό κόστος παραγωγής.

![Σχήμα 5.1. Κατανομή ετήσιων κοστών λειτουργίας](image)

Στο Σχήμα 5.2. παρουσιάζεται η συνεισφορά του κάθε είδους δαπάνης στα άμεσα κόστη.
Σχήμα 5.2. Κατανομή των άμεσων κοστών

Όπως φαίνεται στο παραπάνω σχήμα, το μεγαλύτερο μερίδιο του κόστους αποτελείται από την πάγια επένδυση (FCI) και από το κόστος των πρώτων υλών. Στα σχήματα 5.3. και 5.4 παρουσιάζεται η κατανομή κόστους των διαφόρων στοιχείων εξοπλισμού και των διαφόρων πρώτων υλών αντίστοιχα.

Σχήμα 5.3. Κατανομή κόστους εξοπλισμού

Είναι εμφανές ότι τη μεγαλύτερη συμβολή στην αύξηση του FCI η διάταξη των ζυμωτήρων μαζί με τους αναδεικτήρες (σχεδόν 57%) ακολουθούμενη από τις μονάδες υπερδιήθησης.
Σχήμα 5.4. Κατανομή κόστους πρώτων υλών

Τη μεγαλύτερη συνεισφορά στο συνολικό κόστος των πρώτων υλών την έχει το yeast extract που χρησιμοποιείται ως πηγή αζώτου στη ζύμωση. Η υψηλή τιμή του, καθιστά απαγορευτική τη χρήση του σε διεργασίες τέτοιας δυναμικότητας. Μία εναλλακτική πηγή αζώτου, που θα μείωνε δραστικά το κόστος των πρώτων υλών θα ήταν το Corn Steep Liquor (500 - 700 $/t). Η χρήση του μελετάται σε πειραματικό επίπεδο. Επίσης, σημαντική επίδραση στο κόστος των πρώτων υλών έχουν και τα διάφορα απαραίτητα για τη ζύμωση θρεπτικά συστατικά.
Επίσης, παρατηρούμε ότι το H_2SO_4 που χρησιμοποιείται κατά την αναγέννηση των ρητινών αποτελεί σημαντικό μέρος του κόστους πρώτων υλών (20%) διότι χρειάζεται πολύ συχνή αναγέννηση των ρητινών αυτών, οπότε και μεγάλη ποσότητα H_2SO_4.

Τέλος, στο Σχήμα 5.5. παρουσιάζεται η κατανομή κόστους των βοηθητικών παροχών.
Σχήμα 5.5. Κατανομή κόστους βοηθητικών παροχών

Παρατηρούμε ότι το μεγαλύτερο κόστος οφείλεται στην κατανάλωση ηλεκτρικής ενέργειας. Αυτό είναι αναμενόμενο αν αναλογοστούμε τις υψηλές απαιτήσεις στη ηλεκτρική ενέργεια και για την ανάδευση των βιοαντιδραστήρων αλλά και για τη λειτουργία της φυγοκέντρου και του συμπιεστή στη διάταξη του MVR.

Η παραμετρική ανάλυση έδειξε ότι ακόμα και στην μεγαλύτερη δυναμικότητα που εξετάσαμε, η ελάχιστη τιμή πώλησης του ηλεκτρικού οξέος ώστε η NPV να γίνει οριακά θετική (4.9 $/kg) δεν είναι καθόλου ανταγωνιστική σε σχέση με την τιμή του ηλ. οξέος που παράγεται με συμβατικές πετροχημικές μεθόδους.

Παρ’ όλα αυτά, στη διεργασία υπεισέρχονται αρκετές βελτιώσεις.

1) Η χρήση φυσικών ή γενετικά τροποποιημένων μικροοργανισμών με υψηλότερη απόδοση μετατροπής σαιχάρων σε ηλεκτρικό οξύ θα μείωσε τον όγκο του προς επεξεργασία υγρού ζύμωσης και θα χαμηλώνει άμεσα το κόστος της διάταξης των βιοαντιδραστήρων και κατ’ επέκταση το πάγιο κεφάλαιο επένδυσης και το συνολικό κόστος παραγωγής.

2) Η εφαρμογή συνεχών συνθήκων ζύμωσης στο τμήμα του upstream θα επέτρεπε τη χρήση ζυμωτήρων μικρότερου όγκου. Επίσης, θα ήταν δυνατή η μείωση των διαστάσεων όλων των στοιχείων εξοπλισμού που εμπλέκονται στο τμήμα του upstream, με άμεσο αντίκτυπο τη μείωση του κόστους της διεργασίας.

3) Όπως προαναφέρθηκε, μείωση του κόστους θα επέφερε η αντικατάσταση του yeast extract με άλλη, φθηνότερη πηγή αζώτου όπως το corn steep liquor.
4) Η χρήση των ρητινών ιοντοεναλλαγής για τον καθαρισμό του προϊόντος κρίνεται ως μία μη συμφέρουσα διεργασία. Η ρητίνες αυτές προορίζονται κυρίως για τον καθαρισμό νερού. Η χρήση τους σε μεγάλη κλίμακα δεν ενδείκνυται για την επεξεργασία ροών με υψηλή περιεκτικότητα σε οξέα, καθότι εξαντλούνται πολύ γρήγορα και απαιτείται συχνή αναγέννησή τους. Η αναγέννηση αυτή αυξάνει το κόστος της διεργασίας.

Θα πρέπει να εξεταστούν διαφορετικοί τρόποι καθαρισμού του ηλεκτρικού οξέου όπως η εκχύλιση (reactive extraction), ο διαχωρισμός με μεμβράνες κλπ.
ΠΑΡΑΡΤΗΜΑ 1Α – Υπολογισμοί Κεφαλαίου 2

Π-1Α.1 Υπολογισμός ογκομετρικής παροχής και σύστασης ρευμάτων upstream

Αρχικά, με βάση τα πειραματικά δεδομένα (Πίνακας 3.1), υπολογίζεται η ποσότητα του αποβλήτου που πρέπει να επεξεργαστεί ετησίως ώστε να έχουμε την επιθυμητή παραγωγικότητα.

\[
\frac{C_{SA}}{10,000 \times 10^3 \text{kg/y}} = \frac{C_{Tot. Sugars}}{M_{Tot. Sugars}} \Rightarrow \frac{27.52 \text{ kg/m}^3}{10,000 \times 10^3 \text{kg/y}} = \frac{48.8 \text{ kg/m}^3}{M_{Tot. Sugars}}
\]

\[
M_{Tot. Sugars} = 17,733 \times 10^3 \text{ kg/y}
\]

\[
V_{SSL} = \frac{M_{Tot. Sugars}}{C_{Tot. Sugars}} = \frac{17,733 \times 10^3 \text{ kg/y}}{48.8 \text{ kg/m}^3} = 363,381 \text{ m}^3/y
\]

Επειτα, υπολογίζονται τα χαρακτηριστικά λειτουργίας των βιοαντιδραστήρων.

Για τον υπολογισμό του χρόνου εκφόρτωσης (\(t_{ul}\)) γίνονται οι ακόλουθοι υπολογισμοί, επιλέγοντας τους κατάλληλους χρόνους καθαρισμού (\(t_p = 1 \) ώρα), φόρτωσης (\(t_i = 5 \) ώρες) και τον αριθμό των βιοαντιδραστήρων (\(N = 8\)).

\[
t_i + t_p + t_f + t_{ul} = t_{ul}N
\]

\[
5 + 1 + 68 + t_{ul} = t_{ul} \times 8
\]

\[
t_{ul} = 10.57 \text{ h}
\]

Οπότε, η συνολική διάρκεια ενός batch είναι \(t_{batch} = 84.57 \) h

Ο αριθμός των εκφορτώσεων που πραγματοποιούνται σε 7,920 h συμπίπτει με τον αριθμό των batch.

\[
N_{batches} = \frac{7920}{t_{ul}} = 749 \text{ batches έτος}
\]

Τελικά, ο ενεργός όγκος του κάθε βιοαντιδραστήρα υπολογίζεται λαμβάνοντας υπ’όψιν την ετήσια δυναμικότητα παραγωγής και την απόδοση της ζόμωσης.

\[
V_w = \frac{10,000,000 \text{ kg}}{27.52 \text{ kg/m}^3 \times 749 \text{ batches}} = 485 \text{ m}^3
\]

Γνωρίζοντας τον ενεργό όγκο ενός βιοαντιδραστήρα και το χρόνο φόρτωσης, υπολογίζεται η ογκομετρική παροχή του ρεύματος που εισέρχεται σε αυτόν ανά ώρα.
\[L_{(U-12)} = \frac{V_w}{t_t} = \frac{485m^3}{5h} = 97\frac{m^3}{h} \]

Το ρεύμα U-12 αποτελείται από το προεπεξεργασμένο ρεύμα του αποβλήτου (U-7) καθώς και τα ρεύματα του εμβολίου (U-10) και θερητικών. Τα ρεύματα U-10 και U-11 αποτελούν το 20% του ρεύματος U-12. Με βάση αυτό, υπολογίζονται η ογκομετρική παροχή και η συγκέντρωση των σακχάρων (\(w_{TS}\)) των ρεύματων U-7, U-10, U-11.

\[L_{(U-7)} = 0.8L_{(U-12)} = 0.8 \times 97\frac{m^3}{h} = 77.6\frac{m^3}{h} \]

\[L_{(U-7)}w_{TS(U-7)} = L_{(U-12)}w_{TS(U-12)} \iff w_{TS(U-7)} = \frac{L_{(U-12)}w_{TS(U-12)}}{L_{(U-7)}} = \frac{97\frac{m^3}{h}48.8\frac{g}{L}}{77.6\frac{m^3}{h}} = 6 \]

\[L_{(U-10)} = L_{(U-11)} = 0.1L_{(U-12)} = 0.1 \times 97\frac{m^3}{h} = 9.7\frac{m^3}{h} \]

\[L_{(U-10)}w_{TS(U-10)} = L_{(U-12)}w_{TS(U-12)} \iff w_{TS(U-10)} = \frac{L_{(U-12)}w_{TS(U-12)}}{L_{(U-7)}} = \frac{97\frac{m^3}{h}48.8\frac{g}{L}}{77.6\frac{m^3}{h}} = 61\frac{g}{L} \]

\[L_{(U-10)} = L_{(U-11)} = 0.1L_{(U-12)} = 0.1 \times 97\frac{m^3}{h} = 9.7\frac{m^3}{h} \]

Η συγκέντρωση των λιγνοσουλφονικών ουσιών υπολογίζεται με αντίστοιχα ισοζύγια και στο ρεύμα U-7 είναι 15 gL\(^{-1}\).

Η ογκομετρική παροχή του ρεύματος U-7 ισούται με το U-6 το οποίο απλά ψύχεται όπως εξηγείται στο Κεφάλαιο 3.5.

Γνωρίζουμε από διαθέσιμα πειραματικά δεδομένα ότι κατά την υπερδιήθηση το κυρίως ρεύμα της διεργασίας (U-3) διαχωρίζεται σε ένα ρεύμα πλούσιο σε λιγνοσουλφονικές ουσίες (U-5), το οποίο αποτελεί το 17.9% του U-3, και στο ρεύμα U-6 το οποίο αποτελεί το 82.1% του U-3. Με βάση αυτά, υπολογίζονται οι ογκομετρικές παροχές και η σύσταση των ρευμάτων.

\[L_{(U-3)} = \frac{L_{(U-6)}}{0.821} = \frac{77.6\frac{m^3}{h}}{0.821} = 94.52\frac{m^3}{h} \]

\[L_{(U-5)} = 0.179L_{(U-3)} = 0.179 \times 94.52\frac{m^3}{h} = 16.92\frac{m^3}{h} \]

Όσον αφορά τη συγκέντρωση των σακχάρων, αυτή δεν μεταβάλλεται και παραμένει στα 61 gL\(^{-1}\). Η συγκέντρωση των λιγνοσουλφονικών ουσιών στα ρεύματα U-3, U-5 και U-6 είναι γνωστές από πειραματικά δεδομένα και ισούνται με 158.38gL\(^{-1}\), 165.07 gL\(^{-1}\) και 15.12 gL\(^{-1}\) αντίστοιχα.
Τέλος, γνωρίζοντας την αρχική σύσταση του αποβλήτου (Πίνακας 3.3) υπολογίζεται η απαραίτητη ποσότητα νερού που θα χρησιμοποιηθεί κατά την αραίωση του ρεύματος U-1.

\[L_{(U-3)} = L_{(U-2)} + L_{(U-1)} \]

\[L_{(U-1)} w_{TS_{(U-1)}} = L_{(U-3)} w_{TS_{(U-3)}} \quad \Leftrightarrow \quad L_{(U-1)} = \frac{L_{(U-3)} w_{TS_{(U-3)}}}{w_{TS_{(U-1)}}} = \frac{94.52 \frac{m^3}{h} \times 61 \frac{g}{L}}{176.1 \frac{g}{L}} = 32.74 \frac{m^3}{h} \]

\[L_{(U-2)} = L_{(U-3)} - L_{(U-1)} = 94.52 \frac{m^3}{h} - 32.74 \frac{m^3}{h} = 61.78 \frac{m^3}{h} \]

Π-1A.2 Υπολογισμός θερμοκρασίας κατά την ανάμιξη ρευμάτων U-1, U-2.

Για τον υπολογισμό αυτό, είναι ασφαλές να υποθέσουμε ότι τα ρεύματα της διεργασίας έχουν την θερμοχωρητικότητα του νερού καθώς οι συγκεντρώσεις των διαλυμένων συστατικών δεν επηρεάζουν σημαντικά αυτή τη σταθερά.

\[L_{U-1} c_p T_{U-1} + L_{U-2} c_p T_{U-2} = (L_{U-1} + L_{U-2}) c_p T_{U-3} \]

\[T_{U-3} = \frac{L_{U-1} c_p T_{U-1} + L_{U-2} c_p T_{U-2}}{(L_{U-1} + L_{U-2}) c_p} = \frac{32,740 \frac{kg}{h} \times 4.2 \frac{kJ}{kg^\circ C} \times 80^\circ C + 61,780 \frac{kg}{h} \times 4.2 \frac{kJ}{kg^\circ C} \times 25^\circ C}{(32,740 \frac{kg}{h} + 61,780 \frac{kg}{h}) \times 4.2 \frac{kJ}{kg^\circ C}} = 45.51^\circ C \]

Π-1A.3 Υπολογισμός συνολικού εμβαδού μεμβρανών υπερδιήθησης [H. Blanch, D. Clark, 1996, "Biochemical Engineering"]

\[MF = \frac{L_{(U-3)}}{A} \quad \Leftrightarrow \quad A = \frac{L_{(U-3)}}{MF} = \frac{94,520 \frac{kg}{h}}{25 \frac{m^2}{Lh}} = 3781 m^2 \]

Όπου:
MF: διαπερατότητα μεμβράνης
L_{(U-3)}: ογκομετρική παροχή ρεύματος U-3
A: συνολικό εμβαδόν μεμβράνης

Π-1A.4 Εναλλάκτης θερμότητας κελύφους-αυλών[Z. Μαρούλης, Γ. Σαραβάκος, 2003, Food Process Design]

Γνωρίζοντας τη θερμοκρασία εισόδου του ρεύματος U-6 στον εναλλάκτη, καθώς και την επιθυμητή θερμοκρασία εξόδου, η οποία είναι η θερμοκρασία στην οποία γίνεται η ζύμωση, υπολογίζεται το ολικό φορτίο εναλλαγής, την παροχή του νερού ψύξης και η απαραίτητη επιφάνεια εναλλαγής.

\[Q_{(HX-101)} = L_{(U-6)} C p_w (T_{in_{(U-6)}} - T_{out_{(U-6)}}) = 77,600 \frac{kg}{h} \times 4.2 \frac{kJ}{kg^\circ C} \times (45.51^\circ C - 37^\circ C) = 2.16 \times 10^6 \frac{kJ}{h} \]
Έχοντας επιλέξει τη θερμοκρασία εισόδου και εξόδου του νερού στον εναλλάκτη, υπολογίζεται η παροχή του.

\[Q_{HX-101} = L_{v_{in-HX}}c_{pv}(T_{in-HX} - T_{w_{out-HX}}) \Leftrightarrow L_{v_{in-HX}} = \frac{Q_{HX-101}}{c_{pv}(T_{in-HX} - T_{w_{out-HX}})} = \frac{2.16 \times 10^6 \frac{kJ}{h}}{4.2 \frac{kJ}{kg} \cdot (32^oC - 20^oC)} = 42.8 m^3/h \]

Τέλος, υπολογίζεται το εμβαδόν του εναλλάκτη.

\[Q_{HX-101} = A_{HX-101}U_l \Delta T_{lm} \]

όπου

\[\Delta T_{lm} = \frac{(T_{out-U-6} - T_{w_{in-HX-101}}) - (T_{in-U-6} - T_{w_{out-HX-101}})}{\ln \frac{T_{out-U-6} - T_{w_{in-HX-101}}}{T_{in-U-6} - T_{w_{out-HX-101}}}} = \frac{(37^oC - 20^oC) - (45.51^oC - 32^oC)}{\ln \frac{(37^oC - 20^oC)}{(45.51^oC - 32^oC)}} = 15.25 \]

Οπότε,

\[A_{HX-101} = \frac{Q_{HX-101}}{U_l \Delta T_{lm}} = \frac{2.16 \times 10^6 \frac{kJ}{h}}{3000 \frac{kJ}{m^2 \cdot C}} = 60.7 m^2 \]

Π.1Α.5 Αποστείρωση[Ζ. Μαρούλης, Γ. Σαραβάκος, 2003, Food Process Design]

Για κάθε εναλλάκτη υπολογίζονται το ολικό θεωρούντας το εμβαδόν τους.

\[Q_{str} = L_{U-8}c_{pv}(T_{ster2} - T_{stout}) = 2.69 \frac{kg}{s} \times 4.2 \frac{kJ}{kg \cdot K} (140^oC - 37^oC) = 1164 \frac{kJ}{h} \]
\[Q_{st1} = L_{u-8} c_{pw} (T_{st1} - T_{st1}) \] \[T_{st1} = \frac{Q_{st1}}{L_{u-8} c_{pw}} - T_{st1} = \frac{1163kW}{2.69 \frac{kg}{s}} \cdot \frac{4.2 \frac{kJ}{kg \cdot K}}{20^\circ C} = 83^\circ C \]

\[Q_{st1} = U_{st1} A_{st1} \Delta T_{lm} \] \[A_{st1} = \frac{Q_{st1}}{U_{st1} \Delta T_{lm}} = \frac{1164kW}{3 \frac{kW}{m^2 \cdot K}} = 33.3m^2 \]

Στον 2ο εναλλάκτικο υπολογίζονται τα εξής:

\[Q_{st2} = L_{u-8} c_{pw} (T_{st2} - T_{st1}) = 2.69 \frac{kg}{s} \cdot 4.2 \frac{kJ}{kg \cdot K} (140^\circ C - 83^\circ C) = 644kW \]

\[Q_{st2} = F_{st2} \Delta H_i \] \[F_{st2} = \frac{Q_{st2}}{\Delta H_i} = \frac{644 \frac{kJ}{s}}{2050 \frac{kJ}{kg}} = 0.31 \frac{kg}{s} = 1.13 \frac{m^3}{h} \]

\[Q_{st2} = U_{st2} A_{st2} \Delta T_{lm} \] \[A_{st2} = \frac{Q_{st2}}{U_{st2} \Delta T_{lm}} = \frac{644kW}{3 \frac{kW}{m^2 \cdot K}} = 5.1m^2 \]

Τέλος, διαστασιολογείται το holding tube. Αρχικά, μέσω του γραφήματος Π-1Α.1 και θεωρώντας τυρβώδη ροή στους σωλήνες, επιλέγεται η ιδανική διάμετρος των σωλήνων \(D_i = 0.025 \text{ m} \) για την παροχή της διεργασίας (0.0027 \(m^3 \cdot s^{-1} \)).

Υπολογίζεται τη ταχύτητα του ρευστού:

\[u_{st} = \frac{L_{u-8}}{(\pi d_{tube}^2 / 4)} = \frac{0.0027 \frac{m^3}{s}}{3.14 \times (0.025m^2)^2} = 5.4 \frac{m}{s} \]

Έπειτα υπολογίζεται το μήκος του σωλήνα γνωρίζοντας τον επιθυμητό χρόνο παραμονής (\(t_{residence} = 20s \)):

\[t_{residence} = \frac{L_{tube}}{u_{st}} \] \[t_{residence} = L_{tube} = t_{residence} u_{st} = 20s \times 5.4 \frac{m}{s} = 108m \]
Γράφημα Π-1Α.1: Προσδιορισμός ιδανικής διαμέτρου σωλήνα σε συνάρτηση με ογκομετρική παροχή και είδος ροής (M.S. Peters, K.D. Timmerhaus, R.E. West, Plant Design and Economics for Chemical Engineers, 1993).
Π-1A.6 Ανάδευση [Ι. Κούκος, 2007, "Εισαγωγή στο σχεδιασμό χημικών εργοστασίων]

Η ταχύτητα ανάδευσης επιλέγεται να είναι 200 rpm. Επιλέγεται η εγκατάσταση αναδευτήρων τύπου προπέλας. Η διάμετρος του αναμίκτη είναι το 1/4 της διαμέτρου του ζυμωτήρα. Όπως:

\[
d_i = \frac{d_j}{4} = \frac{7.28m}{4} = 1.8m
\]

Ο υπολογισμός της κατανάλωσης ενέργειας για την ανάδευση βασίζεται στον αδιάστατο αριθμό ισχύος \(N_p \) και τον αριθμό Reynolds (Re).

\[
N_p = \frac{P}{\rho N^3 d_i^5}
\]

\[
Re = \frac{\rho N d_i^2}{\mu}
\]

όπου:

\(N_p \): Power Number

\(Re \): αριθμός Reynolds

\(N \): αριθμός στροφών =200 rpm = 3.33 rps

\(\mu \): ιξώδες του ρευστού (0.653 * 10\(^{-3}\) Pas)

\(d_i \): διάμετρος προπέλας= 1.8 m

\(\rho \): πυκνότητα του ρευστού= 1000 kg m\(^{-3}\)

Ο αριθμός Reynolds ισούται με:

\[
Re = \frac{1000 \times \frac{kg}{m^3} \times 3.33 - 1.8^2}{0.653 \times 10^{-3} Pa \times s} = 16.5 \times 10^6
\]

Για αριθμό \(Re \) μεγαλύτερο του 10,000 και γνωρίζοντας ότι οι ανάγκες της ζύμωσης για ανάδευση δεν είναι έντονες, θέτουμε \(N_p = 0.15 \). Οπότε, υπολογίζεται η ισχύς της προπέλας:

\[
P = N_p \rho N^3 d_i^5 = 0.35 \times 1000 \times \frac{kg}{m^3} \times 3.33 \left(\frac{1}{s}\right)^3 \times 1.8^4 m^8 = 105 kW
\]

Λόγω του μεγάλου ύψους των αντιδραστήρων, πρέπει να εγκατασταθούν 5 προπέλες ανά αντιδραστήρα. Οπότε η συνολική ισχύς ανέρχεται στα 525 kW (704 hp).

Επιπρόσθετα, γνωρίζοντας ότι η ζύμωση διαρκεί 68 h, υπολογίζεται το έργο που παράγεται, υπό τη μορφή θερμότητας, κατά την ανάδευση.

\[
W_i = 525 \frac{kJ}{h} \times 3600 \frac{s}{h} \times 68h = 128.5 \times 10^6 \frac{kJ}{batch}
\]
Π-1A.7 Κατανάλωση \(\text{CO}_2 \)

Είναι γνωστό από τη στοιχειομετρία της αντίδρασης (Πίνακας 3.4.) ότι παράγονται 0.233 moles ηλ. οξέος ανά λίτρο, οπότε αντίστοιχα καταναλώνονται 0.233 moles \(\text{CO}_2 \) ανά λίτρο. Οπότε:

\[
C_{\text{CO}_2} = M_{\text{CO}_2} \frac{\text{moles}}{L} = 0.233 \frac{\text{moles}}{L} \times \frac{44 \text{ g}}{L} = 10.25 \frac{\text{g}}{L}
\]

Αυτό μεταφράζεται σε παροχή 0.151 g L\(^{-1}\) \(\text{h}^{-1} \) (ή 73 kg h\(^{-1} \) για 485 m\(^3 \) υγρού ζύμωσης). Θεωρείται ως δεδομένο ότι διαλυτοποιείται όλη η ποσότητα \(\text{CO}_2 \). Παρ’ όλα αυτά, για να διασφαλιστεί ότι η ποσότητα \(\text{CO}_2 \) θα καλύψει τις ανάγκες της ζύμωσης, επιλέγεται παροχή 80 kg h\(^{-1} \). Συνολικά, σε ένα batch 68 h χρειάζονται 5.44 t \(\text{CO}_2 \).

Π-Α1.8 Παραγόμενη θερμότητα από την αντίδραση [P. Doran, 1995]

Ο υπολογισμός της ενέργειας που παράγεται από την αντίδραση βασίζεται στις ενθαλπίες καύσης των συστατικών:

\[
\Delta H_{\text{rxn}} = \sum_{\text{πρ} \text{ιάκα}} \Delta H_c^o - \sum_{\text{πρ} \text{oιανό}} \Delta H_c
\]

Αν επιλέξουμε την ξυλόζη ως συστατικό με στοιχειομετρικό συντελεστή 1 η αντίδραση γράφεται ως εξής:

\[
\text{C}_5\text{H}_{10}\text{O}_5 + 0,14 \text{C}_6\text{H}_{12}\text{O}_6 + 0,13 \text{C}_6\text{H}_{12}\text{O}_6 + 0,047 \text{C}_6\text{H}_{12}\text{O}_6 + 0,0012 \text{C}_6\text{H}_{10}\text{O}_5 + \text{C}_6\text{N}_0\text{O}_2\text{H}_n + 0,987 \text{CO}_2 \rightarrow
\]

\[
0,987 \text{C}_4\text{H}_6\text{O}_4 + 0,568 \text{C}_6\text{H}_4\text{O}_2 + 0,178 \text{C}_5\text{H}_4\text{O}_2 + 0,225 \text{CH}_2\text{O}_2 + 0,602 \text{CH}_1\text{O}_0,5\text{N}_0,2
\]

Στον πίνακα παρουσιάζονται οι ενθαλπίες καύσης των συστατικών που συμμετέχουν στην αντίδραση:

<table>
<thead>
<tr>
<th>Ενεργεια, J/mol</th>
<th>Ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ξυλόζη</td>
<td>-2340,5</td>
</tr>
<tr>
<td>γαλακτόζη</td>
<td>-5652,5</td>
</tr>
<tr>
<td>Γλυκόζη</td>
<td>-2805</td>
</tr>
<tr>
<td>Μανόζη</td>
<td>-2813</td>
</tr>
<tr>
<td>Αραβινόζη</td>
<td>-2336</td>
</tr>
<tr>
<td>Ηλεκτρικοζύ</td>
<td>-1491</td>
</tr>
<tr>
<td>Οξικοζύ</td>
<td>-876,1</td>
</tr>
<tr>
<td>Γαλακτικοζύ</td>
<td>-1368,3</td>
</tr>
<tr>
<td>Μυρμικοζύ</td>
<td>-254,6</td>
</tr>
</tbody>
</table>

\[
\Delta H = (-2340.5 - 5652.5*0.14 - 2805*0.13 - 2813*0.047 - 2336*0.0012) \times (1491*0.987 - 876.1*0.568 - 1368.3*0.178 - 254.6*0.225) = -1360.927
\]

Ο βιοαντιδραστήρας περιέχει 17,193 kg ξυλόζη δηλαδή 114,620 moles

Το συνολικό ποσό θερμότητας που παράγεται από την αντίδραση είναι:

\[
Q_{\text{reaction}} = 114,620 \text{ moles} \times 1,360.927 \frac{\text{kJ}}{\text{mol}} = 155.99 \times 10^6 \frac{\text{kJ}}{\text{batch}}
\]
Π-1A.9 Ψύξη Αντιδραστήρων

Αρχικά, υπολογίζεται η συνολική παραγόμενη θερμότητα:

\[Q_{\text{tot}} = \frac{\text{θερμότητα λόγω αντιδράσης} + \text{θερμότητα λόγω ανάδευσης}}{68h} = \frac{(155.99 \times 10^6 \text{ kJ} + 128.5 \times 10^6 \text{ kJ})}{68h} = 4.18 \times 10^6 \text{ kJ h}^{-1} \]

Έπειτα, υπολογίζεται η ογκομετρική παροχή του νερού ψύξης, ώστε να απάντησε αυτή η θερμότητα θεωρώντας ότι αυτό εισέρχεται σε θερμοκρασία 20 °C και εξέρχεται σε θερμοκρασία 32°C.

\[
F_w = \frac{Q_{\text{tot}}}{C_p \Delta T_r} = \frac{4.18 \times 10^6 \frac{kJ}{h}}{4.2 \frac{kJ}{kg \cdot ^\circ C} (32^\circ C - 20^\circ C)} = 82.29 \frac{m^3}{h}
\]
ΠΑΡΑΡΤΗΜΑ 1Β – Υπολογισμοί Κεφαλαίου 3

Π-1Β.1 Φυγόκεντρος

Αρχικά, υπολογίζεται η ογκομετρική παροχή του ρεύματος D-1 γνωρίζοντας τον ενεργό όγκο των βιοαντιδραστήρων (\(V_w = 485 \text{ m}^3 \)), και το χρόνο εκφόρτωσης (\(t_w=10.57 \text{ h} \)).

\[
L_{D-1} = \frac{V_w}{t_w} = \frac{485 \text{ m}^3}{10.57 \text{ h}} = 45.88 \frac{\text{m}^3}{\text{h}}
\]

Από τον Πίνακα 3.4. είναι γνωστή η ποσότητα βιομάζας που παράγεται κατά τη ζύμωση (3.5 g L\(^{-1}\)). Ακολουθώς, γνωρίζοντας την πυκνότητα της βιομάζας [P. Doran, 1995], υπολογίζονται οι παρακάτω: η μεταβολή στη συγκέντρωση του ηλεκτρικού οξέος.

\[
F_{\text{biomass}} = C_{\text{biomass}} \times L_{D-1} = 3.5 \frac{\text{g}}{\text{L}} \times 45.880 \frac{\text{L}}{\text{h}} = 161.000 \frac{\text{g}}{\text{h}}
\]

\[
L_{D-2} = \frac{F_{\text{biomass}}}{\rho_{\text{biomass}}} = \frac{161.000 \frac{\text{g}}{\text{h}}}{1.16 \frac{\text{g}}{\text{cm}^3}} = 138.000 \frac{\text{cm}^3}{\text{h}} = 0.138 \frac{\text{m}^3}{\text{h}}
\]

Η παροχή του ρεύματος που εξέρχεται της φυγοκέντρου και η μεταβολή στη συγκέντρωση του ηλεκτρικού οξέος υπολογίζονται παρακάτω:

\[
L_{D-3} = L_{D-1} - L_{D-2} = 45.88 \frac{\text{m}^3}{\text{h}} - 0.138 \frac{\text{m}^3}{\text{h}} = 45.74 \frac{\text{m}^3}{\text{h}}
\]

\[
L_{D-1} w_{SA_{p-1}} = L_{D-3} w_{SA_{p-3}} \iff w_{SA_{p-3}} = \frac{45.880 \frac{\text{L}}{\text{h}} - 27.52 \frac{\text{g}}{\text{L}}}{45.740 \frac{\text{L}}{\text{h}}} = 27.6 \frac{\text{g}}{\text{L}}
\]

Είναι γνωστό από πειραματικά δεδομένα (in-house data) ότι για να αποχωριστεί το ρεύμα τροφοδοσίας, θα πρέπει να βρίσκεται σε επαφή με τον ενεργό άνθρακα για 1 ώρα. Οπότε, γνωρίζοντας το χρόνο επαφής (empty bed contact time, EBCT = 1 h) καθώς και την ογκομετρική παροχή του ρεύματος, υπολογίζονται τα χαρακτηριστικά των στηλών ενεργού άνθρακα.

\[
EBCT = \frac{V_{\text{GAC_{tot}}}}{L_{D-3}} \iff V_{\text{GAC_{tot}}} = 1 \text{h} \times 45.74 \frac{\text{m}^3}{\text{h}} = 45.74 \text{m}^3
\]
Επιλέγεται να εγκατασταθούν 3 στήλες ενεργού άνθρακα, οι οποίες θα λειτουργούν παράλληλα. Τα σχεδιαστικά χαρακτηριστικά της κάθε μίας υπολογίζονται ακολουθώς:

\[L_{1,2,3} = \frac{L_{D-3}}{3} = \frac{45.74 \text{ m}^3}{3} = 15.25 \text{ m}^3 \]

\[V_{GAC} = \frac{V_{GAC_{ref}}}{3} = \frac{45.74 \text{ m}^3}{3} = 15.25 \text{ m}^3 \]

Όπου:
\(V_{GAC} \): Όγκος GAC ανά στήλη (m³)
\(L_{1,2,3} \): Ογκομετρική παροχή ανά στήλη

Επιπρόσθετα, ορίζοντας το λόγο του ύψους ενεργού άνθρακα (BD\(_{GAC}\)) με τη διάμετρο (d\(_{GAC}\)) να ισούται με 7, υπολογίζονται αυτά τα μεγέθη:

\[V_{GAC} = BD_{GAC}A_{GAC} = BD_{GAC} \frac{\pi d_{GAC}^2}{4} = BD_{GAC} \frac{\pi (BD_{GAC})^2}{4} \Rightarrow BD_{GAC} = \sqrt[3]{\frac{15.25 \text{ m}^3 \times 196}{3.14}} = 9.83 \text{ m} \]

\[d_{GAC} = \frac{BD_{GAC}}{7} = \frac{9.83 \text{ m}}{7} = 1.4 \text{ m} \]

\[A_{GAC} = \frac{\pi d_{GAC}^2}{4} = 1.53 \text{ m}^2 \]

Όπου:
\(BD_{GAC} \): ύψος ενεργού άνθρακα (bed depth)
\(d_{GAC} \): διάμετρος στήλης
\(A_{GAC} \): Επιφάνεια εγκάρσιας διατομής κλίνης

Για να εξασφαλίσει επαρκή όγκο για τη διόγκωση του υλικού ορίζεται ότι ο όγκος της στήλης ισούται με \(V_cGAC = 1.5 \ V_{GAC} \) οπότε υπολογίζονται τα ακόλουθα:

\[V_{C_{GAC}} = 1.5V_{GAC} = 1.5 \times 15.25 \text{ m}^3 = 22.87 \text{ m}^3 \]

\[h_{GAC} = \frac{V_{GAC}}{\pi d_{GAC}^2} = 14.86 \text{ m} \]

όπου:
\(h_{GAC} \): ύψος στήλης

Τέλος, με βάση την πυκνότητα του ενεργού άνθρακα, υπολογίζεται η ποσότητα που πρέπει να αγοραστεί.
\[m_{\text{GAC}} = \rho_{\text{GAC}} V_{\text{GAC,tor}} = 400 \, \frac{\text{kg}}{\text{m}^3} \times 45.74 \, \text{m}^3 = 18.29 \, \text{t}\]

Όπου:

\(M:\) μάζα ενεργού άνθρακα

\(\rho:\) πυκνότητα ενεργού άνθρακα

\(V:\) όγκος ενεργού άνθρακα

Π-1B.3. Στήλες Ιοντοεναλλαγής

Κατά τον σχεδιασμό των στηλών ιοντοεναλλαγής λαμβάνονται υπ’ όψη τα εγγεγραμμένα χαρακτηριστικά και οι περιορισμοί στη χρήση της ηττόης Amberlite IR-120-H (Πίνακας 4.4.).

Αρχικά, υπολογίζεται η δυνατότητα ιοντοεναλλαγής της ηττόης (exchange capacity, EC) ανά λίτρο παροχής υγρού, δηλαδή η ποσότητα της ηττόης που χρειάζεται ανά λίτρο παροχής ώστε να γίνει η απαραίτητη ιοντοεναλλαγή H⁺ από τη ηττόη προς τα οργανικά άλατα του νατρίου. Τα moles του Na⁺ που βρίσκονται στην τροφοδοσία προκύπτουν από τον Πίνακα 3.4. Επίσης, είναι γνωστή η δυνατότητα ιοντοεναλλαγής της ηττόης (Πίνακας 4.4.) και ισούται με 1.8 equivalents ανά λίτρο ηττόης, σε μορφή H⁺. Αυτό σημαίνει ότι ένα λίτρο ηττόης έχει τη δυνατότητα να εναλλάσσει 1.8 mole H⁺.

\[EC = \frac{C_{\text{Na}⁺}}{1.8} \text{ moles Na}⁺\text{eq} = \frac{0.462 \text{ moles Na}⁺\text{eq}}{L} = \frac{0.462 \frac{\text{eq}}{L}}{1.8} \text{ moles Na}⁺\text{eq} \times \frac{1.8 \times L_{\text{resin}}}{L} = 0.256 \frac{L_{\text{resin}}}{L}\]

Ορίζεται το μέγεθος BV (Bed Volume) ως τα \(m^3\) παροχής ανά \(m^3\) ηττόης. Οι προδιαγραφές της ηττόης ορίζουν ότι αυτή μπορεί να επεξεργαστεί παροχή (service flow rate, SFR) μεταξύ 5 και 40 BV ανά ώρα. Επιλέγεται να τροφοδοτούνται 5 BV ανά ώρα σε κάθε στήλη, διαφορετικά η ηττόη θα εξαντλούνταν σε λίγα λεπτά και θα ήθελε συνέχη αναγέννηση. Επιπρόσθετα, επιλέγεται ύψος του στρώματος ηττόης (\(h_{\text{resin}}\)) ίσο με 3 m. Αν επιλέγουν μεγαλύτερα ύψος, θα εμφανίζονταν το φαινόμενο της πτώσης πίεσης κατά μήκος της στήλης και θα μειώνε την αποτελεσματικότητα της διεργασίας [Product data sheet, Lenntech].

\[SFR = 5 \frac{BV}{h} = \frac{L_{D-4} \times 45.74 \, m^3}{h} \Rightarrow V_{\text{resin,tor}} = 9.148 \, m^3\]

Επιλέγεται η παράλληλη λειτουργία 11 στηλών. Παρακάτω υπολογίζονται η παροχή και ο όγκος της ηττόης ανά στήλη.

\[L_{\text{resin, colam}} = \frac{L_{D-4}}{11} = \frac{45.74 \, m^3}{11} = 4.16 \, m^3\]

\[V_{\text{resin, colam}} = \frac{V_{\text{resin,tor}}}{11} = \frac{9.148 \, m^3}{11} = 0.83 \, m^3\]
Έπειτα, υπολογίζεται η διάμετρος του στρώματος της ρητίνης, και κατ’ επέκταση η διάμετρος της στήλης.

\[V_{\text{resin, column}} = \pi \frac{d_{\text{resin, column}}^2}{4} h_{\text{resin}} \Leftrightarrow d_{\text{resin, column}} = 0.6m \]

Τέλος, για να συνυπολογιστεί η διάγκωση του υλικού, υπολογίζεται το ύψος της κάθε στήλης.

\[V_{\text{column}} = V_{\text{resin, column}} + 0.4V_{\text{resin, column}} = \pi \frac{d_{\text{resin, column}}^2}{4} h_{\text{column}} \Leftrightarrow h_{\text{column}} = 4.38m \]

Όσον αφορά την αναγέννηση των ρητινών, αρχικά υπολογίζεται ο χρόνος κορεσμού αυτών, δηλαδή, ο χρόνος στον οποίο παύουν να έχουν τη δυνατότητα να εναλλάσσουν Η⁺ με το ρεύμα τροφοδοσίας.

\[t_{\text{resin}} = \frac{V_{\text{resin, column}}}{EC \times L_{\text{resin, column}}} \times \frac{60}{h} \frac{\text{min}}{\text{h}} = \frac{830L_{\text{resin}}}{0.256L_{\text{resin}}} \times \frac{L_{\text{resin}}}{4,160L} \times \frac{60}{h} = 47 \text{ min} \]

Από τις προδιαγραφές της ρητίνης είναι γνωστό ότι κατά την αναγέννηση, η ρητίνη πρέπει να είναι σε επαφή με διάλυμα H₂SO₄ (3%) για 30 λεπτά. Οπότε, γνωρίζοντας την ποσότητα ρητίνης ανά στήλη, υπολογίζεται η παροχή του ρεύματος H₂SO₄.

\[Q_{\text{regeneration}} = \frac{V_{\text{resin, column}}}{T_{\text{regeneration}}} = \frac{0.83m^3}{47 \text{ min}} = 0.0176 \frac{m^3}{\text{min}} = 1.056 \frac{m^3}{\text{h}} = 0.0176 \frac{m^3}{\text{min}} \]

Ακολουθώς, υπολογίζεται η ποσότητα H₂SO₄ που καταναλώνεται ανά κύκλο αναγέννησης, λαμβάνοντας υπ’ όψιν ότι στο εμπόριο υπάρχει η δυνατότητα προμήθειας H₂SO₄ καθαρότητας 98%.

\[M_{H₂SO₄} = \frac{L_{\text{regeneration}} \times 0.03 \times 30 \text{ min}}{0.98} \times \rho_{H₂SO₄} = \frac{0.0176 \frac{m^3}{\text{min}} \times 0.03 \times 30 \text{ min}}{0.98} = 1.840 \frac{kg}{m^3} = 29.74 \text{ kg} \]

Για να καταστεί λειτουργική η ρητίνη ακολουθεί ένα γρήγορο ξέπλυμα με νερό παροχής ίσης με 2 ΒΒ για 15 λεπτά.

\[L_{\text{water, reg}} = 2 \times V_{\text{resin, column}} = \frac{1.66m^3}{15 \text{ min}} = 0.111 \frac{m^3}{\text{min}} \]

Τέλος, υπολογίζεται πόσο κύκλοι αναγέννησης λαμβάνουν χώρα στις 7,920 ώρες λειτουργίας του εργοστασίου.

\[N_{\text{cycles, reg}} = \frac{7,920 \text{ h}}{47 \text{ min}} \times \frac{60 \text{ min}}{1 \text{ h}} = 10,110 \text{ cycles} \]
ΠΑΡΑΡΤΗΜΑ 1Γ – Τελικό Στάδιο Καθαρισμού - Λογισμικό Βελτιστοποίησης

Η διάταξη που εξετάζουμε περιλαμβάνει αρχικά 2 εναλλάκτες θερμότητας κελώφους αυλών. Στον 1ο εναλλάκτη γίνεται εναλλαγή θερμότητας μεταξύ του κυρίως ρεύματος της διεργασίας (D-5) και του ρεύματος του ατμού που εξέχεται του εξατμιστήρα. Στον 2ο εναλλάκτη που δρα ως προθερμαντήρας, το κύριο ρεύμα της διεργασίας θερμαίνεται με ατμό ώστε να οδηγήθει στον εξατμιστήρα. Με αυτό τον τρόπο επιτυγχάνεται μείωση του μεγέθους του εξατμιστήρα. Έπειτα, το ρεύμα συμπυκνώνεται μέσω εξάτμισης στον εξατμιστήρας μηχανικής συμπίεσης ατμών (MVR). Ακολουθεί η παραγωγή των κρυστάλλων ηλεκτρικού οξέος στον κρυσταλλοποιητή μέσω μείωσης της θερμοκρασίας του ρεύματος και κατ’ επέκταση μείωση της διαλυτότητας του ηλεκτρικού οξέος. Ένα εξερχόμενο ρεύμα από τον κρυσταλλοποιητή περιέχει ακόμα διαλυμένο ηλεκτρικό οξύ. Αυτό το ρεύμα αναμιγνύεται με το ρεύμα D-7 στην αρχή της διάταξης ώστε να μην υπάρχουν απώλειες ηλεκτρικού οξέος. Το ρεύμα των κρυστάλλων, που περιέχει υγρασία, οδηγείται στον ξηραντήρα όπου μέσω θερμού αέρα ξηραίνεται και λαμβάνεται το τελικό προϊόν υψηλής καθαρότητας.

Αρχικά, ορίζεται η αντικειμενική συνάρτηση προς ελαχιστοποίηση. Αυτή απαρτίζεται από το κόστος εξοπλισμού και το κόστος των βοηθητικών παροχών που συμμετέχουν στις διατάξεις του εξατμιστήρα, του κρυσταλλοποιητή κατά τον ξηραντήρα. Το κάθε κόστος είναι πολλαπλασιασμένο με τον αντίστοιχο συντελεστή με τον οποίο συμμετέχει στον υπολογισμό του συνολικού κόστους παραγωγής της διεργασίας.

Η αντικειμενική συνάρτηση παίρνει την ακόλουθη μορφή:

\[\text{ObjFun} = (C_{\text{HE1}} + C_{\text{HE2}} + C_{\text{Comp}} + C_{\text{EV}} + C_{\text{Cryst}} + C_{\text{Dryer}}) \times 0.44 + (C_{\text{steamHE2}} + C_{\text{kWh}} + C_{\text{coolingagent}} + C_{\text{steamdryer}}) \times 1.25 \]

όπου:
- \(C_{\text{HE1}} \): κόστος 1ου εναλλάκτη
- \(C_{\text{HE2}} \): κόστος 2ου εναλλάκτη
- \(C_{\text{Comp}} \): κόστος συμπιεστή
- \(C_{\text{EV}} \): κόστος εξατμιστήρα
- \(C_{\text{Cryst}} \): κόστος κρυσταλλοποιητή
- \(C_{\text{Dryer}} \): κόστος ξηραντήρα
- \(C_{\text{steamHE2}} \): κόστος ατμού στον 2ο εναλλάκτη
- \(C_{\text{kWh}} \): κόστος ηλεκτρικής ενέργειας που καταναλώνεται στον συμπιεστή
- \(C_{\text{coolingagent}} \): κόστος ψυκτικού μέσου στον κρυσταλλοποιητή
- \(C_{\text{steamdryer}} \): κόστος ατμού που χρησιμοποιείται για τη θέρμανση του αέρα στον ξηραντήρα
Πινακας Π1.Γ.1: Φυσικοχημικές Σταθερές

<table>
<thead>
<tr>
<th>Αριθμός</th>
<th>Συμβολή</th>
<th>Αξία</th>
<th>Σημασία</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.25</td>
<td>c<sub>pl</sub></td>
<td>4.25 kJ kg<sup>-1</sup>C<sup>-1</sup></td>
<td>ειδική θερμοχωρητικότητα ρευμάτων D-7,8,9</td>
</tr>
<tr>
<td>1.619</td>
<td>c<sub>g</sub></td>
<td>1.619 kJ kg<sup>-1</sup>C<sup>-1</sup></td>
<td>ειδική θερμοχωρητικότητα ατμού</td>
</tr>
<tr>
<td>2,508</td>
<td>ΔH<sub>steam</sub></td>
<td>2,508 kJ kg<sup>-1</sup></td>
<td>ενναπλία εξάτμισης</td>
</tr>
<tr>
<td>2700</td>
<td>U<sub>1</sub></td>
<td>2700 kJ h<sup>-1</sup>m<sup>-2</sup>K<sup>-1</sup></td>
<td>ολικός συντελεστής μεταφοράς θερμότητας στον 1ο εναλλάκτη</td>
</tr>
<tr>
<td>3200</td>
<td>U<sub>2</sub></td>
<td>3200 kJ h<sup>-1</sup>m<sup>-2</sup>K<sup>-1</sup></td>
<td>ολικός συντελεστής μεταφοράς θερμότητας στον 2ο εναλλάκτη</td>
</tr>
<tr>
<td>3600</td>
<td>U<sub>3</sub></td>
<td>3600 kJ h<sup>-1</sup>m<sup>-2</sup>K<sup>-1</sup></td>
<td>ολικός συντελεστής μεταφοράς θερμότητας στον εξατμιστήρα</td>
</tr>
<tr>
<td>1.56</td>
<td>d<sub>SA</sub></td>
<td>1.56 L<sup>-1</sup></td>
<td>πυκνότητα κρυστάλλων ηλεκτρικού οξέος</td>
</tr>
<tr>
<td>3.22</td>
<td>c<sub>gSA</sub></td>
<td>3.22 kJ kg<sup>-1</sup>C<sup>-1</sup></td>
<td>ειδική θερμοχωρητικότητα ρεύματος D-11</td>
</tr>
<tr>
<td>3.5</td>
<td>c<sub>cA</sub></td>
<td>3.5 kJ kg<sup>-1</sup></td>
<td>ειδική θερμοχωρητικότητα ηλεκτρικού μέσου</td>
</tr>
<tr>
<td>17.23</td>
<td>c<sub>pryst</sub></td>
<td>17.23 kJ kg<sup>-1</sup>C<sup>-1</sup></td>
<td>θερμοχωρητικότητα κρυστάλλων ηλ. οξέος</td>
</tr>
<tr>
<td>0.012</td>
<td>H<sub>d0</sub></td>
<td>kg humidity kg air</td>
<td>απόλυτη υγρασία αέρα στούς 25 °C</td>
</tr>
<tr>
<td>0.067</td>
<td>H<sub>d1</sub></td>
<td>kg humidity kg air</td>
<td>απόλυτη υγρασία αέρα στούς 70 °C</td>
</tr>
<tr>
<td>180</td>
<td>U<sub>4</sub></td>
<td>180 kJ h<sup>-1</sup>m<sup>-2</sup>K<sup>-1</sup></td>
<td>ολικός συντελεστής μεταφοράς θερμότητας στον ξηραντήρα</td>
</tr>
</tbody>
</table>

1ος Εναλλάκτης (P-10)

Στον εναλλάκτη αυτό γίνεται εναλλαγή θερμότητας μεταξύ του ρεύματος D-5 και του ρεύματος του ατμού που εξέρχεται του εξατμιστήρα (D-10).

\[
Q_{P-10} = L_{D-5}c_{pl}(T_{D-7} - T_{D-5})
\]
\[
Q_{P-10} = L_{D-10}H_{g}(T_{D-10} - T_{D-6})
\]
\[
Q_{P-10} = A_{P-10}U_{1}(T_{D-10} - T_{D-5})
\]

Ανάμιξη

Σε αυτό το στάδιο, το ρεύμα που εξέρχεται του κρυσταλλοποιητή το οποίο περιέχει 36.15 g L⁻¹ ηλεκτρικό οξύ αναμιγνύεται με το κυρίως ρεύμα της διεργασίας που περιέχει 27.6 g L⁻¹ ηλεκτρικό οξύ.

\[
L_{D-8} = L_{D-7} + L_{D-11}
\]
\[
L_{D-8}w_{SA_{D-8}} = L_{D-7}w_{SA_{D-7}} + L_{D-11}w_{SA_{D-11}}
\]
2ος Εναλλάκτης (P-18)

Στον 2ο εναλλάκτη, το ρεύμα D-8 θερμαίνεται με ατμό χαμηλής πίεσης.

\[Q_{p-18} = L_{D-8} c_{pl} (T_{D-9} - T_{D-8}) \]

\[Q_{p-18} = F_{steam_{p-18}} \Delta H_{steam} \]

\[Q_{p-18} = A_{p-18} U_2 (T_{steam_{p-18}} - T_{D-8}) \]

Εξατμιστήρας (P-16)

Η διάταξη του εξατμιστήρα αποτελείται από έναν συμπιεστή και έναν falling-film evaporator. Ο ατμός που παράγεται κατά την εξάτμιση του προϊόντος, συμπιέζεται και χρησιμοποιείται εκ νέου για να θερμάνει το ρεύμα τροφοδοσίας. Θεωρούμε ότι ο ατμός συμπιέζεται μέχρι τη θερμοκρασία των 102.29 °C.

\[Q_{p-16} = L_{D-9} c_{pl} (T_{compression} - T_{D-9}) \]

\[Q_{p-16} = A_{p-16} U_3 (T_{compression} - T_{D-9}) \]

\[L_{D-9} W_{D-9} = L_{D-11} W_{D-11} \]

Για τον υπολογισμό της ενέργειας που καταναλώνεται στο συμπιεστή, χρησιμοποιήθηκε μία εμπειρική εξίσωση που βασίζεται σε πραγματικά δεδομένα που αφορούν τέτοιες διατάξεις [APV, 2009, “Evaporator handbook”].

Η ενέργεια που απαιτείται για τη συμπίεση ξεκινά από το βαθμό συμπίεσης (compression rate) και τη θερμοκρασιακή διαφορά μεταξύ ρεύματος και ατμού και αφορά τα απαιτούμενα kW ανά τόνο νερού που εξατμίζεται, όπως φαίνεται στον Πίνακα Π-1Γ2 και στο διάγραμμα Π-1Γ.1.

<table>
<thead>
<tr>
<th>Compression Rate</th>
<th>ΔT °C</th>
<th>kW m⁻³ νερού</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>2.69</td>
<td>12.29</td>
</tr>
<tr>
<td>1.2</td>
<td>5.19</td>
<td>23.81</td>
</tr>
<tr>
<td>1.3</td>
<td>7.52</td>
<td>34.85</td>
</tr>
</tbody>
</table>

Diagrammy P-1Γ.1: Εξάρτηση θερμοκρασιακής διαφοράς, κατανάλωσης ενέργειας στον συμπιεστή
Το ρεύμα που εξέρχεται από τον κρυσταλλοποιητή αποτελείται από τους κρυστάλλους ηλεκτρικού οξέος στους οποίους έχει κατακατατηθεί υγρασία ίση με το μισό του όγκου τους (in-house data).

\[
Q_{\text{cryst}} = L_{D-11} c_{p\text{SA}} (T_{D-11} - T_{\text{cryst}})
\]

\[
Q_{\text{cryst}} = L_{E\text{thGl}} c_{E\text{thGl}} (T_{w_{\text{out,Gl}}} - T_{w_{\text{in,Gl}}})
\]

\[
M_{\text{SA,env}} = L_{D-11} (w_{D-11} - w_{D-12})
\]

\[
L_{\text{humidity}} = 0.5 \frac{M_{\text{SA,env}}}{d_{\text{SA}}}
\]

\[
L_{D-13} = \frac{M_{\text{SA,env}}}{d_{\text{SA}}} + 0.5 \frac{M_{\text{SA,env}}}{d_{\text{SA}}}
\]

Ξηραντήρας Ψεκασμού

Το ρεύμα κρυστάλλων που εξέρχεται από τον κρυσταλλοποιητή (D-13), με 50% περιεχόμενη υγρασία, εισέρχεται στον ξηραντήρα όπου αέρας που έχει θερμανθεί σε έναν εναλλάκτη τηρημάτητα, απορροφά την υγρασία των κρυστάλλων ηλεκτρικού οξέος. Στην έξοδο του ξηραντήρα έχουμε το τελικό προϊόν της διεργασίας, δηλαδή τους καθαρούς κρυστάλλους ηλεκτρικού οξέος.

Η παράμετρος από την οποία εξαρτάται το κόστος του ξηραντήρα είναι η ποσότητα υγρασίας που εξατμίζεται ανά ώρα.

Ο αέρας εισέρχεται στον εναλλάκτη τηρημάτητα σε θερμοκρασία 25 °C (T_{\text{airroom}}). Σε αυτή τη θερμοκρασία, και αν υποθέσουμε μια λογική τιμή σχετικής υγρασίας 60%, ο αέρας έχει απόλυτη υγρασία 0.012 \(\frac{\text{kg humidity}}{\text{kg air}} \). Ο αέρας θερμαίνεται, οπότε αυξάνεται η δυνατή απόλυτη υγρασία του και
κατά τη διαδικασία της ξήρανσης ψύχεται. Επιλέγουμε θέρμανση του αέρα στους 150 °C και έξοδο
αυτού από το σύστημα της ξήρανσης στους 70°C. Με αυτό τον τρόπο η δυνατότητα συγκράτησης
υγρασίας του αέρα είναι 0.055 kg kg\text{humidity} _{\text{kg} \text{air}}^{-1} . Γνωρίζουμε ότι όλη η μάζα των κρυστάλλων που θα
εισέλθει στη διάταξη θα εξέλθει από αυτή, χωρίς φυσικά την υγρασία. Οπότε στην έξοδο θα έχουμε μια
παροχή ξηρών κρυστάλλων ηλεκτρικού οξέος, ίση με αυτή που είχαμε στην είσοδο.

Για το σχεδιασμό του ξηραντήρα χρησιμοποιήθηκαν εξισώσεις από το βιβλίο Food Process Design [Ζ. Μαρούλης, Γ. Σαραβάκος, 2003, Food Process Design].

\[Q_{dr_1} = L_{\text{humidity}} (\Delta H_{\text{steam}} - (C_{pL} T_{\text{air, in}} - C_{pv} T_{\text{air, in}}) \text{ θερμότητα που απαιτείται για την εξάτμιση της υγρασίας.} \]

\[Q_{dr_2} = M_{SA} r_{rot} (c_{p\text{rot}} + 0.5 c_{pL})(T_{\text{air, in}} - T_{\text{air, rot}}) \text{ θερμότητα που απαιτείται για τη θέρμανση του στερεού.} \]

\[Q_{dr_3} = L_{\text{air}} (1 + H_{d_0}) (c_{pv} T_{\text{air, in}} - T_{\text{air, rot}}) \text{ θερμότητα που απαιτείται για τη θέρμανση του αέρα.} \]

\[Q_{dr_{TOT}} = Q_{dr_1} + Q_{dr_2} + Q_{dr_3} \text{ Αφορά τη συνολική ενέργεια στη διάταξη.} \]

\[Q_{dr_{TOT}} = A_{P-17} U_4 (T_{\text{steam}} - T_{\text{air, in}}) \]

\[Q_{dr_{TOT}} = F_{\text{steam}_{P-17}} \Delta H_{\text{steam}} \]

\[L_{\text{air}} = \frac{L_{\text{humidity}}}{H_{d_1} - H_{d_0}} \]

Τα αναλυτικά δεδομένα και αποτελέσματα παρουσιάζονται στον ακόλουθο πίνακα.

<table>
<thead>
<tr>
<th>Εξατμιστήρας MVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δεδομένα</td>
</tr>
<tr>
<td>(L_{D-5})</td>
</tr>
<tr>
<td>(W_{D-5})</td>
</tr>
<tr>
<td>(T_{D-5})</td>
</tr>
<tr>
<td>(c_{pL})</td>
</tr>
<tr>
<td>(H_g)</td>
</tr>
<tr>
<td>(T_{\text{steam}})</td>
</tr>
<tr>
<td>(U_4)</td>
</tr>
<tr>
<td>(d_{SA})</td>
</tr>
</tbody>
</table>

| Ρυθμός ροής τροφοδοσίας | συγκέντρωση στο ρεύμα τροφοδοσίας |
|------------------|
| θερμοκρασία ρεύματος τροφοδοσίας | ειδική θερμοχωρητικότητα υγρού |
| θερμοκρασία ατμού | ειδική θερμοχωρητικότητα ατμού |
| θερμοκρασία ατμού χαμηλής πίεσης | ολικός συντελεστής μεταφοράς θερμότητας |
| πυκνότητα κρυστάλλων ηλεκτρικού οξέος | θερμοκρασία εισόδου-εξόδου ρευμάτων |

<table>
<thead>
<tr>
<th>Αποτελέσματα Σχεδιασμού</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ου Εναλλάκτη (P-10)</td>
</tr>
<tr>
<td>(L_{D-7})</td>
</tr>
<tr>
<td>(W_{D-7})</td>
</tr>
<tr>
<td>(T_{D-5, T_{D-7}})</td>
</tr>
<tr>
<td>(A_{P-10})</td>
</tr>
<tr>
<td>(L_{D-10})</td>
</tr>
<tr>
<td>(T_{D-10, T_{D-6}})</td>
</tr>
</tbody>
</table>

<p>| Ρυθμός ροής τροφοδοσίας εισόδου | συγκέντρωση ηλ. οξέος στο ρεύμα L_{D-7} |
|------------------|
| θερμοκρασία εισόδου, εξόδου ρευμάτων | επιφάνεια εναλλαγής θερμότητας |
| παροχή ατμού από τον εξατμιστήρα | θερμοκρασία εισόδου-εξόδου ρευμάτων |</p>
<table>
<thead>
<tr>
<th>Αποτελέσματα Σχεδιασμού 2ου Εναλλάκτη (P-18)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LD-8</td>
<td>53,048 kg h⁻¹</td>
<td>ρυθμός ροής τροφοδοσίας εισόδου</td>
</tr>
<tr>
<td>W_D-8</td>
<td>28.778 g L⁻¹</td>
<td>συγκέντρωση ηλ. οξέος στο ρεύμα LD-8</td>
</tr>
<tr>
<td>T_D-8, T_D-9</td>
<td>60 °C, 97.31 °C</td>
<td>θερμοκρασία εισόδου, εξόδου ρευμάτων</td>
</tr>
<tr>
<td>A_p-18</td>
<td>52.83 m²</td>
<td>επιφάνεια εναλλαγής θερμότητας</td>
</tr>
<tr>
<td>FsteamP-18</td>
<td>5,107.76 kg h⁻¹</td>
<td>παροχή ατμού χαμηλής πίεσης</td>
</tr>
<tr>
<td>TsteamP-18</td>
<td>160 °C</td>
<td>θερμοκρασία ατμού</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Εξατμιστήρας MVR</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LD-10</td>
<td>53,048 kg h⁻¹</td>
<td>ρυθμός ροής τροφοδοσίας εισόδου</td>
</tr>
<tr>
<td>WD-10</td>
<td>28.778 g L⁻¹</td>
<td>συγκέντρωση ηλ. οξέος στο ρεύμα LD-10</td>
</tr>
<tr>
<td>L_D-11</td>
<td>8,481.173 kg h⁻¹</td>
<td>ρυθμός τροφοδοσίας εξόδου</td>
</tr>
<tr>
<td>WD-11</td>
<td>180 g L⁻¹</td>
<td>συγκέντρωση ηλ. οξέος στο ρεύμα LD-11</td>
</tr>
<tr>
<td>T_D-9</td>
<td>97.31 °C</td>
<td>θερμοκρασία εισόδου ρεύματος L_D-9</td>
</tr>
<tr>
<td>T_D-11</td>
<td>100 °C</td>
<td>θερμοκρασία εξόδου ρεύματος L_D-11</td>
</tr>
<tr>
<td>T_compression</td>
<td>102.29 °C</td>
<td>θερμοκρασία ατμού μετά τη συμπίεση</td>
</tr>
<tr>
<td>kWh</td>
<td>1021.03 kW</td>
<td>κατανάλωση ενέργειας κατά τη συμπίεση</td>
</tr>
<tr>
<td>A_p-16</td>
<td>62.11 m²</td>
<td>επιφάνεια εναλλαγής θερμότητας</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Κρυσταλλοποιητής</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Δεδομένα</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_cryst</td>
<td>4 °C</td>
<td>θερμοκρασία διεργασίας κρυστάλλωσης</td>
</tr>
<tr>
<td>T_inEthGl</td>
<td>-13.7 °C</td>
<td>θερμοκρασία εισόδου ψυκτικού μέσου</td>
</tr>
<tr>
<td>c_pSA</td>
<td>3.22 kJ kg⁻¹ °C⁻¹</td>
<td>θερμοχωρητικότητα ρεύματος τροφοδοσίας D-11</td>
</tr>
<tr>
<td>c_pCA</td>
<td>3.5 kJ kg⁻¹ °C⁻¹</td>
<td>θερμοχωρητικότητα ψυκτικού μέσου</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Αποτελέσματα Σχεδιασμού</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LD-13</td>
<td>1,830 kg h⁻¹</td>
<td>ρυθμός ροής κρυστάλλων μαζί με υγρασία</td>
</tr>
<tr>
<td>LD-12</td>
<td>7,259.14 kg h⁻¹</td>
<td>ρυθμός ροής ρεύματος ανακυκλωσίας</td>
</tr>
<tr>
<td>L_ethGl</td>
<td>26,165 kg h⁻¹</td>
<td>ρυθμός ροής ψυκτικού μέσου</td>
</tr>
<tr>
<td>T_ethGl</td>
<td>3 °C</td>
<td>θερμοκρασία εξόδου ψυκτικού μέσου</td>
</tr>
<tr>
<td>M_SA</td>
<td>1,220 kg h⁻¹</td>
<td>παραγόμενη μάζα κρυστάλλων ηλ. οξέος</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Έναρτήρια Ψεκασμού</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Δεδομένα</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_pcryst</td>
<td>17.23 kJ kg⁻¹ °C⁻¹</td>
<td>θερμοχωρητικότητα κρυστάλλων ηλ. οξέος</td>
</tr>
<tr>
<td>H_d_9</td>
<td>0.012 kJ kg⁻¹ °C⁻¹</td>
<td>απόλυτη υγρασία (25 °C)</td>
</tr>
<tr>
<td>H_d_1</td>
<td>0.067 kJ kg⁻¹ °C⁻¹</td>
<td>απόλυτη υγρασία (70 °C)</td>
</tr>
<tr>
<td>T_air_room</td>
<td>25 °C</td>
<td>αρχική θερμοκρασία αέρα</td>
</tr>
<tr>
<td>T_air_in</td>
<td>150 °C</td>
<td>θερμοκρασία εισόδου αέρα</td>
</tr>
<tr>
<td>T_air_out</td>
<td>70 °C</td>
<td>θερμοκρασία εξόδου αέρα</td>
</tr>
<tr>
<td>T_steam</td>
<td>260 °C</td>
<td>θερμοκρασία ατμού ψυκλικής πίεσης</td>
</tr>
<tr>
<td>U_4</td>
<td>180 kJ h⁻¹ m⁻² °C⁻¹</td>
<td>ολικός συντελεστής μεταφοράς θερμότητας</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Αποτελέσματα Σχεδιασμού</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LD-17</td>
<td>1,220 kg h⁻¹</td>
<td>ρυθμός ροής τροφοδοσίας εξόδου</td>
</tr>
<tr>
<td>L_humidity</td>
<td>610 kg h⁻¹</td>
<td>ρυθμός εξάτμισης υγρασίας</td>
</tr>
<tr>
<td>L_air</td>
<td>7,109 kg h⁻¹</td>
<td>ρυθμός ροής θερμού αέρα</td>
</tr>
</tbody>
</table>

| Εναλλάκτης θερμότητας | | |
Εξισώσεις Κοστολόγησης

Όπως προαναφέρθηκε, η αντικειμενική συνάρτηση αποτελείται από τις εξισώσεις κόστους του εξοπλισμού καθώς και τις βοηθητικές παραχές.

Για την κοστολόγηση του εξοπλισμού δημιουργήθηκαν διαγράμματα με τιμές κόστους προμήθειας είτε από το βιβλίο των Peters, Timmerhaus “Σχεδιασμός και οικονομική μελέτη εγκαταστάσεων για μηχανικούς” είτε από το ηλεκτρονικό εργαλείο υπολογισμού κόστους των Peters, Timmerhaus & West. Αυτό έγινε ώστε να μπορεί το κόστος να εισαχθεί ως εξίσωση στο πρόγραμμα βελτιστοποίησης.

Κόστος Συμπιεστή:

\[y = 218.51x + 106205 \]
\[R^2 = 0.9957 \]

\[C_{comp} = (218.5 \times \text{kWh}) + 10,620 \]

Κόστος εξατμιστήρα:

\[y = 2357.5x + 211804 \]
\[R^2 = 0.9935 \]
$C_{evap} = (2.357 \times A_{p-16}) + 21.180$

κόστος κρυσταλλοποιητή

\[
y = 0.1366x^3 - 49.059x^2 + 6050.3x - 37395
\]

$R^2 = 0.9986$

κόστος ξηρατήρια ψεκασμού

\[
y = 119.02x + 228758
\]

$R^2 = 0.988$

$C_{cryst} = 0.136M_{SA}^3 - 49.05M_{SA}^2 + 6050.3M_{SA} - 37,395$

$C_{Dryer} = 119L_{humidity} + 22,875$
Κόστος εναλλακτών θερμότητας κελύφους – αυλών (carbonsteel)

\[y = 50.833x + 8988.9 \]

\[R^2 = 0.9975 \]

\[C_{heatech} = 50.83A_{heatech} + 8,988 \]

Κώδικας λογισμικού GAMS

SCALAR CpL heat capacity of liquid in kJ per kg per degC /4.215/;
SCALAR CpV heat capacity of steam in kJ per kg per degC /1.619/;
SCALAR DHv0 enthalpy of vaporization at 0degC in kJ per kg /2508/;
SCALAR T0 feed temperature of process stream in degC /37/;
SCALAR wstart mass fraction of solute in feed stream /27.6/;
SCALAR Lstart flowrate of process stream in kg per h /45740/;
SCALAR TS steam temperature in degC /160/;
SCALAR U overall heat transfer coefficient in kj per (h m2 degC) /3200/;
SCALAR U2 overall heat transfer coefficient /2700/;
SCALAR Uev overall heat transfer coefficient in kg per (h m2 degC) /3600/;
SCALAR Tf temperature of process stream at crystallizer in degC /4/;
SCALAR CpLc heat capacity of liquid in crystallizer in kj per kg per degC /3.22/;
SCALAR Hd0 saturation of air at room temperature 25 deg C in kg humidity per kg of air /0.012/;
Scalar Hd1 saturation of air at 64 deg C in kg humidity per kg of air /0.067/;
SCALAR Cps heat capacity of succ acid crystals in kj per kg per degC /17.23/;
SCALAR Tair0 initial temperature of air in degC /25/;
Scalar Tair in temp air /150/;
SCALAR Dsa density of succinic acid crystals in kg per l /1.56/;
SCALAR Us heat transfer coefficient for air heater in kj per hour per m2 /180/;
SCALAR Tsteam temperature of steam in dryer heat exchanger /260/;

POSITIVE VARIABLES
L0 stream that enters the evaporator,
w0 m.f. of solute in stream L0,
L1 stream that leaves the evaporator
V0 steam flowrate in preheater,
w1 m.f. of solute in liquid product stream,
Tcomp temperature of compressed air,
Qr heat transfered by cryst stream,
Tr temperature after recirculation,
T2 temperature at preheater,
Tin temperature in preheater i in degC,
A area of heat exchanger in evaporator in m2,
Ar area of heat exchange,
Aev area of evaporator m2,
Q heat transfered in kJ per h,
Qev heat transfered in evaporator in kj per h,
Kwh power consumption,
Tff final temperature of cooling agent,
Lc cooling agent flowrate in kg per h,
Vc volume of crystalizer,
Qc heat transferred in crystallizer in kj per h,
Lcryst mass of crystals in kg per h,
Pr succ acid prod per year,
Gs air flow in dryer in kg per h,
Qwe heat of vapor in dryer in kj per h,
Qsh heat of solid in dryer in kj per h,
Qah heat of air in dryer in kj per h,
Qtot total heat in dryer in kj per h,
Ad surface area of heat exchanger in dryer in m2,
Fs steam required for air heating in kg per h;

VARIABLES

ObjFun objective function in kg per h;

EQUATIONS

FLOW_RATE flow rate with added recirculation from the crystallizer
MASS_BAL_IN initial mass balance
ENTH_BAL overall enthalpy balance in preheater
ENTH_BAL_STEAM steam enthalpy balance
HEAT_EXCHANGE preheater
ENTH_BAL_EVAP enthalpy balance in evaporator
HEAT_EXCHANGE_EV evaporator area
MASS_BAL_SOLUTE solute mass balance
ENERGY_CONS consumption of energy in mvr
ENTH_BAL_CRYST enthalpy balance in crystallizer
ENTH_BAL_COOL cooling agent enthalpy balance
MASS_BAL_CRYST mass balance of crystallizer
Prod_An annual product activity
AIR_FLOW_DRYER air flow needed for drying of main stream in kg per h
WATER_VAP_HEAT heat for water vaporization in dryer
SOLID_HEAT heat of solid in dryer
AIR_HEAT heat of air in dryer
TOTAL_HEAT total heat in dryer
ENTH_BAL_REC enthalpy balance recirc
ENTH_BAL_REC_2 enthalpy balance recirc main stream
AREA_2 area at recirculation
AIR_HEAT_AREA heat exchanger area needed
STEAM_REQ steam required for air heating
COST_ESTIMATION cost estimation;

FLOW_RATE.. \(L_0 = L_{start} + (L_1 - (L_{cryst} + L_{cryst*0.5})/Dsa) \);
MASS_BAL_IN.. \(L_0*W_0 = L_{start}*W_{start} + (L_1 - (L_{cryst} + L_{cryst*0.5})/Dsa)*36.15 \);

ENTH_BAL_REC.. \(Q_r = (L_0 - L_1)*C_{pV}*(100 - Tr) \);
ENTH_BAL_REC_2.. \(Q_r = L_0*C_{pL}*(T_2 - T_0) \);
AREA_2.. \(Q_r = A_r*U_2*(100 - T_0) \);

ENTH_BAL.. \(Q = L_0*C_{pL}*(T_{in} - T_2) \);
ENTH_BAL_STEAM.. \(Q = V_0*(-0.0051*(T_{S}^2) + (-1.7332*T_{S}) +2482.955) \);
HEAT_EXCHANGE.. \(Q = A*U^*(T_s - T_{in}) \);

ENTH_BAL_EVAP.. \(Q_{ev} = L_0*C_{pL}*(T_{comp} - T_{in}) \);
HEAT_EXCHANGE_EV.. \(Q_{ev} = A_{ev}*U_{ev}*(T_{comp} - T_{in}) \);
MASS_BAL_SOLUTE.. \(L_0*W_0 = L_1*W_1 \);
ENERGY_CONS.. \(Kwh = (4.6082*(T_{comp} - T_{in}) - 0.0388)*(L_0-L_1)*0.001 \);
ENTH_BAL_CRYST.. Qc = E= L1*(CpLc*(Tr-Tf));

ENTH_BAL_COOL.. Qc = E= Lc*(3.5*(Tff + 13.7));

MASS_BAL_CRYST.. Lcryst = E= L1*(w1-36.15)*0.001;

PROD_AN.. Pr = E= Lcryst*7920*0.001 + 36.15*0.001*(L1 - (Lcryst + Lcryst*0.5)/Dsa);

AIR_FLOW_DRYER.. Gs = E= (Lcryst/Dsa)*0.5/(Hd1 - Hd0);

WATER_VAP_HEAT.. Qwe = E= (Lcryst/Dsa)*0.5*(DHv0 -((4.2*Tairin)-(-0.0051*(Tairin**2) +
+ 2.6331*Tairin + 2467)));

SOLID_HEAT.. Qsh = E= Lcryst*(Cps + 0.5*4.2)*(Tairin - Tair0);

AIR_HEAT.. Qah = E= Gs*(1 + Hd0*CpV)*(Tairin - Tair0);

TOTAL_HEAT.. Qtot = E= Qwe + Qsh + Qah;

AIR_HEAT_AREA.. Qtot = E= Ad*Us*(Tsteam - Tairin);

STEAM_REQ.. Qtot = E= Fs*(-0.0051*(Tsteam**2) + (-1.7332*Tsteam) +2482.955);

COST_ESTIMATION.. ObjFun = E= (V0*0.01268*7920)*1.25 + (7920*Kwh*0.085)*1.25
+(2357.5*Aev + 211804)*0.44 + (227.67*kwh + 95283)*0.44
+(0.7*Lc*0.000014+0.3*Lc*1.1)*1.25 + (Fs*0.01664*7920)*1.25 +
(0.1366*((Lcryst*24*0.001)**3) - 49.059*(Lcryst*24*0.001)**2) + 6050.3*24*Lcryst*0.001 -
37395)*0.44 + (55.823*(Ad+A+Ar) + 6753.2)*0.44 + (119.02*((Lcryst/Dsa)*0.5)+228758)*0.44;

MODEL MVR /ALL/;

* INITIAL VALUES

Tin.LO=92.48; Tin.UP=97.31;

Tr.LO=60; Tr.UP=90;

Tcomp.LO=102.29; Tcomp.UP=107.11;

T2.UP=50;

L1.LO=1000; L1.UP=60000;

V0.LO=1000; V0.UP=100000;
w1.LO=27.6; w1.UP=180;
A.LO=10; A.UP=800;
Aev.LO=20; Aev.UP=300;
Lc.LO=1000; Lc.UP=100000;
Vc.LO=10; Vc.UP=50000;
Tff.LO=-1; Tff.UP=3;

OPTIONS NLP=knitro;
SOLVE MVR USING NLP MINIMIZING ObjFun;

Blanch Harvey W., Clark Douglas S., Biochemical Engineering

Cheng Ke-Ke et al., Downstream processing of biotechnological produced succinic acid, Applied Microbiology and Biotechnology, 2012, pages 841-850

Coulson J. M., Richardson J. F. 2005 Chemical Engineering

Datta et al., Fermentation and purification process for succinic acid. US patent 5,168,055, 1992

Datta R., Process for the production of succinic acid by an-aerobic fermentation. US patent 5,143,833,1992

Efe Cagri et al., Techno-economic analysis of succinic acid production using adsorption from fermentation medium, Biomass and Bioenergy, 2013, Pages 479-492

Qiang Li, Dan Wang, Yong Wub, Wangliang Li, Yunjian Zhangd, Jianmin Xinga, Zhiguo Sua (2010). One step recovery of succinic acid from fermentation broths by crystallization. Separation and Purification Technology 72 (2010) 294–300

Roger G.Harrison, Paul Todd, Scott R. Rudge, Demetri P.Petrides, Bioseparation Science and Engineerering

E4tech, RE-COED and WUR, 2015, "From the Sugar Plattform to biofuels and biochemicals"

Κούκκος Κ. Ιωάννης, 2007, Εισαγωγή στο Σχεδιασμό Χημικών Εργοστασίων

Ζ. Μαρούλης, Γ. Σαραβάκος, 2003, Food Process Design

Τιμές πρώτων υλών [Internet]. Available from: http://www.alibaba.com/