ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΩΝ ΖΩΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΖΩΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΚΑΙ ΕΙΔΙΚΗΣ ΖΩΟΤΕΧΝΙΑΣ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων

ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ

AOHNA 2020

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων

Genome-wide association analysis and gene network analysis for (re)production traits in commercial broilers

ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ

Τριμελής Επιτροπή:

Αντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Ερευν. Β, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ)

Επταμελής εξεταστική επιτροπή:

Αντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Ερευν. Β, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Πηνελόπη Μπεμπέλη (Καθ. ΓΠΑ) Δημήτριος Βλαχάκης (Επ. Καθ. ΓΠΑ) Ευάγγελος Ζωίδης (Επ.Καθ. ΓΠΑ)

Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων

Περίληψη

Σκοπός της παρούσας διδακτορικής διατριβής ήταν ο εντοπισμός γενετικών δεικτών και υποψηφίων γονιδίων που εμπλέκονται στο γενετικό έλεγχο δύο τυπικών πολυγονιδιακών ιδιοτήτων σε κρεοπαραγωγικά ορνίθια. Μία ιδιότητα σχετίζεται με την ανάπτυξη (σωματικό βάρος στις 35 ημέρες, ΣΒ) και η άλλη με την αναπαραγωγική ικανότητα (αριθμός αυγών ανά όρνιθα, ΑΩ). Για το σκοπό αυτό, διεξάχθηκαν γονιδιωματικής κλίμακας αναλύσεις συσχέτισης (GWAS) δεικτών-φαινοτυπικών τιμών και χρησιμοποιήθηκαν διάφορα εργαλεία Βιοπληροφορικής για τον εντοπισμό υποψηφίων λειτουργικών γονιδίων που επηρεάζουν έκαστη ή και τις δύο ιδιότητες, ταυτόχρονα.

Στο Κεφάλαιο 1 περιγράφεται η βέλτιστη στρατηγική δειγματοληψίας για τον εντοπισμό υπευθύνων γενετικών δεικτών και γονιδίων όταν λόγω περιορισμένων οικονομικών πόρων δεν είναι δυνατή η γονοτύπηση του συνόλου των ατόμων ενός πληθυσμού. Ειδικότερα, εξετάστηκε η αποτελεσματικότητα εναλλακτικών σεναρίων τα οποία περιελάμβαναν τυχαία υποσύνολα καθώς και υποσύνολα ακραίων φαινοτύπων μεγέθους 5% έως 50% ενός συνολικού πληθυσμού 6.700 ορνιθίων κρεοπαραγωγής. Το πιο αποτελεσματικό σενάριο δειγματοληψίας προσδιορίστηκε συγκρίνοντας τους στατιστικώς σημαντικούς δείκτες μεταξύ των υποσυνόλων και ολόκληρου του πληθυσμού. Στο βέλτιστο σενάριο, η αναζήτηση των πλέον πιθανών υποψηφίων δεικτών για την ιδιότητα βασίστηκε στο ποσοστό της φαινοτυπικής διακύμανσης που αυτοί εξηγούν χρησιμοποιώντας ένα κατώτερο όριο της τάξεως του 1%. Ως βέλτιστο σενάριο δειγματοληψίας αναδείχθηκε η χρησιμοποίηση του ημίσεος του συνολικού πληθυσμού το οποίο περιλαμβάνει ακραίες (υψηλές και χαμηλές) φαινοτυπικές τιμές για την ιδιότητα. Στο σενάριο αυτό, εντοπίστηκαν συνολικά πέντε δείκτες οι οποίοι εδράζουν εντός ή εγγύς έξι γονιδίων (CACNB1, MYOM2, SLC20A1, ANXA4, FBXO32, SLAIN2) και δέκα δημοσιευμένων ποσοτικών γονιδιακών τόπων (OTLs) σχετιζόμενων με την ανάπτυξη. Τα παρόντα ευρήματα έδειξαν ότι υπό συνθήκες περιορισμένων πόρων, η διεξαγωγή GWAS με το ήμισυ του πληθυσμού το οποίο περιλαμβάνει ακραίους φαινοτύπους για την ιδιότητα συνιστά μια αποτελεσματική στρατηγική για τον εντοπισμό υποψηφίων γονιδίων.

Στο Κεφάλαιο 2 διερευνάται η χρησιμότητα διαφόρων βιοπληροφορικών εργαλείων κατά την αναζήτηση λειτουργικών γονιδίων για ποσοτικές ιδιότητες όπως το ΣΒ. Αργικά διεξήγθηκε ανάλυση συσγέτισης γενωμικών δεικτών-φαινοτυπικών τιμών για την ιδιότητα. Η ανάλυση αυτή ανέδειξε 12 στατιστικώς σημαντικούς δείκτες σχετιζόμενους με την ιδιότητα. Ακολούθησε αναζήτηση δημοσιευμένων ποσοτικών γονιδιακών τόπων (QTLs) και υποψηφίων γονιδίων εντός γενωμικών περιοχών εύρους 1 Mb γύρω από τους στατιστικώς σημαντικούς δείκτες. Η αναζήτηση αυτή ανέδειξε 1012 υποψήφια γονίδια θέσεως και 197 δημοσιευμένους QTLs σχετιζόμενους με την ανάπτυξη. Ακολούθησε λειτουργική ανάλυση (Functional Enrichment Analysis, FEA), ανάλυση ατραπών (Pathway Analysis, PA), τοπολογική ανάλυση δικτύου γονιδίων (Gene Network Analysis, GNA) και ανάλυση λειτουργικής προτεραιοποίησης (Gene functional Prioritization Analysis, GPA) με σκοπό την πρόβλεψη του λειτουργικού ρόλου των υποψηφίων γονιδίων. Η λειτουργική ανάλυση των υποψηφίων γονιδίων ανέδειξε 49 γονίδια ως εμπλεκόμενα σε αναπτυξιακές διαδικασίες ενώ 25 γονίδια βρέθηκαν να συμμετέχουν σε βιολογικές ατραπούς σχετιζόμενες με την ανάπτυξη. Η τοπολογική ανάλυση δικτύου γονιδίων και η ανάλυση λειτουργικής προτεραιοποίησης ανέδειξαν 14 κοινά γονίδια (UBC, SMAD4, SHC1, NRAS, PSMD4, CDC6, PSMD7, RARA,

PSMB4, CDH1, STAT5B, MED1, PSMD3, CDT1) ως πλέον σχετιζόμενα με την ιδιότητα. Η εφαρμογή των παραπάνω μεθόδων, είτε μεμονωμένα είτε συνδυαστικά, έδειξε ότι οι υπάρχουσες γνωσιακές βάσεις και τα διαθέσιμα εργαλεία μπορούν να συνεισφέρουν αποτελεσματικά στον εντοπισμό λειτουργικών γονιδίων για τις εξεταζόμενες ιδιότητες.

Στο Κεφάλαιο 3 επιχειρήθηκε ανίχνευση δομών¹ (modules) για τα υποψήφια γονίδια θέσεως και ακολούθως ανάλυση του λειτουργικού τους ρόλο με σκοπό τον εντοπισμό πλέον πιθανών γονιδίων για την ιδιότητα ΣΒ. Αρχικά, διενεργήθηκε γενωμική ανάλυση δεικτώνφαινοτυπικών τιμών. Ακολούθησε αναζήτηση δημοσιευμένων ποσοτικών γονιδιακών τόπων (QTLs) και γονιδίων θέσεως εντός γενωμικών περιοχών με υψηλά επίπεδα ανισορροπίας σύνδεσης (D'>0.8) γύρω από τους στατιστικώς σημαντικούς δείκτες. Η αναζήτηση αυτή ανέδειξε 645 υποψήφια γονίδια θέσεως γύρω από 11 στατιστικώς σημαντικούς δείκτες. Ακολούθησε εντοπισμός δομών εντός του δικτύου των υποψηφίων γονιδίων. Η ανάλυση αυτή ανέδειξε 5 δομές σχηματιζόμενες από 401 υποψήφια γονίδια ως συμμετέχοντα σε αναπτυξιακές διαδικασίες ενώ άλλα 14 γονίδια (GABRG1, NGF, APOBEC2, STAT5B, STAT3, SMAD4, MED1, CACNB1, SLAIN2, LEMD2, ZC3H18, TMEM132D, FRYL, SGCB) είχαν αποδεδειγμένα λειτουργικός ρόλους σχετιζόμενους με την ανάπτυξη. Συνολικά, οι παραπάνω αναλύσεις ανέδειξαν 66 λειτουργικά γονίδια για την ιδιότητα, κάποια από τα οποία ήταν νέα και κάποια ήδη γνωστά.

Στο Κεφάλαιο 4 διεξήχθησαν αναλύσεις συσχέτισης γενωμικών δεικτών-φαινοτυπικών τιμών με σκοπό τον εντοπισμό δεικτών που ασκούν προσθετικές ή/και κυριαργικές επιδράσεις στην αναπαραγωγική ικανότητα (ΑΩ) των ορνίθων κρεοπαραγωγής. Ακολούθησε ποσοτική διερεύνηση του τρόπου δράσης των δεικτών και εντοπισμός υποψηφίων γονιδίων για την ιδιότητα. Συνολικά, εντοπίσθηκαν 17 στατιστικώς σημαντικοί δείκτες σε επίπεδο γρωμοσώματος εκ των οποίων 7 σγετίστηκαν με προσθετικής φύσεως, 4 με κυριαργικές και 6 και με τις δύο μορφές επιδράσεων (προσθετικές και κυριαρχικές). Ειδικότερα, οι 4 δείκτες κυριαργίας σχετίστηκαν με φαινόμενα μερικής έως πλήρους κυριαργίας. Η αναζήτηση υποψηφίων γονιδίων εντός γενωμικών περιοχών 50 kb γύρω από τους στατιστικώς σημαντικούς δείκτες κατέδειξε συνολικά 57 υποψήφια γονίδια θέσεως. Η ανάλυση λειτουργικής ενίσχυσης των υποψηφίων γονιδίων έδειξε ότι δύο από αυτά (BHLHE40 και CRTC1) εμπλέκονται σε μηγανισμούς ανάδρασης του βιολογικού (cicardian) ρυθμού των πτηνών μέσω της φωτοπεριόδου. Επιπλέον, η ανάλυση λειτουργικής προτεραιοποίησης ανέδειξε επτά γονίδια (GDF15, BHLHE40, JUND, GDF3, COMP, ELF3, CRTC1) ως σγετιζόμενα με την αναπαραγωγή και δύο επιπλέον (ITPR1. ELL) με ποιοτικές ιδιότητες του αυγού. Συνολικά, τα ευρήματα του 4ου Κεφαλαίου υπογραμμίζουν τη σημασία και των μη προσθετικής φύσεως επιδράσεων στο γενετικό έλεγο της αναπαραγωγικής ικανότητας στις κρεοπαραγωγικές όρνιθες προτείνοντας παράλληλα νέα γονίδια για την ιδιότητα.

Στο Κεφάλαιο 5 αναζητήθηκαν οι υπεύθυνοι μηχανισμοί για την παρατηρούμενη αρνητική γενετική συσχέτιση (r_G=-0,17) μεταξύ του σωματικού βάρους (ΣΒ) και της ωοπαραγωγικής ικανότητας (ΑΩ) σε κρεοπαραγωγές όρνιθες. Αρχικά, εφαρμόστηκε διμεταβλητή ανάλυση συσχέτισης γενωμικών δεικτών - φαινοτυπικών τιμών για τις δύο ιδιότητες. Η ανάλυση αυτή ανέδειξε 51 σημαντικούς δείκτες εκ των οποίων οι 13 ήταν ανεξάρτητοι (περιοχές με χαμηλά επίπεδα ανισορροπίας σύνδεσης). Ακολούθησε αναζήτηση δημοσιευμένων ποσοτικών γονιδιακών τόπων (QTLs) και υποψηφίων γονιδίων θέσεως που περιλάμβαναν τους ανεξάρτητους δείκτες. Η αναζήτηση αυτή οδήγησε στον εντοπισμό 17 δημοσιευμένων

¹ Σ' ένα δίκτυο γονιδίων, ως δομή (gene module) ορίζεται ένα σύνολο γονιδίων του οποίου τα 'εσωτερικά' μέλη παρουσιάζουν υψηλότερο βαθμό συνδεσιμότητας (αριθμό αλληλεπιδράσεων) έναντι των 'εζωτερικών' μελών.

εξέταση των βιολογικών διεργασιών ανά υποψήφιο γονίδιο, η οποία ανέδειξε δύο γονίδια (ACVR1, CACNA1H) ως συμμετέχοντα σε αναπτυξιακές και αναπαραγωγικές βιολογικές διεργασίες. Ειδικότερα, το γονίδιο ACVR1 εμπλέκονταν άμεσα στην ανάπτυξη και στην αναπαραγωγή, ενώ το γονίδιο CACNA1H συμμετείχε άμεσα σε αναπαραγωγικές και έμμεσα σε αναπτυξιακές μεταβολικές λειτουργίες. Σύμφωνα με τη βιβλιογραφία, τα δύο προαναφερθέντα γονίδια παρουσίασαν τεκμηριωμένη εμπλοκή σε αναπτυξιακές και αναπαραγωγικές βιολογικές και αναπαραγωγικές βιολογικές το γονίδια παρουσίασαν τεκμηριωμένη εμπλοκή σε αναπτυξιακές και αναπαραγωγικές διοχημικές ατραπούς. Τα ευρήματα του παρόντος Κεφαλαίου συνεισφέρουν στην βαθύτερη κατανόηση του γενετικού μηχανισμού που ευθύνεται για την αρνητική γενετική συσχέτιση μεταξύ της ανάπτυξης και της αναπαραγωγής στα ορνίθια κρεοπαραγωγής, προτείνοντας υποψήφιους γενωμικούς δείκτες και γονίδια με πλειοτροπική δράση.

Επιστημονικό πεδίο: Γονιδιωματική

Λέξεις κλειδιά: κρεοπαραγωγικά ορνίθια, σωματικό βάρος στις 35 ημέρες, αριθμός αυγών ανά όρνιθα, γονιδιωματικής κλίμακας αναλύσεις συσχέτισης, βέλτιστη στρατηγική δειγματοληψίας, εργαλεία Βιοπληροφορικής, επιδράσεις κυριαρχίας, πλειοτροπική δράση.

Genome-wide association analysis and gene network analysis for (re)production traits in commercial broilers

Abstract

Aim of the present PhD thesis was to identify genetic variants and plausible functional genes for two typical polygenic traits in broilers, one related to growth (body weight at 35 days of age, BW) and the other with reproduction efficiency (number of eggs per female broiler, EN). To this end, numerous genome-wide association studies (GWAS) were conducted to detect marker-trait associations and various post-GWAS in silico methods were applied in efforts to discover (novel) functional candidate genes for individual and joint traits. Chapter 1 presents an optimal sampling strategy when conducting cost-effective GWASs. To this end, 19 GWASs for BW were conducted using random and extreme phenotype (continuous and dichotomized) samples with sizes ranging from 5% to 50% of a total population of 6700 broilers. The most efficient sampling scenario was identified by comparing genome-wide significant marker signals between sub-samples and the whole population. This comparison pointed out 50% extreme phenotype sampling as the optimal sampling scenario. In the optimal sampling scenario, putative genetic variants were selected using a threshold of 1% for the Proportion of Variance Explained associated with markers. This search strategy resulted in identification of a total number of five putative causal genetic variants. These variants resided in genomic regions harboring ten growth-related QTLs (e.g. breast muscle percentage, abdominal fat weight etc.) and six growth related genes (CACNB1, MYOM2, SLC20A1, ANXA4, FBXO32, SLAIN2). Chapter findings proposed the use of 50% extreme phenotype sampling as the optimal sampling strategy to detect causative genes when performing cost-effective GWASs.

Chapter 2 investigates the utility of various computational (*in silico*) techniques to propose functional candidate genes for BW. First, a GWAS for BW was conducted to detect significant marker-trait associations. This analysis pointed out twelve genome-wide significant SNPs across nine autosomes. The search for positional candidate genes in 1 Mb flanking regions around the significant markers revealed a total number of 1,012 candidate genes and 197 growth-related QTL/associations. Implementation of Functional Enrichment Analysis (FEA), Pathway Analysis (PA), Gene Network Analysis (GNA) and Gene functional Prioritization Analysis (GPA) to predict functional relevance of the candidate genes followed. FEA pointed out 49 candidate genes participating in system development while PA highlighted 25 member genes in growth-related pathways. GPA and GNA pointed out 14 common genes (*UBC*, *SMAD4*, *SHC1*, *NRAS*, *PSMD4*, *CDC6*, *PSMD7*, *RARA*, *PSMB4*, *CDH1*, *STAT5B*, *MED1*, *PSMD3* and *CDT1*) with highest functional relevance to the trait under study. Application of the preceding computational methods has, individually or jointly, demonstrated that extant knowledge and available tools can be useful to prioritize most likely candidates for traits under investigation.

In Chapter 3, the functional role of modular genes (genes organized into dense sub-networks) was explored in efforts to identify causal genes for BW. To this end, first a GWAS for BW was carried out. Then, genomic regions around the significant SNPs showing strong linkage disequilibrium levels (D'>0.8) were searched to identify positional candidate genes and reported QTLs for the trait. This search revealed a total number of 645 positional candidate genes around 11 genome-wide significant markers. Community structure analysis was then conducted to detect densely interconnected nodes (modules) of the positional candidate genes. This analysis detected five modules formed by 401 candidate genes. Functional enrichment analysis of the modular genes showed 52 genes as participating in developmental processes. 14 more modular genes (*GABRG1*, *NGF*, *APOBEC2*, *STAT5B*, *STAT3*, *SMAD4*, *MED1*,

CACNB1, SLAIN2, LEMD2, ZC3H18, TMEM132D, FRYL and SGCB) had evidenced growth functional relevance. In the present Chapter, a total number of 66 functional candidate genes for BW were proposed, some of which were novel and some identified in previous studies. Chapter 4 aimed to provide the genetic variants impacting on egg number (EN) in female broilers. To this end, additive and dominant genetic models were applied to detect traitmarker associations. This analysis resulted in identification of a total number of 17 chromosome-wide significant markers. Of these, 7 were additive, 4 dominant and 6 additive plus dominant. Degree of dominance for the purely dominant markers ranged from partial to complete dominance. A total number of 57 positional candidate genes were identified within 50 kb flanking regions around the significant markers. Functional enrichment analysis of the positional candidate genes pinpointed two genes (BHLHE40 and CRTC1) to be involved in the 'entrainment of circadian clock by photoperiod' biological process. Gene prioritization analysis of the positional candidate genes identified ten top ranked genes (GDF15, BHLHE40, JUND, GDF3, COMP, ITPR1, ELF3, ELL, CRLF1 and IFI30). Seven prioritized genes (GDF15, BHLHE40, JUND, GDF3, COMP, ELF3, CRTC1) had documented functional relevance to reproduction, while two more prioritized genes (ITPR1 and ELL) are reported to be related to egg quality in female chickens.

Chapter 5 aimed to shed light in the genetic mechanism underlying the antagonistic (negative) genetic correlation between growth (BW) and reproduction (EN) in broilers. First, a bivariate marker-traits association analysis was performed. This analysis resulted in detection of a total number of 51 genome-wide significant markers across 21 autosomes. Application of stepwise conditional-joint analyses pinpointed a total number of 13 independent markers. These independent markers were located within 17 reported QTLs and within or close proximity to 14 positional candidate genes. Examination of the Gene Ontology (GO) Biological Process (BP) profile per candidate gene highlighted two genes (*ACVR1* and *CACNA1H*) that were participating in relevant BPs to the traits under study. Of these genes, *ACVR1* was directly involved in both developmental and reproductive processes while *CACNA1H* was directly participating in reproduction and indirectly in growth via metabolic processes. Literature evidence of the functions of the two aforementioned genes (*ACVR1* and *CACNA1H*) enhanced their candidacy as pleiotropic genes for the examined traits and set them as typical gene exemplars of horizontal pleiotropy. Chapter findings provide novel insight in the nature of the antagonistic co-variation between growth and reproduction in female broilers.

Scientific field: Genomics

Keywords: broilers, body weight at 35 days of age, number of eggs per female broiler, genome-wide association studies, optimal sampling strategy, computational approaches, dominant genetic effects, pleiotropy.

Acknowledgements

Throughout the PhD, I acknowledge:

- Dr. Santiago Avendano (Aviagen Ltd) for financial support and data provision.
- Dr. A. Kranis and Dr. A. Hager for fruitful and helpful discussions in Genomics. Most and foremost, I would like to thank my supervisor A. Kominakis who shared his knowledge in statistical Genetics, guided me into the right direction whenever necessary and helped me to struggle.
- Dr. G. Maniatis (Aviagen Ltd) for data preparation.
- My family for their support.

Table of Contents

Περίληψη	
Abstract	6
General Introduction	
Chapter 1	
Identification of Candidate Genes for Body Weight in Broilers Using Extr Phenotype Genome-Wide Association Study	eme- 18
1.1. Abstract	18
1.2. Introduction	18
1.3. Material and methods	19
1.3.1. Animals and SNPs	19
1.3.2. Sampling scenarios	20
1.3.3. Marker-trait association analysis	20
1.3.4. Quantile-quantile plots and estimation of the genomic inflation factor	21
1.3.5. Proportion of variance explained by SNP per sampling case	21
1.3.6. Estimation of allelic effects based on PVE	21
1.3.7. Detection efficacy across the various sampling scenarios	21
1.3.8. Identification of putative causative genetic variants	21
1.3.9. Variant effect prediction of putative causative genetic variants	22
1.4. Results	22
1.4.1. Identification of significant SNPs in whole population sampling	22
1.4.2. Detection efficacy across the various sampling scenarios and estimated PVE	22
1.4.3. Identification and effect prediction of putative causative genetic variants	23
1.5. Discussion	23
1.5.1. Detection efficacy of EPS	23
1.5.2. Detection of causative genetic variants	23
1.6. Conclusions	24
1.7. References	25
Tables and Figures of Chapter 1	28
Chapter 2	
Elucidating the functional role of 1,012 candidate genes revealed by a Genome Association Study for body weight in broilers	Wide 43
2.1. Abstract	43

2.2. Introduction	43
2.3. Material and methods	44
2.3.1. Data	44
2.3.2. Statistical analysis	44
2.3.3. Identification of QTL and positional candidate genes	45
2.3.4. Functional enrichment and pathway analysis	45
2.3.5. Gene prioritization	
2.4. Results	46
2.4.1. Significant SNPs and positional candidate genes	
2.4.2. Detection of QTL/associations	
2.4.3. Functional enrichment and pathway analysis	47
2.4.4. Gene prioritization and network analysis	47
2.5. Discussion	47
2.6. References	49
Chapter 3	
Discovery and characterization of functional modules associated with body weils broilers	ight in 58
2.1 Abstract	58
5.1. Abstract	
3.2. Introduction	58
3.2. Introduction	58 59
 3.1. Abstract	58 59 59
 3.1. Abstract	58 59 59 59
 3.1. Abstract	58 59 59 59 59
 3.1. Abstract	58 59 59 59 59 59 60
 3.1. Abstract	58 59 59 59 59 59 60
 3.1. Abstract	58 59 59 59 59 59 60 60
 3.1. Abstract	58 59 59 59 59 60 60 60 61
 3.1. Abstract	58 59 59 59 59 60 60 60 61
 3.1. Abstract	58 59 59 59 59 60 60 61 61 61
 3.1. Abstract	58 59 59 59 59 60 60 61 61 61 61 61
 3.1. Abstract. 3.2. Introduction	58 59 59 59 59 60 60 61 61 61 61 61 61 62 63
 3.1. Abstract	58 59 59 59 59 60 60 61 61 61 61 61 61 62 63
 3.1. Abstract	58 59 59 59 59 60 60 61 61 61 61 61 62 63 63 63
 3.1. Abstract. 3.2. Introduction	58 59 59 59 59 60 60 60 60 61 61 61 61 61 61 61 61 61 61 61 61 63 63 63 63

Tables and Figures of Chapter 3	71
Chapter 4	
Deciphering the mode of action and position of genetic variants impacting or number in broiler breeders	n egg 82
4.1. Abstract	82
4.2. Introduction	82
4.3. Material and methods	83
4.3.1. Data	83
4.3.2. Marker-trait association analysis	83
4.3.3. Quantile-quantile plots and estimation of the genomic inflation factor	84
4.3.4. Estimation of genomic heritability and proportion of variance explained	84
4.3.5. Identification of significant SNPs under multicollinearity conditions	84
4.3.6. Estimation of the degree of dominance	84
4.3.7. Detection, functional characterization and prioritization of positional candidat genes	e 85
4.4. Results	85
4.4.1. Significant SNPs and PVE	85
4.4.2. Estimation of the degree of dominance	86
4.4.3. Positional candidate genes	87
4.4.4. Functional enrichment analysis	87
4.4.5. Prioritized genes	87
4.5. Discussion	87
4.5.1. Mode of gene action	87
4.5.2. Functional candidate genes	88
4.6. Conclusions	89
4.7. References	90
Tables and Figures of Chapter 4	94
Chapter 5	
Detection of pleiotropic loci with antagonistic effects on body weight and egg numb chickens	ber in 103
5.1. Abstract	103
5.2. Introduction	103
5.3. Material and methods	104
5.3.1. Data and quality control	104
5.3.2. Univariate and bivariate association analyses	104
5.3.3. Multiple-testing correction	106

5.3.4. Selection of independent SNPs	106
5.3.5. Effect prediction of the independent SNPs and identification of positional candidate genes and published QTLs	106
5.3.6. Functional profile of candidate genes and parent GO terms	106
5.4. Results	107
5.4.1. Significant SNPs obtained from univariate and bivariate analyses	107
5.4.2. Independent SNP signals	107
5.4.3. Effect prediction of the independent SNPs and identification of positional candidate genes and published QTLs	108
5.4.4. GO term profiling of candidate genes and GO slim categories	108
5.5. Discussion	108
5.6. References	110
Tables and Figures of Chapter 5	115
6. General discussion	
Appendix – Supplementary Tables and Figures	
Chapter 2	132
Chapter 3	191
Chapter 4	247
Chapter 5	257

General Introduction

1. Quantitative traits

In livestock, the most economically important traits are the quantitative (or complex or polygenic) traits. Apart from economic interest, these traits present also considerable interest from a biological point of view as they exhibit particular features: (i) phenotypic values follow continuous variation (often the normal distribution) (ii) are genetically controlled by an infinite number of loci and each locus has an infinitely small effect (Fisher's [1] infinitesimal model) and (iii) systematic environmental effects also contribute to phenotypic variation. Gradually, the infinitesimal model has been replaced by an finite genetic model, which states that quantitative traits are controlled by a few genes with large effects and many genes with small effects [2].

For many years, the 'black box' of complex traits (i.e. the exact number, genomic location and mode of action of causative genes) remained unrevealed. In an attempt to shed light to the 'black box', the interval mapping of Quantitative Trait Loci (QTL) approach [3] was initially employed. This approach was based on crosses between parental populations displaying maximally different phenotypes and limited number of DNA markers. Due to the small number of segregating polymorphic loci between the extreme populations, the aforementioned studies had limited potential for discovery of genetic associations. As a result, only large QTL intervals [4] and a limited number of trait-associated loci could be identified [5].

2. Genome Wide Association Studies

The advent of high-throughput genotyping technology in form of single nucleotide polymorphism (SNP) arrays has dramatically changed the landscape of gene discovery. Availability of thousands or millions of SNPs ensures the dense genome coverage and allows for efficient screening and detection of markers through genome-wide association studies (GWAS) [6]. Nevertheless, the sample sizes needed to identify SNPs that explain most of heritability (e.g. 80%) of polygenic traits are predicted to range from a few hundred thousand to several millions, depending on the underlying effect-size distributions of the traits [7]. In livestock populations, such sample sizes are unable to attain, at least for now, due to insufficient budgets to fully cover the expense of complete genotyping all phenotyped animals. In such cases, a useful cost-saving strategy is Selective Genotyping in which only a selected fraction of the animals with extreme phenotypic values for the trait under study, are genotyped [2,8]. Studies employing extreme phenotypes are called Extreme-Phenotype GWAS (XP-GWAS, [5]) and are considered to be particularly valuable for detecting genes responsible for quantitative variation in various species [12,10,13].

A typical GWAS includes the following steps [9]: (i) data pre-processing (i.e. applying quality control criteria at the marker and sample level), (ii) checking for population structure (e.g. via estimating the genomic inflation factor and visually examining the Quantile-Quantile (QQ) plot) and (iii) performing single-locus or multi-locus association analysis that involves regressing single SNP or multiple SNPs on a given trait, respectively. In GWA analysis, the additive, (over)dominant or/and recessive genetic model(s) is/are used to screen the genome and then identify SNP-trait associations [10]. For association analysis, linear mixed models [11,12] have been shown to be capable of correcting population structure, family relatedness and/or cryptic relatedness via the kinship matrix inferred from genome-wide markers (genomic relationship matrix). Particularly, multi-locus mixed models (MLMM [13]) involve a multi-dimensional genome scan, in which the effects of all markers are simultaneously estimated. Multi-locus GWAS methods are reported to improve the statistical power and

decrease the number of false positives when compared to single-locus mixed models [14] and thus seem to be a 'gold standard' to perform marker-trait association analyses.

3. Linkage Disequilibrium

GWAS rely on the principle of LD which describes the degree to which an allele of one SNP is correlated (or inherited) with an allele of another SNP. As a result, a significant SNP signal may pinpoint either a *direct* or an *indirect marker-trait association*. In the first case, a *functional SNP* that is influencing a biological system and ultimately affects the phenotype is detected. In the second scenario, the influential SNP is not directly typed, but instead a tag SNP in high LD with the influential SNP is typed and statistically associated to the phenotype. Because of these two possibilities, a significant SNP association from a GWAS should not be always assumed as the causal variant. To alleviate high SNP interdependency arising from LD between markers, *pruning¹*, *clumping²* or *joint and conditional association analysis*³ are usually applied to obtain independent SNPs. Apart from avoiding false positives, relaxing SNPs dependency is also important when dealing with the large-scale testing problem as some multiple testing correction methods (e.g. the *Bonferroni correction* and the *Benjamini-Hochberg procedure*) assume that individual tests are independent of each other.

4. Search of causative genes

Intuitively, genes including lead SNPs and at the same time presenting functional relevance with the trait under study are considered ideal functional candidates. Yet, due to LD, the true causative genes may lie tens or hundreds kb up- and downstream from the significant SNPs. Because of this, the search for candidate genes around the lead SNPs comprises wider genomic distances that typically range from 50 to 1000 kb. Alternatively, this search can be performed within regions showing strong LD levels (e.g. D'>0.80) around the statistically significant SNP [15]. This search may result to tens or hundreds of positional candidate genes and assessing gene candidacy is an important step in efforts to produce a manageable subset of variants for further validation or exploration.

5. Gene functional prediction

When functional relevance of the candidate genes is unknown or limited, computational approaches such as gene set enrichment analysis [16], pathway analysis [17], gene network analysis [18] and gene prioritization analysis [19] can be employed to predict their functional relevance. By mapping genes to their associated biological annotations (such as gene ontology (GO) terms or pathway membership) and then comparing the distribution of the terms within a gene set of interest with the background distribution of these terms, enrichment analysis can identify terms which are statistically over-or under-represented within a given gene list [20]. However, it is widely thought that to understand and predict gene function, genes must be studied in the context of networks. Gene network analysis exploits several interactions [21] (e.g. protein-protein interaction networks (PPINs), interactions by RNA co-expression, literature-curated interactions and interactions derived from high-throughput experiments) and is based on the 'guilt-by-association' (GBA [22]) principle. The GBA

¹ discard pairs of SNPs that are in high or complete LD by removing one SNP from the correlated pair and keeping the one with the largest minor allele frequency

² sort the SNPs by importance (e.g. p-value) and keep only one representative SNP per region of LD

³ selects the SNP with the lowest p value for conditioning the effect on neighboring loci based on the LD between the neighboring SNPs and the selected SNP

principle states that genes with related function tend to be protein interaction partners or share features such as expression patterns. The GBA principle has been applied in gene prioritization analysis to predict novel genes for complex traits [23]. The latter relies on functional annotation similarity between the input genes and phenotypic keywords or known seed genes [24].

Genes in PPINs are organized into densely linked clusters i.e. communities or modules [25]. Modules present a structurally independent gene sub-network with more interior connections and consist of proteins which have the same or similar biological function(s) [26]. Modules could be further distinguished in protein complexes and in dynamic functional modules. Protein complexes are formed by several proteins which interact at the same place and time while dynamic functional modules are composed of few proteins participating in a specific cellular function not necessarily at the same place and time [27]. Moreover, functional modules consist of one or multiple protein complexes participating in a common biological process [28]. Modules do not emerge by chance and they can reveal interactions with biological importance within large PPINs [27]. For this reason, they can be used to efficiently cluster genes into functional groups and to predict protein functions [29].

6. Cross Phenotype Associations and Pleiotropy

GWAS may pinpoint the existence of genetic variants that are associated with multiple, sometimes seemingly distinct, quantitative traits. Such associations are termed crossphenotype (CP) associations [30] and are potential evidence for pleiotropy. An important issue arising here is as how to distinct a *CP association* from true *pleiotropy*. The first occurs when a genetic locus is associated with more than one trait regardless of the underlying cause for the observed association [31], while the second arises when a genetic locus truly affects more than one trait and is one possible underlying cause for an observed CP association[30]. Detection of CP associations can be explored via multivariate or univariate statistical approaches in GWAS. While multivariate approaches [32] allow for direct identification of CP associations, in the context of univariate analyses, detection of CP associations relies on aggregating results of single traits analyses via meta-analysis techniques [33]. When searching for pleiotropic markers via GWAS it is important to obtain independent CP as a marker can be falsely associated with multiple phenotypes due to LD (spurious pleiotropy). Application of LD pruning [34] and/or conditional and joint analysis [35] of the SNP signals can effectively serve to this purpose.

7. Aim and structure of the thesis

The present doctoral thesis was designed to identify genomic markers and candidate genes attributable to the genetic control of two typical quantitative traits in *Gallus gallus* (chicken). One trait is associated with growth (body weight at 35 days, BW) and the other with reproductive efficiency (Egg Number per hen and year, EN). As the two traits display an antagonistic (negative) genetic correlation, a final goal of the current thesis was to identify genomic markers and possibly causal genes associated with antagonistic effects on the two traits. The thesis is comprised by 5 Chapters and is organized as follows.

Chapter 1 aimed to propose an optimal sampling strategy to performing cost effective GWAS for a typical complex trait such as BW at 35 days of age.

In *Chapter 2*, various computational approaches (i.e. functional enrichment analysis, pathway analysis, GBA-based gene prioritization analysis and gene network analysis) were exploited to elucidate the functional role and prioritize candidate genes for BW.

In *Chapter 3*, an alternative approach for BW was followed. Here, it was investigated whether the trait is associated with *functional modules* and if so, they could be used to discover novel candidate gene for the trait under study.

Chapter 4 was designed to identify genetic variants associated with EN in female broilers, to describe the mode of their gene action (additive and/or dominant) and finally to provide a list of the implicated candidate genes for the trait.

Finally, aim of *Chapter 5* was to identify genetic variants and plausible candidate genes contributing to the negative genetic correlation observed between BW and EN in female broilers.

References

[1] Fisher RA. XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Trans R Soc Edinburgh. Royal Society of Edinburgh Scotland Foundation; 1919;52: 399–433. doi:10.1017/S0080456800012163

[2] Hayes B, Goddard ME. The distribution of the effects of genes affecting quantitative traits in livestock. Genet Sel Evol. 2001;33: 209–229. doi:10.1186/1297-9686-33-3-209

[3] Thoday JM. Location of polygenes. Nature. 1961;191: 368–370. doi:10.1038/191368a0

[4] Flint J, Valdar W, Shifman S, Mott R. Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet. Nature Publishing Group; 2005;6: 271–286. doi:10.1038/nrg1576

[5] Yang J, Jiang H, Yeh C-T, Yu J, Jeddeloh JA, Nettleton D, et al. Extreme-phenotype genomewide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. Plant J. John Wiley & Sons, Ltd (10.1111); 2015;84: 587–596. doi:10.1111/tpj.13029

[6] Gumpinger AC, Roqueiro D, Grimm DG, Borgwardt KM. Methods and tools in genome-wide association studies. Methods in Molecular Biology. Humana Press Inc.; 2018. pp. 93–136. doi:10.1007/978-1-4939-8618-7_5

[7] Zhang Y, Qi G, Park J-H, Chatterjee N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat Genet. Nature Publishing Group; 2018;50: 1318–1326. doi:10.1038/s41588-018-0193-x

[8] Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. Genetics Society of America; 1989;121: 185–99. Available: http://www.ncbi.nlm.nih.gov/pubmed/2563713

[9] Reed E, Nunez S, Kulp D, Qian J, Reilly MP, Foulkes AS. A guide to genome-wide association analysis and post-analytic interrogation. Stat Med. 2015;34: 3769–3792. doi:10.1002/sim.6605

[10] Wang MH, Cordell HJ, Van Steen K. Statistical methods for genome-wide association studies. Seminars in Cancer Biology. Academic Press; 2019. pp. 53–60. doi:10.1016/j.semcancer.2018.04.008

[11] Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S, Freimer NB, et al. Variance component model to account for sample structure in genome-wide association studies. Nat Genet. Nature Publishing Group; 2010;42: 348–354. doi:10.1038/ng.548

[12] Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the application of mixed-model association methods. Nat Genet. NIH Public Access; 2014;46: 100–6. doi:10.1038/ng.2876

[13] Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet. Nature Publishing Group; 2012;44: 825–830. doi:10.1038/ng.2314

[14] Cui Y, Zhang F, Zhou Y. The Application of Multi-Locus GWAS for the Detection of Salt-Tolerance Loci in Rice. Front Plant Sci. 2018;9. doi:10.3389/fpls.2018.01464

[15] Yi G, Shen M, Yuan J, Sun C, Duan Z, Qu L, et al. Genome-wide association study dissects genetic architecture underlying longitudinal egg weights in chickens. BMC Genomics. BioMed Central; 2015;16: 746. doi:10.1186/s12864-015-1945-y

[16] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. National Academy of Sciences; 2005;102: 15545–50. doi:10.1073/pnas.0506580102

[17] García-Campos MA, Espinal-Enríquez J, Hernández-Lemus E. Pathway Analysis: State of the Art. Front Physiol. Frontiers; 2015;6: 383. doi:10.3389/fphys.2015.00383

[18] Leiserson MDM, Eldridge J V., Ramachandran S, Raphael BJ. Network analysis of GWAS

data. Current Opinion in Genetics and Development. 2013. pp. 602–610. doi:10.1016/j.gde.2013.09.003

[19] Bromberg Y. Chapter 15: Disease Gene Prioritization. Lewitter F, editor. PLoS Comput Biol. 2013;9: e1002902. doi:10.1371/journal.pcbi.1002902

[20] Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37: 1–13. doi:10.1093/nar/gkn923

[21] Gillis J, Pavlidis P. The Impact of Multifunctional Genes on "Guilt by Association" Analysis. Bader J, editor. PLoS One. 2011;6: e17258. doi:10.1371/journal.pone.0017258

[22] Walker MG, Volkmuth W, Sprinzak E, Hodgson D, Klingler T. Prediction of gene function by genome-scale expression analysis: prostate cancer-associated genes. Genome Res. 1999;9: 1198–203. Available: http://www.ncbi.nlm.nih.gov/pubmed/10613842

[23] Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM. Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res. Cold Spring Harbor Laboratory Press; 2011;21: 1109–21. doi:10.1101/gr.118992.110

[24] Moreau Y, Tranchevent LC. Computational tools for prioritizing candidate genes: Boosting disease gene discovery. Nature Reviews Genetics. 2012. pp. 523–536. doi:10.1038/nrg3253

[25] Liu G, Wang H, Chu H, Yu J, Zhou X. Functional diversity of topological modules in human protein-protein interaction networks. Sci Rep. Nature Publishing Group; 2017;7: 16199. doi:10.1038/s41598-017-16270-z

[26] Terentiev AA, Moldogazieva NT, Shaitan K V. Dynamic proteomics in modeling of the living cell. Protein-protein interactions. Biochemistry (Mosc). 2009;74: 1586–607. Available: http://www.ncbi.nlm.nih.gov/pubmed/20210711

[27] Spirin V, Mirny LA. Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A. National Academy of Sciences; 2003;100: 12123–8. doi:10.1073/pnas.2032324100

[28] Lu H, Shi B, Wu G, Zhang Y, Zhu X, Zhang Z, et al. Integrated analysis of multiple data sources reveals modular structure of biological networks. Biochem Biophys Res Commun. Academic Press; 2006;345: 302–309. doi:10.1016/J.BBRC.2006.04.088

[29] Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein function. Mol Syst Biol. 2007;3: 88. doi:10.1038/msb4100129

[30] Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits: Challenges and strategies. Nature Reviews Genetics. 2013. pp. 483–495. doi:10.1038/nrg3461

[31] Tyler AL, Crawford DC, Pendergrass SA. The detection and characterization of pleiotropy: discovery, progress, and promise. Brief Bioinform. 2016;17: 13–22. doi:10.1093/bib/bbv050

[32] Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods. NIH Public Access; 2014;11: 407–9. doi:10.1038/nmeth.2848

[33] Li X, Zhu X. Cross-phenotype association analysis using summary statistics from GWAS. Methods in Molecular Biology. Humana Press Inc.; 2017. pp. 455–467. doi:10.1007/978-1-4939-7274-6_22

[34] Marees AT, de Kluiver H, Stringer S, Vorspan F, Curis E, Marie-Claire C, et al. A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int J Methods Psychiatr Res. John Wiley and Sons Ltd; 2018;27. doi:10.1002/mpr.1608

[35] Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: A tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88: 76–82. doi:10.1016/j.ajhg.2010.11.011

Chapter 1

Identification of Candidate Genes for Body Weight in Broilers Using Extreme-Phenotype Genome-Wide Association Study¹

1.1. Abstract

Traditionally, genome-wide association studies (GWAS) require maximum numbers of genotyped and phenotyped animals to efficiently detect marker-trait associations. Under financial constraints, alternative solutions should be envisaged such that of performing GWAS with fractioned samples of the population. In the present study, we investigated the potential of using random and extreme phenotype samples of a population including 6,700 broilers in detecting significant markers and candidate genes for a typical complex trait (body weight at 35 days). We also explored the utility of using continuous vs. dichotomized phenotypes to detect marker-trait associations. Present results revealed that extreme phenotype samples were superior to random samples while detection efficacy was higher on the continuous over the dichotomous phenotype scale. Furthermore, the use of 50% extreme phenotype samples resulted in detection of 8 out of the 10 markers identified in whole population sampling. Putative causative variants identified in 50% extreme phenotype samples resided in genomic regions harboring 10 growth-related QTLs (e.g. breast muscle percentage, abdominal fat weight etc.) and 6 growth related genes (CACNB1, MYOM2, SLC20A1, ANXA4, FBXO32, SLAIN2). Current findings proposed the use of 50% extreme phenotype sampling as the optimal sampling strategy when performing a cost-effective GWAS.

Keywords: Body Weight, Broilers, Extreme Phenotypes

1.2. Introduction

Quantitative Trait Loci (QTL) detection presumes the availability of both phenotypic trait values and marker genotypic data. In livestock populations where extensive individual performance recording takes place, collection and availability of phenotypic data on large numbers of animals is an ongoing situation. When costs are not of primary concern, all individuals with phenotypic data are genotyped and included for QTL analysis. However, this is seldom the case and under a limited budget it is necessary to make an effective allocation of genotyping costs. The latter could be extremely high for large sized populations and the high-throughput genotyping technology [1]. A useful genotyping cost-saving strategy is selective genotyping (SG) in which only a selected fraction of the phenotyped individuals, are genotyped [2,3].

The efficacy of SG to locate QTL has been extensively evaluated in simplified settings i.e. a single locus contributing to the phenotype. The basic experimental design was based on

¹ Published in International Journal of Genetics and Genomics. Vol. 8, No. 1, 2020, pp. 29-40. doi: <u>http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=116&doi=10.11648/j.ijgg.20200801.14</u>

Current research was co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project "Genome Wide Association Scanning and Gene Network Analysis of Body Weight in broilers" (MIS 5005869).

segregating populations arising from crosses (backcrossing or intercross) between parental populations displaying maximally different phenotypes. Following this approach, numerous studies have been carried out in an attempt to address issues related to the utility of extreme vs. random samples, the type of sampling strategy (one-tail vs. two-tail, symmetrical vs. asymmetrical sampling) and the optimum proportion(s) of selected samples [4-8].

Due to the small number of segregating polymorphic loci between the extreme populations, the aforementioned studies had limited potential for discovery of genetic associations. As a result, only large QTL intervals [9] and a limited number of trait-associated loci could be identified [10].

In modern GWAS, where diverse populations are used, the sample sizes needed to identify SNPs that explain most of heritability (e.g. 80%) of polygenic traits are predicted to range from a few hundred thousand to several millions, depending on the underlying effect-size distributions of the traits [11]. Samples of the above sizes are now in hand in human studies due to the successes of the large-scale consortia[11]. In livestock populations as well as in wild animal species, such sample sizes are unable to be realized, at least for now, due to insufficient budgets to fully cover the expense of complete genotyping all phenotyped animals.

Extreme-phenotype GWAS (XP-GWAS, [10]) are reported to be particularly valuable for detecting genes or alleles responsible for quantitative variation in species [12,10,13]. Furthermore, extreme phenotype sampling (EPS) is more effective in detecting (rare) variants when compared to random sampling (RS) [7,14,15] and EPS may deliver similar results when compared to a whole population GWAS [13].

So far, most of the studies carried out have aimed to compare the utility of RS and EPS when using comparable sample sizes while others have explored the statistical properties of using continuous vs. dichotomous phenotypes. Moreover, only a limited number of studies have focused on comparison of fractioned samples vs. whole population sampling and on detection of candidate genes for quantitative traits. Driven from the above, we have elaborated the present empirical study with the overarching aim to propose optimal sampling strategies when performing cost effective GWAS. The present report is organized as follows. First, we conducted a GWAS using all animals of a population (whole population sampling, PS) consisted of 6,700 broilers to identify significant SNPs associated with a typical complex trait (body weight at 35 days of age). Next, we selected random and extreme phenotype samples of progressively increasing sizes up to 50% of the whole population and identified SNP signals using continuous and dichotomized phenotypes. Finally, we compared SNP signals between sub-samples (extreme and random) and the whole population and examined whether sub-sampling may lead to the discovery of most plausible functional candidate genes for the trait.

1.3. Material and methods

1.3.1. Animals and SNPs

Genotypes from 6,700 broilers (3,718 males and 2,982 females) with corresponding records on BW at 35 days of age (average=2007.5 g, SD=222.8 g) were made available by Aviagen Ltd. The genotyping was conducted with the 600k Affymetrix HD SNP array [16] and included a total number of 547,904 autosomal SNPs dispersed on 28 chromosomes (GGA1-28). We applied the following quality control (QC) criteria at the marker level i.e. markers were excluded if: call rate<0.95, minor allele frequency (MAF)<0.05 and LD (r²) values>0.99 for genomic distances up to 1 Mb. After application of QC, a final number of 215,555 SNPs remained for further analyses. Marker QC was carried out using the SNP & Variation Suite version 8.8.1 software (Golden Helix: http://www.goldenhelix.com).

1.3.2. Sampling scenarios

The first sampling scenario considered was RS. In this, random samples as high as 5% (RS_5%, n=335), 10% (RS_10%, n=670), 20% (RS_20%, n=1,340), 30% (RS_30%, n=2,010), 40% (RS_40%, n=2,680) and 50% (RS_50%, n=3,350) of the whole population were taken. Adjustment of BW records for three statistically significant (p<0.05) fixed effects: sex (n=2 classes), hatch (n=36 classes) and mating group (n=17 classes) followed, based on the least squares estimates of each class effect. We then performed EPS by taking fractions as high as 5% (EPS_5%), 10% (EPS_10%), 20% (EPS_20%), 30% (EPS_30%), 40% (EPS_40%) and 50% (EPS_50%) of the lower and upper tails of the adjusted phenotypic records. Only symmetrical sampling with equal fractions of the two extremes (low and high) was considered here. One more sampling scenario was also considered by dichotomizing the continuous extreme phenotypes and treating the two extremes as two groups representing a dichotomous phenotype (low and high). This scenario will be referred as the extreme phenotypes binary case (EPSB).

1.3.3. Marker-trait association analysis

An additive multi-locus mixed-model (MLMM) stepwise regression was applied with forward inclusion and backward elimination [17] to detect the significant markers associated with the trait. In the case of the whole and random sampling, the following mixed model was applied to the data:

$$y = X\beta + wa + Zu + e$$

where y is the n x 1 vector of the phenotypic values of BW for n broilers, X is the n x 55 matrix of fixed effects: sex (2 classes), hatch (36 classes), mating group (17 classes), β is the 55 x 1 vector of corresponding coefficients of fixed effects, w is the vector with elements 0 for the major homozygous genotype, 1 for the heterozygote genotype and 2 for the minor homozygous genotype (additive genetic model), α is the vector of the fixed effect for the minor allele of the candidate SNP to be tested for association, Z is the incidence matrix relating observations to the polygenic random effects, u is the vector of random polygenic effects, and e is the vector of random residuals. The random effects were assumed to be normally distributed with zero means and the following covariance structure:

$$Var\begin{bmatrix} u\\ e \end{bmatrix} = \begin{bmatrix} G\sigma_u^2 & 0\\ 0 & I\sigma_e^2 \end{bmatrix}$$

where σ_u^2 and σ_e^2 are the polygenic and error variance components, I is the nxn identity matrix, and G is the nxn genomic relationship matrix with elements of pairwise relationship coefficient using all the 215,555 SNPs. The genomic relationship coefficient between two individuals j and k, was estimated as follows:

$$\frac{1}{215,555} \sum_{i=1}^{215,555} \frac{(x_{ij} - 2p_i)(x_{ik} - 2p_i)}{2p_i(1 - 2p_i)}$$

where x_{ij} and x_{ik} are the numbers (0, 1 or 2) of the minor allele(s) for the i_{th} SNP of the j_{th} and k_{th} individuals, respectively, and p_i is the frequency of the minor allele [18]. Note that inclusion of the genomic relationship matrix in the model has been shown to correct for possible population structure and stratification in the data [19]. This analysis was carried out

with SNP & Variation Suite version 8.8.1 software (Golden Helix: <u>http://www.goldenhelix.com</u>).

During the analysis of the extreme phenotype samples, only the vector of SNP effects (*a*) was included in the model as the rest fixed effects (sex, hatch and mating group) had been appropriately accounted during trait adjustment (see 'Sampling scenarios'). Taken together, a total number of 19 analyses were carried out. All analyses were performed with SNP & Variation Suite (version 8.8.1) software (Golden Helix: <u>http://www.goldenhelix.com</u>). Each time, statistically significant markers were selected at the optimal step of the MLMM stepwise regression according to the extended Bayesian Information Criterion (eBIC, [20]). P-values of SNPs were corrected for multiple comparisons using the false-discovery rate (FDR) method [21] and significance was denoted using a FDR p-value less than 0.05.

1.3.4. Quantile-quantile plots and estimation of the genomic inflation factor

Quantile-quantile (Q–Q) plots were used to analyze the extent to which the observed distribution of the test statistic followed the expected (null) distribution. Q-Q plots along with the estimated genomic inflation factor lambda (λ) was used to assess potential systematic bias due to population structure or to the analytical approach [22].

1.3.5. Proportion of variance explained by SNP per sampling case

The Proportion of Variance Explained by a SNP k (PVE $_k$) was calculated as:

$$PVE_k = \frac{mrss_{h0} - mrss_k}{mrss_{h0}}$$

where $mrss_{h0}$ is the Mahalonobis root sum of squares (mrss) for the null hypothesis and $mrss_k$ is the same for marker k.

1.3.6. Estimation of allelic effects based on PVE

According to Falconer and Mackay [23], the PVE of a SNP is given by formula (1)

$$PVE = \frac{2p(1-p)\beta^2}{\sigma_p^2}$$
(1)

Where:

p is the MAF of the SNP and

 σ_p^2 is the phenotypic variance of the trait

by solving formula (1) for the β term allows for the estimation of the SNP allelic effects (β) as follows:

$$\beta = \sqrt{\frac{PVE \sigma_p^2}{2p(1-p)}} \quad (2)$$

1.3.7. Detection efficacy across the various sampling scenarios

Detection efficacy (DE) of marker-trait associations across the various subsamples was explored by finding the maximum number of lead (i.e. significant) SNPs within 500 kb regions around SNPs detected in whole population sampling (PS).

1.3.8. Identification of putative causative genetic variants

In the most efficient sampling scenario, we used estimated PVE associated with lead SNPs to

infer their importance as causative genetic variants for the trait. Specifically, lead SNPs with $PVE \ge 2.0\%$ were considered putative evidence of large genetic effects [24] while those with $2.0 < PVE \ge 1.0\%$ were considered evidence for moderate genetic effects [24,25].

1.3.9. Variant effect prediction of putative causative genetic variants

Annotation of the putative causative SNPs was predicted using the Variant Effect Predictor tool (VEP, https://www.ensembl.org/Tools/VEP, [26]) and the latest Gallus gallus genome assembly GRCg6a (https://www.ncbi.nlm.nih.gov/assembly/GCF 000002315.6: (ver. accessed:21st April 2019) and NCBI Annotation release 104: https://www.ncbi.nlm.nih.gov/genome/annotation euk/Gallus gallus/104/: accessed: 21st April 2019). VEP identified overlapping transcripts and predicted the effects that SNP alleles could have on genes, transcripts, protein sequence as well as regulatory regions. Apart from the aforementioned, the VEP tool was also used to infer associations of the queried variants with phenotypes via connections with Animal QTL database (Animal QTLdb) and Online Mendelian Inheritance in Animals (OMIA) database for the species.

1.4. Results

1.4.1. Identification of significant SNPs in whole population sampling

Figure 1 displays a Manhattan and Q-Q plot of SNP p-values in PS. As the Q-Q plot clearly shows, there is no evidence of any systematic bias due to population structure or analytical approach in our case. This can also be validated by the estimated value of lambda (λ =0.95). The Q-Q plot also shows that some SNPs depart from the expected probability indicating possible association with the trait. The significant (FDR p-value< 0.05) SNPs detected in PS are shown in Table 1 along with estimated PVE, respective MAF and allelic effects (β). PVE ranged from 1.44% (*rs315329074*) to 0.009% (*rs317777863*) while MAF ranged from 0.066 (*rs314844319*) to 0.469 (*rs15608447*). Highest PVE were attained for markers *rs15425131* (1.44%) and *rs315329074* (1.42%), albeit for different reasons. As Formula 1 implies, PVE is the product of MAF and β . In case of *rs15425131*, PVE is the result of low MAF (0.091) and highest β (3.86 g) while in the case of *rs315329074* is the product of higher MAF (0.171) with lower β (2.93 g). In general, highest PVE were associated with highest p-values on the log₁₀ scale (Table 1).

1.4.2. Detection efficacy across the various sampling scenarios and estimated PVE

Figure 2 presents the genome-wide significant SNPs (n=49) and the corresponding sampling scenario(s) in which each SNP was found to be significantly associated with the trait. Specifically, 10 unique SNP signals were detected in PS plus 39 more in the rest sampling scenarios. As shown in more detail in Table 2, within sampling scenarios, the maximum number (n=13) of SNPs was identified in EPS_20%, followed by EPS_50% (n=11). DE i.e. number of SNP signals that were common or lied within 500kb distances from the PS SNPs are presented in Table 3. DE ranged from a minimum n=3 in RS_30% and EPSB_50% to a maximum n=8 in EPS_50% (Figure 3). A detailed view of SNPs detected across the sampling scenarios in relation to the position of PS SNPs on the same autosomes is provided in Figure 4. As Figure 4 displays, there were 3 SNPs detected within a distance of 436,398 bp (2,890,348-3,326,746 bp) on GGA25 with two markers (*rs317093585* and *rs313194380* were distanced 29,091 bp apart and displayed moderate LD levels (D'=0.37), while markers *rs313194380* and *rs312861757* were distanced 407,307 bp and were in strong LD (D'=0.99).

DE was also found to be dependent on MAF as markers with moderate MAF such as *rs316794400* (MAF=0.17) and *rs315329074* (MAF=0.20) were detected even in small sized samples while markers with lower MAF such as *rs15425131* (MAF=0.09) were detected only in large sized samples (50%) (Table 2). PVE associated with lead SNPs were higher in EPS than RS (Table 2) and estimated PVE in subsamples (random or extreme) were invariably higher than in PS due to the Beavis effect [27] or the winner's curse [28] as it is known in the biostatistics literature.

1.4.3. Identification and effect prediction of putative causative genetic variants

Tables 4 and 5 show the putative causative SNPs in the most efficient sampling scenario i.e. EPS_50%. Specifically, two SNPs i.e. *rs315329074* and *rs15425131* had PVE \geq 2.0% (Table 4) while three markers (*rs14265664*, *rs316794400* and *rs15608447*) had PVE \geq 2.0% and PVE \geq 1.0% (Table 4). *rs315329074* (PVE=3.2%, MAF=0.195) is an intron or downstream variant (at 3') of CACNB1 gene where six growth-related QTLs (such as BW hatch, femur weight etc.) are reported. *rs15425131* (PVE=2.1%, MAF=0.12) is a synonymous variant within *MYOM2* gene where a comb weight QTL is reported. *rs14265664* (PVE=1.3%, MAF=0.10) underlies a region where a wattles weight QTL is reported. This intergenic variant is detected between genes *FBXO32* and *LOC112531900*. Of these, *FBXO32* is the nearest gene distanced only 9247 bp from the marker. *rs316794400* (PVE=1.3%, MAF=0.18) lies at 5' of *SLC20A1* gene and at 3' of the *ANXA4* gene in a region where 2 growth-related QTLs (breast muscle percentage, abdominal fat weight) are reported. Finally, *rs15608447* (PVE=1.2%, MAF=0.47) is an intron variant in *SLAIN2* gene (Table 5).

1.5. Discussion

1.5.1. Detection efficacy of EPS

A first interesting finding of the present study relates to the type of sampling and specifically the superiority of EPS vs. RS. This finding is not new and has been repeatedly validated in the relevant literature [7,14,15]. Yet, the most striking result obtained here was the remarkable efficiency of EPS in detecting marker-trait associations that reached a maximum value of 80% in the case of EPS_50%. This finding complies with results of a GWAS in *Larimichthys crocea* reporting that 40-60% EPS can deliver similar results as using whole population sampling PS [13]. Results on GGA25 have also demonstrated that GWAS-identified SNPs serve only as representatives for the SNPs in the same haplotype block and it is equally likely that SNP peaks may arise as a result of strong LD between the array-identified SNPs [29]. Apparently, this finding has important implications in terms of identifying true causative genetic variants and the underlying functional candidate genes.

A second important outcome deals with the utility of continuous vs. dichotomized phenotypes. Dichotomized phenotypes are favorable when accurate phenotyping is expensive, or phenotypes cannot be measured at a continuous scale and may offer additional advantages due to application of more powerful statistical methods [30,31]. However, there is also evidence (e.g. [7,15]) that this specific design can cause a loss of information and decrease the power. In concordance with the latter studies, present results have demonstrated that dichotomized extreme phenotypes did not offer any advantage over continuous phenotypes, at least in detection of causal SNPs.

1.5.2. Detection of causative genetic variants

Perhaps, the most intriguing task when performing a XP-GWAS is as how to screen and identify the putative causative SNPs. An obvious solution here is to select SNPs with highest PVE, or better, those surpassing a certain threshold (e.g. 1%). In doing so, one should be

wary of the fact that inferences on the true PVE of the causative variants are expected to be biased (inflated) due to the Beavis effect. The severity of the bias depends on sample size but also on the underlying distribution of the true PVE of all causative variants which is assumed to be exponentially or gamma distributed, with an abundance of low PVE loci and very few high PVE loci [32]. As King and Long [32] emphasized, when the vast majority of causative variants contribute 1% or less to the phenotype, the resulting bias is expected to be severe, even in large sized samples (e.g. 1000), because power declines with decreasing PVE.

Despite the aforementioned inherent limitations, in our case, the use of the PVE threshold has proved particularly useful in identifying true causative genetic variants for the trait under study. This may be fairly concluded by the fact that all 5 implicated markers with PVE $\geq 1.0\%$ resided in genomic regions harboring a total number of 10 growth-related OTLs and 6 growth relevant genes. Among the implicated QTLs are breast muscle percentage, abdominal fat weight, body weight hatch, femur weight etc., just to mention some of the reported QTLs in the area. At the same time, the list with the candidate genes includes CACNB1 (calcium voltage-gated channel auxiliary subunit beta 1) that affects skeletal muscle development in mice [33], MYOM2 (myomesin 2) that encodes a fast-fibre isoform of myomesin called Mprotein [34] that is mainly expressed in adult cardiac and fast-twitch fibers in skeletal muscles [35], SLC20A1 (solute carrier family 20 member 1, also known as PiT1) that is necessary for normal liver development [36], ANXA4 (annexin A4) that participates in epithelial cell proliferation [37], FBXO32 (F-box protein 32, also known as Atrogin 1 or MAFbx) a skeletal and cardiac muscle-specific F-box motif- containing protein associated with muscle atrophy [38] and SLAIN2 (SLAIN motif family member 2) that controls the microtubule growth during interphase [39]. Intuitively, genes including lead SNPs and at the same time presenting functional relevance with the trait under study are considered ideal functional candidates for the trait under study. Yet, it is important to bear in mind that, due to LD, the list with the plausible causative genes may eventually include tens or hundreds of genes. In line with this scenario, a total number of 34 modular genes implicated in developmental processes have been identified in strong LD genomic regions around markers rs316794400, rs315329074 and rs15608447 [40].

Another important aspect for successful detection of causative SNP when performing a XP-GWAS relates to MAF. Specifically, the lower the MAF of the causal SNP, the smaller the range of allele frequency in the genotyped SNPs which will result in LD between the two. Therefore, for low-MAF QTLs there are likely to be fewer genotyped SNPs which are in strong enough LD to detect the association. In line with this hypothesis, MacLeod et al. [41] demonstrated, via simulations, that QTLs with low MAFs were harder to detect than those with higher allele frequencies. This scenario may explain why *rs315329074* (*CACNB1* gene) with MAF=0.17 and effect size β =2.9 g was consistently detected across almost all sampling cases, while *rs15425131* (*MYOM2* gene) with lower MAF=0.091 and highest effect size (β =3.9 g) could be detected only in EPS_50%. Even so, successful detection of low MAF variants is dependent not only on the selected fraction of the extreme tails but also on the detection methodology used. While a EPS_50% GWAS was required here to detect *rs15425131* and the *MYOM2* gene, this specific association could be detected when using F_{ST} genome scans even in low sized (10%) extreme samples [42].

1.6. Conclusions

In conclusion the use of EPS resulted in identification of 5 putative causal genetic variant residing in non-coding regulatory regions. Non coding variants constitute the majority of signals in GWAS [43]. Specific methods are needed to translate these results to elucidate the role of noncoding variants [44]. To this end, Claussnitzer et al. [44] have generated a

roadmap by utilizing combined public resources (epigenomic annotations, chromosome conformation, and regulatory motif conservation), targeted experiments for risk and non-risk haplotypes (enhancer screening, gene expression, and cellular profiling) and directed perturbations in primary cells and mouse models (regulator-target knockdown and overexpression and CRISPR-Cas9 genome editing). Finally, while the present study has delivered some practical guidance to perform cost-efficient GWAS, many issues still need to be addressed. These issues relate to the usefulness of alternative sampling strategies such as a two-stage design [12], asymmetrical sampling and the comparison between diverse methods such as signatures of selection in same or different sized samples.

1.7. References

[1] Steemers FJ, Chang W, Lee G, Barker DL, Shen R, Gunderson KL. Whole-genome genotyping with the single-base extension assay. Nat Methods. Nature Publishing Group; 2006;3: 31–33. doi:10.1038/nmeth842.

[2] Lebowitz RJ, Soller M, Beckmann JS. Trait-based analyses for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines. Theor Appl Genet. Springer-Verlag; 1987;73: 556–562. doi:10.1007/BF00289194.

[3] Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. Genetics Society of America; 1989;121: 185–99. Available: http://www.ncbi.nlm.nih.gov/pubmed/2563713.

[4] Darvasi A, Soller M. Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor Appl Genet. Springer-Verlag; 1992;85–85: 353–359. doi:10.1007/BF00222881.

[5] Gallais A, Moreau L, Charcosset A. Detection of marker–QTL associations by studying change in marker frequencies with selection. Theor Appl Genet. Springer-Verlag; 2007;114: 669–681. doi:10.1007/s00122-006-0467-z.

[6] Sen S, Johannes F, Broman KW. Selective genotyping and phenotyping strategies in a complex trait context. Genetics. Genetics Society of America; 2009;181: 1613–26. doi:10.1534/genetics.108.094607.

[7] Barnett IJ, Lee S, Lin X. Detecting rare variant effects using extreme phenotype sampling in sequencing association studies. Genet Epidemiol. NIH Public Access; 2013;37: 142–51. doi:10.1002/gepi.21699.

[8] Rabier CE. On statistical inference for selective genotyping. J Stat Plan Inference. North-Holland; 2014;147: 24–52. doi:10.1016/J.JSPI.2013.11.010.

[9] Flint J, Valdar W, Shifman S, Mott R. Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet. Nature Publishing Group; 2005;6: 271–286. doi:10.1038/nrg1576.

[10] Yang J, Jiang H, Yeh C-T, Yu J, Jeddeloh JA, Nettleton D, et al. Extreme-phenotype genomewide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. Plant J. John Wiley & Sons, Ltd (10.1111); 2015;84: 587–596. doi:10.1111/tpj.13029.

[11] Zhang Y, Qi G, Park J-H, Chatterjee N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat Genet. Nature Publishing Group; 2018;50: 1318–1326. doi:10.1038/s41588-018-0193-x.

[12] Li D, Lewinger JP, Gauderman WJ, Murcray CE, Conti D. Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies. Genet Epidemiol. NIH Public Access; 2011;35: 790–9. doi:10.1002/gepi.20628.

[13] Wan L, Dong L, Xiao S, Han Z, Wang X, Wang Z. Genomewide association study for economic traits in the large yellow croaker with different numbers of extreme phenotypes. J Genet. 2018;97: 887–895. Available: http://www.ncbi.nlm.nih.gov/pubmed/30262700.

[14] Zhou Y-J, Wang Y, Chen L-L. Detecting the Common and Individual Effects of Rare Variants on Quantitative Traits by Using Extreme Phenotype Sampling. Genes (Basel). Multidisciplinary Digital Publishing Institute (MDPI); 2016;7. doi:10.3390/genes7010002.

[15] Bjørnland T, Bye A, Ryeng E, Wisløff U, Langaas M. Improving power of genetic association

studies by extreme phenotype sampling: a review and some new results. 2017; Available: http://arxiv.org/abs/1701.01286.

[16] Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genomics. BioMed Central; 2013;14: 59. doi:10.1186/1471-2164-14-59.

[17] Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet. Nature Publishing Group; 2012;44: 825–830. doi:10.1038/ng.2314.

[18] VanRaden PM. Efficient Methods to Compute Genomic Predictions. J Dairy Sci. 2008;91: 4414–4423. doi:10.3168/jds.2007-0980.

[19] Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the application of mixed-model association methods. Nat Genet. NIH Public Access; 2014;46: 100–6. doi:10.1038/ng.2876.

[20] Chen J, Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika. Oxford University Press; 2008;95: 759–771. doi:10.1093/biomet/asn034.

[21] Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing [Internet]. Journal of the Royal Statistical Society. Series B (Methodological). WileyRoyal Statistical Society; 1995. pp. 289–300. doi:10.2307/2346101.

[22] Yang J, Weedon MN, Purcell S, Lettre G, Estrada K, Willer CJ, et al. Genomic inflation factors under polygenic inheritance. Eur J Hum Genet. Nature Publishing Group; 2011;19: 807–12. doi:10.1038/ejhg.2011.39.

[23] Falconer DS, Mackay TFC. Introduction to Quantitative Genetics. 4th ed. Longmans Green, Harlow, Essex, UK.; 1996.

[24] Seabury C, Oldeschulte D, Saatchi M, Beever J, Decker J, Halley Y, et al. Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genomics. BioMed Central; 2017;18: 386–386. doi:10.1186/S12864-017-3754-Y.

[25] Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S, Freimer NB, et al. Variance component model to account for sample structure in genome-wide association studies. Nat Genet. Nature Publishing Group; 2010;42: 348–354. doi:10.1038/ng.548.

[26] McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl Variant Effect Predictor. Genome Biol. BioMed Central; 2016;17: 122. doi:10.1186/s13059-016-0974-4.

[27] Beavis W. QTL analyses: power, precision, and accuracy.Molecular dissection of complex traits, 1. 1998. pp. 145–162.

[28] Zöllner S, Pritchard JK. Overcoming the Winner's Curse: Estimating Penetrance Parameters from Case-Control Data. Am J Hum Genet. Elsevier; 2007;80: 605. doi:10.1086/512821.

[29] Tak YG, Farnham PJ. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics Chromatin. BioMed Central; 2015;8: 57. doi:10.1186/s13072-015-0050-4.

[30] Guey LT, Kravic J, Melander O, Burtt NP, Laramie JM, Lyssenko V, et al. Power in the phenotypic extremes: a simulation study of power in discovery and replication of rare variants. Genet Epidemiol. 2011;35: n/a-n/a. doi:10.1002/gepi.20572.

[31] Lumley T, Dupuis J, Rice KM, Barbalic M, Bis JC, Cupples LA, et al. TWO-PHASE SUBSAMPLING DESIGNS FOR GENOMIC RESEQUENCING STUDIES [Internet]. 2012. Available: https://pdfs.semanticscholar.org/c2cb/173513a8eb8a0adfb2cd59e90248333ce4c9.pdf.

[32] King EG, Long AD. The Beavis Effect in Next-Generation Mapping Panels in Drosophila melanogaster. G3 Genes, Genomes, Genet. G3: Genes, Genomes, Genetics; 2017;7: 1643–1652. doi:10.1534/G3.117.041426.

[33] Chen F, Liu Y, Sugiura Y, Allen PD, Gregg RG, Lin W. Neuromuscular synaptic patterning requires the function of skeletal muscle dihydropyridine receptors. Nat Neurosci. Nature Publishing Group; 2011;14: 570–577. doi:10.1038/nn.2792.

[34] Fukuzawa A, Lange S, Holt M, Vihola A, Carmignac V, Ferreiro A, et al. Interactions with titin and myomesin target obscurin and obscurin-like 1 to the M-band - implications for hereditary myopathies. J Cell Sci. 2008;121: 1841–1851. doi:10.1242/jcs.028019.

[35] Schoenauer R, Lange S, Hirschy A, Ehler E, Perriard J-C, Agarkova I. Myomesin 3, a Novel

Structural Component of the M-band in Striated Muscle. J Mol Biol. 2008;376: 338–351. doi:10.1016/j.jmb.2007.11.048.

[36] Beck L, Leroy C, Beck-Cormier S, Forand A, Salaün C, Paris N, et al. The Phosphate Transporter PiT1 (Slc20a1) Revealed As a New Essential Gene for Mouse Liver Development. Lewin A, editor. PLoS One. Public Library of Science; 2010;5: e9148. doi:10.1371/journal.pone.0009148.

[37] Yao H-S, Sun C, Li X-X, Wang Y, Jin K-Z, Zhang X-P, et al. Annexin A4-nuclear factor-κB feedback circuit regulates cell malignant behavior and tumor growth in gallbladder cancer. Sci Rep. Nature Publishing Group; 2016;6: 31056. doi:10.1038/srep31056.

[38] Nakashima K, Ishida A, Ijiri D, Ohtsuka A. Effect of dexamethasone on the expression of atrogin-1/MAFbx in chick skeletal muscle. Anim Sci J. John Wiley & Sons, Ltd (10.1111); 2016;87: 405–410. doi:10.1111/asj.12437.

[39] van der Vaart B, Manatschal C, Grigoriev I, Olieric V, Gouveia SM, Bjelić S, et al. SLAIN2 links microtubule plus end-tracking proteins and controls microtubule growth in interphase. J Cell Biol. 2011;193: 1083–1099. doi:10.1083/jcb.201012179.

[40] Tarsani E, Kranis A, Maniatis G, Avendano S, Hager-Theodorides AL, Kominakis A. Discovery and characterization of functional modules associated with body weight in broilers. Sci Rep. Nature Publishing Group; 2019;9: 9125. doi:10.1038/s41598-019-45520-5.

[41] MacLeod IM, Hayes BJ, Savin KW, Chamberlain AJ, McPartlan HC, Goddard ME. Power of a genome scan to detect and locate quantitative trait loci in cattle using dense single nucleotide polymorphisms. J Anim Breed Genet. 2010;127: 133–142. doi:10.1111/j.1439-0388.2009.00831.x.

[42] Tarsani E, Kominakis A, Theodorou G, Palamidi I. Exploiting extreme phenotypes to investigate haplotype structure and detect signatures of selection for body weight in broilers. THE XV th EUROPEAN POULTRY CONFERENCE DUBROVNIK, CROATIA Conference Information and Proceedings. 2018. p. 90. Available:

https://pure.au.dk/portal/files/140225746/sbornik_docladov_epc_2018.pdf.

[43] 1000 Genomes Project Consortium T 1000 GP, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. Europe PMC Funders; 2012;491: 56–65. doi:10.1038/nature11632.

[44] Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W, Haugen C, et al. FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. N Engl J Med. NIH Public Access; 2015;373: 895. doi:10.1056/NEJMOA1502214.

[45] Anand L. chromoMap: An R package for Interactive Visualization and Annotation of Chromosomes. bioRxiv. Cold Spring Harbor Laboratory; 2019; 605600. doi:10.1101/605600.

Tables and Figures of Chapter 1

Table 1. Proportion of variance explained (PVE%), minor allele frequency (MAF) and allelic effects (β) per significant SNP detected in whole population sampling. The estimated phenotypic variance (σ_p^2) was as high as 171.225 g².

SNP ID	GGA	Position (bp)	p-value	-log ₁₀ (p-value)	FDR p-value	PVE(%)	MAF	$\beta(g)$
rs13923872	1	114,049,481	1.8832E-06	5.7251	0.04058	0.3069	0.414	1.041
rs15425131	3	90,795,168	1.7989E-51	50.7450	3.88E-46	1.4411	0.091	3.861
rs313332188	3	99,991,484	4.8484E-13	12.3144	2.09E-08	0.6833	0.437	1.542
rs15608447	4	66,459,916	2.662E-14	13.5748	1.43E-09	0.9009	0.469	1.761
rs317014229	10	1,288,866	1.7144E-08	7.7659	0.00046	0.1351	0.407	0.692
rs316794400	22	5,149,585	9.6605E-20	19.0150	6.94E-15	0.6159	0.202	1.809
rs314844319	24	1,869,760	1.4352E-06	5.8431	0.03436	0.0595	0.066	0.907
rs312861757	25	3,326,746	2.4423E-09	8.6122	7.52E-05	0.2349	0.077	1.685
rs317777863	25	196,842	2.9874E-10	9.5247	1.07E-05	0.00896	0.364	0.182
rs315329074	27	6,920,352	2.4734E-22	21.6067	2.67E-17	1.4233	0.171	2.934

Table 2. Genome-wide significant SNPs across the sampling scenarios (RS: random sampling, EPS: extreme phenotype sampling, EPSB: extreme phenotypes binary case).

RS

Sample proportion (%)	SNP ID	GGA	Position (bp) ^a	p-value	-log10(p-value)	FDR p-value	PVE (%)	MAF
5	rs314268898	18	1,026,668		10.4411	7.81E-06		
				3.62E-11			12.4112	0.089
10	rs316975706	26	805,527		14.6670	4.64E-10		
				2.15E-15			7.5871	0.324
20	rs314007348	4	66,225,823		7.5777	0.0019		
				2.64E-08			2.1494	0.447
	rs318098582	11	18,407,493		33.1007	1.71E-28		
				7.93E-34			5.7627	0.133
	rs16192702	24	494,813		11.3224	5.13E-07		
				4.76E-12			1.5934	0.093
	rs317587988	28	4,553,250		6.1880	0.03496		
				6.48E-07			2.6190	0.465
30	rs314007348	4	66,225,823	3.44E-08	7.4628	0.00248	1.5(42)	0.429
	rs314066852	10	13,562,465	1.07E-06	5.9667	0.03879	1.3043	0.438
							0.1417	0 101
	rs312428343	22	2,016,328	1.06E-07	6.9720	0.00575	0.1417	0.191
							0.0212	0 294
	rs316794400	22	5,149,585	6.93E-07	6.1590	0.02989	0.0212	0.274
							1.2122	0.191
	rs317288536	25	2,173,372	6.15E-21	20.2109	1.33E-15		01171
							3.1489	0.089
	rs315329074	27	6,920,352	3.14E-15	14.5037	3.38E-10		
							2.8260	0.173
40	rs315329074	27	6,920,352		25.2460	1.22E-20		
				5.67E-26			3.3903	0.177

	rs317792664	28	4,336,570		23.7121	2.09E-19		
				1.94E-24			2.8250	0.079
50	rs313097265	2	93,140,828		41.1081	1.68E-36		
				7.79E-42			2.7875	0.101
	rs314007348	4	66,225,823		12.2646	3.91E-08		
				5.43E-13			1.4746	0.446
	rs312428343	22	2,016,328		9.2302	3.17E-05		
				5.88E-10			0.0368	0.302
	rs315329074	27	6,920,352		29.7535	1.90E-25		
				1.76E-30			2.4251	0.174
						l		
EPS								
						FDR		
Sample proportion (%)	SNP ID	GGA	Position (bp) ^a	p-value	-log10(p-value)	p-value	PVE (%)	MAF
5	rs317414603	20	6,729,013		9.8301	3.19E-05		
								0.004
				1.47E-10			20.9532	0.384
	rs316714498	27	5,853,588	1.47E-10	9.6739	2.28E-05	20.9532	0.384
	rs316714498	27	5,853,588	1.47E-10 2.11E-10	9.6739	2.28E-05	20.9532	0.384
10	rs316714498	27 9	5,853,588 17,794,694	1.47E-10 2.11E-10	9.6739	2.28E-05 8.54E-09	20.9532	0.384
10	rs316714498	27 9	5,853,588 17,794,694	1.47E-10 2.11E-10 7.92E-14	9.6739 13.1010	2.28E-05 8.54E-09	20.9532 21.0961 9.2336	0.384
10	rs316714498 rs312675887 rs317414603	27 9 20	5,853,588 17,794,694 6,729,013	1.47E-10 2.11E-10 7.92E-14	9.6739 13.1010 6.2864	2.28E-05 8.54E-09 0.03716	20.9532 21.0961 9.2336	0.384
10	rs316714498 rs312675887 rs317414603	27 9 20	5,853,588 17,794,694 6,729,013	1.47E-10 2.11E-10 7.92E-14 5.17E-07	9.6739 13.1010 6.2864	2.28E-05 8.54E-09 0.03716	20.9532 21.0961 9.2336 12.2069	0.384 0.385 0.299 0.385
10	rs316714498 rs312675887 rs317414603 rs316714498	27 9 20 27	5,853,588 17,794,694 6,729,013 5,853,588	1.47E-10 2.11E-10 7.92E-14 5.17E-07	9.6739 13.1010 6.2864 22.555	2.28E-05 8.54E-09 0.03716 6.01E-18	20.9532 21.0961 9.2336 12.2069	0.384 0.385 0.299 0.385
10	rs316714498 rs312675887 rs317414603 rs316714498	27 9 20 27	5,853,588 17,794,694 6,729,013 5,853,588	1.47E-10 2.11E-10 7.92E-14 5.17E-07 2.78E-23	9.6739 13.1010 6.2864 22.555	2.28E-05 8.54E-09 0.03716 6.01E-18	20.9532 21.0961 9.2336 12.2069 12.9160	0.384 0.385 0.299 0.385
10	rs316714498 rs312675887 rs317414603 rs316714498 rs15272503	27 9 20 27 1	5,853,588 17,794,694 6,729,013 5,853,588 54,426,960	1.47E-10 2.11E-10 7.92E-14 5.17E-07 2.78E-23	9.6739 13.1010 6.2864 22.555 11.2233	2.28E-05 8.54E-09 0.03716 6.01E-18 4.30E-07	20.9532 21.0961 9.2336 12.2069 12.9160	0.384 0.385 0.299 0.385 0.385

		1	(1 401 142		(2205	0.01412		
	rs313930/31	1	61,491,143		0.3385	0.01412		
				4.58E-07			1.7151	0.179
	rs14265664	2	138,095,717		6.5851	0.00934		
	015466050	-	00.001.655	2.59E-07	<	0.0054	3.9939	0.078
	rs31/4662/2	5	23,021,657		6.9020	0.0054		
				1.25E-07			1.8507	0.052
	rs315882280	6	8,228,013		7.7858	0.00088		
				1 (2E 09			5 7104	0.444
	mc212850006	6	11 110 202	1.63E-08	26 5702	5 69E 22	5./124	0.444
	15515850900	0	11,119,205		20.3792	J.06E-22		
				2.63E-27			3.5653	0.469
	rs315438523	8	8,011,741		5.8267	0.03212		
				1 40E 06			1 1002	0.224
	rs312675887	0	17 704 604	1.49E-00	15 7171	2.07E 11	1.1995	0.524
	75512075007	,	17,794,094		13.7171	2.071-11		
				1.91E-16			5.4086	0.292
	rs318099392	19	7,931,078		5.9561	0.0265		
				0.0000011			3 4601	0.225
	rs314275684	23	4,557,952	0.0000011	5.5976	0.04538	5.1001	0.225
			, ,					
				2.52E-06			0.1370	0.112
	rs313580984	24	2,201,697		6.2566	0.01492		
				5.53E-07			1.6366	0.068
	rs315052836	25	3,861,162		5.5859	0.04303		
	212224204	20	1 700 450	2.59E-06	5 (000	0.04010	0.4813	0.051
	rs312334304	28	1,708,458		5.6880	0.04019		
				2.05E-06			0.6336	0.064
30	rs15608447	4	66,459,916		6.4610	0.01491		
				0.455.05			1.1.7.55	0.450
	210000502	11	10 407 402	3.45E-07	24.2944	1.105.10	1.1560	0.479
	rs318098582	11	18,407,493		24.2844	1.12E-19		
				5.19E-25			3.4025	0.167

	rs312732833	15	3,230,864		9.2452	3.06E-05		
				5.68E-10			1.0124	0.219
	rs316794400	22	5,149,585		14.6739	1.52E-10		
				2.11E-15			1.8574	0.162
	rs315329074	27	6,920,352		21.5045	3.37E-17		
				3.12E-22			4.5656	0.219
40	rs15608447	4	66,459,916		7.0534	0.00381		
				8.84E-08			1.0826	0.476
	rs318098582	11	18,407,493		26.9357	2.50E-22		
				1.15E-27			2.9356	0.154
	rs312732833	15	3,230,864		9.3192	2.58E-05		
				4.79E-10			0.6029	0.234
	rs316794400	22	5,149,585		15.6727	1.53E-11		
				2.12E-16			1.6535	0.171
	rs315329074	27	6,920,352		25.1171	8.23E-21		
				7.63E-26			3.9738	0.204
50	rs14265664	2	138,095,717		7.9691	0.00046		
				1.07E-08			1.3448	0.097
	rs15425131	3	90,795,168		37.7102	4.20E-33		
				1.94E-38			2.1237	0.121
	rs313332188	3	99,991,484		7.3380	0.00165		
				4.59E-08			0.9527	0.413
	rs15608447	4	66,459,916		9.1601	3.73E-05		
				6.91E-10			1.1722	0.471
	rs317466272	5	23,021,657		6.3435	0.01086		
				4.53E-07			0.6491	0.059
	rs312834930	7	11,436,451		6.7243	0.00508		
				1.88E-07			0.8102	0.061

	rs316794400	22	5,149,585		13.8921	1.38E-09		
				1.28E-14			1.2500	0.180
	rs313580984	24	2,201,697		6.8975	0.0039		
		25	2 010 420	1.26E-07	5 (0(2	0.02042	0.7371	0.078
	rs515194580	25	2,919,439		5.0905	0.03943		
				2.01E-06			0.7341	0.071
	rs317093585	25	2,890,348		6.1911	0.01388		
				6.43E-07			0.3532	0.100
	rs315329074	27	6,920,352		9.2925	3.66E-05		
				5.09E-10			3.1952	0.195
EPSB								
Sample proportion (%)	SNP ID	GGA	Position (bp) ^a	p-value	-log10(p-value)	FDR p-value	PVE (%)	MAF
5	rs317414603	20	6,729,013		10.1464	1.54E-05		
				7.13E-11			21.6499	0.384
	rs316714498	27	5,853,588		9.2020	6.77E-05		
				6.28E-10			21.0301	0.385
10	rs14265664	2	138,095,717		7.3887	0.00294		
				1 08E 08			7 1316	0.070
	rs317668107	3	33,354,124	4.00L-00	15.9946	1.09E-11	7.1310	0.070
				1.01E 1.0			0.0454	0.257
	rs317414603	20	6 729 013	1.01E-16	16 0446	1 95E-11	9.0454	0.357
	15017 111000	20	0,727,015		10.0110	1.,02 11		
20	215061647	6	11.017.574	9.02E-17	10.0014	2.255.06	12.7644	0.385
20	rs315961647	6	11,017,574		10.9814	2.25E-06		
				1.04E-11			3.1560	0.220
	rs318061321	7	946,559		5.9932	0.04379		
				1.01E-06			1.5109	0.214

	rs312675887	9	17,794,694		7.2423	0.00308		
				5.72E-08			4.7857	0.292
	rs318098582	11	18,407,493		9.1548	5.03E-05		
				7.00E-10			4.4808	0.190
	rs316714498	27	5,853,588		9.4724	3.63E-05		
				3.36E-10			5.7656	0.366
30	rs15608447	4	66,459,916		7.5997	0.00135		
				2.51E-08			1.2989	0.479
	rs14512409	5	9,351,944		16.1932	6.91E-12		
				6.40E-17			2.1006	0.181
	rs312589151	14	1,126,506		17.4382	7.86E-13		
				3.64E-18			3.7173	0.463
	rs315411246	27	4,002,212		12.2653	3.90E-08		
				5.42E-13			2.5922	0.077
	rs315329074	27	6,920,352		6.4959	0.01376		
				3.19E-07			3.6633	0.219
40	rs15608447	4	66,459,916		6.8887	0.00557		
				1.29E-07			1.0654	0.476
	rs313093970	10	16,409,109		8.8791	7.12E-05		
				1.32E-09			0.6982	0.233
	rs318098582	11	18,407,493		21.6102	5.29E-17		
				2.45E-22			2.5404	0.154
	rs316794400	22	5,149,585		16.2965	3.63E-12		
				5.05E-17			1.7230	0.171
	rs315329074	27	6,920,352		17.2652	5.85E-13		
				5.42E-18			3.2505	0.204
50	rs314723705	1	109,156,565		6.0330	0.03329		
				9.26E-07			0.6008	0.497

rs15608447	4	66,459,916		8.4782	0.00018		
			3.32E-09			1.0125	0.471
rs318098582	11	18,407,493		11.9857	1.11E-07		
			1.03E-12			2.1187	0.145
rs316794400	22	5,149,585		11.5493	2.03E-07		
			2.82E-12			1.2014	0.180
rs316297839	25	1,567,147		8.3982	0.00017		
			3.99E-09			1.7609	0.106
rs315329074	27	6,920,352		14.7353	3.96E-10		
			1.83E-15			2.5462	0.195

Random Sampling				
Sample proportion (%)	SNP ID	GGA	Position (bp)	Distance from PS SNP (bp)
20	rs314007348	4	66,225,823	234,093
30	rs314007348	4	66,225,823	234,093
	rs316794400	22	5,149,585	0
	rs315329074	27	6,920,352	0
40	rs315329074	27	6,920,352	0
50	rs314007348	4	66,225,823	234,093
	rs315329074	27	6,920,352	0
Extreme phenotype sampling		•		
Sample proportion (%)	SNP ID	GGA	Position (bp)	Distance from PS SNP (bp)
20	rs313580984	24	2,201,697	331,937
30	rs15608447	4	66,459,916	0
	rs316794400	22	5,149,585	0
	rs315329074	27	6,920,352	0
40	rs15608447	4	66,459,916	0
	rs316794400	22	5,149,585	0
	rs315329074	27	6,920,352	0
50	rs15425131	3	90,795,168	0
	rs313332188	3	99,991,484	0
	rs15608447	4	66,459,916	0
	rs316794400	22	5,149,585	0
	rs313580984	24	2,201,697	331,937
	rs313194380	25	2,919,439	407,307
	rs317093585	25	2,890,348	436,398
	rs315329074	27	6,920,352	0
Extreme phenotypes binary case				
Sample proportion (%)	SNP ID	GGA	Position (bp)	Distance from PS SNP (bp)
30	rs15608447	4	66,459,916	0
		-		

Table 3. SNP signals across the sampling scenarios in relation to position of the SNPs in whole population sampling (PS).
	rs315329074	27	6,920,352	0
40	rs15608447	4	66,459,916	0
	rs316794400	22	5,149,585	0
	rs315329074	27	6,920,352	0
50	rs15608447	4	66,459,916	0
	rs316794400	22	5,149,585	0
	rs315329074	27	6,920,352	0

Table 4. Putative causative SNPs in the most efficient sampling scenario.

SNP ID	GGA	Position (bp)	p-value	-log10(p-value)	FDR p-value	PVE (%)	MAF
rs315329074	27	6,920,352	5.09E-10	9.2925	3.66E-05	3.1952	0.195
rs15425131	3	90,795,168	1.94E-38	37.7102	4.20E-33	2.1237	0.121
rs14265664	2	138,095,717	1.07E-08	7.9691	0.00046	1.3448	0.097
rs316794400	22	5,149,585	1.28E-14	13.8921	1.38E-09	1.2500	0.180
rs15608447	4	66,459,916	6.91E-10	9.1601	3.73E-05	1.1722	0.471

SNP ID	GGA	Position (bp)	Allele	Consequence	Candidate Gene	QTL(s)	
						Body weight hatch (135726, Animal QTLdb),	
rs315329074						Comb weight (127127, Animal QTLdb),	
	27	6,920,352	Т	Downstream gene variant,	CACNB1	Femur bone mineral content (130479, Animal QTLdb)	
						Femur weight (130480, Animal QTLdb),	
						Proventriculus weight (96672, Animal QTLdb),	
						Wattles weight (127120, Animal QTLdb)	
rs15425131	3	90,795,168	G	Synonymous variant	МҮОМ2	Comb weight (127114, Animal QTLdb)	
rs14265664	2	138 095 717	А	Intergenic variant	FBXO32	Wattles weight (127117 Animal OTLdb)	
1511200001	-	100,090,111			LOC112531900	(12,11,1,1)	
				Upstream gene variant	SLC20A1	Breast muscle percentage (95429, Animal QTLdb),	
rs316794400	22	5,149,585	A	Downstream gene variant	ANXA4	Abdominal fat weight (96666, Animal QTLdb)	
				Intron variant	SLAIN2		
rs15608447	4	66 459 916	G	Downstream gene variant, intron variant,	LOC107053243	-	
		, - ,		Non coding transcript variant,			
				Upstream gene variant LOC112532289			

Table 5. Positional candidate genes and reported QTLs associated with putative causative SNPs in the most efficient sampling scenario.

Figure 1. Manhattan plot (left) and quantile-quantile (Q-Q) plot (right) of SNP p-values in whole population. In Manhattan plot, y-axis presents the observed SNP $-\log_{10}$ (p-values) and the x-axis the SNP positions across the 27 autosomes. Horizontal line shows the genome-wide significant threshold. In Q-Q plot, y-axis and x-axis represent observed SNP $-\log_{10}$ (p-values) and expected $-\log_{10}$ (p-values), respectively. Estimation of λ is also shown on the top left in the Q-Q plot. Blue points represent the genome-wide significant SNPs for the trait. Both plots were constructed using the CMplot package (https://github.com/YinLiLin/R-CMplot) in R (http://www.r-project.org/).

Figure 2. Radial network of the genome-wide significant SNPs detected across the various sampling scenarios (PS: whole population sampling, RS: random sampling, EPS: extreme phenotype sampling and EPSB: extreme phenotypes sampling binary case). Figure was constructed using the data.tree and networkD3 packages in R (<u>http://www.r-project.org/</u>).

EPSB_30%

Figure 3. Chord diagram showing detection efficacy (DE) across sampling strategies (RS: random sampling, EPS: extreme phenotype sampling and EPSB: extreme phenotypes sampling binary case) in relation to whole population sampling (PS). Figure was constructed with the DescTools package in R (<u>http://www.r-project.org/</u>).

Figure 4. Positions of SNPs detected across sampling scenarios (RS: random sampling, EPS: extreme phenotype sampling and EPSB: extreme phenotypes sampling binary case) in relation to position of SNPs in whole population sampling (PS) on the same autosomes. SNP positions denoted by yellow color. Figure was constructed with the chromoMap [45] package in R (<u>http://www.r-project.org/</u>).

Chapter 2

Elucidating the functional role of 1,012 candidate genes revealed by a Genome Wide Association Study for body weight in broilers¹

2.1. Abstract

Aim of the present study was first to identify genetic variants associated with body weight at 35 days of age (BW) in broilers, second to provide a list with positional candidate genes for the trait under study and third to prioritize candidate genes using various Bioinformatics methods. A genome-wide association study (GWAS) for the trait was performed using 6,598 broilers and dense genome wide SNP data (n=262,067). Application of an additive multilocus mixed model resulted in 12 genome-wide significant SNPs, dispersed on 9 autosomes. A total number of 1,012 positional candidate genes (of which n=350 non-annotated and n=27 miRNA) were identified within 1Mb distances around the statistically significant SNPs. Functional enrichment analysis pointed out 49 candidate genes participating in system development and 17 more genes in skeletal system development. In addition, 28 candidates were members of \$100 calcium binding proteins, HOXL subclass homeoboxes and type I Keratins gene families. A total number of 25 genes were members of functionally relevant to BW pathways such as MAPK6/MAPK4 signaling, signaling by EGFR, signaling by IGF1R, signaling by insulin receptor, TCF dependent signaling in response to WNT and NGF pathway. Gene prioritization analysis highlighted 248 prioritized genes with 10 top ranked genes (SMAD4, CHRNB2, CDH1, NTRK1, RARA, STAT5B, SCARB1, NR1D1, SHC1 and CYBB). Topological network analysis revealed 22 highly connected genes of which 14 (UBC, SMAD4, SHC1, NRAS, PSMD4, CDC6, PSMD7, RARA, PSMB4, CDH1, STAT5B, MED1, PSMD3 and CDT1) were also included in the prioritized genes. Current findings underlined the effectiveness of computational approaches in narrowing down the large list of positional candidate genes provided by GWAS. Nevertheless, detected or prioritized genes were method dependent.

2.2. Introduction

Body weight (BW) in broilers reflects the balance between the nutrient intake and expenditure, resulting in protein or fat deposition and skeletal growth. Apart from significant economic importance, the trait also presents considerable biological interest as it is a typical complex (polygenic) trait. To date, the ChickenQTLdb (https://www.animalgenome.org/cgi-bin/QTLdb/GG/index, accessed: 3rd September 2017) has over 7,812 QTL/SNP associations of which 3,582 are related to growth traits and 166 to BW. Several genome wide association studies (GWAS) have already been carried out for growth traits (e.g.[1,2]) in the species. The development of the chicken 600k SNP array [3] made it possible to efficiently screen for causal loci and genes with relevance to the trait. Despite the large number of GWAS findings, the genetic architecture of BW in chicken has still a limited understanding [4] since only a small number of positional candidate genes are confirmed as true functionally relevant to the trait (e.g. *HDAC2* [5] and *GNPDA2* [6] genes).

In almost all GWAS, genes that lie within or are in closest proximity to significant SNPs and have functional relevance to the trait under study are considered as the most plausible

¹ Findings of the current Chapter have been published in the Proceedings of the World Congress on Genetics Applied to Livestock Production, vol. Species - Avian 1, p. 564, 2018.

causative genes. When information on gene functions of positional candidate genes is limited, various computational approaches can be employed to predict the most functionally significant genes. Such approaches entail functional enrichment analysis (FEA) [7], pathway analysis (PA) [8], gene network analysis (GNA) [9] and gene prioritization analysis (GPA) [10]. While FEA and PA identifies terms (genes/pathways) based on their statistically overrepresentation within a given GO term or known pathway, GNA utilizes background knowledge interaction networks to predict gene interactions. During gene prediction, several interactions [11] (e.g. protein-protein interaction networks (PPINs), interactions by RNA coexpression, literature-curated interactions and interactions derived from high-throughput experiments are exploited, based on the 'guilt-by-association' (GBA [12]) principle. The GBA principle states that genes with related function(s) tend to be protein interaction partners or share features such as expression patterns. Based on GBA principle, a functional annotation-based approach known as GPA can also be employed. Candidate genes are prioritized based on their functional similarity to a list of already known genes [10] or keyword(s) [13] associated with a phenotype of interest. Several semantic annotations such as: Molecular Function, Biological Process, Cellular Component, Human Phenotype, Mouse Phenotype and Pathway etc. are used [10].

In the present study, first we conducted a GWAS for BW at 35 days of age to identify genomic variants i.e. SNPs associated with BW in broilers. Next, we searched for published QTLs/associations as well as positional candidate genes in 1Mb flanking regions around the significant SNPs. Finally, we employed various computational approaches such as FEA, PA, GNA and GPA to predict the most functionally significant genes for the trait under study. Current findings are expected to contribute to a better understanding of the genetic architecture underlying growth and development in the species.

2.3. Material and methods

2.3.1. Data

Genotypic and phenotypic records for 6,727 broilers (n=3,735 males and n=2,992 females) from a grand-grandparent (GGP) commercial line were made available by Aviagen Ltd. Phenotypic records for BW at 35 days of age ranged from 1,130 to 2,630 g with an average of 1840.2 g (SD=194 g). Animals were genotyped using the 600K Affymetrix® Axiom® high density genotyping array [3] resulting in a total number of 630,954 SNPs. Only n=547,784 SNPs located on the 28 autosomes (GGA1-28) were considered here. From the original number of animals, 72 females and 57 males were excluded because they had a call rate <0.99 and autosomal heterozygosity outside the 1.5 IQR (inter-quartile range) resulting in a number of n=6,598 samples. Furthermore, a number of 285,717 SNPs were excluded due to: call rate <0.99, MAF (minor allele frequency) <0.01 and linkage disequilibrium (LD) r² values greater than 0.99 within windows of 1 Mb inter-marker distance(s). A total of 6,598 samples and 262,067 SNPs were retained for GWAS. Quality control at the sample and marker level was performed using SNP & Variation Suite software (version 8.8.1).

2.3.2. Statistical analysis

An additive multi-locus mixed model (MLMM) [14] stepwise regression with forward inclusion and backward elimination was employed to identify the genome-wide significant markers associated with the trait. The following statistical model was applied to the data:

$$y = X\boldsymbol{\beta} + \boldsymbol{w}\boldsymbol{\alpha} + Z\boldsymbol{u} + \boldsymbol{e}$$

where y is the n x 1 vector of phenotypic values of BW for n broilers, X is the n x 55 matrix of fixed effects: sex (2 classes), hatch (36 classes) and mating group (17 classes), β is the 55 x 1 vector of corresponding coefficients of fixed effects, w is the vector with elements of 0, 1,

and 2 for the homozygote of the minor allele, heterozygote, and homozygote of the major allele, α is the vector of the fixed effect for the minor allele of the candidate SNP to be tested for association, Z is the incidence matrix relating observations to the polygenic random effects, u is the vector of polygenic random effects and e is the vector of random residuals. The random effects were assumed to be normally distributed with zero means and the following covariance structure:

$$Var\begin{bmatrix} u\\ e \end{bmatrix} = \begin{bmatrix} G\sigma_u^2 & 0\\ 0 & I\sigma_e^2 \end{bmatrix}$$

where σ_u^2 and $I\sigma_{\varepsilon}^2 \sigma_e^2$ are the polygenic and error variance components, I is the nxn identity matrix, and G is the nxn genomic relationship matrix (GRM, [15]) with elements of pairwise relationship coefficient using the 262,067 SNPs. The genomic relationship coefficient between two individuals j and k, was estimated as follows:

$$\frac{1}{262,067}\sum_{i=1}^{262,067}\frac{(x_{ij}-2p_i)(x_{ik}-2p_i)}{2p_i(1-2p_i)}$$

where x_{ij} and x_{ik} represent the number (0, 1, or 2) of the minor allele for the i_{th} SNP of the j_{th} and k_{th} individuals, and p_i is the frequency of the minor allele [15].

Statistically significant markers were selected at the optimal step of the MLMM stepwise regression according to extended Bayesian Information Criterion (eBIC [16]). P-values of these SNPs were then corrected for multiple comparisons using the false-discovery rate (FDR [17]) and 0.05 significance threshold. The genomic inflation factor (λ) was also calculated. λ values less than or close to 1 denote no potential systematic bias due to population structure or to the analytical approach [18]. All analyses were performed using the SNP & Variation Suite software (version 8.8.1).

2.3.3. Identification of QTL and positional candidate genes

Since the current population displays considerable LD levels for markers distanced up to 1Mb, we searched for growth related QTL/associations as well as positional candidate genes within 1Mb distances around the significant SNPs using the ChickenQTLdb [19] and the NCBI database (<u>http://www.ncbi.nlm.nih.gov/snp/?term=gallus+gallus</u> and <u>http://www.ncbi.nlm.nih.gov/gene</u>), respectively. The positions of QTL were remapped from *Gallus gallus 4* to *Gallus _gallus-5.0* assembly using the Genome remapping service from NCBI database (https://www.ncbi.nlm.nih.gov/genome/tools/remap).

2.3.4. Functional enrichment and pathway analysis

Functional enrichment analysis (FEA) of candidate genes was carried out using the PANTHER (Protein ANalysis THrough Evolutionary Relationships <u>http://pantherdb.org/</u>) data base [20] and the following settings: reference gene list in *Homo sapiens*, PANTHER Gene Ontology (GO) - Biological Process (BP) and the Bonferroni multiple testing correction. In total, 575 out of the 1,012 candidate genes were identified by PANTHER and used during FEA. GO BPs with p-values lower than 0.05 were considered as significantly enriched. Next, the ToppFun portal [10] was employed to detect the significantly enriched gene families (i.e. groups of homologous genes with common evolutionary origin and biological functions) using a threshold FDR p-value of 0.05. Pathway analysis (PA) followed, using the Reactome pathway database and the ReactomeFIViz application [21] of Cytoscape

(<u>http://www.cytoscape.org/</u>). Also here a threshold FDR p-value of 0.05 was used to identify significant pathways.

2.3.5. Gene prioritization

Two more computational approaches i.e. GPA and GNA were applied to assess the functional relevance or connectivity of the positional candidate genes and prioritize these accordingly. First, *in silico* GPA was performed, based on the functional similarity of candidate genes to a list of training genes (n=763) with annotated functions. These genes were extracted from the NCBI data base using the following search terms: body weight, body size and BMI in human and mouse. GPA was performed with the ToppGene portal [10]. The portal performs functional annotation-based candidate gene prioritization using fuzzy-based similarity measures to compute the similarity between any two genes based on semantic annotations. In the present study, the following semantic annotations were used: Molecular Function, Biological Process, Cellular Component, Human Phenotype, Mouse Phenotype and Pathway. For each test gene, a p-value for each annotation was derived by random sampling of 5,000 genes from the whole genome and these partial p-values were combined into an overall score using statistical meta-analysis. Prioritized genes were ranked in diminishing order of the combined (overall) p-value using a threshold value of 0.05 for significance.

Finally, the NetworkAnalyst (<u>http://www.networkanalyst.ca/</u>, version 3.0) [22] portal was employed to perform GNA. The aim of this analysis was to detect hub nodes i.e. genes with high connectivity (or node degree as it is known in graph and network analysis) in the PPIN. Here, default networks are created by searching for direct interaction partners in the molecular interaction knowledgebase which are generally known as the first-order interaction networks. In our case, the use of n=635 query genes ('seeds') resulted in a huge network rendering its topological analysis impossible. For this reason, we extracted, from the first-order network, a minimal sub-network with maximal connections between genes, using the Prize-collecting Steiner Forest (PCSF) algorithm. The expanded network was constructed using 635 genes (LOC and MIR genes were excluded) and the IMEx Interactome data base that exploits literature-curated comprehensive data from InnateDB.

2.4. Results

2.4.1. Significant SNPs and positional candidate genes

Genomic inflation factor λ was as high as 0.93 indicating no systematic bias due to population structure or analytical approach. Figure 1 presents the global view of SNP p-values (at the $-\log_{10}$ scale) across the 28 autosomes (GGA1-28). In total, 12 SNPs dispersed across 9 autosomes (GGA1, GGA4, GGA10, GGA11, GGA15, GGA22, GGA25, GGA26 and GGA27) reached genome-wide significance (FDR p-value<0.05, Table 1) while 1,012 positional candidate genes (see Supplementary Table S1) were identified within the searched genomic regions. Of the candidate genes, n=350 were non-annotated (LOC genes) and n=27 involved microRNA (miRNA) genes resulting in a total number n= 635 annotated genes. The maximum number of candidate genes (n=198) was observed for *rs312758346* (GGA25) and the minimum (n=25) for *rs316794400* (GGA22). Seven significant markers were located within the following genes: *SLAIN2, ZC3H18, TMEM132D, F-KER, FCRL4, LEMD2* and *CACNB1* (Supplementary Table S1).

2.4.2. Detection of QTL/associations

A total number of n=197 growth related QTL/associations are reported within the searched genomic regions around the significant markers (Supplementary Table S2). These QTL/associations are distributed across eight chromosomes (GGA1, GGA4, GGA10, GGA11, GGA15, GGA22, GGA26 and GGA27) and pertain to growth traits such as carcass

weight, abdominal fat percentage, breast muscle percentage etc. The maximum number (n=65) of QTL/associations is reported around marker *rs315329074* (GGA27) and the minimum number (n=1) for *rs316794400* (GGA22). No QTLs or SNP associations are reported around *rs317288536* and *rs312758346*.

2.4.3. Functional enrichment and pathway analysis

FEA revealed 49 candidate genes as participating in the BP of system development (GO:0048731, Bonferroni p-value=0.0264) and 17 genes participating in the skeletal system development (GO:0001501, Bonferroni p-value=0.00398) (Table 2). Furthermore, 88 out of 1,012 genes were members of 14 gene families. Amongst them, the three most significant gene families were the following: S100 calcium binding proteins, HOXL subclass homeoboxes and type I Keratins (Table 3) with a total number of 28 genes. A total number of 25 unique genes were identified across functionally relevant to BW pathways such as MAPK6/MAPK4 signaling, signaling by EGFR, signaling by Type 1 *Insulin-like Growth Factor 1 Receptor (IGF1R*), signaling by insulin receptor, TCF dependent signaling in response to WNT and nerve growth factor (NGF) pathway (Table 4). The highest number of genes (n=22) was observed for NGF pathway. Note that a lot of genes were enriched in many pathways, simultaneously. For instance, genes *UBC, PSME3, PSMD7, PSMD4, PSMB4, PSMB3* and *PSMD3* were enriched in six pathways (Table 4).

2.4.4. Gene prioritization and network analysis

A total number of n=559 positional candidate genes were submitted to GPA as the rest genes were non-annotated or could not be mapped to any human annotated gene. Results of GPA are on Table S3. In total, 248 genes were prioritized (p-value <0.05). Among them, the first 10 top ranked genes were: *SMAD4, CHRNB2, CDH1, NTRK1, RARA, STAT5B, SCARB1, NR1D1, SHC1* and *CYBB*. The sub-network constructed during GNA consisted of 447 nodes (genes), 1,022 edges (connections) and 208 seeds (proteins). A graphical depiction of this sub-network is shown in Figure 2. Detailed information of node degrees is provided in Supplementary Table S4. The average node degree of this network was 4.6 (SD=5.7, min=1, max=68). In total, there were 22 hub genes detected with node degree ≥ 15 (range: 15 to 68). A total number of 31 common genes were detected between prioritized genes and genes with node degree higher than average (>5). The ranking (Spearman) correlation of these genes was as high as 0.53 implying a moderate rank similarity between the two analyses. Of the 22 hub genes, 14 genes (*UBC, SMAD4, SHC1, NRAS, PSMD4, CDC6, PSMD7, RARA, PSMB4, CDH1, STAT5B, MED1, PSMD3* and *CDT1*) were also prioritized during GPA implying that highly connected genes tend to be prioritized as well.

2.5. Discussion

Present results confirm previous findings suggesting that GGA1 and GGA4 [23] as well as GGA10, GGA15, GGA22, GGA26 [2] and GGA27 [24] harbor QTLs related to BW. Current findings also confirm the importance of Wnt-signaling, MAPK and insulin signaling pathways for growth traits in the species [23] as well as genes (*STAT5B* [25], *TXK* [26], *GABRG1* [26] and *SGCB* [27]) which have previously been reported as significant for BW in chickens.

Significant markers that fall within genes pointed out the following seven genes: *SLAIN2*, *ZC3H18*, *TMEM132D*, *F-KER*, *FCRL4*, *LEMD2 and CACNB1*. Of these, *SLAIN2*, *LEMD2*, *F-KER* and *CACNB1* have documented involvement in growth or body structure. Specifically, *SLAIN2* (*SLAIN motif family member 2*) gene is necessary for the normal structure of microtubule cytoskeleton as it controls the microtubule growth during interphase [28]. *F-KER* (*feather keratin I*) is a feather keratin affecting epidermal structure [29] while *LEMD2* (*LEM domain containing 2*) plays an important role in mouse embryonic development by regulating various signaling pathways such as MAPK (mitogen-activated protein kinase) and AKT (also

known as Protein Kinase B) [30]. Finally, the murine *Cacnb1 (calcium voltage-gated channel auxiliary subunit beta 1)* gene is known to affect skeletal muscle development [31].

Functional enrichment analysis and gene family analysis pointed out genes (MEOX1, HOXB3, HOXB4, HOXB5, HOXB9 and HOXB13) that were also found to participate in BP of skeletal system development. These genes belong to the super-family of homeobox genes that play a fundamental role in embryonic development, cell proliferation and metabolic processes [32,33,34]. Additional genes in the same BP were PHOSPHO1 (phosphoethanolamine/phosphocholine phosphatase) that contributes to bone mineralization during embryonic bone development in chickens [35], MFGE8 (milk fat globule-EGF factor 8 protein) that promotes obesity in mice [36] and SCUBE3 (signal peptide, CUB domain and EGF like domain containing 3) that is implicated in murine embryonic development [37].

From the rest significant gene families, S100 proteins have been reported as regulators in several functions such as Ca^{2+} homeostasis, energy metabolism, proliferation and differentiation [38] and type I keratins are filament-forming proteins of epithelial cells that are necessary for the normal structure and function of the tissues [39]. In chickens, *KRT14* and *KRT15* are reported to participate in keratinocytes proliferation [40] and pigmentation of muscle tissues [41], respectively.

Results of pathway analysis were also relevant to the trait under study. Specifically, the nerve growth factor (NGF) belongs to neurotrophins that play an important role in regulation of growth and survival of nerve cells [42]. The epidermal growth factor receptor (EGFR) signaling pathway regulate various functions such as growth, survival, proliferation, and differentiation in mammalian cells [43]. The Wnt-signaling is required in several embryonic developmental processes e.g. skeletal morphogenesis [44]. MAPK6 and MAPK4 (also known as ERK3 and ERK4) are reported to contribute to cell differentiation and cell cycle regulation [45] and IGF1R signaling regulates skin development and differentiation [46] as well as glucose, lipid, and energy homeostasis [47].

Pathway analysis also highlighted the importance of *UBC*, *PSME3*, *PSMD7*, *PSMD4*, *PSMB4*, *PSMB3* and *PSMD3* as growth-related genes. Specifically, *UBC* (ubiquitin C) is significant for liver development in mice [48], the absence of PSME3 (proteasome activator subunit 3) causes retardation of cell proliferation and body growth [49], *PSMD7* (proteasome 26S subunit, non-ATPase 7) regulates cell proliferation, cell cycle and cell apoptosis [50] while *PSMD4* (proteasome 26S subunit, non-ATPase 4, also known as *Rpn10*) is essential for embryonic development [51]. *PSMB4* (proteasome subunit beta 4) regulates cell growth [52] while *PSMB3* (proteasome subunit beta 3) is involved in an ATP/ubiquitin-dependent process [53] which is responsible for muscle atrophy in rats [54]. Finally, *PSMD3* (proteasome 26S subunit, non-ATPase 3) inhibits cell proliferation and induces cellular apoptosis [55].

The following 14 genes UBC, SMAD4, SHC1, NRAS, PSMD4, CDC6, PSMD7, RARA, PSMB4, CDH1, STAT5B, MED1, PSMD3 and CDT1 were highlighted by both GPA and GNA. Aside from UBC, PSMD4, PSMD7, PSMB4, STAT5B and PSMD3 that were discussed earlier, in this group fall additional highly promising causal genes. Specifically, SMAD4 (SMAD family member 4) is a central mediator of the transforming growth factor β signaling pathway which affects among others the cell growth [56] while SHC1 (SHC adaptor protein 1), mediates the IGF-1 pathway and contributes to the activation of Ras/MAPK pathway leading to cell proliferation [57]. NRAS (neuroblastoma RAS viral oncogene homolog) controls cell growth, differentiation, and survival by facilitating signal transduction [58] while CDC6 (cell division cycle 6) is an essential DNA replication factor and its loss-of-function leads to aberrant cell proliferation [59]. RARA (retinoic acid receptor alpha) affects the hippocampal development [60] while CDH1 (cadherin 1) mediates early embryonic development and cell differentiation [61]. Finally, MED1 (mediator complex subunit 1) has a key role in mammary epithelial cell growth [62] and CDT1 (chromatin licensing and DNA replication factor 1) deregulation affects cell proliferation [63].

Another interesting finding of the present study was the inclusion of miRNAs in the list of candidate genes for the trait under study. miRNAs act as post-transcriptional regulators in gene expression and play an essential role in a wide variety of biological processes including cell proliferation, differentiation, metabolism and growth [64]. Of the detected microRNAs, miR3529 is involved in follicular development-related pathways in chickens [65], miR140 promotes myoblast proliferation in chickens [66] while miR10A is expressed in chicken breast muscles [67] and is implicated in muscle development and myogenesis regulation in chickens [68].

In general, results of the computational approaches employed in the present study have pointed out several known or novel most promising causal genes for the trait under study. Nevertheless, the presence of different functional candidate genes across analyses indicates that gene candidacy prediction was method specific. This is a rather expected finding as each analysis uses different principle foundation(s) to infer functional relevance of the candidate genes. In over-representation approaches (functional enrichment analysis, gene family analysis and pathway analysis), identification of genes or pathways is based on statistical testing of over-represented for terms within given functions or known pathways. Here, results may be test dependent and biased toward well-known pathways or multi-functional genes because of many over-represented pathways, leading to false positives [69].

On the other hand, functional annotation-based (GPA) or network-based gene (GNA) prioritization displays important advantages. In the first (GPA), a plethora of data sources are used to infer functional similarity of candidate genes to known genes or phenotypes, including GO, pathway annotations, published and gene expression data [10]. An obvious limitation here is the poor functional prediction for genes with limited or unknown annotated functions [70]. In the second (GNA), high node degree of hubs is widely exploited, but this salient feature may also lead to false positives as highly connected genes tend to have many annotated functions [11]. As hub genes tend to have many semantic annotations, they are also expected to be highly prioritized during GPA.

In general, the performance of prioritization methods is dependent on the mined databases and the quality of interaction data that may suffer from incompleteness and unreliability with missing interactions [10]. A final critical point with regard to all methods applied here relates to data mined to infer functional relevance of candidate genes. In all tools, only information and/or PPINs referring to human or murine proteins are used [10] and this information is used to infer gene functions in other species such as that studied here.

In conclusion, gene enrichment and/or prioritization methods are useful to narrow down the large list of positional candidate genes provided by GWAS findings. Nevertheless, prioritized genes appear to be method dependent and each method is not flawless. Identification of top prioritized or common genes among methods offer a good strategy to identify highly promising candidate genes in an attempt to reduce time and costs of experimental validation of functional analyses. Finally, present findings are supportive of the hypothesis that the genetic architecture of the trait approximates the infinitesimal model.

2.6. References

[1] Xie L, Luo C, Zhang C, Zhang R, Tang J, Nie Q, et al. Genome-Wide Association Study Identified a Narrow Chromosome 1 Region Associated with Chicken Growth Traits. Liu Z, editor. PLoS One. Public Library of Science; 2012;7: e30910. doi:10.1371/journal.pone.0030910

[2] Van Goor A, Bolek KJ, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, et al. Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress. Genet Sel Evol. BioMed Central; 2015;47: 96. doi:10.1186/s12711-015-0176-7

[3] Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genomics. BioMed Central; 2013;14: 59. doi:10.1186/1471-2164-14-59

[4] Pettersson ME, Carlborg Ö. Dissecting the genetic architecture of complex traits and its impact on genetic improvement programs: lessons learnt from the Virginia chicken lines. Rev Bras Zootec. Sociedade Brasileira de Zootecnia; 2010;39: 256–260. doi:10.1590/S1516-35982010001300028

[5] Shahjahan M, Liu R, Zhao G, Wang F, Zheng M, Zhang J, et al. Identification of Histone Deacetylase 2 as a Functional Gene for Skeletal Muscle Development in Chickens. Asian-Australasian J Anim Sci. 2016;29: 479–486. doi:10.5713/ajas.15.0252

[6] Ouyang H, Zhang H, Li W, Liang S, Jebessa E, Abdalla BA, et al. Identification, expression and variation of the *GNPDA2* gene, and its association with body weight and fatness traits in chicken. PeerJ. PeerJ Inc.; 2016;4: e2129. doi:10.7717/peerj.2129

[7] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. National Academy of Sciences; 2005;102: 15545–50. doi:10.1073/pnas.0506580102

[8] García-Campos MA, Espinal-Enríquez J, Hernández-Lemus E. Pathway Analysis: State of the Art. Front Physiol. Frontiers; 2015;6: 383. doi:10.3389/fphys.2015.00383

[9] Chen J, Aronow BJ, Jegga AG. Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics. 2009;10: 73. doi:10.1186/1471-2105-10-73

[10] Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37: W305–W311. doi:10.1093/nar/gkp427

[11] Gillis J, Pavlidis P. The Impact of Multifunctional Genes on "Guilt by Association" Analysis. Bader J, editor. PLoS One. 2011;6: e17258. doi:10.1371/journal.pone.0017258

[12] Walker MG, Volkmuth W, Sprinzak E, Hodgson D, Klingler T. Prediction of gene function by genome-scale expression analysis: prostate cancer-associated genes. Genome Res. 1999;9: 1198–203. Available: http://www.ncbi.nlm.nih.gov/pubmed/10613842

[13] Stelzer G, Plaschkes I, Oz-Levi D, Alkelai A, Olender T, Zimmerman S, et al. VarElect: the phenotype-based variation prioritizer of the GeneCards Suite. BMC Genomics. BioMed Central; 2016;17: 444. doi:10.1186/s12864-016-2722-2

[14] Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet. Nature Publishing Group; 2012;44: 825–830. doi:10.1038/ng.2314

[15] VanRaden PM. Efficient Methods to Compute Genomic Predictions. J Dairy Sci. 2008;91: 4414–4423. doi:10.3168/jds.2007-0980

[16] Chen J, Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika. Oxford University Press; 2008;95: 759–771. doi:10.1093/biomet/asn034

[17] Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing [Internet]. Journal of the Royal Statistical Society. Series B (Methodological). WileyRoyal Statistical Society; 1995. pp. 289–300. doi:10.2307/2346101

[18] Yang J, Weedon MN, Purcell S, Lettre G, Estrada K, Willer CJ, et al. Genomic inflation factors under polygenic inheritance. Eur J Hum Genet. Nature Publishing Group; 2011;19: 807–12. doi:10.1038/ejhg.2011.39

[19] Chicken QTL database [Internet]. [cited 21 Apr 2019]. Available: https://www.animalgenome.org/cgi-bin/QTLdb/GG/download?tmpname=mapDwnLd&file=cM

[20] Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017;45: D183–D189. doi:10.1093/nar/gkw1138

[21] Wu G, Dawson E, Duong A, Haw R, Stein L. ReactomeFIViz: A cytoscape app for pathway and network-based data analysis. F1000Research. Faculty of 1000 Ltd; 2014;3. doi:10.12688/f1000research.4431.2

[22] Xia J, Benner MJ, Hancock REW. NetworkAnalyst--integrative approaches for proteinprotein interaction network analysis and visual exploration. Nucleic Acids Res. 2014;42: W167-74. doi:10.1093/nar/gku443

[23] Xu Z, Nie Q, Zhang X. Overview of Genomic Insights into Chicken Growth Traits Based on Genome- Wide Association Study and microRNA Regulation. Curr Genomics. 2013;14: 137–146. doi:10.2174/1389202911314020006

[24] Lien C-Y, Tixier-Boichard M, Wu S-W, Wang W-F, Ng CS, Chen C-F. Detection of QTL for traits related to adaptation to sub-optimal climatic conditions in chickens. Genet Sel Evol. BioMed Central; 2017;49: 39. doi:10.1186/s12711-017-0314-5

[25] Zhao XH, Wang JY, Zhang GX, Wei Y, Gu YP, Yu YB. Single nucleotide polymorphism in the STAT5b gene is associated with body weight and reproductive traits of the Jinghai Yellow chicken. Mol Biol Rep. Springer Netherlands; 2012;39: 4177–4183. doi:10.1007/s11033-011-1202-7

[26] Gu X, Feng C, Ma L, Song C, Wang Y, Da Y, et al. Genome-Wide Association Study of Body Weight in Chicken F2 Resource Population. Mailund T, editor. PLoS One. Public Library of Science; 2011;6: e21872. doi:10.1371/journal.pone.0021872

[27] Zhang GX, Fan QC, Zhang T, Wang JY, Wang WH, Xue Q, et al. Genome-wide association study of growth traits in the Jinghai Yellow chicken. Genet Mol Res. 2015;14: 15331–15338. doi:10.4238/2015.November.30.10

[28] van der Vaart B, Manatschal C, Grigoriev I, Olieric V, Gouveia SM, Bjelić S, et al. SLAIN2 links microtubule plus end-tracking proteins and controls microtubule growth in interphase. J Cell Biol. 2011;193: 1083–1099. doi:10.1083/jcb.201012179

[29] Greenwold MJ, Sawyer RH. Genomic organization and molecular phylogenies of the beta (beta) keratin multigene family in the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata): implications for feather evolution. BMC Evol Biol. BioMed Central; 2010;10: 148. doi:10.1186/1471-2148-10-148

[30] Tapia O, Fong LG, Huber MD, Young SG, Gerace L. Nuclear Envelope Protein Lem2 is Required for Mouse Development and Regulates MAP and AKT Kinases. Palazzo AF, editor. PLoS One. 2015;10: e0116196. doi:10.1371/journal.pone.0116196

[31] Chen F, Liu Y, Sugiura Y, Allen PD, Gregg RG, Lin W. Neuromuscular synaptic patterning requires the function of skeletal muscle dihydropyridine receptors. Nat Neurosci. Nature Publishing Group; 2011;14: 570–577. doi:10.1038/nn.2792

[32] Reijntjes S, Stricker S, Mankoo BS. A comparative analysis of Meox1 and Meox2 in the developing somites and limbs of the chick embryo. Int J Dev Biol. 2007;51: 753–759. doi:10.1387/ijdb.072332sr

[33] Procino A, Cillo C. The HOX genes network in metabolic diseases. Cell Biol Int. 2013;37: n/a-n/a. doi:10.1002/cbin.10145

[34] Gouveia A, Marcelino HM, Gonçalves L, Palmeirim I, Andrade RP. Patterning in time and space: HoxB cluster gene expression in the developing chick embryo. Cell Cycle. Taylor & Francis; 2015;14: 135. doi:10.4161/15384101.2014.972868

[35] MacRae VE, Davey MG, McTeir L, Narisawa S, Yadav MC, Millan JL, et al. Inhibition of PHOSPHO1 activity results in impaired skeletal mineralization during limb development of the chick. Bone. 2010;46: 1146–1155. doi:10.1016/j.bone.2009.12.018

[36] Khalifeh-Soltani A, McKleroy W, Sakuma S, Cheung YY, Tharp K, Qiu Y, et al. Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids. Nat Med. 2014;20: 175–183. doi:10.1038/nm.3450

[37] Haworth K, Smith F, Zoupa M, Seppala M, Sharpe PT, Cobourne MT. Expression of the Scube3 epidermal growth factor-related gene during early embryonic development in the mouse. Gene Expr Patterns. 2007;7: 630–634. doi:10.1016/j.modgep.2006.12.004

[38]Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, et al. Functions of \$100 proteins.CurrMolMed.NIHPublicAccess;2013;13:24–57.Available:http://www.ncbi.nlm.nih.gov/pubmed/22834835

[39] Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, et al. New consensus nomenclature for mammalian keratins. J Cell Biol. 2006;174: 169–174. doi:10.1083/jcb.200603161

[40] Couteaudier M, Trapp-Fragnet L, Auger N, Courvoisier K, Pain B, Denesvre C, et al. Derivation of keratinocytes from chicken embryonic stem cells: Establishment and characterization of differentiated proliferative cell populations. Stem Cell Res. Elsevier; 2015;14: 224–237. doi:10.1016/J.SCR.2015.01.002

[41] Tarique T, Yang S, Mohsina Z, Qiu J, Yan Z, Chen G, et al. Identification of genes involved in regulatory mechanism of pigments in broiler chickens. Genet Mol Res. 2014;13: 7201–7216. doi:10.4238/2014.September.5.6

[42] Wang H, Wang R, Thrimawithana T, Little PJ, Xu J, Feng Z-P, et al. The nerve growth factor signaling and its potential as therapeutic target for glaucoma. Biomed Res Int. 2014;2014: 759473. doi:10.1155/2014/759473

[43] Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. EMBO; 2005;1. doi:10.1038/msb4100014

[44] Yang Y. Wnt signaling in development and disease. Cell and Bioscience. BioMed Central; 2012. p. 14. doi:10.1186/2045-3701-2-14

[45] Long W, Foulds CE, Qin J, Liu J, Ding C, Lonard DM, et al. ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion. J Clin Invest. 2012;122: 1869–1880. doi:10.1172/JCI61492

[46] Sadagurski M, Yakar S, Weingarten G, Holzenberger M, Rhodes CJ, Breitkreutz D, et al. Insulin-Like Growth Factor 1 Receptor Signaling Regulates Skin Development and Inhibits Skin Keratinocyte Differentiation. Mol Cell Biol. American Society for Microbiology; 2006;26: 2675– 2687. doi:10.1128/mcb.26.7.2675-2687.2006

[47] Boucher J, Kleinridders A, Ronald Kahn C. Insulin receptor signaling in normal and insulinresistant states. Cold Spring Harb Perspect Biol. 2014;6. doi:10.1101/cshperspect.a009191

[48] Hallengren J, Chen PC, Wilson SM. Neuronal Ubiquitin Homeostasis. Cell Biochem Biophys. NIH Public Access; 2013;67: 67–73. doi:10.1007/s12013-013-9634-4

[49] Murata S, Kawahara H, Tohma S, Yamamoto K, Kasahara M, Nabeshima Y, et al. Growth retardation in mice lacking the proteasome activator PA28gamma. J Biol Chem. American Society for Biochemistry and Molecular Biology; 1999;274: 38211–5. doi:10.1074/JBC.274.53.38211

[50] Shi K, Zhang JZ, Zhao RL, Yang L, Guo D. PSMD7 downregulation induces apoptosis and suppresses tumorigenesis of esophageal squamous cell carcinoma via the mTOR/p70S6K pathway. FEBS Open Bio. Wiley Blackwell; 2018;8: 533–543. doi:10.1002/2211-5463.12394

[51] Hamazaki J, Sasaki K, Kawahara H, Hisanaga S -i., Tanaka K, Murata S. Rpn10-Mediated Degradation of Ubiquitinated Proteins Is Essential for Mouse Development. Mol Cell Biol. American Society for Microbiology; 2007;27: 6629–6638. doi:10.1128/mcb.00509-07

[52] Wang H, He Z, Xia L, Zhang W, Xu L, Yue X, et al. PSMB4 overexpression enhances the cell growth and viability of breast cancer cells leading to a poor prognosis. Oncol Rep. Spandidos Publications; 2018;40: 2343–2352. doi:10.3892/or.2018.6588

[53] Choong LY, Lim S, Chong PK, Wong CY, Shah N, Lim YP. Proteome-Wide Profiling of the MCF10AT Breast Cancer Progression Model. Aziz SA, editor. PLoS One. Public Library of Science; 2010;5: e11030. doi:10.1371/journal.pone.0011030

[54] Temparis S, Asensi M, Estrela JM, Ferrara M, Larbaud D, Attaix D. Increased ATP-Ubiquitin-dependent Proteolysis in Skeletal Muscles of Tumor-bearing Rats. Cancer Res. 1994;54: 5568–5573.

[55] Fararjeh AS, Chen LC, Ho YS, Cheng TC, Liu YR, Chang HL, et al. Proteasome 26s subunit, non-atpase 3 (Psmd3) regulates breast cancer by stabilizing her2 from degradation. Cancers (Basel). MDPI AG; 2019;11. doi:10.3390/cancers11040527

[56] Zhao M, Mishra L, Deng C-X. The role of TGF- β /SMAD4 signaling in cancer. Int J Biol Sci. 2018;14: 111–123. doi:10.7150/ijbs.23230

[57] Wagner K, Hemminki K, Grzybowska E, Klaes R, Butkiewicz D, Pamula J, et al. The insulinlike growth factor-1 pathway mediator genes: SHC1 Met300Val shows a protective effect in breast cancer. Carcinogenesis. 2004;25: 2473–2478. doi:10.1093/carcin/bgh263

[58] Eisfeld A-K, Schwind S, Hoag KW, Walker CJ, Liyanarachchi S, Patel R, et al. NRAS isoforms differentially affect downstream pathways, cell growth, and cell transformation. doi:10.1073/pnas.1401727111

[59] Borlado LR, Méndez J. CDC6: from DNA replication to cell cycle checkpoints and oncogenesis. Carcinogenesis. 2008;29: 237–43. doi:10.1093/carcin/bgm268

[60] Huang H, Wei H, Zhang X, Chen K, Li Y, Qu P, et al. Changes in the expression and subcellular localization of RARα in the rat hippocampus during postnatal development. Brain Res. 2008;1227: 26–33. doi:10.1016/j.brainres.2008.06.073

[61] Stemmler MP, Bedzhov I. A Cdh1HA knock-in allele rescues the Cdh1-/- phenotype but shows essential Cdh1 function during placentation. Dev Dyn. John Wiley & Sons, Ltd; 2010;239: 2330–2344. doi:10.1002/dvdy.22375

[62] Hasegawa N, Sumitomo A, Fujita A, Aritome N, Mizuta S, Matsui K, et al. Mediator Subunits MED1 and MED24 Cooperatively Contribute to Pubertal Mammary Gland Development and Growth of Breast Carcinoma Cells. Mol Cell Biol. 2012;32: 1483–1495. doi:10.1128/MCB.05245-11

[63] Pozo P, Cook J. Regulation and Function of Cdt1; A Key Factor in Cell Proliferation and Genome Stability. Genes (Basel). MDPI AG; 2016;8: 2. doi:10.3390/genes8010002

[64] Zhang M, Li D-H, Li F, Sun J-W, Jiang R-R, Li Z-J, et al. Integrated Analysis of MiRNA and Genes Associated with Meat Quality Reveals that Gga-MiR-140-5p Affects Intramuscular Fat

Deposition in Chickens. Cell Physiol Biochem. S. Karger AG; 2018;46: 2421–2433. doi:10.1159/000489649

[65] Wang W, Wu K, Jia M, Sun S, Kang L, Zhang Q, et al. Dynamic Changes in the Global MicroRNAome and Transcriptome Identify Key Nodes Associated With Ovarian Development in Chickens. Front Genet. Frontiers Media SA; 2018;9: 491–491. doi:10.3389/fgene.2018.00491

[66] Luo W, Li E, Nie Q, Zhang X. Myomaker, regulated by MYOD, MYOG and miR-140-3P, promotes chicken myoblast fusion. Int J Mol Sci. MDPI AG; 2015;16: 26186–26201. doi:10.3390/ijms161125946

[67] Ouyang H, He X, Li G, Xu H, Jia X, Nie Q, et al. Deep sequencing analysis of miRNA expression in breast muscle of fast-growing and slow-growing broilers. Int J Mol Sci. MDPI AG; 2015;16: 16242–16262. doi:10.3390/ijms160716242

[68] Khatri B, Seo D, Shouse S, Pan JH, Hudson NJ, Kim JK, et al. MicroRNA profiling associated with muscle growth in modern broilers compared to an unselected chicken breed. BMC Genomics. BioMed Central Ltd.; 2018;19: 683. doi:10.1186/s12864-018-5061-7

[69] Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37: 1–13. doi:10.1093/nar/gkn923

[70] Chen J, Aronow BJ, Jegga AG. Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics. BioMed Central; 2009;10: 73. doi:10.1186/1471-2105-10-73

Tables and Figures of Chapter 2

Table 1. Genome-wide significant SNPs for BW. Positional candidate genes in flanking regions of 1Mb around the significant markers.

SNP ID	GGA	Position (bp) ¹	FDR p-value	Number of positional candidate genes
rs13923872	1	112741685	0.0112	45
rs15608447	4	66885210	4.25E-09	38
rs312691174	4	29074989	0.00037	26
rs318199727	10	13536548	0.04111	44
rs318098582	11	18651449	0.00012	87
rs317945754	15	3557083	0.04594	29
rs316794400	22	4594855	6.07E-07	25
rs317288536	25	976833	8.05E-09	113
rs312758346	25	2412866	1.59E-05	198
rs317627533	26	4597439	2.12E-05	105
rs314452928	27	104022	0.0105	110
rs315329074	27	4528275	8.05E-16	192

¹Positions are based on *Gallus gallus-5.0* genome assembly

Table 2. Significantly enriched GO biological processes.

GO_ID	GO BP term	p-value	Number of genes	Genes involved
GO:0001501	skeletal system development	0.00398	17	HOXB4, BGLAP, MFGE8, HOXB9, ACAN, HOXB3, HAPLN3, ADAMTS4, MEOX1, PHOSPHO1, CNTNAP1, SCUBE3, PRICKLE4, HOXB13, BCAN, HOXB5, HAPLN2
GO:0048731	system development	0.0264	49	TPM3, CASK ,RIT1, HOXB4, BGLAP, PLEKHH3, FCER1G, PCDH18, CACNB1, NTRK3, KIRREL, MFGE8, DBNDD1, ZFHX3, ERBB2, HOXB9, CDH1, ACAN, HAP1, HOXB3, HAPLN3, ADAMTS4, ADGRD1, MEOX1, PHOSPHO1, CNTNAP1, CDK12, SCUBE3, PRICKLE4, HOXB13, FRYL, OLFML3, BCAN, PYGO2, NEUROD2, NGF, HOXB5, ZFPM1, ULK1, FMOD, PACSIN1, STAT3, HAPLN2, CSF3, NTRK1, IL6R, CDH3, PRELP, MEF2D

 Table 3. Gene families and related candidate genes.

Gene family	FDR p-value	Number of genes	Genes involved
S100 calcium binding proteins EF-hand domain containing	4.45E-08	9	S100A14, S100A1, S100A4, S100A6, S100A9, S100A10, S100A11, S100A13, S100A16

HOXL subclass homeoboxes	1.13E-06	11	MEOX1, HOXB3, HOXB7, H	HOXB13,HOXB1,HOXB2, HOXB4,HOXB5,HOXB6, HOXB8,HOXB9
Keratins, type I	6.52E-06	8	KRT20, KRT14,KI	<i>KRT23,KRT10,KRT12,</i> <i>RT15, KRT17, KRT19</i>

Table 4. Candidate genes involved in significant pathways.

Pathway	FDR	Number	Genes involved
		of genes	
Signaling by NGF	2.37E-06	22	NTRK1, SHC1, PHB, NGF, NRAS, LAMTOR2, NCSTN,
			PIPSKIA, UBC, PIP4K2B, THEM4, PHIA, FRS3, PSME3,
			PSMD/, PSMD4, PSMB4, AKAP13, PSMB3, PSMD3, RI11,
			ARHGEFTI
Signaling by EGFR	1.94E-03	15	SHC1, PHB, NRAS, LAMTOR2, PIP5K1A, UBC, PIP4K2B,
			THEM4, FRS3, PSME3, PSMD7, PSMD4, PSMB4, PSMB3,
			PSMD3
TCF dependent signaling	3.19E-03	7	UBC, PSME3, PSMD7, PSMD4, PSMB4, PSMB3, PSMD3
in response to WNT			
MAPK6/MAPK4	5.31E-03	9	UBC, CCND3, IGF2BP1, PSME3, PSMD7, PSMD4, PSMB4,
signaling			PSMB3, PSMD3
Signaling by Type 1	1.83E-02	13	SHC1, PHB, NRAS, LAMTOR2, UBC, THEM4, FRS3, PSME3,
Insulin-like Growth Factor			PSMD7, PSMD4, PSMB4, PSMB3, PSMD3
1 Receptor (IGF1R)			
Signaling by Insulin	2.53E-02	14	SHC1, PHB, NRAS, LAMTOR2, ATP6V0A1, UBC, THEM4,
receptor			FRS3, PSME3, PSMD7, PSMD4, PSMB4, PSMB3, PSMD3

Figure 1. Manhattan plot displaying the $-\log_{10}$ (observed p-values) of the genome-wide SNPs (y-axis) across the 28 autosomes (x-axis). The horizontal line denotes the genome-wide significant threshold.

Figure 2. Depiction of a minimum gene network comprised of 447 nodes, 1,022 edges and 208 seed proteins. Genes with blue color (*UBC, STAT3, SMAD4, SHC1, ERBB2, NRAS, PSMD4, CDC6, PSMD7, RARA, RPL10A, PSMB4, CDH1, RPL19, STAT5B, MED1, PSMD3, RPS27A, RPL13, MRPL24, UBA52 and CDT1*) represent hub genes (node degree>15). Orange, yellow and white colors represent genes with node degree <15.

Chapter 3

Discovery and characterization of functional modules associated with body weight in $broilers^1$

3.1. Abstract

Aim of the present study was to investigate whether body weight (BW) in broilers is associated with functional modular genes. To this end, first a GWAS for BW was conducted using 6,598 broilers and the high density SNP array. The next step was to search for positional candidate genes and QTLs within strong LD genomic regions around the significant SNPs. Using all positional candidate genes, a network was then constructed and community structure analysis was performed. Finally, functional enrichment analysis was applied to infer the functional relevance of modular genes. A total number of 645 positional candidate genes were identified in strong LD genomic regions around 11 genome-wide significant markers. 428 of the positional candidate genes were located within growth related QTLs. Community structure analysis detected 5 modules while functional enrichment analysis showed that 52 modular genes participated in developmental processes such as skeletal system development. An additional number of 14 modular genes (GABRG1, NGF, APOBEC2, STAT5B, STAT3, SMAD4, MED1, CACNB1, SLAIN2, LEMD2, ZC3H18, TMEM132D, FRYL and SGCB) were also identified as related to body weight. Taken together, current results suggested a total number of 66 genes as most plausible functional candidates for the trait examined.

3.2. Introduction

Body weight (BW) is an economically important trait for the broiler industry. This trait also presents considerable biological interest as it is a typical complex (polygenic) trait. To date, the ChickenQTLdb [1] contains over 7,812 QTL/SNP associations of which 3,582 are related to growth. Several genome wide association studies (GWAS) have already been performed for growth traits (e.g.[2,3]) in the species. The development of the chicken 600k SNP array [4] facilitates efficient screening for causal loci and genes with relevance to target traits due to the uniform coverage across chromosomes and the inclusion of markers within coding regions. Despite the large number of findings by GWAS, understanding of the genetic architecture of BW in chicken remains limited [5], since only a small number of positional candidate genes are confirmed as truly functionally relevant to the trait (e.g. HDAC2 and GNPDA2[6,7]). The use of various Bioinformatics tools such as gene enrichment analysis [8], pathway analysis [9] and gene network analysis [10] can tackle this problem and aid in identifying the most promising functional candidate genes for the trait under study. Moreover, applications such as GeneMANIA [11] that is based on the guilt-by-association (GBA) principle [12] may also facilitate the identification of true causative genetic variants. The GBA principle states that gene products, which are protein interaction partners, tend to be functionally related [13]. Furthermore, genes in protein-protein interaction networks (PPINs) are organized into densely linked clusters i.e. communities or modules [14]. Modules present a structurally independent gene sub-network with more interior connections and consist of proteins which have the same or similar biological function(s) [15]. Modules could be further distinguished in protein complexes and in dynamic functional modules. Protein complexes are formed by several proteins which interact at the same place and time while dynamic functional modules are composed of few proteins participating in a specific cellular function not necessarily at the same place and time [16]. Moreover, functional modules consist of one or multiple protein

¹ published in Sci. Rep. 9, 9125 (2019). https://doi.org/10.1038/s41598-019-45520-5.

complexes participating in a common biological process [17]. Since modules do not emerge by chance, they can reveal interactions with biological importance within large PPINs ([16,18]). The module-based approach has already been used to cluster genes into functional groups and to predict protein functions [19]. Investigation of functional modules has mainly been focused on human diseases such as obesity [20], breast cancer ([21,22]), coronary artery disease [23] and asthma [24]. Apart from human, functional modules have been identified in other species as well, such as in *Mus musculus* for discrete and rhythmic forelimb movements in motor cortex [25] and in *Gallus gallus* for muscle development and intramuscular fat accumulation at different post-hatching ages [26].

Driven from findings in other species and traits, aim of the present study was first to investigate whether body weight in broilers is associated with functional modules and second to propose novel candidate genes for the trait in question.

3.3. Methods

3.3.1. Ethics Statement

All animals included in this study were not subjected to any invasive procedures.

3.3.2. Data and quality control

In total, n= 6,727 broilers (n=3,735 males and n=2,992 females) from a grand-grandparent (GGP) commercial line with records on BW at 35 days of age were made available by Aviagen Ltd. Phenotypic records for BW ranged from 1,130 to 2,630 g with an average of 1840.2 g (SD=194 g). Animals were genotyped using the 600k Affymetrix® Axiom® high density genotyping array [4] resulting in a total number of 578,815 SNPs. Only autosomal SNPs (n=547,705) were considered. Quality control was performed first at a sample and second at a marker level. At a sample level, 72 females and 57 males were excluded due to call rate <0.99 and autosomal heterozygosity outside the 1.5 IQR (inter-quartile range) resulting in a number of n=6,598 samples. At a marker level, a number of 285,717 SNPs were excluded due to: call rate <0.99, MAF (minor allele frequency) <0.01 and linkage disequilibrium (LD) r² values greater than 0.99 within windows of 1 Mb inter-marker distance(s). A total of 6,598 samples and 262,067 SNPs were retained for GWAS. Quality control was performed using the SNP & Variation Suite software (version 8.8.1) of Golden Helix (http://www.goldenhelix.com).

3.3.3. Statistical analysis

A multi-locus mixed-model (MLMM) stepwise regression with forward inclusion and backward elimination [27] of SNPs was employed to identify genome-wide significant markers associated with the trait. The following statistical model was applied to the data:

$$y = X\boldsymbol{\beta} + \boldsymbol{w}\boldsymbol{\alpha} + Z\boldsymbol{u} + \boldsymbol{e}$$

where y is the n x 1 vector of phenotypic values of BW for n broilers, X is the n x 55 matrix of fixed effects: sex (2 classes), hatch (36 classes) and mating group (17 classes), β is the 55 x 1 vector of corresponding coefficients of fixed effects, w is the vector with elements of 0, 1, and 2 for the homozygote of the minor allele, heterozygote, and homozygote of the major allele, α is the vector of the fixed effect for the minor allele of the candidate SNP to be tested for association, Z is the incidence matrix relating observations to the polygenic random effects, u is the vector of polygenic random effects and e is the vector of random residuals.

The random effects were assumed to be normally distributed with zero means and the following covariance structure:

$$Var\begin{bmatrix} u\\ e \end{bmatrix} = \begin{bmatrix} G\sigma_u^2 & 0\\ 0 & I\sigma_e^2 \end{bmatrix}$$

where σ_u^2 and σ_e^2 are the polygenic and error variance components, I is the nxn identity matrix, and G is the nxn genomic relationship matrix (GRM [28]) with elements of pairwise relationship coefficient using the 262,067 SNPs. The genomic relationship coefficient between two individuals j and k, was estimated as follows:

$$\frac{1}{262,067} \sum_{i=1}^{262,067} \frac{(x_{ij} - 2p_i)(x_{ik} - 2p_i)}{2p_i(1 - 2p_i)}$$

where x_{ij} and x_{ik} represent the number (0, 1, or 2) of the minor allele for the i_{th} SNP of the j_{th} and k_{th} individuals, and p_i is the frequency of the minor allele [28].

Statistically significant markers were selected at the optimal step of the MLMM stepwise regression according to extended Bayesian Information Criterion (eBIC [29]). P-values of these SNPs were then corrected for multiple comparisons using the false-discovery rate (FDR [30]) correction method. Here, a cut-off FDR p-value less than 0.05 [31] was considered as significant. The FDR p-value of 0.05 states that, among all observed results, 5% would be false positives.

A Quantile-quantile (Q-Q) plot was also used to analyze the extent to which the observed distribution of the test statistic followed the expected (null) distribution. This plot along with the estimation of the genomic inflation factor (λ) was done to assess potential systematic bias due to population structure or to the analytical approach [32]. This analysis was performed using the SNP & Variation Suite (version 8.8.1) software (Golden Helix: http://www.goldenhelix.com).

3.3.4. Detection of candidate genomic regions with strong LD

We first estimated LD levels around each lead i.e. significant SNP. We then searched for genomic regions with strong LD around the lead SNPs defined as the maximum distance between the lead and the last SNP with D' \geq 0.8 [33]. Note that, the D', instead of the r² LD measurement, was preferably used here as the first one is reported to be independent [34] or less dependent [35] on MAF. All LD calculations were performed using the SNP & Variation Suite (version 8.8.1) software (Golden Helix: <u>http://www.goldenhelix.com</u>).

3.3.5. Identification of reported QTL and positional candidate genes

Next, we searched for growth/fatness related QTL in the ChickenQTLdb[1] and positional candidate genes in the NCBI database ([36,37]), within the strong LD genomic regions. Positions of QTL were remapped from *Gallus gallus 4* to *Gallus _gallus-5.0* assembly using the Genome Remapping Service from NCBI database [38].

3.3.6. Detection of community structure and functional module characterization

A gene network using all positional candidate genes was first constructed integrating the available *Homo sapiens* genes database (updated 17/3/2017) via the GeneMANIA V.3.4.1 plug-in [11] in Cytoscape V3.6.0 (http://cytoscape.org/ [39]). The gene network was built according to 7 types of interaction terms i.e. co-expression, co-localization, genetic interaction, pathway, physical interaction, predicted and shared protein domains. The automatic weighting method for network construction was also used while the number of related genes was set to zero.

Detection of community structure i.e. the appearance of densely interconnected nodes (modules) was then performed using the Girvan and Newman's clustering algorithm [40] via the GLay [41] of clusterMaker [42] plugin in Cytoscape [39]. This algorithm identifies modules within networks by repetitively removing edges with the highest "betweeness" i.e. edges between modules with higher values of betweeness rather than edges within modules. The strength of the network division into modules was also quantified using the modularity measure [40]. Typically, modularity values ranging from 0.3 to 0.7 are indicative of strong community structure [40].

Modular genes were then subjected to GO Biological Process (BP) term enrichment analysis using the DAVID functional annotation tool (https://david.ncifcrf.gov/, version 6.8) [43]. The *Homo sapiens* species was also selected for the input gene list and as whole genome background for enrichment analysis. The following settings were used during this analysis: an EASE score (a modified Fisher exact p-value [44]) cut-off=0.05 and a minimum number of genes per GO BP term=2. GO biological processes with p-values lower than 0.05 were considered as significantly enriched. The QuickGO [45] web-based tool was subsequently used to examine each resulting significantly enriched GO BP through browsing the hierarchical structure in the GO annotation database. GO BPs associated with developmental process or growth parent term(s) were considered as functionally relevant to the trait under study.

3.4. Data Availability

The data that support the findings of this study are available from Aviagen Ltd. but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of Aviagen Ltd.

3.5. Results

3.5.1. Significant SNPs and positional candidate genes

Figure 1 shows the Q-Q plot of the expected and the observed p values ($-\log_{10}$ p values) of all SNPs. The genomic inflation factor (λ) was also estimated as high as 0.93. According to Kang et al. [46], λ values that lie outside of the conservative 95% confidence interval (0.992 to 1.008) denote dependency of SNPs. However, as the Q-Q plot clearly shows, there is no evidence of any systematic bias due to population structure or analytical approach in our case. As Yang et al. [32] emphasize in their paper, it is reasonable to expect deviation(s) of λ from 1 for purely polygenic traits such as that examined here in the absence of any systematic bias. The Q-Q plot also shows that some SNPs depart from the expected probability and thus might be associated with the trait. These SNPs are also displayed in Figure 1 in a form of a Manhattan plot.

Specifically, there were 12 SNPs detected, across nine autosomes (1, 4, 10, 11, 15, 22, 25, 26 and 27) reaching genome-wide significance (FDR p-value<0.05). A detailed description of the significant (lead) SNPs is provided in Table 1. Table 2 displays the extent of genomic regions displaying strong LD (D'>0.8) around the lead markers that were searched for positional candidate genes. Note that marker *rs312758346* (GGA25) was omitted here as LD levels around this marker were below the threshold LD value (D'<0.8). In total, 645 positional candidate genes, n=15 were microRNAs with 13 of them (*MIR6672, MIR1720, MIR7-2, MIR3529, MIR1571, MIR1560, MIR1785, MIR6662, MIR7454, MIR10A, MIR6663, MIR1735 and MIR6547*) published in the miRBase database (http://www.mirbase.org/) for *Gallus gallus*. Moreover, 190 candidate genes were unannotated (LOC) resulting in a total

number of 455 annotated positional candidate genes. The maximum number of candidate genes (n=192) was identified in a region spanning 998.5 kb (average D'=0.98) around marker *rs315329074 on* GGA27. At the other extreme, the smallest number of candidate genes was identified for *rs316794400* within a narrow region spanning 26.6 kb (average D'=0.96) on GGA22. Six out of the 11 lead markers were located within annotated genes i.e. *SLAIN2* (GGA4), *ZC3H18* (GGA11), *TMEM132D* (GGA15), *F-KER* (GGA25), *LEMD2* (GGA26) and *CACNB1* (GGA27).

3.5.2. Reported QTL/associations

Table 2 shows the number of published QTL/associations reported within the searched genomic regions. A total of 186 QTL/associations related to growth traits or carcass traits (carcass weight, abdominal fat percentage, breast muscle percentage and average daily gain) were identified within the searched regions. QTL/associations were distributed across eight chromosomes (1, 4, 10, 11, 15, 22, 26 and 27) and a detailed description of the reported QTL can be found in Supplementary Table S2. Note that the searched region around rs317288536 (GGA25) is not reported to harbor any QTL/association (Table 2). Furthermore, the only QTL reported on GGA22 as well as two additional QTL on GGA26 and GGA27 could not be remapped in *Gallus gallus*-5.0 by the Genome remapping service tool from NCBI database. Nevertheless, based on the Gallus gallus-4 genome assembly, the searched regions around rs316794400, rs317627533 and rs314452928 overlapped with three QTL (IDs: 95429, 30883 and 55944). The maximum number (n=65) of QTL/associations was reported around rs315329074 (GGA27) and the minimum number (n=1) around rs316794400 (GGA22). Nine out of the 12 lead SNPs on autosomes 1, 4, 10, 11, 15, 26 and 27 lie within 96 out of the 186 growth-related QTL (Supplementary Table S2). In addition, nearly all reported QTL on the searched regions on GGA4 (n=49/50) and GGA11 (n=9/9) contain at least one of the lead markers (rs312691174, rs15608447 and rs318098582 respectively).

We further sought to examine the locations of the positional candidate genes in the relation to the positions of the reported QTL. These results are illustrated in Fig. 2 in forms of circular maps for seven autosomes (1, 4, 10, 11, 15, 26 and 27). On GGA1, all 33 candidate genes (around rs13923872) are lying in a genomic region spanning from 2421 to 196203 kb where 17 relevant QTL have been reported. On GGA4, all 16 candidate genes around rs312691174 are located within a region spanning from 4965 to 91268 kb, where all 14 published QTL reside. On the same autosome, all genes (n=36) around the second significant marker (rs15608447) are located in a region spanning from 4965 to 91268 kb where 35 QTL relevant to body weight, liver weight, carcass weight, total white fat weight have been reported. On GGA10, the region spanning from 693 to 20423 kb around the 'lead' marker (rs318199727) harbours all the 33 candidate genes and overlaps with 6 growth related OTL. On GGA11, in a region spanning from 953 to 20209 kb around rs318098582 there have been 7 reported QTL and 27 candidate genes identified. On GGA15, in a region spanning from 1932 to 10689 kb around rs317945754), 6 QTL related to growth traits (visceral fat weight, abdominal fat weight and breast muscle weight) are reported and 20 candidate genes were identified. Moreover, on GGA26 (rs317627533), 64 out of the 93 candidate genes lie in a narrow region (1264 to 4918 kb) where QTL associated with growth traits such as body weight and shank weight, are reported. On GGA27 in a regions spanning from 55 to 4520 kb around rs314452928, 2 related QTL were identified including 7 out of the 12 candidate genes. All 192 genes around the second marker (rs315329074) on GGA27 were located within one published QTL spanning 3788 to 5630 kb that has been associated with thigh percentage. In total, 428 out of the 462 positional candidate genes (genes on GGA22 and GGA25 were not included here) were located within regions with reported QTL/associations.

3.5.3. Detection of community structure

A network including 402 genes (nodes) and 5294 interactions (edges) was generated. Note that for *APOA1BP* and *LOH11CR2A* genes the homologous human gene descriptions (*NAXE* and *VWA5A*) were used, respectively. Community structure analysis detected 5 modules, formed by 401 genes (see Supplementary Table S3). One more module was also detected but this was consisted by only one gene (*NIPAL1*). Thus it cannot be considered as a typical module. Note that this gene network had a strong community structure as indicated by the high (0.59) estimated modularity value [40]. Distribution of the 401 genes across the 5 modules is displayed in Figure 3. Module_2 consisted of 187 genes, module_3 of 22 genes, module_4 of 18 genes, module_5 of 152 genes and module_6 of 22 genes.

3.5.4. Functional enrichment analysis per module

Four (module_ID: 2-5) out of the five modules exhibited enriched GO BPs while only three modules were associated with developmental processes according to QuickGO. Specifically, in module_2, a total number of 21 enriched GO BPs (Supplementary Table S4) and 78 participating genes were identified. According to QuickGO (see Figure 3 and 4), 9 out of the 21 GO BPs were related to development with 42 member genes (Supplementary Table S4). In the same module, 8 genes belonging to the homeobox B family genes along with MDFI were found to be enriched in embryonic skeletal system morphogenesis (GO:0048704). In module_3, none of the enriched GO BP terms were related to development (Supplementary Table S4). In module 4, three significantly enriched BPs (Supplementary Table S4) were identified in 7 member genes. Here, the only GO BP term that was associated with development through QuickGO was cell differentiation (GO:0030154) with 4 member genes (PPARD, ELF2, ETV3L and ETV4, Figure 4). A total number of 29 GO BPs were found as significantly enriched in module_5 (Supplementary Table S4). Here, two development related processes i.e. multicellular organism growth (GO:0035264) and bone development (GO:0060348) were identified by QuickGO (Figure 4) with 6 involved genes (KAT2A, SP2, ANKRD11, RARA, BGLAP and AKAP13).

3.5.5. Functional candidate genes

An exhaustive list, including 66 modular genes, of the most plausible candidate genes for BW is provided in Table 3. From these genes, 52 were participating in enriched developmental processes, 7 were growth related genes that were not enriched to any developmental process and 7 were growth related genes identified in previous studies. These 66 modular genes were distributed across 7 chromosomes (GGA4, GGA10, GGA11, GGA15, GGA25, GGA26 and GGA27) with 47 of them detected in module_2. The *KRT (keratins)* family and B cluster of *HOX (homeobox)* family genes were also included here.

3.6. Discussion

Results of the present study have shown that a typical quantitative trait such as that examined here is associated with modular genes exhibiting functional relevance to developmental processes. This means that application of functional enrichment analysis on modular genes can facilitate the identification of true causative genes for the trait under study. Following this approach, a total number of 52 functional candidate genes could be identified in the present study. Example genes that fall in this category were the following: *BTG2, ZAR1, MEOX1, KRT14, KRT15, TXK, CSF3, ACAN, HOXB, MDFI, NES, IGFBP4, PRELP, PPARD, ELF2, KAT2A, RARA and BGLAP*. Specifically, *BTG2, ZAR1, MEOX1, KRT14* and *KRT15* have been reported to participate in cerebellar development [47], development of follicular oocytes [48], somite differentiation [49], keratinocytes proliferation [50] and pigmentation of muscle tissues [51], in chickens, respectively. *TXK (TXK tyrosine kinase)* has been reported as BW related gene [52] while *CSF3 (colony stimulating factor 3)* has been described as a

myelomonocytic growth factor in chickens [53]. ACAN (aggrecan) is essential for cartilage formation during development in chicken and mouse mutants [54] and the HOX B cluster genes are expressed in chick embryonic development [55]. The MDFI (MyoD family inhibitor) tumor suppressor gene is known to have a negative effect on myogenic regulatory factors [56] while NES (nestin) is known as a neural progenitor cell marker during central nervous system development and a marker protein for neovascularization [57]. Furthermore, IGFBP4 (insulin like growth factor binding protein 4) is required for the adipose tissue development [58] while PRELP (proline and arginine rich end leucine rich repeat protein) is highly expressed in cartilage, basement membranes, and participates in bone development [59]. PPARD (peroxisome proliferator activated receptor delta) is a critical gene for normal adipose development and lipid homeostasis [60] while ELF2 (E74 like ETS transcription factor 2) plays a key role in the development of lymphocytes [61]. KAT2A (lysine acetyltransferase 2A) is necessary for growth and differentiation of craniofacial cartilage and bone in zebrafish and mice [62], RARA (retinoic acid receptor alpha) affects the hippocampal development [63] and finally BGLAP is produced by osteoblasts shaping new bones in chickens [64].

However, the search for modular genes that are exclusively enriched in functionally relevant terms has not proved to be efficient in identifying all true functional candidate genes. This finding may be fairly supported by the fact that 7 more genes (GABRG1, NGF, APOBEC2, STAT5B, STAT3, SMAD4 and MED1) that despite having well documented relevance to development were found to be enriched in other but developmental GO BP terms. Specifically, GABRG1(gamma-aminobutyric acid type A receptor gammal subunit) is reported as a BW related gene [52] and NGF (nerve growth factor) is a regulator of the somite survival and axial rotation during early chicken embryo development [65]. APOBEC2 (apolipoprotein B mRNA editing enzyme catalytic subunit 2) is known as a critical regulator and maintainer of muscle development in mammals and might affect muscle development in chickens [66]. In chickens, STAT5B (signal transducer and activator of transcription 5B) is associated with growth [67]. STAT3 (signal transducer and activator of transcription 3) plays a central role in development [68], SMAD4 (SMAD family member 4) is a central mediator of the transforming growth factor β signaling pathway which affects among others the cell growth [69] and finally MED1 (mediator complex subunit 1) has a key role in mammary epithelial cell growth [70].

The list with the most plausible candidate genes for the trait was, however, not exhausted in the previous two categories since 7 more genes (CACNB1, SLAIN2, LEMD2, ZC3H18, TMEM132D, FRYL and SGCB) with well documented implication to BW, were completely omitted in any enrichment analysis. Most interestingly, five of the above genes (CACNB1, SLAIN2, LEMD2, ZC3H18 and TMEM132D) contained lead SNPs. CACNB1 (calcium voltage-gated channel auxiliary subunit beta 1) has been reported to affect skeletal muscle development [71] in mice. SLAIN2 (SLAIN motif family member 2) is necessary for the normal structure of microtubule cytoskeleton as it controls the microtubule growth during interphase [72]. LEMD2 (LEM domain containing 2) participates in nuclear structure organization [73] and plays an important role in mouse embryonic development by regulating various signaling pathways such as MAPK (mitogen-activated protein kinase) and AKT (also known as Protein Kinase B) [74]. ZC3H18 (zinc finger CCCH-type containing 18) participates in RNA degradation [75] and affects mRNA metabolism [76]. Finally, TMEM132D (transmembrane protein 132D) may function as a tumor suppressor gene [77]. Finally, both FRYL (FRY like transcription coactivator) and SGCB (sarcoglycan beta) have been associated with growth ([78,79]) in chickens.

The two aforementioned gene lists underline the potential limitations of a cluster based method such as that used here to assess the biological properties of the candidate gene sets. Specifically, these limitations relate to i) grouping of similar terms into a cluster and

evaluating the enrichment of functional clusters instead of each individual term within the clusters and ii) the evaluation of the identified term clusters separately, while not taken into consideration the relationships between clusters [80].

Apart from functional enrichment analysis, other analyses such as pathway analysis, gene network analysis and GBA gene prioritization analysis could also assist in identifying true causative genetic variants for the trait under study. For instance, in a previous study [81], the use of GBA gene prioritization analysis on 1,012 positional candidate genes revealed 248 functional candidate genes for the same trait. However, fixed genomic regions (of 1Mb) around the lead genomic markers were used in that study. A final interesting result of the present study was the discovery of 15 microRNAs within the 645 candidate genes for the trait under investigation. One of these, i.e. *MIR10A* has been reported as significant for feed intake in broilers [82]. *MIR10A* together with *MIR10B* have been reported to inhibit the development of human, mouse and rat granulosa cells during folliculogenesis [83]. Finally, *MIR7-2* has been reported as genomic locus for peroxisome proliferator activated receptor regulation [84] and may have a functional role in hepatic lipid homeostasis. MicroRNAs have emerged as important regulators of gene expression post-transcriptionally and in *Gallus gallus* are known to play crucial roles in various biological processes such as the accumulation of abdominal fat [85] and the lipid metabolism [86].

In conclusion, the present GWAS revealed a large number of genomic regions and genes implicated in the genetic architecture of a complex trait such as the BW that fully complies with the Fisher's infinitesimal model of inheritance. Exploitation of both community structure and functional enrichment analyses highlighted 3 modules as related to development. Current findings also indicated 52 modular genes participating in developmental processes and 14 more modular genes related to BW. Finally, the present study proposed 66 functional candidate genes for BW, some of which are novel and some identified candidates in previous studies.

3.7. References

[1] Chicken QTL Database [Internet]. [cited 3 Sep 2017]. Available: https://www.animalgenome.org/cgi-bin/QTLdb/GG/download?tmpname=mapDwnLd&file=cM

[2] Xie L, Luo C, Zhang C, Zhang R, Tang J, Nie Q, et al. Genome-Wide Association Study Identified a Narrow Chromosome 1 Region Associated with Chicken Growth Traits. Liu Z, editor. PLoS One. Public Library of Science; 2012;7: e30910. doi:10.1371/journal.pone.0030910

[3] Van Goor A, Bolek KJ, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, et al. Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress. Genet Sel Evol. BioMed Central; 2015;47: 96. doi:10.1186/s12711-015-0176-7

[4] Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genomics. BioMed Central; 2013;14: 59. doi:10.1186/1471-2164-14-59

[5] Pettersson ME, Carlborg Ö. Dissecting the genetic architecture of complex traits and its impact on genetic improvement programs: lessons learnt from the Virginia chicken lines. Rev Bras Zootec. Sociedade Brasileira de Zootecnia; 2010;39: 256–260. doi:10.1590/S1516-35982010001300028

[6] Shahjahan M, Liu R, Zhao G, Wang F, Zheng M, Zhang J, et al. Identification of Histone Deacetylase 2 as a Functional Gene for Skeletal Muscle Development in Chickens. Asian-Australasian J Anim Sci. 2016;29: 479–486. doi:10.5713/ajas.15.0252

[7] Ouyang H, Zhang H, Li W, Liang S, Jebessa E, Abdalla BA, et al. Identification, expression and variation of the *GNPDA2* gene, and its association with body weight and fatness traits in chicken. PeerJ. 2016;4: e2129. doi:10.7717/peerj.2129

[8] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set

enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. National Academy of Sciences; 2005;102: 15545–50. doi:10.1073/pnas.0506580102

[9] García-Campos MA, Espinal-Enríquez J, Hernández-Lemus E. Pathway Analysis: State of the Art. Front Physiol. Frontiers; 2015;6: 383. doi:10.3389/fphys.2015.00383

[10] Chen J, Aronow BJ, Jegga AG. Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics. BioMed Central; 2009;10: 73. doi:10.1186/1471-2105-10-73

[11] Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, et al. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics. 2010;26: 2927–2928. doi:10.1093/bioinformatics/btq562

[12] Walker MG, Volkmuth W, Sprinzak E, Hodgson D, Klingler T. Prediction of gene function by genome-scale expression analysis: prostate cancer-associated genes. Genome Res. 1999;9: 1198–203. Available: http://www.ncbi.nlm.nih.gov/pubmed/10613842

[13] Oliver S. Guilt-by-association goes global. Nature. 2000;403: 601–602. doi:10.1038/35001165

[14] Liu G, Wang H, Chu H, Yu J, Zhou X. Functional diversity of topological modules in human protein-protein interaction networks. Sci Rep. Nature Publishing Group; 2017;7: 16199. doi:10.1038/s41598-017-16270-z

[15] Terentiev AA, Moldogazieva NT, Shaitan K V. Dynamic proteomics in modeling of the living cell. Protein-protein interactions. Biochemistry (Mosc). 2009;74: 1586–607. Available: http://www.ncbi.nlm.nih.gov/pubmed/20210711

[16] Spirin V, Mirny LA. Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A. National Academy of Sciences; 2003;100: 12123–8. doi:10.1073/pnas.2032324100

[17] Lu H, Shi B, Wu G, Zhang Y, Zhu X, Zhang Z, et al. Integrated analysis of multiple data sources reveals modular structure of biological networks. Biochem Biophys Res Commun. Academic Press; 2006;345: 302–309. doi:10.1016/J.BBRC.2006.04.088

[18] Zhang S, Ning X, Zhang X-S. Identification of functional modules in a PPI network by clique percolation clustering. Comput Biol Chem. Elsevier; 2006;30: 445–451. doi:10.1016/J.COMPBIOLCHEM.2006.10.001

[19] Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein function. Mol Syst Biol. 2007;3: 88. doi:10.1038/msb4100129

[20] Jagannadham J, Jaiswal HK, Agrawal S, Rawal K. Comprehensive Map of Molecules Implicated in Obesity. Castiglione F, editor. PLoS One. Public Library of Science; 2016;11: e0146759. doi:10.1371/journal.pone.0146759

[21] Sharma P, Bhattacharyya DK, Kalita J. Disease biomarker identification from gene network modules for metastasized breast cancer. Sci Rep. Nature Publishing Group; 2017;7: 1072. doi:10.1038/s41598-017-00996-x

[22] Hallett RM, Cockburn JG, Li B, Dvorkin-Gheva A, Hassell JA, Bane A. Identification and evaluation of network modules for the prognosis of basal-like breast cancer. Oncotarget. 2015;6: 17713–24. doi:10.18632/oncotarget.4034

[23] Lempiäinen H, Brænne I, Michoel T, Tragante V, Vilne B, Webb TR, et al. Network analysis of coronary artery disease risk genes elucidates disease mechanisms and druggable targets. Sci Rep. Nature Publishing Group; 2018;8: 3434. doi:10.1038/s41598-018-20721-6

[24] Sharma A, Menche J, Huang CC, Ort T, Zhou X, Kitsak M, et al. A disease module in the interactome explains disease heterogeneity, drug response and captures novel pathways and genes in asthma. Hum Mol Genet. 2015;24: 3005–3020. doi:10.1093/hmg/ddv001

[25] Hira R, Terada S-I, Kondo M, Matsuzaki M. Distinct Functional Modules for Discrete and Rhythmic Forelimb Movements in the Mouse Motor Cortex. J Neurosci. 2015;35: 13311–13322. doi:10.1523/JNEUROSCI.2731-15.2015

[26] Liu J, Fu R, Liu R, Zhao G, Zheng M, Cui H, et al. Protein Profiles for Muscle Development and Intramuscular Fat Accumulation at Different Post-Hatching Ages in Chickens. PENA i SUBIRÀ RN, editor. PLoS One. 2016;11: e0159722. doi:10.1371/journal.pone.0159722

[27] Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet. Nature Publishing Group; 2012;44: 825–830. doi:10.1038/ng.2314

[28] VanRaden PM. Efficient Methods to Compute Genomic Predictions. J Dairy Sci. 2008;91: 4414–4423. doi:10.3168/jds.2007-0980

[29] Chen J, Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika. Oxford University Press; 2008;95: 759–771. doi:10.1093/biomet/asn034

[30] Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing [Internet]. Journal of the Royal Statistical Society. Series B (Methodological). WileyRoyal Statistical Society; 1995. pp. 289–300. doi:10.2307/2346101

[31]Qu H-Q, Tien M, Polychronakos C. Statistical significance in genetic association studies. ClinInvestMed.NIHPublicAccess;2010;33:E266-70.Available:http://www.ncbi.nlm.nih.gov/pubmed/20926032

[32] Yang J, Weedon MN, Purcell S, Lettre G, Estrada K, Willer CJ, et al. Genomic inflation factors under polygenic inheritance. Eur J Hum Genet. Nature Publishing Group; 2011;19: 807–12. doi:10.1038/ejhg.2011.39

[33] Yi G, Shen M, Yuan J, Sun C, Duan Z, Qu L, et al. Genome-wide association study dissects genetic architecture underlying longitudinal egg weights in chickens. BMC Genomics. BioMed Central; 2015;16: 746. doi:10.1186/s12864-015-1945-y

[34] Hedrick PW. Gametic disequilibrium measures: proceed with caution. Genetics. 1987;117: 331–41. Available: http://www.ncbi.nlm.nih.gov/pubmed/3666445

[35] McRae AF, McEwan JC, Dodds KG, Wilson T, Crawford AM, Slate J. Linkage disequilibrium in domestic sheep. Genetics. 2002;160: 1113–22. Available: http://www.ncbi.nlm.nih.gov/pubmed/11901127

[36] Gallus gallus Annotation Release 103 [Internet]. [cited 3 Sep 2017]. Available: https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Gallus_gallus/103/

[37] Gallus_gallus-5.0 in NCBI assembly data base [Internet]. [cited 3 Sep 2017]. Available: https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.4/

[38] Coordinate remapping service: NCBI [Internet]. [cited 3 Sep 2017]. Available: https://www.ncbi.nlm.nih.gov/genome/tools/remap

[39] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003;13: 2498–2504. doi:10.1101/gr.1239303

[40] Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys Rev E. 2004;69: 026113. doi:10.1103/PhysRevE.69.026113

[41] Su G, Kuchinsky A, Morris JH, States DJ, Meng F. GLay: community structure analysis of biological networks. Bioinformatics. Oxford University Press; 2010;26: 3135–3137. doi:10.1093/bioinformatics/btq596

[42] Morris JH, Apeltsin L, Newman AM, Baumbach J, Wittkop T, Su G, et al. clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics. BioMed Central; 2011;12: 436. doi:10.1186/1471-2105-12-436

[43] Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane H, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. BioMed Central; 2003;4: R60. doi:10.1186/gb-2003-4-9-r60

[44] Hosack DA, Dennis G, Sherman BT, Lane HC, Lempicki RA, Lempicki RA. Identifying biological themes within lists of genes with EASE. Genome Biol. BioMed Central; 2003;4: R70. doi:10.1186/gb-2003-4-10-r70

[45] Huntley RP, Binns D, Dimmer E, Barrell D, O'Donovan C, Apweiler R. QuickGO: a user tutorial for the web-based Gene Ontology browser. Database (Oxford). Oxford University Press; 2009;2009: bap010. doi:10.1093/database/bap010

[46] Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S, Freimer NB, et al. Variance component model to account for sample structure in genome-wide association studies. Nat Genet. Nature Publishing Group; 2010;42: 348–354. doi:10.1038/ng.548

[47] Kamaid A, Giráldez F. Btg1 and Btg2 gene expression during early chick development. Dev Dyn. John Wiley & Sons, Ltd; 2008;237: 2158–2169. doi:10.1002/dvdy.21616

[48] Sun C, Lu J, Yi G, Yuan J, Duan Z, Qu L, et al. Promising Loci and Genes for Yolk and Ovary Weight in Chickens Revealed by a Genome-Wide Association Study. Veitia RA, editor. PLoS One. Public Library of Science; 2015;10: e0137145. doi:10.1371/journal.pone.0137145

[49] Reijntjes S, Stricker S, Mankoo BS. A comparative analysis of Meox1 and Meox2 in the developing somites and limbs of the chick embryo. Int J Dev Biol. 2007;51: 753–759.

doi:10.1387/ijdb.072332sr

[50] Couteaudier M, Trapp-Fragnet L, Auger N, Courvoisier K, Pain B, Denesvre C, et al. Derivation of keratinocytes from chicken embryonic stem cells: Establishment and characterization of differentiated proliferative cell populations. Stem Cell Res. Elsevier; 2015;14: 224–237. doi:10.1016/J.SCR.2015.01.002

[51] Tarique T, Yang S, Mohsina Z, Qiu J, Yan Z, Chen G, et al. Identification of genes involved in regulatory mechanism of pigments in broiler chickens. Genet Mol Res. 2014;13: 7201–7216. doi:10.4238/2014.September.5.6

[52] Gu X, Feng C, Ma L, Song C, Wang Y, Da Y, et al. Genome-Wide Association Study of Body Weight in Chicken F2 Resource Population. Mailund T, editor. PLoS One. Public Library of Science; 2011;6: e21872. doi:10.1371/journal.pone.0021872

[53] Gibson MS, Kaiser P, Fife M. Identification of Chicken Granulocyte Colony-Stimulating Factor (G-CSF/CSF3): The Previously Described Myelomonocytic Growth Factor Is Actually CSF3. J Interf Cytokine Res. Mary Ann Liebert, Inc. publishers140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801-5215USA; 2009;29: 339–344. doi:10.1089/jir.2008.0103

[54] Bou-Gharios G, Liu K, Li I, De Val S. Three new functionally conserved cis-regulatory elements in the Acan gene. Osteoarthr Cartil. Elsevier; 2014;22: S143–S144. doi:10.1016/j.joca.2014.02.267

[55] Gouveia A, Marcelino HM, Gonçalves L, Palmeirim I, Andrade RP. Patterning in time and space: HoxB cluster gene expression in the developing chick embryo. Cell Cycle. Taylor & Francis; 2015;14: 135. doi:10.4161/15384101.2014.972868

[56] Li J, Chen C, Bi X, Zhou C, Huang T, Ni C, et al. DNA methylation of CMTM3, SSTR2, and MDFI genes in colorectal cancer. Gene. 2017;630: 1–7. doi:10.1016/j.gene.2017.07.082

[57] Suzuki S, Namiki J, Shibata S, Mastuzaki Y, Okano H. The Neural Stem/Progenitor Cell Marker Nestin Is Expressed in Proliferative Endothelial Cells, but Not in Mature Vasculature. J Histochem Cytochem. 2010;58: 721–730. doi:10.1369/jhc.2010.955609

[58] Maridas DE, DeMambro VE, Le PT, Mohan S, Rosen CJ. IGFBP4 Is Required for Adipogenesis and Influences the Distribution of Adipose Depots. Endocrinology. The Endocrine Society; 2017;158: 3488–3500. doi:10.1210/en.2017-00248

[59] Rucci N, Rufo A, Alamanou M, Capulli M, Del Fattore A, Ahrman E, et al. The glycosaminoglycan-binding domain of PRELP acts as a cell type-specific NF-kappaB inhibitor that impairs osteoclastogenesis. J Cell Biol. The Rockefeller University Press; 2009;187: 669–83. doi:10.1083/jcb.200906014

[60] Shiue Y-L, Chen L-R, Tsai C-J, Yeh C-Y, Huang C-T. Emerging roles of peroxisome proliferator-activated receptors in the pituitary gland in female reproduction. Biomarkers Genomic Med. Elsevier; 2013;5: 1–11. doi:10.1016/J.GMBHS.2013.04.008

[61] Guan FHX, Bailey CG, Metierre C, O'Young P, Gao D, Khoo TL, et al. The antiproliferative ELF2 isoform, ELF2B, induces apoptosis in vitro and perturbs early lymphocytic development in vivo. J Hematol Oncol. BioMed Central; 2017;10: 75. doi:10.1186/s13045-017-0446-7

[62] Sen R, Pezoa S, Carpio Shull L, Hernandez-Lagunas L, Niswander L, Artinger K. Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice. J Dev Biol. 2018;6: 27. doi:10.3390/jdb6040027

[63] Huang H, Wei H, Zhang X, Chen K, Li Y, Qu P, et al. Changes in the expression and subcellular localization of RARα in the rat hippocampus during postnatal development. Brain Res. 2008;1227: 26–33. doi:10.1016/j.brainres.2008.06.073

[64] Jiang S, Cheng HW, Hester PY, Hou J-F. Development of an enzyme-linked immunosorbent assay for detection of chicken osteocalcin and its use in evaluation of perch effects on bone remodeling in caged White Leghorns. Poult Sci. Oxford University Press; 2013;92: 1951–1961. doi:10.3382/ps.2012-02909

[65] Manca A, Capsoni S, Di Luzio A, Vignone D, Malerba F, Paoletti F, et al. Nerve growth factor regulates axial rotation during early stages of chick embryo development. Proc Natl Acad Sci. 2012;109: 2009–2014. doi:10.1073/pnas.1121138109

[66] Li J, Zhao X-L, Gilbert ER, Li D-Y, Liu Y-P, Wang Y, et al. APOBEC2 mRNA and protein is predominantly expressed in skeletal and cardiac muscles of chickens. Gene. 2014;539: 263–269. doi:10.1016/j.gene.2014.01.003

[67] Zhao XH, Wang JY, Zhang GX, Wei Y, Gu YP, Yu YB. Single nucleotide polymorphism in the STAT5b gene is associated with body weight and reproductive traits of the Jinghai Yellow

chicken. Mol Biol Rep. Springer Netherlands; 2012;39: 4177–4183. doi:10.1007/s11033-011-1202-7 [68] Johnston PA, Grandis JR. STAT3 SIGNALING: Anticancer Strategies and Challenges. Mol Interv. 2011;11: 18–26. doi:10.1124/mi.11.1.4

[69] Zhao M, Mishra L, Deng C-X. The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci. 2018;14: 111–123. doi:10.7150/ijbs.23230

[70] Hasegawa N, Sumitomo A, Fujita A, Aritome N, Mizuta S, Matsui K, et al. Mediator Subunits MED1 and MED24 Cooperatively Contribute to Pubertal Mammary Gland Development and Growth of Breast Carcinoma Cells. Mol Cell Biol. 2012;32: 1483–1495. doi:10.1128/MCB.05245-11

[71] Chen F, Liu Y, Sugiura Y, Allen PD, Gregg RG, Lin W. Neuromuscular synaptic patterning requires the function of skeletal muscle dihydropyridine receptors. Nat Neurosci. Nature Publishing Group; 2011;14: 570–577. doi:10.1038/nn.2792

[72] van der Vaart B, Manatschal C, Grigoriev I, Olieric V, Gouveia SM, Bjelić S, et al. SLAIN2 links microtubule plus end-tracking proteins and controls microtubule growth in interphase. J Cell Biol. 2011;193: 1083–1099. doi:10.1083/jcb.201012179

[73] Brachner A, Reipert S, Foisner R, Gotzmann J. LEM2 is a novel MAN1-related inner nuclear membrane protein associated with A-type lamins. J Cell Sci. The Company of Biologists Ltd; 2005;118: 5797–810. doi:10.1242/jcs.02701

[74] Tapia O, Fong LG, Huber MD, Young SG, Gerace L. Nuclear Envelope Protein Lem2 is Required for Mouse Development and Regulates MAP and AKT Kinases. Palazzo AF, editor. PLoS One. 2015;10: e0116196. doi:10.1371/journal.pone.0116196

[75] Giacometti S, Benbahouche NEH, Domanski M, Robert M-C, Meola N, Lubas M, et al. Mutually Exclusive CBC-Containing Complexes Contribute to RNA Fate. Cell Rep. Elsevier; 2017;18: 2635–2650. doi:10.1016/j.celrep.2017.02.046

[76] Winczura K, Schmid M, Iasillo C, Molloy KR, Harder LM, Andersen JS, et al. Characterizing ZC3H18, a Multi-domain Protein at the Interface of RNA Production and Destruction Decisions. Cell Rep. 2018;22: 44–58. doi:10.1016/j.celrep.2017.12.037

[77] Iwakawa R, Kohno T, Totoki Y, Shibata T, Tsuchihara K, Mimaki S, et al. Expression and clinical significance of genes frequently mutated in small cell lung cancers defined by whole exome/RNA sequencing. Carcinogenesis. 2015;36: 616–621. doi:10.1093/carcin/bgv026

[78] Zhang GX, Fan QC, Zhang T, Wang JY, Wang WH, Xue Q, et al. Genome-wide association study of growth traits in the Jinghai Yellow chicken. Genet Mol Res. 2015;14: 15331–15338. doi:10.4238/2015.November.30.10

[79] Pampouille E, Berri C, Boitard S, Hennequet-Antier C, Beauclercq SA, Godet E, et al. Mapping QTL for white striping in relation to breast muscle yield and meat quality traits in broiler chickens. BMC Genomics. 2018;19: 202. doi:10.1186/s12864-018-4598-9

[80] Sun D, Liu Y, Zhang X-S, Wu L-Y. CEA: Combination-based gene set functional enrichment analysis. Sci Rep. Nature Publishing Group; 2018;8: 13085. doi:10.1038/s41598-018-31396-4

[81] Tarsani E, Kranis A, Maniatis G, Kominakis A. Investigating the functional role of 1,012 candidate genes identified by a Genome Wide Association Study for body weight in broilers. Proc World Congr Genet Appl to Livest Prod. World Congress on Genetics Applied to Livestock Production; 2018;Species-Avian 1: 564. Available: http://www.wcgalp.org/proceedings/2018/investigating-functional-role-1012-candidate-genes-identified-genome-wide

[82] Yuan J, Wang K, Yi G, Ma M, Dou T, Sun C, et al. Genome-wide association studies for feed intake and efficiency in two laying periods of chickens. Genet Sel Evol. BioMed Central; 2015;47: 82. doi:10.1186/s12711-015-0161-1

[83] Jiajie T, Yanzhou Y, Hoi-Hung AC, Zi-Jiang C, Wai-Yee C. Conserved miR-10 family represses proliferation and induces apoptosis in ovarian granulosa cells. Sci Rep. Nature Publishing Group; 2017;7: 41304. doi:10.1038/srep41304

[84] Singaravelu R, Quan C, Powdrill MH, Shaw TA, Srinivasan P, Lyn RK, et al. MicroRNA-7 mediates cross-talk between metabolic signaling pathways in the liver. Sci Rep. Nature Publishing Group; 2018;8: 361. doi:10.1038/s41598-017-18529-x

[85] Huang HY, Liu RR, Zhao GP, Li QH, Zheng MQ, Zhang JJ, et al. Integrated analysis of microRNA and mRNA expression profiles in abdominal adipose tissues in chickens. Sci Rep. Nature Publishing Group; 2015;5: 16132. doi:10.1038/srep16132

[86] Li H, Ma Z, Jia L, Li Y, Xu C, Wang T, et al. Systematic analysis of the regulatory functions of microRNAs in chicken hepatic lipid metabolism. Sci Rep. Nature Publishing Group; 2016;6: 31766.

doi:10.1038/srep31766

[87] Conant GC, Wolfe KH. GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics. 2008;24: 861–862. doi:10.1093/bioinformatics/btm598

Tables and Figures of Chapter 3Table 1. Genome-wide significant SNPs (FDR p-value<0.05) for BW.</th>

SNP ID	GGA	Position (bp) ¹	-log10(p-value)	FDR p-value
rs13923872	1	112,741,685	6.415	0.0112
rs312691174	4	29,074,989	7.948	0.00037
rs15608447	4	66,885,210	13.489	4.25E-09
rs318199727	10	13,536,548	5.763	0.04111
rs318098582	11	18,651,449	8.513	0.00012
rs317945754	15	3,557,083	5.677	0.04594
rs316794400	22	4,594,855	11.033	6.07E-07
rs317288536	25	976,833	13.035	8.05E-09
rs312758346	25	2,412,866	9.517	1.59E-05
rs317627533	26	4,597,439	9.313	2.12E-05
rs314452928	27	104,022	6.398	0.0105
rs315329074	27	4,528,275	20.513	8.05E-16

¹Positions are based on *Gallus gallus-5.0* genome assembly.

Table 2. Number of positional	candidate genes and QTL/as	ssociations within the searc	hed genomic	regions (± maximum	distance of the farest S	SNP being in strong
LD (D'>0.8) with the lead SNP	'; D': average D' values withir	n the searched genomic regi	on).			

SNP ID	GGA	Position (bp) ¹	Searched genomic range around 'lead' SNP (± bp)	D'	Number of positional candidate genes	Number of QTL/ associations
rs13923872	1	112,741,685	613,054	0.91	33	20
rs312691174	4	29,074,989	650,472	1	16	14
rs15608447	4	66,885,210	718,407	0.88	36	36
rs318199727	10	13,536,548	737,906	0.83	33	11
rs318098582	11	18,651,449	300,257	0.81	27	9
rs317945754	15	3,557,083	935,183	0.99	20	21
rs316794400	22	4,594,855	26,589	0.96	7	1
rs317288536	25	976,833	1,004,513	0.83	176	-
rs317627533	26	4,597,439	773,988	0.9	93	6
rs314452928	27	104,022	140,067	0.94	12	3
rs315329074	27	4,528,275	998,553	0.98	192	65

¹Positions are based on *Gallus gallus-5.0* genome assembly.

Table 3. List of 66 most plausible candidate genes for BW according to the following criteria: modular genes participating in enriched developmental processes, growth related modular genes not significantly enriched to any developmental process and growth related modular genes reported in previous studies.
Criterion	Gene	Description	Module_ID	GGA
modular genes participating in enriched developmental processes	BTG2	BTG anti-proliferation factor 2	module_2	26
	ZAR1	zygote arrest 1	module_2	4
	MEOX1	mesenchyme homeobox 1	module_2	27
	KRT14	keratin 14	module_2	27
	KRT15	keratin 15	module_2	27
	TXK	TXK tyrosine kinase	module_2	4
	CSF3	colony stimulating factor 3	module_2	27
	ACAN	aggrecan	module_2	10
	HOXB1	homeobox B1	module_2	27
	HOXB2	homeobox B2	module_2	27
	НОХВ3	homeobox B3	module_2	27
	HOXB4	homeobox B4	module_2	27
	HOXB5	homeobox B5	module_2	27
	НОХВ6	homeobox B6	module_2	27
	HOXB7	homeobox B7	module_2	27
	HOXB8	homeobox B8	module_2	27
	HOXB9	homeobox B9	module_2	27
	HOXB13	homeobox B13	module_2	27
	MDFI	MyoD family inhibitor	module_2	26
	NES	nestin	module_2	25
	TBX21	<i>T-box 21</i>	module_2	27
	IGFBP4	insulin like growth factor binding protein 4	module_2	27
	PRELP	proline and arginine rich end leucine rich repeat protein	module_2	26
	HAPLN2	hyaluronan and proteoglycan link protein 2	module_2	25

HAPLN3	hyaluronan and proteoglycan link protein 3	module_2	10
GABRA4	gamma-aminobutyric acid type A receptor alpha4 subunit	module_2	4
BCAN	brevican	module_2	25
NHLH1	nescient helix-loop-helix 1	module_2	25
ZBTB7B	zinc finger and BTB domain containing 7B	module_2	25
FZD10	frizzled class receptor 10	module_2	15
TCP11	t-complex 11	module_2	26
PIWIL1	piwi like RNA-mediated gene silencing 1	module_2	15
SPDEF	SAM pointed domain containing ETS transcription factor	module_2	26
ZFPM1	zinc finger protein, FOG family member 1	module_2	11
CBFA2T3	CBFA2/RUNX1 translocation partner 3	module_2	11
KRT17	keratin 17	module_2	27
CRABP2	cellular retinoic acid binding protein 2	module_2	25
SH2D2A	SH2 domain containing 2A	module_2	25
NR1D1	nuclear receptor subfamily 1 group D member 1	module_2	27
STX2	syntaxin 2	module_2	15
TEC	tec protein tyrosine kinase	module_2	4
ETV3	ETS variant 3	module_2	25
PPARD	peroxisome proliferator activated receptor delta	module_4	26
ELF2	E74 like ETS transcription factor 2	module_4	4
ETV3L	ETS variant 3 like	module_4	25
ETV4	ETS variant 4	module_4	27
KAT2A	lysine acetyltransferase 2A	module_5	27
RARA	retinoic acid receptor alpha	module_5	27
BGLAP	bone gamma-carboxyglutamate protein	module_5	25
 SP2	Sp2 transcription factor	module_5	27

	ANKRD11	ankyrin repeat domain 11	module_5	11
	AKAP13	A-kinase anchoring protein 13	module_5	10
growth related modular genes not significantly enriched to any developmental process	GABRG1	gamma-aminobutyric acid type A receptor gamma1 subunit	module_2	4
	NGF	nerve growth factor	module_2	26
	APOBEC2	apolipoprotein B mRNA editing enzyme catalytic subunit 2	module_5	26
	STAT5B	signal transducer and activator of transcription 5B	module_3	27
	STAT3	signal transducer and activator of transcription 3	module_5	27
	SMAD4	SMAD family member 4	module_5	25
	MED1	mediator complex subunit 1	module_5	27
growth related modular genes reported in previous studies	CACNB1	calcium voltage-gated channel auxiliary subunit beta 1	module_2	27
	SLAIN2	SLAIN motif family member 2	module_5	4
	LEMD2	LEM domain containing 2	module_5	26
	ZC3H18	zinc finger CCCH-type containing 18	module_5	11
	TMEM132D	transmembrane protein 132D	module_2	15
	FRYL	FRY like transcription coactivator	module_4	4
	SGCB	sarcoglycan beta	module_2	4

Figure 1. Manhattan plot (left) and quantile-quantile plot (right) for BW. Manhattan plot shows the $-\log_{10}$ (observed p-values) of the genome-wide SNPs (y-axis) across the 28 autosomes (x-axis), and the horizontal line denotes the genome-wide significant threshold. With regard to the Q-Q plot, the y-axis represents the observed $-\log_{10}$ (p-values) and the x-axis shows the expected $-\log_{10}$ (p-values). Manhattan plot was constructed with SNP & Variation Suite (version 8.8.1) software (Golden Helix: <u>http://www.goldenhelix.com</u>) while Q-Q plot with the CMplot package (https://github.com/YinLiLin/R-CMplot) in R (<u>http://www.r-project.org/</u>).

Figure 2. Circular chromosome maps for seven autosomes presenting combined data of reported QTL (n=183) and positional candidate genes (n=462). Blue color represents the extent of large sized QTL (50 - 196.2 Mb), green color the medium sized QTL (5-50 Mb) and the yellow color is indicative of the small QTL (0-5 Mb). Red color indicates the starting and ending positions of positional candidate genes. The position(s) of the significant SNPs (labeled in purple color) is also given. The figure was constructed using GenomeVx [87].

Figure 3. Network modules along with the significantly enriched developmental processes per module. The five modules are presented in the three radial networks (on the top) as circles/ellipses with different color together with their member genes and the corresponding chromosomes. The diagonal network at the bottom

provides the significantly enriched developmental processes per module. Figure was constructed using the data.tree and networkD3 packages in R (<u>http://www.r-project.org/</u>).

QuickGO - https://www.ebi.ac.uk/QuickGO

Figure 4. GO hierarchical structure for the eleven significantly enriched BPs (denoted with red color) associated with developmental process/growth term (denoted with green color). This GO tree was created and extracted by QuickGO [45].

ls a

Part of

Regulates

Occurs in

Capable of

В

В

в

в

B

В

в

В

Chapter 4

Deciphering the mode of action and position of genetic variants impacting on egg number in broiler breeders¹

4.1. Abstract

Aim of the present study was first to identify genetic variants associated with egg number (EN) in female broilers, second to describe the mode of their gene action (additive and/or dominant) and third to provide a list with implicated candidate genes for the trait. A number of 2,586 female broilers genotyped with the high density (~600k) SNP array and with records on EN (mean=132.4 eggs, SD=29.8 eggs) were used. Data were analyzed with application of additive and dominant multi-locus mixed models. A number of 7 additive, 4 dominant and 6 additive plus dominant marker-trait significant associations were detected. A total number of 57 positional candidate genes were detected within 50 kb downstream and upstream flanking regions of the 17 significant markers. Functional enrichment analysis pinpointed two genes (BHLHE40 and CRTC1) to be involved in the 'entrainment of circadian clock by photoperiod' biological process. Gene prioritization analysis of the positional candidate genes identified 10 top ranked genes (GDF15, BHLHE40, JUND, GDF3, COMP, ITPR1, ELF3, ELL, CRLF1 and IFI30). Seven prioritized genes (GDF15, BHLHE40, JUND, GDF3, COMP, ELF3, CRTC1) have documented functional relevance to reproduction, while two more prioritized genes (*ITPR1* and *ELL*) are reported to be related to egg quality in chickens. Present results have shown that detailed exploration of phenotype-marker associations can disclose the mode of action of genetic variants and help in identifying causative genes associated with reproductive traits in the species.

4.2. Introduction

The breeding objective used for selection in broilers is balanced between reproduction, welfare and production traits [1]. Modern broiler breeding programs strive to optimize the overall reproductive efficiency, which is defined as the number of viable chicks per breeder hen and is determined by the egg production in combination with fertility and hatchability. Among the different metrics to describe egg production, egg number (EN), defined as the number of eggs laid over the duration of the laying period (from 28 to 54 weeks), is one of the most commonly used ones for selection purposes in commercial broilers [2,3].

As a typical reproductive trait, EN presents low to medium additive heritability estimates. In broiler hens, pedigree-based additive heritability for the trait has been estimated as high as 0.32, while respective estimates are in the range from 0.13 to 0.36 when using genomic relationship matrices [3,4]. The contribution of dominance may also be of importance for the trait, as estimates of the genomic dominant heritability has been found as high as 0.06 [3].

High-density SNP (single nucleotide polymorphism) genotyping arrays have greatly facilitated the detection of candidate causal variants in genome-wide association studies (GWAS) for various traits related to egg production and egg quality. Most GWAS have, so far, focused on the detection of additive SNPs for egg production [5-7] and egg quality traits [5,7-10]. It is noted that these studies have been focusing on EN in layer chickens and not broiler breeders. Moreover, to our knowledge, there is only one study [7] that aimed at identifying dominant SNPs for egg production and quality traits in chickens.

¹ Results of this Chapter have been presented in the XIth European symposium on Poultry Genetics. This Chapter has been accepted for publication in BMC Genomics.

Driven from the scarcity of published reports for broiler breeders, we elaborated the present study with the primary aim to detect genetic variants impacting on EN. Next, we sought to describe the mode of gene action of the significant genetic variants and finally attempted to provide a list with most likely candidate genes for the trait under investigation. Current findings are expected to contribute to a better understanding of the genetic mechanism(s) underlying the EN phenotype in the species.

4.3. Material and methods

4.3.1. Data

Genotypic and phenotypic records for 2,992 female broiler breeders from a purebred line were made available by Aviagen Ltd. Phenotypic records for EN were collected from 28 to 50 weeks of age and ranged from 26 to 196 eggs per female broiler with an average of 132.4 (SD=29.8). Animals were genotyped with the 600k Affymetrix® Axiom® high density genotyping array [11] resulting in a total number of 544,927 SNPs dispersed in 29 autosomes (GGA1-28 and GGA33). Quality control (QC) was performed first at a sample and second at a marker level. At a sample level, 406 animals were excluded due to call rate <0.99 and autosomal heterozygosity outside the 1.5 IQR (inter-quartile range: 0.013). At a marker level, a number of 305,660 SNPs were excluded due to: call rate <0.95, MAF (minor allele frequency) <0.05 and linkage disequilibrium (LD) r² values greater than 0.99 within windows of 1 Mb inter-marker distance(s). A total of 2,586 samples and 239,267 SNPs across 28 autosomes (GGA1-28) were retained for further analyses. QC was performed using the SNP & Variation Suite software (version 8.8.3).

4.3.2. Marker-trait association analysis

Multi-locus mixed-model (MLMM) stepwise regression with forward inclusion and backward elimination [12] of SNPs was employed to identify markers associated with the trait, assuming first an additive and second a dominant gene action for the SNP effects.

Specifically, the following statistical model was used for EN data:

$$y = X\beta + w\alpha + Zu + e$$

where y is the n x 1 vector of phenotypic values of EN for n female broilers, X is the n x 53 matrix of fixed effects: hatch (36 classes) and mating group (17 classes), β is the 53 x 1 vector of corresponding coefficients of fixed effects, a is the fixed effect for the minor allele of the candidate SNP to be tested for association, w is the incidence vector relating observations to SNP effects with elements coded as 0 for the major homozygous genotype, 1 for the heterozygote genotype and 2 for the minor homozygous genotype (additive genetic model) and 0 for the major homozygous genotype and 1 for the heterozygous and minor homozygous genotypes (dominant genetic model). Z is the incidence matrix relating observations to the polygenic random effects, u is the vector of polygenic random effects and e is the vector of random residuals.

The random effects were assumed to be normally distributed with zero means and the following covariance structure:

$$Var\begin{bmatrix} u\\ e \end{bmatrix} = \begin{bmatrix} G\sigma_u^2 & 0\\ 0 & I\sigma_e^2 \end{bmatrix}$$

where σ_u^2 and σ_e^2 are the polygenic and error variance components, I is the nxn identity

matrix, and G is the n x n genomic relationship matrix (GRM [13]) with elements of pairwise relationship coefficient using the 239,267 SNPs. The genomic relationship coefficient between two individuals j and k, was estimated as follows:

$$\frac{1}{239,267}\sum_{i=1}^{239,267}\frac{(x_{ii}-2p_i)(x_{ik}-2p_i)}{2p_i(1-2p_i)}$$

where x_{ij} and x_{ik} represent the number (0, 1, 2 in the additive model and 0, 1, 1 in the dominant model) of the minor allele of the i_{th} SNP of the j_{th} and k_{th} individuals, and p_i is the frequency of the minor allele [13].

Statistically significant SNPs per genetic model were selected at the optimal step of the MLMM stepwise regression according to extended Bayesian Information Criterion (eBIC[14]). SNP p-values were then corrected for multiple comparisons using the Bonferroni correction method. A SNP was considered as significant at the genome-wide level when its p-value was lower than the threshold value 2.09E-07 (0.05/239,267) while a chromosome-wide significant SNP had a p-value lower than 0.05/N, where N is the number of markers on a given chromosome. All analyses were performed using the SNP & Variation Suite software (version 8.8.3). SNP positions were based on *GRCg6a* assembly [15,16].

4.3.3. Quantile-quantile plots and estimation of the genomic inflation factor

Quantile-quantile (Q-Q) plots were used to analyze the extent to which the observed distribution of the test statistic followed the expected (null) distribution. These plots along with the estimation of the genomic inflation factor (λ) were used to assess potential systematic bias due to population structure or to the analytical approach [17]. Estimation of λ was performed using the SNP & Variation Suite (version 8.8.3).

4.3.4. Estimation of genomic heritability and proportion of variance explained

Estimation of the genomic heritability was implemented via the estimated GRM of 2,586 animals derived from 239,267 SNPs. The proportion of variance explained by a SNP k (PVE_k) was also calculated as follows:

$$PVE_k = \frac{mrss_{h0} - mrss_k}{mrss_{h0}}$$

where $mrss_{h0}$ is the Mahalonobis root sum of squares (mrss) for the null hypothesis and $mrss_k$ is the same for marker k. All above estimations were performed using the SNP & Variation Suite software (version 8.8.3).

4.3.5. Identification of significant SNPs under multicollinearity conditions

When multiple markers were present in a specific genomic region, a variable selection method i.e. the Least Absolute Shrinkage and Selection Operator (LASSO) [18] as implemented in procedure GLMSELECT in SAS 9.3 (2012) was applied to identify the most significant markers in the area.

4.3.6. Estimation of the degree of dominance

Significant SNPs associated with dominant or dominant and additive gene action(s) were

further analysed toward estimation of additive allelic effects, dominance deviation and degree of dominance. This analysis was based on estimates of genotype least squares (LS) means by application of a mixed model to the EN data fitting hatch, mating group and the marker as fixed effects and the animal as a random effect. The Satterthwaite method was used for estimating the degrees of freedom and the Tukey-Kramer method for adjusting the p-values because of multiple comparisons between genotype means. Results of the mixed model analysis are presented as LS means (μ) with standard errors (SE). Additive allelic effect (*a*) was defined as half the difference between LS means of the two homozygous genotypes, using the minor homozygous genotypes as reference. Dominance deviation (*d*) was the heterozygous genotype LS mean minus the average of the two homozygous genotype LS means. Finally, degree of dominance was determined as |d/a|, where additive= 0-0.20, partial dominance = 0.21-0.80, complete dominance = 0.81-1.20 and overdominance>1.20 [19,20]. This analysis was performed by the MIXED procedure in SAS 9.3 (2012).

4.3.7. Detection, functional characterization and prioritization of positional candidate genes

We searched within 50 kb downstream and upstream flanking regions of each significant marker for positional candidate genes using the NCBI database [21] and the *GRCg6a* assembly [15,16]. Subsequently, the total number of positional candidate genes was subjected to the following analyses: Gene Ontology (GO) Biological Process (BP) enrichment analysis and gene prioritization analysis (PA).

GO enrichment analysis for BP was performed using the DAVID functional annotation tool (https://david.ncifcrf.gov/, version 6.8) [22]. Specifically, we selected the *Gallus gallus* species for the input gene list and as whole genome background for enrichment analysis. The following settings were used in this analysis: EASE score (modified Fisher's exact p-value [23]) cutoff=0.05 and minimum number of genes per GO BP term=2. GO biological processes with p-values lower than 0.05 were considered as significantly enriched.

Next, gene prioritization analysis (PA) of the positional candidate genes was performed using the ToppGene portal (https://toppgene.cchmc.org/prioritization.jsp [24]). PA was based on the functional similarity of the positional candidate genes (test genes) to a training gene list including a total number of 31 genes (Supplementary Table 1). The latter genes were retrieved from the NCBI database [21] using the search terms 'reproduction' and 'egg production' in Gallus gallus. The portal performs functional annotation-based candidate gene prioritization using fuzzy-based similarity measures to compute the similarity between any two genes based on semantic annotations. In our study two semantic annotations: 'GO: Biological Process' and 'Coexpression' were used. A p-value for each annotation of a test gene was derived by random sampling of 5,000 genes from the whole genome and these partial p values were combined into an overall p value using the probability density function. For gene prioritization, there were 30 training genes (ZNF764L was omitted) and 43 test genes (positional candidate genes). Not all of the 57 positional candidate genes were included in the analysis because the human homologs could not be found for all of them, especially for LOC genes (n=14). Genes with an overall p-value lower than 0.05 were considered as highly prioritized.

4.4. Results

4.4.1. Significant SNPs and PVE

Additive and dominant genomic heritability estimates were identical and equal to 0.167 (SE=0.03) for the trait. The Q-Q plots (see Supplementary Figure 1) of the expected and observed SNP p-values along with the estimations of the genomic inflation factors (λ =0.95 and 0.97 for the respective additive and dominant genetic model) were indicate of no

systematic bias due to population structure or analytical approach. Profiles of the SNP pvalues (expressed as -log₁₀) for the additive and dominant genetic model are presented in form of circular Manhattan plots in Figure 1. No SNP was found to reach genome-wide significance (p<2.09E-07) using the Bonferroni correction method. Nevertheless, using the same correction method, a total number of 17 SNPs reached chromosome-wide significance across four autosomes (12, 22, 26 and 28) (Table 1). Specifically, one marker (rs313298834) was detected on GGA12 (threshold p=0.05/7,475=6.68896E-06), one (rs314011910) on GGA22 (threshold p=0.05/1,870=2.6738E-05), one (rs313045367) on GGA26 (threshold p=0.05/3,013=1.65948E-05) and 14 on GGA28 (threshold p=0.05/2,268=2.20459E-05). Of the 17 SNPs, 7 were associated with additive, 4 with dominant and 6 markers with both gene actions (Table 1). Of the additive SNPs, one marker (rs313045367) resided on GGA26 while 6 were located on GGA28. One dominant SNP (rs314011910) was detected on GGA22 while 3 dominant SNPs (rs15250929, rs314052602 and rs318126353) were located on GGA28. Of markers displaying both gene actions, one marker (rs313298834) resided on GGA12 and 5 were located on GGA28 (Table 1). Note that the 14 significant SNPs residing on GGA28 were co-localized in a region spanning 240,432 bp (3,818,934-4,059,366 bp) with high LD (r^2) levels. A detailed view of these SNPs along with LD (r^2) levels between markers is depicted in Figure 2. As the LD heatmap shows, there are two haplotype blocks ($r^2>0.70$) formed by marker pairs rs15250929-rs16212041 and rs314418757-rs318126353 (Figure 2). PVE by significant markers ranged from 0.70% (rs10724922, rs317783777) to 0.85% (rs314418757) for the additive markers and from 0.69% (rs314011910) to 0.84% (rs16212031, rs16212040, rs16212041) for the dominant markers (Table 1). All together, the significant additive and dominant SNPs explained a considerable part i.e. 60% and 47% of the additive and genomic heritability, respectively. Nevertheless, as many of the significant markers were localized in nearby locations on GGA28, PVE by markers are biased upwards.

4.4.2. Estimation of the degree of dominance

Application of the LASSO method on the 14 co-localized SNPs on GGA28 resulted in selection of two markers i.e. rs16212040 and rs318126353 each one residing per different LD block (Figure 2). Of these, rs16212040 was associated with both gene actions while rs318126353 was associated only with dominant gene action. Two more SNPs i.e. rs313298834 (GGA12) and rs314011910 (GGA22) were detected as additive/dominant or dominant markers, respectively. Estimates of a, d and |d/a| for the four SNPs (rs16212040, rs318126353, rs313298834 and rs314011910) are shown in Table 2. In line with a purely dominant model where genotypic values are solely determined by the presence or absence of the dominant allele, genotypic means of the minor homozygous and minor heterozygous were found to significantly differ from the major homozygous genotypic means (Table 2). Degree of dominance for the four SNPs ranged from 0.42-0.76 (partial dominance, markers: rs16212040, rs313298834 and rs318126353) to 1.1 (complete dominance, marker: rs314011910). Notably, no marker was associated with overdominance. We furthermore sought to quantify the joint effect of the combined genotype of the two markers (rs16212040 and rs318126353) retained by LASSO on GGA28 by estimating LS means for the combined genotypes (Table 3). This exercise delivered interesting results as highest EN values were attained for AABB (μ =138.8, n=9) and ABAA (μ =138.9, n=71) that could not be attributed to additive effects of individual markers. Specifically, the highest EN estimate for AABB is suggestive of additive-by-additive (AABB) interaction (epistasis) while that of ABAA of additive-by-dominance (ABAA) epistasis. However, due to limited number of observations, especially for the AABB combined genotype (n=9), current results should be treated with caution.

4.4.3. Positional candidate genes

A total number of 57 positional candidate genes (i.e. 43 annotated and 14 LOC genes) were identified within the searched genomic regions (Supplementary Table 2). The maximum number of genes (n=16) were detected around dominant *rs318126353* (GGA28) while the minimum number of genes (n=6) were identified around 5 SNPs (*rs317783777, rs314011910, rs16212040, rs16212041* and *rs314418757*). Four additive SNPs (*rs313045367, rs10724922, rs317783777* and *rs315316434*) were located within genes *ARL8A* (GGA26), *UPF1* (GGA28), *CRTC1* (GGA28) and *TMEM59L* (GGA28), while 2 more markers (*rs313312915* and *rs14307369*) resided in gene *ELL* (GGA28). Three dominant SNPs (*rs15250929, rs314052602* and *rs318126353*) lied within genes *DDX49, KXD1 PGPEP1* (GGA28). Of additive/dominant SNPs, 3 co-localized markers (*rs314228493, rs16212040* and *rs16212041*) were detected within *COMP* (GGA28) and one more (*rs314418757*) within *CRTC1* (GGA28). As 14 significant markers resided in nearby locations on GGA28, 26 out of the 36 positional candidate genes were associated with gene *CRTC1*.

4.4.4. Functional enrichment analysis

A total number of 50 out of the 57 positional candidate genes were recognized by the DAVID tool and used for functional enrichment analysis. The latter analysis revealed the 'entrainment of circadian clock by photoperiod' (GO:0043153) as the only significantly (p=0.028) enriched BP with two participating genes (*CRTC1* and *BHLHE40*) (results not shown).

4.4.5. Prioritized genes

Results of PA are displayed on Table 4. A total number of 10 out of the 43 positional candidate genes were prioritized (overall p-value<0.05) according to the semantic annotations imposed. The majority (n=7) of the prioritized genes resided on GGA28, followed by two genes (*BHLHE40* and *ITPR1*) on GGA12 and one (*ELF3*) on GGA26. On GGA28, the first ranked gene was *GDF15*, followed by *JUND*, *GDF3*, *COMP*, *ELL*, *CRLF1* and *IFI30*. Notably, two highly ranked genes i.e. *GDF15* (1st) and *GDF3* (4th) belong to the transforming growth factor beta (TGF- β) superfamily. The two genes (*BHLHE40* and *CRTC1*) that participated in GO:0043153 'entrainment of circadian clock by photoperiod' were also prioritized and ranked 2nd and 13th, respectively.

4.5. Discussion

4.5.1. Mode of gene action

This is the first GWAS enlisting a significant number of animals (n~2600) and reporting on genetic variants implicated in the genetic control of EN in broiler breeders. Present results have demonstrated the need to thoroughly exploring the applicability of all possible genetic models when conducting a GWAS. This is particularly important when analyzing quantitative traits such as EN where not only additive but also non-additive e.g. dominant gene action of the causative loci may be fairly anticipated [3]. In line with this expectation, 4 of the 17 significant variants were dominant while 6 more were additive and dominant associations. The latter seems to be a controversial finding, but it can be fairly explained by examining the genotypic means across the examined variants of Table 2. A 'complete dominant' genetic model is when $|d|=|\alpha|$ meaning equal genotypic values for the minor homozygous (μ_{AA}) and the minor heterozygous genotypes (μ_{AB}) that both differ from the major homozygous genotypic mean (μ_{BB}). This was exactly the case for marker *rs314011910* that was detected only as dominant variant. But what happens in the case of partial dominance (0 < |d| < |a|)? In such cases (see markers *rs313298834* and *rs16212040* in Table 2) all genotypic means differ

 $(\mu_{AA}\neq\mu_{AB}, \mu_{AA}\neq\mu_{BB}$ and $\mu_{AB}\neq\mu_{BB})$ meaning that apart from the dominant model, a linear relationship between the genotypic mean values and the number of copies of the minor allele i.e. the additive genetic model might also be applicable. For an excellent interpretation of how least squares regression performs in GWAS in additive and dominant models we refer to Huang and Mackay [25]. So far, we have discussed the applicability of the additive and dominant model, but we have neglected the case of overdominance (|d|>|a|). In the latter case, $\mu_{AB}>\mu_{AA}$ and $\mu_{AB}>\mu_{BB}$ implying the need of using a different model parameterization by coding the heterozygous genotypes as 1 and the two homozygous genotypes as 0. Due to model parameterization difficulties we could not explore the validity of an over-dominant genetic model here and this may be the reason why no marker has been associated with over-dominance in the current study.

While estimates of genetic effects (additive and/or dominant) are expected unbiased for a few, independent variants, this may not be case for multiple, highly correlated variants residing on the same haplotype block(s) because the effect(s) may be 'shared' by many markers. Under such conditions, it is vital to have a parsimonious model involving limited number of regressors (SNPs). To this end, application of the LASSO technique has proved particularly helpful as it has selected only two markers, each one residing in the two LD blocks on GGA28. Then, the next step was to explore whether the two variants interact and, if yes, to portray the exact type of interaction. This exploration has delivered interesting results since non-additive genetic interaction(s) between the two variants could also be detected. Although these findings are based on limited number of observations, they are indicative of potential importance of epistasis in the inheritance of the trait.

4.5.2. Functional candidate genes

Another intriguing problem that needed to be addressed in the present study was as how to narrow down the list with the 43 positional candidate genes. This post-GWAS step presents an important problem, because the experimental validation of the true causal genetic variants requires considerable costs, effort and time. To address this issue, we performed in silico prioritization analysis (PA) using explicitly two semantic annotations: GO: BP and coexpression. This approach was based on the assumption that co-expressed genes tend to be involved in the same biological process and that expression of functionally related genes should vary concordantly across the various tissues. Although gene co-expression networks typically do not provide information about causality, they can serve as first proof of their involvement in a particular biological process [26] and can be effectively used for the identification of regulatory genes underlying phenotypes [27]. Following this approach, 10 highly prioritized genes (GDF15, BHLHE40, JUND, GDF3, COMP, ITPR1, ELF3, ELL, CRLF1 and IFI30) with interesting biological properties were highlighted. Genes GDF15 (growth differentiation factor 15, placed 1st) and GDF3 (growth differentiation factor 3, *placed* 4^{th}) serve as good examples here since they both belong to the TGF- β superfamily genes. In rodents and humans, many factors belonging to the TGF-ß superfamily are expressed by ovarian somatic cells and oocytes in a developmental manner and function as intraovarian regulators of folliculogenesis [28]. In humans, GDF15 is involved in placentation [29], while GDF3 might affect folliculogenesis by inhibiting the bone morphogenetic protein cytokines [30]. In chickens, GDF3 (also known as cVg1) is expressed at the early blastoderm stages of embryonic development [31] while another TGF- β member i.e. *GDF9* is expressed in the ovary and functions on hen granulosa cell proliferation as in mammals [32]. Expression of BHLHE40 (basic helix-loop-helix family member e40) in the mouse ovary leads to a circadian gating of cellular processes in the ovary as well as in the hypothalamus during ovulation [33]. JUND (JunD proto-oncogene, AP-1 transcription factor subunit) is important for maturation of human ovarian cells [34]. COMP (cartilage oligomeric matrix protein) is involved in ovarian follicle development in mice [35] while mutations of *COMP* gene affect chondrogenesis in chickens [36]. *ITPR1 (inositol 1,4,5-trisphosphate receptor type 1)* is involved in the Ca²⁺ transport for supplying eggshell mineral precursors in chicken uterus [37,38] while *ELF3 (E74 like ETS transcription factor 3)* has been related to the development of chicken oviducts [39] and *ELL (elongation factor for RNA polymerase II)* has been associated with yolk weight [40] in chickens. Notably, the final two nominated candidates i.e. *CRLF1 (cytokine receptor like factor 1)* and *IFI30 (IFI30, lysosomal thiol reductase)* had no documented involvement in reproduction. Such a finding underscores the limitations of *in silico* PA. In almost every guilt-by-association (GBA)-based prioritization tool, functional annotations of genes refer mainly to human and mouse PPINs (protein-protein interaction networks) [41] neglecting relevant information on livestock species [42] such as that examined here. One more limitation of GBA-based networks relates to their degraded predictive performance for genes with unknown or multiple functions [41].

Of particular interest in this study were genes BHLHE40 and CRTC1(CREB regulated transcription coactivator 1). Both genes were enriched in the BP of 'entrainment of circadian clock by photoperiod' raising the intriguing question as what might be the exact mechanism of their implication in egg production. To answer the question, first we have to provide a short description of the molecular mechanism underlying circadian rhythms (CR). CR are regulated by a pacemaker located in the suprachiasmatic nucleus of the hypothalamus that is entrained to the external light-dark cycle via light input from the retina conveyed via the retinohypothalamic tract [43]. In hens, as in many avian species, exposure to photoperiods of longer than 11.5 hrs/day results in the rapid induction of the hypothalamo-hypophysial-gonad axis, causing development and growth of testes and ovarian follicles [44]. At the intracellular level, four clock-gene families have been found to be involved in a transcription-translation feedback loop that generates the CR. Gene products of Clock and Bmall act as positive components, whereas those of the Per and Cry genes act as negative ones [45]. With regard to our candidate genes, BHLHE40 (also known as BHLHB2) acts as a suppressor of Clock and Bmall genes [46] while an entrainment stimulus causes CRTC1 to induce expression of Per1 and Sik1 [47]. As the molecular bases for circadian clocks are highly conserved it is likely that the avian molecular mechanisms are similar to those expressed in mammals, including humans [44].

In total, 7 (*GDF15, BHLHE40, JUND, GDF3, COMP, ELF3* and *CRTC1*) of the prioritized genes were associated with reproductive traits while 2 (*ITPR1* and *ELL*) were related to egg quality traits. From the above, only 3 genes i.e. *COMP, ELL* and *CRTC1* included significant SNPs. We finally, compared our candidate genes list (Supplementary Table 2) to a compiled gene list including 271 genes (Supplementary Table 3) identified in previous GWAS for chicken egg and reproductive traits. This comparison highlighted two common genes i.e. *ELL* and *ARL8A*. Note that the first is among the prioritized candidates (ranked 8th) while the second *ARL8A* (*ADP ribosylation factor like GTPase 8A*) has been associated with eggshell thickness and eggshell formation [5] in chickens.

4.6. Conclusions

Current results have shown that apart from the additive also the dominant genetic model was of importance for EN in broilers. These results underline the need to thoroughly exploring the applicability of all possible genetic models when performing GWAS for a trait such as that examined here. Detailed follow-up studies are warranted to verify whether the identified genomic markers and the associated candidate genes present true causal genetic entities impacting on the trait. Such studies would entail targeted re-sequencing and molecular characterization of the candidate variants to facilitate the identification of true causal variants.

4.7. References

[1] Hiemstra SJ, Napel J Ten. Study of the impact of genetic selection on the welfare of chickens bred and kept for meat production. Final report of a project commissioned by the European Commission (DG SANCO/2011/12254); 2013.

[2] Abdollahi-Arpanahi R, Pakdel A, Nejati-Javaremi A, Moradi Shahrbabak M, Morota G, Valente BD, et al. Dissection of additive genetic variability for quantitative traits in chickens using SNP markers. J Anim Breed Genet. Wiley/Blackwell (10.1111); 2014;131: 183–193. doi:10.1111/jbg.12079

[3] Abdollahi-Arpanahi R, Morota G, Valente BD, Kranis A, Rosa GJM, Gianola D. Differential contribution of genomic regions to marked genetic variation and prediction of quantitative traits in broiler chickens. Genet Sel Evol. BioMed Central; 2016;48: 10. doi:10.1186/s12711-016-0187-z

[4] Momen M, Mehrgardi AA, Sheikhy A, Esmailizadeh A, Fozi MA, Kranis A, et al. A predictive assessment of genetic correlations between traits in chickens using markers. Genet Sel Evol. 2017;49: 16. doi:10.1186/s12711-017-0290-9

[5] Liao R, Zhang X, Chen Q, Wang Z, Wang Q, Yang C, et al. Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and White Leghorn chickens. Anim Genet. 2016;47: 588–596. doi:10.1111/age.12456

[6] Yuan J, Sun C, Dou T, Yi G, Qu L, Qu L, et al. Identification of Promising Mutants Associated with Egg Production Traits Revealed by Genome-Wide Association Study. Xu P, editor. PLoS One. Public Library of Science; 2015;10: e0140615. doi:10.1371/journal.pone.0140615

[7] Liu W, Li D, Liu J, Chen S, Qu L, Zheng J, et al. A Genome-Wide SNP Scan Reveals Novel Loci for Egg Production and Quality Traits in White Leghorn and Brown-Egg Dwarf Layers. Christoffels A, editor. PLoS One. Public Library of Science; 2011;6: e28600. doi:10.1371/journal.pone.0028600

[8] Liu Z, Sun C, Yan Y, Li G, Wu G, Liu A, et al. Genome-Wide Association Analysis of Age-Dependent Egg Weights in Chickens. Front Genet. Frontiers; 2018;9: 128. doi:10.3389/fgene.2018.00128

[9] Sun C, Qu L, Yi G, Yuan J, Duan Z, Shen M, et al. Genome-wide association study revealed a promising region and candidate genes for eggshell quality in an F2 resource population. BMC Genomics. BioMed Central; 2015;16: 565. doi:10.1186/s12864-015-1795-7

[10] Yi G, Shen M, Yuan J, Sun C, Duan Z, Qu L, et al. Genome-wide association study dissects genetic architecture underlying longitudinal egg weights in chickens. BMC Genomics. BioMed Central; 2015;16: 746. doi:10.1186/s12864-015-1945-y

[11] Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genomics. BioMed Central; 2013;14: 59. doi:10.1186/1471-2164-14-59

[12] Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet. Nature Publishing Group; 2012;44: 825–830. doi:10.1038/ng.2314

[13] VanRaden PM. Efficient Methods to Compute Genomic Predictions. J Dairy Sci. 2008;91: 4414–4423. doi:10.3168/jds.2007-0980

[14] Chen J, Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika. Oxford University Press; 2008;95: 759–771. doi:10.1093/biomet/asn034

[15] GRCg6a [Internet]. [cited 21 Apr 2019]. Available: https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.6

[16] NCBI Gallus gallus Annotation Release 104 [Internet]. [cited 21 Apr 2019]. Available: https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Gallus_gallus/104/

[17] Yang J, Weedon MN, Purcell S, Lettre G, Estrada K, Willer CJ, et al. Genomic inflation factors under polygenic inheritance. Eur J Hum Genet. Nature Publishing Group; 2011;19: 807–12. doi:10.1038/ejhg.2011.39

[18] Zou H. The Adaptive Lasso and Its Oracle Properties. 2006; doi:10.1198/01621450600000735

[19] Babu R, Nair SK, Kumar A, Rao HS, Verma P, Gahalain A, et al. Mapping QTLs for popping ability in a popcorn × flint corn cross. Theor Appl Genet. Springer-Verlag; 2006;112: 1392–1399. doi:10.1007/s00122-006-0242-1

[20] Mori A, Tsuda Y, Takagi M, Higa Y, Severson DW. Multiple QTL Determine Dorsal Abdominal Scale Patterns in the Mosquito Aedes aegypti. J Hered. Oxford University Press; 2016;107: 438–44. doi:10.1093/jhered/esw027

[21] NCBI [Internet]. [cited 21 Apr 2019]. Available: https://www.ncbi.nlm.nih.gov/gene/

[22] Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane H, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. BioMed Central; 2003;4: R60. doi:10.1186/gb-2003-4-9-r60

[23] Hosack DA, Dennis G, Sherman BT, Lane HC, Lempicki RA, Lempicki RA. Identifying biological themes within lists of genes with EASE. Genome Biol. BioMed Central; 2003;4: R70. doi:10.1186/gb-2003-4-10-r70

[24] Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. Oxford University Press; 2009;37: W305-11. doi:10.1093/nar/gkp427

[25] Huang W, Mackay TFC. The Genetic Architecture of Quantitative Traits Cannot Be Inferred from Variance Component Analysis. Zhu X, editor. PLOS Genet. Public Library of Science; 2016;12: e1006421. doi:10.1371/journal.pgen.1006421

[26] Liseron-Monfils C, Olson A, Ware D. NECorr, a Tool to Rank Gene Importance in Biological Processes using Molecular Networks and Transcriptome Data. bioRxiv. Cold Spring Harbor Laboratory; 2018; 326868. doi:10.1101/326868

[27] van Dam S, Võsa U, van der Graaf A, Franke L, de Magalhães JP. Gene co-expression analysis for functional classification and gene–disease predictions. Brief Bioinform. Narnia; 2017;19: bbw139. doi:10.1093/bib/bbw139

[28] Knight PG, Glister C. TGF-β superfamily members and ovarian follicle development. Reproduction. 2006;132: 191–206. doi:10.1530/rep.1.01074

[29] Fejzo MS, Sazonova O V, Sathirapongsasuti JF, Hallgrímsdóttir IB, Vacic V, MacGibbon KW, et al. Placenta and appetite genes GDF15 and IGFBP7 are associated with hyperemesis gravidarum. Nat Commun. Nature Publishing Group; 2018;9: 1178. doi:10.1038/s41467-018-03258-0

[30] Shi J, Yoshino O, Osuga Y, Akiyama I, Harada M, Koga K, et al. Growth differentiation factor 3 is induced by bone morphogenetic protein 6 (BMP-6) and BMP-7 and increases luteinizing hormone receptor messenger RNA expression in human granulosa cells. Fertil Steril. Elsevier; 2012;97: 979–983. doi:10.1016/J.FERTNSTERT.2012.01.100

[31] Seleiro EAP, Connolly DJ, Cooke J. Early developmental expression and experimental axis determination by the chicken Vg1 gene. Curr Biol. Cell Press; 1996;6: 1476–1486. doi:10.1016/S0960-9822(96)00752-X

[32] Johnson PA, Dickens MJ, Kent TR, Giles JR. Expression and Function of Growth Differentiation Factor-9 in an Oviparous Species, Gallus domesticus1. Biol Reprod. 2005;72: 1095– 1100. doi:10.1095/biolreprod.104.036822

[33] Boden MJ, Varcoe TJ, Voultsios A, Kennaway DJ. Reproductive biology of female Bmal1 null mice. REPRODUCTION. 2010;139: 1077–1090. doi:10.1530/REP-09-0523

[34] Günthert AR, Gründker C, Hollmann K, Emons G. Luteinizing hormone-releasing hormone induces JunD–DNA binding and extends cell cycle in human ovarian cancer cells. Biochem Biophys Res Commun. 2002;294: 11–15. doi:10.1016/S0006-291X(02)00427-8

[35] Galdones E, Penalver Bernabe B, Skory RM, Mackovic D, Broadbelt LJ, Shea LD, et al. Ovarian Expression of Cartilage Oligomeric Matrix Protein as a Potential Biomarker of Antral Follicle Development in the Mouse. Biol Reprod. Narnia; 2011;85: 647–647. doi:10.1093/biolreprod/85.s1.647

[36] Roman-Blas J, Dion AS, Seghatoleslami MR, Giunta K, Oca P, Jimenez SA, et al. MED and PSACH COMP mutations affect chondrogenesis in chicken limb bud micromass cultures. J Cell Physiol. 2010;224: 817–826. doi:10.1002/jcp.22185

[37] Duan Z, Chen S, Sun C, Shi F, Wu G, Liu A, et al. Polymorphisms in Ion Transport Genes Are Associated with Eggshell Mechanical Property. Yue GH, editor. PLoS One. Public Library of Science; 2015;10: e0130160. doi:10.1371/journal.pone.0130160

[38] Jonchère V, Brionne A, Gautron J, Nys Y. Identification of uterine ion transporters for mineralisation precursors of the avian eggshell. BMC Physiol. BioMed Central; 2012;12: 10. doi:10.1186/1472-6793-12-10

[39] Song G, Seo HW, Choi JW, Rengaraj D, Kim TM, Lee BR, et al. Discovery of Candidate Genes and Pathways Regulating Oviduct Development in Chickens1. Biol Reprod. 2011;85: 306–314. doi:10.1095/biolreprod.110.089227

[40] Sun C, Lu J, Yi G, Yuan J, Duan Z, Qu L, et al. Promising Loci and Genes for Yolk and Ovary Weight in Chickens Revealed by a Genome-Wide Association Study. Veitia RA, editor. PLoS One. Public Library of Science; 2015;10: e0137145. doi:10.1371/journal.pone.0137145

[41] Gillis J, Pavlidis P. "Guilt by Association" Is the Exception Rather Than the Rule in Gene Networks. Rzhetsky A, editor. PLoS Comput Biol. 2012;8: e1002444. doi:10.1371/journal.pcbi.1002444

[42] Kominakis A, Hager-Theodorides AL, Zoidis E, Saridaki A, Antonakos G, Tsiamis G. Combined GWAS and 'guilt by association'-based prioritization analysis identifies functional candidate genes for body size in sheep. Genet Sel Evol. BioMed Central; 2017;49: 41. doi:10.1186/s12711-017-0316-3

[43] Hughes S, Jagannath A, Hankins MW, Foster RG, Peirson SN. Photic Regulation of Clock Systems. Methods in enzymology. 2015. pp. 125–143. doi:10.1016/bs.mie.2014.10.018

[44] Cassone VM. Avian circadian organization: A chorus of clocks. Front Neuroendocrinol. Academic Press; 2014;35: 76–88. doi:10.1016/J.YFRNE.2013.10.002

[45] Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, et al. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature. 2002;419: 841–844. doi:10.1038/nature01123

[46] Nakashima A, Kawamoto T, Honda KK, Ueshima T, Noshiro M, Iwata T, et al. DEC1 Modulates the Circadian Phase of Clock Gene Expression. Mol Cell Biol. American Society for Microbiology Journals; 2008;28: 4080–4092. doi:10.1128/MCB.02168-07

[47] Jagannath A, Butler R, Godinho SIH, Couch Y, Brown LA, Vasudevan SR, et al. The CRTC1-SIK1 pathway regulates entrainment of the circadian clock. Cell. Elsevier; 2013;154: 1100–1111. doi:10.1016/j.cell.2013.08.004

[48] Shin J-H, Blay S, Graham J, McNeney B. LDheatmap : An *R* Function for Graphical Display of Pairwise Linkage Disequilibria Between Single Nucleotide Polymorphisms. J Stat Softw. 2006;16: 1–9. doi:10.18637/jss.v016.c03

[49] Turner SD. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv. 2014;:005165. doi:10.1101/005165.

Tables and Figures of Chapter 4

Table 1. Chromosome-wide significant SNPs identified by additive (add), dominant (dom) or both additive and dominant (add/dom) genetic models. (MAF: Minor Allele Frequency).

							PVE	^c (%)	
			p-value	-log ₁₀ (p-value)	Minor	MAF	add	dom	Genetic
SNP ID	GGA ^a	Position (bp) ^b	(add/dom)	(add/dom)	allele				model
rs313298834	12	18,995,645	5.03832E-06/3.37289E-06	5.298/5.472	В	0.34	0.8	0.83	add/dom
rs314011910	22	1,711,605	2.30566E-05	4.637	А	0.14	-	0.69	dom
rs313045367	26	362,590	8.41209E-06	5.075	В	0.15	0.77	-	add
rs15250929	28	3,818,934	1.93573E-05	4.713	В	0.2	-	0.7	dom
rs10724922	28	3,855,714	2.0557E-05	4.687	А	0.21	0.7	-	add
rs15251036	28	3,875,127	1.74651E-05	4.758	В	0.21	0.71	-	add
rs16212031	28	3,885,458	5.56121E-06/3.19578E-06	5.255/5.495	А	0.2	0.80	0.84	add/dom
rs314228493	28	3,888,943	4.69378E-06/4.46165E-06	5.328/5.351	В	0.2	0.81	0.81	add/dom
rs16212040	28	3,892,786	3.35519E-06/3.06323E-06	5.474/5.514	В	0.2	0.83	0.84	add/dom
rs16212041	28	3,892,872	3.24649E-06/3.06323E-06	5.489/5.514	А	0.2	0.83	0.84	add/dom
rs317783777	28	3,919,505	2.02328E-05	4.694	А	0.14	0.70	-	add
rs314418757	28	3,921,905	2.70727E-06/1.62505E-05	5.567/4.789	А	0.21	0.85	0.72	add/dom
rs315316434	28	3,971,928	1.71745E-05	4.765	А	0.22	0.71	-	add
rs314052602	28	3,990,564	1.30589E-05	4.884	В	0.21	-	0.73	dom

rs313312915	28	3,999,772	8.56382E-06	5.067	В	0.22	0.76	-	add
rs14307369	28	4,003,865	1.37243E-05	4.863	А	0.21	0.73	-	add
rs318126353	28	4,059,366	5.35831E-06	5.271	В	0.23	-	0.80	dom

^aChromosome for *Gallus gallus*

^bPositions were based on *GRCg6a* assembly

^c Proportion of variance explained

Marker	Genotype (coded as)	Sample size	μ ± SE	α± SE	d± SE	d/α	
	AA (0)	1595	$129.9^{\text{b}}\pm1.0$				
rs313298834 (add/dom)	AB (1)	245	$136.0^{\mathrm{a}}\pm2.0$	$3.6^{*}\pm0.8$	$2.6^{\text{NS}}\pm2.0$	2.6/3.6 =0.72	
	BB (2)	746	$137.1^{\mathrm{a}}\pm1.4$				
	BB (0)	2167	$133.7^{\text{b}}\pm1.0$				
<i>rs314011910</i> (dom)	AB (1)	91	$126.4^{a} \pm 3.2$	$-3.5^{*} \pm 1.0$	$-3.8^{\text{NS}}\pm3.2$	3.8/3.5 =1.1	
	AA (2)	328	$126.7^{a} \pm 2.1$				
	AA (0)	1695	$135.2^{b} \pm 1.0$				
rs16212040 (add/dom)	AB (1)	758	$128.1^{a} \pm 1.3$	$-5.0^{*} \pm 1.3$	$-2.1^{\rm NS}\pm1.7$	2.1/5.0 =0.42	
	BB (2)	133	$125.2^{a}\pm2.6$				
	AA (0)	1583	$135.5^{\text{b}}\pm1.0$				
rs318126353 (dom)	AB (1)	838	$128.3^{a} \pm 1.2$	$-4.1^{*} \pm 1.2$	$-3.1^{*} \pm 1.6$	3.1/4.1 =0.76	
	BB (2)	165	$127.3^{a}\pm2.4$				

Table 2. Estimation of genotypic means ($\mu \pm SE$) for EN, additive allelic effects (α), dominance deviation (d) and degree of dominance ($|d/\alpha|$) for the significant additive/dominant markers.

^{a,b} means with different superscripts are statistically different (p<0.05) *statistically significant with p<0.05

Combined genotype	Ν	$\mu \pm SE$
AA/AA	1512	135.3 ± 1.0
AA/AB	174	134.3 + 2.3
AA/BB	9	138.8 ± 9.6
AB/AA	71	138.9 ± 3.5
AB/AB	639	126.7 ± 1.3
AB/BB	48	129.9 ± 4.2
BB/AB	25	125.7 ± 5.8
BB/BB	108	125.0 ± 2.9

Table 3. Least squares mean ($\mu \pm SE$) for EN for combined genotype of markers *rs16212040* and *rs318126353* on GGA28. N is the sample size.

Table 4. List	of	prioritized	genes.
---------------	----	-------------	--------

				Overall
Rank	Gene ID	Description	GGA	p-value
1	GDF15	growth differentiation factor 15	28	0.019
2	BHLHE40	basic helix-loop-helix family member e40	12	0.027
3	JUND	JunD proto-oncogene, AP-1 transcription factor subunit	28	0.029
4	GDF3	growth differentiation factor 3	28	0.030
5	СОМР	cartilage oligomeric matrix protein	28	0.037
6	ITPR1	inositol 1,4,5-trisphosphate receptor type 1	12	0.039
7	ELF3	E74 like ETS transcription factor 3	26	0.040
8	ELL	elongation factor for RNA polymerase II	28	0.044
9	CRLF1	cytokine receptor like factor 1	28	0.047
10	IF130	IFI30, lysosomal thiol reductase	28	0.048
11	ISYNA1	inositol-3-phosphate synthase 1	28	0.050
12	RAB3A	RAB3A, member RAS oncogene family	28	0.051
13	CRTC1	CREB regulated transcription coactivator 1	28	0.057
14	GPR37L1	G protein-coupled receptor 37 like 1	26	0.057
15	PIK3R2	phosphoinositide-3-kinase regulatory subunit 2	28	0.060
16	GFRA2	GDNF family receptor alpha 2	22	0.061
17	EDEM1	ER degradation enhancing alpha-mannosidase like protein 1	12	0.069
18	FKBP8	FK506 binding protein 8	28	0.069
19	PDE4C	phosphodiesterase 4C	28	0.083
20	LGR6	leucine rich repeat containing G protein-coupled receptor 6	26	0.086
21	HOMER3	homer scaffolding protein 3	28	0.112
22	LSM4	LSM4 homolog, U6 small nuclear RNA and mRNA degradation associated	28	0.114
23	COPE	coatomer protein complex subunit epsilon	28	0.149
24	ARL8B	ADP ribosylation factor like GTPase 8B	12	0.150
25	PTPN7	protein tyrosine phosphatase, non-receptor type 7	26	0.152
26	PGPEP1	pyroglutamyl-peptidase I	28	0.156
27	C19orf60 (also known as REX1BD)	chromosome 19 open reading frame 60	28	0.172

28	SSBP4	single stranded DNA binding protein 4	28	0.192
29	UBA52	ubiquitin A-52 residue ribosomal protein fusion product 1	28	0.192
30	UPF1	UPF1, RNA helicase and ATPase	28	0.192
31	CERS1	ceramide synthase 1	28	0.198
32	MPV17L2	MPV17 mitochondrial inner membrane protein like 2	28	0.228
33	DOK2	docking protein 2	22	0.262
34	XPO7	exportin 7	22	0.292
35	ARL8A	ADP ribosylation factor like GTPase 8A	26	0.340
36	DDX49	DEAD-box helicase 49	28	0.345
37	SUGP2	SURP and G-patch domain containing 2	28	0.345
38	KLHL26	kelch like family member 26	28	0.345
39	KIF21B	kinesin family member 21B	26	0.351
40	KXD1	KxDL motif containing 1	28	0.351
41	LRRC25	leucine rich repeat containing 25	28	0.588
42	TMEM59L	transmembrane protein 59 like	28	0.588
43	PTPRVP	protein tyrosine phosphatase, receptor type, V, pseudogene	26	1.000

Figure 1. Circular Manhattan plot displaying the chromosome-wide significant associations for EN. The $-\log_{10}(p$ -values) of the additive (inner circle) and dominant (outer circle) SNPs are shown across the 28 autosomal chromosomes. This plot was constructed with the CMplot package (https://github.com/YinLiLin/R-CMplot) in R (http://www.r-project.org/).

Figure 2. LD heatmap for the 14 SNPs (blue labels) on GGA28. Note the formation of 2 LD blocks (denoted as black lined polygons). LD levels were estimated using the gaston R package and were graphically displayed with use of LDheatmap [48] package in R (http://www.r-project.org/).

Figure 3. Radial network of significant SNPs associated with positional candidate genes on GGA28. Figure was constructed using the data.tree and networkD3 packages in R (<u>http://www.r-project.org/</u>).

Chapter 5

Detection of pleiotropic loci with antagonistic effects on body weight and egg number in chickens

5.1. Abstract

The present study aimed to identify genetic variants and plausible genes underlying the negative genetic correlation observed between body weight and egg number in female broilers. To this end, bivariate genome-wide association and stepwise conditional-joint analyses were carried out using 52,992 autosomal SNPs and 2,586 female broilers. These analyses pinpointed a total number of 13 independent SNPs exerting cross-phenotype effects with 12 independent markers showing antagonistic effects on the two traits under study. Ten independent SNPs were located within 11 protein coding and/or non-coding genes and twelve growth related QTLs. Examination of the GO slim category summaries of the candidate genes pinpointed *ACVR1* as a true pleiotropic gene with involvement in biological processes relevant to both growth and reproduction. Another plausible pleiotropic gene was *CACNA1H* that exhibited a GO slim category of reproduction and indirect relevance to growth biological processes. Based on literature-based functional evidence, the two aforementioned genes (*ACVR1* and *CACNA1H*) have widespread phenotypic effects on multiple systems (muscle, chondrocytes, bones and oocytes) and for this reason they can be considered as exemplars of horizontal pleiotropy.

5.2. Introduction

Reproductive traits in livestock species often show negative genetic correlation with growth related traits. This antagonistic relationship indicates that the two types of traits share common biological pathways and/or molecular mediators. In chickens, body weight (BW) and egg number (EN) exhibit a clear antagonism as reflected in their negative genetic correlation (r_g) with r_g estimates ranging from -0.05 to -0.55 [1,2,3]. Such a correlation imposes an important constraint in terms of selection response(s) of the individual traits and therefore identifying the genetic factors responsible for this antagonistic relationship is of great interest.

Many Genome-Wide Association Studies (GWAS) have pinpointed the existence of genetic loci harboring variants that are associated with multiple, sometimes seemingly distinct, complex disease or quantitative traits. Such associations are termed cross-phenotype (CP) associations [4] and are potential evidence for pleiotropy. The distinction between a CP association and pleiotropy is important to define. A CP association occurs when a genetic locus is associated with more than one trait regardless of the underlying cause for the observed association [5]. Pleiotropy occurs when a genetic locus truly affects more than one trait and is one possible underlying cause for an observed CP association [4]. In other words, pleiotropy can lead to a CP association but a CP association is not necessarily indicative of a pleiotropic variant.

In the special case where a genetic factor exhibits opposing effects on two different traits i.e. when the same alleles have beneficial effects on one trait and negative effects on a second trait, antagonistic pleiotropy (AP) exists [6,7]. AP was first proposed to explain the evolution of senescence where alleles with positive effects on survival or reproduction at early age decrease fitness in later life. In contrast to AP, synergistic pleiotropy [8,9] (SP) occurs when a

genetic variant simultaneously either increases or decreases performance in two different traits.

Based on the mode of action, pleiotropy between two traits can be distinguished in the following types [10]: 1) biological (or horizontal) pleiotropy when the variant affects directly or indirectly (through an intermediate phenotype) multiple phenotypes, 2) mediated (or vertical) pleiotropy when there is a causal relationship between phenotypes where phenotype B is mediated by phenotype A so as an indirect association occurs between the variant and multiple phenotypes and 3) spurious pleiotropy when the marker is falsely associated with multiple phenotypes due to bias, misclassification or linkage disequilibrium (LD).

As CP associations are indicative of potential pleiotropy, they have been widely explored via multivariate or univariate statistical approaches in GWAS. While multivariate approaches [11] allow for direct identification of CP associations, in the context of univariate analyses, detection of CP associations relies on aggregating results of single traits analyses via meta-analysis techniques [12].

In chicken, CP associations have already been discovered by GWAS for various traits such as daily feed intake and efficiency [13] and for egg weights at different ages [14,15]. To our knowledge, no GWAS has, so far, been reported with the aim to discover genetic variants associated with body weight (BW) and egg number (EN) in chickens.

Given the importance of the two traits from both a biological and an economic point of view, the present study aims to identify genetic variants and genes simultaneously affecting the two traits. To this end we conducted a bivariate GWAS to identify SNP signals associated with both traits. We then applied conditional and joint analysis of the SNP signals detected in the bivariate analysis to obtain independent CP associations. Finally, we examined the GO slim category summaries of the candidate genes underlying the independent CP associations to propose the most relevant genes implicated in the genetic control of the two traits. Our findings are expected to contribute to a better understanding of the genetic mechanism underlying the negative genetic correlation observed between growth and reproduction in broilers.

5.3. Material and methods

5.3.1. Data and quality control

Genotypic and phenotypic data were provided by Aviagen Ltd. The available data consisted of 2,992 female broilers from a grand-grandparent (GGP) commercial line with phenotypic records on body weight (BW) at 35 days of age (average=1822.7g, SD=143.6g) and number of eggs (EN) per hen collected from 28 to 50 weeks of age (average=132.4 eggs, SD=29.8 eggs). Animals were genotyped using the 600k Affymetrix HD SNP array [16] resulting in a total number of 544,927 autosomal SNPs. Quality control (QC) was performed first at a sample and second at a marker level. At a sample level, 406 animals were excluded due to call rate <0.99 and autosomal heterozygosity outside the 1.5 IQR (inter-quartile range: 0.013). At the marker level, 491,935 autosomal SNPs were excluded due to: call rate <0.95, minor allele frequency (MAF)<0.05 and LD r^2 >0.70 within windows of 50 SNPs and increments of 5 SNPs. SNP pruning was employed to avoid for spurious CP associations due to strong short-range LD [4,10]. A total of 2,586 samples and 52,992 autosomal SNPs were retained for further analyses. All QC criteria were applied using the SNP & Variation Suite software (<u>http://www.goldenhelix.com</u>), except for LD- based SNP pruning which was performed using PLINK [17] and the '--indep-pairwise' command.

5.3.2. Univariate and bivariate association analyses

First, we performed univariate analyses to detect significant SNP associations for individual traits. The following additive single-locus mixed model was applied:

$$y = W\alpha + x\beta + u + e$$

where y is a n x 1 vector of phenotypic values of BW or EN for n female broilers, W is a n x c matrix of covariates i.e. fixed effects: hatch (36 classes), mating group (17 classes) and a column of 1s, α is a c x 1 vector of the corresponding coefficients including the intercept, x is a n x 1 vector of genotypes for the ith SNP (codes as 0, 1, and 2 according to the number of copies of the minor allele), β is the additive fixed effect of the ith SNP on BW or EN, u is a vector of random polygenic effects, and e is a vector of random residuals. The random effects were assumed to be normally distributed with zero means and the following covariance structure:

$$Var\begin{bmatrix} u\\ e \end{bmatrix} = \begin{bmatrix} G\sigma_u^2 & 0\\ 0 & I\sigma_e^2 \end{bmatrix}$$

where σ_u^2 and σ_e^2 are the polygenic and error variance components, I is the nxn identity matrix, and G is the n x n genetic relatedness matrix (estimated as centered genomic matrix^{9,20}. We used the Wald test statistic trait associations by comparing the null hypothesis (H₀) where the marker effect sizes are zero, H₀: $\beta = 0$, against the alternative hypothesis H₁: $\beta \neq 0$.

A bivariate linear mixed model was then applied to test for significant CP associations. The following bivariate linear mixed model was used:

$$Y = WA + x\beta^{T} + U + E$$

where Y is a n x 2 matrix of phenotypic values for the 2 traits (BW and EN) for n individuals, W is a $n \times c$ matrix of covariates i.e. fixed effects: hatch, mating group and a column of 1s, A is a c x 2 matrix of the corresponding coefficients including the intercept, x is a n x 1 vector of genotypes for the ith SNP (codes as 0,1,2 according to the number of copies of the minor allele), β is the additive fixed effect of the ith SNP for the 2 traits, U is a (n x 2) matrix of random effects with U~ MVN_{nx2}(0, G, V_g) where G is the n x n genetic relatedness matrix (estimated as centered genomic matrix [18,11]) and Vg is a 2 x 2 symmetric matrix of genetic variance component, and E is a (n x 2) matrix of random residuals with E~ MVN_{nx2}(0, I, V_e) where I is a n x n identity matrix, Ve is a 2 x 2 symmetric positive definite matrix of residual variance component and $MVN_{n\times 2}(0, V_1, V_2)$ denotes the n x 2 matrix normal distribution with mean 0, row covariance matrix V_1 (n x n) and column covariance matrix V_2 (2 x 2). Association of each SNP with both traits of BW and EN was obtained by testing the null hypothesis H₀: $\beta = 0$, where 0 is a 2-vector of zeros, against the alternative hypothesis H₁: $\beta \neq$ 0. The Wald test statistic was used to infer the significant CP associations. The genetic correlation (rg) was also estimated between the two traits. All analyses were performed using the GEMMA [19] software (version 0.98.1).

For each association analysis, the estimation of the genomic inflation factor (λ) was used to assess potential systematic bias due to population structure or the analytical approach [20]. If the λ value was greater than 1, it provided evidence for some systematic bias [20]. If the λ value was less than or equal to 1, no adjustment was needed [21]. λ was estimated using the genetic analysis package (gap) in R (http://www.r-project.org/).

5.3.3. Multiple-testing correction

For each of the 3 association analyses (2 univariate and 1 bivariate), the Wald test p-values of the 52,992 SNPs were corrected for multiple comparisons using the false-discovery rate (FDR [22]) correction method in R (<u>http://www.r-project.org/</u>). SNPs with FDR p-values lower than 0.05 were considered as significant.

5.3.4. Selection of independent SNPs

Results obtained from univariate and bivariate analyses were further subject to stepwise conditional and joint (cojo) analysis using the 'cojo-slct' option and the GCTA [23] tool to select independent SNPs. The cojo-GCTA analysis corrects β and p values of neighboring SNPs (in a sliding window of 10 Mb) based on the LD between the SNPs. This ensures that the SNP with the lowest p value is selected first for conditioning the effect on neighboring loci based on the LD between the neighboring SNPs and the selected SNP. Following LDbased correction of effect, all SNPs that remained significant under the default threshold pvalue (5E-8) are run through the same process in a stepwise manner. This process identifies: (i) the number of independent SNP signals in a region and (ii) association signals due to the joint effect of several SNPs. To identify the independent CP associations, we used as input in the cojo-GCTA analysis the summary-level statistics obtained by the bivariate analysis. Specifically, the *b* estimates along with their standard errors were used to estimate t-values for the 52,992 SNPs and t-values were finally converted to p-values using R code (http://www.rproject.org/). For the independent CP associations, the genotypic means and the regression coefficients of the minor allele dose (β) on the phenotypic values of two traits were also estimated using the MANOVA procedure in SAS 9.3 (2012).

5.3.5. Effect prediction of the independent SNPs and identification of positional candidate genes and published QTLs

To predict the consequences of the CP significant SNPs on genes, transcripts, protein sequence and regulatory regions, the Variant Effect Predictor (VEP, <u>https://www.ensembl.org/Tools/VEP</u>, [24]) tool was employed with the latest release (Ensembl release 99, accessed: 28 April 2020).

Physical positions of SNPs were also obtained by the VEP tool using the GRCg6a assembly (https://www.ensembl.org/Gallus_gallus/Info/Annotation, GenBank Assembly ID: GCA_000002315.5, accessed: 28 April 2020). Furthermore, the VEP tool was used to search for positional candidate genes including the independent SNPs. When no positional candidate gene to a given CP association could be assigned, the closest gene to the marker was identified and nominated as candidate. To this end, both Ensembl and NCBI RefSeq transcript databases were used. The VEP tool was also used to assess if the significant SNPs were located within previously reported QTLs. VEP retrieves information for published QTLs via connections with Animal QTL database (Animal QTLdb) and Online Mendelian Inheritance in Animals (OMIA) database.

5.3.6. Functional profile of candidate genes and parent GO terms

Each annotated candidate gene was submitted to g:GOSt of g:Profiler web-based toolset (<u>https://biit.cs.ut.ee/gprofiler</u>, version e99_eg46_p14_f929183) [25] to obtain a full list of associated Gene Ontology Biological Process (GO BP) terms using the "All results" option and the *Gallus gallus* species. Then the CateGorizer tool (<u>https://www.animalgenome.org/cgi-bin/util/gotreei</u>, [26]) was used to group and categorize the GO BP terms into high level summaries. CateGorizer takes input of GO terms, performs step-wise classification against

one of the available <u>GO slim methods</u> (such as GO slim) and finally performs single counting for presence of a term within a GO slim category [26].

5.4. Results

5.4.1. Significant SNPs obtained from univariate and bivariate analyses

Estimations of the genomic inflation factors (univariate analyses: λ_{BW} =0.87, λ_{EN} = 0.96, bivariate analysis: λ =0.85) were less than 1 indicating the absence of population structure or artifacts in the present data. Furthermore, the genomic genetic correlation (rg) between the two traits was estimated as high as -0.171 ± 0.153 (results not shown). Figure 1 shows the profiles of the SNP p-values (expressed as $-\log_{10}$ values) across the three GWAS. A more detailed view of the statistically significant SNPs is provided in Figure 2. A total number of 58 SNPs across 22 autosomes were found to reach genome-wide significance (FDR p-value <0.05) in the BW univariate analysis (Table S1). A closer inspection of these results revealed the presence of several neighboring SNP signals within distances of less than 500kb on 5 chromosomes (4, 11, 24, 25 and 27, see Figure 2 and Table S1).

No SNP was found to reach significance at the genome-wide level (FDR p-value <0.05) in the EN univariate analysis. However, 5 SNPs located in 2 autosomes (21 and 28) reached chromosome-wide significance (FDR p-value<0.05) (Figure 2 and Table S1) with 4 neighboring SNP signals detected in a region spanning 218 kb on GGA28 (Table S1).

Bivariate analysis identified 51 genome-wide significant CP associations across 21 autosomes (Table S2). As in the univariate cases, several neighboring CP associations were identified within distances of less than 500 kb on 6 chromosomes (4, 11, 14, 25, 27 and 28). Two CP associations (*rs315316434* and *rs316549515*) on GGA28 presented the shortest distance (23,062 bp, Table S2). Of CP associations, marker *rs315329074* (GGA27) was detected in BW univariate analysis with lowest Wald test p-value (6.18E-13, FDR p-value=3.28E-8) (Table S2).

As observed in Figure 2, two autosomes (GGA21 and GGA28) included significant SNPs detected in all three association analyses. Specifically, on GGA21, the CP marker *rs316810914*, which was also identified in BW univariate analysis, lied 659,553bp away from marker *rs316318083* that was detected in bivariate and EN univariate analyses (Table S2). On GGA28, CP marker *rs317501178* was also identified by BW univariate analysis. The latter marker was located 3,045,470 bp away from marker *rs317783777* that was identified by both the bivariate and the EN univariate analyses (Table S2). Such multiple neighboring SNP signals were indicative of long range LD justifying the need to apply a 'cojo' GCTA analysis to obtain independent SNPs.

The number of common SNPs between the bivariate and the two univariate analyses are shown in Figure 3 in form of a Venn diagram. Notably, no significant SNP was common across the three analyses (Figure 3, left Venn diagram). Nevertheless, 40 SNPs were common between the BW univariate analysis and the bivariate analysis and 4 SNPs were common between the EN univariate analysis and the bivariate analysis (Figure 3, left Venn diagram).

5.4.2. Independent SNP signals

A total number of 13 independent CP associations dispersed across 12 autosomes were selected after application of the stepwise conditional-joint analysis (Table 1). From these 13 SNPs, all except for one marker i.e. rs317501178 (GGA28) were also associated with BW (Figure 3, right Venn diagram) while no independent SNP was associated with EN. Note that in accordance with 'cojo-GCTA' analysis, the markers retained presented the lowest p-values among their neighboring CP association signals. Table 2 shows the regression coefficients (β) of the minor allele dose for the 13 independent CP associations. In all but one marker

(*rs15608447*), estimated β coefficients displayed opposite directions implying antagonistic allelic action i.e. positive effects on one trait and negative effects on the other trait.

5.4.3. Effect prediction of the independent SNPs and identification of positional candidate genes and published QTLs

A total number of 14 positional candidate genes (of which 11 annotated genes) were identified as lying within or in close proximity to the 13 independent SNPs (Table 3). Specifically, ten SNPs were located within nine protein coding genes and two long non-coding (lnc) RNA genes (Table 3). Of these SNPs, one was a missense variant of gene *ZC3H18*, one a synonymous variant of gene *FCRL4*, eight were intron variants of annotated genes *SLAIN2*, *ACVR1*, *ST3GAL3*, *CACNA1H*, *VPS11*, *COPA and CACNB1*) and two were intron variants of two lncRNAs. Note that *rs15608447* (GGA4) was an intron variant of both *SLAIN2* and a lncRNA (*LOC107053243*) (Table 3). The rest three SNPs were downstream and upstream variants of one long non-coding RNA and two protein coding genes. Furthermore, a total number of 17 published QTLs were identified within the searched regions (Table 3). Of these, the majority i.e. twelve were related to growth (e.g. duodenum weight, body weight at 9 days, comb weight) while none was related to egg production. Notably, a microRNA (gga-mir-6646-2) was also identified at close proximity (1,002 bp) to marker *rs312758346* (GGA25).

5.4.4. GO term profiling of candidate genes and GO slim categories

The full list of GO BP terms identified by the g:GOSt tool per candidate gene for *Gallus gallus* is provided in Table S3. Of the 11 candidate genes, two genes i.e. *ZC3H18* and *FCRL4* did not exhibit any GO BP term (Table S3). With regard to the rest genes, the maximum number (n=351) of GO terms was attained for *ACVR1* and the minimum (n=29) for *ST3GAL3*. Table 4 presents the GO slim categories obtained by CateGOrizer per candidate gene. A detailed description of the GO slim categories per candidate gene is provided in Table S4. Of the nine candidate genes with GO BP terms, only *ACVR1* had GO slim categories relevant to both 'growth' (development, GO:0007275, embryonic development, GO:0009790, morphogenesis, GO:0009653) and 'reproduction' (GO:0000003) thus fully supporting its candidacy as a pleiotropic gene. Of the rest genes, only *CACNA1H* had a 'reproduction' GO slim category (GO:0000003) while its involvement in 'growth' related biological processes could be hypothesized via the GO:0008152 (metabolism) term (Table 4).

5.5. Discussion

The negative genomic estimate of genetic correlation (r_g =-0.17) between BW and EN obtained in the present study is supportive of previous results [1,2,3] confirming a clear antagonism between the two traits in broilers. This genome-wide genetic correlation estimate describes the average CP effects of all implicated causal loci without providing any detailed view on the exact underlying genetic mechanism (e.g. number of causal loci and patterns of pleiotropic effects produced by loci). To this end, we first performed a bivariate analysis to directly identify the individual genomic markers exerting CP effects. Since both pleiotropy and linkage disequilibrium can generate genetic correlation between traits, the next step was to avoid correlation effects due to short and/or long range LD between markers. To this end, first we pruned highly correlated markers to alleviate short range LD and then applied a stepwise conditional and joint analysis to mitigate long range LD. We anticipate that this combination has significantly reduced close linkage between markers so as the resulting CP associations could be attributed to purely QTL pleiotropic effects.
The next step was to consider as most plausible pleiotropic genes those including or being in close proximity to the independent SNPs while also displaying GO slim categories relevant to 'growth' and 'reproduction'. This search strategy resulted in identification of only one gene i.e. ACVR1 (serine/threonine-protein kinase receptor or activin receptor type I or activin a receptor, type 1) fulfilling all the above criteria. ACVR1 (also known as ALK2) encodes for a bone morphogenetic protein (BMP) type I receptor of the transforming growth factor-beta (TGF- β) superfamily. TGF- β superfamily genes are known to play fundamental role(s) in cell growth while also regulating several reproductive processes (i.e. follicular development, ovulation, oocyte competence, implantation, pregnancy, embryonic development and uterine development) [27]. In mouse embryos, ACVR1 functions as type I receptor for BMP4 which is necessary for the formation of primordial germ cells (PGCs) [28] and promotes the growth of gonadal PGCs through a Smad1/4 signaling [29]. Furthermore, ACVR1 has been reported to regulate reproduction via the BMP and anti-Müllerian hormone (AMH) signaling [30]. Specifically, ACVR1 regulates folliculogenesis through acting as a type I receptor for AMH/MIS (anti-Müllerian hormone/Müllerian inhibiting substance). AMH inhibits FSH (follicle-stimulating hormone) sensitivity of growing follicles and thus could contribute to the accumulation of growing follicles in women with Polycystic ovary syndrome (PCOS) [30]. In chickens, both embryonic ovaries express AMH although ovarian estrogen (from the left ovary) protects the left chick Mullerian duct from AMH action and therefore permits development of the left oviduct [31]. In the same species, AMH is required for the urogenital development and germ cell migration [32], is presented in early follicle development and is expressed in small follicles [33]. So far, in chicken ACVR1 has been proposed as a positional candidate gene for body weight [34], has a regulatory role in osteogenesis and chondrogenesis during skeletal development [35] and is expressed within the chicken granulosa and thecal layers during ovarian follicle development [36].

Another gene that was associated with the GO slim category of reproduction (GO:0000003) was CACNA1H (Calcium Voltage-Gated Channel Subunit Alpha1 H) while its involvement to growth or development processes could be speculated via the general GO slim category of metabolism (GO:0008152). According to QuickGo, the GO:0008152 term describes 'chemical reactions and pathways, including anabolism and catabolism, by which living organisms transform chemical substances. Metabolic processes typically transform small molecules, but also include macromolecular processes such as DNA repair and replication, and protein synthesis and degradation'. To evaluate the possibilities of CACNA1H being another plausible pleiotropic gene, a thorough search of the relevant literature with regard to its functional role was performed. CACNA1H (also known as Cav3.2) encodes for Cav3.2 channel, a member of the voltage-gated calcium channel family. This gene participates in the T-type Ca^{2+} channels which contribute to signal transduction pathways regulating protein synthesis, cell differentiation, growth, and proliferation[37] that are mainly expressed during embryonic development [37]. Particularly, they are involved in the early stages of muscle differentiation in mice [38] and humans [39]. Cav3.2^{-/-} null mutant female mice presented decreased body weight [40] and reduced litter size [41]. Moreover, Cav3.2 facilitates the Ca²⁺ influx in mouse oocytes and eggs to maintain Ca²⁺ homeostasis during oocyte maturation and *post* fertilization [41]. Cav3.2 may also have a role in reproduction via its control in gonadal endocrine function. Specifically, Cav3.2 participates in the secretion of the Gonadotropinreleasing hormone (GnRH) the pulsatile secretion of which determines the pattern of secretion of follicle stimulating hormone (FSH) and luteinising hormone (LH). Both hormones are known to regulate the endocrine function and gamete maturation of gonads [42]. Persistent, rapid GnRH pulses increase LH which in return stimulates secretion of 17β-estradiol (E2). E2 further upregulates the expression of the T-type Ca^{2+} channel subunits [43]. So far, CACNA1H has only been associated with egg quality [44] and body weight [45], in chickens. Based on the aforementioned functional evidence, it appears that both genes (ACVR1 and CACNA1H) have widespread phenotypic effects on multiple systems (muscle, chondrocytes,

bones and oocytes) and for this reason we hypothesize that they are exemplars of horizontal pleiotropy. Nevertheless, Jordan et al [46] have offered an alternate view of genes' independent effects on multiple traits. Specifically, the authors hypothesized that the pervasive horizontal pleiotropy observed in polygenic traits is, on some level, a logical consequence of widespread polygenicity as 'the more loci are associated with each trait, the more chances there are for associations with multiple traits to overlap'.

Another interesting finding obtained in the present study was the presence of three long noncoding genes (lncRNAs) and a short non-coding gene (gga-mir-6646-2) within or close proximity to independent markers. LncRNAs are RNA transcripts greater than 200bp in length that are localized in nucleus and cytoplasm. Nuclear lncRNAs have been reported to act both in-cis and in-trans whereby in-cis acting lncRNAs influence the expression of nearby genes [47]. Although lncRNAs were traditionally thought that they could not encode proteins, some studies found that lncRNAs can encode short peptides [47,48]. LncRNAs can function as molecular decoy for proteins or sponges for other transcripts (such as miRNAs) [47]. They can also regulate a wide range of functions such as epigenetic modification, transcription and post-transcription while playing a key role in tissue development, muscle contraction/relaxation [47] and myogenesis [48]. In chickens, lncRNAs have been reported to regulate muscle development, lipid metabolism, egg production and disease resistance [49]. On the other hand, miRNAs (19-22 nucleotides long) can mediate almost any biological function depending on their targets [47]. As protein-coding genes are regulated by one or more miRNAs, a critical step is to identify genes targeted by the miRNA(s). Several studies used computational tools to predict target candidate genes prior their experimental validation [50]. Following this rationale, we found that gga-mir-6646-2 was associated with 294 predicted target genes (Table S5) for the species via the miRDB (http://mirdb.org). Although gga-mir-6646-2 had no documented functions in literature, miRNAs have been reported to be involved in cell growth, cell proliferation, myogenesis and egg production in chickens [51.52].

To conclude, present findings provide a novel insight in the genetic mechanism underlying antagonistic interplay between growth and reproduction in broilers. Further studies are warranted to experimentally validate the functional significance of individual candidate SNPs by using precise mammalian genome editing techniques such as CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) in animal models. CRISPR/Cas9-mediated gene editing may provide evidence which SNP(s) affect the transcriptional activity of the single or nearby genes involved in traits expression (e.g. [53]).

5.6. References

[1] Sang BD, Kong HS, Kim HK, Choi CH, Kim SD, Cho YM, et al. Estimation of genetic

parameters for economic traits in Korean native chickens. Asian-Australasian J Anim Sci. Asian-

Australasian Association of Animal Production Societies; 2006;19: 319–323.

doi:10.5713/ajas.2006.319

- [2] Lwelamira J, Kifaro GC, Gwakisa PS. Genetic parameters for body weights, egg traits and antibody response against Newcastle Disease Virus (NDV) vaccine among two Tanzania chicken ecotypes. Trop Anim Health Prod. 2009;41: 51–59. doi:10.1007/s11250-008-9153-2
- [3] Tongsiri S, Jeyaruban GM, Hermesch S, van der Werf JHJ, Li L, Chormai T. Genetic parameters and inbreeding effects for production traits of Thai native chickens. Asian-Australasian J Anim Sci. Asian Australasian Association of Animal Production Societies;

2019;32: 930-938. doi:10.5713/ajas.18.0690

- [4] Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits:
 Challenges and strategies. Nature Reviews Genetics. 2013. pp. 483–495. doi:10.1038/nrg3461
- [5] Tyler AL, Crawford DC, Pendergrass SA. The detection and characterization of pleiotropy: discovery, progress, and promise. Brief Bioinform. 2016;17: 13–22. doi:10.1093/bib/bbv050
- [6] Medawar PB. An unsolved problem of biology. London:H.K. Lewis; 1952.
- [7] Williams GC. Pleiotropy, Natural Selection, and the Evolution of Senescence. Evolution (N Y).
 JSTOR; 1957;11: 398. doi:10.2307/2406060
- [8] Ostrowski EA, Rozen DE, Lenski RE. Pleiotropic effects of beneficial mutations in Escherichia coli. Evolution. 2005;59: 2343–52. Available: http://www.ncbi.nlm.nih.gov/pubmed/16396175
- [9] Leiby N, Marx CJ. Metabolic Erosion Primarily Through Mutation Accumulation, and Not Tradeoffs, Drives Limited Evolution of Substrate Specificity in Escherichia coli. PLoS Biol. Public Library of Science; 2014;12. doi:10.1371/journal.pbio.1001789
- [10] van Rheenen W, Peyrot WJ, Schork AJ, Lee SH, Wray NR. Genetic correlations of polygenic disease traits: from theory to practice. Nature Reviews Genetics. Nature Publishing Group; 2019. doi:10.1038/s41576-019-0137-z
- Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods. NIH Public Access; 2014;11: 407–9.
 doi:10.1038/nmeth.2848
- Li X, Zhu X. Cross-phenotype association analysis using summary statistics from GWAS.
 Methods in Molecular Biology. Humana Press Inc.; 2017. pp. 455–467. doi:10.1007/978-1-4939-7274-6_22
- [13] Yuan J, Wang K, Yi G, Ma M, Dou T, Sun C, et al. Genome-wide association studies for feed intake and efficiency in two laying periods of chickens. Genet Sel Evol. BioMed Central; 2015;47: 82. doi:10.1186/s12711-015-0161-1
- [14] Liu Z, Sun C, Yan Y, Li G, Wu G, Liu A, et al. Genome-Wide Association Analysis of Age-Dependent Egg Weights in Chickens. Front Genet. Frontiers; 2018;9: 128. doi:10.3389/fgene.2018.00128
- [15] Yi G, Shen M, Yuan J, Sun C, Duan Z, Qu L, et al. Genome-wide association study dissects genetic architecture underlying longitudinal egg weights in chickens. BMC Genomics. BioMed Central; 2015;16: 746. doi:10.1186/s12864-015-1945-y
- [16] Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genomics. BioMed Central; 2013;14: 59. doi:10.1186/1471-2164-14-59
- [17] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. Cell Press; 2007;81: 559–575. doi:10.1086/519795
- [18] Zhou X, Carbonetto P, Stephens M. Polygenic Modeling with Bayesian Sparse Linear Mixed

Models. PLoS Genet. 2013;9. doi:10.1371/journal.pgen.1003264

- [19] Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 2012;44: 821–824. doi:10.1038/ng.2310
- [20] Yang J, Weedon MN, Purcell S, Lettre G, Estrada K, Willer CJ, et al. Genomic inflation factors under polygenic inheritance. Eur J Hum Genet. Nature Publishing Group; 2011;19: 807–12. doi:10.1038/ejhg.2011.39
- [21] Hinrichs AL, Larkin EK, Suarez BK. Population stratification and patterns of linkage disequilibrium. Genetic Epidemiology. 2009. doi:10.1002/gepi.20478
- [22] Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing [Internet]. Journal of the Royal Statistical Society. Series B (Methodological). WileyRoyal Statistical Society; 1995. pp. 289–300. doi:10.2307/2346101
- [23] Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: A tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88: 76–82. doi:10.1016/j.ajhg.2010.11.011
- [24] McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl Variant Effect Predictor. Genome Biol. BioMed Central; 2016;17: 122. doi:10.1186/s13059-016-0974-4
- [25] Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47: 191–198. doi:10.1093/nar/gkz369
- [26] Hu, Zhiliang & Bao, Jie & Reecy J. CateGOrizer: A Web-Based Program to Batch Analyze Gene Ontology Classification Categories. In: Online Journal of Bioinformatics. 9. 108-112.
 [Internet]. 2008 [cited 13 May 2020]. Available: https://www.researchgate.net/publication/284674352_CateGOrizer_A_Web-Based_Program_to_Batch_Analyze_Gene_Ontology_Classification_Categories
- [27] Li Q. Transforming growth factor β signaling in uterine development and function. Journal of Animal Science and Biotechnology. BioMed Central Ltd.; 2014. doi:10.1186/2049-1891-5-52
- [28] Chuva De Sousa Lopes SM, Roelen BAJ, Monteiro RM, Emmens R, Lin HY, Li E, et al. BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. Genes Dev. Cold Spring Harbor Laboratory Press; 2004;18: 1838–1849. doi:10.1101/gad.294004
- [29] Pesce M, Gioia Klinger F, De Felici M. Derivation in culture of primordial germ cells from cells of the mouse epiblast: Phenotypic induction and growth control by Bmp4 signalling. Mech Dev. 2002;112: 15–24. doi:10.1016/S0925-4773(01)00624-4
- [30] Valer, Sánchez-de-Diego, Pimenta-Lopes, Rosa, Ventura. ACVR1 Function in Health and Disease. Cells. 2019;8: 1366. doi:10.3390/cells8111366
- [31] Johnson PA, Kent TR, Urick ME, Trevino LS, Giles JR. Expression of anti-Mullerian hormone in hens selected for different ovulation rates. Reproduction. 2009;137: 857–863. doi:10.1530/REP-08-0406

- [32] Lambeth LS, Ayers K, Cutting AD, Doran TJ, Sinclair AH, Smith CA. Anti-Müllerian Hormone Is Required for Chicken Embryonic Urogenital System Growth but Not Sexual Differentiation1. Biol Reprod. 2015;93. doi:10.1095/biolreprod.115.131664
- [33] Johnson PA, Kent TR, Urick ME, Giles JR. Expression and Regulation of Anti-Mullerian Hormone in an Oviparous Species, the Hen1. Biol Reprod. 2008;78: 13–19. doi:10.1095/biolreprod.107.061879
- [34] Moreira GCM, Poleti MD, Pértille F, Boschiero C, Cesar ASM, Godoy TF, et al. Unraveling genomic associations with feed efficiency and body weight traits in chickens through an integrative approach. BMC Genet. BioMed Central Ltd.; 2019;20. doi:10.1186/s12863-019-0783-3
- [35] Lin S, Svoboda KKH, Feng JQ, Jiang X. The biological function of type i receptors of bone morphogenetic protein in bone. Bone Res. Sichuan University; 2016;4. doi:10.1038/boneres.2016.5
- [36] Lovell TM, Knight PG, Gladwell RT. Differential expression of mRNAs encoding the putative inhibin co-receptor (betaglycan) and activin type-I and type-II receptors in preovulatory and prehierarchical follicles of the laying hen ovary. J Endocrinol. 2006;188: 241–249. doi:10.1677/joe.1.06525
- [37] Ertel SI, Ertel EA, Clozel JP. T-type Ca2+ channels and pharmacological blockade: Potential pathophysiological relevance. Cardiovasc Drugs Ther. 1997;11: 723–739.
 doi:10.1023/A:1007706022381
- [38] Berthier C, Monteil A, Lory P, Strube C. α1H mRNA in single skeletal muscle fibres accounts for T-type calcium current transient expression during fetal development in mice. J Physiol. 2002;539: 681–691. doi:10.1113/jphysiol.2001.013246
- [39] Carter MT, McMillan HJ, Tomin A, Weiss N. Compound heterozygous CACNA1H mutations associated with severe congenital amyotrophy. Channels (Austin). NLM (Medline); 2019;13: 153–161. doi:10.1080/19336950.2019.1614415
- [40] Lundt A, Seidel R, Soós J, Henseler C, Müller R, Bakki M, et al. Cav3.2 T-Type Calcium Channels Are Physiologically Mandatory for the Auditory System. Neuroscience. Elsevier Ltd; 2019;409: 81–100. doi:10.1016/j.neuroscience.2019.04.024
- [41] Bernhardt ML, Zhang Y, Erxleben CF, Padilla-Banks E, McDonough CE, Miao YL, et al. CaV3.2 T-type channels mediate Ca2+ entry during oocyte maturation and following fertilization. J Cell Sci. Company of Biologists Ltd; 2015;128: 4442–4452. doi:10.1242/jcs.180026
- [42] Marques P, Skorupskaite K, George JT, Anderson RA. Physiology of GNRH and Gonadotropin Secretion [Internet]. Endotext. 2018. Available: http://www.ncbi.nlm.nih.gov/pubmed/25905297
- [43] Kelly MJ, Zhang C, Qiu J, Rønnekleiv OK. Pacemaking kisspeptin neurons. Exp Physiol. 2013;98: 1535–1543. doi:10.1113/expphysiol.2013.074559

- [44] Zhang Q, Zhu F, Liu L, Zheng CW, Wang DH, Hou ZC, et al. Integrating Transcriptome and Genome Re-Sequencing Data to Identify Key Genes and Mutations Affecting Chicken Eggshell Qualities. Leung FCC, editor. PLoS One. 2015;10: e0125890. doi:10.1371/journal.pone.0125890
- [45] Mebratie W, Reyer H, Wimmers K, Bovenhuis H, Jensen J. Genome wide association study of body weight and feed efficiency traits in a commercial broiler chicken population, a revisitation. Sci Rep. Nature Publishing Group; 2019;9. doi:10.1038/s41598-018-37216-z
- [46] Jordan DM, Verbanck M, Do R. HOPS: A quantitative score reveals pervasive horizontal pleiotropy in human genetic variation is driven by extreme polygenicity of human traits and diseases. Genome Biol. BioMed Central Ltd.; 2019;20. doi:10.1186/s13059-019-1844-7
- [47] Pasut A, Matsumoto A, Clohessy JG, Pandolfi PP. The pleiotropic role of non-coding genes in development and cancer. Current Opinion in Cell Biology. Elsevier Ltd; 2016. pp. 104–113. doi:10.1016/j.ceb.2016.10.005
- [48] Militello G, Hosen MR, Ponomareva Y, Gellert P, Weirick T, John D, et al. A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1. J Mol Cell Biol. Oxford University Press; 2018;10: 102–117. doi:10.1093/jmcb/mjy025
- [49] Li Z, Ren T, Li W, Han R. Regulatory Mechanism and Application of lncRNAs in Poultry. Poultry [Working Title]. IntechOpen; 2019. doi:10.5772/intechopen.83800
- [50] Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. BioMed Central Ltd.; 2019;20: 18. doi:10.1186/s13059-019-1629-z
- [51] Wu N, Zhu Q, Chen B, Gao J, Xu Z, Li D. High-throughput sequencing of pituitary and hypothalamic microRNA transcriptome associated with high rate of egg production. BMC Genomics. BioMed Central; 2017;18: 255. doi:10.1186/s12864-017-3644-3
- [52] Wu H, Fan F, Liang C, Zhou Y, Qiao X, Sun Y, et al. Variants of pri-miR-26a-5p polymorphisms are associated with values for chicken egg production variables and affects abundance of mature miRNA. Anim Reprod Sci. Elsevier B.V.; 2019;201: 93–101. doi:10.1016/j.anireprosci.2019.01.002
- [53] Wu S, Zhang M, Yang X, Peng F, Zhang J, Tan J, et al. Genome-wide association studies and CRISPR/Cas9-mediated gene editing identify regulatory variants influencing eyebrow thickness in humans. Cooper GM, editor. PLOS Genet. Public Library of Science; 2018;14: e1007640. doi:10.1371/journal.pgen.1007640
- [54] Anand L. chromoMap: An R package for Interactive Visualization and Annotation of Chromosomes. bioRxiv. Cold Spring Harbor Laboratory; 2019; 605600. doi:10.1101/605600
- [55] Oliveros JC. VENNY. An interactive tool for comparing lists with Venn Diagrams. [Internet].2015. Available: http://bioinfogp.cnnb.csic.es/tools/venny/index.html

Tables and Figures of Chapter 5

SNP	GGA	Position (bp) ¹	Minor allele	MAF	Wald test p-value	FDR p-value
rs13653309	1	52,997,158	А	0.13	2.26E-08	0.0001416
rs313332188	3	99,991,484	В	0.45	5.89E-10	7.804E-06
rs15608447	4	66,459,916	А	0.45	4.34E-08	0.00023
rs313879964	7	36,286,374	А	0.12	9.82E-09	7.431E-05
rs316603825	8	20,680,268	В	0.08	9.46E-09	7.431E-05
rs318098582	11	18,407,493	А	0.13	0.00000024	0.0001416
rs317631529	14	5,738,298	В	0.33	7.69E-08	0.0003396
rs317414603	20	6,729,013	А	0.41	2.51E-09	2.66E-05
rs14291881	24	150,829	А	0.30	4.28E-10	7.563E-06
rs315023079	25	2,292,569	А	0.13	3.48E-10	7.563E-06
rs312758346	25	3,770,684	А	0.44	0.0000377	0.0437699
rs315329074	27	6,920,352	В	0.18	6.18E-13	3.276E-08
rs317501178	28	874,035	А	0.23	0.00000347	0.0013149

Table 1. Chromosome position along with Wald and FDR p-values for 13 independent SNPs associated with body weight and egg number in broilers.

¹Positions are based on GRCg6a assembly

Marker	Genoty	be	BW		EN	
	Class	n	Mean \pm SD	$\beta \pm SE$	Mean \pm SD	$\beta \pm SE$
rs13653309	0	2197	183.7 ± 13.8a	-6.70 ± 0.42 ***	$131.9 \pm 29.9a$	$0.67\pm0.94^{\rm NS}$
	1	128	$187.5 \pm 13.6b$		$135.3 \pm 25.6a$	
	2	261	$171.8 \pm 14.8c$		$135.6 \pm 27.7a$	
rs313332188	0	1055	183.5 ± 14.9a	-1.14 ± 0.33***	133.2 ± 27.7a	$0.63\pm0.72^{\text{NS}}$
	1	732	$181.0 \pm 13.9b$		132.3 ± 31.5a	
	2	799	$181.7 \pm 13.9b$		131.7 ± 30.0a	
rs15608447	0	749	180.6 ± 14.4a	1.76 ± 0.39***	131.0 ± 29.8a	$1.25 \pm 0.84 N^{S}$
	1	1346	$182.5 \pm 14.2b$		132.6 ± 29.3a	
	2	491	$184.1 \pm 14.5b$		$134.0\pm29.9a$	
rs313879964	0	2205	183.7 ± 13.8a	-6.65 ± 0.41***	132.2 ± 29.6a	$0.42\pm0.94NS$
	1	119	177.7 ± 12.9b		129.5 ± 30.6a	
	2	262	$171.9 \pm 14.8c$		135.8 ± 28.0a	
rs316603825	0	2366	181.5 ± 14.2a	5.25 ± 0.48***	132.9 ± 29.5a	-3.52 ± 1.06***
	1	9	$189.9 \pm 8.5b$		$134.4 \pm 24.3a$	
	2	211	$190.9\pm13.7b$		$127.8\pm29.8b$	
rs318098582	0	2202	183.8 ± 13.8a	-6.59 ± 0.41***	131.9 ± 29.9a	$1.02 \pm 0.92 \text{NS}$
	1	108	177.3 ± 12.9b		$135.9 \pm 27.3a$	
	2	276	$172.2 \pm 14.5c$		135.9 ± 27.6a	
rs317631529	0	1561	180.3 ± 13.9a	3.53 ± 0.30***	132.7 ± 29.2a	$-1.00 \pm 0.67 \text{NS}$
	1	361	183.2 ± 13.7b		135.5 ± 29.0a	
	2	664	$185.4 \pm 14.8c$		$130.4\pm30.5b$	

Table 2. Genotypic means (coded as 0, 1, 2 for the dose of the minor allele), regression coefficients (β) for body weight and egg number in female broilers for 13 independent SNPs.

rs317414603	0	1422	$184.6 \pm 14.3a$	-4.60 ± 0.31 ***	130.1 ± 30.6a	$0.96 \pm 0.71 \text{NS}$
	1	207	$180.5 \pm 14.3b$		$133.4 \pm 29.1b$	
	2	957	$179.2 \pm 13.9b$		$135.7 \pm 27.7b$	
rs14291881	0	1669	$184.7 \pm 13.9a$	-4.45 ± 0.31 ***	$131.7 \pm 29.9a$	$0.89 \pm 0.69 \mathrm{NS}$
	1	300	179.3 ± 13.7b		130.2 ± 29.5a	
	2	617	$177.0 \pm 14.3c$		$135.8\pm28.4b$	
rs315023079	0	2190	183.7 ± 13.9a	-6.65 ± 0.41***	132.0 ± 29.9a	0.28 ± 0.92 NS
	1	111	$178.0 \pm 13.2b$		$134.8 \pm 29.3a$	
	2	285	$172.9 \pm 14.5c$		$135.3 \pm 26.8a$	
rs312758346	0	1032	$181.7 \pm 14.0a$	-0.020 ± 0.33 NS	$132.0 \pm 30.8a$	$0.61 \pm 0.71 \text{NS}$
	1	849	$183.5 \pm 14.9b$		132.4 ± 28.5a	
	2	705	$181.6 \pm 14.2a$		$133.2\pm29.0a$	
rs315329074	0	2095	180.6 ± 13.8a	5.19 ± 0.35***	132.5 ± 29.5a	$-1.64 \pm 0.79 \text{NS}$
	1	42	181.9 ± 14.6a		129.0 ± 31.1a	
	2	229	$189.9\pm14.3b$		$132.4 \pm 29.4a$	
rs317501178	0	1922	$180.7 \pm 13.9a$	3.93 ± 0.32***	$132.5 \pm 29.4a$	$-0.48 \pm 0.70 \text{NS}$
	1	121	179.7 ± 13.3a		135.1 ± 24.2a	
	2	543	$188.2\pm14.8b$		$131.8 \pm 31.1a$	

^{a,b,c} means with different letters as superscipts are significantly different (p<0.05) ***p<0.001, **p<0.01, *p<0.05, NS: non significant

					Start position -	Minimum	OTL(s)
SND	CCA	Consequence	Positional candidate	Cons description (history)	end position	distance from	
SIVE	GGA	(variant)	gene (gene iD)	Gene description (biotype)	52 006 174	SINE (UP)	Ducdonum weight (ID: 06627)
rs13653309	1	intron	ENSGALG00000051610	novel gene (lncRNA)	53,012,023	0	Body weight 9 days (ID: 96626)
rs313332188	3	downstream	LOC107051696	uncharacterized LOC107051696	99,953,839-	12905	Comb weight (ID: 127114)
rs15608447	4	intron	SLAIN2 (ENSGALG0000001411 5)	SLAIN motif family member 2 (protein coding)	66,459,339- 66,485,331	0	none
		intron	LOC107053243 (107053243)	uncharacterized LOC107053243 (lncRNA)	66,450,553- 66,472,818	0	
rs313879964	7	intron	ACVR1 (ENSGALG0000003730 1)	activin A receptor type 1 (protein coding)	36,257,915- 36,304,135	0	none
rs316603825	8	intron	ST3GAL3 (ENSGALG0000001008 3)	ST3 beta-galactoside alpha-2,3- sialyltransferase 3 (protein coding)	20,538,514- 20,684,008	0	Feather colour extended black (ID: 157212), Feathered feet (ID: 127123), Body weight 21 days (ID: 95408)
rs318098582	11	missense	ZC3H18 (ENSGALG0000000611 8)	zinc finger CCCH-type containing 18 (protein coding)	18,379,252- 18,412,636	0	none
rs317631529	14	intron	CACNA1H (ENSGALG000000521 5)	calcium voltage-gated channel subunit alpha1 H (protein coding)	5,667,870- 5,837,019	0	Body weight 36 days (ID: 64519), Wattles length (ID: 127121)
rs317414603	20	upstream gene	ZNFX1 (ENSGALG0000000485 9)	zinc finger NFX1-type containing 1 (protein coding)	6,715,285- 6,727,531	1482	none
rs14291881	24	intron	VPS11 (ENSGALG0000002953 6)	VPS11, CORVET/HOPS core subunit (protein coding)	77,314- 151,086	0	none
rs315023079	25	intron	COPA (ENSGALG000000915 3)	coatomer protein complex subunit alpha (protein coding)	2,291,057- 2,407,537	0	Ileum weight (ID: 96668)
rs312758346	25	synonymous	FCRL4 (ENSGALG0000001050 7)	<i>Fc receptor like 4 (protein coding)</i>	3,769,137- 3,773,541	0	none

Table 3. Positional candidate genes and reported QTLs for the independent SNPs.

		downstream gene variant	gga-mir-6646-2 (ENSGALG0000002769 7)	gga-mir-6646-2 (miRNA)	3,769,573- 3,769,682	1002	
rs315329074	27	intron	CACNB1 (ENSGALG0000002578 8)	calcium voltage-gated channel auxiliary subunit beta 1 (protein coding)	6,913,922- 6,925,806	0	Body weight hatch (ID: 135726), Comb weight (ID: 127127), Femur bone mineral content (ID: 130479), Femur weight (ID: 130480), Proventriculus weight (ID: 96672), Wattles weight (ID: 127120)
rs317501178	28	downstream gene	RANBP3 (ENSGALG000000057 7)	RAN binding protein 3 (protein coding)	832,528- 873,641	394	Feather-crested head (ID: 127113), Excreta water content (ID: 96625)

*Note that Ensembl and RefSeq transcript databases were used in VEP tool to identify genes. Gene IDs refer to Ensembl gene IDs ('ENSGAL_') or NCBI gene IDs (numerical).

		Gene									
GO Slim category	Definition		A CUD I	STOCAL 2	CACNALI	ZNEV1	VDC11	CODA	CACNEL		Tatal
ID GO.0000059		SLAIN2	ACVKI	SISGALS	CACNAIH	ZNFXI	VPSII	COPA	CACINBI	KANBPS	Total
GO:0009058	biosynthesis		\checkmark	V	✓	V	1				4
GO:0009056	catabolism		,		,		✓				1
GO:0007154	cell communication		\checkmark		\checkmark				\checkmark		3
GO:0007049	cell cycle		\checkmark								1
GO:0008219	cell death		\checkmark								1
GO:0030154	cell differentiation		\checkmark								1
GO:0016043	cell organization and biogenesis	\checkmark				\checkmark	\checkmark		\checkmark		4
GO:0007267	cell-cell signaling								\checkmark		1
GO:0007010	cytoskeleton organization and biogenesis	\checkmark									1
GO:0007275	development		\checkmark								1
GO:0009790	embryonic development		\checkmark								1
GO:0006811	ion transport				\checkmark				\checkmark		2
GO:0006629	lipid metabolism				\checkmark						1
GO:0008152	metabolism		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				5
GO:0009653	morphogenesis		\checkmark								1
GO:0006139	nucleobase, nucleoside, nucleotide and nucleic acid metabolism		\checkmark			\checkmark					2
GO:0006996	organelle organization and biogenesis	\checkmark				\checkmark	\checkmark				3
GO:0019538	protein metabolism		\checkmark	\checkmark							2
GO:0006464	protein modification		\checkmark	\checkmark							2
GO:0015031	protein transport						\checkmark	\checkmark		\checkmark	3
GO:0040029	regulation of gene expression, epigenetic					\checkmark					1
GO:000003	reproduction		\checkmark		\checkmark						2

Table 4. Gene Ontology (GO) slim categories obtained by CateGorizer per candidate gene.

GO:0009719	response to endogenous stimulus		\checkmark		\checkmark				\checkmark		3
GO:0006950	response to stress		\checkmark								1
GO:0007165	signal transduction		\checkmark								1
GO:0006810	transport				\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	5
	Total	3	16	4	8	6	6	2	6	2	53

Figure 1. Circular Manhattan plots showing the $-\log_{10}(p$ -values) of SNPs across the 28 autosomal chromosomes for body weight (BW) (a), egg number (EN) (b) and both traits (c), respectively. Red dots in the (a) and (c) Manhattan plots denote genome-wide significant SNPs. Plots were constructed using the CMplot package (https://github.com/YinLiLin/R-CMplot) in R (http://www.r-project.org/).

Figure 2. Graphic depiction of the significant SNPs detected by univariate and bivariate analyses across the genome. Yellow color denotes the SNP position(s) per autosome (black color). Each SNP position is linked to at least one colored square representing the associated trait (s) (i.e. body weight (BW): blue square, egg number (EN): red square and both traits: green square). Plot was constructed using the chromoMap package [54] in R(http://www.r-project.org/).

Figure 3. The left Venn diagram presents the number of common significant SNPs between bivariate association analysis (both traits: yellow color) and univariate association analyses(body weight (BW): blue color and egg number (EN): green color) while the right Venn diagram presents the number of common significant SNPs after conditional and joint (cojo) analyses. Venn diagrams were constructed by VENNY 2.1 [55].

6. General discussion

6.1. Rare alleles and effect size distribution

Most GWASs filter out rare (MAF<0.01) or low-frequency (0.05 < MAF < 0.01) variants from an analysis to avoid spurious results derived from poor quality of genotype imputation. However, the development of the chicken 600k SNP array has increased the low coverage in previous genotyping technology. For this reason, in contrast to the usual practice of excluding variants with MAF<0.05, a lower MAF threshold was specified (0.01) in two of the four GWAS carried for BW. The use of a lower threshold is based on the premise that also low frequency or rare variants may contribute to phenotypic variation of complex traits such as BW [1]. In accordance to this premise, inclusion of rare or rare and low frequency variants resulted in genomic heritability (h^2) estimates as high as 0.04 and 0.16, respectively, in this population and trait [2]. Such a result implies that low frequency variants explain a significant part of the trait heritability (h^2 =0.29).

As most SNPs detected in GWASs segregate at intermediate to high frequencies [3] and the correlation between allele frequencies and locus effect sizes (β) is negative [4], it is rather unlikely that most significant SNPs are tagged to rare causal variants and higher effect sizes or large sample sizes are needed to detect associations involving variants with lower allele frequencies [5]. Based on power calculations [6], the required minimum number of individuals for detecting an association for infrequent variants (MAF=0.001) with low effect sizes (β =0.01 SDs) would exceed 10⁸ (80% power, type I error rate=5x10⁻⁸). This may explain why no low frequency variant could be detected across any analysis here. Furthermore, in both traits, allelic additive effects (β) estimated by GBLUP analysis fit to an exponential distribution (Figure 1) with an abundance of low effect size loci and very few high effect size variants [7].

Figure 1. Bar charts depicting absolute allelic effects of 52,992 markers used during bivariate analysis of BW (upper) and EN (lower).

6.2. Sample size and statistical power

While several markers were found to reach genome-wise statistical significance for BW, this was not the case for EN where only chromosome-wise significant markers could be detected. As the yield of GWAS critically depend on the underlying effect-size (β) distribution of the implicated variants [8], this is not a surprising finding and it may be attributed to the low heritability of the trait under study (estimated as high as 0.21).

Albeit a total number of n~2600 animals present an appreciable sample size, a non detectable association implies low statistical power. The required minimum sample size to detect (80% power, type I error rate= 5×10^{-8}) genome-wise significant markers with MAF=0.10 would, roughly estimated, be over 10^4 and 10^6 for β =0.1 and β =0.01 phenotypic standard deviations (SD), respectively [6]. In general, the expectation is that loci of large effect are likely to be found with low sample sizes, whereas decreasingly lower locus effects would only be found with larger sample sizes. In quantitative traits in humans, the predicted sample sizes needed to identify SNPs which explain 80% of GWAS heritability range between 300k-500k for some of the early growth traits, between 1-2 million for some anthropometric traits and multiple millions for body mass index and some others [9]. In all traits, most of the heritability is explained by loci of large effect (~60%), with those of medium and low effect explaining much lower proportions (~30 and 13%, respectively) of heritability [4].

Whereas such sample sizes are nowadays attainable in human studies due to large-scale consortia, in livestock populations, samples of comparable sizes are unachievable, at least for now, due to insufficient budgets to cover the associated genotyping costs. The latter could be extremely high for large sized populations and the high-throughput genotyping technology. Under a limited budget it is necessary to make an effective allocation of genotyping costs. A useful cost-saving strategy is to genotype only samples of the population with extreme phenotypes (XP) and then perform XP-

GWASs [10]. Results for BW in Chapter 1, have shown that 50% XP-GWAS are useful to detect genomic variants associated with growth related QTLs and plausible causal genes.

6.3. Non-additive gene (inter)action

Most GWASs aim to map additive variants based on the notion that genetic variation in complex traits can be largely explained by additive effects from alleles with small effects on the trait. Nevertheless, non-additive genetic interaction(s) at the same locus (*dominance*) or between different loci (*epistasis*) may also arise resulting in haplotypes with phenotypic values that cannot be attributed to the marginal additive effects of individual alleles. In general, dominance effects in GWASs appear to be minor and efforts to detect epistatic interactions in human GWASs have failed, possibly because they remain severely underpowered [11]. Strikingly, both *dominance* and *epistatic interactions* were detected in analysis of EN (Chapter 4). Specifically, in the case of dominant mode of gene action, the implicated variants spanned a wide spectrum ranging from partial to complete dominance while over-dominance cannot be ruled out for a reproductive trait such as EN. Finally, albeit based on limited number of observations, two locus *epistatic interactions* were also evident in form of additive-by-additive and additive-by-dominance gene interaction. Such results underscore the need to thoroughly exploring the applicability of all possible genetic models in efforts to decipher the genetic architecture of complex traits.

6.4. Pleiotropy

A growing body of genetic research demonstrates the existence of variants that are associated with more than one trait (*pleiotropy*). In polygenic traits, variation affecting a given trait may span a considerable portion of functional genetic variation; as a result, it is bound to overlap with variation affecting other traits [11]. For this reason, it is hypothesized that the pervasive *horizontal pleiotropy* observed in polygenic traits is, at some extent, a logical consequence of widespread polygenicity [12]. This, however, does not mean that every cross phenotype (CP) association detected in GWASs should be attributable to the preceding premise. By identifying genetic variants with antagonistic CP genetic effects, Chapter 5 revealed two genes that simultaneously affect multiple systems offering novel insights in the genetic mechanism underlying the negative co-variation between growth and reproduction in broilers.

In terms of methodology, detection of pleiotropic variants should preferably be based on multivariate approaches as that employed in Chapter 5 that allow for direct identification of CP associations. As results of Chapter 5 have shown, application of bivariate analysis can increase the power to identify additional associations not detected by the 'standard' univariate GWAS in the same dataset. Attention should also be paid as to avoiding detection of spurious CP associations arising from short and/or long range LD.

6.5. Importance of non-coding regions

Results obtained herein concur with the general observation that the vast majority of phenotypeassociated SNPs identified by GWASs lie within non-coding regions [13]. The tendency to assign potential causal variants preferentially to coding genes within or close to lead variants has contributed to disregarding the role of non-coding elements. Non-coding variants occur in introns, upstream or downstream of coding regions in 3' and 5' UTRs, and in intergenic regions and include intronic or promoter regions, small non coding RNAs (ncRNAs) such as miRNAs, long non coding RNAs (lncRNAs), antisense, and enhancer or insulator regions [14]. Currently, around 2,500 miRNAs and more than 50,000 lncRNAs have been annotated in the human genome [15]. The high proportion of SNPs lying in non-coding regions highlight their potential functional relevance and prompt a better understanding of lncRNA biology as well as regulatory regions such as enhancer to unravel their potential role in complex traits [14]. Many lncRNAs reside in the nucleus conducting key regulatory steps in gene transcription, transcript splicing or chromatin structure while cytoplasmic lncRNAs affect cell homeostasis by modulating translation and stability of mRNA [16]. Implication of miRNAs in growth has also been confirmed in present Chapters (Chapters 2 and 3). Expression quantitate trait loci (eQTL) mapping has been another valuable tool in understanding the function of non-coding variants by establishing genetic association for a given variant with differences in gene expression [17]. Finally, the functional significance of individual candidate SNPs can be experimentally validated by using precise mammalian genome editing such as CRISPR/Cas9 (clustered regularly interspaced techniques short palindromic repeats/CRISPR-associated 9) in animal models. CRISPR/Cas9-mediated gene editing may provide evidence which SNP(s) affect the transcriptional activity of the single or nearby genes involved in traits expression (e.g. [18]).

6.6. Identification of causal genes

6.6.1. Search for candidate genes

A major challenge to the translation of GWAS results into mechanistic understanding is determining the causal variant(s). An intuitive approach is to assign causality to variants preferentially within or closest proximity to lead variants. As demonstrated by the discovery of *MYOM2* gene for BW in Chapter 1, this is an efficient approach to determine causal genes. Nevertheless, the causal gene(s) may not have been directly genotyped, and typically, there are many SNPs in LD with the lead GWAS marker(s). This means that (i) not every gene harboring a significant SNP is a functional candidate and (ii) causal genes may lie tens or hundreds kb apart from the lead markers. Based on the above notions, the search for candidate genes is extended to wider genomic regions around the lead signals, using fixed (e.g. 1Mb, Chapter 2) or variably spanning distances, based on local LD levels (Chapter 3). Often, this search produces numerous positional candidate genes or many candidates with likely functional effects, the experimental validation of which is prohibited because of substantial costs, effort and time. For this reason, assessing gene candidacy in the context of existing biological knowledge and known biological functions is an important step in producing a manageable subset of variants for further validation or exploration [19].

6.6.2. Variant or gene prioritization: fail or success?

'Filtering' the list of candidates to identify a subset of most relevant genes to a specific trait is a complex exercise that needs bioinformatics expertise. Nevertheless, more and more researchers are increasingly motivated to handle this task themselves. The reason for this, is the availability of prominent, often available online, bioinformatics tools that allow for efficient variant/gene annotation and knowledge-driven gene prioritization.

By accepting the challenge of the bioinformatics endeavor, in the present thesis a variety of tools and associated analyses were performed encompassing variant effect prediction (Chapter 1 and 5), functional enrichment analysis (Chapters 2 and 4), gene functional or topological prioritization (Chapters 2 and 4) and detection of functional modules (Chapter 3). Application of these methods has, individually or jointly, demonstrated that extant knowledge can be useful in efforts to prioritize

most likely candidates and in many cases the insights gained from thoroughly interrogating knowledge domains provide enough evidence to implicate a gene. As each analysis uses a different principle foundation to disclose candidate genes, results are, inarguably, method dependent. Thus, careful consideration should be paid to the drawbacks associated with each tool to allow the assessment of variants or genes. Since all have limitations, a combination of tools should be preferably used where possible. Although a candidate that fulfils multiple criteria is most likely to have a genotype-phenotype association, this should not be an absolute criterion for determining its candidacy [19]. Finally, variants or genes should not be discarded as being irrelevant if the knowledge database does not return phenotypic or functional links [19].

6.7. GWAS: present and future

Since the first genome-wide association study for age-related macular degeneration in 2005 [20], 1,181 GWAS with 40,364 genome-wide significant associations have been reported between genetic variants and diseases and traits, in human (NHGRI-EBI Catalog of published GWAS [21]). GWAS have greatly led to the discovery of already known as well as novel genes for traits/diseases (see examples in [22]). Despite the success of GWAS, some studies (e.g. [23,24]) claim that GWAS are just the starting point to find causal genes since follow-up functional studies are required while other studies [25] support that GWAS remains the key strategy to get insight into the biological mechanism of diseases or traits. As a future perspective of GWAS, recent studies suggest the application of next generation sequencing (NGS) techniques for genotyping. The use of wholegenome sequencing (WGS) can increase the power to detect causal variants as every variant (common and rare) can be directly genotyped [26]. To obtain credible GWAS results, a large number of genotyped individuals were required in association analyses but performing WGS in very large sample sizes is currently cost-ineffective (SNP arrays: ~US\$40 per sample vs. WGS: >US\$1,000 per sample [22]). An efficient imputation strategy in which low-density SNPs were imputed to WGS data at low cost was thus recommended to detect causal loci [27]. Although identifying causal variants might be easier for GWAS using WGS than for GWAS using SNP arrays, functional characterization of the identified genetic variants still remains a challenge.

References

1. Bloom JS, Boocock J, Treusch S, Sadhu MJ, Day L, Oates-Barker H, et al. Rare variants contribute disproportionately to quantitative trait variation in yeast. Elife. eLife Sciences Publications Ltd; 2019;8. doi:10.7554/eLife.49212

2. Kominakis A, Tarsani E, Maniatis G, Olori V, Kranis & A. Estimation of heritability of body weight in broilers using pedigree and dense genome-wide SNP data [Internet]. Available: http://www.wcgalp.org/system/files/proceedings/2018/estimation-heritability-body-weight-broilers-using-pedigree-and-dense-genome-wide-snp-data.pdf

3. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42: 565–569. doi:10.1038/ng.608

4. López-Cortegano E, Caballero A. Inferring the nature of missing heritability in human traits using data from the GWAS catalog. Genetics. Genetics Society of America; 2019;212: 891–904. doi:10.1534/genetics.119.302077

5. Bomba L, Walter K, Soranzo N. The impact of rare and low-frequency genetic variants in common disease. Genome Biology. BioMed Central Ltd.; 2017. pp. 1–17. doi:10.1186/s13059-017-1212-4

6. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. American Journal of Human Genetics. Cell Press; 2017. pp. 5–22. doi:10.1016/j.ajhg.2017.06.005

7. King EG, Long AD. The beavis effect in next-generation mapping panels in Drosophila melanogaster.

G3 Genes, Genomes, Genet. Genetics Society of America; 2017;7: 1643–1652. doi:10.1534/g3.117.041426 8. Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ, et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet. Nature Publishing Group; 2010;42: 570–575. doi:10.1038/ng.610

9. Zhang Y, Qi G, Park J-H, Chatterjee N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits and implications for the future. bioRxiv. Cold Spring Harbor Laboratory; 2017; 175406. doi:10.1101/175406

10. Yang J, Jiang H, Yeh C-T, Yu J, Jeddeloh JA, Nettleton D, et al. Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. Plant J. John Wiley & Sons, Ltd (10.1111); 2015;84: 587–596. doi:10.1111/tpj.13029

11. Sella G, Barton NH. Thinking About the Evolution of Complex Traits in the Era of Genome-Wide Association Studies. Annu Rev Genomics Hum Genet. Annual Reviews; 2019;20: 461–493. doi:10.1146/annurev-genom-083115-022316

12. Jordan DM, Verbanck M, Do R. HOPS: A quantitative score reveals pervasive horizontal pleiotropy in human genetic variation is driven by extreme polygenicity of human traits and diseases. Genome Biol. BioMed Central Ltd.; 2019;20. doi:10.1186/s13059-019-1844-7

13. Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, Clark AG, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. Nature Publishing Group; 2012;491: 56–65. doi:10.1038/nature11632

14. Giral H, Landmesser U, Kratzer A. Into the Wild: GWAS Exploration of Non-coding RNAs. Frontiers in Cardiovascular Medicine. Frontiers Media S.A.; 2018. p. 181. doi:10.3389/fcvm.2018.00181

15. Volders PJ, Verheggen K, Menschaert G, Vandepoele K, Martens L, Vandesompele J, et al. An update on LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res. 2015;43: 4363–4. doi:10.1093/nar/gkv295

16. Noh JH, Kim KM, McClusky WG, Abdelmohsen K, Gorospe M. Cytoplasmic functions of long noncoding RNAs. Wiley Interdisciplinary Reviews: RNA. Blackwell Publishing Ltd; 2018. p. e1471. doi:10.1002/wrna.1471

17. Osgood JA, Knight JC. Translating GWAS in rheumatic disease: approaches to establishing mechanism and function for genetic associations with ankylosing spondylitis. Brief Funct Genomics. 2018;17: 308–318. doi:10.1093/bfgp/ely015

18. Wu S, Zhang M, Yang X, Peng F, Zhang J, Tan J, et al. Genome-wide association studies and CRISPR/Cas9-mediated gene editing identify regulatory variants influencing eyebrow thickness in humans. Cooper GM, editor. PLOS Genet. Public Library of Science; 2018;14: e1007640. doi:10.1371/journal.pgen.1007640

19. Dashti MJS, Gamieldien J. A practical guide to filtering and prioritizing genetic variants. Biotechniques. Eaton Publishing Company; 2017;62: 18–30. doi:10.2144/000114492

20. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science (80-). 2005;308: 385–389. doi:10.1126/science.1109557

21. GWAS Catalog [Internet]. [cited 1 Apr 2020]. Available: https://www.ebi.ac.uk/gwas/docs/about

22. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nature Reviews Genetics. Nature Publishing Group; 2019. pp. 467–484. doi:10.1038/s41576-019-0127-1

23. Ikegawa S. A Short History of the Genome-Wide Association Study: Where We Were and Where We Are Going. Genomics Inform. Korea Genome Organization; 2012;10: 220. doi:10.5808/gi.2012.10.4.220

24. Vandenbroeck K. The era of GWAS is over - Yes. Mult Scler. SAGE Publications Ltd; 2018;24: 256–257. doi:10.1177/1352458517738059

25. De Jager PL. The era of GWAS is over - No. Mult Scler. SAGE Publications Ltd; 2018;24: 258–260. doi:10.1177/1352458517742980

26. Wang Z, Chatterjee N. Increasing mapping precision of genomewide association studies: To genotype and impute, sequence, or both? Genome Biol. BioMed Central Ltd.; 2017;18. doi:10.1186/s13059-017-1255-6

27. Wu P, Wang K, Zhou J, Chen D, Yang Q, Yang X, et al. GWAS on Imputed Whole-Genome Resequencing From Genotyping-by-Sequencing Data for Farrowing Interval of Different Parities in Pigs.

Front Genet. Frontiers Media S.A.; 2019;10: 1012. doi:10.3389/fgene.2019.01012

Appendix – Supplementary Tables and Figures Chapter 2

Gene ID*	Description	GGĂ			
			Start Position of the gene (bp)*	End Position of the gene (bp)*	Significant SNP(s) associated with each candidate gene
LOC101750030	uncharacterized LOC101750030		111729926	111783003	<u>_</u>
CASK	calcium/calmodulin dependent serine protein kinase		111777387	111983664	
GPR82	G protein-coupled receptor 82		111877626	111886967	
GPR34	G protein-coupled receptor 34		111891553	111897268	
NYX	nyctalopin		111995838	112016261	
DDX3X	DEAD-box helicase 3, X-linked		112021552	112038995	
LOC101750611	uncharacterized LOC101750611		112041464	112056885	
LOC107056703	uncharacterized LOC107056703		112059923	112065219	
MIR6850	microRNA 6850		112065342	112069044	
USP9X	ubiquitin specific peptidase 9, X-linked	1	112078329	112176727	rs13023872
LOC101750779	uncharacterized LOC101750779	1	112193534	112198521	1313723012
LOC107056757	uncharacterized LOC107056757		112223451	112228082	
MED14	mediator complex subunit 14		112228091	112262695	
LOC107056765	uncharacterized LOC107056765		112263096	112268266	
ATP6AP2	ATPase H+ transporting accessory protein 2		112273187	112282377	
LOC101750924	uncharacterized LOC101750924		112282457	112304013	
LOC107056538	basic proline-rich protein-like		112349429	112354018	
BCOR	BCL6 corepressor		112378844	112422324	
LOC107057081	uncharacterized LOC107057081		112474240	112486871	
LOC101751364	uncharacterized LOC101751364		112482075	112497856	
LOC107057076	uncharacterized LOC107057076		112498548	112504661	

Table S1. Positional candidate genes for BW. Note that genes including the significant marker are shown in bold.

LOC101751443	uncharacterized LOC101751443		112519737	112523119	
MIR6672	microRNA 6672		112625566	112625675	
LOC107057061	uncharacterized LOC107057061		112635402	112643712	
LOC107057049	uncharacterized LOC107057049		112668313	112707049	
MID1IP1	MID1 interacting protein 1		112738605	112739753	
TSPAN7	tetraspanin 7		112766324	112855838	
LOC101751659	uncharacterized LOC101751659		112767424	112769932	
LOC107057044	uncharacterized LOC107057044		112853920	112855360	
OTC	ornithine carbamoyltransferase		112898625	112924531	
RPGR	retinitis pigmentosa GTPase regulator		112926169	112985737	
SRPX	sushi repeat containing protein, X-linked		112994814	113035754	
SYTL5	synaptotagmin like 5		113039522	113117936	
DYNLT3	dynein light chain Tctex-type 3		113133105	113139987	
СҮВВ	cytochrome b-245 beta chain		113149626	113183626	
XK	X-linked Kx blood group		113199116	113214148	
LANCL3	LanC like 3		113215605	113251683	
LOC107056992	uncharacterized LOC107056992		113278216	113282701	
PRRG1	proline rich and Gla domain 1		113283937	113314070	
LOC107056924	maestro heat-like repeat-containing protein family member 2B		113325651	113339179	
LOC107056990	maestro heat-like repeat-containing protein family member 2B		113343513	113348692	
LOC107056981	maestro heat-like repeat-containing protein family member 2B		113350799	113354007	
LOC107056965	maestro heat-like repeat-containing protein family member 2B		113357864	113369741	
LOC107057105	uncharacterized LOC107057105		113387296	113390923	
C1HXORF59	chromosome 1 open reading frame, human CXORF59		113403041	113666278	
LOC100857117	uncharacterized LOC100857117	4	28172128	28173788	rs312691174

LOC107051793	uncharacterized LOC107051793		28550125	28563120	
PCDH18	protocadherin 18		28880214	28890093	
LOC107051792	uncharacterized LOC107051792		28986991	29036383	
SLC7A11	solute carrier family 7 member 11		29138177	29196482	
LOC101751121	uncharacterized LOC101751121		29205067	29277125	
NOCT	nocturnin		29428771	29434135	
ELF2	E74 like ETS transcription factor 2		29438718	29467618	
MGARP	mitochondria localized glutamic acid rich protein		29471760	29493863	
LOC107051797	atherin-like		29494724	29497114	
NAA15	N(alpha)-acetyltransferase 15, NatA auxiliary subunit		29496798	29534035	
RAB33B	RAB33B, member RAS oncogene family		29539318	29546334	
LOC422442	uncharacterized LOC422442		29559136	29561953	
SETD7	SET domain containing lysine methyltransferase 7		29561960	29578876	
MGST2	microsomal glutathione S-transferase 2		29593387	29603029	
LOC107051791	microsomal glutathione S-transferase 2-like		29604032	29611350	
MAML3	mastermind like transcriptional coactivator 3		29611253	29815133	
MIR1575	microRNA 1575		29768218	29768321	
LOC101751730	uncharacterized LOC101751730		29856791	29867266	
SCOC	short coiled-coil protein		29862290	29870883	
CLGN	calmegin		29872496	29890838	
MGAT4D	MGAT4 family member D		29894628	29930674	
ELMOD2	ELMO domain containing 2		29930851	29937844	
TBC1D9	TBC1 domain family member 9		29945029	29988803	
LOC107051790	uncharacterized LOC107051790		29978295	29981680	
RNF150	ring finger protein 150		30008764	30129272	
CHIC2	cysteine rich hydrophobic domain 2		65887673	65915464	
LNX1	ligand of numb-protein X 1	4	65990792	66133390	rs15608447
FIP1L1	factor interacting with PAPOLA and CPSF1		66133445	66171020	
SCFD2	sec1 family domain containing 2		66173796	66368297	

LOC10705324	45 uncharacterized LOC107053245	66257009	66266179	
RASL11B	RAS like family 11 member B	66369830	66373534	
LOC10705324	44 uncharacterized LOC107053244	66391577	66398660	
LOC422757	uncharacterized LOC422757	66403272	66405708	
USP46	ubiquitin specific peptidase 46	66413295	66440521	
SPATA18	spermatogenesis associated 18	66567846	66587444	
SGCB	sarcoglycan beta	66587612	66593633	
LRRC66	leucine rich repeat containing 66	66593723	66602814	
DCUN1D4	defective in cullin neddylation 1 domain containing 4	66607031	66645141	
CWH43	cell wall biogenesis 43 C-terminal homolog	66651068	66677010	
OCIAD1	OCIA domain containing 1	66693766	66708277	
FRYL	FRY like transcription coactivator	66708277	66866440	
ZAR1	zygote arrest 1	66868239	66871111	
LOC10705324	43 uncharacterized LOC107053243	66870041	66885878	
SLC10A4	solute carrier family 10 member 4	66870984	66872626	
SLAIN2	SLAIN motif family member 2	66883481	66910807	
TEC	tec protein tyrosine kinase	66928003	66969829	
TXK	TXK tyrosine kinase	66970277	66990459	
NIPAL1	NIPA like domain containing 1	66992447	67002107	
CNGA1	cyclic nucleotide gated channel alpha 1	67007806	67015296	
NFXL1	nuclear transcription factor, X-box binding like 1	67016510	67061474	
CORIN	corin, serine peptidase	67063312	67186506	
ATP10D	ATPase phospholipid transporting 10D (putative)	67189360	67228010	
COMMD8	COMM domain containing 8	67239252	67243040	
LOC10705323	39 uncharacterized LOC107053239	67246293	67253895	
LOC10705324	41 uncharacterized LOC107053241	67252999	67266059	
GABRB1	gamma-aminobutyric acid type A receptor beta1 subunit	67253915	67271613	
LOC10705324	42 uncharacterized LOC107053242	67325419	67334233	
LOC10705324	40 uncharacterized LOC107053240	67330651	67347343	

GABRA4	gamma-aminobutyric acid type A receptor alpha4 subunit		67355338	67402602	
GABRA2	gamma-aminobutyric acid type A receptor alpha2 subunit		67487682	67549247	
LOC107053237	uncharacterized LOC107053237		67489979	67491477	
LOC107053238	uncharacterized LOC107053238		67546207	67576158	
GABRG1	gamma-aminobutyric acid type A receptor gammal subunit		67576299	67633176	
LOC770268	uncharacterized LOC770268		12530062	12564671	
FAH	fumarylacetoacetate hydrolase		12567084	12577908	
ZFAND6	zinc finger AN1-type containing 6		12580889	12630294	
BCL2A1	BCL2 related protein A1		12637320	12639335	
MTHFS	<i>5,10-methenyltetrahydrofolate synthetase</i> (<i>5-</i>		12641387	12667030	
LOC101750317	uncharacterized LOC101750317		12707525	12733302	
KIAA1024	KIAA1024		12747379	12766338	
LOC107054202	uncharacterized LOC107054202		12796949	12800712	
PEX11A	peroxisomal biogenesis factor 11 alpha		12815015	12820635	
LOC107054203	uncharacterized LOC107054203		12817514	12823049	
PLIN1	perilipin 1	10	12822263	12826843	rs318199727
KIF7	kinesin family member 7		12827027	12836867	
TICPP	TOPBP1 interacting checkpoint and replication		12927914	12954265	
	Ph family C abyconnotain		1205/014	12854505	
LOC107054204	Kn Jumily C glycoprolein		12039333	12007230	
TRNAP LICC	transfor PNA argining (antiondon UCC)		12902048	12938774	
POLC	DNA polymerase gamma catalytic subunit		12942837	12942909	
FANCI	Europhi anomia complementation aroun I		12942900	12935027	
	ratinglahyda hinding protain 1		12951705	12975529	
ARHD?	abhydrolase domain containing ?		12970300	12000004	
MFGE8	milk fat globule-EGF factor 8 protein		13033323	13040620	

		1	1	1	1
HAPLN3	hyaluronan and proteoglycan link protein 3		13042935	13046872	
ACAN	aggrecan		13047289	13092387	
AEN	apoptosis enhancing nuclease		13131452	13134038	
MIR1720	microRNA 1720		13134585	13134649	
MIR7-2	microRNA 7-2		13134720	13134818	
MIR3529	microRNA 3529		13134724	13134814	
DET1	de-etiolated homolog 1 (Arabidopsis)		13149476	13171850	
MRPS11	mitochondrial ribosomal protein S11		13171107	13174638	
MRPL46	mitochondrial ribosomal protein L46		13174668	13177215	
LOC101751754	uncharacterized LOC101751754		13178649	13201172	
LOC101751792	uncharacterized LOC101751792		13196390	13209087	
NTRK3	neurotrophic receptor tyrosine kinase 3		13227881	13408049	
LOC107054207	uncharacterized LOC107054207		13381318	13386137	
LOC107054206	uncharacterized LOC107054206		13388442	13616738	
AGBL1	ATP/GTP binding protein like 1		13623118	13914436	
KLHL25	kelch like family member 25		13954963	13969663	
AKAP13	A-kinase anchoring protein 13		13974501	14169240	
LOC107054188	uncharacterized LOC107054188		14182433	14183328	
SV2B	synaptic vesicle glycoprotein 2B		14187010	14235623	
LOC101747399	uncharacterized LOC101747399		14323417	14341914	
	solute carrier organic anion transporter family member				
SLCO3A1	3A1		14345761	14457203	
LOC101747558	uncharacterized LOC101747558		14482710	14502486	
	ST8 alpha-N-acetyl-neuraminide alpha-2,8-				
ST8SIA2	sialyltransferase 2		14510760	14537564	
LOC107054325	uncharacterized LOC107054325		17800164	17805321	
IRF8	interferon regulatory factor 8	11	17821288	17828760	rs318098582
DUSP22AL	dual specificity protein phosphatase 22-A-like		17830204	17840877	
COX4I1	cytochrome c oxidase subunit 411		17841426	17845527	

EMC8	ER membrane protein complex subunit 8	17845679	17853183	
GINS2	GINS complex subunit 2	17858071	17867370	
GSE1	Gse1 coiled-coil protein	17867595	17954219	
LOC107054326	uncharacterized LOC107054326	17912747	17925839	
LOC107054321	putative protein TPRXL	17954053	17954808	
KIAA0513	KIAA0513	17982718	17994940	
FBXO31	F-box protein 31	17998847	18020696	
MAP1LC3B	microtubule associated protein 1 light chain 3 beta	18027539	18036281	
ZCCHC14	zinc finger CCHC-type containing 14	18036068	18080985	
JPH3	junctophilin 3	18127475	18140463	
KLHDC4	kelch domain containing 4	18143822	18171651	
SLC7A5	solute carrier family 7 member 5	18186088	18218511	
LOC107054327	uncharacterized LOC107054327	18218464	18221743	
CA5A	carbonic anhydrase 5A	18221264	18236716	
LOC107054328	uncharacterized LOC107054328	18236801	18242854	
BANP	BTG3 associated nuclear protein	18243614	18386758	
ZNF469	zinc finger protein 469	18416335	18579095	
LOC107054329	uncharacterized LOC107054329	18541302	18548014	
ZFPM1	zinc finger protein, FOG family member 1	18584457	18613764	
CIDEC	cell death inducing DFFA like effector c	18614459	18616305	
ZC3H18	zinc finger CCCH-type containing 18	18617357	18656718	
MIR1571	microRNA 1571	18632364	18632461	
IL17C	interleukin 17C	18658034	18663248	
СҮВА	cytochrome b-245 alpha chain	18663342	18665615	
MVD	mevalonate diphosphate decarboxylase	18665712	18668663	
RNF166	ring finger protein 166	18670083	18677685	
CTU2	cytosolic thiouridylase subunit 2	18677742	18681201	
PIEZO1	piezo type mechanosensitive ion channel component 1	18681139	18700645	

100107054220	nascent polypeptide-associated complex subunit alpha,	19606540	10,000,50	
LOC10/054330	muscle-specific form-like	18696540	18698959	
CDT1	chromatin licensing and DNA replication factor 1	18701940	18705724	
APRT	adenine phosphoribosyltransferase	18706797	18709506	
GALNS	galactosamine (N-acetyl)-6-sulfatase	18714200	18758480	
TRAPPC2L	trafficking protein particle complex 2 like	18758475	18761079	
PABPN1L	poly(A) binding protein nuclear 1 like, cytoplasmic	18762170	18765810	
CBFA2T3	CBFA2/RUNX1 translocation partner 3	18767307	18788285	
ACSF3	acyl-CoA synthetase family member 3	18805694	18846630	
CDH15	cadherin 15	18848471	18853003	
SLC22A31	solute carrier family 22 member 31	18853081	18856750	
ANKRD11	ankyrin repeat domain 11	18857696	18939049	
MIR1560	microRNA 1560	18874320	18874423	
MIR1785	microRNA 1785	18926659	18926760	
SPG7	SPG7, paraplegin matrix AAA peptidase subunit	18946166	18976689	
RPL13	ribosomal protein L13	18978071	18982325	
CPNE7	copine VII	18983791	18989285	
SULT2B1L1	sulfotransferase family cytosolic 2B member 1-like 1	18990705	18993412	
DPEP1	dipeptidase 1 (renal)	18993512	18997373	
CHMP1A	charged multivesicular body protein 1A	18999512	19003217	
CDK10	cyclin dependent kinase 10	19004528	19008784	
MIR6667	microRNA 6667	19007943	19008052	
SPATA2L	spermatogenesis associated 2 like	19009229	19010941	
VPS9D1	VPS9 domain containing 1	19010926	19015340	
ZNF276	zinc finger protein 276	19015485	19022670	
FANCA	Fanconi anemia complementation group A	19022586	19055008	

LOC769325	uncharacterized LOC769325	19056414	19057695	
SPIRE2	spire-type actin nucleation factor 2	19057744	19063946	
TCF25	transcription factor 25	19064480	19082896	
MC1R	melanocortin 1 receptor	19084582	19085526	
LOC107054334	translation initiation factor IF-2-like	19086099	19087230	
DEF8	differentially expressed in FDCP 8 homolog	19089879	19093651	
DBNDD1	dysbindin (dystrobrevin binding protein 1) domain containing 1	19093976	19096929	
GAS8	growth arrest specific 8	19097379	19105093	
URAH	5-hydroxyisourate hydrolase	19105097	19107786	
CDH3	cadherin 3	19107862	19113818	
CDH1	cadherin 1	19114383	19123146	
TMCO7	transmembrane and coiled-coil domains 7	19123969	19151197	
HAS3	hyaluronan synthase 3	19152159	19155850	
CHTF8	chromosome transmission fidelity factor 8	19157119	19158772	
UTP4	UTP4, small subunit processome component	19158792	19163525	
SNTB2	syntrophin beta 2	19163629	19168951	
VPS4A	vacuolar protein sorting 4 homolog A	19169788	19172777	
COG8	component of oligomeric golgi complex 8	19173208	19174878	
NIP7	NIP7, nucleolar pre-rRNA processing protein	19174900	19176268	
TMED6	transmembrane p24 trafficking protein 6	19176609	19179130	
TERF2	telomeric repeat binding factor 2	19180205	19188036	
CYB5B	cytochrome b5 type B	19192249	19206013	
NFAT5	nuclear factor of activated T-cells 5	19212134	19277188	
LOC101750188	envelope glycoprotein gp95-like	19255421	19262314	
NQO1	NAD(P)H quinone dehydrogenase 1	19278734	19280589	
NOB1	NIN1/PSMD8 binding protein 1 homolog	19281166	19283712	
WWP2	WW domain containing E3 ubiquitin protein ligase 2	19283664	19316100	
MIR140	microRNA 140	19310301	19310395	

PSMD7	proteasome 26S subunit, non-ATPase 7		19316519	19321831	
ZFHX3	zinc finger homeobox 3		19321916	19834198	
LOC107051612	uncharacterized LOC107051612		2546549	2572319	
NOC4L	nucleolar complex associated 4 homolog		2571851	2582310	
EP400	E1A binding protein p400		2582896	2628948	
LOC107051611	uncharacterized LOC107051611		2586309	2589222	
PUS1	pseudouridylate synthase 1		2629662	2634569	
ULK1	unc-51 like autophagy activating kinase 1		2635904	2708526	
MMP17	matrix metallopeptidase 17		2722077	2765544	
SFSWAP	splicing factor SWAP homolog		2792492	2832182	
STX2	syntaxin 2		2926591	3223484	
ADGRD1	adhesion G protein-coupled receptor D1		3062231	3191688	
RAN	RAN, member RAS oncogene family		3201356	3205602	
RIMBP2	RIMS binding protein 2		3223574	3347096	
PIWIL1	piwi like RNA-mediated gene silencing 1		3347780	3421290	
FZD10	frizzled class receptor 10	15	3432876	3435118	rs317945754
LOC107051610	frizzled-10-like		3442998	3446063	
TMEM132D	transmembrane protein 132D		3526053	3718886	
GLT1D1	glycosyltransferase 1 domain containing 1		3736272	3784033	
SLC15A4	solute carrier family 15 member 4		3785313	3806720	
TMEM132C	transmembrane protein 132C		3830248	4010779	
LOC107051578	uncharacterized LOC107051578		4105652	4107324	
LOC107051609	uncharacterized LOC107051609		4241859	4320316	
TMEM132B	transmembrane protein 132B		4291921	4471778	
AACS	acetoacetyl-CoA synthetase		4478298	4515607	
LOC107051608	uncharacterized LOC107051608		4510959	4512769	
BRI3BP	BRI3 binding protein		4518239	4520623	
DHX37	DEAH-box helicase 37		4523892	4535799	
LOC107051607	uncharacterized LOC107051607		4530643	4533347	

UBC	ubiquitin C		4539277	4540797	
	acuration to along D were by 1		4542170	4559420	
SCARBI	scavenger receptor class B member 1		4542170	4558439	
IGFA	transforming growth factor alpha		3594207	3611266	
LOC107054987	leucine-rich repeat extensin-like protein 5		3607070	3611133	
LOC107054988	uncharacterized LOC107054988		3647885	3769840	
LRRTM4	leucine rich repeat transmembrane neuronal 4		3854424	4064475	
LOC107054981	tumor necrosis factor ligand superfamily member 6-like		4253743	4253898	
LOC107054989	uncharacterized LOC107054989		4262027	4273755	
ADRA1A	adrenoceptor alpha 1A		4525641	4548511	
LOC101751469	uncharacterized LOC101751469		4576077	4577398	
ANXA4	annexin A4		4584810	4594055	
SLC20A1	solute carrier family 20 member 1		4596702	4604387	
NT5DC4	5'-nucleotidase domain containing 4		4604777	4609445	
CKAP2L	cytoskeleton associated protein 2 like		4609435	4616294	
LOC107054991	uncharacterized LOC107054991	22	4616423	4616974	rs316794400
IL1B	interleukin 1, beta		4616889	4618625	
OGDH	oxoglutarate dehydrogenase		4622977	4643738	
LOC107054982	zinc finger MIZ domain-containing protein 2-like		4644533	4658490	
PPIA	peptidylprolyl isomerase A		4658952	4660588	
LOC107054992	nudC domain-containing protein 3 pseudogene		4661590	4661908	
NUDCD3	NudC domain containing 3		4663253	4679543	
CAMK2BL	calcium/calmodulin-dependent protein kinase II beta-like		4680833	4697295	
YKT6BL	synaptobrevin homolog YKT6-B-like		4699156	4702203	
LOC107054983	glucokinase-like		4704014	4710683	
GNLY	granulysin		4711546	4712974	
POLD2	DNA polymerase delta 2, accessory subunit		4713230	4717098	
AEBP1	AE binding protein 1		4717021	4728472	
BGLAP	bone gamma-carboxyglutamate protein	25	594	1789	rs317288536
SMG5	SMG5, nonsense mediated mRNA decay factor	23	2171	24198	15517200550

TMEM79	transmembrane protein 79	24606	27213	
GLMP	glycosylated lysosomal membrane protein	27661	31956	
CCT3	chaperonin containing TCP1 subunit 3	33641	44203	
LOC107055078	uncharacterized LOC107055078	46465	47469	
LOC107055080	nectin-4-like	54112	60599	
LIM2	lens intrinsic membrane protein 2	61134	68960	
LOC107055082	cytochrome b5 domain-containing protein 1-like	81045	82719	
LOC107055083	uncharacterized LOC107055083	82856	89386	
VPS45	vacuolar protein sorting 45 homolog	92295	119429	
PLEKHO1	pleckstrin homology domain containing O1	123481	139888	
LOC107055081	uncharacterized LOC107055081	142235	150690	
ANP32E	acidic nuclear phosphoprotein 32 family member E	162050	174225	
LOC100859767	cytochrome b5 domain-containing protein 1-like	204000	205667	
APOA1BP	apolipoprotein A-I binding protein	224358	227444	
GPATCH4	G-patch domain containing 4	227411	231838	
LOC107055084	uncharacterized LOC107055084	235211	236685	
MEX3A	mex-3 RNA binding family member A	247371	260425	
LOC107055086	sperm-associated antigen 4 protein-like	783429	786252	
LOC100857131	sperm-associated antigen 4 protein-like	797890	798435	
UBQLN4	ubiquilin 4	804221	815017	
	late endosomal/lysosomal adaptor, MAPK and MTOR			
LAMTOR2	activator 2	815073	817920	
RAB25	RAB25, member RAS oncogene family	818004	824803	
RAB2B	RAB2B, member RAS oncogene family	825467	830852	
LOC101747704	uncharacterized LOC101747704	846955	849648	
LOC107055087	sperm-associated antigen 4 protein-like	855482	858864	
OTUD7B	OTU deubiquitinase 7B	888239	923782	
MTMR11	myotubularin related protein 11	925626	933506	
SF3B4	splicing factor 3b subunit 4	933590	938879	

		-			
SV2A	synaptic vesicle glycoprotein 2A		939052	949843	
LOC107055093	uncharacterized LOC107055093		950637	951127	
LOC107055108	feather keratin 3-like		953490	954648	
LOC107055109	feather keratin 3-like		956426	957314	
LOC100859249	feather keratin 3-like		959380	960434	
LOC107055107	feather keratin 1-like		959446	963950	
LOC100859427	feather keratin 1-like		966460	967631	
LOC426914	feather keratin 1-like		969985	971047	
F-KER	feather keratin I		973471	980575	
LOC429492	keratin D		973475	974554	
LOC431325	feather keratin 1-like		976657	980857	
LOC431324	keratin A		979736	983908	
LOC426913	feather keratin 1-like		982753	987425	
LOC431323	beta-keratin-related protein-like		991470	993152	
LOC431322	feather keratin 1-like		997064	997414	
LOC431321	keratin		1002033	1004112	
LOC431320	feather beta keratin-like		1008291	1010072	
LOC107055103	scale keratin-like		1010842	1012163	
LOC107055106	uncharacterized LOC107055106		1014345	1015145	
LOC431317	scale keratin-like		1017251	1017835	
LOC431316	scale keratin-like		1018813	1019553	
LOC100859586	scale keratin-like		1020735	1021650	
LOC100859657	scale keratin-like		1020928	1025554	
LOC100859616	scale keratin-like		1022275	1023023	
LOC425362	scale keratin-like		1026144	1027006	
LOC100857270	scale keratin-like		1028628	1029557	
LOC100859756	scale keratin-like		1030236	1034932	
LOC100859722	scale keratin-like		1030356	1031017	
LOC100857297	scale keratin-like		1032585	1044971	
LOC107055105	uncharacterized LOC107055105	1032750	1040322		
--------------	---	---------	---------	--	
LOC426912	scale keratin-like	1036532	1037365		
LOC100859790	scale keratin-like	1037906	1038601		
LOC101751554	scale keratin-like	1040076	1040849		
LOC100857367	scale keratin-like	1041747	1042135		
LOC107055104	scale keratin-like	1044261	1044828		
LOC101750668	scale keratin-like	1045428	1046372		
LOC396480	keratin	1048622	1050613		
LOC101750550	scale keratin-like	1052489	1053802		
LOC396479	keratin	1055266	1056859		
LOC431314	scale keratin-like	1058333	1060625		
LOC769486	scale keratin-like	1064610	1066554		
LOC107055102	uncharacterized LOC107055102	1067878	1069936		
LOC408038	beta-keratin	1069829	1071422		
LOC431313	feather beta keratin-like	1074635	1075569		
LOC107055092	uncharacterized LOC107055092	1078270	1079527		
LOC100857468	feather keratin Cos1-1/Cos1-3/Cos2-1-like	1080919	1087221		
LOC107055101	uncharacterized LOC107055101	1093075	1095264		
LOC101751614	keratin, type I cytoskeletal 9-like	1098677	1100340		
LOC107055091	beta-keratin-related protein-like	1102072	1103363		
LOC107055090	uncharacterized LOC107055090	1106254	1107828		
LOC107055100	uncharacterized LOC107055100	1109328	1111524		
LOC101751113	titin-like	1116120	1122481		
LOC107055099	uncharacterized LOC107055099	1116136	1119078		
EDYM2	epidermal differentiation protein containing Y motif 2	1122288	1125199		
EDQREP	epidermal differentiation protein containing glutamine (Q) repeats	1127324	1130658		
EDPE	epidermal differentiation protein rich in proline and glutamic acid (E)	1139306	1142301		

		1			1
LOC107055098	epidermal differentiation protein containing glutamine (<i>O</i>) repeats-like		1144136	1145825	
EDQCM	epidermal differentiation protein containing QC motifs		1148589	1150441	
EDDM	epidermal differentiation protein containing DPCC motifs		1154359	1157611	
	epidermal differentiation protein encoded by neighbor of				
EDNC	cornulin		1159110	1161256	
CRNN	cornulin		1168202	1170459	
SCFN	scaffoldin		1173597	1177833	
LOC107055094	trichohyalin-like		1178020	1190574	
S100A11	S100 calcium binding protein A11		1201165	1202884	
COPA	coatomer protein complex subunit alpha		1203325	1221735	
NCSTN	nicastrin		1221813	1232683	
NHLH1	nescient helix-loop-helix 1		1241431	1246232	
LOC107055095	uncharacterized LOC107055095		1246142	1253267	
VANGL2	VANGL planar cell polarity protein 2		1250127	1262898	
LY9	lymphocyte antigen 9		1266694	1272789	
	signaling lymphocytic activation molecule family		1074621	1200227	
SLAMF I			12/4631	1280327	
<i>CD</i> 48	CD48 molecule		1282479	1284960	
CD244	CD244 molecule		1285835	1293468	
LOC101750757	uncharacterized LOC101750757		1296055	1297931	
KIRREL	kin of IRRE like (Drosophila)		1301854	1321563	
LOC101750908	T-lymphocyte surface antigen Ly-9-like		1323643	1330948	
SLAMF8	SLAM family member 8		1331041	1334671	
ETV3	ETS variant 3		1334908	1344750	
ETV3L	ETS variant 3 like		1353678	1355999	
ARHGEF11	Rho guanine nucleotide exchange factor 11		1357481	1378565	
LRRC71	leucine rich repeat containing 71		1379498	1382513	
PEAR1	platelet endothelial aggregation receptor 1		1382768	1391921	

NTRK1	neurotrophic receptor tyrosine kinase 1		1394975	1402575	
INSRR	insulin receptor related receptor		1403569	1413068	
LOC100857512	death-associated protein kinase 2-like		1413151	1416561	
SH2D2A	SH2 domain containing 2A		1416567	1421255	
	papillary renal cell carcinoma (translocation-				
PRCC	associated)		1421164	1430083	
HDGF	hepatoma-derived growth factor		1432110	1437580	
MRPL24	mitochondrial ribosomal protein L24 ribosomal RNA adenine dimethylase domain containing		1438014	1439195	
RRNAD1	1		1439293	1442440	
CRABP2	cellular retinoic acid binding protein 2		1448446	1451746	
LOC425431	dnaJ homolog subfamily A member 1-like		1455339	1458566	
NES	nestin		1462876	1470387	
BCAN	brevican		1473720	1486466	
HAPLN2	hyaluronan and proteoglycan link protein 2		1487083	1489801	
RHBG	Rh family B glycoprotein	25	1490958	1496016	rs317288536 rs312758346
LOC107055112	uncharacterized LOC107055112	23	1505796	1508625	75517200550, 75512750540
LOC107055111	uncharacterized LOC107055111		1521253	1544127	
MEF2D	myocyte enhancer factor 2D		1557855	1582946	
LOC107055110	uncharacterized LOC107055110		1598470	1599898	
LOC101750487	uncharacterized LOC101750487		1609167	1620210	
LOC101750716	uncharacterized LOC101750716		1620907	1627137	
LOC107055114	E3 SUMO-protein ligase PIAS3-like		1636879	1651430	
MIR6662	microRNA 6662		1637951	1638060	
INTS3	integrator complex subunit 3		1654016	1685697	
LOC107055115	atrial natriuretic peptide receptor 1-like		1686320	1696310	
LOC107055116	atrial natriuretic peptide receptor 1-like		1696623	1700257	
ILF2	interleukin enhancer binding factor 2		1701006	1705564	
SNAPIN	SNAP associated protein		1705771	1706895	
IL6R	interleukin 6 receptor		1708497	1714085	

SHE	Src homology 2 domain containing E	1715301	1720734	
UBE2Q1	ubiquitin conjugating enzyme E2 Q1	1722132	1729019	
CHRNB2	cholinergic receptor nicotinic beta 2 subunit	1729683	1734479	
ADAR	adenosine deaminase, RNA specific	1735473	1747289	
KCNN3	potassium calcium-activated channel subfamily N member 3	1758811	1780362	
PMVK	phosphomevalonate kinase	1781459	1784289	
PBXIP1	PBX homeobox interacting protein 1	1784644	1788641	
PYGO2	pygopus family PHD finger 2	1788639	1790498	
SHC1	SHC adaptor protein 1	1790787	1800935	
CKS1B	CDC28 protein kinase regulatory subunit 1B	1801177	1802314	
FLAD1	flavin adenine dinucleotide synthetase 1	1802652	1808111	
ZBTB7B	zinc finger and BTB domain containing 7B	1812250	1830425	
DCST2	DC-STAMP domain containing 2	1832750	1837666	
SMAD4	SMAD family member 4	1838974	1844533	
CHTOP	chromatin target of PRMT1	1847078	1853476	
S100A1	S100 calcium binding protein A1	1853739	1856049	
S100A13	S100 calcium binding protein A13	1857835	1859090	
S100A14	S100 calcium binding protein A14	1861081	1863210	
S100A16	S100 calcium binding protein A16	1865897	1868591	
S100A4	S100 calcium binding protein A4	1869231	1871230	
S100A6	S100 calcium binding protein A6	1874323	1875575	
LOC101747386	protein S100-A9-like	1877071	1878016	
S100A9	S100 calcium binding protein A9	1885186	1886621	
EDKM	epidermal differentiation protein containing a KKLIQQ motif	1892914	1895414	
EDQM1	epidermal differentiation protein containing a glutamine (Q) motif 1	1895773	1896542	
EDQM2	epidermal differentiation protein containing a glutamine (Q) motif 2	1899100	1900320	

EDWM	epidermal differentiation protein containing WYDP motif	1906417	1907809	
EDCH5	epidermal differentiation protein containing cysteine histidine motifs 5	1909483	1911230	
EDMPN1	epidermal differentiation protein containing a MPN sequence motif 1	1912397	1913451	
EDCRP	epidermal differentiation cysteine-rich protein	1919906	1922026	
EDCH4	epidermal differentiation protein containing cysteine histidine motifs 4	1931045	1932007	
EDGH	epidermal differentiation protein rich in glycine and histidine	1940110	1942027	
LOR1	loricrin 1	1943612	1951026	
LOR2	loricrin 2	1943846	1946131	
LOR3	loricrin 3	1952705	1955656	
EDMTF4	epidermal differentiation protein starting with MTF motif 4	1960713	1980545	
KRTAP9-1L	keratin-associated protein 9-1-like	1982162	1984253	
EDMTF2	epidermal differentiation protein starting with MTF motif 2	1987787	1988430	
EDMTF1	epidermal differentiation protein starting with MIF motif 1 epidermal differentiation protein starting with MTF	1996030	1996879	
EDMTF3	motif 3	2001003	2001421	
LOC771066	claw keratin-like	2003701	2013388	
LOC771082	claw keratin-like	2005571	2006553	rs312758346
LOC101748164	claw keratin-like	2008222	2013410	
LOC768967	claw keratin-like	2009974	2010930	
LOC426217	claw keratin-like	2012493	2013457	
LOC100858504	claw keratin-like	2014658	2015546	
LOC430658	claw keratin-like	2017230	2018201	
KRTAP19-2	keratin associated protein 19-2	2019017	2019672	
LOC100858728	claw keratin-like	2021632	2026949	

			, , , , , , , , , , , , , , , , , , , ,	
LOC107049025	claw keratin-like	2023424	2024386	
LOC395095	keratin	2026029	2031235	
LOC107049026	claw keratin-like	2027847	2028770	
LOC430661	claw keratin-like	2030369	2031296	
LOC426218	claw keratin-like	2032190	2033529	
LOC769139	feather keratin 1-like	2035478	2057444	
LOC107055121	uncharacterized LOC107055121	2035923	2037911	
LOC107055122	uncharacterized LOC107055122	2044316	2047342	
LOC107055123	uncharacterized LOC107055123	2049190	2052675	
LOC100858797	feather keratin 1-like	2059093	2060269	
LOC769121	feather keratin 1-like	2062522	2063697	
LOC107055120	feather keratin 1-like	2062528	2066628	
LOC107055119	feather keratin 1-like	2068407	2069564	
CRTC2	CREB regulated transcription coactivator 2	2074821	2076284	
SLC39A1	solute carrier family 39 member 1	2076700	2079590	
JTB	jumping translocation breakpoint	2079695	2081048	
RPS27	ribosomal protein S27	2081137	2082137	
NUP210L	nucleoporin 210 like	2082134	2103328	
TPM3	tropomyosin 3	2103498	2119531	
C25H1ORF43	chromosome 25 open reading frame, human C1orf43	2120011	2126177	
UBAP2L	ubiquitin associated protein 2 like	2126287	2148687	
MIR3536	microRNA 3536	2139769	2139846	
HAX1	HCLS1 associated protein X-1	2148978	2150830	
AQP10	aquaporin 10	2150925	2154431	
ATP8B2	ATPase phospholipid transporting 8B2	2154823	2162921	
FAM189B	family with sequence similarity 189 member B	2163300	2168280	
SCAMP3	secretory carrier membrane protein 3	2168436	2172913	
FDPS	farnesyl diphosphate synthase	2170966	2195061	
CLK2	CDC like kinase 2	2173878	2182893	

HCN3	hyperpolarization activated cyclic nucleotide gated	2183086	2190519	
RUSCI	RUN and SH3 domain containing 1	2105000	2201835	
MIP1620	wieroPNA 1620	2105101	2201035	
	A SIII like historie historie methyltagrafenge	2201879	2201971	
ASHIL DAD2	ASH1 like historie lysine meinyuransjerase	2203038	2244185	
DAPS	aeath associated protein 5	2244309	2252/17	
LOC101/50628	uncharacterized LOC101/50628	2245186	2247152	
LOC10/055145	uncharacterized LOC10/055145	2247061	2249304	
	misato 1, mitochondrial distribution and morphology			
MSTO1	regulator	2252826	2256364	
GON4L	gon-4 like	2256355	2276509	
SYT11	synaptotagmin 11	2276722	2287470	
MIR1752	microRNA 1752	2277996	2278077	
RIT1	Ras like without CAAX 1	2291212	2296654	
KIAA0907	KIAA0907	2296753	2306074	
GOLPH3L	golgi phosphoprotein 3 like	2306717	2324088	
ENSA	endosulfine alpha	2324712	2328959	
MCL1	BCL2 family apoptosis regulator	2331554	2337280	
ECM1	extracellular matrix protein 1	2338082	2342192	
TARS2	threonyl-tRNA synthetase 2, mitochondrial (putative)	2343309	2348907	
RPRD2	regulation of nuclear pre-mRNA domain containing 2	2350884	2367837	
PRPF3	pre-mRNA processing factor 3	2368227	2381286	
MRPS21	mitochondrial ribosomal protein S21	2381556	2383129	
CIART	circadian associated repressor of transcription	2384018	2386610	
CA14	carbonic anhydrase 14	2387380	2390854	
APH1A	aph-1 homolog A, gamma-secretase subunit	2391340	2394697	
LOC101751679	uncharacterized LOC101751679	2394867	2398327	
LOC101751615	uncharacterized LOC101751615	2398382	2402350	
LOC107055146	uncharacterized LOC107055146	2403157	2406137	

ļ	LOC770126	uncharacterized LOC770126	2406155	2409682	
ļ	FCRL4	Fc receptor like 4	2411309	2419676	
ļ	MIR6646-1	microRNA 6646-1	2411755	2411864	
ļ	LOC107055147	uncharacterized LOC107055147	2433853	2447509	
ļ	LOC107055148	uncharacterized LOC107055148	2451394	2454004	
ļ	LOC107055149	uncharacterized LOC107055149	2467577	2473794	
ļ	CADM3	cell adhesion molecule 3	2483418	2499486	
ļ	ACKR1	atypical chemokine receptor 1 (Duffy blood group)	2499575	2501683	
ļ	CRP	C-reactive protein	2502854	2503992	
ļ	LOC776376	C-reactive protein, pentraxin-related	2504446	2506092	
ļ	DUSP23	dual specificity phosphatase 23	2506498	2509327	
ļ	IGSF9	immunoglobulin superfamily member 9	2510347	2528542	
ļ	CFAP45	cilia and flagella associated protein 45	2529249	2539783	
ļ	CFAP126	cilia and flagella associated protein 126	2544123	2546852	
ļ	B4GALT3	beta-1,4-galactosyltransferase 3	2547966	2550190	
ļ	LOC100858962	palmitoyltransferase ZDHHC3-like	2550458	2553482	
ļ		ADAM metallopeptidase with thrombospondin type 1			
ļ	ADAMTS4	motif 4	2553301	2560072	
ļ	NDUFS2	NADH:ubiquinone oxidoreductase core subunit S2	2562820	2567328	
ļ	FCER1G	Fc fragment of IgE receptor Ig	2567666	2590029	
ļ	LOC107052256	Fc receptor-like protein 1	2570713	2573739	
ļ	LOC101748032	Fc receptor-like protein 3-like	2574091	2575912	
ļ	SSR2	signal sequence receptor subunit 2	2576778	2580237	
ļ	CTSS	cathepsin S	2580937	2585626	
ļ	CTSK	cathepsin K	2586099	2589028	
ļ	ARNT	aryl hydrocarbon receptor nuclear translocator	2589829	2610524	
ļ	SETDB1	SET domain bifurcated 1	2611398	2626515	
ļ	CERS2	ceramide synthase 2	2627398	2631003	
ļ	FAM63A	family with sequence similarity 63 member A	2631656	2638310	

	PRUNE1	prune exopolyphosphatase	2638573	2642059	
	CDC42SE1	CDC42 small effector 1	2642228	2645533	
		mveloid/lvmphoid or mixed-lineage leukemia:			
	MLLT11	translocated to, 11	2646767	2648990	
	LOC107052255	uncharacterized LOC107052255	2648019	2649834	
	GABPB2	GA binding protein transcription factor beta subunit 2	2649883	2657535	
	SEMA6C	semaphorin 6C	2658129	2664668	
	LYSMD1	LysM domain containing 1	2665269	2666886	
	SCNM1	sodium channel modifier 1	2666824	2669477	
	TMOD4	tropomodulin 4	2669480	2673057	
	LOC107052254	uncharacterized LOC107052254	2672435	2673504	
	VPS72	vacuolar protein sorting-associated protein 72 homolog	2673468	2675777	
	PIP5K1A	phosphatidylinositol-4-phosphate 5-kinase type 1 alpha	2676126	2692345	
	PSMD4	proteasome 26S subunit, non-ATPase 4	2694169	2698198	
	ZNF687	zinc finger protein 687	2699044	2710407	
	PI4KB	phosphatidylinositol 4-kinase beta	2710343	2727313	
	RFX5	regulatory factor X5	2727953	2732051	
	SELENBP1L3	selenium-binding protein 1-like 3	2732264	2738800	
	SELENBP1L2	selenium-binding protein 1-like 2	2740745	2745670	
	LOC100857190	selenium-binding protein 1-like	2751200	2755777	
	SELENBP1	selenium binding protein 1	2758037	2768146	
	POGZ	pogo transposable element with ZNF domain	2772407	2798858	
	PSMB4	proteasome subunit beta 4	2799648	2801947	
	MIR6620	microRNA 6620	2809804	2809913	
	TUFT1	tuftelin 1	2816283	2829115	
	SNX27	sorting nexin family member 27	2829866	2845968	
	CELF3	CUGBP, Elav-like family member 3	2847235	2856792	
		regulatory subunit of type II PKA R-subunit (RIIa)			
ļ	RIIAD1	domain containing 1	2857292	2859404	

		1	1		
MRPL9	mitochondrial ribosomal protein L9		2859728	2862765	
TDRKH	tudor and KH domain containing		2862971	2867558	
RORC	RAR related orphan receptor C		2868173	2875867	
THEM4	thioesterase superfamily member 4		2877049	2879971	
S100A10	S100 calcium binding protein A10		2880417	2882430	
DEDD	death effector domain containing		2883775	2893262	
LOC107052253	uncharacterized LOC107052253		2889147	2891723	
NIT1	nitrilase 1		2893164	2895968	
PFDN2	prefoldin subunit 2		2896039	2897647	
ATP6V1AL	ATPase H+ transporting V1 subunit A-like		2898067	2904318	
TRNAR-UCU	transfer RNA arginine (anticodon UCU)		5519260	5519352	
SLC16A1	solute carrier family 16 member 1		3611036	3625979	
MIR1669	microRNA 1669		3626430	3626520	
LRIG2	leucine rich repeats and immunoglobulin like domains 2		3637024	3655454	
MAGI3	membrane associated guanylate kinase, WW and PDZ domain containing 3		3667646	3718891	
PHTF1	putative homeodomain transcription factor 1		3718661	3729714	
RSBN1	round spermatid basic protein 1		3729822	3746251	
PTPN22	protein tyrosine phosphatase, non-receptor type 22		3746522	3760097	
BCL2L15	BCL2 like 15		3760199	3762959	
AP4B1	adaptor related protein complex 4 beta 1 subunit	26	3763580	3770851	rs317627533
DCLRE1B	DNA cross-link repair 1B		3770574	3773420	
HIPK1	homeodomain interacting protein kinase 1		3777445	3801550	
OLFML3	olfactomedin like 3		3801747	3803342	
SYT6	synaptotagmin 6		3808772	3837467	
TRIM33	tripartite motif containing 33		3844903	3869654	
BCAS2	breast carcinoma amplified sequence 2		3869908	3872919	
DENND2C	DENN domain containing 2C		3872935	3887414	
AMPD1	adenosine monophosphate deaminase 1		3892276	3902376	

		•		
NRAS	neuroblastoma RAS viral oncogene homolog	3906425	3912827	
CSDE1	cold shock domain containing E1	3912971	3930268	
SIKE1	suppressor of IKBKE 1	3930830	3935439	
BARL	bile acid receptor-like	3941128	3952591	
SYCP1	synaptonemal complex protein 1	3951965	3966955	
LOC107049139	synaptonemal complex protein 1-like	3966969	3974901	
TSHB	thyroid stimulating hormone beta	3974272	3987526	
TSPAN2	tetraspanin 2	3985688	4005584	
LOC101747848	uncharacterized LOC101747848	4007609	4013783	
NGF	nerve growth factor	4027894	4050872	
LOC101747895	uncharacterized LOC101747895	4059614	4065666	
LOC101747934	uncharacterized LOC101747934	4066019	4077162	
FANCE	Fanconi anemia complementation group E	4080342	4084706	
MKRN3	makorin ring finger protein 3	4084828	4086964	
PPARD	peroxisome proliferator activated receptor delta	4089638	4106338	
DEF6	DEF6, guanine nucleotide exchange factor	4108781	4120796	
ZNF76	zinc finger protein 76	4121087	4130610	
RPL10A	ribosomal protein L10a	4130666	4134401	
	signal peptide, CUB domain and EGF like domain			
SCUBE3	containing 3	4135277	4165701	
TCP11	t-complex 11	4177656	4188605	
	ankyrin repeat and sterile alpha motif domain containing			
ANKS1A	1A	4186369	4271993	
LOC107055188	uncharacterized LOC107055188	4243866	4248941	
TAF11	TATA-box binding protein associated factor 11	4272574	4276039	
UHRF1BP1	UHRF1 binding protein 1	4276310	4303901	
SNRPC	small nuclear ribonucleoprotein polypeptide C	4306380	4310436	
C26H6orf106	chromosome 26 C6orf106 homolog	4312154	4344017	
SPDEF	SAM pointed domain containing ETS transcription factor	4353136	4359030	

	protein kinase C and casein kinase substrate in neurons			l
PACSIN1	1	4359838	4375042	l
RPS10	ribosomal protein S10	4376915	4382439	l
NUDT3	nudix hydrolase 3	4384291	4411296	l
LOC100858737	uncharacterized LOC100858737	4412794	4414947	
HMGA1	high mobility group AT-hook 1	4415782	4421656	
LOC107055185	uncharacterized LOC107055185	4421016	4430830	
GRM4	glutamate receptor, metabotropic 4	4434279	4475476	
LOC101750261	uncharacterized LOC101750261	4539410	4571201	
OPNIMSW	opsin, green sensitive (rhodopsin-like)	4557195	4562805	
MLN	motilin	4573764	4580079	
LEMD2	LEM domain containing 2	4584641	4597668	
LOC107055184	uncharacterized LOC107055184	4597433	4601335	
IP6K3	inositol hexakisphosphate kinase 3	4601290	4614097	
C26H6ORF125	chromosome 26 open reading frame, human C6orf125	4615609	4620391	
ITPR3	inositol 1,4,5-trisphosphate receptor type 3	4619903	4659888	
LOC768477	uncharacterized LOC768477	4669560	4675843	
BAK1	BCL2 antagonist/killer 1	4677808	4689669	
LOC107055182	uncharacterized LOC107055182	4690003	4698367	
TSPO2	translocator protein 2	4698990	4704107	
LOC107055181	uncharacterized LOC107055181	4707001	4710843	
APOREC2	apolipoprotein B mRNA editing enzyme catalytic subunit 2	4710803	4718654	
OARD1	- O-acyl-ADP-ribose deacylase 1	4719478	4722726	
LOC107055164	elvcine-rich protein DOT1-like	4722793	4723646	
NFYA	nuclear transcription factor Y subunit alpha	4723085	4737464	
LOC100858470	uncharacterized LOC100858470	4737878	4774348	
TREM-B1	triggering receptor expressed on myeloid cells B1	4741376	4747862	
TREM2	triggering receptor expressed on myeloid cells 2	4749175	4753562	
TREM-B2	triggering receptor expressed on myeloid cells B2	4755477	4761898	

LOC107055180	uncharacterized LOC107055180	4782696	4797766	
LOC107055165	uncharacterized LOC107055165	4802076	4806903	
FOXP4L	forkhead box protein P4-like	4844332	4887023	
MDFI	MyoD family inhibitor	4891121	4906184	
TFEB	transcription factor EB	4925985	4940293	
GASTL	gastricsin-like	4942094	4945050	
PGC	progastricsin (pepsinogen C)	4946918	4950762	
FRS3	fibroblast growth factor receptor substrate 3	4952522	4965746	
PRICKLE4	prickle planar cell polarity protein 4	4966313	4973328	
LOC101749017	platelet binding protein GspB-like	4973531	4985366	
ТОММ6	translocase of outer mitochondrial membrane 6	4985455	4986384	
USP49	ubiquitin specific peptidase 49	4986408	5019177	
LOC107055176	uncharacterized LOC107055176	5019458	5022472	
MED20	mediator complex subunit 20	5022173	5026778	
BYSL	bystin like	5026764	5031080	
CCND3	cyclin D3	5030661	5069048	
TAF8	TATA-box binding protein associated factor 8	5069068	5076732	
PIFO	primary cilia formation	5078237	5081253	
CHIA-M31	chitinase-M31, acidic	5081386	5086043	
CHIA	chitinase, acidic	5088647	5092767	
LOC768786	acidic mammalian chitinase-like	5095653	5100518	
LOC107055174	uncharacterized LOC107055174	5107408	5111368	
LOC107055171	uncharacterized LOC107055171	5120914	5123009	
BTG2	BTG anti-proliferation factor 2	5123154	5127216	
LOC107055173	uncharacterized LOC107055173	5128663	5129912	
LOC107055172	uncharacterized LOC107055172	5129960	5131921	
FMOD	fibromodulin	5133650	5140211	
LOC107055169	uncharacterized LOC107055169	5153629	5170330	
PRELP	proline and arginine rich end leucine rich repeat protein	5163841	5174857	

OPTC	opticin		5176849	5180331	
ATP2B4	ATPase plasma membrane Ca2+ transporting 4		5210403	5247582	
LOC107055168	uncharacterized LOC107055168		5245482	5259467	
MIR7454	microRNA 7454		5270406	5270459	
LOC107055210	uncharacterized LOC107055210		506	1277	
LOC107049042	olfactory receptor 4M1-like		7537	8651	
LOC768958	olfactory receptor 6B1-like		19365	20677	
MROH8	maestro heat like repeat family member 8		28315	37726	
LOC107055211	uncharacterized LOC107055211		47117	47583	
LOC101751094	uncharacterized LOC101751094		58462	62958	
LOC107049117	uncharacterized LOC107049117		66251	68943	
LOH11CR2A	loss of heterozygosity, 11, chromosomal region 2, gene A		160440	171210	
LOC107055212	uncharacterized LOC107055212		160850	166792	
DAD1	defender against cell death 1		172289	175051	
IGHVL	Ig heavy chain Mem5-like		181398	731094	
LOC101750797	immunoglobulin omega chain-like		224224	584730	
LOC101748259	uncharacterized LOC101748259	27	254315	268854	rs314452928
LOC101748117	Ig heavy chain V region C3-like		275201	277549	
LOC107055220	uncharacterized LOC107055220		294205	319579	
LOC107055218	Ig heavy chain V region C3-like		330149	331828	
IGHVC3L	Ig heavy chain V region C3-like		354463	409472	
LOC107055215	uncharacterized LOC107055215		371255	377432	
LOC101750872	Ig heavy chain V region C3-like		378419	382678	
LOC107055221	uncharacterized LOC107055221		390237	392841	
LOC101747602	Ig heavy chain V region C3-like		437483	475144	
MIR6644-2	microRNA 6644-2		442675	442784	
LOC101747562	Ig heavy chain V region G4-like		444766	446020	
MIR6644-1	microRNA 6644-1		450920	451029	
LOC100857271	Ig heavy chain V region G4-like		481943	483748	

LOC107055242	uncharacterized LOC107055242	484823	490120
TCRA	T-cell receptor V alpha	490904	494158
LOC101752222	uncharacterized LOC101752222	499474	507239
LOC101752169	uncharacterized LOC101752169	507517	511586
LOC107055244	uncharacterized LOC107055244	529451	539743
LOC107055227	feather keratin Cos1-1/Cos1-3/Cos2-1-like	535417	536596
LOC107055236	feather keratin Cos1-1/Cos1-3/Cos2-1-like	542651	543854
LOC107055225	feather keratin Cos1-1/Cos1-3/Cos2-1-like	542810	562235
LOC107055214	uncharacterized LOC107055214	549390	555126
LOC107055238	feather keratin Cos1-1/Cos1-3/Cos2-1-like	549746	550086
LOC107055217	uncharacterized LOC107055217	562035	563898
LOC107055240	feather keratin Cos1-1/Cos1-3/Cos2-1-like	568703	569448
LOC107055233	feather keratin Cos1-1/Cos1-3/Cos2-1-like	576637	577512
LOC107055248	uncharacterized LOC107055248	577639	581534
LOC769422	T-cell receptor alpha chain V region 2B4-like	588220	592260
LOC107055223	Ig lambda chain V-I region EPS-like	592321	593573
LOC770434	feather keratin Cos1-1/Cos1-3/Cos2-1-like	599735	600920
TRAV2B4L	T-cell receptor alpha chain V region 2B4-like	604190	607247
LOC107055231	feather keratin Cos1-1/Cos1-3/Cos2-1-like	613699	614616
LOC107055247	uncharacterized LOC107055247	614641	622721
LOC101751813	uncharacterized LOC101751813	624438	626417
LOC429206	feather keratin Cos1-1/Cos1-3/Cos2-1-like	633011	633442
LOC107055229	feather keratin Cos1-1/Cos1-3/Cos2-1-like	642194	643374
LOC107055245	uncharacterized LOC107055245	643179	644193
LOC100859830	feather keratin Cos1-1/Cos1-3/Cos2-1-like	650260	651359
LOC107055216	uncharacterized LOC107055216	653782	685699
LOC107055224	Ig lambda chain V-II region BO-like	658586	660512
LOC107055243	uncharacterized LOC107055243	666775	670901
LOC107055232	feather keratin Cos1-1/Cos1-3/Cos2-1-like	673821	674992

			•
LOC107055219	uncharacterized LOC107055219	684935	686381
LOC107055234	feather keratin Cos1-1/Cos1-3/Cos2-1-like	707411	708631
LOC107055213	uncharacterized LOC107055213	711599	713493
LOC107055230	feather keratin Cos1-1/Cos1-3/Cos2-1-like	721439	722626
LOC107055239	feather keratin Cos1-1/Cos1-3/Cos2-1-like	726214	727417
LOC769926	feather keratin Cos1-1/Cos1-3/Cos2-1-like	742659	743831
LOC425854	feather keratin Cos1-1/Cos1-3/Cos2-1-like	760032	760903
LOC107055222	T-cell receptor alpha chain V region 2B4-like	764282	766324
LOC107055228	feather keratin Cos1-1/Cos1-3/Cos2-1-like	774697	775550
LOC107055241	uncharacterized LOC107055241	782172	799004
LOC107055237	feather keratin Cos1-1/Cos1-3/Cos2-1-like	783652	784840
LOC101749259	immunoglobulin omega chain-like	787662	788394
LOC107055246	uncharacterized LOC107055246	788821	790251
LOC107055235	feather keratin Cos1-1/Cos1-3/Cos2-1-like	794600	795702
LOC101750937	immunoglobulin iota chain-like	807203	810694
LOC107055251	feather keratin Cos1-1/Cos1-3/Cos2-1-like	816809	817994
LOC107049059	feather keratin Cos1-1/Cos1-3/Cos2-1-like	821387	822603
LOC427060	feather keratin Cos1-1/Cos1-3/Cos2-1-like	826840	828009
LOC101749128	immunoglobulin omega chain-like	827802	829273
LOC107055250	feather keratin Cos1-1/Cos1-3/Cos2-1-like	832169	833270
LOC107049028	feather keratin Cos1-1/Cos1-3/Cos2-1-like	836471	837684
LOC107055249	Ig lambda chain V-V region DEL-like	839810	841237
LOC107055252	uncharacterized LOC107055252	841664	844422
LOC107055253	feather keratin Cos1-1/Cos1-3/Cos2-1-like	848755	849857
LOC107055254	feather keratin Cos1-1/Cos1-3/Cos2-1-like	858372	859593
LOC107055255	feather keratin Cos1-1/Cos1-3/Cos2-1-like	869063	870093
LOC107055258	feather keratin Cos1-2-like	873292	874517
LOC425497	T-cell receptor alpha chain V region 2B4-like	877700	880735
FKCOSL	feather keratin Cos1-1/Cos1-3/Cos2-1-like	886974	888161

1		1	1	1	
LOC770684	feather keratin Cos1-1/Cos1-3/Cos2-1-like		891650	892662	
TCRAV2B4L	T-cell receptor alpha chain V region 2B4-like		894657	916906	
LOC107055256	uncharacterized LOC107055256		898181	899322	
FK21	feather keratin 21		906726	907819	
LOC107055257	uncharacterized LOC107055257		911214	911732	
LOC430902	T-cell receptor alpha chain V region CTL-L17-like		921699	923034	
LOC107055261	uncharacterized LOC107055261		932708	933596	
LOC107055263	feather keratin Cos1-2-like		950730	954092	
LOC428299	feather keratin Cos1-1/Cos1-3/Cos2-1-like		958207	959601	
LOC428298	feather keratin Cos1-1/Cos1-3/Cos2-1-like		967848	968775	
LOC428297	feather keratin Cos1-1/Cos1-3/Cos2-1-like		972474	973601	
LOC100858427	feather keratin Cos1-1/Cos1-3/Cos2-1-like		980257	981451	
LOC107055265	feather keratin Cos1-1/Cos1-3/Cos2-1-like		986134	987373	
LOC107055266	feather keratin Cos1-1/Cos1-3/Cos2-1-like		989578	990839	
LOC107055264	feather keratin Cos1-1/Cos1-3/Cos2-1-like		992970	993892	
LOC107055269	feather keratin Cos1-1/Cos1-3/Cos2-1-like		996105	997366	
LOC428295	feather keratin Cos1-1/Cos1-3/Cos2-1-like		999181	1000420	
LOC107055268	feather keratin Cos1-1/Cos1-3/Cos2-1-like		1002631	1003892	
LOC100859466	feather keratin Cos1-1/Cos1-3/Cos2-1-like		1005986	1013849	
LOC107055267	feather keratin Cos1-1/Cos1-3/Cos2-1-like		1006024	1006946	
LOC107055270	feather keratin Cos1-1/Cos1-3/Cos2-1-like		1009162	1010150	
LOC428293	feather keratin Cos1-1/Cos1-3/Cos2-1-like		1021096	1022276	
LOC107055262	uncharacterized LOC107055262		1030898	1032082	
LOC428291	feather keratin Cos1-1/Cos1-3/Cos2-1-like		1046023	1047177	
LOC107055272	feather keratin 3-like		1058299	1069666	
LOC100859500	feather keratin 3-like		1062921	1063981	
LOC428289	feather keratin 3-like		1068928	1069257	
TRNAI-UAU	transfer RNA isoleucine (anticodon UAU)	27	4520423	4520513	rs315329074
TRNAQ-UUG	transfer RNA glutamine (anticodon UUG)	21	3640823	3640894	15513527017

MEOX1	mesenchyme homeobox 1	3530597	3536176	
ETV4	ETS variant 4	3548537	3564258	
DHX8	DEAH-box helicase 8	3567743	3579115	
РНВ	prohibitin	3580883	3585030	
LOC101750197	uncharacterized LOC101750197	3582478	3592058	
ZNF652	zinc finger protein 652	3592238	3620525	
PHOSPHO1	phosphoethanolamine/phosphocholine phosphatase	3623753	3631815	
ABI3	ABI family member 3	3631245	3637401	
GNGT2	G protein subunit gamma transducin 2	3637559	3639810	
IGF2BP1	insulin like growth factor 2 mRNA binding protein 1	3648588	3672763	
GIP	gastric inhibitory polypeptide	3682114	3689763	
SNF8	SNF8, ESCRT-II complex subunit	3690040	3693337	
UBE2Z	ubiquitin conjugating enzyme E2 Z	3693620	3705485	
	ATP synthase. H+ transporting, mitochondrial Fo			
ATP5G1	complex subunit C1 (subunit 9)	3707200	3709533	
CALCOCO2	calcium binding and coiled-coil domain 2	3709693	3719291	
HOXB13	homeobox B13	3742876	3745452	
LOC107055286	uncharacterized LOC107055286	3764713	3778499	
MIR196A1	microRNA 196a-1	3775036	3775130	
HOXB9	homeobox B9	3781877	3788281	
HOXB8	homeobox B8	3795352	3796999	
HOXB7	homeobox B7	3798149	3803481	
LOC107055284	uncharacterized LOC107055284	3810034	3821988	
HOXB6	homeobox B6	3812716	3815203	
HOXB5	homeobox B5	3818138	3820563	
MIR10A	microRNA 10a	3834170	3834243	
HOXB4	homeobox B4	3835207	3840489	
LOC107055283	uncharacterized LOC107055283	3837488	3843542	
HOXB3	homeobox B3	3840562	3864857	

	LOC107055285	uncharacterized LOC107055285	3852258	3856707	
	HOXB2	homeobox B2	3867101	3871833	
	LOC107055282	uncharacterized LOC107055282	3868775	3870699	
	HOXB1	homeobox B1	3879443	3882191	
	LOC419994	src kinase-associated phosphoprotein 1-like	3927113	3969088	
	LOC101751838	uncharacterized LOC101751838	3980545	3984567	
	TBKBP1	TBK1 binding protein 1	4013103	4024426	
	KPNB1	karyopherin subunit beta 1	4029274	4049551	
	NPEPPS	aminopeptidase puromycin sensitive	4052247	4080818	
	MRPL45	mitochondrial ribosomal protein L45	4083516	4087147	
	GPR179	G protein-coupled receptor 179	4089962	4097067	
	SOCS7	suppressor of cytokine signaling 7	4098027	4106014	
	SKAP1	src kinase associated phosphoprotein 1	4120634	4160530	
	SNX11	sorting nexin 11	4162424	4168386	
	CBX1	chromobox 1	4168538	4176552	
	NFE2L1	nuclear factor, erythroid 2 like 1	4179406	4188312	
	LOC107055292	uncharacterized LOC107055292	4188341	4189844	
	CDK5RAP3	CDK5 regulatory subunit associated protein 3	4192066	4195013	
	PRR15L	proline rich 15 like	4195737	4196844	
	PNPO	pyridoxamine 5'-phosphate oxidase	4199228	4201514	
	SP2	Sp2 transcription factor	4202904	4212077	
	SP6	Sp6 transcription factor	4219693	4222841	
	SCRN2	secernin 2	4223661	4226254	
	LRRC46	leucine rich repeat containing 46	4226229	4229327	
	MRPL10	mitochondrial ribosomal protein L10	4229306	4231308	
	OSBPL7	oxysterol binding protein like 7	4231743	4238314	
	TBX21	T-box 21	4238676	4245894	
	ARHGAP23	Rho GTPase activating protein 23	4260935	4274769	
ļ	SRCIN1	SRC kinase signaling inhibitor 1	4278768	4318568	

LOC107055293	SKI/DACH domain-containing protein 1-like	4356552	4360423	
MIR6663	microRNA 6663	4371072	4371181	
MLLT6	MLLT6, PHD finger domain containing	4374478	4403841	
MIR1735	microRNA 1735	4391229	4391307	
LOC107055294	polycomb group RING finger protein 2-like	4405220	4407907	
LOC107055296	protein AF-17-like	4410156	4419961	
CISD3	CDGSH iron sulfur domain 3	4421720	4422397	
PCGF2	polycomb group ring finger 2	4422951	4428429	
LOC107055298	POU domain, class 3, transcription factor 3-like	4425831	4427935	
PSMB3	proteasome subunit beta 3	4430285	4433174	
PIP4K2B	phosphatidylinositol-5-phosphate 4-kinase type 2 beta	4434946	4450427	
CWC25	CWC25 spliceosome associated protein homolog	4451015	4459377	
RPL23	ribosomal protein L23	4463064	4465066	
LASP1	LIM and SH3 protein 1	4466693	4486609	
FBXO47	F-box protein 47	4490226	4500566	
LOC101749109	uncharacterized LOC101749109	4498009	4506617	
PLXDC1	plexin domain containing 1	4505312	4518001	
LOC100858629	dickkopf-related protein 1-like	4519315	4521946	
CACNB1	calcium voltage-gated channel auxiliary subunit beta 1	4521859	4534179	
RPL19	ribosomal protein L19	4534596	4536944	
FBXL20	F-box and leucine rich repeat protein 20	4537208	4558569	
MED1	mediator complex subunit 1	4558906	4572538	
CDK12	cyclin dependent kinase 12	4572918	4595934	
NEUROD2	neuronal differentiation 2	4610541	4613182	
PPP1R1B	protein phosphatase 1 regulatory inhibitor subunit 1B	4621254	4626595	
STARD3	StAR related lipid transfer domain containing 3	4626814	4643949	
TCAP	titin-cap	4644741	4646231	
PNMT	phenylethanolamine N-methyltransferase	4647235	4649104	
PGAP3	post-GPI attachment to proteins 3	4649381	4652406	

ERBB2	erb-b2 receptor tyrosine kinase 2	4653394	4662322	
MIR6547	microRNA 6547	4660683	4660802	
MIEN1	migration and invasion enhancer 1	4663033	4664878	
GRB7	growth factor receptor bound protein 7	4665681	4671472	
LOC100858293	retinol dehydrogenase 8-like	4671617	4674052	
IKZF3	IKAROS family zinc finger 3	4676390	4700355	
ZPBP2	zona pellucida binding protein 2	4700373	4706427	
LRRC3C	leucine rich repeat containing 3C	4710386	4714334	
LOC107055297	basic proline-rich protein-like	4713858	4715843	
ORMDL3	ORMDL sphingolipid biosynthesis regulator 3	4717225	4725376	
GSDMA	gasdermin A	4725470	4730952	
PSMD3	proteasome 26S subunit, non-ATPase 3	4731389	4735157	
CSF3	colony stimulating factor 3	4737417	4739289	
MIR6884	microRNA 6884	4741104	4757219	
THRA	thyroid hormone receptor, alpha	4764287	4775504	
NR1D1	nuclear receptor subfamily 1 group D member 1	4776457	4783436	
MSL1	male specific lethal 1 homolog	4787718	4792939	
CASC3	cancer susceptibility 3	4793935	4803203	
RAPGEFL1	Rap guanine nucleotide exchange factor like 1	4804082	4809927	
WIPF2	WAS/WASL interacting protein family member 2	4810433	4822471	
CDC6	cell division cycle 6	4822688	4827078	
RARA	retinoic acid receptor alpha	4833202	4836052	
GJD3	gap junction protein delta 3	4836854	4839029	
TOP2A	topoisomerase (DNA) II alpha	4839029	4856730	
LOC101747522	collagen alpha-1(XVIII) chain-like	4857355	4863016	
IGFBP4	insulin like growth factor binding protein 4	4865485	4870779	
TNS4	tensin 4	4870793	4882163	
LOC107055315	uncharacterized LOC107055315	4882026	4907719	
CCR7	C-C motif chemokine receptor 7	4891171	4899901	

	SWI/SNF related, matrix associated, actin dependent			
SMARCE1	regulator of chromatin, subfamily e, member 1	4907121	4921663	
KRT222	keratin 222	4920500	4929780	
LOC107055316	uncharacterized LOC107055316	4922980	4937276	
KRT12	keratin 12	4932629	4939390	
KRT20	keratin 20	4939479	4943592	
KRT23	keratin 23	4953002	4962692	
KRT15	keratin 15	4965385	4969810	
KRT19	keratin 19	4972722	4977384	
LOC420043	keratin 16-like	4983598	4987746	
LOC100857659	keratin, type I cytoskeletal 42-like	4992053	4995428	
KRT10	keratin, type I cytoskeletal 10-like	4997475	5002485	
KRT9L	keratin, type I cytoskeletal 9-like	5008298	5012957	
LOC772080	keratin, type I cytoskeletal 17-like	5016347	5021212	
KRTC42L	keratin, type I cytoskeletal 42-like	5025520	5030185	
LOC771995	keratin, type I cytoskeletal 42-like	5035336	5038163	
LOC107055312	uncharacterized LOC107055312	5040540	5042410	
KRT14	keratin 14	5042180	5046007	
KRT17	keratin 17	5048947	5052819	
LOC107055313	uncharacterized LOC107055313	5051305	5052029	
EIF1	eukaryotic translation initiation factor 1	5064906	5066718	
LOC396365	preprogastrin	5069166	5069814	
HAP1	huntingtin associated protein 1	5069870	5078795	
JUP	junction plakoglobin	5081253	5096734	
P3H4	prolyl 3-hydroxylase family member 4 (non-enzymatic)	5097792	5102079	
FKBP10	FK506 binding protein 10	5102602	5108343	
NT5C3B	5'-nucleotidase, cytosolic IIIB	5108609	5113795	
KLHL10	kelch like family member 10	5113816	5117579	
KLHL11	kelch like family member 11	5117750	5123733	

ACLY	ATP citrate lyase	5124218	5152667	
TTC25	tetratricopeptide repeat domain 25	5149242	5156676	
CNP	2',3'-cyclic nucleotide 3' phosphodiesterase	5156868	5161795	
DNAJC7	DnaJ heat shock protein family (Hsp40) member C7	5161978	5181291	
LOC107055311	uncharacterized LOC107055311	5172889	5180535	
NKIRAS2	NFKB inhibitor interacting Ras like 2	5181433	5183584	
ZNF385C	zinc finger protein 385C	5183603	5237098	
ZNF862L	zinc finger protein 862-like	5198667	5206571	
LOC107055310	uncharacterized LOC107055310	5223122	5224406	
DHX58	DExH-box helicase 58	5242809	5249758	
KAT2A	lysine acetyltransferase 2A	5249877	5256053	
LOC772158	heat shock protein 30C-like	5256460	5257349	
HSPB9	heat shock protein family B (small) member 9	5258006	5258998	
RAB5C	RAB5C, member RAS oncogene family	5260322	5270725	
KCNH4	potassium voltage-gated channel subfamily H member 4	5271367	5280067	
HCRT	hypocretin neuropeptide precursor	5280135	5281806	
	1-phosphatidylinositol-4,5-bisphosphate			
PIBPPDD4L	phosphodiesterase delta-4-like	5281905	5292750	
GHDC	GH3 domain containing	5294204	5298441	
STAT5B	signal transducer and activator of transcription 5B	5297863	5311670	
STAT3	signal transducer and activator of transcription 3	5319501	5334933	
PTRF	polymerase I and transcript release factor	5335537	5350085	
ATP6V0A1	ATPase H+ transporting V0 subunit a1	5352689	5381019	
NAGLU	N-acetylglucosaminidase, alpha	5381264	5384665	
HSD17B1	hydroxysteroid 17-beta dehydrogenase 1	5384880	5386410	
MLX	MLX, MAX dimerization protein	5390278	5394161	
PSMC3IP	PSMC3 interacting protein	5393341	5397274	
FAM134C	family with sequence similarity 134 member C	5397367	5405515	
TUBG1	tubulin gamma 1	5405589	5413030	

LOC107055309	uncharacterized LOC107055309	5407102	5408044
PLEKHH3	pleckstrin homology, MyTH4 and FERM domain containing H3	5413790	5421146
CCR10	C-C motif chemokine receptor 10	5422621	5427142
CNTNAP1	contactin associated protein 1	5427307	5435737
EZH1	enhancer of zeste 1 polycomb repressive complex 2 subunit	5435970	5451101
RAMP2	receptor activity modifying protein 2	5453137	5454994
VPS25	vacuolar protein sorting 25 homolog	5455180	5457660
WNK4	WNK lysine deficient protein kinase 4	5461875	5473473
COA3	cytochrome c oxidase assembly factor 3	5473589	5474238
CNTD1	cyclin N-terminal domain containing 1	5474297	5478907
BECN1	beclin 1	5478573	5483381
PSME3	proteasome activator subunit 3	5483531	5490236
AOC3	amine oxidase, copper containing 3	5490347	5504360
G6PC	glucose-6-phosphatase catalytic subunit	5506845	5510258
AARSD1	alanyl-tRNA synthetase domain containing 1	5511314	5515677
PTGES3L	prostaglandin E synthase 3 (cytosolic)-like	5515779	5517799
RUNDC1	RUN domain containing 1	5518274	5520926
RPL27	ribosomal protein L27	5521996	5524344
IFI35	interferon-induced protein 35	5524907	5535384

* Note: Positions are based on Gallus gallus 5.0 genome assembly.

SNP ID	GGA	Number of QTL/associations	QTL/association (bp)*	QTL/association type	QTL/association IDs*
		22	37278942 -128288555	Chest width	16706
			18054807 -171631116	Visceral fat weight	17319
			18054807 -171717298	Total white fat weight	17332
			25724479 -171631116	Subcutaneous neck fat weight	17325
			18054807 -196202543	Body weight	1797
			37278942 -133528161	Body weight	55919
			57276942 -155526101	(140 days)	55717
			1805/807 171631116	Body weight	17076
rs13923872	1		18034807 - 171031110	(140 days)	17070
			18054807 -171631116	Carcass weight	17110
			37278942 -111865771	Breast muscle percentage	9407
			100051042 -123004362	Breast muscle weight	9410
			2420814 -171631116	Shank length	9409
			106349346 -123007835	Carcass fat content	17119
			113159926 -128288555	Shank weight	14341
			113159926 -128288555	Femur weight	14342
			18054807 -172427968	Spleen weight	1851
			18054807 -171631116	Growth (70-105 days)	55937
			18054807 -168151247	Abdominal fat weight	6858
			18054807 -171631116	Shank length	9294

Table S2. Growth related QTL/Associations reported within 1Mb distances from significant SNPs.

			113159926 -115848566	Breast muscle weight	13385
			111368640 -164599096	Body weight (35 days)	14355
			6580919 -171631116	Subcutaneous fat thickness	14359
			37278942 -111865771	Abdominal fat percentage	14362
		37			
			17148380 -81264760	Body weight (168 days)	24875
			17148380 -81264760	Body weight (21 days)	24842
	4		17148380 -81264760	Body weight (336 days)	24883
			17148380 -81264760	Body weight (42 days)	24855
			17148380 -81264760	Average daily gain	24899, 24905,24911
rs312691174			17148380 -81264760	Body weight (84 days)	24866
			17148380 -81264760	Body weight (504 days)	24890
			4964691 -87025255	Visceral fat weight	17321
			10768639 -91268419	Average daily gain	24914
			18357474 -31942137	Shank length	9295
			18354191 -37883325	Thigh muscle weight	9395
			18354191 -47647218	Drumstick and thigh muscle weight	13404

			17148380 -81264760	Body weight (day of first egg)	14457, 14464, 14470
			17148380 -81264760	Head percentage	15571
		14	67546750 -67546790	Body weight (28 days)	65710
			17148380 -81264760	Body weight (168 days)	24875
			47647218 -89464128	Body weight	200,820,152,016
			17148380 -81264760	Body weight (21 days)	24842
			17148380 -81264760	Body weight (336 days)	24883
			47647218 -89464128	Carcass weight	2012
			17148380 -81264760	Body weight (42 days)	24855
			17148380 -81264760	Average daily gain	24899, 24905, 24911
rs15608447	4		17148380 -81264760	Body weight (84 days)	24866
			66031512 -66100420	Body weight	3339
			47647218 -89464128	Liver weight	2017
			52604411 -82619142	Growth (14-28 days)	12499
			17148380 -81264760	Body weight (504 days)	24890
			48804413 -85154534	Growth (28-42 days)	12500
			52191247 -89464128	Abdominal fat percentage	9421
			48404949 -82619142	Growth (0-14 days)	12498
			52535768 -70787114	Shank length	9286

	49665708 -85877678	Total white fat weight	17334
	30906204 -83247658	Tibia width	2035
	61970484 -83247658	Tibia width	2038
	62452715 -89022456	Growth (42-56 days)	12501
	4964691 -87025255	Visceral fat weight	17321
	62331035 -82550230	Pectoralis major weight	2041
	31561525 -89318267	Body weight (35 days)	55905
	32974594 -89318267	Growth (0-35 days)	55930
	47647218 -89464128	Drumstick muscle weight	2057
	10768639 -91268419	Average daily gain	24914
	47647218 -89464128	Drumstick weight	2059
	47647218 -89464128	Wing weight	2060
	47647218 -89464128	Body weight (42 days)	9759
	47647218 -89464128	Body weight (63 days)	9760
	47647218 -89464128	Growth (21-42 days)	9761
	47647218 -89464128	Growth (42-63 days)	9762
	62331035 -82299229	Shank length	11795
	47647218 -89464128	Skin fat weight	12636
	47647218 -89464128	Drumstick and thigh muscle weight	13395

			17148380 -81264760	Body weight (day of first egg)	14457, 14464, 14470
		13	13330009 -13330034	Dressing percentage	57550
			13330009 -13330034	Breast muscle percentage	57551
			12736750 -12736790	Spleen weight	21767, 21787, 21788, 21742, 21743
			12736750 -12736790	Abdominal fat percentage	14489, 14488
rs318199727	10		13329989 -13330029	Breast muscle percentage	57547
			13329989 -13330029	Drumstick and thigh muscle percentage	57548
			13329989 -13330029	Abdominal fat percentage	57549
			692555 -20423025	Carcass weight	17113
			1541735 -16171711	Body weight (140 days)	55923
			2357400 -17864188	Body weight (35 days)	55907
			692555 -20423025	Body weight (70 days)	55911
			2552841 -18059263	Growth (0-35 days)	55931
			4410690 -18434155	Body weight (105 days)	55917
		14			
rs318098582	11		1133281 -19983730	Body weight (140 days)	55924

			13523302 -18192592	Body weight (46 days)	6636
			13523302 -18192592	Body weight (112 days)	6637
			13523302 -18192592	Growth (8-46 days)	6638
			13523302 -18192592	Thigh muscle weight	6735
			18193544 -20208550	Thigh meat-to-bone ratio	6736
			18193544 -20208550	Body weight (40 days)	6737
			9752914 -18192592	Tibia width	9337
			953174 -20208550	Body weight (140 days)	17080
			6823128 -20208550	Carcass weight	17114
			12510855 -20208550	Carcass weight	17088
			6910612 -20208550	Spleen weight	2287
			18193544 -18870770	Body weight	2284, 2285
			18642683 -18686657	Growth (8-46 days)	9519
		21	3731712 - 3769767	Spleen weight	2349
rs317945754	15		3731712 -3769767	Body weight (42 days)	9727
			3731712 -3769767	Carcass weight	9728
			3731712 -3769767	Spleen percentage	12588
			2812987 -10689472	Body weight (336 days)	24887
			4236686 -4265310	Abdominal fat weight	11995
			1931502 -7215657	Visceral fat weight	17323

			2519182 -7215657	Subcutaneous neck fat weight	17331
			3749008 -7973093	Drumstick and thigh percentage	15586
			3749008 -7973093	Abdominal fat weight	2337
			3749008 -7973093	Abdominal fat percentage	2339, 2340
			3749008 -8228905	Body weight (35 days)	3355
			1931502 -7215657	Total white fat weight	17337
			2812987 -10689472	Liver weight	2348
			2403639 -10689472	Abdominal fat percentage	9450
			1931502 -10689472	Abdominal fat weight	9451
			2812987 -10689472	Abdominal fat weight	2347, 12631
			3749008 -10689472	Body weight (46 days)	6648
			3749008 -10689472	Growth (8-46 days)	6649
			2812987 -10689472	Fat distribution	12645
			1931502 -9638429	Breast muscle weight	9449
rs316794400	22	1	-	Breast muscle percentage	95429
		6			
rs317627533	26		3118976 -4116802	Body weight (28 days)	95418
			1263919 -4918464	Body weight (63 days)	9453

			2499704 -4918464	Shank weight	2383
			4610791 -4624276	Liver percentage	2385
			-	Abdominal fat weight	30883
			4873346 -4886832	Breast muscle weight	6957
		4	-	Growth (105-140 days)	55944
			404762 -4520058	Wing weight	17109
rs314452928	27		54597 -4520058	Growth (0-35 days)	55932
			54597 -4520058	Body weight (35 days)	55906
		65	3834510 -3834550	Shank length	66068, 66069, 66070
			3363708 -3363748	Shank length	66067
			3971422 -3971462	Shank circumference	66063
			3564173 -3564213	Shank circumference	66065
			3624903 -3624943	Shank circumference	66064, 66066
rs315329074	27		3869461 -3869501	Shank length	66071
			3456748 -3456788	Abdominal fat weight	66072
			1798380 -3707375	Abdominal fat weight	11817, 11809
			1798380 -3707375	Abdominal fat percentage	11820
			1798380 -3707375	Carcass fat content	17135, 17126
			1798380 -3707375	Head percentage	15599
			1798380 -3707375	Body weight	2406, 2407

	1798380 -3707375	Body weight (1 day)	7178
	1798380 -3707375	Body weight (41 days)	7186
	1365641 -4520058	Humerus length	2397
	3522988 -3534446	Body weight (112 days)	9521
	3522988 -3534446	Body weight (200 days)	9522
	3522988 -3534446	Growth (46-112 days)	9523
	1365641 -4520058	Body weight	2410
	1809980 -3707375	Body weight (35 days)	3356
	1809980 -3707375	Abdominal fat percentage	3354
	1798380 -3707375	Carcass protein content, dry matter basis	17124
	1798380 -3707375	Carcass fat content, dry matter basis	17125
	3701574 -3713173	Body weight (42 days)	9775
	3701574 -3713173	Growth (21-42 days)	9776
	3701574 -3713173	Body weight (day of first egg)	14459, 14466, 14473
	3701574 -3713173	Body weight (168 days)	24878
	3701574 -3713173	Body weight (336 days)	24888

	3701574 -3713173	Body weight (504 days)	24892
	3701574 -3713173	Average daily gain	24907
	3707375 -3968049	Body weight	2404, 2405
	3707375 -4520058	Thigh weight	2411
	3707375 -4520058	Wing weight	2412
	3788374 -3889766	Drumstick and thigh weight	11920
	3788374 -3889766	Drumstick and thigh percentage	11921
	3788374 -3889766	Abdominal fat percentage	11934
	3788374 -3889766	Pectoralis major percent	11950
	3204318 -4520058	Shank weight	2413
	1798380 -3707375	Body weight (112 days)	6652
	1798380 -3707375	Body weight (200 days)	6653
	1798380 -3707375	Growth (46-112 days)	6654
	1798380 -3379175	Femur length	6778
	1798380 -3707375	Shank weight percentage	15567
	2263107 -4520058	Carcass weight	17116
	404762 -4520058	Wing weight	17109
	2780009 -4520058	Body weight (105 days)	55918
	54597 -4520058	Growth (0-35 days)	55932
	1365641 -4520058	Body weight	2409

		54597 -4520058	Body weight (35 days)	55906
		2454458 -4520058	Body weight (140 days)	55926
		2639460 -4520058	Body weight (70 days)	55912
		3707375 -4520058	Body weight (35 days)	7159
		1850810 -4520058	Carcass weight	17090
		2639460 -4520058	Growth (35-70 days)	55936
		4377710 -4389305	Shank length	9288
		3707375 -4520058	Shank weight percentage	15595
		2390652 -4520058	Breast muscle weight	17096
		3597175 -4520058	Drumstick and thigh weight	17105
		3707375 -4520058	Intramuscular fat	3360
		2141304 -4520058	Body weight (140 days)	17084
		3707375 -4520058	Body weight	2408
		3788374 -5629582	Thigh percentage	30886
		5159872 -5171472	Body weight (56 days)	12395
		5159872 -5171472	Body weight (hatch)	16623
		5159872 -5171472	Body weight (300 days)	16624

*Note: The positions of QTL/associations were mapped to *Gallus gallus_5.0* assembly and thus some regions could not be remapped ("-"). QTL/associations IDs are available in ChickenQTLdb.

Rank	Gene ID	Overall p-value	GGA	Markers
1	SMAD4	0,000365	25	rs317288536,rs312758346
2	CHRNB2	0,000541	25	rs317288536,rs312758346
3	CDH1	0,000558	11	rs318098582
4	NTRK1	0,000754	25	rs317288536
5	RARA	0,00103	27	rs315329074
6	STAT5B	0,00113	27	rs315329074
7	SCARB1	0,00117	15	rs317945754
8	NR1D1	0,00151	27	rs315329074
9	SHC1	0,00166	25	rs317288536,rs312758346
10	CYBB	0,00171	1	rs13923872
11	PHB	0,00173	27	rs315329074
12	СҮВА	0,00226	11	rs318098582
13	MC1R	0,0023	11	rs318098582
14	CNGA1	0,00234	4	rs15608447
15	MED1	0,00242	27	rs315329074
16	NGF	0,00257	26	rs317627533
17	G6PC	0,00293	27	rs315329074
18	NRAS	0,00295	26	rs317627533
19	JUP	0,00314	27	rs315329074
20	GABRB1	0,00348	4	rs15608447
21	LAMTOR2	0,00371	25	rs317288536
22	GABRA2	0,00382	4	rs15608447
23	ARNT	0,00391	25	rs312758346
24	ATP2B4	0,00427	26	rs317627533
25	NCSTN	0,0057	25	rs317288536
26	TGFA	0,00578	22	rs316794400
27	PIP5K1A	0,00597	25	rs312758346
28	NFYA	0,00636	26	rs317627533
29	CACNB1	0,00648	27	rs315329074
30	GABRA4	0,00656	4	rs15608447

Table S3. Prioritized genes by guilt by association gene prioritization analysis.
31	POLG	0,00664	10	rs318199727
32	ADRA1A	0,00669	22	rs316794400
33	KAT2A	0,00684	27	rs315329074
34	MEF2D	0,00715	25	rs317288536,rs312758346
35	ATP6V0A1	0,00776	27	rs315329074
36	HAX1	0,00791	25	rs312758346
37	MEOX1	0,00809	27	rs315329074
38	CASK	0,00817	1	rs13923872
39	SMARCE1	0,00838	27	rs315329074
40	ULK1	0,00841	15	rs317945754
41	DDX3X	0,00841	1	rs13923872
42	UBC	0,00855	15	rs317945754
43	PIEZO1	0,00881	11	rs318098582
44	HCN3	0,00898	25	rs312758346
45	BECN1	0,00933	27	rs315329074
46	MCL1	0,00968	25	rs312758346
47	ZFPM1	0,00977	11	rs318098582
48	RAN	0,00986	15	rs317945754
49	GRM4	0,0101	26	rs317627533
50	USP9X	0,0106	1	rs13923872
51	PIP4K2B	0,0106	27	rs315329074
52	SLC16A1	0,0112	26	rs317627533
53	IRF8	0,0113	11	rs318098582
54	NTRK3	0,0114	10	rs318199727
55	ADAR	0,0115	25	rs317288536,rs312758346
56	PPP1R1B	0,012	27	rs315329074
57	MED14	0,012	1	rs13923872
58	INSRR	0,0121	25	rs317288536,rs312758346
59	GIP	0,0122	27	rs315329074
60	KPNB1	0,0123	27	rs315329074
61	KRT17	0,0124	27	rs315329074
62	DPEP1	0,0125	11	rs318098582

63	CTSS	0,0126	25	rs312758346
64	TXK	0,0129	4	rs15608447
65	ТРМЗ	0,0131	25	rs312758346
66	FCER1G	0,0132	25	rs312758346
67	KRT14	0,0134	27	rs315329074
68	CCR7	0,0136	27	rs315329074
69	SV2A	0,0137	25	rs317288536
70	GABRG1	0,0138	4	rs15608447
71	PTRF	0,01408	27	rs315329074
72	CDH3	0,0141	11	rs318098582
73	CSF3	0,0143	27	rs315329074
74	ATP6AP2	0,0143	1	rs13923872
75	CCND3	0,0144	26	rs317627533
76	THEM4	0,0145	25	rs312758346
77	SYT11	0,0146	25	rs312758346
78	S100A9	0,0146	25	rs317288536,rs312758346
79	STARD3	0,0147	27	rs315329074
80	SGCB	0,0149	4	rs15608447
81	ACKR1	0,0152	25	rs312758346
82	PCGF2	0,0152	27	rs315329074
83	KCNH4	0,0152	27	rs315329074
84	ECM1	0,0155	25	rs312758346
85	ETV4	0,0157	27	rs315329074
86	SRCIN1	0,0158	27	rs315329074
87	IKZF3	0,016	27	rs315329074
88	BCL2A1	0,0161	10	rs318199727
89	KCNN3	0,0161	25	rs317288536,rs312758346
90	NFAT5	0,0162	11	rs318098582
91	CORIN	0,0164	4	rs15608447
92	PMVK	0,0164	25	rs317288536,rs312758346
93	PI4KB	0,0165	25	rs312758346
94	RHCG	0,0165	10	rs318199727

95	BAK1	0,0169	26	rs317627533
96	VPS4A	0,0172	11	rs318098582
97	LRRTM4	0,0173	22	rs316794400
98	BCOR	0,0174	1	rs13923872
99	IGFBP4	0,0179	27	rs315329074
100	GRB7	0,018	27	rs315329074
101	WNK4	0,0181	27	rs315329074
102	CCR10	0,0181	27	rs315329074
103	FMOD	0,0182	26	rs317627533
104	SKAP1	0,0182	27	rs315329074
105	RLBP1	0,0185	10	rs318199727
106	NDUFS2	0,0185	25	rs312758346
107	APH1A	0,0188	25	rs312758346
108	BCAN	0,0188	25	rs317288536,rs312758346
109	RAMP2	0,0188	27	rs315329074
110	SLC7A5	0,019	11	rs318098582
111	COPA	0,0191	25	rs317288536
112	HAP1	0,0194	27	rs315329074
113	IGF2BP1	0,0197	27	rs315329074
114	FRS3	0,0197	26	rs317627533
115	MFGE8	0,0199	10	rs318199727
116	AEBP1	0,02	22	rs316794400
117	PSME3	0,0201	27	rs315329074
118	CHMP1A	0,0211	11	rs318098582
119	SETDB1	0,0211	25	rs312758346
120	KIF7	0,0215	10	rs318199727
121	TBX21	0,0217	27	rs315329074
122	PACSIN1	0,0218	26	rs317627533
123	MVD	0,0222	11	rs318098582
124	ZBTB7B	0,0224	25	rs317288536,rs312758346
125	GLMP	0,0225	25	rs317288536
126	PTPN22	0,0228	26	rs317627533

127	XK	0,0229	1	rs13923872
128	TRIM33	0,023	26	rs317627533
129	CRTC2	0,0233	25	rs312758346
130	PSMD7	0,0233	11	rs318098582
131	TERF2	0,0235	11	rs318098582
132	S100A6	0,0236	25	rs317288536,rs312758346
133	PUS1	0,0237	15	rs317945754
134	TOP2A	0,0238	27	rs315329074
135	PSMD4	0,024	25	rs312758346
136	CDH15	0,0241	11	rs318098582
137	RPGR	0,0242	1	rs13923872
138	PNMT	0,0242	27	rs315329074
139	MED20	0,0244	26	rs317627533
140	AOC3	0,0246	27	rs315329074
141	ANXA4	0,025	22	rs316794400
142	GALNS	0,0251	11	rs318098582
143	SV2B	0,0252	10	rs318199727
144	RFX5	0,0255	25	rs312758346
145	SPG7	0,0258	11	rs318098582
146	PPIA	0,026	22	rs316794400
147	PGAP3	0,0262	27	rs315329074
148	RAB5C	0,0262	27	rs315329074
149	HDGF	0,0264	25	rs317288536,rs312758346
150	HOXB3	0,0265	27	rs315329074
151	FKBP10	0,0266	27	rs315329074
152	SLC20A1	0,0268	22	rs316794400
153	ANKRD11	0,0269	11	rs318098582
154	FZD10	0,027	15	rs317945754
155	RUSC1	0,0271	25	rs312758346
156	CBFA2T3	0,0272	11	rs318098582
157	PSMB4	0,0273	25	rs312758346
158	VANGL2	0,0275	25	rs317288536

159	CNP	0,0276	27	rs315329074	
160	GNGT2	0,0276	27	rs315329074	
161	AKAP13	0,0276	10	rs318199727	
162	COX4I1	0,0276	11	rs318098582	
163	HIPK1	0,0278	26	rs317627533	
164	PRELP	0,0279	26	rs317627533	
165	MLX	0,0286	27	rs315329074	
166	HSD17B1	0,0286	27	rs315329074	
167	CIDEC	0,0286	11	rs318098582	
168	NAGLU	0,0287	27	rs315329074	
169	AP4B1	0,0291	26	rs317627533	
170	S100A1	0,0294	25	rs317288536,rs312758346	
171	FANCA	0,0294	11	rs318098582	
172	SOCS7	0,0298	27	rs315329074	
173	MMP17	0,03	15	rs317945754	
174	S100A10	0,0304	25	rs312758346	
175	CDC6	0,0304	27	rs315329074	
176	PSMB3	0,0306	27	rs315329074	
177	KRT10	0,0306	27	rs315329074	
178	CNTNAP1	0,0315	27	rs315329074	
179	SLAMF1	0,0316	25	rs317288536	
180	KRT19	0,0317	27	rs315329074	
181	HOXB5	0,0318	27	rs315329074	
182	PSMD3	0,032	27	rs315329074	
183	RIT1	0,0322	25	rs312758346	
184	NEUROD2	0,0322	27	rs315329074	
185	PNPO	0,0324	27	rs315329074	
186	SLC7A11	0,0327	4	rs312691174	
187	STX2	0,0327	15	rs317945754	
188	CKS1B	0,0329	25	rs317288536,rs312758346	
189	IL17C	0,0331	11	rs318098582	
190	SLC39A1	0,0333	25	rs312758346	

191	NFXL1	0,0343	4	rs15608447
192	ST8SIA2	0,0343	10	rs318199727
193	MGST2	0,0349	4	rs312691174
194	ARHGEF11	0,0351	25	rs317288536
195	RHBG	0,0352	25	rs317288536,rs312758346
196	OSBPL7	0,0356	27	rs315329074
197	CDT1	0,0358	11	rs318098582
198	ACLY	0,0358	27	rs315329074
199	KRT12	0,0364	27	rs315329074
200	CIART	0,0368	25	rs312758346
201	ADAMTS4	0,0369	25	rs312758346
202	S100A4	0,0371	25	rs317288536,rs312758346
203	TREM2	0,0378	26	rs317627533
204	MTHFS	0,0384	10	rs318199727
205	TFEB	0,039	26	rs317627533
206	BTG2	0,039	26	rs317627533
207	SNAPIN	0,0392	25	rs317288536,rs312758346
208	MKRN3	0,0392	26	rs317627533
209	SLCO3A1	0,0396	10	rs318199727
210	NQO1	0,0398	11	rs318098582
211	ACSF3	0,0401	11	rs318098582
212	OTC	0,0403	1	rs13923872
213	MAP1LC3B	0,0408	11	rs318098582
214	CERS2	0,0411	25	rs312758346
215	PEX11A	0,0411	10	rs318199727
216	MAML3	0,0412	4	rs312691174
217	VPS25	0,0415	27	rs315329074
218	NHLH1	0,0418	25	rs317288536
219	S100A13	0,0422	25	rs317288536,rs312758346
220	CLK2	0,0422	25	rs312758346
221	SH2D2A	0,0424	25	rs317288536,rs312758346
222	HOXB2	0,0429	27	rs315329074

223	POGZ	0,0431	25	rs312758346
224	TCAP	0,0432	27	rs315329074
225	S100A14	0,0434	25	rs317288536,rs312758346
226	ZNF469	0,0436	11	rs318098582
227	TUBG1	0,0441	27	rs315329074
228	SYT6	0,0441	26	rs317627533
229	SNX27	0,0444	25	rs312758346
230	ELMOD2	0,045	4	rs312691174
231	ATP8B2	0,0454	25	rs312758346
232	TARS2	0,0456	25	rs312758346
233	LASP1	0,0457	27	rs315329074
234	FDPS	0,0458	25	rs312758346
235	KLHL10	0,0461	27	rs315329074
236	SLC15A4	0,0464	15	rs317945754
237	WWP2	0,0467	11	rs318098582
238	KIRREL	0,04684	25	rs317288536
239	TSHB	0,0471	26	rs317627533
240	CHIC2	0,0471	4	rs15608447
241	SLC10A4	0,0473	4	rs15608447
242	EP400	0,0476	15	rs317945754
243	HOXB4	0,048	27	rs315329074
244	TMEM79	0,0483	25	rs317288536
245	SMG5	0,0486	25	rs317288536
246	PHOSPHO1	0,0487	27	rs315329074
247	CDK12	0,04878	27	rs315329074
248	SETD7	0,0495	4	rs312691174

Marker minimum distance (bp)*: distances are based on Gallus gallus 5.0 assembly

Table S4. Results of topological gene network analysis.

Gene ID	Node degree
UBC	68
STAT3	40
SMAD4	34
SHC1	30
ERBB2	28
NRAS, PSMD4	26
CDC6	23
PSMD7	22
RARA, RPL10A	21
PSMB4	20
CDH1	19
RPL19, STAT5B	18
MED1, PSMD3	17
RPS27A, RPL13, MRPL24	16
UBA52, CDT1	15
MRPS11	14
MCL1, BYSL	13
NTRK1, EP300, KAT2A, THRA	12
MEF2D, CCND3, UBB, PSME3	11

BECN1, NFYA, SETD7	10
TUBG1, HSP90AA1, HDAC2, RAC1, RPS27, MAGOH, CREBBP, CDK1, CKS1B, USP9X, LCK, GRB2,MED14	9
PIP5K1A, SRC , NNB1, HDAC1, SMARCE1, FYN, CDK2, MRPL3, PSMC5, NIP7, TEC	8
AR, LK1, ERBB4, VPS4A, NCSTN, ESR1, HDAC3, PPARD, MRPL15, AKAP13, ARHGEF11, EGFR, RPS3, NPEPPS, PSMC2, IKZF3, GRB7, NOC4L	7
EIF4A3, DHX8, CUL3, CCT3, AKT1, NCOR1, PDGFRB, IMP3, SMURF1, ZFPM1, MAPK1, PSMD8, LYN, PLCG1, PTPN11, DAD1, KIT, MRPL4, MED20, PS6, JAK1, PSMC4, RPS5, PSMD2	6
FANCI, DDX3X, TERF2, KPNB1, CDKN1A, CBFA2T3, TP53, NR4A1, CAV1, PIK3CG, CCND1, FANCE, FANCA, TRIM33, KAT2B, MYC, PCNA, UBQLN4, VPS25, SYK,RPL5, SEC61A1, HNF4A, CUL1, EZH1, TAF8, IMP4, MRPL46, DHX37, UTP4, PSMA4	5
CDK5, PBX1, UHRF1BP1, MTOR, TOP2A,TBP, RHOC, TAF10, GNA12, SMAD2, ITPR3, PFDN2, CDC42, EFTUD2, MYOD1, ACTB, MAPK8, PIK3CA, NGFR, NIFK, NOB1, MED15, BCL2L1, ABL1, E2F1, MRPS2, CCNA1, SETDB1, CDK19, MRTO4, SMARCD3, BCAS2, TNKS, SSR2, ERBB3, VPS4B, TAF11, CHMP4B	4
NGF, VPS45, ADAR, PPP1R1B, BCAN, OGDH, MCM5, VANGL2, DMD, TBK1, BCOR, COPA, MAGI3, SNRPC, PRPF19, NFKB1, ACLY, PSEN1, NR1D1, NOTCH1, YWHAQ, BAK1, SQSTM1, BTRC, PTEN, UPF1, PLCB2, LNX1, RBBP4, RPN1, YWHAZ, YWHAB, TAF9, IGF2BP1, BCL6, SNU13, RAC2, CHEK1, HSPA8, SNF8, NR3C1, CASC3, NSA2, FOXO3, SKP2, RUNX1, NCOA2, DDOST, RND1, SREBF2, HES1, TBX21, RBX1, NCOA3, ZAP70, IRF8, WIPF2, PPARG, FBXO31, SH2D2A, TSR1,CTNND1, ETV4, TUBA4A, DEF6, NR0B2, CDH15, FTSJ3, TXK, INSRR, CRTC2, CDH3, PTPN22, SKAP1,MAP1LC3B, UBE4B, TGFA, MRPL9, SMAD3, NTRK3, CHMP1A	3

<i>MMP7, STX6, WDR48, TPM3, CCL2, CNTNAP1, DICER1, SPDEF, STX2, USP46, PRICKLE1, NCBP1, GINS2, PDHX, ARNT, DVL2, MMP2, TGFB1, MAD2L2, NFYB, PIWIL1, SNAP23, PHLPP1, RBBP5, GABARAP, HGS, CCR10, APRT, CKAP5, FOX01, PRKACA, LEP, TSHR, DDX20, KCNA1, RUNX2, ATG16L1, NKX3-1, UBE2Z, ILF2, PRPF8, SSU72, TCF7, SMG1, DYNLL1, HOXB5, HOXB7, STRN, DYNC1H1, NCBP2, LDHA, NUMB, S100A1, MAPK14, NES, ATP2B4, EIF1, BIK, CSNK1D, STK11, SNRPD3, PPP1CC, SUP77L, SRPRA, TRIM28, CDC5L, SEC61B, RFWD2, SP11, ATG3, GATA4, LCP2,WASL, EZH2, SMAD7, HAX1, NOTCH3, RPT0R, SNW1, STUB1, TRAF6, RORC, GSK3B, PRKCA, ASXL1, FOXM1, WDR12, XRCC6, TOP2B, ARVCF, GATA6, APP, PPARA, RAB5A, HDAC5, CSK, DNMT3A, PRPF3, RAD1, HIPK1, GATA3, CDKN1B, FIP1L1, ADRA1A, ELP3, ATR, ARF1, HIST3H3, ATM, EED, TRIM24, ATP2A2, DOK1, MRPL44, NR1D2, DYNLT3, PABPC1, SIKE1, MAML3, NEDD8, SMG5, HRAS, FANCD2, EIF2S1, MRPL27, WRN, CALM2, MRPS10, SLAMF1, RHOV, BCL2A1, PBX2, FCER1G, CYBA, CYBB, IL6R</i>	2
KRT14, FZD10, CCR7, WNK4, G6PC, CRP, TSHB, SLC7A5, SCARB1, IL1B, TCF25, CHIC2, SLAIN2, KCNH4, KRT10, S100A11, LC20A1, SLC7A11, MRPL10, RFX5, GABRG1, NAA15, PLIN1, RAB33B, CYB5B, AACS, HAP1, SNTB2, FMOD, TBKBP1, KRT19, HOXB1, ADAMTS4, CD244,, ETV3, BGLAP, SNAPIN, SNX27, SP2, SGCB, NFE2L1, ANXA4, ZNF76, PPIA, PRCC, TDRKH, FDPS, DCLRE1B, AMPD1, KLHL11, KLHL10, KLHL25, PYGO2, ZNF652, THEM4, APH1A, DNAJC7, RUSC1, PLEKHO1	1

E

_

Chapter 3 Table S1. Positional candidate genes for BW.

		Position of the marker			Start Position of	End Position of the	Orientation of	Minimum distance
SNP ID	GGA	(bp)	Gene ID*	Description	the gene (bp)*	gene (bp)*	the gene	from gene (bp)
rs13923872	1	112,741,685	USP9X	ubiquitin specific peptidase 9, X-linked	112,078,329	112,176,727	minus	564,958
			LOC101750779	uncharacterized LOC101750779	112,193,534	112,198,521	plus	543,164
			LOC107056757	uncharacterized LOC107056757	112,223,451	112,228,082	minus	513,603
			MED14	mediator complex subunit 14	112,228,091	112,262,695	plus	478,99
			LOC107056765	uncharacterized LOC107056765	112,263,096	112,268,266	plus	473,419
			ATP6AP2	ATPase H+ transporting accessory protein 2	112,273,187	112,282,377	minus	459,308
			LOC101750924	uncharacterized LOC101750924	112,282,457	112,304,013	plus	437,672
			LOC107056538	basic proline-rich protein-like	112,349,429	112,354,018	minus	387,667
			BCOR	BCL6 corepressor	112,378,844	112,422,324	plus	319,361
			LOC107057081	uncharacterized LOC107057081	112,474,240	112,486,871	minus	254,814
			LOC101751364	uncharacterized LOC101751364	112,482,075	112,497,856	plus	243,829
			LOC107057076	uncharacterized LOC107057076	112,498,548	112,504,661	plus	237,024
			LOC101751443	uncharacterized LOC101751443	112,519,737	112,523,119	plus	218,566
			MIR6672	microRNA 6672	112,625,566	112,625,675	plus	116,01
			LOC107057061	uncharacterized LOC107057061	112,635,402	112,643,712	plus	97,973
			LOC107057049	uncharacterized	112,668,313	112,707,049	minus	34,636

	LOC107057049				
MID11P1	MID1 interacting protein 1	112,738,605	112,739,753	minus	1,932
TSPAN7	tetraspanin 7	112,766,324	112,855,838	minus	24,639
LOC101751659	uncharacterized LOC101751659	112,767,424	112,769,932	plus	25,739
LOC107057044	uncharacterized LOC107057044	112,853,920	112,855,360	minus	112,235
OTC	ornithine carbamoyltransferase	112,898,625	112,924,531	minus	156,94
RPGR	retinitis pigmentosa GTPase regulator	112,926,169	112,985,737	plus	184,484
SRPX	sushi repeat containing protein, X-linked	112,994,814	113,035,754	plus	253,129
SYTL5	synaptotagmin like 5	113,039,522	113,117,936	minus	297,837
DYNLT3	dynein light chain Tctex-type 3	113,133,105	113,139,987	plus	391,42
CYBB	cytochrome b-245 beta chain	113,149,626	113,183,626	minus	407,941
XK	X-linked Kx blood group	113,199,116	113,214,148	minus	457,431
LANCL3	LanC like 3	113,215,605	113,251,683	minus	473,92
LOC107056992	uncharacterized LOC107056992	113,278,216	113,282,701	minus	536,531
PRRG1	proline rich and Gla domain 1	113,283,937	113,314,070	minus	542,252
LOC107056924	maestro heat-like repeat-containing protein family member 2B	113,325,651	113,339,179	plus	583,966
LOC107056990	maestro heat-like repeat-containing protein family member 2B	113,343,513	113,348,692	plus	601,828
LOC107056981	maestro heat-like	113,350,799	113,354,007	plus	609,114

				repeat-containing protein family member 2B				
rs312691174	4	29,074,989	LOC107051793	uncharacterized LOC107051793	28,550,125	28,563,120	minus	511,869
			PCDH18	protocadherin 18	28,880,214	28,890,093	minus	184,896
			LOC107051792	uncharacterized LOC107051792	28,986,991	29,036,383	plus	38,606
			SLC7A11	solute carrier family 7 member 11	29,138,177	29,196,482	minus	63,188
			LOC101751121	uncharacterized LOC101751121	29,205,067	29,277,125	minus	130,078
			NOCT	nocturnin	29,428,771	29,434,135	plus	353,782
			ELF2	E74 like ETS transcription factor 2	29,438,718	29,467,618	minus	363,729
			MGARP	mitochondria localized glutamic acid rich protein	29,471,760	29,493,863	minus	396,771
			LOC107051797	atherin-like	29,494,724	29,497,114	minus	419,735
			NAA15	N(alpha)- acetyltransferase 15, NatA auxiliary subunit	29,496,798	29,534,035	plus	421,809
			RAB33B	RAB33B, member RAS oncogene family	29,539,318	29,546,334	plus	464,329
			LOC422442	uncharacterized LOC422442	29,559,136	29,561,953	minus	484,147
			SETD7	SET domain containing lysine methyltransferase 7	29,561,960	29,578,876	minus	486,971
			MGST2	microsomal glutathione S- transferase 2	29,593,387	29,603,029	plus	518,398
			LOC107051791	microsomal glutathione S- transferase 2-like	29,604,032	29,611,350	plus	529,043

			MAML3	mastermind like transcriptional coactivator 3	29,611,253	29,815,133	minus	536,264
rs15608447	4	66,885,210	FIP1L1	factor interacting with PAPOLA and CPSF1	66,133,445	66,171,020	minus	714,19
			SCFD2	sec1 family domain containing 2	66,173,796	66,368,297	plus	516,913
			LOC107053245	uncharacterized LOC107053245	66,257,009	66,266,179	minus	619,031
			RASL11B	RAS like family 11 member B	66,369,830	66,373,534	minus	511,676
			LOC107053244	uncharacterized LOC107053244	66,391,577	66,398,660	minus	486,55
			LOC422757	uncharacterized LOC422757	66,403,272	66,405,708	minus	479,502
			USP46	ubiquitin specific peptidase 46	66,413,295	66,440,521	plus	444,689
			SPATA18	spermatogenesis associated 18	66,567,846	66,587,444	minus	297,766
			SGCB	sarcoglycan beta	66,587,612	66,593,633	plus	291,577
			LRRC66	leucine rich repeat containing 66	66,593,723	66,602,814	plus	282,396
			DCUN1D4	defective in cullin neddylation 1 domain containing 4	66,607,031	66,645,141	minus	240,069
			CWH43	cell wall biogenesis 43 C-terminal homolog	66,651,068	66,677,010	minus	208,2
			OCIAD1	OCIA domain containing 1	66,693,766	66,708,277	minus	176,933
			FRYL	FRY like transcription coactivator	66,708,277	66,866,440	plus	18,77
			ZAR1	zygote arrest 1	66,868,239	66,871,111	minus	14,099
			LOC107053243	uncharacterized LOC107053243	66,870,041	66,885,878	plus	0

S	SLC10A4	solute carrier family 10 member 4	66,870,984	66,872,626	minus	12,584
	SLAIN2	SLAIN motif family member 2	66,883,481	66,910,807	minus	0
	TEC	tec protein tyrosine kinase	66,928,003	66,969,829	plus	42,793
	TXK	TXK tyrosine kinase	66,970,277	66,990,459	plus	85,067
	NIPAL1	NIPA like domain containing 1	66,992,447	67,002,107	minus	107,237
	CNGA1	cyclic nucleotide gated channel alpha 1	67,007,806	67,015,296	plus	122,596
	NFXL1	nuclear transcription factor, X-box binding like 1	67,016,510	67,061,474	plus	131,3
	CORIN	corin, serine peptidase	67,063,312	67,186,506	plus	178,102
	ATP10D	ATPase phospholipid transporting 10D (putative)	67,189,360	67,228,010	minus	304,15
	COMMD8	COMM domain containing 8	67,239,252	67,243,040	plus	354,042
LOC	C107053239	uncharacterized LOC107053239	67,246,293	67,253,895	minus	361,083
LOC	C107053241	uncharacterized LOC107053241	67,252,999	67,266,059	plus	367,789
	GABRB1	gamma-aminobutyric acid type A receptor beta1 subunit	67,253,915	67,271,613	minus	368,705
LOC	C107053242	uncharacterized LOC107053242	67,325,419	67,334,233	plus	440,209
LOC	C107053240	uncharacterized LOC107053240	67,330,651	67,347,343	minus	445,441
	GABRA4	gamma-aminobutyric acid type A receptor alpha4 subunit	67,355,338	67,402,602	plus	470,128
	GABRA2	gamma-aminobutyric	67,487,682	67,549,247	plus	602,472

				acid type A receptor alpha2 subunit				
			LOC107053237	uncharacterized LOC107053237	67,489,979	67,491,477	minus	604,769
			LOC107053238	uncharacterized LOC107053238	67,546,207	67,576,158	minus	660,997
			GABRG1	gamma-aminobutyric acid type A receptor gamma1 subunit	67,576,299	67,633,176	plus	691,089
rs318199727	10	13,536,548	LOC107054202	uncharacterized LOC107054202	12,796,949	12,800,712	minus	735,836
			PEX11A	peroxisomal biogenesis factor 11 alpha	12,815,015	12,820,635	plus	715,913
			LOC107054203	uncharacterized LOC107054203	12,817,514	12,823,049	minus	713,499
			PLIN1	perilipin 1	12,822,263	12,826,843	plus	709,705
			KIF7	kinesin family member 7	12,827,027	12,836,867	plus	699,681
			TICRR	TOPBP1 interacting checkpoint and replication regulator	12,837,814	12,854,365	minus	682,183
			RHCG	Rh family C glycoprotein	12,859,333	12,867,258	plus	669,29
			LOC107054204	uncharacterized LOC107054204	12,902,048	12,938,774	minus	597,774
			TRNAR-UCG	transfer RNA arginine (anticodon UCG)	12,942,837	12,942,909	minus	593,639
			POLG	DNA polymerase gamma, catalytic subunit	12,942,988	12,953,027	plus	583,521
			FANCI	Fanconi anemia complementation group I	12,951,763	12,975,529	minus	561,019
			RLBP1	retinaldehyde binding protein 1	12,976,366	12,980,554	plus	555,994

ABHD2	abhydrolase domain containing 2	12,981,973	13,021,732	minus	514,816
MFGE8	milk fat globule-EGF factor 8 protein	13,033,323	13,040,620	plus	495,928
HAPLN3	hyaluronan and proteoglycan link protein 3	13,042,935	13,046,872	plus	489,676
ACAN	aggrecan	13,047,289	13,092,387	minus	444,161
AEN	apoptosis enhancing nuclease	13,131,452	13,134,038	minus	402,51
MIR1720	microRNA 1720	13,134,585	13,134,649	minus	401,899
MIR7-2	microRNA 7-2	13,134,720	13,134,818	minus	401,73
MIR3529	microRNA 3529	13,134,724	13,134,814	plus	401,734
DET1	de-etiolated homolog 1 (Arabidopsis)	13,149,476	13,171,850	plus	364,698
MRPS11	mitochondrial ribosomal protein S11	13,171,107	13,174,638	minus	361,91
MRPL46	mitochondrial ribosomal protein L46	13,174,668	13,177,215	plus	359,333
LOC101751754	uncharacterized LOC101751754	13,178,649	13,201,172	plus	335,376
LOC101751792	uncharacterized LOC101751792	13,196,390	13,209,087	minus	327,461
NTRK3	neurotrophic receptor tyrosine kinase 3	13,227,881	13,408,049	plus	128,499
LOC107054207	uncharacterized LOC107054207	13,381,318	13,386,137	minus	150,411
LOC107054206	uncharacterized LOC107054206	13,388,442	13,616,738	minus	0
AGBL1	ATP/GTP binding protein like 1	13,623,118	13,914,436	minus	86,57
KLHL25	kelch like family member 25	13,954,963	13,969,663	plus	418,415

			AKAP13	A-kinase anchoring protein 13	13,974,501	14,169,240	minus	437,953
			<i>LOC107054188</i>	uncharacterized LOC107054188	14,182,433	14,183,328	minus	645,885
			SV2B	synaptic vesicle glycoprotein 2B	14,187,010	14,235,623	plus	650,462
rs318098582	11	18,651,449	BANP	BTG3 associated nuclear protein	18,243,614	18,386,758	plus	264,691
			ZNF469	zinc finger protein 469	18,416,335	18,579,095	plus	72,354
			LOC107054329	uncharacterized LOC107054329	18,541,302	18,548,014	minus	103,435
			ZFPM1	zinc finger protein, FOG family member 1	18,584,457	18,613,764	plus	37,685
			CIDEC	cell death inducing DFFA like effector c	18,614,459	18,616,305	minus	35,144
			ZC3H18	zinc finger CCCH- type containing 18	18,617,357	18,656,718	plus	0
			MIR1571	microRNA 1571	18,632,364	18,632,461	plus	18,988
			IL17C	interleukin 17C	18,658,034	18,663,248	plus	6,585
			СҮВА	cytochrome b-245 alpha chain	18,663,342	18,665,615	minus	11,893
			MVD	mevalonate diphosphate decarboxylase	18,665,712	18,668,663	minus	14,263
			RNF166	ring finger protein 166	18,670,083	18,677,685	minus	18,634
			CTU2	cytosolic thiouridylase subunit 2	18,677,742	18,681,201	plus	26,293
			PIEZO1	piezo type mechanosensitive ion channel component 1	18,681,139	18,700,645	minus	29,69
			LOC107054330	nascent polypeptide- associated complex subunit alpha,	18,696,540	18,698,959	plus	45,091

				muscle-specific form- like				
			CDT1	chromatin licensing and DNA replication factor 1	18,701,940	18,705,724	plus	50,491
			APRT	adenine phosphoribosyltransf erase	18,706,797	18,709,506	minus	55,348
			GALNS	galactosamine (N- acetyl)-6-sulfatase	18,714,200	18,758,480	minus	62,751
			TRAPPC2L	trafficking protein particle complex 2 like	18,758,475	18,761,079	plus	107,026
			PABPN1L	poly(A) binding protein nuclear 1 like, cytoplasmic	18,762,170	18,765,810	minus	110,721
			CBFA2T3	CBFA2/RUNX1 translocation partner 3	18,767,307	18,788,285	minus	115,858
			ACSF3	acyl-CoA synthetase family member 3	18,805,694	18,846,630	plus	154,245
			CDH15	cadherin 15	18,848,471	18,853,003	plus	197,022
			SLC22A31	solute carrier family 22 member 31	18,853,081	18,856,750	minus	201,632
			ANKRD11	ankyrin repeat domain 11	18,857,696	18,939,049	minus	206,247
			MIR1560	microRNA 1560	18,874,320	18,874,423	minus	222,871
			MIR1785	microRNA 1785	18,926,659	18,926,760	minus	275,21
			SPG7	SPG7, paraplegin matrix AAA peptidase subunit	18,946,166	18,976,689	plus	294,717
rs317945754	15	3,557,083	EP400	E1A binding protein p400	2,582,896	2,628,948	minus	928,135
			PUS1	pseudouridylate synthase 1	2,629,662	2,634,569	minus	922,514
			ULK1	unc-51 like autophagy activating	2,635,904	2,708,526	minus	848,557

				kinase 1				
			MMP17	matrix metallopeptidase 17	2,722,077	2,765,544	minus	791,539
			SFSWAP	splicing factor SWAP homolog	2,792,492	2,832,182	minus	724,901
			STX2	syntaxin 2	2,926,591	3,223,484	plus	333,599
			ADGRD1	adhesion G protein- coupled receptor D1	3,062,231	3,191,688	minus	365,395
			RAN	RAN, member RAS oncogene family	3,201,356	3,205,602	minus	351,481
			RIMBP2	RIMS binding protein 2	3,223,574	3,347,096	plus	209,987
			PIWIL1	piwi like RNA- mediated gene silencing 1	3,347,780	3,421,290	minus	135,793
			FZD10	frizzled class receptor 10	3,432,876	3,435,118	minus	121,965
			LOC107051610	frizzled-10-like	3,442,998	3,446,063	minus	111,02
			TMEM132D	transmembrane protein 132D	3,526,053	3,718,886	plus	0
			GLT1D1	glycosyltransferase 1 domain containing 1	3,736,272	3,784,033	minus	179,189
			SLC15A4	solute carrier family 15 member 4	3,785,313	3,806,720	plus	228,23
			TMEM132C	transmembrane protein 132C	3,830,248	4,010,779	minus	273,165
			LOC107051578	uncharacterized LOC107051578	4,105,652	4,107,324	minus	548,569
			LOC107051609	uncharacterized LOC107051609	4,241,859	4,320,316	plus	684,776
			TMEM132B	transmembrane protein 132B	4,291,921	4,471,778	minus	734,838
			AACS	acetoacetyl-CoA synthetase	4,478,298	4,515,607	minus	921,215
rs316794400	22	4,594,855	LOC101751469	uncharacterized LOC101751469	4,576,077	4,577,398	minus	17,457

			ANXA4	annexin A4	4,584,810	4,594,055	plus	800
			SLC20A1	solute carrier family 20 member 1	4,596,702	4,604,387	plus	1,847
			NT5DC4	5'-nucleotidase domain containing 4	4,604,777	4,609,445	plus	9,922
			CKAP2L	cytoskeleton associated protein 2 like	4,609,435	4,616,294	minus	14,58
			LOC107054991	uncharacterized LOC107054991	4,616,423	4,616,974	plus	21,568
			IL1B	interleukin 1, beta	4,616,889	4,618,625	minus	22,034
rs317288536	25	976,833	BGLAP	bone gamma- carboxyglutamate protein	594	1,789	plus	975,044
			SMG5	SMG5, nonsense mediated mRNA decay factor	2,171	24,198	minus	952,635
			TMEM79	transmembrane protein 79	24,606	27,213	plus	949,62
			GLMP	glycosylated lysosomal membrane protein	27,661	31,956	minus	944,877
			CCT3	chaperonin containing TCP1 subunit 3	33,641	44,203	minus	932,63
			LOC107055078	uncharacterized LOC107055078	46,465	47,469	minus	929,364
			LOC107055080	nectin-4-like	54,112	60,599	minus	916,234
			LIM2	lens intrinsic membrane protein 2	61,134	68,96	minus	907,873
			LOC107055082	cytochrome b5 domain-containing protein 1-like	81,045	82,719	minus	894,114
			LOC107055083	uncharacterized LOC107055083	82,856	89,386	plus	887,447
			VPS45	vacuolar protein sorting 45 homolog	92,295	119,429	plus	857,404

PLEKHO1	pleckstrin homology domain containing O1	123,481	139,888	plus	836,945
LOC107055081	uncharacterized LOC107055081	142,235	150,69	plus	826,143
ANP32E	acidic nuclear phosphoprotein 32 family member E	162,05	174,225	minus	802,608
LOC100859767	cytochrome b5 domain-containing protein 1-like	204	205,667	plus	771,166
APOA1BP	apolipoprotein A-I binding protein	224,358	227,444	plus	749,389
GPATCH4	G-patch domain containing 4	227,411	231,838	minus	744,995
LOC107055084	uncharacterized LOC107055084	235,211	236,685	plus	740,148
МЕХЗА	mex-3 RNA binding family member A	247,371	260,425	minus	716,408
LOC107055086	sperm-associated antigen 4 protein-like	783,429	786,252	minus	190,581
LOC100857131	sperm-associated antigen 4 protein-like	797,89	798,435	minus	178,398
UBQLN4	ubiquilin 4	804,221	815,017	minus	161,816
LAMTOR2	late endosomal/lysosomal adaptor, MAPK and MTOR activator 2	815,073	817,92	plus	158,913
RAB25	RAB25, member RAS oncogene family	818,004	824,803	plus	152,03
RAB2B	RAB2B, member RAS oncogene family	825,467	830,852	plus	145,981
LOC101747704	uncharacterized LOC101747704	846,955	849,648	minus	127,185
LOC107055087	sperm-associated antigen 4 protein-like	855,482	858,864	minus	117,969
OTUD7B	OTU deubiquitinase	888,239	923,782	plus	53,051

	7B				
MTMR11	myotubularin related protein 11	925,626	933,506	plus	43,327
SF3B4	splicing factor 3b subunit 4	933,59	938,879	plus	37,954
SV2A	synaptic vesicle glycoprotein 2A	939,052	949,843	plus	26,99
LOC107055093	uncharacterized LOC107055093	950,637	951,127	plus	25,706
LOC107055108	feather keratin 3-like	953,49	954,648	plus	22,185
LOC107055109	feather keratin 3-like	956,426	957,314	plus	19,519
LOC100859249	feather keratin 3-like	959,38	960,434	plus	16,399
LOC107055107	feather keratin 1-like	959,446	963,95	plus	12,883
LOC100859427	feather keratin 1-like	966,46	967,631	plus	9,202
LOC426914	feather keratin 1-like	969,985	971,047	plus	5,786
F-KER	feather keratin I	973,471	980,575	plus	0
LOC429492	keratin D	973,475	974,554	plus	2,279
L0C431325	feather keratin 1-like	976,657	980,857	plus	0
LOC431324	keratin A	979,736	983,908	plus	2,903
LOC426913	feather keratin 1-like	982,753	987,425	plus	5,92
LOC431323	beta-keratin-related protein-like	991,47	993,152	plus	14,637
LOC431322	feather keratin 1-like	997,064	997,414	plus	20,231
LOC431321	keratin	1,002,033	1,004,112	plus	25,2
LOC431320	feather beta keratin- like	1,008,291	1,010,072	plus	31,458
LOC107055103	scale keratin-like	1,010,842	1,012,163	minus	34,009
LOC107055106	uncharacterized LOC107055106	1,014,345	1,015,145	plus	37,512
LOC431317	scale keratin-like	1,017,251	1,017,835	minus	40,418
LOC431316	scale keratin-like	1,018,813	1,019,553	plus	41,98
LOC100859586	scale keratin-like	1,020,735	1,021,650	minus	43,902

LOC100859657	scale keratin-like	1,020,928	1,025,554	minus	44,095
LOC100859616	scale keratin-like	1,022,275	1,023,023	plus	45,442
LOC425362	scale keratin-like	1,026,144	1,027,006	plus	49,311
LOC100857270	scale keratin-like	1,028,628	1,029,557	minus	51,795
LOC100859756	scale keratin-like	1,030,236	1,034,932	plus	53,403
LOC100859722	scale keratin-like	1,030,356	1,031,017	plus	53,523
LOC100857297	scale keratin-like	1,032,585	1,044,971	minus	55,752
LOC107055105	uncharacterized LOC107055105	1,032,750	1,040,322	plus	55,917
LOC426912	scale keratin-like	1,036,532	1,037,365	minus	59,699
LOC100859790	scale keratin-like	1,037,906	1,038,601	plus	61,073
LOC101751554	scale keratin-like	1,040,076	1,040,849	minus	63,243
LOC100857367	scale keratin-like	1,041,747	1,042,135	plus	64,914
LOC107055104	scale keratin-like	1,044,261	1,044,828	minus	67,428
LOC101750668	scale keratin-like	1,045,428	1,046,372	plus	68,595
LOC396480	keratin	1,048,622	1,050,613	minus	71,789
LOC101750550	scale keratin-like	1,052,489	1,053,802	plus	75,656
LOC396479	keratin	1,055,266	1,056,859	minus	78,433
LOC431314	scale keratin-like	1,058,333	1,060,625	plus	81,5
<i>LOC</i> 769486	scale keratin-like	1,064,610	1,066,554	plus	87,777
LOC107055102	uncharacterized LOC107055102	1,067,878	1,069,936	plus	91,045
LOC408038	beta-keratin	1,069,829	1,071,422	minus	92,996
LOC431313	feather beta keratin- like	1,074,635	1,075,569	plus	97,802
LOC107055092	uncharacterized LOC107055092	1,078,270	1,079,527	minus	101,437
LOC100857468	feather keratin Cos1- 1/Cos1-3/Cos2-1-like	1,080,919	1,087,221	minus	104,086
LOC107055101	uncharacterized LOC107055101	1,093,075	1,095,264	minus	116,242
LOC101751614	keratin, type I	1,098,677	1,100,340	minus	121,844

	cytoskeletal 9-like				
LOC107055091	beta-keratin-related protein-like	1,102,072	1,103,363	plus	125,239
LOC107055090	uncharacterized LOC107055090	1,106,254	1,107,828	plus	129,421
LOC107055100	uncharacterized LOC107055100	1,109,328	1,111,524	minus	132,495
LOC101751113	titin-like	1,116,120	1,122,481	plus	139,287
LOC107055099	uncharacterized LOC107055099	1,116,136	1,119,078	minus	139,303
EDYM2	epidermal differentiation protein containing Y motif 2	1,122,288	1,125,199	minus	145,455
EDQREP	epidermal differentiation protein containing glutamine (Q) repeats	1,127,324	1,130,658	minus	150,491
EDPE	epidermal differentiation protein rich in proline and glutamic acid (E)	1,139,306	1,142,301	plus	162,473
LOC107055098	epidermal differentiation protein containing glutamine (Q) repeats-like	1,144,136	1,145,825	minus	167,303
EDQCM	epidermal differentiation protein containing QC motifs	1,148,589	1,150,441	minus	171,756
EDDM	epidermal differentiation protein containing DPCC motifs	1,154,359	1,157,611	minus	177,526
EDNC	epidermal	1,159,110	1,161,256	plus	182,277

	differentiation protein encoded by neighbor of cornulin				
CRNN	cornulin	1,168,202	1,170,459	plus	191,369
SCFN	scaffoldin	1,173,597	1,177,833	plus	196,764
LOC107055094	trichohyalin-like	1,178,020	1,190,574	plus	201,187
S100A11	S100 calcium binding protein A11	1,201,165	1,202,884	plus	224,332
COPA	coatomer protein complex subunit alpha	1,203,325	1,221,735	minus	226,492
NCSTN	nicastrin	1,221,813	1,232,683	plus	244,98
NHLH1	nescient helix-loop- helix 1	1,241,431	1,246,232	plus	264,598
LOC107055095	uncharacterized LOC107055095	1,246,142	1,253,267	minus	269,309
VANGL2	VANGL planar cell polarity protein 2	1,250,127	1,262,898	plus	273,294
LY9	lymphocyte antigen 9	1,266,694	1,272,789	minus	289,861
SLAMF1	signaling lymphocytic activation molecule family member 1	1,274,631	1,280,327	minus	297,798
<i>CD48</i>	CD48 molecule	1,282,479	1,284,960	minus	305,646
CD244	CD244 molecule	1,285,835	1,293,468	minus	309,002
LOC101750757	uncharacterized LOC101750757	1,296,055	1,297,931	plus	319,222
KIRREL	kin of IRRE like (Drosophila)	1,301,854	1,321,563	plus	325,021
LOC101750908	T-lymphocyte surface antigen Ly-9-like	1,323,643	1,330,948	plus	346,81
SLAMF8	SLAM family member 8	1,331,041	1,334,671	plus	354,208
ETV3	ETS variant 3	1,334,908	1,344,750	plus	358,075
ETV3L	ETS variant 3 like	1,353,678	1,355,999	plus	376,845
ARHGEF11	Rho guanine	1,357,481	1,378,565	plus	380,648

	nucleotide exchange factor 11				
LRRC71	leucine rich repeat containing 71	1,379,498	1,382,513	minus	402,665
	platelet endothelial aggregation receptor	1,382,768	1,391,921	minus	405,935
PEARI					
NTRK1	neurotrophic receptor tyrosine kinase 1	1,394,975	1,402,575	minus	418,142
INSRR	insulin receptor related receptor	1,403,569	1,413,068	minus	426,736
LOC100857512	death-associated protein kinase 2-like	1,413,151	1,416,561	minus	436,318
SH2D2A	SH2 domain containing 2A	1,416,567	1,421,255	plus	439,734
PRCC	papillary renal cell carcinoma (translocation- associated)	1,421,164	1,430,083	minus	444,331
HDGF	hepatoma-derived growth factor	1,432,110	1,437,580	plus	455,277
MRPL24	mitochondrial ribosomal protein L24	1,438,014	1,439,195	plus	461,181
RRNADI	ribosomal RNA adenine dimethylase domain containing 1	1,439,293	1,442,440	minus	462,46
CRABP2	cellular retinoic acid binding protein 2	1,448,446	1,451,746	plus	471,613
LOC425431	dnaJ homolog subfamily A member 1-like	1,455,339	1,458,566	minus	478,506
NES	nestin	1,462,876	1,470,387	minus	486,043
BCAN	brevican	1,473,720	1,486,466	plus	496,887
HAPLN2	hyaluronan and proteoglycan link	1,487,083	1,489,801	minus	510,25

	protein 2				
RHBG	Rh family B glycoprotein	1,490,958	1,496,016	plus	514,125
LOC107055112	uncharacterized LOC107055112	1,505,796	1,508,625	minus	528,963
LOC107055111	uncharacterized LOC107055111	1,521,253	1,544,127	minus	544,42
MEF2D	myocyte enhancer factor 2D	1,557,855	1,582,946	minus	581,022
LOC107055110	uncharacterized LOC107055110	1,598,470	1,599,898	plus	621,637
LOC101750487	uncharacterized LOC101750487	1,609,167	1,620,210	minus	632,334
LOC101750716	uncharacterized LOC101750716	1,620,907	1,627,137	minus	644,074
LOC107055114	E3 SUMO-protein ligase PIAS3-like	1,636,879	1,651,430	plus	660,046
MIR6662	microRNA 6662	1,637,951	1,638,060	minus	661,118
INTS3	integrator complex subunit 3	1,654,016	1,685,697	minus	677,183
LOC107055115	atrial natriuretic peptide receptor 1- like	1,686,320	1,696,310	minus	709,487
LOC107055116	atrial natriuretic peptide receptor 1- like	1,696,623	1,700,257	minus	719,79
ILF2	interleukin enhancer binding factor 2	1,701,006	1,705,564	plus	724,173
SNAPIN	SNAP associated protein	1,705,771	1,706,895	minus	728,938
IL6R	interleukin 6 receptor	1,708,497	1,714,085	plus	731,664
SHE	Src homology 2 domain containing E	1,715,301	1,720,734	minus	738,468
UBE2Q1	ubiquitin conjugating enzyme E2 Q1	1,722,132	1,729,019	minus	745,299
CHRNB2	cholinergic receptor nicotinic beta 2	1,729,683	1,734,479	plus	752,85

	subunit				
ADAR	adenosine deaminase, RNA specific	1,735,473	1,747,289	minus	758,64
KCNN3	potassium calcium- activated channel subfamily N member 3	1,758,811	1,780,362	minus	781,978
PMVK	phosphomevalonate kinase	1,781,459	1,784,289	minus	804,626
PBXIP1	PBX homeobox interacting protein 1	1,784,644	1,788,641	minus	807,811
PYGO2	pygopus family PHD finger 2	1,788,639	1,790,498	minus	811,806
SHC1	SHC adaptor protein 1	1,790,787	1,800,935	minus	813,954
CKS1B	CDC28 protein kinase regulatory subunit 1B	1,801,177	1,802,314	plus	824,344
FLAD1	flavin adenine dinucleotide synthetase 1	1,802,652	1,808,111	plus	825,819
ZBTB7B	zinc finger and BTB domain containing 7B	1,812,250	1,830,425	plus	835,417
DCST2	DC-STAMP domain containing 2	1,832,750	1,837,666	minus	855,917
SMAD4	SMAD family member 4	1,838,974	1,844,533	minus	862,141
СНТОР	chromatin target of PRMT1	1,847,078	1,853,476	minus	870,245
S100A1	S100 calcium binding protein A1	1,853,739	1,856,049	minus	876,906
S100A13	S100 calcium binding protein A13	1,857,835	1,859,090	plus	881,002
S100A14	S100 calcium binding protein A14	1,861,081	1,863,210	plus	884,248
S100A16	S100 calcium binding	1,865,897	1,868,591	plus	889,064

	protein A16				
S100A4	S100 calcium binding protein A4	1,869,231	1,871,230	plus	892,398
S100A6	S100 calcium binding protein A6	1,874,323	1,875,575	plus	897,49
LOC101747386	protein S100-A9-like	1,877,071	1,878,016	plus	900,238
S100A9	S100 calcium binding protein A9	1,885,186	1,886,621	plus	908,353
EDKM	epidermal differentiation protein containing a KKLIQQ motif	1,892,914	1,895,414	plus	916,081
EDQM1	epidermal differentiation protein containing a glutamine (Q) motif 1	1,895,773	1,896,542	minus	918,94
EDQM2	epidermal differentiation protein containing a glutamine (Q) motif 2	1,899,100	1,900,320	minus	922,267
EDWM	epidermal differentiation protein containing WYDP motif	1,906,417	1,907,809	minus	929,584
EDCH5	epidermal differentiation protein containing cysteine histidine motifs 5	1,909,483	1,911,230	minus	932,65
EDMPN1	epidermal differentiation protein containing a MPN sequence motif 1	1,912,397	1,913,451	minus	935,564
EDCRP	epidermal differentiation cysteine-rich protein	1,919,906	1,922,026	minus	943,073

			EDCH4	epidermal differentiation protein containing cysteine histidine motifs 4	1,931,045	1,932,007	minus	954,212
	EDGH	epidermal differentiation protein rich in glycine and histidine	1,940,110	1,942,027	minus	963,277		
			LOR1	loricrin 1	1,943,612	1,951,026	minus	966,779
			LOR2	loricrin 2	1,943,846	1,946,131	minus	967,013
			LOR3	loricrin 3	1,952,705	1,955,656	minus	975,872
	EDMTF4	epidermal differentiation protein starting with MTF motif 4	1,960,713	1,980,545	plus	983,88		
rs317627533	26	4,597,439	SYT6	synaptotagmin 6	3,808,772	3,837,467	minus	759,972
		TRIM33	tripartite motif containing 33	3,844,903	3,869,654	minus	727,785	
			BCAS2	breast carcinoma amplified sequence 2	3,869,908	3,872,919	minus	724,52
			DENND2C	DENN domain containing 2C	3,872,935	3,887,414	minus	710,025
			AMPD1	adenosine monophosphate deaminase 1	3,892,276	3,902,376	minus	695,063
			NRAS	neuroblastoma RAS viral oncogene homolog	3,906,425	3,912,827	minus	684,612
			CSDE1	cold shock domain containing E1	3,912,971	3,930,268	minus	667,171
	SIKE1 BARL	suppressor of IKBKE 1	3,930,830	3,935,439	minus	662		
		bile acid receptor- like	3,941,128	3,952,591	plus	644,848		
			SYCP1	synaptonemal complex protein 1	3,951,965	3,966,955	plus	630,484

LOC107049139	synaptonemal complex protein 1- like	3,966,969	3,974,901	plus	622,538
TSHB	thyroid stimulating hormone beta	3,974,272	3,987,526	plus	609,913
TSPAN2	tetraspanin 2	3,985,688	4,005,584	minus	591,855
LOC101747848	uncharacterized LOC101747848	4,007,609	4,013,783	plus	583,656
NGF	nerve growth factor	4,027,894	4,050,872	minus	546,567
LOC101747895	uncharacterized LOC101747895	4,059,614	4,065,666	minus	531,773
LOC101747934	uncharacterized LOC101747934	4,066,019	4,077,162	minus	520,277
FANCE	Fanconi anemia complementation group E	4,080,342	4,084,706	minus	512,733
MKRN3	makorin ring finger protein 3	4,084,828	4,086,964	minus	510,475
PPARD	peroxisome proliferator activated receptor delta	4,089,638	4,106,338	minus	491,101
DEF6	DEF6, guanine nucleotide exchange factor	4,108,781	4,120,796	minus	476,643
ZNF76	zinc finger protein 76	4,121,087	4,130,610	minus	466,829
RPL10A	ribosomal protein L10a	4,130,666	4,134,401	plus	463,038
SCUBE3	signal peptide, CUB domain and EGF like domain containing 3	4,135,277	4,165,701	minus	431,738
TCP11	t-complex 11	4,177,656	4,188,605	plus	408,834
ANKS1A	ankyrin repeat and sterile alpha motif domain containing IA	4,186,369	4,271,993	minus	325,446
LOC107055188	uncharacterized	4,243,866	4,248,941	plus	348,498

	LOC107055188				
TAF11	TATA-box binding protein associated factor 11	4,272,574	4,276,039	plus	321,4
UHRF1BP1	UHRF1 binding protein 1	4,276,310	4,303,901	minus	293,538
SNRPC	small nuclear ribonucleoprotein polypeptide C	4,306,380	4,310,436	minus	287,003
C26H6orf106	chromosome 26 C6orf106 homolog	4,312,154	4,344,017	plus	253,422
SPDEF	SAM pointed domain containing ETS transcription factor	4,353,136	4,359,030	plus	238,409
PACSIN1	protein kinase C and casein kinase substrate in neurons 1	4,359,838	4,375,042	minus	222,397
RPS10	ribosomal protein S10	4,376,915	4,382,439	plus	215
NUDT3	nudix hydrolase 3	4,384,291	4,411,296	plus	186,143
LOC100858737	uncharacterized LOC100858737	4,412,794	4,414,947	plus	182,492
HMGA1	high mobility group AT-hook 1	4,415,782	4,421,656	minus	175,783
LOC107055185	uncharacterized LOC107055185	4,421,016	4,430,830	plus	166,609
GRM4	glutamate receptor, metabotropic 4	4,434,279	4,475,476	plus	121,963
LOC101750261	uncharacterized LOC101750261	4,539,410	4,571,201	plus	26,238
OPN1MSW	opsin, green sensitive (rhodopsin-like)	4,557,195	4,562,805	minus	34,634
MLN	motilin	4,573,764	4,580,079	plus	17,36
LEMD2	LEM domain containing 2	4,584,641	4,597,668	plus	0

LOC107055184	uncharacterized LOC107055184	4,597,433	4,601,335	minus	0
IP6K3	inositol hexakisphosphate kinase 3	4,601,290	4,614,097	plus	3,851
C26H6ORF125	chromosome 26 open reading frame, human C6orf125	4,615,609	4,620,391	plus	18,17
ITPR3	inositol 1,4,5- trisphosphate receptor type 3	4,619,903	4,659,888	minus	22,464
LOC768477	uncharacterized LOC768477	4,669,560	4,675,843	minus	72,121
BAK1	BCL2 antagonist/killer 1	4,677,808	4,689,669	plus	80,369
LOC107055182	uncharacterized LOC107055182	4,690,003	4,698,367	minus	92,564
TSPO2	translocator protein 2	4,698,990	4,704,107	plus	101,551
LOC107055181	uncharacterized LOC107055181	4,707,001	4,710,843	minus	109,562
APOBEC2	apolipoprotein B mRNA editing enzyme catalytic subunit 2	4,710,803	4,718,654	plus	113,364
OARD1	O-acyl-ADP-ribose deacylase 1	4,719,478	4,722,726	minus	122,039
LOC107055164	glycine-rich protein DOT1-like	4,722,793	4,723,646	plus	125,354
NFYA	nuclear transcription factor Y subunit alpha	4,723,085	4,737,464	plus	125,646
LOC100858470	uncharacterized LOC100858470	4,737,878	4,774,348	plus	140,439
TREM-B1	triggering receptor expressed on myeloid cells B1	4,741,376	4,747,862	minus	143,937
TREM2	triggering receptor expressed on myeloid	4,749,175	4,753,562	minus	151,736

	cells 2				
TREM-B2	triggering receptor expressed on myeloid cells B2	4,755,477	4,761,898	minus	158,038
LOC107055180	uncharacterized LOC107055180	4,782,696	4,797,766	plus	185,257
LOC107055165	uncharacterized LOC107055165	4,802,076	4,806,903	plus	204,637
FOXP4L	forkhead box protein P4-like	4,844,332	4,887,023	plus	246,893
MDFI	MyoD family inhibitor	4,891,121	4,906,184	plus	293,682
TFEB	transcription factor EB	4,925,985	4,940,293	minus	328,546
GASTL	gastricsin-like	4,942,094	4,945,050	minus	344,655
PGC	progastricsin (pepsinogen C)	4,946,918	4,950,762	minus	349,479
FRS3	fibroblast growth factor receptor substrate 3	4,952,522	4,965,746	minus	355,083
PRICKLE4	prickle planar cell polarity protein 4	4,966,313	4,973,328	plus	368,874
LOC101749017	platelet binding protein GspB-like	4,973,531	4,985,366	minus	376,092
ТОММ6	translocase of outer mitochondrial membrane 6	4,985,455	4,986,384	plus	388,016
USP49	ubiquitin specific peptidase 49	4,986,408	5,019,177	minus	388,969
LOC107055176	uncharacterized LOC107055176	5,019,458	5,022,472	plus	422,019
MED20	mediator complex subunit 20	5,022,173	5,026,778	minus	424,734
BYSL	bystin like	5,026,764	5,031,080	plus	429,325
CCND3	cyclin D3	5,030,661	5,069,048	minus	433,222
TAF8	TATA-box binding	5,069,068	5,076,732	plus	471,629

				protein associated factor 8				
			PIFO	primary cilia formation	5,078,237	5,081,253	minus	480,798
			CHIA-M31	chitinase-M31, acidic	5,081,386	5,086,043	minus	483,947
			CHIA	chitinase, acidic	5,088,647	5,092,767	minus	491,208
			<i>LOC</i> 768786	acidic mammalian chitinase-like	5,095,653	5,100,518	minus	498,214
	LOC107055174	uncharacterized LOC107055174	5,107,408	5,111,368	plus	509,969		
	LOC107055171	uncharacterized LOC107055171	5,120,914	5,123,009	minus	523,475		
			BTG2	BTG anti- proliferation factor 2	5,123,154	5,127,216	plus	525,715
			LOC107055173	uncharacterized LOC107055173	5,128,663	5,129,912	minus	531,224
			LOC107055172	uncharacterized LOC107055172	5,129,960	5,131,921	plus	532,521
			FMOD	fibromodulin	5,133,650	5,140,211	minus	536,211
			LOC107055169	uncharacterized LOC107055169	5,153,629	5,170,330	minus	556,19
			PRELP	proline and arginine rich end leucine rich repeat protein	5,163,841	5,174,857	plus	566,402
			OPTC	opticin	5,176,849	5,180,331	plus	579,41
			ATP2B4	ATPase plasma membrane Ca2+ transporting 4	5,210,403	5,247,582	plus	612,964
			LOC107055168	uncharacterized LOC107055168	5,245,482	5,259,467	minus	648,043
			MIR7454	microRNA 7454	5,270,406	5,270,459	minus	672,967
rs314452928	27	104,022	LOC107055210	uncharacterized LOC107055210	506	1,277	plus	102,745
			LOC107049042	olfactory receptor 4M1-like	7,537	8,651	minus	95,371
			LOC768958	olfactory receptor	19,365	20,677	minus	83,345
				6B1-like				
-------------	----	-----------	--------------	---	-----------	-----------	-------	---------
			MROH8	maestro heat like repeat family member 8	28,315	37,726	minus	66,296
			LOC107055211	uncharacterized LOC107055211	47,117	47,583	minus	56,439
			LOC101751094	uncharacterized LOC101751094	58,462	62,958	minus	41,064
			LOC107049117	uncharacterized LOC107049117	66,251	68,943	minus	35,079
			LOH11CR2A	loss of heterozygosity, 11, chromosomal region 2, gene A	160,44	171,21	plus	56,418
			LOC107055212	uncharacterized LOC107055212	160,85	166,792	minus	56,828
			DAD1	defender against cell death 1	172,289	175,051	plus	68,267
			IGHVL	Ig heavy chain Mem5-like	181,398	731,094	minus	77,376
			LOC101750797	immunoglobulin omega chain-like	224,224	584,73	minus	120,202
rs315329074	27	4,528,275	TRNAI-UAU	transfer RNA isoleucine (anticodon UAU)	4,520,423	4,520,513	plus	7,762
			TRNAQ-UUG	transfer RNA glutamine (anticodon UUG)	3,640,823	3,640,894	minus	887,381
			MEOX1	mesenchyme homeobox 1	3,530,597	3,536,176	plus	992,099
			ETV4	ETS variant 4	3,548,537	3,564,258	plus	964,017
			DHX8	DEAH-box helicase 8	3,567,743	3,579,115	minus	949,16
			РНВ	prohibitin	3,580,883	3,585,030	plus	943,245
			LOC101750197	uncharacterized LOC101750197	3,582,478	3,592,058	minus	936,217
			ZNF652	zinc finger protein	3,592,238	3,620,525	plus	907,75

1		652			1	
	PHOSPHO1	phosphoethanolamine /phosphocholine phosphatase	3,623,753	3,631,815	plus	896,46
	ABI3	ABI family member 3	3,631,245	3,637,401	minus	890,874
	GNGT2	G protein subunit gamma transducin 2	3,637,559	3,639,810	plus	888,465
	IGF2BP1	insulin like growth factor 2 mRNA binding protein 1	3,648,588	3,672,763	minus	855,512
	GIP	gastric inhibitory polypeptide	3,682,114	3,689,763	plus	838,512
	SNF8	SNF8, ESCRT-II complex subunit	3,690,040	3,693,337	plus	834,938
	UBE2Z	ubiquitin conjugating enzyme E2 Z	3,693,620	3,705,485	minus	822,79
	ATP5G1	ATP synthase, H+ transporting, mitochondrial Fo complex subunit C1 (subunit 9)	3,707,200	3,709,533	minus	818,742
	CALCOCO2	calcium binding and coiled-coil domain 2	3,709,693	3,719,291	plus	808,984
	HOXB13	homeobox B13	3,742,876	3,745,452	plus	782,823
	LOC107055286	uncharacterized LOC107055286	3,764,713	3,778,499	plus	749,776
	MIR196A1	microRNA 196a-1	3,775,036	3,775,130	plus	753,145
	НОХВ9	homeobox B9	3,781,877	3,788,281	plus	739,994
	HOXB8	homeobox B8	3,795,352	3,796,999	plus	731,276
	HOXB7	homeobox B7	3,798,149	3,803,481	plus	724,794
	LOC107055284	uncharacterized LOC107055284	3,810,034	3,821,988	minus	706,287
	НОХВ6	homeobox B6	3,812,716	3,815,203	plus	713,072
	HOXB5	homeobox B5	3,818,138	3,820,563	plus	707,712
	MIR10A	microRNA 10a	3,834,170	3,834,243	plus	694,032

	HOXB4	homeobox B4	3,835,207	3,840,489	plus	687,786
	LOC107055283	uncharacterized LOC107055283	3,837,488	3,843,542	minus	684,733
	HOXB3	homeobox B3	3,840,562	3,864,857	plus	663,418
	LOC107055285	uncharacterized LOC107055285	3,852,258	3,856,707	minus	671,568
	HOXB2	homeobox B2	3,867,101	3,871,833	plus	656,442
	LOC107055282	uncharacterized LOC107055282	3,868,775	3,870,699	minus	657,576
	HOXB1	homeobox B1	3,879,443	3,882,191	plus	646,084
	LOC419994	src kinase-associated phosphoprotein 1-like	3,927,113	3,969,088	plus	559,187
	LOC101751838	uncharacterized LOC101751838	3,980,545	3,984,567	minus	543,708
	TBKBP1	TBK1 binding protein 1	4,013,103	4,024,426	minus	503,849
	KPNB1	karyopherin subunit beta 1	4,029,274	4,049,551	minus	478,724
	NPEPPS	aminopeptidase puromycin sensitive	4,052,247	4,080,818	minus	447,457
	MRPL45	mitochondrial ribosomal protein L45	4,083,516	4,087,147	plus	441,128
	GPR179	G protein-coupled receptor 179	4,089,962	4,097,067	minus	431,208
	SOCS7	suppressor of cytokine signaling 7	4,098,027	4,106,014	plus	422,261
	SKAP1	src kinase associated phosphoprotein 1	4,120,634	4,160,530	plus	367,745
	SNX11	sorting nexin 11	4,162,424	4,168,386	minus	359,889
	CBX1	chromobox 1	4,168,538	4,176,552	plus	351,723
	NFE2L1	nuclear factor, erythroid 2 like 1	4,179,406	4,188,312	minus	339,963
	LOC107055292	uncharacterized LOC107055292	4,188,341	4,189,844	plus	338,431

CDK	CDK5 regulatory subunit associated protein 3	4,192,066	4,195,013	minus	333,262
PK	RR15L proline rich 15 like	4,195,737	4,196,844	plus	331,431
P	NPO pyridoxamine 5'- phosphate oxidase	4,199,228	4,201,514	minus	326,761
	SP2 Sp2 transcription factor	4,202,904	4,212,077	minus	316,198
	SP6 Sp6 transcription factor	4,219,693	4,222,841	plus	305,434
SC	CRN2 secernin 2	4,223,661	4,226,254	plus	302,021
	RRC46 leucine rich repeat containing 46	4,226,229	4,229,327	minus	298,948
MI	mitochondrial ribosomal protein RPL10 L10	4,229,306	4,231,308	plus	296,967
OS	oxysterol bindingSBPL7protein like 7	4,231,743	4,238,314	plus	289,961
	BX21 T-box 21	4,238,676	4,245,894	minus	282,381
ARH	IGAP23 Rho GTPase activating protein 23	4,260,935	4,274,769	plus	253,506
SR	SRC kinase signalingRCIN1inhibitor 1	4,278,768	4,318,568	minus	209,707
LOCI	<i>SKI/DACH domain- containing protein 1- 07055293 like</i>	4,356,552	4,360,423	minus	167,852
MI	R6663 microRNA 6663	4,371,072	4,371,181	minus	157,094
М	<i>MLLT6, PHD finger</i> <i>domain containing</i>	4,374,478	4,403,841	plus	124,434
MI	R1735 microRNA 1735	4,391,229	4,391,307	plus	136,968
LOCI	polycomb group RING finger protein 07055294 2-like	4,405,220	4,407,907	minus	120,368
LOCI	07055296 protein AF-17-like	4,410,156	4,419,961	plus	108,314
	ISD3 CDGSH iron sulfur domain 3	4,421,720	4,422,397	plus	105,878

PCGF2	polycomb group ring finger 2	4,422,951	4,428,429	minus	99,846
LOC107055298	POU domain, class 3, transcription factor 3-like	4,425,831	4,427,935	plus	100,34
PSMB3	proteasome subunit beta 3	4,430,285	4,433,174	plus	95,101
PIP4K2B	phosphatidylinositol- 5-phosphate 4-kinase type 2 beta	4,434,946	4,450,427	minus	77,848
CWC25	CWC25 spliceosome associated protein homolog	4,451,015	4,459,377	minus	68,898
RPL23	ribosomal protein L23	4,463,064	4,465,066	minus	63,209
LASP1	LIM and SH3 protein 1	4,466,693	4,486,609	plus	41,666
FBXO47	F-box protein 47	4,490,226	4,500,566	minus	27,709
LOC101749109	uncharacterized LOC101749109	4,498,009	4,506,617	plus	21,658
PLXDC1	plexin domain containing 1	4,505,312	4,518,001	minus	10,274
LOC100858629	dickkopf-related protein 1-like	4,519,315	4,521,946	plus	6,329
CACNBI	calcium voltage- gated channel auxiliary subunit beta 1	4,521,859	4,534,179	minus	0
RPL19	ribosomal protein L19	4,534,596	4,536,944	plus	6,321
FBXL20	<i>F-box and leucine</i> <i>rich repeat protein 20</i>	4,537,208	4,558,569	minus	8,933
MED1	mediator complex subunit 1	4,558,906	4,572,538	minus	30,631
CDK12	cyclin dependent kinase 12	4,572,918	4,595,934	plus	44,643
NEUROD2	neuronal	4,610,541	4,613,182	minus	82,266

PP1RIBdifferentiation 2 protein phosphatase regulatory inhibitor submit 1B SAR related lipid transfer domain containing 3 TCAP4.621,2544.626,595plus92,979STARD3STARD34.624,8144.643,949plus98,539TCAPtiin-cap pherelchandamine a post-GP1 attachment to protein 3 erb-b2 receptor prostink factor receptor bound GRB74.644,7414.646,231plus116,466PMATN-methyltranufgenze to protein shanks 2 erb-b2 receptor prostink factor receptor bound GRB74.651,3044.662,312plus118,96PGAP3erb-b2 receptor prostink factor receptor bound debrigger 34.663,3344.662,322plus112,106ERB82 UC100858293erb-b2 receptor prostink factor receptor bound debrigger 34.661,0334.664,878minus132,408ILOC100858293 IRRC3Cdebrigger 3 zona pellucida baiding protein 2 south informer 4 regulator 3 regulator 3 GSDM1 grader aregulator 3 regulator 3 for any south factor receptor bound receptor bound debrigger 3 zona pellucida baiding protein 2 south factor regulator 3 regulator 3 for any south factor receptor bound debrigger 3 zona pellucida baiding protein 2 south factor regulator 3 for any south factor <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
PPPIRIB Protein phospharser regulators 4,621,254 4,626,595 plus 92,979 STARD StAR related lipid transfer domain containing 3 4,621,254 4,626,595 plus 98,539 STARD STARD 4,647,741 4,646,231 plus 98,539 TCAP thirt-cap phenylethanotamice Network/transferase 4,647,741 4,646,231 plus 116,466 PNMT Network/transferase post-GP1 attachment to proteins 3 et-b-b zeceptor 4,643,381 4,652,406 minus 121,106 4.647,235 4,649,104 plus 118,96 121,106 MR6547 minus transferation and invasion enhancer 1 growth factor 4,662,322 plus 112,106 GRB7 receptor bound invasion enhancer 1 growth factor 4,665,681 4,671,472 plus 133,406 LOC100858293 KRC63 fimily grice regulator 3 4,671,617 4,664,878 minus 143,342 LRC3C containing 3C 4,700,373 4,706,427 plus 143,342 LRC3C containing 3C 4,711,386 4,714,334		differentiation 2				
SiAR related lipid STARD3 SiAR related lipid containing 3 4,626,814 4,643,949 plus 98,539 TCAP tim-cap piterpitehanolamic PMMT tim-cap post GP 107016000 4,644,741 4,646,231 plus 116,466 PMMT posteins 3 erb-b2 receptor to proteins 3 erb-b2 receptor growth factor receptor bound MIEN1 4,623,814 4,642,325 4,649,104 plus 118,96 MEN1 incraRNA 6547 4,647,235 4,662,322 plus 121,106 MIR0547 micraRNA 6547 4,660,083 4,660,082 plus 132,408 MIEN1 invasion enhancer growth factor receiptor bound protein 7 retinol 4,665,681 4,671,472 plus 1137,406 LOC100858293 dehydrogenase 8-like finger 3 zona pellucida biosynthesis reclinal dehydrogenase 8-like LOC10705597 4,671,617 4,674,052 plus 143,342 LRRC3C bisic proline-rich oRMDL3 finger 3 zona pellucida biosynthesis regulator 3 4,713,858 4,714,334 minus 182,111 MIR05,9H bisic proline-rich oprotexinaling 2C 4,713,858 4,714,334 plus 188,95 Coloromosing CORMDL3 gasdermin A proteasone 268 4,731,389 4,735,51	PPP1R1B	protein phosphatase 1 regulatory inhibitor subunit 1B	4,621,254	4,626,595	plus	92,979
Image: Construct of the second sec	STARD3	StAR related lipid transfer domain containing 3	4,626,814	4,643,949	plus	98,539
PNMT Phenylethanolamine N-methyltransferase post-GPI attachment to proteins 3 erb-b2 receptor PGAP3 4.647,235 4.649,104 plus 118,96 PGAP3 post-GPI attachment to proteins 3 erb-b2 receptor tyrosine kinase 2 4.649,381 4.652,406 minus 121,106 ERBB2 microRNA 6547 4.660,683 4.660,802 plus 132,408 MIEN1 migration and invasion enhanceri growth factor receptor bonch 4.665,681 4.671,472 plus 133,406 GRB7 protein 7 receptor bonch 4.665,681 4.671,472 plus 143,342 LOC100858293 texting protein 7 receptor bonch 4.667,6390 4.700,355 minus 148,115 LRC3C containing 3C sona pellucida binding protein 2 containing 3C 4.710,386 4.711,434 minus 182,111 LRC3C orman grader min A growth factor regulator 3 regulator 3 4.717,225 4.725,376 plus 188,95 GRB7 protein-rick protein-	ТСАР	titin-cap	4,644,741	4,646,231	plus	116,466
PGAP3 post-GP attachment or b-D2 receptor tyrosine kinase 2 MIR6547 4,669,381 4,652,406 minus 121,106 ERBB2 tyrosine kinase 2 MIR6547 microRNA 6547 4,653,394 4,662,322 plus 123,408 MIEN1 migration and invasion enhancer 1 growth factor receptor bound protein 7 receptor bound protein 7 kinding growt 1 kinding	PNMT	phenylethanolamine N-methyltransferase	4,647,235	4,649,104	plus	118,96
ERBB2 erb-b2 receptor tyrosine kinase 2 MIR6547 4,653,394 4,662,322 plus 125,119 MIR6547 microRNA 6547 migration and invasion enhancer 1 growth factor receptor bound GRB7 4,660,683 4,660,802 plus 132,408 MIEN1 invasion enhancer 1 growth factor receptor bound protein 7 retinol dehydrogenase 4-like IKZF3 4,663,033 4,664,878 minus 134,758 IKZF3 finger 3 zona pellucida binding protein 2 leucine rich repeat LRRC3C 4,671,617 4,674,052 plus 143,342 LRC3C zona pellucida binding protein 2 leucine rich repeat CORMDL3 4,700,373 4,700,427 plus 172,098 0RMDL3 regulator 3 regulator 3 GSDMA gasdermin A gasdermin A submit, non-ATPrase 4,712,225 4,725,376 plus 188,95 4,731,389 4,735,157 plus 197,195	PGAP3	post-GPI attachment to proteins 3	4,649,381	4,652,406	minus	121,106
MIR6547 microRNA 6547 microRNA 6547 4,660,683 4,660,802 plus 132,408 MIEN1 migration and invasion enhancer 1 growth factor 4,663,033 4,664,878 minus 134,758 GRB7 growth factor receptor bound protein 7 4,671,617 4,674,052 plus 143,342 LOC100858293 IKZF3 IKAROS family zinc 4,676,390 4,700,355 minus 148,115 ZPBP2 inding protein 7 son pellucida 4,710,386 4,714,334 minus 182,111 ORMDL3 growth factor regulator 3 gasdermin A 4,725,470 4,730,952 plus 188,95 PSMD3 subuuit, non-ATPase 4,731,389 4,735,157 plus 203,114	ERBB2	erb-b2 receptor tyrosine kinase 2	4,653,394	4,662,322	plus	125,119
MIENI migration and invasion enhancer I growth factor I growth factor I receptor bound protein 7 receptor bound protein 7 receptor bound protein 7 retin 01 dehydrogenase 8-like IKAROS family zinc finger 3 zona pellucida binding protein 2 LCC100858293 4,663,033 4,664,878 minus 134,758 LCC100858293 GRB7 retin 01 dehydrogenase 8-like IKAROS family zinc finger 3 zona pellucida binding protein 2 LERC3C 4,661,631 4,671,472 plus 137,406 LCC100858293 dehydrogenase 8-like IKAROS family zinc finger 3 zona pellucida binding protein 2 Leucine rich repeat CORMDL3 4,670,373 4,700,375 minus 148,115 LOC107055297 binding protein 2 Leucine rich repeat CORMDL3 4,710,386 4,714,334 minus 182,111 ORMDL3 gasdermin A proteasome 265 4,713,858 4,715,843 plus 188,951 PSMD3 subutin, non-ATPase 4,731,389 4,735,157 plus 203,114	MIR6547	microRNA 6547	4,660,683	4,660,802	plus	132,408
GRB7 growth factor receptor bound protein of dehydrogenase 8-like IKZF3 4,665,681 4,671,472 plus 137,406 LOC100858293 LOC100858293 4,671,617 4,674,052 plus 143,342 IKZF3 IKZF3 inger 3 zona pellucida binding protein 2 leucine rich repeat containing 3C 4,670,373 4,700,355 minus 148,115 LOC107055297 ZPBP2 inding protein 2 leucine rich repeat containing 3C 4,710,386 4,714,334 minus 182,111 LOC107055297 Portein-like oRMDL sphingolipid biosynthesis regulator 3 gasdermin A proteasome 265 Subunit, non-ATPase 4,725,470 4,730,952 plus 188,95 PSMD3 subunit, non-ATPase 4,731,389 4,735,157 plus 203,114	MIEN1	migration and invasion enhancer 1	4,663,033	4,664,878	minus	134,758
Image: Constraint of the	GRB7	growth factor receptor bound protein 7	4,665,681	4,671,472	plus	137,406
IKZF3 IKAROS family zinc finger 3 zona pellucida binding protein 2 leucine rich repeat containing 3C 4,676,390 4,700,355 minus 148,115 LRRC3C inding protein 2 leucine rich repeat containing 3C 4,700,373 4,706,427 plus 172,098 LRRC3C inding protein 2 leucine rich repeat containing 3C 4,710,386 4,714,334 minus 182,111 LOC107055297 protein-like ORMDL spingolipid biosynthesis regulator 3 4,717,225 4,725,376 plus 188,95 ORMDL3 gasdermin A proteasome 26S subunit, non-ATPase 4,731,389 4,735,157 plus 203,114	LOC1008582	retinol 93 dehydrogenase 8-like	4,671,617	4,674,052	plus	143,342
ZPBP2 zona pellucida binding protein 2 leucine rich repeat containing 3C 4,700,373 4,706,427 plus 172,098 LRRC3C leucine rich repeat containing 3C 4,710,386 4,714,334 minus 182,111 LOC107055297 basic proline-rich protein-like 4,713,858 4,715,843 plus 185,583 ORMDL3 regulator 3 regulator 3 4,725,470 4,730,952 plus 197,195 PSMD3 subunit, non-ATPase 4,731,389 4,735,157 plus 203,114	IKZF3	IKAROS family zinc finger 3	4,676,390	4,700,355	minus	148,115
LRRC3Cleucine rich repeat containing 3C basic proline-rich protein-like4,710,3864,714,334minus182,111LOC107055297basic proline-rich protein-like4,713,8584,715,843plus185,583ORMDL3ORMDL3regulator 34,717,2254,725,376plus188,95ORMDL3gasdermin A proteasome 26S subunit, non-ATPase4,731,3894,735,157plus197,195	ZPBP2	zona pellucida binding protein 2	4,700,373	4,706,427	plus	172,098
LOC107055297basic proline-rich protein-like ORMDL sphingolipid biosynthesis regulator 34,713,8584,715,843plus185,583ORMDL3ORMDL34,717,2254,725,376plus188,95ORMDgasdermin A proteasome 26S subunit, non-ATPase4,725,4704,730,952plus197,195ORMDSubunit, non-ATPase4,731,3894,735,157plus203,114	LRRC3C	leucine rich repeat containing 3C	4,710,386	4,714,334	minus	182,111
ORMDL sphingolipid biosynthesis regulator 34,717,2254,725,376plus188,95ORMDL3gasdermin A proteasome 26S subunit, non-ATPase4,725,4704,730,952plus197,195PSMD3subunit, non-ATPase4,731,3894,735,157plus203,114	LOC1070552	<i>basic proline-rich</i> <i>protein-like</i>	4,713,858	4,715,843	plus	185,583
GSDMA gasdermin A 4,725,470 4,730,952 plus 197,195 proteasome 26S proteasome 26S 4,731,389 4,735,157 plus 203,114	ORMDL3	ORMDL sphingolipid biosynthesis regulator 3	4,717,225	4,725,376	plus	188,95
proteasome 26S subunit, non-ATPase4,731,3894,735,157plus203,114	GSDMA	gasdermin A	4,725,470	4,730,952	plus	197,195
	PSMD3	proteasome 26S subunit, non-ATPase	4,731,389	4,735,157	plus	203,114

	3				
CSF3	colony stimulating factor 3	4,737,417	4,739,289	plus	209,142
MIR6884	microRNA 6884	4,741,104	4,757,219	minus	212,829
THRA	thyroid hormone receptor, alpha	4,764,287	4,775,504	plus	236,012
NR1D1	nuclear receptor subfamily 1 group D member 1	4,776,457	4,783,436	minus	248,182
MSL1	male specific lethal 1 homolog	4,787,718	4,792,939	plus	259,443
CASC3	cancer susceptibility 3	4,793,935	4,803,203	plus	265,66
RAPGEFLI	Rap guanine nucleotide exchange factor like 1	4,804,082	4,809,927	plus	275,807
WIPF2	WAS/WASL interacting protein family member 2	4,810,433	4,822,471	plus	282,158
CDC6	cell division cycle 6	4,822,688	4,827,078	plus	294,413
RARA	retinoic acid receptor alpha	4,833,202	4,836,052	plus	304,927
GJD3	gap junction protein delta 3	4,836,854	4,839,029	minus	308,579
TOP2A	topoisomerase (DNA) II alpha	4,839,029	4,856,730	minus	310,754
LOC10174752	collagen alpha- 2 1(XVIII) chain-like	4,857,355	4,863,016	minus	329,08
IGFBP4	insulin like growth factor binding protein 4	4,865,485	4,870,779	plus	337,21
TNS4	tensin 4	4,870,793	4,882,163	minus	342,518
LOC10705531	uncharacterized 5 LOC107055315	4,882,026	4,907,719	plus	353,751
CCR7	C-C motif chemokine receptor 7	4,891,171	4,899,901	minus	362,896

SMARCE1	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e, member 1	4,907,121	4,921,663	minus	378,846
KRT222	keratin 222	4,920,500	4,929,780	minus	392,225
LOC107055316	uncharacterized LOC107055316	4,922,980	4,937,276	plus	394,705
KRT12	keratin 12	4,932,629	4,939,390	minus	404,354
KRT20	keratin 20	4,939,479	4,943,592	minus	411,204
KRT23	keratin 23	4,953,002	4,962,692	minus	424,727
KRT15	keratin 15	4,965,385	4,969,810	minus	437,11
KRT19	keratin 19	4,972,722	4,977,384	minus	444,447
LOC420043	keratin 16-like	4,983,598	4,987,746	minus	455,323
LOC100857659	keratin, type I cytoskeletal 42-like	4,992,053	4,995,428	minus	463,778
KRT10	keratin, type I cytoskeletal 10-like	4,997,475	5,002,485	minus	469,2
KRT9L	keratin, type I cytoskeletal 9-like	5,008,298	5,012,957	minus	480,023
LOC772080	keratin, type I cytoskeletal 17-like	5,016,347	5,021,212	minus	488,072
KRTC42L	keratin, type I cytoskeletal 42-like	5,025,520	5,030,185	minus	497,245
LOC771995	keratin, type I cytoskeletal 42-like	5,035,336	5,038,163	minus	507,061
LOC107055312	uncharacterized LOC107055312	5,040,540	5,042,410	plus	512,265
KRT14	keratin 14	5,042,180	5,046,007	minus	513,905
KRT17	keratin 17	5,048,947	5,052,819	minus	520,672
LOC107055313	uncharacterized LOC107055313	5,051,305	5,052,029	plus	523,03
EIF1	eukaryotic translation initiation	5,064,906	5,066,718	plus	536,631

	factor 1				
LOC396365	preprogastrin	5,069,166	5,069,814	plus	540,891
HAP1	huntingtin associated protein 1	5,069,870	5,078,795	minus	541,595
JUP	junction plakoglobin	5,081,253	5,096,734	minus	552,978
P3H4	prolyl 3-hydroxylase family member 4 (non-enzymatic)	5,097,792	5,102,079	minus	569,517
FKBP10	FK506 binding protein 10	5,102,602	5,108,343	plus	574,327
NT5C3B	5'-nucleotidase, cytosolic IIIB	5,108,609	5,113,795	minus	580,334
KLHL10	kelch like family member 10	5,113,816	5,117,579	plus	585,541
KLHL11	kelch like family member 11	5,117,750	5,123,733	minus	589,475
ACLY	ATP citrate lyase	5,124,218	5,152,667	minus	595,943
TTC25	tetratricopeptide repeat domain 25	5,149,242	5,156,676	plus	620,967
CNP	2',3'-cyclic nucleotide 3' phosphodiesterase	5,156,868	5,161,795	plus	628,593
DNAJC7	DnaJ heat shock protein family (Hsp40) member C7	5,161,978	5,181,291	minus	633,703
LOC107055311	uncharacterized LOC107055311	5,172,889	5,180,535	plus	644,614
NKIRAS2	NFKB inhibitor interacting Ras like 2	5,181,433	5,183,584	plus	653,158
ZNF385C	zinc finger protein 385C	5,183,603	5,237,098	minus	655,328
ZNF862L	zinc finger protein 862-like	5,198,667	5,206,571	minus	670,392
LOC107055310	uncharacterized LOC107055310	5,223,122	5,224,406	minus	694,847
DHX58	DExH-box helicase 58	5,242,809	5,249,758	minus	714,534

KAT2A	lysine acetyltransferase 2A	5,249,877	5,256,053	minus	721,602
LOC772158	heat shock protein 30C-like	5,256,460	5,257,349	minus	728,185
HSPB9	heat shock protein family B (small) member 9	5,258,006	5,258,998	plus	729,731
RAB5C	RAB5C, member RAS oncogene family	5,260,322	5,270,725	minus	732,047
KCNH4	potassium voltage- gated channel subfamily H member 4	5,271,367	5,280,067	minus	743,092
HCRT	hypocretin neuropeptide precursor	5,280,135	5,281,806	minus	751,86
PIBPPDD4L	1- phosphatidylinositol- 4,5-bisphosphate phosphodiesterase delta-4-like	5,281,905	5,292,750	minus	753,63
GHDC	GH3 domain containing	5,294,204	5,298,441	minus	765,929
STAT5B	signal transducer and activator of transcription 5B	5,297,863	5,311,670	minus	769,588
STAT3	signal transducer and activator of transcription 3	5,319,501	5,334,933	minus	791,226
PTRF	polymerase I and transcript release factor	5,335,537	5,350,085	minus	807,262
ATP6V0A1	ATPase H+ transporting V0 subunit a1	5,352,689	5,381,019	plus	824,414
NAGLU	N- acetylglucosaminidas e, alpha	5,381,264	5,384,665	plus	852,989

HSD17B1	hydroxysteroid 17- beta dehydrogenase 1	5,384,880	5,386,410	plus	856,605
MLX	MLX, MAX dimerization protein	5,390,278	5,394,161	plus	862,003
PSMC3IP	PSMC3 interacting protein	5,393,341	5,397,274	minus	865,066
FAM134C	family with sequence similarity 134 member C	5,397,367	5,405,515	minus	869,092
TUBG1	tubulin gamma 1	5,405,589	5,413,030	plus	877,314
LOC107055309	uncharacterized LOC107055309	5,407,102	5,408,044	minus	878,827
РІЕКННЗ	pleckstrin homology, MyTH4 and FERM domain containing H3	5,413,790	5,421,146	minus	885,515
CCR10	C-C motif chemokine receptor 10	5,422,621	5,427,142	minus	894,346
CNTNAP1	contactin associated protein 1	5,427,307	5,435,737	plus	899,032
EZH1	enhancer of zeste 1 polycomb repressive complex 2 subunit	5,435,970	5,451,101	minus	907,695
RAMP2	receptor activity modifying protein 2	5,453,137	5,454,994	plus	924,862
VPS25	vacuolar protein sorting 25 homolog	5,455,180	5,457,660	plus	926,905
WNK4	WNK lysine deficient protein kinase 4	5,461,875	5,473,473	plus	933,6
COA3	cytochrome c oxidase assembly factor 3	5,473,589	5,474,238	minus	945,314
CNTD1	cyclin N-terminal domain containing 1	5,474,297	5,478,907	plus	946,022
BECN1	beclin 1	5,478,573	5,483,381	minus	950,298
PSME3	proteasome activator subunit 3	5,483,531	5,490,236	plus	955,256
AOC3	amine oxidase,	5,490,347	5,504,360	plus	962,072

	copper containing 3				
G6PC	glucose-6- phosphatase catalytic subunit	5,506,845	5,510,258	plus	978,57
AARSD1	alanyl-tRNA synthetase domain containing 1	5,511,314	5,515,677	minus	983,039
PTGES3L	prostaglandin E synthase 3 (cytosolic)-like	5,515,779	5,517,799	minus	987,504
RUNDC1	RUN domain containing 1	5,518,274	5,520,926	plus	989,999
RPL27	ribosomal protein L27	5,521,996	5,524,344	plus	993,721
IF135	interferon-induced protein 35	5,524,907	5,535,384	plus	996,632

* Note: Positions are based on Gallus gallus 5.0 genome assembly. Genes including the significant marker are shown in bold.

Table S2. Published QTL/associations related to growth traits in the searched genomic regions. In bold are shown the QTL that included all

candidate genes in the predefined distances.

SNP ID	GGA	Distance (bp)	Number of QTL	QTL (bp)*	QTL type	QTL IDs*
rs13923872	1	613,054	20	37,278,942 -128,288,555	Chest width	16706
				18,054,807 -171,631,116	Visceral fat weight	17319
				18,054,807 -171,717,298	Total white fat weight	17332
				25,724,479 -171,631,116	Subcutaneous neck fat weight	17325
				18,054,807 -196,202,543	Body weight	1797
				37,278,942 -133,528,161	Body weight	55919
				-	(140 days)	
				18,054,807 - 171,631,116	Body weight	17076

					(140 days)	
				18,054,807 -171,631,116	Carcass weight	17110
				100,051,042 -123,004,362	Breast muscle weight	9410
				2,420,814 -171,631,116	Shank length	9409
				106,349,346 -123,007,835	Carcass fat content	17119
				113,159,926 -128,288,555	Shank weight	14341
				113,159,926 -128,288,555	Femur weight	14342
				18,054,807 -172,427,968	Spleen weight	1851
				18,054,807 -171,631,116	Growth (70-105 days)	55937
				18,054,807 -168,151,247	Abdominal fat weight	6858
				18,054,807 -171,631,116	Shank length	9294
				113,159,926 -115,848,566	Breast muscle weight	13385
				111,368,640 -164,599,096	Body weight (35 days)	14355
				6,580,919 -171,631,116	Subcutaneous fat thickness	14359
rs312691174	4	650,472	14	17,148,380 -81,264,760	Body weight (168 days)	24875
				17,148,380 -81,264,760	Body weight (21 days)	24842
				17,148,380 -81,264,760	Body weight (336 days)	24883
				17,148,380 -81,264,760	Body weight (42 days)	24855
				17,148,380 -81,264,760	Average daily gain	24899, 24905,24911
				17,148,380 -81,264,760	Body weight (84 days)	24866
				17,148,380 -81,264,760	Body weight (504 days)	24890
				4,964,691 -87,025,255	Visceral fat weight	17321
				10,768,639 -91,268,419	Average daily gain	24914
				18,357,474 -31,942,137	Shank length	9295
				18,354,191 -37,883,325	Thigh muscle weight	9395
				18,354,191 -47,647,218	Drumstick and thigh muscle weight	13404
				17,148,380 -81,264,760	Body weight (day of first egg)	14457, 14464, 14470
				17,148,380 -81,264,760	Head percentage	15571

rs15608447	4	718,407	36	67,546,750 -67,546,790	Body weight (28 days)	65710
				17,148,380 -81,264,760	Body weight (168 days)	24875
				47,647,218 -89,464,128	Body weight	200.820.152.016
				17,148,380 -81,264,760	Body weight (21 days)	24842
				17,148,380 -81,264,760	Body weight (336 days)	24883
				47,647,218 -89,464,128	Carcass weight	2012
				17,148,380 -81,264,760	Body weight (42 days)	24855
				17,148,380 -81,264,760	Average daily gain	24899, 24905, 24911
				17,148,380 -81,264,760	Body weight (84 days)	24866
				47,647,218 -89,464,128	Liver weight	2017
				52,604,411 -82,619,142	Growth (14-28 days)	12499
				17,148,380 -81,264,760	Body weight (504 days)	24890
				48,804,413 -85,154,534	Growth (28-42 days)	12500
				52,191,247 -89,464,128	Abdominal fat percentage	9421
				48,404,949 -82,619,142	Growth (0-14 days)	12498
				52,535,768 -70,787,114	Shank length	9286
				49,665,708 -85,877,678	Total white fat weight	17334
				30,906,204 -83,247,658	Tibia width	2035
				61,970,484 -83,247,658	Tibia width	2038
				62,452,715 -89,022,456	Growth (42-56 days)	12501
				4,964,691 -87,025,255	Visceral fat weight	17321
				62,331,035 -82,550,230	Pectoralis major weight	2041
				31,561,525 -89,318,267	Body weight (35 days)	55905
				32,974,594 -89,318,267	Growth (0-35 days)	55930
				47,647,218 -89,464,128	Drumstick muscle weight	2057
				10,768,639 -91,268,419	Average daily gain	24914
				47,647,218 -89,464,128	Drumstick weight	2059
				47,647,218 -89,464,128	Wing weight	2060

				47,647,218 -89,464,128	Body weight (42 days)	9759
				47,647,218 -89,464,128	Body weight (63 days)	9760
				47,647,218 -89,464,128	Growth (21-42 days)	9761
				47,647,218 -89,464,128	Growth (42-63 days)	9762
				62,331,035 -82,299,229	Shank length	11795
				47,647,218 -89,464,128	Skin fat weight	12636
				47,647,218 -89,464,128	Drumstick and thigh muscle weight	13395
				17,148,380 -81,264,760	Body weight (day of first egg)	14457, 14464, 14470
rs318199727	10	737,906	11	13,330,009 -13,330,034	Dressing percentage	57550
				13,330,009 -13,330,034	Breast muscle percentage	57551
				13,329,989 -13,330,029	Breast muscle percentage	57547
				13,329,989 -13,330,029	Drumstick and thigh muscle percentage	57548
				13,329,989 -13,330,029	Abdominal fat percentage	57549
				692,555 -20,423,025	Carcass weight	17113
				1,541,735 -16,171,711	Body weight (140 days)	55923
				2,357,400 -17,864,188	Body weight (35 days)	55907
				692,555 -20,423,025	Body weight (70 days)	55911
				2,552,841 -18,059,263	Growth (0-35 days)	55931
				4,410,690 -18,434,155	Body weight (105 days)	55917
rs318098582	11	300,257	9	1,133,281 -19,983,730	Body weight (140 days)	55924
				18,193,544 -20,208,550	Thigh meat-to-bone ratio	6736
				18,193,544 -20,208,550	Body weight (40 days)	6737
				953,174 -20,208,550	Body weight (140 days)	17080
				6,823,128 -20,208,550	Carcass weight	17114
				12,510,855 -20,208,550	Carcass weight	17088
				6,910,612 -20,208,550	Spleen weight	2287
				18,193,544 -18,870,770	Body weight	2284, 2285
				18,642,683 -18,686,657	Growth (8-46 days)	9519

rs317945754	15	935,183	21	3,731,712 -3,769,767	Spleen weight	2349
				3,731,712 -3,769,767	Body weight (42 days)	9727
				3,731,712 -3,769,767	Carcass weight	9728
				3,731,712 -3,769,767	Spleen percentage	12588
				2,812,987 -10,689,472	Body weight (336 days)	24887
				4,236,686 -4,265,310	Abdominal fat weight	11995
				1,931,502 -7,215,657	Visceral fat weight	17323
				2,519,182 -7,215,657	Subcutaneous neck fat weight	17331
				3,749,008 -7,973,093	Drumstick and thigh percentage	15586
				3,749,008 -7,973,093	Abdominal fat weight	2337
				3,749,008 -7,973,093	Abdominal fat percentage	2339, 2340
				3,749,008 -8,228,905	Body weight (35 days)	3355
				1,931,502 -7,215,657	Total white fat weight	17337
				2,812,987 -10,689,472	Liver weight	2348
				2,403,639 -10,689,472	Abdominal fat percentage	9450
				1,931,502 -10,689,472	Abdominal fat weight	9451
				2,812,987 -10,689,472	Abdominal fat weight	2347, 12631
				3,749,008 -10,689,472	Body weight (46 days)	6648
				3,749,008 -10,689,472	Growth (8-46 days)	6649
				2,812,987 -10,689,472	Fat distribution	12645
				1,931,502 -9,638,429	Breast muscle weight	9449
rs316794400	22	26,589	1	QTL: 3625173-4599266 bp could not be remapped from Gallus gallus 4 to Gallus gallus 5.0 assembly by NCBI Genome	Breast muscle percentage	95429
				Remapping Service		

				1,263,919 -4,918,464	Body weight (63 days)	9453
				2,499,704 -4,918,464	Shank weight	2383
				4,610,791 -4,624,276	Liver percentage	2385
				QTL: 4715796-108192374 bp could not be remapped from Gallus gallus 4 to Gallus gallus 5.0 assembly by NCBI Genome Remapping Service	Abdominal fat weight	30883
				4,873,346 -4,886,832	Breast muscle weight	6957
rs314452928	27	140,067	3	QTL: 81131-81301 bp could not be remapped from Gallus gallus 4 to Gallus gallus 5.0 assembly by NCBI Genome Remapping Service	Growth (105-140 days)	55944
				54,597 -4,520,058	Growth (0-35 days)	55932
				54,597 -4,520,058	Body weight (35 days)	55906
rs315329074	27	998,553	65	3,834,510 -3,834,550	Shank length	66068, 66069, 66070
				3,363,708 -3,363,748	Shank length	66067
				3,971,422 -3,971,462	Shank circumference	66063
				3,564,173 -3,564,213	Shank circumference	66065
				3,624,903 -3,624,943	Shank circumference	66064, 66066
				3,869,461 -3,869,501	Shank length	66071
				3,456,748 -3,456,788	Abdominal fat weight	66072
				1,798,380 -3,707,375	Abdominal fat weight	11817, 11809
				1,798,380 -3,707,375	Abdominal fat percentage	11820
				1,798,380 -3,707,375	Carcass fat content	17135, 17126
				1,798,380 -3,707,375	Head percentage	15599

1,798,380 -3,707,375	Body weight	2406, 2407
1,798,380 -3,707,375	Body weight (1 day)	7178
1,798,380 -3,707,375	Body weight (41 days)	7186
1,365,641 -4,520,058	Humerus length	2397
3,522,988 -3,534,446	Body weight (112 days)	9521
3,522,988 -3,534,446	Body weight (200 days)	9522
3,522,988 -3,534,446	Growth (46-112 days)	9523
1,365,641 -4,520,058	Body weight	2410
1,809,980 -3,707,375	Body weight (35 days)	3356
1,809,980 -3,707,375	Abdominal fat percentage	3354
1,798,380 -3,707,375	Carcass protein content, dry matter basis	17124
1,798,380 -3,707,375	Carcass fat content, dry matter basis	17125
3,701,574 -3,713,173	Body weight (42 days)	9775
3,701,574 -3,713,173	Growth (21-42 days)	9776
3,701,574 -3,713,173	Body weight (day of first egg)	14459, 14466, 14473
3,701,574 -3,713,173	Body weight (168 days)	24878
3,701,574 -3,713,173	Body weight (336 days)	24888
3,701,574 -3,713,173	Body weight (504 days)	24892
3,701,574 -3,713,173	Average daily gain	24907
3,707,375 -3,968,049	Body weight	2404, 2405
3,707,375 -4,520,058	Thigh weight	2411
3,707,375 -4,520,058	Wing weight	2412
3,788,374 -3,889,766	Drumstick and thigh weight	11920
3,788,374 -3,889,766	Drumstick and thigh percentage	11921
3,788,374 -3,889,766	Abdominal fat percentage	11934
3,788,374 -3,889,766	Pectoralis major percent	11950
3,204,318 -4,520,058	Shank weight	2413
1,798,380 -3,707,375	Body weight (112 days)	6652

$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $		1,798,380 -3,707,375	Body weight (200 days)	6653
1,798,380 - 3,379,175 Femur length 6778 1,798,380 - 3,707,375 Shank weight percentage 15567 2,263,107 - 4,520,058 Carcass weight 17116 404,762 - 4,520,058 Wing weight 17109 2,780,009 - 4,520,058 Body weight (105 days) 55918 54,597 - 4,520,058 Growth (0-35 days) 55932 1,365,641 - 4,520,058 Body weight (35 days) 55906 2,454,458 - 4,520,058 Body weight (35 days) 55912 3,670,7375 - 4,520,058 Body weight (100 days) 55912 3,707,375 - 4,520,058 Body weight (100 days) 55936 4,377,710 - 4,389,305 Shank length 9288 3,707,375 - 4,520,058 Growth (35-70 days) 55936 2,390,652 - 4,520,058 Breast muscle weight 17096 3,597,175 - 4,520,058 Breast muscle weight 17096 3,707,375 - 4,520,058 </td <td></td> <td>1,798,380 -3,707,375</td> <td>Growth (46-112 days)</td> <td>6654</td>		1,798,380 -3,707,375	Growth (46-112 days)	6654
1,798,380-3,707,375 Shank weight percentage 15567 2,263,107 -4,520,058 Carcass weight 17116 404,762 -4,520,058 Wing weight 17109 2,780,009 -4,520,058 Body weight (105 days) 55918 54,597 -4,520,058 Growth (0-35 days) 55932 1,365,641 -4,520,058 Body weight (104 days) 55926 2,639,460 -4,520,058 Body weight (140 days) 55926 2,639,460 -4,520,058 Body weight (140 days) 55926 2,639,460 -4,520,058 Body weight (105 days) 7159 3,707,375 -4,520,058 Body weight (35 days) 7159 1,850,810 -4,520,058 Carcass weight 17090 2,639,460 -4,520,058 Growth (35-70 days) 55936 4,377,710 -4,389,305 Shank length 9288 3,707,375 -4,520,058 Breast muscle weight 17105 3,597,175 -4,520,058 Breast muscle weight 17105 3,597,175 -4,520,058 Intranuscular fat 3360 2,141,304 -4,520,058 Body weight (140 days) 17084 3,707,375 -4,520,058 Body wei		1,798,380 -3,379,175	Femur length	6778
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $		1,798,380 -3,707,375	Shank weight percentage	15567
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2,263,107 -4,520,058	Carcass weight	17116
2,780,009-4,520,058 Body weight (105 days) 55918 54,597-4,520,058 Growth (0-35 days) 55932 1,365,641-4,520,058 Body weight 2409 54,597-4,520,058 Body weight (35 days) 55906 2,454,458-4,520,058 Body weight (140 days) 55926 2,639,460-4,520,058 Body weight (70 days) 55912 3,707,375-4,520,058 Body weight (35 days) 7159 1,850,810-4,520,058 Carcas weight 17090 2,639,460-4,520,058 Growth (35-70 days) 55936 4,377,710-4,389,305 Shank length 9288 3,707,375-4,520,058 Breast muscle weight 17096 3,597,175-4,520,058 Drumstick and thigh weight 17105 3,707,375-4,520,058 Intramuscular fat 3360 2,141,304-4,520,058 Body weight (140 days) 17084 3,707,375-4,520,058 Body weight (140 days) 17084 3,707,375-4,520,058 Body weight (140 days) 17084 3,708,374-5,629,582 Thigh percentage 30886 5,159,872-5,171,472 Body weight (56 days)<		404,762 -4,520,058	Wing weight	17109
54,597-4,520,058 Growth (0-35 days) 55932 1,365,641-4,520,058 Body weight 2409 54,597-4,520,058 Body weight (35 days) 55906 2,454,458-4,520,058 Body weight (140 days) 55926 2,639,460-4,520,058 Body weight (70 days) 55912 3,707,375-4,520,058 Body weight (35 days) 7159 1,850,810-4,520,058 Carcass weight 17090 2,639,460-4,520,058 Carcass weight 17090 2,639,460-4,520,058 Growth (35-70 days) 55936 4,377,710-4,389,305 Shank length 9288 3,707,375-4,520,058 Breast muscle weight 17096 2,390,652-4,520,058 Breast muscle weight 17096 3,597,175-4,520,058 Drumstick and thigh weight 17105 3,707,375-4,520,058 Broutsuck and thigh weight 17105 3,707,375-4,520,058 Intramuscular fat 3360 2,141,304-4,520,058 Body weight (140 days) 17084 3,707,375-4,520,058 Body weight 2408 3,788,374-5,629,582 Thigh percentage <td< td=""><td></td><td>2,780,009 -4,520,058</td><td>Body weight (105 days)</td><td>55918</td></td<>		2,780,009 -4,520,058	Body weight (105 days)	55918
1.365.641-4,520,058 Body weight 2409 54,597-4,520,058 Body weight (35 days) 55906 2,454,458-4,520,058 Body weight (140 days) 55926 2,639,460-4,520,058 Body weight (70 days) 55912 3,707,375-4,520,058 Body weight (35 days) 7159 1.850,810-4,520,058 Body weight (35 days) 7159 2,639,460-4,520,058 Carcass weight 17090 2,639,460-4,520,058 Growth (35-70 days) 55936 4,377,710-4,389,305 Shank length 9288 3,707,375-4,520,058 Breast muscle weight 17096 2,390,652-4,520,058 Breast muscle weight 17096 3,597,175-4,520,058 Drumstick and thigh weight 17105 3,707,375-4,520,058 Breast muscle weight 17084 3,707,375-4,520,058 Body weight (140 days) 17084 3,707,375-4,520,058 Body weight 2408 3,707,375-4,520,058 Body weight 2408 3,707,375-4,520,058 Body weight 2408 3,707,375-4,520,058 Body weight 2408 <		54,597 -4,520,058	Growth (0-35 days)	55932
$\frac{54,597 - 4,520,058}{2,454,458 - 4,520,058} = Body weight (35 days) = 55906}{2,454,458 - 4,520,058} = Body weight (140 days) = 55912}{3,707,375 - 4,520,058} = Body weight (70 days) = 55912}{3,707,375 - 4,520,058} = Body weight (35 days) = 7159}{1,850,810 - 4,520,058} = Carcass weight = 17090}{2,639,460 - 4,520,058} = Growth (35 - 70 days) = 55936}{4,377,710 - 4,389,305} = Shank length = 9288}{3,707,375 - 4,520,058} = Breast muscle weight = 17096}{2,390,652 - 4,520,058} = Breast muscle weight = 17096}{3,597,175 - 4,520,058} = Drumstick and thigh weight = 17105}{3,707,375 - 4,520,058} = Drumstick and thigh weight = 17105}{3,707,375 - 4,520,058} = Body weight (140 days) = 17084}{3,707,375 - 4,520,058} = Body weight = 2408}{3,707,375 - 4,520,058} = Body weight = 2408}{3,707,375 - 4,520,058} = Body weight = 2408}{3,707,375 - 4,520,058} = Body weight (56 days) = 12395}{5,159,872 - 5,171,472} = Body weight (atch) = 16623}{5,159,872 - 5,171,472} = Body weight (300 days) = 16624}$		1,365,641 -4,520,058	Body weight	2409
2,454,458 -4,520,058 Body weight (140 days) 55926 2,639,460 -4,520,058 Body weight (70 days) 55912 3,707,375 -4,520,058 Body weight (35 days) 7159 1,850,810 -4,520,058 Carcass weight 17090 2,639,460 -4,520,058 Growth (35-70 days) 55936 4,377,710 -4,389,305 Shank length 9288 3,707,375 -4,520,058 Breast muscle weight 17096 2,390,652 -4,520,058 Breast muscle weight 17096 3,597,175 -4,520,058 Drumstick and thigh weight 17105 3,707,375 -4,520,058 Body weight (140 days) 17084 3,707,375 -4,520,058 Intramuscular fat 3360 2,141,304 -4,520,058 Body weight 1408 3,707,375 -4,520,058 Body weight 2408		54,597 -4,520,058	Body weight (35 days)	55906
2,639,460-4,520,058 Body weight (70 days) 55912 3,707,375-4,520,058 Body weight (35 days) 7159 1,850,810-4,520,058 Carcass weight 17090 2,639,460-4,520,058 Growth (35-70 days) 55936 4,377,710-4,389,305 Shank length 9288 3,707,375-4,520,058 Breast muscle weight 17096 2,390,652-4,520,058 Breast muscle weight 17096 3,597,175-4,520,058 Drumstick and thigh weight 17105 3,707,375-4,520,058 Intramuscular fat 3360 2,141,304-4,520,058 Body weight (140 days) 17084 3,707,375-4,520,058 Body weight 2408 3,707,375-4,520,58 Body weight 2408 3,708,374-5,629,582 Thigh percentage 30886 5,159,872-5,171,472 Body weight (bad days) 12395		2,454,458 -4,520,058	Body weight (140 days)	55926
3,707,375 -4,520,058 Body weight (35 days) 7159 1,850,810 -4,520,058 Carcass weight 17090 2,639,460 -4,520,058 Growth (35-70 days) 55936 4,377,710 -4,389,305 Shank length 9288 3,707,375 -4,520,058 Shank weight percentage 15595 2,390,652 -4,520,058 Breast muscle weight 17096 3,597,175 -4,520,058 Drumstick and thigh weight 17105 3,707,375 -4,520,058 Intramuscular fat 3360 2,141,304 -4,520,058 Body weight (140 days) 17084 3,707,375 -4,520,058 Body weight 2408 3,707,375 -4,520,058 Body weight 12395 5,159,872 -5,171,472 Body weight (56 days) 12395 5,159,872 -5,171,472 Body weight (300 days) 16624		2,639,460 -4,520,058	Body weight (70 days)	55912
1,850,810 -4,520,058 Carcass weight 17090 2,639,460 -4,520,058 Growth (35-70 days) 55936 4,377,710 -4,389,305 Shank length 9288 3,707,375 -4,520,058 Shank weight percentage 15595 2,390,652 -4,520,058 Breast muscle weight 17096 3,597,175 -4,520,058 Drumstick and thigh weight 17105 3,707,375 -4,520,058 Intramuscular fat 3360 2,141,304 -4,520,058 Body weight (140 days) 17084 3,707,375 -4,520,058 Body weight 2408 3,707,375 -4,520,058 Body weight (56 days) 12395 5,159,872 -5,171,472 Body weight (hatch) 16623 5,159,872 -5,171,472 Body weight (300 days) 16624		3,707,375 -4,520,058	Body weight (35 days)	7159
2,639,460 -4,520,058 Growth (35-70 days) 55936 4,377,710 -4,389,305 Shank length 9288 3,707,375 -4,520,058 Shank weight percentage 15595 2,390,652 -4,520,058 Breast muscle weight 17096 3,597,175 -4,520,058 Drumstick and thigh weight 17105 3,707,375 -4,520,058 Intramuscular fat 3360 2,141,304 -4,520,058 Body weight (140 days) 17084 3,707,375 -4,520,058 Body weight 2408 3,707,375 -4,520,058 Body weight 2408 3,707,375 -4,520,058 Body weight 12395 5,159,872 -5,171,472 Body weight (56 days) 12395 5,159,872 -5,171,472 Body weight (300 days) 16624		1,850,810 -4,520,058	Carcass weight	17090
4,377,710-4,389,305 Shank length 9288 3,707,375-4,520,058 Shank weight percentage 15595 2,390,652-4,520,058 Breast muscle weight 17096 3,597,175-4,520,058 Drumstick and thigh weight 17105 3,707,375-4,520,058 Intramuscular fat 3360 2,141,304-4,520,058 Body weight (140 days) 17084 3,707,375-4,520,058 Body weight 2408 3,788,374-5,629,582 Thigh percentage 30886 5,159,872-5,171,472 Body weight (56 days) 12395 5,159,872-5,171,472 Body weight (300 days) 16623 5,159,872-5,171,472 Body weight (300 days) 16624		2,639,460 -4,520,058	Growth (35-70 days)	55936
3,707,375 -4,520,058 Shank weight percentage 15595 2,390,652 -4,520,058 Breast muscle weight 17096 3,597,175 -4,520,058 Drumstick and thigh weight 17105 3,707,375 -4,520,058 Drumstick and thigh weight 17105 3,707,375 -4,520,058 Intramuscular fat 3360 2,141,304 -4,520,058 Body weight (140 days) 17084 3,707,375 -4,520,058 Body weight 2408 3,707,375 -4,520,058 Body weight 12395 5,159,872 -5,171,472 Body weight (56 days) 12395 5,159,872 -5,171,472 Body weight (300 days) 16623 5,159,872 -5,171,472 Body weight (300 days) 16624		4,377,710 -4,389,305	Shank length	9288
2,390,652 -4,520,058 Breast muscle weight 17096 3,597,175 -4,520,058 Drumstick and thigh weight 17105 3,707,375 -4,520,058 Intramuscular fat 3360 2,141,304 -4,520,058 Body weight (140 days) 17084 3,707,375 -4,520,058 Body weight 2408 3,707,375 -4,520,058 Body weight 12395 5,159,872 -5,171,472 Body weight (56 days) 12395 5,159,872 -5,171,472 Body weight (300 days) 16623 5,159,872 -5,171,472 Body weight (300 days) 16624		3,707,375 -4,520,058	Shank weight percentage	15595
3,597,175 -4,520,058 Drumstick and thigh weight 17105 3,707,375 -4,520,058 Intramuscular fat 3360 2,141,304 -4,520,058 Body weight (140 days) 17084 3,707,375 -4,520,058 Body weight 2408 3,708,374 -5,629,582 Thigh percentage 30886 5,159,872 -5,171,472 Body weight (56 days) 12395 5,159,872 -5,171,472 Body weight (hatch) 16623 5,159,872 -5,171,472 Body weight (300 days) 16624		2,390,652 -4,520,058	Breast muscle weight	17096
3,707,375 -4,520,058 Intramuscular fat 3360 2,141,304 -4,520,058 Body weight (140 days) 17084 3,707,375 -4,520,058 Body weight 2408 3,707,375 -4,520,058 Body weight 2408 3,788,374 -5,629,582 Thigh percentage 30886 5,159,872 -5,171,472 Body weight (56 days) 12395 5,159,872 -5,171,472 Body weight (hatch) 16623 5,159,872 -5,171,472 Body weight (300 days) 16624		3,597,175 -4,520,058	Drumstick and thigh weight	17105
2,141,304 -4,520,058Body weight (140 days)170843,707,375 -4,520,058Body weight24083,788,374 -5,629,582Thigh percentage308865,159,872 -5,171,472Body weight (56 days)123955,159,872 -5,171,472Body weight (hatch)166235,159,872 -5,171,472Body weight (300 days)16624		3,707,375 -4,520,058	Intramuscular fat	3360
3,707,375 -4,520,058 Body weight 2408 3,788,374 -5,629,582 Thigh percentage 30886 5,159,872 -5,171,472 Body weight (56 days) 12395 5,159,872 -5,171,472 Body weight (hatch) 16623 5,159,872 -5,171,472 Body weight (300 days) 16624		2,141,304 -4,520,058	Body weight (140 days)	17084
3,788,374 -5,629,582 Thigh percentage 30886 5,159,872 -5,171,472 Body weight (56 days) 12395 5,159,872 -5,171,472 Body weight (hatch) 16623 5,159,872 -5,171,472 Body weight (300 days) 16624		3,707,375 -4,520,058	Body weight	2408
5,159,872 -5,171,472 Body weight (56 days) 12395 5,159,872 -5,171,472 Body weight (hatch) 16623 5,159,872 -5,171,472 Body weight (300 days) 16624		3,788,374 -5,629,582	Thigh percentage	30886
5,159,872 -5,171,472Body weight (hatch)166235,159,872 -5,171,472Body weight (300 days)16624		5,159,872 -5,171,472	Body weight (56 days)	12395
5,159,872 -5,171,472 Body weight (300 days) 16624		5,159,872 -5,171,472	Body weight (hatch)	16623
		5,159,872 -5,171,472	Body weight (300 days)	16624

*Note: The positions of QTL were remapped to Gallus_gallus-5.0 genome assembly using NCBI database (<u>https://www.ncbi.nlm.nih.gov/genome/tools/remap</u>).

Table S3.	Genes and	chromosomes	per module.
-----------	-----------	-------------	-------------

Module_ ID	GGA	Gene ID
module_1	4	NIPAL1
	1	SYTL5, SRPX, PRRG1, XK, OTC, CYBB, RPGR, MED14, TSPAN7
	4	ZAR1, PCDH18, LRRC66, NOCT, GABRA4, GABRG1, MGARP, CORIN, SPATA18, RASL11B, CWH43, SLC10A4, TEC, GABRB1, SLC7A11, SGCB, CNGA1, GABRA2, TXK
	10	TICRR, RHCG, SV2B, PLIN1, MFGE8, ACAN, RLBP1, HAPLN3, NTRK3
	11	CIDEC, SLC22A31, ZFPM1, IL17C, ZNF469, CBFA2T3, CDH15, CYBA
module 2	15	ADGRD1, TMEM132C, PIWIL1, TMEM132D, TMEM132B, STX2, FZD10, RIMBP2, SLC15A4, GLT1D1, MMP17
	22	IL1B, ANXA4
-	25	NES, LIM2, BCAN, SLAMF8, TMEM79, RHBG, INSRR, S100A14, HAPLN2, S100A16, LRRC71, PEAR1, DCST2, SV2A, SLAMF1, CD48, NHLH1, CRABP2, RAB25, ZBTB7B, CHRNB2, S100A13, PLEKHO1, OTUD7B, S100A11, ETV3, S100A9, MTMR11, SH2D2A, CD244, S100A6, KCNN3, S100A1, S100A4, LY9, CRNN
	26	DENND2C, OPTC, IP6K3, PIFO, PACSIN1, TCP11, FRS3, CHIA, SCUBE3, SYT6, USP49, TSPO2, GRM4, PRELP, SPDEF, SYCP1, MKRN3, MLN, MDF1, FMOD, TSHB, AMPD1,
	20	1101', 1 00, 1KE1/12, 15FA1/2, A1F2D4, D102

	27	GPR179, ARHGAP23, KRT222, LRRC46, KLHL10, LRRC3C, TNS4, RAPGEFL1, HOXB8, HOXB4, GNGT2, FKBP10, GSDMA, KCNH4, HOXB9, CCR10, TTC25, ZPBP2, GJD3, TBKBP1, HCRT, G6PC, THRA, MEOX1, RAMP2, HOXB6, HAP1, NEUROD2, HOXB2, AOC3, P3H4, GIP, KRT15, HSD17B1, HOXB13, CNTNAP1, KRT17, IGFBP4, KRT20, PNMT, KRT12, HOXB1, HOXB7, HOXB5, PTRF, PRR15L, CACNB1, PPP1R1B, KRT23, WNK4, CCR7, KLHL11, SKAP1, IKZF3, HOXB3, PLXDC1, ORMDL3, TBX21, PGAP3, OSBPL7, KRT14, KRT19, CSF3, NR1D1, ABI3
	1	BCOR
	4	NFXL1, ATP10D
	10	KIF7
	11	SPG7
module 3	22	NT5DC4
_	25	SHE, KIRREL
	26	ANKSIA
	27	FBXO47, AARSD1, PHOSPHO1, PLEKHH3, SRCIN1, PCGF2, FBXL20, NT5C3B, RUNDC1, MLLT6, STAT5B, ERBB2, SOCS7
	1	DYNLT3,ATP6AP2
	4	RAB33B, FRYL, USP46, ELF2
	10	AGBL1
module_4	11	CTU2, GALNS
	25	ETV3L, RAB2B
	26	PPARD, UHRF1BP1, SIKE1, NRAS
	27	MROH8, VWA5A, ETV4
	1	USP9X, MID1IP1
	4	SCFD2, COMMD8, FIP1L1, NAA15, OCIAD1, SLAIN2, DCUN1D4
module 5	10	DET1, MRPL46, AEN, KLHL25, FANCI, MRPS11, POLG, AKAP13
	11	PABPN1L, ACSF3, MVD, ANKRD11, TRAPPC2L, BANP, ZC3H18, APRT, PIEZO1, CDT1

	15	AACS, ULK1, EP400, RAN, SFSWAP, PUS1
	22	CKAP2L, SLC20A1
	25	VANGL2, MEX3A, RRNAD1, PYGO2, BGLAP, NTRK1, ARHGEF11, CHTOP, FLAD1, MEF2D, CCT3, MRPL24, ILF2, ADAR, PMVK, VPS45, PRCC, COPA, PBXIP1, GPATCH4, NCSTN, ANP32E, SMG5, NAXE, UBE2Q1, INTS3, LAMTOR2, SNAPIN, SHC1, SMAD4, CKS1B, SF3B4, HDGF, IL6R, UBQLN4
	26	TOMM6, FANCE, BCAS2, APOBEC2, BYSL, PRICKLE4, ZNF76, NFYA, TAF11, LEMD2, RPS10, RPL10A, SNRPC, CSDE1, NUDT3, MED20, OARD1, TRIM33, TFEB, TAF8, CCND3, HMGA1, BAK1
	27	PTGES3L, HSPB9, IGF2BP1, PSMC3IP, TCAP, TUBG1, MRPL45, GRB7, RPL23, STARD3, RARA, SP2, SMARCE1, WIPF2, CASC3, RPL19, CBX1, ATP5G1, PSMB3, EIF1, PSMD3, ATP6V0A1, ACLY, NFE2L1, PHB, MSL1, BECN1, NPEPPS, EZH1, MED1, MRPL10, UBE2Z, LASP1, KRT10, FAM134C, PIP4K2B, CNP, DNAJC7, MLX, SNF8, SNX11, NKIRAS2, COA3, CISD3, MIEN1, RPL27, TOP2A, DAD1, CALCOCO2, KAT2A, JUP, CDC6, PSME3, KPNB1, STAT3, DHX8, VPS25, RAB5C, CDK12
	1	LANCL3
	4	SETD7, MGST2, MAML3
	10	PEX11A, ABHD2
11 6	11	RNF166
module_6	25	GLMP
	26	IIPR5, DEF0
	27	ZNF385C, SP6, CNTD1, PNPO, DHX58, GHDC, NAGLU, CWC25, CDK5RAP3, SCRN2, IFI35, ZNF652

Table S4. Significantly enriched GO biological processes (BPs) per each module. GO BP terms in bold are associated with development. None enriched GO BP was found for module_6.

Module_ ID	GO_ID	GO BP term	Considered relevant to BW35 as a subclass or child term of the developmental process or growth parent term	P-value	Number of Genes	Associated Genes Found
module_2	GO:0048704	embryonic skeletal system morphogenesis	yes	0.00000 000483	9	HOXB3, MDFI, HOXB4, HOXB1, HOXB2, HOXB7, HOXB8, HOXB5, HOXB6
	GO:0009952	anterior/poster ior pattern specification	yes	0.00000 0125	10	HOXB3, HOXB4, HOXB1, HOXB2, BTG2, HOXB7, HOXB8, HOXB5, HOXB6, HOXB9
	GO:0007417	central nervous system development	yes	0.001	7	HAPLN2, NES, HAPLN3, GABRA4, ACAN, BCAN, NHLH1
	GO:0007275	multicellular organism development	yes	0.003	14	CSF3, ZBTB7B, ZAR1, TBX21, HOXB3, FZD10, TCP11, HOXB1, HOXB2, HOXB7, HOXB8, MEOX1, PIWIL1, SPDEF

GO:0030851	granulocyte differentiation	yes	0.005	3	CSF3, ZFPM1, CBFA2T3
GO:0042340	keratan sulfate catabolic process	no	0.006	3	FMOD, ACAN, PRELP
GO:0006811	ion transport	no	0.099	6	CYBB, GABRA2, WNK4, GABRB1, CHRNB2, SLC15A4
GO:0008544	epidermis development	yes	0.011	5	KRT17, KRT15, CRABP2, KRT14, HOXB13
GO:0001501	skeletal system development	yes	0.013	6	HAPLN2, HAPLN3, ACAN, BCAN, IGFBP4, PRELP
GO:0007169	transmembrane receptor protein tyrosine kinase signaling pathway	no	0.017	5	NTRK3, TXK, TEC, NGF, INSRR
GO:0007155	cell adhesion	no	0.020	11	HAPLN2, CDH15, SRPX, HAPLN3, ACAN, BCAN, CNTNAP1, MFGE8, SLAMF1, AOC3, PCDH18
GO:0021570	rhombomere 4 development	yes	0.020	2	HOXB1, HOXB2
GO:0007214	gamma- aminobutyric acid signaling pathway	no	0.021	3	GABRG1, GABRA2, GABRA4
GO:0008306	associative learning	no	0.025	3	BTG2, NEUROD2, CHRNB2

	GO:0007165	signal transduction	no	0.029	20	<i>S100A6, CD244, GIP, STX2, GABRB1, CRABP2, S100A9, S100A11, ARHGAP23, ANXA4, SLAMF1, CD48, SH2D2A, KRT17, PPP1R1B, IL1B, CHRNB2, CNTNAP1, FRS3, IGFBP4</i>
	GO:1904044	response to aldosterone	no	0.030	2	СҮВА, СҮВВ
	GO:0070634	transepithelial ammonium transport	no	0.030	2	RHCG, RHBG
	GO:1904845	cellular response to L- glutamine	no	0.030	2	CYBA, CYBB
	GO:0018146	keratan sulfate biosynthetic process	no	0.033	3	FMOD, ACAN, PRELP
	GO:0006954	inflammatory response	no	0.042	9	IL17C, CYBA, CYBB, CCR7, TSPAN2, S100A9, IL1B, IGFBP4, AOC3
	GO:0030154	cell differentiation	yes	0.049	10	ZBTB7B, SH2D2A, TCP11, NR1D1, STX2, SPDEF, TXK, NHLH1, TEC, ETV3
module_3	GO:0016311	dephosphorylati on	no	0.005	3	NT5C3B, PHOSPHO1, NT5DC4

	GO:0071364	cellular response to epidermal growth factor stimulus	no	0.039	2	ERBB2, STAT5B
	GO:0030154	cell differentiation	yes	0.005	4	PPARD, ELF2, ETV3L, ETV4
module_4	GO:0007264	small GTPase mediated signal transduction	no	0.015	3	NRAS, RAB2B, RAB33B
module_4	GO:0006357	regulation of transcription from RNA polymerase II promoter	no	0.044	3	PPARD, ELF2, ETV3L
module_5	GO:0045893	positive regulation of transcription, DNA-templated	no	0.00002 87	16	CKS1B, RAN, TAF8, PHB, SMAD4, TFEB, NAA15, BANP, NFYA, HMGA1, STAT3, ARHGEF11, ILF2, RARA, NFE2L1, MED1
	GO:0045471	response to ethanol	no	0.00025 6	7	BAK1, BGLAP, NTRK1, RARA, RPL10A, AACS, STAT3
	GO:0000184	nuclear- transcribed mRNA catabolic process, nonsense- mediated decay	no	0.00050 2	7	RPL19, RPL23, SMG5, RPL27, RPS10, CASC3, RPL10A

GO:0070102	interleukin-6- mediated signaling pathway	no	0.002	3	SMAD4, IL6R, STAT3
GO:0046902	regulation of mitochondrial membrane permeability	no	0.003	3	BAK1, CNP, STAT3
GO:0006412	translation	no	0.006	8	MRPL24, MRPL10, RPL19, RPL23, MRPS11, RPL27, RPS10, RPL10A
GO:0070125	mitochondrial translational elongation	no	0.006	5	MRPL24, MRPL10, MRPS11, MRPL45, MRPL46
GO:0070126	mitochondrial translational termination	no	0.006	5	MRPL24, MRPL10, MRPS11, MRPL45, MRPL46
GO:0006413	translational initiation	no	0.006	6	RPL19, RPL23, RPL27, RPS10, EIF1, RPL10A
GO:0006614	SRP-dependent cotranslational protein targeting to membrane	no	0.008	5	RPL19, RPL23, RPL27, RPS10, RPL10A
GO:0006606	protein import into nucleus	no	0.013	4	RAN, KPNB1, STAT3, ADAR
GO:0019083	viral transcription	no	0.015	5	RPL19, RPL23, RPL27, RPS10, RPL10A

GO:0045737	positive regulation of cyclin- dependent protein serine/threonine kinase activity	no	0.017	3	CKS1B, CDC6, CCND3
GO:0006397	mRNA processing	no	0.018	6	APOBEC2, BCAS2, CDK12, CASC3, SF3B4, ADAR
GO:0008285	negative regulation of cell proliferation	no	0.019	9	CDC6, BAK1, BECN1, NTRK1, PHB, SMAD4, RARA, HMGA1, STAT3
GO:0019287	isopentenyl diphosphate biosynthetic process, mevalonate pathway	no	0.025	2	MVD, PMVK
GO:0006914	autophagy	no	0.026	5	BECN1, SNF8, TFEB, UBQLN4, VPS25
GO:0016236	macroautophag y	no	0.026	4	TOMM6, BECN1, LAMTOR2, ULK1
GO:0035264	multicellular organism growth	yes	0.030	4	KAT2A, SP2, ANKRD11, RARA

GO:0043328	protein targeting to vacuole involved in ubiquitin- dependent protein catabolic process via the multivesicular body sorting pathway	no	0.033	2	SNF8, VPS25
GO:0006364	rRNA processing	no	0.035	6	RPL19, RPL23, BYSL, RPL27, RPS10, RPL10A
GO:0000398	mRNA splicing, via spliceosome	no	0.039	6	BCAS2, DHX8, FIP1L1, CASC3, SNRPC, SF3B4
GO:0006695	cholesterol biosynthetic process	no	0.040	3	MVD, ACLY, PMVK
GO:0016032	viral process	no	0.041	7	KAT2A, RAN, PSMB3, CALCOCO2, SNAPIN, SHC1, STAT3
GO:0042493	response to drug	no	0.043	7	BAK1, BGLAP, BECN1, NTRK1, DAD1, AACS, STAT3
GO:0010508	positive regulation of autophagy	no	0.044	3	BECN1, ULK1, TFEB
GO:0060348	bone development	yes	0.048	3	BGLAP, ANKRD11, AKAP13

GO:0006886	intracellular protein transport	no	0.049	6	COPA, RAN, VPS45, SNAPIN, KPNB1, SNX11
GO:0000395	mRNA 5'- splice site recognition	no	0.049	2	SFSWAP, SNRPC

Supplementary Figure 1. Quantile- quantile (Q-Q) plots of the additive (top) and dominant (bottom) SNP effects for EN. Blue dots denote the $-\log_{10}(p$ -value) obtained from the additive ($\lambda = 0.95$) and dominant ($\lambda = 0.97$) genetic models and the red lines represent the expected values for the null hypothesis under no association. Q-Q plots were constructed with the qqman package [49] in R (http://www.r-project.org/).

Gene ID	Description	Queried term		
GNRH1	gonadotropin releasing hormone 1			
IGF1	insulin like growth factor 1			
MSTN	myostatin			
TGFB2	transforming growth factor beta 2			
GHRL	ghrelin, preproghrelin			
PCK1	phosphoenolpyruvate carboxykinase 1			
IGF2	insulin like growth factor 2	reproduction		
LITAF	lipopolysaccharide induced TNF factor	reproduction		
STAT3	signal transducer and activator of transcription 3			
TSHR	thyroid stimulating hormone receptor			
ACTA2	actin, alpha 2, smooth muscle, aorta			
LAMA1	laminin subunit alpha 1			
STAT5A	signal transducer and activator of transcription 5A			
ZNF764L	zinc finger protein 764-like			
PRL	prolactin			
GH	growth hormone			
PPARG	peroxisome proliferator-activated receptor gamma			
PRLR	prolactin receptor			
HMGCR	3-hydroxy-3-methylglutaryl-CoA reductase			
GDF9	growth differentiation factor 9			
POSTN	periostin			
NPY	neuropeptide Y	egg production		
GNRHR	gonadotropin-releasing hormone receptor			
FOXL2	forkhead box L2			
RARRES1	retinoic acid receptor responder 1			
THRSP	thyroid hormone responsive			
BMP15	bone morphogenetic protein 15			
CETP	cholesteryl ester transfer protein			
PDGFRL	platelet derived growth factor receptor like			

Supplementary Table 1. List of training genes retrieved by the NCBI database for the 'reproduction' and 'egg production' queried terms in *Gallus gallus*.

Supplementary Table 2. Positional candidate genes for EN.

Gene ID	Description	GGA	Start position of the gene (bp)*	End position of the gene (bp)*	Significant SNP(s) associated with each candidate gene
	inositol 1,4,5-trisphosphate receptor type				
ITPRI	1		18802491	18953176	
LOC112533364	uncharacterized LOC112533364		18964030	18970288	
BHLHE40	basic helix-loop-helix family member e40		18986975	18991321	
LOC107054403	uncharacterized LOC107054403	12	18991726	18994904	rs313298834
LOC107054404	uncharacterized LOC107054404		18996262	19001149	
ARL8B	ADP ribosylation factor like GTPase 8B		19004930	19021010	
	ER degradation enhancing alpha-				
EDEM1	mannosidase like protein 1		19022229	19032275	
XPO7	exportin 7		1659759	1691710	
DOK2	docking protein 2		1692828	1698227	rs314011910
LOC101749127	uncharacterized LOC101749127	22	1698237	1704849	
GFRA2	GDNF family receptor alpha 2	22	1714010	1734922	7551+011/10
LOC107054969	uncharacterized LOC107054969		1725523	1731382	
LOC107054968	uncharacterized LOC107054968		1748674	1758867	
KIF21B	kinesin family member 21B		289715	321414	
ELF3	E74 like ETS transcription factor 3		323816	327820	
GPR37L1	G protein-coupled receptor 37 like 1		337772	353528	
ARL8A	ADP ribosylation factor like GTPase 8A		355155	365068	
PTPN7	protein tyrosine phosphatase, non- receptor type 7	26	367516	377636	rs313045367
PTPRVP	protein tyrosine phosphatase, receptor type, V, pseudogene		376921	408510	
LOC112530334	uncharacterized LOC112530334		410270	413273	

LGR6	<i>leucine rich repeat containing G protein- coupled receptor 6</i>		410381	484213	
SUGP2	SURP and G-patch domain containing 2		3761200	3776727	rs15250929
HOMER3	homer scaffolding protein 3		3774743	3814238	rs10724922, rs15250929
DDX49	DEAD-box helicase 49		3818734	3824430	rs10724922, rs15250929
COPE	coatomer protein complex subunit epsilon		3824578	3829382	rs10724922, rs15251036, rs15250929
CERS1	ceramide synthase 1		3831598	3842053	rs10724922, rs15251036, rs15250929,rs16212031, rs314228493
GDF3	growth differentiation factor 3		3843493	3845584	rs10724922, rs15251036, rs15250929, rs16212031, rs314228493, rs16212040, rs16212041
UPF1	UPF1, RNA helicase and ATPase		3847285	3866737	rs10724922, rs15251036, rs15250929, rs16212031, rs314228493, rs16212040, rs16212041
LOC112530428	uncharacterized LOC112530428		3866889	3871355	rs10724922, rs15251036, rs317783777, rs15250929, rs16212031, rs314228493, rs16212040, rs16212041
СОМР	cartilage oligomeric matrix protein	28	3885739	3901177	rs10724922, rs15251036, rs317783777, rs16212031, rs314228493, rs16212040, rs16212041, rs314418757 rs10724922, rs15251036, rs317783777, rs315316434
CRTC1	CREB regulated transcription coactivator 1		3903025	3943104	rs314052602, rs16212031, rs314228493, rs16212040, rs16212041, rs314418757
LOC107055366	uncharacterized LOC107055366		3929316	3930938	rs317783777, rs315316434, rs16212031, rs314228493, rs16212040, rs16212041, rs314418757
LOC101748347	uncharacterized LOC101748347		3943292	3949939	rs317783777, rs315316434, rs313312915, rs314052602, rs314418757
KLHL26	kelch like family member 26		3951133	3966079	rs317783777, rs315316434, rs313312915, rs14307369, rs314052602, rs314418757
TMFM59I	transmembrane protein 50 like		3971283	3976388	rs315316434, rs313312915, rs14307369, rs314052602 rs314418757
LOC112530430	uncharacterized LOC112530430		3976324	3977914	rs315316434, rs313312915, rs14307369, rs314052602

CRLF1	cytokine receptor like factor 1	3979732	3985638	rs315316434, rs313312915, rs14307369, rs314052602
C19orf60	chromosome 19 open reading frame 60	3985818	3987504	rs315316434, rs313312915, rs14307369, rs314052602
	ubiauitin A-52 residue ribosomal protein			
UBA52	fusion product 1	3987712	3988725	rs315316434, rs313312915, rs14307369, rs314052602
KXD1	KxDL motif containing 1	3989908	3991381	rs315316434, rs313312915, rs14307369, rs314052602
FKBP8	FK506 binding protein 8	3991437	3997184	rs315316434, rs313312915, rs14307369, rs314052602
				rs315316434. rs313312915. rs14307369.
ELL	elongation factor for RNA polymerase II	3997782	4031850	rs314052602, rs318126353
LOC112530432	translation initiation factor IF-2-like	4031011	4033491	rs313312915, rs14307369, rs314052602, rs318126353
ISYNA1	inositol-3-phosphate synthase 1	4033985	4037537	rs313312915, rs14307369, rs314052602, rs318126353
SSBP4	single stranded DNA binding protein 4	4037993	4047230	rs313312915, rs14307369, rs314052602, rs318126353
LRRC25	leucine rich repeat containing 25	4047671	4051078	rs313312915, rs14307369, rs318126353
GDF15	growth differentiation factor 15	4050997	4053678	rs14307369, rs318126353
LOC112530443	translation initiation factor IF-2-like	4053708	4055686	rs14307369, rs318126353
PGPEP1	pyroglutamyl-peptidase I	4057878	4068206	rs318126353
	LSM4 homolog, U6 small nuclear RNA			
LSM4	and mRNA degradation associated	4068726	4075072	rs318126353
	JunD proto-oncogene, AP-1 transcription			
JUND	factor subunit	4074009	4079212	rs318126353
	proline-rich receptor-like protein kinase			
LOC107055358	PERK2	4079280	4082415	rs318126353
PDE4C	phosphodiesterase 4C	4084333	4091257	rs318126353
RAB3A	RAB3A, member RAS oncogene family	4092352	4096084	rs318126353
	MPV17 mitochondrial inner membrane			
MPV17L2	protein like 2	4096022	4098287	rs318126353
IFI30	IFI30, lysosomal thiol reductase	4098284	4100575	rs318126353
	phosphoinositide-3-kinase regulatory			
PIK3R2	subunit 2	4100899	4119455	rs318126353

* Positions were based on GRCg6a assembly

Supplementary Table 3. Genes obtained by previous GWA studies for egg and reproductive traits in *Gallus gallus*.

Genes	Trait	Reference
AJAP1,TNFRSF9,C1ORF174,CAMTA1,CEP104,PDAI1,SDHB,DJ- 1,PADI3,MRPS16	eggshell blueness	Darwish et al. 2019 [1]
ZNF704,CA2,RFT1 ,PRKCD,PDGFD,DYNC2H1,DCUN1D5,FGF9,KIAA146 8,PHLPP1,ZCCHC2,TLL1	yield of extraembryonic fluid, age at first egg, egg weight	Kudinov et al. 2019 [2]
NCAPG,FGFPB1,KPNA3,CDC25A,WDR48,BST1,THSD7B	egg albumen quality	Qu et al. 2019 [3]
<i>DLEU7,MIR15A,CECR2,MEIS1,SPRED2,RNASEH2B,KCNRG,SPRYD7,CE</i> <i>CR1,CECR5</i>	egg weight	Liu et al. 2018 [4]
MSX2,DRD1,RHOA,SDF4,TNFRSF4,TTLL10,LOC419425,MIR429	egg quality	Liu et al. 2018 [5]
FAM184B,HTT,KCNH7,CDC42BPA,KCNIP4,GJA5,CBFB,GPC6,COG6,PP ARGC1A,CNKSR2,MED30,STK31	age at first egg , body weight at first egg, egg weight, egg number	Fan et al. 2017 [6]
IGFBP3,GORAB,CCKAR	oviduct development	Shen et al. 2017 [7]
RGS3,AMH,DCLK1,NBEA,SMAD9	follicle number	Shen et al. 2017 [8]
ADIPOR2,LRTM2,SOX5,CMAS,ERC1,CHUNK- 1,STRAP,PLCZ1,AEBP2,SLCO1A2,IAPP,KCNJ8,GYS2,SPX,KRAS,IQSEC3, SLC6A12,WNK1,CACNA2D4,DCP1B,CACNA1C,BCL2L13,MICAL3,BPGM, CALD1,RERG,PTPR0,EPS8,DERA,MGST1,LMO3,RERGL,PLEKHA5,SLCO 1C1,PYROXD1,BCAT1,C2CD5,ST8SIA1,LDHB,LRMP,LYRM5,RAD52,WNT 5B,AKR,CAPZA3,TMTC1,TUBAT,BICD1,DENND5B,SLC6A13,B4GALNT3, RASSF8,SLC15A5,WASH1,CYB5R3,ITM2C,KNDC1,GPR123(ADGRA1)	eggshell ultrastructure	Duan et al. 2016 [9]
DGKQ,SHROOM3,RBPJ,TRPC6,C4,TRPM8,MCCC2,PTPRD,AUTS2,ITGA6 ,PLCB1,CCDC82,LGSN,EPHX2,ANKMY1,APEM1,POLA1,DAPK1,SMYD3, ARL8A,LOC10751519,LOC100857741,C5H150RF29,LOC101751216,MEF 2A,ELFN1,LAMC3,HAS2,PRL,PXDN,SLC8A1,KATNBL1	total egg numbers , egg weight, eggshell thickness, eggshell color	Liao et al. 2016 [10]
--	---	-----------------------
DOTL1,GALC,RPA2,ACTL9,ZAP70,BRCA2,RFX2,ONECUT3,ZAR1,REXO1, NRTN,EML4,KCNG3,ADAMTS10,SCAMP4,ABHD17A,ELL,ENSGALG0000 0028314,RGS3F,OAZ,C19orf35,AP3D1,MY01F,MUC16,SPG20,STARD13,N EK5,NEK3,CKAP2,DHRS12,ACER1b,ACSBG2,ACER1	yolk and ovary weights	Sun et al. 2015 [11]
ITPR2,PIK3C2G,RECQL,ABCC9,CASC1	eggshell quality	Sun et al. 2015 [12]
CAB39L,FOXO1,CDADC1	egg weight	Yi et al. 2015 [13]

GTF2A1,STON2,CLSPN,FARSB,KIAA1549,CALM1,Gprotein,GNB2L1,T	egg number, egg laying rate and age at first	Yuan et al. 2015 [14]
RIM27,GRIK3,B-	egg	
G,TSN,THYN1,SEL1L,OPCML,SPPL2B,TCF3,TAP2,PLXNB2,		
RPS29,METAP1D, TLK1,ZAK ,PPP1R9B, TRA2B ,ZC3H12A, RRAGC		
,STMN1 ,PNISR ,KIAA0776, ATG5 ,NRXN3,MOGAT1, MIR1741, SMG6		
,ADORA2B, SVOPL ,HIPK2 ,TAB1 ,PFKP ,PPP4R1L, C3AR1 ,PDE3A		
,ARNTL2 ,PPFIBP1 ,HTR2C ,LOC101749001, DMC1 ,ZC3H14, KCNK10		
,TTC7B ,DIO2 ,C5H14ORF159, TTC8 ,LOC423393, NEURL1B ,CDKAL1		
SOX4 ,MIR216B, MIR7463 ,RTN4IP1 ,MIR6583 ,CCDC88C ,POU3F1,		
GRB14,GALNT1,ODZ2,ZNF536,ATM,LOC418918,ENOX1,BLK	egg production and quality	Liu et al. 2011 [15]

References of Supplementary Table 3

1. Darwish HYA, Dalirsefat SB, Dong X, Hua G, Chen J, Zhang Y, et al. Genome-wide association study and a post replication analysis revealed a promising genomic region and candidate genes for chicken eggshell blueness. PLoS One. 2019;14:e0209181. doi:10.1371/journal.pone.0209181.

2. Kudinov AA, Dementieva N V., Mitrofanova O V., Stanishevskaya OI, Fedorova ES, Larkina TA, et al. Genome-wide association studies targeting the yield of extraembryonic fluid and production traits in Russian White chickens. BMC Genomics. 2019;20:270. doi:10.1186/s12864-019-5605-5.

3. Qu L, Shen M, Guo J, Wang X, Dou T, Hu Y, et al. Identification of potential genomic regions and candidate genes for egg albumen quality by a genome-wide association study. Arch Anim Breed. 2019;62:113–23. doi:10.5194/aab-62-113-2019.

4. Liu Z, Sun C, Yan Y, Li G, Wu G, Liu A, et al. Genome-Wide Association Analysis of Age-Dependent Egg Weights in Chickens. Front Genet. 2018;9:128. doi:10.3389/fgene.2018.00128.

5. Liu Z, Sun C, Yan Y, Li G, Shi F, Wu G, et al. Genetic variations for egg quality of chickens at late laying period revealed by genome-wide association study. Sci Rep. 2018;8:10832. doi:10.1038/s41598-018-29162-7.

6. Fan QC, Wu PF, Dai GJ, Zhang GX, Zhang T, Xue Q, et al. Identification of 19 loci for reproductive traits in a local Chinese chicken by genome-wide study. Genet Mol Res. 2017;16. doi:10.4238/gmr16019431.

7. Shen M, Qu L, Ma M, Dou T, Lu J, Guo J, et al. A genome-wide study to identify genes responsible for oviduct development in chickens. PLoS One. 2017;12:e0189955. doi:10.1371/journal.pone.0189955.

8. Shen M, Sun H, Qu L, Ma M, Dou T, Lu J, et al. Genetic Architecture and Candidate Genes Identified for Follicle Number in Chicken. Sci Rep. 2017;7:16412. doi:10.1038/s41598-017-16557-1.

9. Duan Z, Sun C, Shen M, Wang K, Yang N, Zheng J, et al. Genetic architecture dissection by genome-wide association analysis reveals avian eggshell ultrastructure traits. Sci Rep. 2016;6:28836. doi:10.1038/srep28836.

10. Liao R, Zhang X, Chen Q, Wang Z, Wang Q, Yang C, et al. Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and White Leghorn chickens. Anim Genet. 2016;47:588–96. doi:10.1111/age.12456.

11. Sun C, Lu J, Yi G, Yuan J, Duan Z, Qu L, et al. Promising Loci and Genes for Yolk and Ovary Weight in Chickens Revealed by a Genome-Wide Association Study. PLoS One. 2015;10:e0137145. doi:10.1371/journal.pone.0137145.

12. Sun C, Qu L, Yi G, Yuan J, Duan Z, Shen M, et al. Genome-wide association study revealed a promising region and candidate genes for eggshell quality in an F2 resource population. BMC Genomics. 2015;16:565. doi:10.1186/s12864-015-1795-7.

13. Yi G, Shen M, Yuan J, Sun C, Duan Z, Qu L, et al. Genome-wide association study dissects genetic architecture underlying longitudinal egg weights in chickens. BMC Genomics. 2015;16:746. doi:10.1186/s12864-015-1945-y.

14. Yuan J, Sun C, Dou T, Yi G, Qu L, Qu L, et al. Identification of Promising Mutants Associated with Egg Production Traits Revealed by Genome-Wide Association Study. PLoS One. 2015;10:e0140615. doi:10.1371/journal.pone.0140615.

15. Liu W, Li D, Liu J, Chen S, Qu L, Zheng J, et al. A Genome-Wide SNP Scan Reveals Novel Loci for Egg Production and Quality Traits in White Leghorn and Brown-Egg Dwarf Layers. PLoS One. 2011;6:e28600. doi:10.1371/journal.pone.0028600.

Chapter 5

SNP ID	GGA	Position (bp)*	Wald test p-value	FDR p-value	Distance (bp)	Trait
rs317275973	1	23082139	1,28E-05	0,020476944	12592975	
rs13850889	1	35675114	4,46E-05	0,04534326	9338826	
rs314607281	1	45013940	3,27E-05	0,038514056	7983218	
rs13653309	1	52997158	7,12E-09	4,72E-05	68237936	
rs317073055	1	121235094	3,22E-07	0,000899406		
rs13543487	2	27103453	3,15E-05	0,038350828	32365880	
rs317979230	2	59469333	6,79E-06	0,011793922	32389099	
rs16067706	2	91858432	4,28E-05	0,044442073	1282396	
rs313097265	2	93140828	5,81E-06	0,011397788		
rs313125064	3	21986853	4,05E-06	0,008938395	1460073	
rs316117717	3	23446926	5,08E-06	0,010759583	61658923	
rs317961013	3	85105849	6,24E-06	0,011525504	5797015	
rs315826445	3	90902864	1,43E-05	0,022363434	9088620	DW
rs313332188	3	99991484	5,30E-11	1,40E-06		BW
rs313973628	4	8970286	2,06E-05	0,029432058	17560376	
rs313178030	4	26530662	5,17E-05	0,047275168	23130710	
rs317273654	4	49661372	4,70E-05	0,04534326	15783372	
rs313976538	4	65444744	5,73E-06	0,011397788	781079	
rs314007348	4	66225823	3,77E-08	0,00016656	234093	
rs15608447	4	66459916	2,42E-08	0,000116691	238906	
rs14485266	4	66698822	3,83E-05	0,040584485		
rs312798022	5	8828819	1,67E-05	0,025277547	21829468	7
rs313257959	5	30658287	3,11E-05	0,038350828		
rs315753942	7	5203886	4,25E-07	0,001124835	31082488	
rs313879964	7	36286374	4,25E-09	3,75E-05		
rs314425715	8	770143	4,82E-05	0,045576328	19910125	

Table S1. Genome-wide significant SNPs for body weight (BW) and chromosome-wide significant SNPs for egg number (EN).

rs316603825	8	20680268	1,14E-08	6,70E-05	
rs317315660	9	17942760	4,71E-05	0,04534326	
rs313036644	10	1446308	6,31E-06	0,011525504	8991974
rs313184580	10	10438282	1,12E-05	0,018565284	
rs15603546	11	3817134	5,21E-07	0,001315423	219957
rs313822475	11	4037091	1,19E-07	0,000391989	14370402
rs318098582	11	18407493	6,24E-09	4,72E-05	
rs314685865	13	12041828	3,53E-06	0,008125337	
rs317631529	14	5738298	1,29E-08	6,85E-05	3878760
rs318197918	14	9617058	3,12E-06	0,007525859	
rs314778226	15	4845973	2,63E-07	0,000774041	8010884
rs314215039	15	12856857	2,97E-05	0,038350828	
rs317414603	20	6729013	3,95E-10	4,19E-06	
rs316810914	21	2722503	2,22E-05	0,030998493	
rs314011910	22	1711605	3,51E-05	0,039411178	3430481
rs313993741	22	5142086	5,02E-05	0,046681406	
rs317101069	23	3379059	3,64E-05	0,039411178	
rs14291881	24	150829	1,67E-10	2,95E-06	213139
rs314315583	24	363968	3,37E-05	0,038776251	5785443
rs314507428	24	6149411	2,67E-05	0,036313203	
rs315195881	25	1794356	1,19E-07	0,000391989	498213
rs315023079	25	2292569	2,78E-10	3,68E-06	1273013
rs13791894	25	3565582	3,18E-05	0,038350828	205102
rs312758346	25	3770684	6,90E-06	0,011793922	
rs316975706	26	805527	1,26E-07	0,000391989	
rs315411246	27	4002212	4,65E-05	0,04534326	597349
rs313353157	27	4599561	1,93E-05	0,028396588	1254027
rs316714498	27	5853588	6,09E-08	0,000248242	1066764
rs315329074	27	6920352	1,59E-13	8,41E-09	144105

rs313658015	27	7064457	3,59E-05	0,039411178			
rs317501178	28	874035	8,84E-08	0,00033453	2787008		
rs314496246	28	3661043	2,79E-05	0,036944764			
rs316318083	21	3382056	1,76E-05	0,021637347			
rs313534177	28	3777407	0,000252	0,049357166	142098		
rs317783777	28	3919505	2,01E-05	0,006873961	52423	EN	
rs315316434	28	3971928	8,90E-06	0,006079608	23062		
rs316549515	28	3994990	0,000289	0,049357166			
* Note: Positions a	* Note: Positions are based on GRCg6a assembly						

Table S2. Genome-wide significant cross-phenotype (CP) associations for BW and EN. Note that 44 SNPs were also identified by univariate association analyses.

SNP ID	GGA	Position (bp)*	Wald test p-value	FDR p-value	Distance (bp)	Statistical analysis
rs317275973	1	23082139	4,22E-05	0,045922629	29915019	Bivariate analysis and Univariate analysis for BW
rs13653309	1	52997158	2,26E-08	0,000141565	1429802	Bivariate analysis and Univariate analysis for BW
rs15272503	1	54426960	6,99E-08	0,000336529	66808134	Bivariate analysis
rs317073055	1	121235094	1,73E-06	0,003665709		Bivariate analysis and Univariate analysis for BW
rs317979230	2	59469333	2,27E-05	0,029832557	33671495	Bivariate analysis and Univariate analysis for BW
rs313097265	2	93140828	3,37E-05	0,040579648		Bivariate analysis and Univariate analysis for BW
rs313125064	3	21986853	1,85E-05	0,026379236	1460073	Bivariate analysis and Univariate analysis for BW
rs316117717	3	23446926	4,34E-06	0,007661716	61658923	Bivariate analysis and Univariate analysis for BW
rs317961013	3	85105849	1,55E-06	0,003562813	14885635	Bivariate analysis and Univariate analysis for BW
rs313332188	3	99991484	5,89E-10	7,80E-06		Bivariate analysis and Univariate analysis for BW
rs313976538	4	65444744	3,80E-05	0,043769917	781079	Bivariate analysis and Univariate analysis for BW
rs314007348	4	66225823	3,23E-07	0,001314906	234093	Bivariate analysis and Univariate analysis for BW
rs15608447	4	66459916	4,34E-08	0,000230024	238906	Bivariate analysis and Univariate analysis for BW
rs14485266	4	66698822	2,12E-05	0,028770838	234382	Bivariate analysis and Univariate analysis for BW
rs317866306	4	66933204	1,26E-05	0,019711107		Bivariate analysis
rs314313592	6	34543637	4,67E-05	0,048866635		Bivariate analysis

rs315753942	7	5203886	1,30E-06	0,003277951	31082488	Bivariate analysis and Univariate analysis for BW
rs313879964	7	36286374	9,82E-09	7,43E-05		Bivariate analysis and Univariate analysis for BW
rs316603825	8	20680268	9,46E-09	7,43E-05		Bivariate analysis and Univariate analysis for BW
rs313036644	10	1446308	2,31E-05	0,029832557	8991974	Bivariate analysis and Univariate analysis for BW
rs313184580	10	10438282	1,89E-05	0,026379236	2675362	Bivariate analysis and Univariate analysis for BW
rs14008207	10	13113644	4,00E-05	0,045113352		Bivariate analysis
rs314798708	11	3373672	4,25E-05	0,045922629	443462	Bivariate analysis
rs15603546	11	3817134	2,40E-06	0,004900058	219957	Bivariate analysis and Univariate analysis for BW
rs313822475	11	4037091	8,70E-07	0,002427468	14370402	Bivariate analysis and Univariate analysis for BW
rs318098582	11	18407493	2,40E-08	0,000141565		Bivariate analysis and Univariate analysis for BW
rs314685865	13	12041828	2,74E-05	0,034622475		Bivariate analysis and Univariate analysis for BW
rs317631529	14	5738298	7,69E-08	0,000339649	3878760	Bivariate analysis and Univariate analysis for BW
rs318197918	14	9617058	1,30E-05	0,019737688	205140	Bivariate analysis and Univariate analysis for BW
rs314504536	14	9822198	3,95E-06	0,007468611		Bivariate analysis
rs314778226	15	4845973	1,13E-06	0,002983047	8010884	Bivariate analysis and Univariate analysis for BW
rs314215039	15	12856857	1,12E-05	0,018005895		Bivariate analysis and Univariate analysis for BW
rs317414603	20	6729013	2,51E-09	2,66E-05	6353624	Bivariate analysis and Univariate analysis for BW
rs313569149	20	13082637	6,62E-06	0,011309187		Bivariate analysis
rs316810914	21	2722503	1,40E-06	0,003370082	659553	Bivariate analysis and Univariate analysis for BW
rs316318083	21	3382056	1,81E-05	0,026379236		Bivariate analysis and Univariate analysis for EN
rs314011910	22	1711605	1,64E-06	0,003624311		Bivariate analysis and Univariate analysis for BW
rs317101069	23	3379059	4,33E-06	0,007661716		Bivariate analysis and Univariate analysis for BW
rs14291881	24	150829	4,28E-10	7,56E-06	5998582	Bivariate analysis and Univariate analysis for BW
rs314507428	24	6149411	5,17E-07	0,00160387		Bivariate analysis and Univariate analysis for BW
rs315195881	25	1794356	5,45E-07	0,00160387	498213	Bivariate analysis and Univariate analysis for BW
rs315023079	25	2292569	3,48E-10	7,56E-06	1478115	Bivariate analysis and Univariate analysis for BW
rs312758346	25	3770684	3,77E-05	0,043769917		Bivariate analysis and Univariate analysis for BW
rs316975706	26	805527	5,13E-07	0,00160387		Bivariate analysis and Univariate analysis for BW
rs316714498	27	5853588	4,12E-07	0,001454562	1066764	Bivariate analysis and Univariate analysis for BW
rs315329074	27	6920352	6,18E-13	3,28E-08	144105	Bivariate analysis and Univariate analysis for BW

rs313658015	27	7064457	3,76E-06	0,007372002		Bivariate analysis and Univariate analysis for BW
rs317501178	28	874035	3,47E-07	0,001314906	3045470	Bivariate analysis and Univariate analysis for BW
rs317783777	28	3919505	2,89E-05	0,035590746	52423	Bivariate analysis and Univariate analysis for EN
rs315316434	28	3971928	7,95E-06	0,013157669	23062	Bivariate analysis and Univariate analysis for EN
rs316549515	28	3994990	4,70E-05	0,048866635		Bivariate analysis and Univariate analysis for EN
* Note: Positions are based on GRCg6a assembly						

Table S3. GO biological processes (BPs) per gene.

GO_ID	GO BP term	P-value	Gene involved
GO:0007020	microtubule nucleation	0.012645755	
GO:0031116	positive regulation of microtubule polymerization	0.012645755	
GO:0031112	positive regulation of microtubule polymerization or depolymerization	0.012645755	
GO:0031122	cytoplasmic microtubule organization	0.012903831	
GO:0046785	microtubule polymerization	0.012903831	
GO:0031113	regulation of microtubule polymerization	0.012903831	
GO:0031110	regulation of microtubule polymerization or depolymerization	0.012903831	
GO:0031109	microtubule polymerization or depolymerization	0.016258827	
GO:0032273	positive regulation of protein polymerization	0.018667543	
GO:0032271	regulation of protein polymerization	0.019269721	
GO:0031334	positive regulation of protein-containing complex assembly	0.019269721	
GO:1902905	positive regulation of supramolecular fiber organization	0.019269721	
GO:0051495	positive regulation of cytoskeleton organization	0.019269721	
GO:0070507	regulation of microtubule cytoskeleton organization	0.019269721	SLAIN2
GO:0032886	regulation of microtubule-based process	0.019269721	
GO:0051258	protein polymerization	0.020436443	
GO:1902903	regulation of supramolecular fiber organization	0.025397776	
GO:0043254	regulation of protein-containing complex assembly	0.026295141	
GO:0044089	positive regulation of cellular component biogenesis	0.032993059	
GO:0051493	regulation of cytoskeleton organization	0.034233864	
GO:0010638	positive regulation of organelle organization	0.034324191	
GO:0000226	microtubule cytoskeleton organization	0.035966497	
GO:0097435	supramolecular fiber organization	0.037937264	
GO:0044087	regulation of cellular component biogenesis	0.044224011	
GO:0007017	microtubule-based process	0.044224011	
GO:0034622	cellular protein-containing complex assembly	0.044746516	
GO:0051130	positive regulation of cellular component organization	0.04944557	

GO:0033043	regulation of organelle organization	0.054518687	
GO:0065003	protein-containing complex assembly	0.061858297	
GO:0043933	protein-containing complex subunit organization	0.065093585	
GO:0007010	cytoskeleton organization	0.065093585	
GO:0051128	regulation of cellular component organization	0.087842831	
GO:0022607	cellular component assembly	0.101549242	
GO:0044085	cellular component biogenesis	0.107595181	
GO:0006996	organelle organization	0.141890529	
GO:0048522	positive regulation of cellular process	0.172323498	
GO:0048518	positive regulation of biological process	0.18978397	
GO:0016043	cellular component organization	0.201523887	
GO:0071840	cellular component organization or biogenesis	0.20284161	
GO:0050794	regulation of cellular process	0.31871818	
GO:0050789	regulation of biological process	0.330640219	
GO:0065007	biological regulation	0.346338831	
GO:0009987	cellular process	0.472010144	
GO:0008150	biological process	0.527139103	
GO:0060957	endocardial cell fate commitment	0.003602808	
GO:0062042	regulation of cardiac epithelial to mesenchymal transition	0.003602808	
GO:0062043	positive regulation of cardiac epithelial to mesenchymal transition	0.003602808	
GO:0003289	atrial septum primum morphogenesis	0.003602808	
GO:0003274	endocardial cushion fusion	0.003602808	
GO:0061445	endocardial cushion cell fate commitment	0.003602808	ACVR1
GO:0061443	endocardial cushion cell differentiation	0.003602808	nevia
GO:0003284	septum primum development	0.003602808	
GO:1905005	regulation of epithelial to mesenchymal transition involved in endocardial cushion formation	0.003602808	
GO:1905007	positive regulation of epithelial to mesenchymal transition involved in endocardial cushion formation	0.003602808	
GO:2000015	regulation of determination of dorsal identity	0.003602808	
GO:2000017	positive regulation of determination of dorsal identity	0.003602808	

- 1				
	GO:0061343	cell adhesion involved in heart morphogenesis	0.004117495	
	GO:0061312	BMP signaling pathway involved in heart development	0.004117495	
	GO:0060839	endothelial cell fate commitment	0.004803744	
	GO:0060923	cardiac muscle cell fate commitment	0.004803744	
	GO:0060956	endocardial cell differentiation	0.004803744	
	GO:0003348	cardiac endothelial cell differentiation	0.004803744	
	GO:0032926	negative regulation of activin receptor signaling pathway	0.005404213	
	GO:0003174	mitral valve development	0.005404213	
	GO:0060911	cardiac cell fate commitment	0.005404213	
	GO:0003183	mitral valve morphogenesis	0.005404213	
	GO:0048262	determination of dorsal/ventral asymmetry	0.005404213	
	GO:0048263	determination of dorsal identity	0.005404213	
	GO:0042693	muscle cell fate commitment	0.005661556	
	GO:0072148	epithelial cell fate commitment	0.005661556	
	GO:0003157	endocardium development	0.005661556	
	GO:0003198	epithelial to mesenchymal transition involved in endocardial cushion formation	0.005661556	
	GO:1901213	regulation of transcription from RNA polymerase II promoter involved in heart development	0.005963269	
	GO:0003272	endocardial cushion formation	0.006304915	
	GO:0060413	atrial septum morphogenesis	0.006304915	
	GO:0032925	regulation of activin receptor signaling pathway	0.006304915	
	GO:0061311	cell surface receptor signaling pathway involved in heart development	0.007411491	
	GO:0003283	atrial septum development	0.007411491	
	GO:0003181	atrioventricular valve morphogenesis	0.007411491	
	GO:0001702	gastrulation with mouth forming second	0.007605929	
	GO:0003171	atrioventricular valve development	0.007789856	
	GO:0060037	pharyngeal system development	0.007964103	
	GO:0003203	endocardial cushion morphogenesis	0.008129414	
	GO:0003209	cardiac atrium morphogenesis	0.00864674	
	GO:0002526	acute inflammatory response	0.00896699	

GO:0001569	branching involved in blood vessel morphogenesis	0.00896699	
GO:2000826	regulation of heart morphogenesis	0.00896699	
GO:0032924	activin receptor signaling pathway	0.00896699	
GO:0003230	cardiac atrium development	0.00896699	
GO:0030501	positive regulation of bone mineralization	0.009042343	
GO:0060317	cardiac epithelial to mesenchymal transition	0.009042343	
GO:0010718	positive regulation of epithelial to mesenchymal transition	0.009042343	
GO:0060412	ventricular septum morphogenesis	0.009042343	
GO:0072132	mesenchyme morphogenesis	0.009042343	
GO:0003197	endocardial cushion development	0.009042343	
GO:0010862	positive regulation of pathway-restricted SMAD protein phosphorylation	0.00914559	
GO:0110151	positive regulation of biomineralization	0.009170785	
GO:0003179	heart valve morphogenesis	0.009170785	
GO:0070169	positive regulation of biomineral tissue development	0.009170785	
GO:0003170	heart valve development	0.010036395	
GO:0051145	smooth muscle cell differentiation	0.010365975	
GO:0060393	regulation of pathway-restricted SMAD protein phosphorylation	0.010435721	
GO:0045669	positive regulation of osteoblast differentiation	0.011048612	
GO:0060389	pathway-restricted SMAD protein phosphorylation	0.011048612	
GO:0003143	embryonic heart tube morphogenesis	0.011339987	
GO:0001707	mesoderm formation	0.011750698	
GO:0001755	neural crest cell migration	0.011750698	
GO:0030500	regulation of bone mineralization	0.011750698	
GO:0003281	ventricular septum development	0.011750698	
GO:0110110	positive regulation of animal organ morphogenesis	0.011791009	
GO:0048332	mesoderm morphogenesis	0.011830117	
GO:0035050	embryonic heart tube development	0.011868075	
GO:0060411	cardiac septum morphogenesis	0.012146611	
GO:0010717	regulation of epithelial to mesenchymal transition	0.012146611	

GO:2001237	negative regulation of extrinsic apoptotic signaling pathway	0.012297586	
GO:0045778	positive regulation of ossification	0.012297586	
GO:0110149	regulation of biomineralization	0.012297586	
GO:0070167	regulation of biomineral tissue development	0.012297586	
GO:0045446	endothelial cell differentiation	0.012297586	
GO:0055007	cardiac muscle cell differentiation	0.012515018	
GO:0003158	endothelium development	0.012563639	
GO:0014032	neural crest cell development	0.012563639	
GO:0018107	peptidyl-threonine phosphorylation	0.012587027	
GO:0048864	stem cell development	0.012829513	
GO:0090100	positive regulation of transmembrane receptor protein serine/threonine kinase signaling pathway	0.012829513	
GO:0014031	mesenchymal cell development	0.012829513	
GO:0014033	neural crest cell differentiation	0.01284857	
GO:0018210	peptidyl-threonine modification	0.013038735	
GO:0009953	dorsal/ventral pattern formation	0.013054882	
GO:0030282	bone mineralization	0.013238226	
GO:0007498	mesoderm development	0.013251709	
GO:0045667	regulation of osteoblast differentiation	0.013264885	
GO:0003279	cardiac septum development	0.01329036	
GO:0007368	determination of left/right symmetry	0.01329036	
GO:0035051	cardiocyte differentiation	0.013797989	
GO:0001704	formation of primary germ layer	0.013797989	
GO:0009855	determination of bilateral symmetry	0.013797989	
GO:0003231	cardiac ventricle development	0.013797989	
GO:0009799	specification of symmetry	0.013804445	
GO:0090101	negative regulation of transmembrane receptor protein serine/threonine kinase signaling pathway	0.013810765	
GO:0031214	biomineral tissue development	0.01382302	
GO:0110148	biomineralization	0.01382302	
GO:0003206	cardiac chamber morphogenesis	0.013974529	

1			
GO:2001236	regulation of extrinsic apoptotic signaling pathway	0.014699458	
GO:0001837	epithelial to mesenchymal transition	0.014835093	
GO:000082	G1/S transition of mitotic cell cycle	0.014835093	
GO:0048754	branching morphogenesis of an epithelial tube	0.014970893	
GO:0050731	positive regulation of peptidyl-tyrosine phosphorylation	0.015104081	
GO:0044843	cell cycle G1/S phase transition	0.015646482	
GO:0007179	transforming growth factor beta receptor signaling pathway	0.015770784	
GO:0030509	BMP signaling pathway	0.015892762	
GO:0003205	cardiac chamber development	0.016412794	
GO:0007369	gastrulation	0.016579295	
GO:0071772	response to BMP	0.016579295	
GO:2000027	regulation of animal organ morphogenesis	0.016579295	
GO:0071773	cellular response to BMP stimulus	0.016579295	
GO:0061138	morphogenesis of a branching epithelium	0.016579295	
GO:0001649	osteoblast differentiation	0.016666905	
GO:0030278	regulation of ossification	0.016666905	
GO:0048738	cardiac muscle tissue development	0.016895929	
GO:2001234	negative regulation of apoptotic signaling pathway	0.017098073	
GO:0001763	morphogenesis of a branching structure	0.017098073	
GO:0071560	cellular response to transforming growth factor beta stimulus	0.017173386	
GO:0097191	extrinsic apoptotic signaling pathway	0.017173386	
GO:0007281	germ cell development	0.01724623	
GO:0071559	response to transforming growth factor beta	0.01724623	
GO:0048863	stem cell differentiation	0.017781602	
GO:0050730	regulation of peptidyl-tyrosine phosphorylation	0.017781602	
GO:0048762	mesenchymal cell differentiation	0.019368698	
GO:0098742	cell-cell adhesion via plasma-membrane adhesion molecules	0.019786852	
GO:0090092	regulation of transmembrane receptor protein serine/threonine kinase signaling pathway	0.019971473	
GO:0051146	striated muscle cell differentiation	0.020828736	

GO:0003007	heart morphogenesis	0.021002418	
GO:0022412	cellular process involved in reproduction in multicellular organism	0.021838561	
GO:0060485	mesenchyme development	0.022053554	
GO:0045165	cell fate commitment	0.022053554	
GO:0060562	epithelial tube morphogenesis	0.024163196	
GO:0048562	embryonic organ morphogenesis	0.024659222	
GO:0042692	muscle cell differentiation	0.024659222	
GO:0007178	transmembrane receptor protein serine/threonine kinase signaling pathway	0.025322596	
GO:0018212	peptidyl-tyrosine modification	0.025322596	
GO:2001233	regulation of apoptotic signaling pathway	0.025322596	
GO:0018108	peptidyl-tyrosine phosphorylation	0.025322596	
GO:0001503	ossification	0.025322596	
GO:0044772	mitotic cell cycle phase transition	0.02565404	
GO:0014706	striated muscle tissue development	0.026488253	
GO:0043009	chordate embryonic development	0.026605354	
GO:0009792	embryo development ending in birth or egg hatching	0.027341861	
GO:0060537	muscle tissue development	0.027341861	
GO:0001667	ameboidal-type cell migration	0.027341861	
GO:0044770	cell cycle phase transition	0.027351933	
GO:0003002	regionalization	0.027371671	
GO:0048568	embryonic organ development	0.027371671	
GO:0030335	positive regulation of cell migration	0.029110691	
GO:0001525	angiogenesis	0.02929652	
GO:0006954	inflammatory response	0.02929652	
GO:2000147	positive regulation of cell motility	0.029481804	
GO:0051272	positive regulation of cellular component movement	0.029758261	
GO:0007276	gamete generation	0.029938175	
GO:0002009	morphogenesis of an epithelium	0.030300542	
GO:0040017	positive regulation of locomotion	0.030382919	

GO:0007389	pattern specification process	0.031011515	
GO:0048609	multicellular organismal reproductive process	0.032425275	
GO:0032504	multicellular organism reproduction	0.032425275	
GO:0097190	apoptotic signaling pathway	0.033118984	
GO:0048514	blood vessel morphogenesis	0.03318142	
GO:0030855	epithelial cell differentiation	0.033419915	
GO:0007507	heart development	0.033919122	
GO:0019953	sexual reproduction	0.034324938	
GO:0061061	muscle structure development	0.034725864	
GO:0044703	multi-organism reproductive process	0.035121988	
GO:0003006	developmental process involved in reproduction	0.035729626	
GO:0048729	tissue morphogenesis	0.035729626	
GO:0071363	cellular response to growth factor stimulus	0.035773768	
GO:0001568	blood vessel development	0.035985945	
GO:0070848	response to growth factor	0.036195656	
GO:0001944	vasculature development	0.036939138	
GO:0048598	embryonic morphogenesis	0.036939138	
GO:0072358	cardiovascular system development	0.037139807	
GO:1903047	mitotic cell cycle process	0.039081311	
GO:0043066	negative regulation of apoptotic process	0.039081311	
GO:0098609	cell-cell adhesion	0.039347525	
GO:0043069	negative regulation of programmed cell death	0.039691274	
GO:0060548	negative regulation of cell death	0.04275598	
GO:0030334	regulation of cell migration	0.04275598	
GO:0035239	tube morphogenesis	0.0432337	
GO:2000145	regulation of cell motility	0.044572449	
GO:0045597	positive regulation of cell differentiation	0.04527007	
GO:0009790	embryo development	0.045336961	
GO:0000278	mitotic cell cycle	0.047274945	

GO:0051270	regulation of cellular component movement	0.047274945	
GO:0001934	positive regulation of protein phosphorylation	0.047274945	
GO:0040012	regulation of locomotion	0.047274945	
GO:0007167	enzyme linked receptor protein signaling pathway	0.048012555	
GO:0022414	reproductive process	0.048012555	
GO:0022603	regulation of anatomical structure morphogenesis	0.048012555	
GO:000003	reproduction	0.048012555	
GO:0042327	positive regulation of phosphorylation	0.04951552	
GO:0006952	defense response	0.04951552	
GO:0035295	tube development	0.049998157	
GO:0072359	circulatory system development	0.050546863	
GO:0060429	epithelium development	0.050546863	
GO:0045937	positive regulation of phosphate metabolic process	0.050546863	
GO:0009887	animal organ morphogenesis	0.050546863	
GO:0010562	positive regulation of phosphorus metabolic process	0.050546863	
GO:0048646	anatomical structure formation involved in morphogenesis	0.050653345	
GO:0031401	positive regulation of protein modification process	0.054663299	
GO:0009968	negative regulation of signal transduction	0.055172418	
GO:0007155	cell adhesion	0.055817167	
GO:0022610	biological adhesion	0.055895997	
GO:0042981	regulation of apoptotic process	0.056391783	
GO:0022402	cell cycle process	0.056605662	
GO:0043067	regulation of programmed cell death	0.056886448	
GO:0010648	negative regulation of cell communication	0.057301809	
GO:0023057	negative regulation of signaling	0.057303435	
GO:0018193	peptidyl-amino acid modification	0.057441001	
GO:0051094	positive regulation of developmental process	0.057441958	
GO:0071495	cellular response to endogenous stimulus	0.057644933	
GO:0045944	positive regulation of transcription by RNA polymerase II	0.057711962	

GO:0010941	regulation of cell death	0.059579775	
GO:0016477	cell migration	0.06042141	
GO:0001932	regulation of protein phosphorylation	0.06042141	
GO:0009719	response to endogenous stimulus	0.060606146	
GO:0009967	positive regulation of signal transduction	0.062950888	
GO:0006915	apoptotic process	0.06364418	
GO:0048585	negative regulation of response to stimulus	0.064085352	
GO:0012501	programmed cell death	0.064085352	
GO:0048870	cell motility	0.064085352	
GO:0032270	positive regulation of cellular protein metabolic process	0.064085352	
GO:0051674	localization of cell	0.064085352	
GO:0042325	regulation of phosphorylation	0.064501379	
GO:0051240	positive regulation of multicellular organismal process	0.065419415	
GO:0010647	positive regulation of cell communication	0.066628559	
GO:0051247	positive regulation of protein metabolic process	0.066628559	
GO:0023056	positive regulation of signaling	0.066628559	
GO:0007049	cell cycle	0.066651954	
GO:0008219	cell death	0.066759731	
GO:0045595	regulation of cell differentiation	0.066759731	
GO:0045893	positive regulation of transcription, DNA-templated	0.066843593	
GO:0019220	regulation of phosphate metabolic process	0.068513405	
GO:0040011	locomotion	0.068513405	
GO:1903508	positive regulation of nucleic acid-templated transcription	0.068513405	
GO:1902680	positive regulation of RNA biosynthetic process	0.068513405	
GO:0051174	regulation of phosphorus metabolic process	0.068513405	
GO:0051704	multi-organism process	0.06918588	
GO:0031399	regulation of protein modification process	0.070756793	
GO:0009888	tissue development	0.070756793	
GO:0051254	positive regulation of RNA metabolic process	0.070756793	

GO:2000026	regulation of multicellular organismal development	0.073232594	
GO:0010557	positive regulation of macromolecule biosynthetic process	0.075556871	
GO:0045935	positive regulation of nucleobase-containing compound metabolic process	0.075556871	
GO:0006468	protein phosphorylation	0.075644506	
GO:0006928	movement of cell or subcellular component	0.075644506	
GO:0048584	positive regulation of response to stimulus	0.075976022	
GO:0031328	positive regulation of cellular biosynthetic process	0.076247482	
GO:0009891	positive regulation of biosynthetic process	0.076802724	
GO:0010628	positive regulation of gene expression	0.078378882	
GO:0048468	cell development	0.078467464	
GO:0006357	regulation of transcription by RNA polymerase II	0.080815936	
GO:0006366	transcription by RNA polymerase II	0.082752004	
GO:0071310	cellular response to organic substance	0.082934685	
GO:0050793	regulation of developmental process	0.08919385	
GO:0016310	phosphorylation	0.08919385	
GO:0032879	regulation of localization	0.093258901	
GO:0032268	regulation of cellular protein metabolic process	0.093258901	
GO:0007166	cell surface receptor signaling pathway	0.094083984	
GO:0010033	response to organic substance	0.094083984	
GO:0009653	anatomical structure morphogenesis	0.094655601	
GO:0051246	regulation of protein metabolic process	0.098268297	
GO:0051239	regulation of multicellular organismal process	0.100555994	
GO:0009966	regulation of signal transduction	0.100555994	
GO:0070887	cellular response to chemical stimulus	0.100555994	
GO:0048513	animal organ development	0.108111037	
GO:0006950	response to stress	0.111233372	
GO:0006355	regulation of transcription, DNA-templated	0.11204601	
GO:0010646	regulation of cell communication	0.112209205	
GO:1903506	regulation of nucleic acid-templated transcription	0.112209205	

GO:0023051	regulation of signaling	0.112209205	
GO:2001141	regulation of RNA biosynthetic process	0.112209205	
GO:0051173	positive regulation of nitrogen compound metabolic process	0.112209205	
GO:0032774	RNA biosynthetic process	0.114012275	
GO:0031325	positive regulation of cellular metabolic process	0.114012275	
GO:0006793	phosphorus metabolic process	0.114012275	
GO:0006796	phosphate-containing compound metabolic process	0.114012275	
GO:0097659	nucleic acid-templated transcription	0.114012275	
GO:0006351	transcription, DNA-templated	0.114012275	
GO:0010604	positive regulation of macromolecule metabolic process	0.114067713	
GO:0051252	regulation of RNA metabolic process	0.118537469	
GO:2000112	regulation of cellular macromolecule biosynthetic process	0.121256623	
GO:0030154	cell differentiation	0.121437316	
GO:0048583	regulation of response to stimulus	0.122045133	
GO:0009893	positive regulation of metabolic process	0.122045133	
GO:0010556	regulation of macromolecule biosynthetic process	0.123019075	
GO:0019219	regulation of nucleobase-containing compound metabolic process	0.123737831	
GO:0042221	response to chemical	0.124402125	
GO:0048869	cellular developmental process	0.124848338	
GO:0034654	nucleobase-containing compound biosynthetic process	0.124848338	
GO:0031326	regulation of cellular biosynthetic process	0.124848338	
GO:0009889	regulation of biosynthetic process	0.125499859	
GO:0018130	heterocycle biosynthetic process	0.125964855	
GO:0019438	aromatic compound biosynthetic process	0.125964855	
GO:1901362	organic cyclic compound biosynthetic process	0.129120782	
GO:0036211	protein modification process	0.130945924	
GO:0006464	cellular protein modification process	0.130945924	
GO:0010468	regulation of gene expression	0.130945924	
GO:0048731	system development	0.13528426	

GO:0043412	macromolecule modification	0.136930498	
GO:0048523	negative regulation of cellular process	0.142121308	
GO:0016070	RNA metabolic process	0.142652372	
GO:0007275	multicellular organism development	0.142652372	
GO:0044271	cellular nitrogen compound biosynthetic process	0.14270407	
GO:0034645	cellular macromolecule biosynthetic process	0.143971965	
GO:0009059	macromolecule biosynthetic process	0.14695727	
GO:0048519	negative regulation of biological process	0.154200197	
GO:0090304	nucleic acid metabolic process	0.156675973	
GO:0048856	anatomical structure development	0.156675973	
GO:0048522	positive regulation of cellular process	0.158109187	
GO:0010467	gene expression	0.159209816	
GO:0044267	cellular protein metabolic process	0.159209816	
GO:0032502	developmental process	0.167690206	
GO:0051171	regulation of nitrogen compound metabolic process	0.16832682	
GO:0007165	signal transduction	0.16832682	
GO:0006139	nucleobase-containing compound metabolic process	0.16832682	
GO:0044249	cellular biosynthetic process	0.168971711	
GO:0046483	heterocycle metabolic process	0.169900857	
GO:0080090	regulation of primary metabolic process	0.169900857	
GO:1901576	organic substance biosynthetic process	0.169900857	
GO:0006725	cellular aromatic compound metabolic process	0.170488449	
GO:0009058	biosynthetic process	0.171826244	
GO:0048518	positive regulation of biological process	0.171829645	
GO:0060255	regulation of macromolecule metabolic process	0.172229664	
GO:1901360	organic cyclic compound metabolic process	0.173154484	
GO:0031323	regulation of cellular metabolic process	0.173460438	
GO:0019538	protein metabolic process	0.173502516	
GO:0023052	signaling	0.175155262	

GO:0007154	cell communication	0.176233757	
GO:0051179	localization	0.181341353	
GO:0032501	multicellular organismal process	0.181341353	
GO:0034641	cellular nitrogen compound metabolic process	0.181341353	
GO:0019222	regulation of metabolic process	0.181341353	
GO:1901564	organonitrogen compound metabolic process	0.195684878	
GO:0051716	cellular response to stimulus	0.200307617	
GO:0050896	response to stimulus	0.232237663	
GO:0044260	cellular macromolecule metabolic process	0.238336368	
GO:0043170	macromolecule metabolic process	0.273855696	
GO:0006807	nitrogen compound metabolic process	0.289868054	
GO:0050794	regulation of cellular process	0.296501673	
GO:0044238	primary metabolic process	0.304185946	
GO:0044237	cellular metabolic process	0.308400394	
GO:0050789	regulation of biological process	0.31254883	
GO:0071704	organic substance metabolic process	0.3141815	
GO:0065007	biological regulation	0.332490691	
GO:0008152	metabolic process	0.332490691	
GO:0009987	cellular process	0.462600591	
GO:0008150	biological process	0.527139103	
GO:0097503	sialylation	0.028576121	
GO:0006486	protein glycosylation	0.053580227	
GO:0070085	glycosylation	0.053580227	
GO:0043413	macromolecule glycosylation	0.053580227	
GO:0009100	glycoprotein metabolic process	0.054572453	ST3GAL3
GO:0009101	glycoprotein biosynthetic process	0.054572453	
GO:1901137	carbohydrate derivative biosynthetic process	0.074161838	
GO:1901135	carbohydrate derivative metabolic process	0.101207095	
GO:1901566	organonitrogen compound biosynthetic process	0.151744494	

GO:0006464	cellular protein modification process	0.24897572	
GO:0044267	cellular protein metabolic process	0.24897572	
GO:0044249	cellular biosynthetic process	0.24897572	
GO:0043412	macromolecule modification	0.24897572	
GO:0034645	cellular macromolecule biosynthetic process	0.24897572	
GO:0019538	protein metabolic process	0.24897572	
GO:0009059	macromolecule biosynthetic process	0.24897572	
GO:0009058	biosynthetic process	0.24897572	
GO:0036211	protein modification process	0.24897572	
GO:1901576	organic substance biosynthetic process	0.24897572	
GO:1901564	organonitrogen compound metabolic process	0.272425686	
GO:0044260	cellular macromolecule metabolic process	0.318816523	
GO:0043170	macromolecule metabolic process	0.346439671	
GO:0044237	cellular metabolic process	0.346439671	
GO:0044238	primary metabolic process	0.346439671	
GO:0071704	organic substance metabolic process	0.346439671	
GO:0006807	nitrogen compound metabolic process	0.346439671	
GO:0008152	metabolic process	0.354820168	
GO:0009987	cellular process	0.477757021	
GO:0008150	biological process	0.527139103	
GO:2000344	positive regulation of acrosome reaction	0.003117815	
GO:0032342	aldosterone biosynthetic process	0.003117815	
GO:0032341	aldosterone metabolic process	0.003117815	
GO:0034650	cortisol metabolic process	0.003117815	
GO:0034651	cortisol biosynthetic process	0.003117815	CACNA1H
GO:0035864	response to potassium ion	0.003117815	
GO:0035865	cellular response to potassium ion	0.003117815	
GO:0045956	positive regulation of calcium ion-dependent exocytosis	0.003117815	
GO:0034309	primary alcohol biosynthetic process	0.003117815	

GO:0008212	mineralocorticoid metabolic process	0.003117815	
GO:1902644	tertiary alcohol metabolic process	0.003117815	
GO:0060046	regulation of acrosome reaction	0.003117815	
GO:1905516	positive regulation of fertilization	0.003117815	
GO:1902645	tertiary alcohol biosynthetic process	0.003117815	
GO:0006705	mineralocorticoid biosynthetic process	0.003117815	
GO:0006704	glucocorticoid biosynthetic process	0.003117815	
GO:0006700	C21-steroid hormone biosynthetic process	0.00326046	
GO:0046184	aldehyde biosynthetic process	0.003387256	
GO:0080154	regulation of fertilization	0.003500704	
GO:0008211	glucocorticoid metabolic process	0.003879947	
GO:0008207	C21-steroid hormone metabolic process	0.00395913	
GO:0019228	neuronal action potential	0.004786948	
GO:0120178	steroid hormone biosynthetic process	0.004849934	
GO:0007340	acrosome reaction	0.004849934	
GO:0086010	membrane depolarization during action potential	0.005321071	
GO:0017158	regulation of calcium ion-dependent exocytosis	0.005329598	
GO:1903307	positive regulation of regulated secretory pathway	0.005938695	
GO:0042181	ketone biosynthetic process	0.005938695	
GO:0042446	hormone biosynthetic process	0.006973177	
GO:0006081	cellular aldehyde metabolic process	0.006973177	
GO:0034308	primary alcohol metabolic process	0.006973177	
GO:0051899	membrane depolarization	0.007173012	
GO:0019226	transmission of nerve impulse	0.007173012	
GO:0017156	calcium-ion regulated exocytosis	0.007173012	
GO:0045921	positive regulation of exocytosis	0.007640051	
GO:0070509	calcium ion import	0.007640051	
GO:2000243	positive regulation of reproductive process	0.007640051	
GO:0034754	cellular hormone metabolic process	0.008460036	

GO:0007338	single fertilization	0.008953725	
GO:0001508	action potential	0.010669855	
GO:0006694	steroid biosynthetic process	0.010959592	
GO:0009566	fertilization	0.010959592	
GO:0071248	cellular response to metal ion	0.010959592	
GO:0035637	multicellular organismal signaling	0.010959592	
GO:0046165	alcohol biosynthetic process	0.0113118	
GO:0035725	sodium ion transmembrane transport	0.0113118	
GO:0071241	cellular response to inorganic substance	0.0113118	
GO:2000241	regulation of reproductive process	0.0113118	
GO:1903305	regulation of regulated secretory pathway	0.0113118	
GO:0042180	cellular ketone metabolic process	0.012748399	
GO:0006814	sodium ion transport	0.012933158	
GO:0042445	hormone metabolic process	0.013217403	
GO:0017157	regulation of exocytosis	0.014013826	
GO:0010038	response to metal ion	0.014209678	
GO:0045055	regulated exocytosis	0.014209678	
GO:0008202	steroid metabolic process	0.014252868	
GO:1901617	organic hydroxy compound biosynthetic process	0.014780752	
GO:1903532	positive regulation of secretion by cell	0.017583998	
GO:0051047	positive regulation of secretion	0.017921662	
GO:0006066	alcohol metabolic process	0.017921662	
GO:0070588	calcium ion transmembrane transport	0.018718248	
GO:0006887	exocytosis	0.019757336	
GO:0010035	response to inorganic substance	0.020147573	
GO:0043902	positive regulation of multi-organism process	0.020179191	
GO:0006816	calcium ion transport	0.022341675	
GO:0042391	regulation of membrane potential	0.022423073	
GO:0017144	drug metabolic process	0.023376081	

GO:1901615	organic hydroxy compound metabolic process	0.023376081	
GO:0010817	regulation of hormone levels	0.023376081	
GO:0070838	divalent metal ion transport	0.023498273	
GO:0072511	divalent inorganic cation transport	0.023498273	
GO:0060627	regulation of vesicle-mediated transport	0.024018722	
GO:0015672	monovalent inorganic cation transport	0.025766446	
GO:0043900	regulation of multi-organism process	0.025766446	
GO:0008610	lipid biosynthetic process	0.026235835	
GO:0019953	sexual reproduction	0.028198904	
GO:1903530	regulation of secretion by cell	0.028198904	
GO:0044283	small molecule biosynthetic process	0.028198904	
GO:0044703	multi-organism reproductive process	0.028198904	
GO:0032870	cellular response to hormone stimulus	0.028198904	
GO:0051046	regulation of secretion	0.029082498	
GO:0009725	response to hormone	0.030688086	
GO:0051050	positive regulation of transport	0.03292279	
GO:0098662	inorganic cation transmembrane transport	0.03490633	
GO:0030001	metal ion transport	0.03586506	
GO:0032940	secretion by cell	0.036028083	
GO:0098660	inorganic ion transmembrane transport	0.037413779	
GO:0140352	export from cell	0.037413779	
GO:0098655	cation transmembrane transport	0.03817669	
GO:0046903	secretion	0.038429956	
GO:000003	reproduction	0.038739227	
GO:0022414	reproductive process	0.038739227	
GO:0050877	nervous system process	0.041541066	
GO:0006812	cation transport	0.045639503	
GO:0034220	ion transmembrane transport	0.0473762	
GO:0006629	lipid metabolic process	0.047691021	

GO:0071495	cellular response to endogenous stimulus	0.048913623	
GO:0009719	response to endogenous stimulus	0.05209084	
GO:0016192	vesicle-mediated transport	0.055707759	
GO:0051049	regulation of transport	0.05825464	
GO:0003008	system process	0.059763264	
GO:0055085	transmembrane transport	0.060916789	
GO:0044281	small molecule metabolic process	0.060916789	
GO:0006811	ion transport	0.06107618	
GO:0051704	multi-organism process	0.06107618	
GO:0071310	cellular response to organic substance	0.077337497	
GO:0032879	regulation of localization	0.087234065	
GO:0010033	response to organic substance	0.08811997	
GO:0070887	cellular response to chemical stimulus	0.094481551	
GO:0065008	regulation of biological quality	0.125436654	
GO:0042221	response to chemical	0.125436654	
GO:1901362	organic cyclic compound biosynthetic process	0.132135965	
GO:0006810	transport	0.152990595	
GO:0051234	establishment of localization	0.156170316	
GO:0048522	positive regulation of cellular process	0.165512292	
GO:0044249	cellular biosynthetic process	0.17928033	
GO:1901576	organic substance biosynthetic process	0.180306227	
GO:0048518	positive regulation of biological process	0.181048688	
GO:0009058	biosynthetic process	0.181048688	
GO:1901360	organic cyclic compound metabolic process	0.182034201	
GO:0023052	signaling	0.184286052	
GO:0007154	cell communication	0.184456518	
GO:0032501	multicellular organismal process	0.188856889	
GO:0051179	localization	0.188856889	
GO:0051716	cellular response to stimulus	0.208319921	

GO:0050896	response to stimulus	0.240319194	
GO:0050794	regulation of cellular process	0.307995378	
GO:0044238	primary metabolic process	0.314422973	
GO:0044237	cellular metabolic process	0.317227597	
GO:0050789	regulation of biological process	0.319946436	
GO:0071704	organic substance metabolic process	0.320085086	
GO:0008152	metabolic process	0.335567528	
GO:0065007	biological regulation	0.335567528	
GO:0009987	cellular process	0.464725049	
GO:0008150	biological process	0.527139103	
GO:0031048	chromatin silencing by small RNA	0.006404993	
GO:0030702	chromatin silencing at centromere	0.006404993	
GO:0006342	chromatin silencing	0.035227459	
GO:0034401	chromatin organization involved in regulation of transcription	0.035227459	
GO:0031047	gene silencing by RNA	lencing by RNA 0.035227459	
GO:0097549	chromatin organization involved in negative regulation of transcription	0.035227459	
GO:0045814	negative regulation of gene expression, epigenetic	0.035227459	
GO:0016458	gene silencing	0.055243061	
GO:0040029	regulation of gene expression, epigenetic	0.055509936	
GO:0006325	chromatin organization	0.155321071	ZNFX1
GO:0051276	chromosome organization	0.158683692	
GO:0045934	negative regulation of nucleobase-containing compound metabolic process	0.158683692	
GO:2000113	negative regulation of cellular macromolecule biosynthetic process	0.158683692	
GO:0045892	negative regulation of transcription, DNA-templated	0.158683692	
GO:0051253	negative regulation of RNA metabolic process	0.158683692	
GO:0031327	negative regulation of cellular biosynthetic process	0.158683692	
GO:0010558	negative regulation of macromolecule biosynthetic process	0.158683692	
GO:0009890	negative regulation of biosynthetic process	0.158683692	
GO:1902679	negative regulation of RNA biosynthetic process	0.158683692	

GO:1903507	negative regulation of nucleic acid-templated transcription	0.158683692	
GO:0010629	negative regulation of gene expression	0.171104803	
GO:0048519	negative regulation of biological process	0.204546538	
GO:0044271	cellular nitrogen compound biosynthetic process	0.204546538	
GO:0046483	heterocycle metabolic process	0.204546538	
GO:0044249	cellular biosynthetic process	0.204546538	
GO:0006139	nucleobase-containing compound metabolic process	0.204546538	
GO:0051171	regulation of nitrogen compound metabolic process	0.204546538	
GO:0051172	negative regulation of nitrogen compound metabolic process	0.204546538	
GO:0051252	regulation of RNA metabolic process	0.204546538	
GO:0060255	regulation of macromolecule metabolic process	0.204546538	
GO:0080090	regulation of primary metabolic process	0.204546538	
GO:0090304	nucleic acid metabolic process	0.204546538	
GO:0097659	nucleic acid-templated transcription	0.204546538	
GO:1901360	organic cyclic compound metabolic process	0.204546538	
GO:1901362	organic cyclic compound biosynthetic process	0.204546538	
GO:1901576	organic substance biosynthetic process	0.204546538	
GO:1903506	regulation of nucleic acid-templated transcription	0.204546538	
GO:2000112	regulation of cellular macromolecule biosynthetic process	0.204546538	
GO:0048523	negative regulation of cellular process	0.204546538	
GO:0034654	nucleobase-containing compound biosynthetic process	0.204546538	
GO:2001141	regulation of RNA biosynthetic process	0.204546538	
GO:0032774	RNA biosynthetic process	0.204546538	
GO:0006351	transcription, DNA-templated	0.204546538	
GO:0006355	regulation of transcription, DNA-templated	0.204546538	
GO:0006725	cellular aromatic compound metabolic process	0.204546538	
GO:0006996	organelle organization	0.204546538	
GO:0009058	biosynthetic process	0.204546538	
GO:0009059	macromolecule biosynthetic process	0.204546538	

GO:0009889	regulation of biosynthetic process	0.204546538	
GO:0009892	negative regulation of metabolic process	0.204546538	
GO:0010467	gene expression	0.204546538	
GO:0034645	cellular macromolecule biosynthetic process	0.204546538	
GO:0010556	regulation of macromolecule biosynthetic process	0.204546538	
GO:0010605	negative regulation of macromolecule metabolic process	0.204546538	
GO:0010468	regulation of gene expression	0.204546538	
GO:0031323	regulation of cellular metabolic process	0.204546538	
GO:0031326	regulation of cellular biosynthetic process	0.204546538	
GO:0016070	RNA metabolic process	0.204546538	
GO:0018130	heterocycle biosynthetic process	0.204546538	
GO:0019219	regulation of nucleobase-containing compound metabolic process	0.204546538	
GO:0031324	negative regulation of cellular metabolic process	0.204546538	
GO:0019438	aromatic compound biosynthetic process	0.204546538	
GO:0034641	cellular nitrogen compound metabolic process	0.208852028	
GO:0019222	regulation of metabolic process	0.208852028	
GO:0016043	cellular component organization	0.208852028	
GO:0071840	cellular component organization or biogenesis	0.212480778	
GO:0044260	cellular macromolecule metabolic process	0.268770697	
GO:0043170	macromolecule metabolic process	0.30517906	
GO:0006807	nitrogen compound metabolic process	0.319274958	
GO:0050794	regulation of cellular process	0.322857377	
GO:0071704	organic substance metabolic process	0.327390332	
GO:0050789	regulation of biological process	0.327390332	
GO:0044238	primary metabolic process	0.327390332	
GO:0044237	cellular metabolic process	0.327390332	
GO:0008152	metabolic process	0.339296056	
GO:0065007	biological regulation	0.339296056	
GO:0009987	cellular process	0.467273324	

GO:0008150	biological process	0.527139103	
GO:1901998	toxin transport	0.015716866	
GO:0140056	organelle localization by membrane tethering	0.015716866	
GO:0031338	regulation of vesicle fusion	0.015716866	
GO:0006904	vesicle docking involved in exocytosis	0.015716866	
GO:0140029	exocytic process	0.015716866	
GO:0007032	endosome organization	0.015716866	
GO:0022406	membrane docking	0.015716866	
GO:0035493	SNARE complex assembly	0.015716866	
GO:0048278	vesicle docking	0.015716866	
GO:0035542	regulation of SNARE complex assembly	0.015716866	
GO:0006906	vesicle fusion	0.016710461	
GO:0090174	organelle membrane fusion	0.016710461	
GO:0061025	membrane fusion	0.018968632	
GO:0048284	organelle fusion	0.018968632	VPS11
GO:0007033	vacuole organization	0.022581705	VISII
GO:0016050	vesicle organization	0.033703194	
GO:0006887	exocytosis	0.035227459	
GO:0061919	process utilizing autophagic mechanism	0.03549844	
GO:0043254	regulation of protein-containing complex assembly	0.03549844	
GO:0006914	autophagy	0.03549844	
GO:0010256	endomembrane system organization	0.036130728	
GO:0060627	regulation of vesicle-mediated transport	0.038429956	
GO:0051640	organelle localization	0.041000521	
GO:0061024	membrane organization	0.04821194	
GO:0032940	secretion by cell	0.06017635	
GO:0046903	secretion	0.06017635	
GO:0034622	cellular protein-containing complex assembly	0.06017635	
GO:0140352	export from cell	0.06017635	

GO:0044087	regulation of cellular component biogenesis	0.06017635	
GO:0006886	intracellular protein transport	0.061783544	
GO:0033043	regulation of organelle organization	0.073864028	
GO:0065003	protein-containing complex assembly	0.078313352	
GO:0051049	regulation of transport	0.078313352	
GO:0046907	intracellular transport	0.078313352	
GO:0045184	establishment of protein localization	0.078313352	
GO:0016192	vesicle-mediated transport	0.078313352	
GO:0043933	protein-containing complex subunit organization	0.078313352	
GO:0042886	amide transport	0.078313352	
GO:0015833	peptide transport	0.078313352	
GO:0015031	protein transport	0.078313352	
GO:0034613	cellular protein localization	0.081294137	
GO:0070727	cellular macromolecule localization	0.081294137	
GO:0044248	cellular catabolic process	0.082587453	
GO:0071705	nitrogen compound transport	0.082587453	
GO:0009056	catabolic process	0.091662085	
GO:0051128	regulation of cellular component organization	0.091662085	
GO:0071702	organic substance transport	0.093405304	
GO:0032879	regulation of localization	0.093405304	
GO:0008104	protein localization	0.093405304	
GO:0051641	cellular localization	0.095981278	
GO:0022607	cellular component assembly	0.098562499	
GO:0033036	macromolecule localization	0.100731774	
GO:0044085	cellular component biogenesis	0.103534986	
GO:0006996	organelle organization	0.137949125	
GO:0006810	transport	0.153670553	
GO:0051234	establishment of localization	0.155426648	
GO:0051179	localization	0.198049337	

GO:0016043	cellular component organization	0.198049337	
GO:0071840	cellular component organization or biogenesis	0.201122613	
GO:0050794	regulation of cellular process	0.31871818	
GO:0050789	regulation of biological process	0.327973765	
GO:0044237	cellular metabolic process	0.327973765	
GO:0065007	biological regulation	0.340927287	
GO:0008152	metabolic process	0.340927287	
GO:0009987	cellular process	0.468379297	
GO:0008150	biological process	0.527139103	
GO:1902463	protein localization to cell leading edge	0.003592544	
GO:0030157	pancreatic juice secretion	0.003592544	
GO:0099612	protein localization to axon	0.003832047	
GO:0006891	intra-Golgi vesicle-mediated transport	0.00574807	
GO:0007589	body fluid secretion	0.00574807	
GO:0032941	secretion by tissue	0.00574807	
GO:0006890	retrograde vesicle-mediated transport, Golgi to endoplasmic reticulum	0.0069798	
GO:0022600	digestive system process	0.008083224	
GO:0007586	digestion	0.008462437	
GO:0006888	endoplasmic reticulum to Golgi vesicle-mediated transport	0.012502053	СОРА
GO:0050878	regulation of body fluid levels	0.020771436	com
GO:0048193	Golgi vesicle transport	0.02454905	
GO:0046903	secretion	0.068976843	
GO:0006886	intracellular protein transport	0.070208573	
GO:0046907	intracellular transport	0.078723571	
GO:0045184	establishment of protein localization	0.078723571	
GO:0070727	cellular macromolecule localization	0.078723571	
GO:0042886	amide transport	0.078723571	
GO:0003008	system process	0.078723571	
GO:0016192	vesicle-mediated transport	0.078723571	

GO:0015833	peptide transport	0.078723571	
GO:0015031	protein transport	0.078723571	
GO:0034613	cellular protein localization	0.078723571	
GO:0071705	nitrogen compound transport	0.080293357	
GO:0008104	protein localization	0.093350872	
GO:0071702	organic substance transport	0.093350872	
GO:0051641	cellular localization	0.094257708	
GO:0033036	macromolecule localization	0.099205535	
GO:0065008	regulation of biological quality	0.123781721	
GO:0051234	establishment of localization	0.148893563	
GO:0006810	transport	0.148893563	
GO:0032501	multicellular organismal process	0.183981795	
GO:0051179	localization	0.183981795	
GO:0065007	biological regulation	0.340319573	
GO:0008150	biological process	0.527139103	
GO:0061577	calcium ion transmembrane transport via high voltage-gated calcium channel	0.006774511	
GO:1902514	regulation of calcium ion transmembrane transport via high voltage-gated calcium channel	0.006774511	
GO:1901385	regulation of voltage-gated calcium channel activity	0.01192314	
GO:1904646	cellular response to amyloid-beta	0.01192314	
GO:1904645	response to amyloid-beta	0.01192314	
GO:1901019	regulation of calcium ion transmembrane transporter activity	0.015484598	
GO:0007528	neuromuscular junction development	0.015484598	CACNBI
GO:1903169	regulation of calcium ion transmembrane transport	0.025291509	Cherver
GO:2001257	regulation of cation channel activity	0.025291509	
GO:0051924	regulation of calcium ion transport	0.029182511	
GO:0022898	regulation of transmembrane transporter activity	0.029182511	
GO:0032409	regulation of transporter activity	0.029182511	
GO:0032412	regulation of ion transmembrane transporter activity	0.029182511	
GO:1901653	cellular response to peptide	0.032698308	

G0:1904062regulation of cation transmembrane transport0.03258088G0:0070588calcium ion transmembrane transport0.032836455G0:0010959regulation of metal ion transport0.032836455G0:1901652response to peptide0.033119884G0:000816calcium ion transport0.034969383G0:0050808synapse organization0.034969383G0:0072511divalent inorganic cation transport0.035463095G0:0072511divalent inorganic cation transport0.035463095G0:0072511divalent metal ion transport0.035463095G0:0071417cellular response to organonitrogen compound0.03783041G0:0071470cellular response to introgen compound0.037836011G0:0070838regulation of ion transport0.03783041G0:0007264chemical synaptic signaling0.03073634G0:0009536synaptic signaling0.03073634G0:0009536synaptic ransmission0.03973634G0:0010243response to nitrogen compound0.042828433G0:0010243response to nitrogen compound0.04282843G0:0010243response to nitrogen compound0.04282843G0:0010243response to nitrogen compound0.04282843G0:0010243response to oxygen-containing compound0.04282843G0:0010243response to oxygen-containing compound0.043713426G0:0098660inorganic cation transmembrane transport0.043713426G0:0098660inorganic to ntransmembrane transport0.043713426G0:0098660 <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
G0:0070588 calcium ion transmembrane transport 0.032836455 G0:0010959 regulation of metal ion transport 0.032836455 G0:1091652 response to peptide 0.033119834 G0:0006816 calcium ion transport 0.034969383 G0:00050808 synapse organization 0.034969383 G0:007575 regulation of ion transport 0.035463095 G0:0070818 divalent inorganic cation transport 0.03590491 G0:0071417 cellular response to organonitrogen compound 0.037836011 G0:009373 trans-synaptic signaling 0.039073634 G0:0099536 synaptic signaling 0.039073634 G0:0099536 response to nitrogen compound 0.032783641 G0:0099536 synaptic signaling 0.039073634 G0:0099536 synaptic signaling 0.039073634 G0:00098662 inorganic cation transmembrane transport 0.042582643 G0:00098662 inorganic cation transmembrane transport 0.042582643 G0:001014 metal ion transport 0.042582643 G0:00098662 inorganic cation transmembrane transport	GO:1	1904062	regulation of cation transmembrane transport	0.032698308	
G0:0010959 regulation of metal ion transport 0.032836455 G0:1901652 response to peptide 0.03119834 G0:0006816 calcium ion transport 0.034969383 G0:0050808 synapse organization 0.034969383 G0:0072511 divalent inorganic cation transport 0.034969383 G0:0077511 divalent metal ion transport 0.035463095 G0:007762 regulation of ion transmembrane transport 0.035463095 G0:007147 cellular response to organonitrogen compound 0.037833041 G0:0007268 regulation of ion transport 0.037833041 G0:0007268 chenical synaptic signaling 0.039073634 G0:0009536 synaptic signaling 0.039073634 G0:0090536 synaptic signaling 0.039073634 G0:0098916 anterograde trans-synaptic signaling 0.039073634 G0:0010243 response to organonitrogen compound 0.042582643 G0:0098916 anterograde transport 0.042582643 G0:0098805 cation transmembrane transport 0.042582643 G0:00098865 cation transport 0.0437	GO:0	0070588	calcium ion transmembrane transport	0.032836455	
G0:1901652 response to peptide 0.033119834 G0:0006816 calcium ion transport 0.034969383 G0:0050808 synapse organization 0.034969383 G0:0034765 regulation of ion transmembrane transport 0.034969383 G0:0072511 divalent inorganic cation transport 0.035463095 G0:0071472 colosof000 0.035463095 G0:0070838 divalent metal ion transport 0.035463095 G0:0071472 cellular response to organonirogen compound 0.036961734 G0:1901699 cellular response to introgen compound 0.039073634 G0:0007268 chemical synaptic signaling 0.039073634 G0:0098936 response to nitrogen compound 0.042582643 G0:0098916 anterograde trans-synaptic signaling 0.039073634 G0:0098662 inorganic cation transmembrane transport 0.042582643 G0:0010243 response to oxygen-containing compound 0.042582643 G0:0010243 response to oxygen-containing compound 0.042582643 G0:0010243 response to oxygen-containing compound 0.042582643 G0:0010243	GO:0	0010959	regulation of metal ion transport	0.032836455	
GO:00068160.034969383GO:0050808synapse organization0.034969383GO:0034765regulation of ion transmembrane transport0.034969383GO:0072511divalent inorganic cation transport0.035463095GO:0070838divalent metal ion transport0.035463095GO:0071417cellular response to organonitrogen compound0.036961734GO:0093269cellular response to organonitrogen compound0.03783041GO:00943269cellular response to nitrogen compound0.03783041GO:0007268chemical synaptic signaling0.039073634GO:0009536synaptic signaling0.039073634GO:0099536response to nitrogen compound0.042582643GO:0008662inorganic cation transport0.042582643GO:000234cellular response to nitrogen compound0.042582643GO:0010243response to nitrogen compound0.042582643GO:0010243response to nitrogen compound0.042582643GO:0010243response to organonitrogen compound0.043713426GO:0010243cation transmembrane transport0.042582643GO:0010243cation transmembrane transport0.043713426GO:0098665cation transmembrane transport0.043713426GO:0098662inorganic ion transmembrane transport0.043713426GO:0010243cation transmembrane transport0.043713426GO:0010243cation transmembrane transport0.043713426GO:0098660inorganic ion transmembrane transport0.043713426GO:0098661inorga	GO:1	1901652	response to peptide	0.033119834	
GO:0050808Synapse organization0.034969383GO:0034765regulation of ion transmembrane transport0.034969383GO:0072511Givalent inorganic cation transport0.035463095GO:007088Givalent metal ion transport0.035463095GO:00708762regulation of transmembrane transport0.03590491GO:0071417cellular response to organonitrogen compound0.036961734GO:0043269regulation of ion transport0.03783041GO:0007268cellular response to nitrogen compound0.039073634GO:0007268chemical synaptic signaling0.039073634GO:0098576synaptic signaling0.039073634GO:0098576anterograde trans-synaptic signaling0.039073634GO:0098662inorganic cation transport0.042582643GO:000243response to organonitrogen compound0.042582643GO:0010243response to organonitrogen compound0.042582643GO:0010243response to organonitrogen compound0.042582643GO:0010243cellular response to organonitrogen compound0.043713426GO:0010243cesponse to organonitrogen compound0.043713426GO:0098662inorganic cation transmembrane transport0.043713426GO:0098663cation transmembrane transport0.043713426GO:0010243response to oxygen-containing compound0.043713426GO:0098660inorganic ion transmembrane transport0.043713426GO:0098661inorganic ion transmembrane transport0.043713426GO:0098662inorganic ion tra	GO:0	0006816	calcium ion transport	0.034969383	
G0:0034765 regulation of ion transmembrane transport 0.034969383 G0:0072511 divalent inorganic cation transport 0.035463095 G0:0070838 divalent metal ion transport 0.035463095 G0:0070747 regulation of transmembrane transport 0.03590491 G0:0071417 cellular response to organonitrogen compound 0.03783041 G0:0070268 regulation of ion transport 0.037836901 G0:009537 trans-synaptic signaling 0.039073634 G0:009536 synaptic signaling 0.039073634 G0:009536 synaptic signaling 0.039073634 G0:009536 synaptic signaling 0.039073634 G0:0095816 anterograde trans-synaptic signaling 0.039073634 G0:0095816 anterograde trans-synaptic signaling 0.042582643 G0:000862 inorganic cation transmembrane transport 0.042582643 G0:0010243 response to oxygen-containing compound 0.042582643 G0:0030001 metal ion transmembrane transport 0.043713426 G0:0098665 cation transmembrane transport 0.043713426 G0:0098660	GO:0	0050808	synapse organization	0.034969383	
G0:0072511 divalent inorganic cation transport 0.035463095 G0:0070838 divalent metal ion transport 0.035463095 G0:0071417 cellular response to organonitrogen compound 0.036961734 G0:004269 cellular response to organonitrogen compound 0.037833041 G0:009537 cellular response to nitrogen compound 0.037836901 G0:009538 chemical synaptic signaling 0.039073634 G0:009536 chemical synaptic signaling 0.039073634 G0:0099536 synaptic signaling 0.039073634 G0:0099536 anterograde trans-synaptic signaling 0.039073634 G0:0099536 anterograde trans-synaptic signaling 0.039073634 G0:0099536 anterograde trans-synaptic signaling 0.042582643 G0:0098662 inorganic cation transmembrane transport 0.042582643 G0:0010243 response to oxygen-containing compound 0.043713426 G0:0098660 inorganic ion transmembrane transport 0.043713426 G0:0098660 inorganic ion transmembrane transport 0.043713426 G0:0098660 inorganic ion transmembrane transport 0.043713426 </td <td>GO:0</td> <td>0034765</td> <td>regulation of ion transmembrane transport</td> <td>0.034969383</td> <td></td>	GO:0	0034765	regulation of ion transmembrane transport	0.034969383	
GO:0070838 divalent metal ion transport 0.035463095 GO:0034762 regulation of transmembrane transport 0.03590491 GO:0071417 cellular response to organonitrogen compound 0.036961734 GO:003269 cellular response to nitrogen compound 0.037833041 GO:0099537 regulation of ion transport 0.037836901 GO:0099536 chemical synaptic signaling 0.039073634 GO:0098916 anterograde trans-synaptic signaling 0.039073634 GO:0098662 inorganic cation transmembrane transport 0.042582643 GO:0010243 response to organonitrogen compound 0.042582643 GO:0098655 cation transmembrane transport 0.043713426 GO:0098660 inorganic ion transmembrane transport 0.043713426 GO:0098665 cation transmembrane transport 0.043713426 GO:0098666 inorganic ion transmembrane transport 0.043713426 <td>GO:0</td> <td>0072511</td> <td>divalent inorganic cation transport</td> <td>0.035463095</td> <td></td>	GO:0	0072511	divalent inorganic cation transport	0.035463095	
G0:0034762 regulation of transmembrane transport 0.03590491 G0:0071417 cellular response to organonitrogen compound 0.036961734 G0:1901699 cellular response to nitrogen compound 0.037833041 G0:003269 regulation of ion transport 0.037836901 G0:009537 trans-synaptic signaling 0.039073634 G0:009536 chemical synaptic transmission 0.039073634 G0:009536 synaptic signaling 0.039073634 G0:0098916 anterograde trans-synaptic signaling 0.039073634 G0:0098662 inorganic cation transmembrane transport 0.042582643 G0:000001243 response to nitrogen compound 0.042582643 G0:0010243 response to organonitrogen compound 0.042582643 G0:0098655 cation transmembrane transport 0.043713426 G0:0098660 inorganic ion transmembrane transport 0.043713426 G0:0098661 inorganic ion transmembrane transport 0.043713426 G0:0098662 inorganic ion transmembrane transport 0.043713426 G0:0098665 cation transmembrane transport 0.043713426	GO:0	0070838	divalent metal ion transport	0.035463095	
G0:0071417 ccllular response to organonitrogen compound 0.036961734 G0:1901699 ccllular response to nitrogen compound 0.037833041 G0:0043269 regulation of ion transport 0.037836901 G0:0099537 trans-synaptic signaling 0.039073634 G0:0099536 chemical synaptic transmission 0.039073634 G0:0098916 anterograde trans-synaptic signaling 0.039073634 G0:0098662 inorganic cation transmembrane transport 0.042582643 G0:0010243 response to organonitrogen compound 0.042582643 G0:0098662 inorganic cation transmembrane transport 0.042582643 G0:0010243 response to organonitrogen compound 0.042582643 G0:010243 ccllular response to organonitrogen compound 0.042582643 G0:010243 response to organonitrogen compound 0.042582643 G0:010243 ccllular response to oxygen-containing compound 0.042582643 G0:0098655 cation transmembrane transport 0.043713426 G0:0098660 inorganic ion transmembrane transport 0.043713426 G0:0098661 cation transport 0.05351864 </td <td>GO:0</td> <td>0034762</td> <td>regulation of transmembrane transport</td> <td>0.03590491</td> <td></td>	GO:0	0034762	regulation of transmembrane transport	0.03590491	
GO:1901699 cellular response to nitrogen compound 0.037833041 GO:0043269 regulation of ion transport 0.037836901 GO:0095537 trans-synaptic signaling 0.039073634 GO:0097268 chemical synaptic transmission 0.039073634 GO:0095536 synaptic signaling 0.039073634 GO:0098916 anterograde trans-synaptic signaling 0.039073634 GO:1901698 response to nitrogen compound 0.042582643 GO:0098662 inorganic cation transmembrane transport 0.042582643 GO:010243 response to organonitrogen compound 0.042582643 GO:010243 response to organonitrogen compound 0.042582643 GO:1901701 cellular response to organonitrogen compound 0.042582643 GO:0098655 cation transmembrane transport 0.043713426 GO:0098660 inorganic ion transmembrane transport 0.043713426 GO:0098661 inorganic ion transmembrane transport 0.043713426 GO:0098662 cation transmembrane transport 0.043713426 GO:0098660 inorganic ion transmembrane transport 0.043713426	GO:0	0071417	cellular response to organonitrogen compound	0.036961734	
G0:0043269 regulation of ion transport 0.037836901 G0:0099537 trans-synaptic signaling 0.039073634 G0:0007268 chemical synaptic transmission 0.039073634 G0:0099536 synaptic signaling 0.039073634 G0:0099536 go:0099536 0.039073634 G0:0099536 anterograde trans-synaptic signaling 0.039073634 G0:1901698 response to nitrogen compound 0.042582643 G0:0098662 inorganic cation transmembrane transport 0.042582643 G0:0010243 response to organonitrogen compound 0.042582643 G0:1901701 cellular response to oxygen-containing compound 0.042582643 G0:1901701 cellular response to oxygen-containing compound 0.042582643 G0:1901701 cellular response to oxygen-containing compound 0.043713426 G0:098665 inorganic ion transmembrane transport 0.043713426 G0:0908660 inorganic on transmembrane transport 0.043713426 G0:0008612 cation transmembrane transport 0.05351864 G0:00071495 cellular response to endogenous stimulus 0.055228398	GO:1	1901699	cellular response to nitrogen compound	0.037833041	
G0:0099537 trans-synaptic signaling 0.039073634 G0:0007268 chemical synaptic transmission 0.039073634 G0:0099536 synaptic signaling 0.039073634 G0:0098916 anterograde trans-synaptic signaling 0.039073634 G0:1901698 response to nitrogen compound 0.042582643 G0:0098662 inorganic cation transmembrane transport 0.042582643 G0:0010243 response to organonitrogen compound 0.042582643 G0:1901701 cellular response to organonitrogen compound 0.042582643 G0:0098655 cation transmembrane transport 0.043713426 G0:0098660 inorganic ion transmembrane transport 0.043713426 G0:1901700 response to oxygen-containing compound 0.043713426 G0:0098660 inorganic ion transmembrane transport 0.043713426 G0:1901700 response to oxygen-containing compound 0.05351864 G0:0006812 G0:0034220 ion transmembrane transport 0.05351864 G0:0071495 cellular response to endogenous stimulus 0.055228398 G0:007267 cell-cell signaling 0.056721136	GO:0	0043269	regulation of ion transport	0.037836901	
GO:0007268Chemical synaptic transmission0.039073634GO:0099536GO:00995360.039073634GO:0098916anterograde trans-synaptic signaling0.039073634GO:1901698Cesponse to nitrogen compound0.042582643GO:0098662inorganic cation transmembrane transport0.042582643GO:0010243Cesponse to organonitrogen compound0.042582643GO:1901701cellular response to organonitrogen compound0.042582643GO:0098665Cation transmembrane transport0.042582643GO:0098660inorganic ion transmembrane transport0.043713426GO:0098660inorganic ion transmembrane transport0.043713426GO:0098661Cation transmembrane transport0.043713426GO:0006812Go:00058120.05351864GO:0071495cellular response to endogenous stimulus0.05528398GO:007267Cell-cell signaling0.056721136	GO:0	0099537	trans-synaptic signaling	0.039073634	
GO:0099536O.039073634GO:0098916anterograde trans-synaptic signaling0.039073634GO:1901698response to nitrogen compound0.042582643GO:0098662inorganic cation transmembrane transport0.042582643GO:0010243response to organonitrogen compound0.042582643GO:0010243cellular response to organonitrogen compound0.043713426GO:0098665cation transmembrane transport0.043713426GO:0098660inorganic ion transmembrane transport0.043713426GO:0098665cation transmembrane transport0.043713426GO:0098660inorganic ion transmembrane transport0.05351864GO:0006812Cation transmembrane transport0.05351864GO:0034220ion transmembrane transport0.053667349GO:0071495cellular response to endogenous stimulus0.055228388GO:007267cellular response to endogenous stimulus0.05721136	GO:0	0007268	chemical synaptic transmission	0.039073634	
GO:0098916anterograde trans-synaptic signaling0.039073634GO:1901698response to nitrogen compound0.042582643GO:0098662inorganic cation transmembrane transport0.042582643GO:0030001metal ion transport0.042582643GO:0010243response to organonitrogen compound0.042582643GO:1901701cellular response to organonitrogen compound0.043713426GO:0098665cation transmembrane transport0.043713426GO:0098660inorganic ion transmembrane transport0.043713426GO:0098660inorganic ion transmembrane transport0.043713426GO:0098660inorganic ion transmembrane transport0.05351864GO:0006812Cation transmembrane transport0.05351864GO:0034220ion transmembrane transport0.053667349GO:0071495cellular response to endogenous stimulus0.055228398GO:007267cell-cell signaling0.056721136	GO:0	0099536	synaptic signaling	0.039073634	
GO:1901698Cosponse to nitrogen compound0.042582643GO:0098662inorganic cation transmembrane transport0.042582643GO:0030001metal ion transport0.042582643GO:0010243response to organonitrogen compound0.042582643GO:1901701cellular response to organonitrogen compound0.043713426GO:0098655cation transmembrane transport0.043713426GO:0098660inorganic ion transmembrane transport0.043713426GO:0098660cation transmembrane transport0.043713426GO:0098661inorganic ion transmembrane transport0.05351864GO:0006812cation transmembrane transport0.05351864GO:0071495cellular response to endogenous stimulus0.055228398GO:007267cell-cell signaling0.056721136	GO:0	0098916	anterograde trans-synaptic signaling	0.039073634	
GO:0098662inorganic cation transmembrane transport0.042582643GO:0030001metal ion transport0.042582643GO:0010243response to organonitrogen compound0.042582643GO:1901701cellular response to oxygen-containing compound0.043713426GO:0098655cation transmembrane transport0.043713426GO:0098660inorganic ion transmembrane transport0.043713426GO:1901700response to oxygen-containing compound0.043713426GO:0098661inorganic ion transmembrane transport0.043713426GO:000812cation transmembrane transport0.05351864GO:0034220ion transmembrane transport0.053667349GO:0071495cellular response to endogenous stimulus0.055228398GO:0007267cell-cell signaling0.056721136	GO:1	1901698	response to nitrogen compound	0.042582643	
GO:0030001metal ion transport0.042582643GO:0010243response to organonitrogen compound0.042582643GO:1901701cellular response to oxygen-containing compound0.043713426GO:0098655cation transmembrane transport0.043713426GO:0098660inorganic ion transmembrane transport0.043713426GO:1901700response to oxygen-containing compound0.043713426GO:1901700response to oxygen-containing compound0.05351864GO:0006812GO:00058120.05351864GO:0071495cellular response to endogenous stimulus0.055228398GO:007267cell-cell signaling0.056721136	GO:0	0098662	inorganic cation transmembrane transport	0.042582643	
GO:0010243Cesponse to organonitrogen compound0.042582643GO:1901701cellular response to oxygen-containing compound0.043713426GO:0098655cation transmembrane transport0.043713426GO:0098660inorganic ion transmembrane transport0.043713426GO:1901700response to oxygen-containing compound0.05351864GO:0006812cation transmembrane transport0.05351864GO:0034220ion transmembrane transport0.053667349GO:0071495cellular response to endogenous stimulus0.055228398GO:0007267cell-cell signaling0.056721136	GO:0	0030001	metal ion transport	0.042582643	
GO:1901701cellular response to oxygen-containing compound0.043713426GO:0098655cation transmembrane transport0.043713426GO:0098660inorganic ion transmembrane transport0.043713426GO:1901700response to oxygen-containing compound0.05351864GO:0006812cation transmembrane transport0.05351864GO:0034220ion transmembrane transport0.053667349GO:0071495cellular response to endogenous stimulus0.055228398GO:0007267cell-cell signaling0.056721136	GO:0	0010243	response to organonitrogen compound	0.042582643	
GO:00986550.043713426GO:0098660inorganic ion transmembrane transport0.043713426GO:1901700response to oxygen-containing compound0.05351864GO:0006812GO:00068120.05351864GO:0034220ion transmembrane transport0.053667349GO:0071495Cellular response to endogenous stimulus0.055228398GO:00072670.0567211360.056721136	GO:1	1901701	cellular response to oxygen-containing compound	0.043713426	
GO:00986600.043713426GO:1901700response to oxygen-containing compound0.05351864GO:00068120.053518640.05351864GO:0034220ion transmembrane transport0.053667349GO:0071495cellular response to endogenous stimulus0.055228398GO:0007267cell-cell signaling0.056721136	GO:0	0098655	cation transmembrane transport	0.043713426	
GO:19017000.05351864GO:0006812cation transport0.05351864GO:0034220ion transmembrane transport0.053667349GO:0071495cellular response to endogenous stimulus0.055228398GO:0007267cell-cell signaling0.056721136	GO:0	0098660	inorganic ion transmembrane transport	0.043713426	
GO:00068120.05351864GO:0034220ion transmembrane transport0.053667349GO:0071495cellular response to endogenous stimulus0.055228398GO:0007267cell-cell signaling0.056721136	GO:1	1901700	response to oxygen-containing compound	0.05351864	
GO:0034220ion transmembrane transport0.053667349GO:0071495cellular response to endogenous stimulus0.055228398GO:0007267cell-cell signaling0.056721136	GO:0	0006812	cation transport	0.05351864	
GO:0071495cellular response to endogenous stimulus0.055228398GO:0007267cell-cell signaling0.056721136	GO:0	0034220	ion transmembrane transport	0.053667349	
GO:0007267 cell-cell signaling 0.056721136	GO:0	0071495	cellular response to endogenous stimulus	0.055228398	
	GO:0	0007267	cell-cell signaling	0.056721136	
GO:0009719	response to endogenous stimulus	0.056721136			
------------	---	-------------	----------		
GO:0051049	regulation of transport	0.063288991			
GO:0055085	transmembrane transport	0.066073107			
GO:0006811	ion transport	0.066073107			
GO:0071310	cellular response to organic substance	0.083495853			
GO:0032879	regulation of localization	0.093054689			
GO:0010033	response to organic substance	0.093054689			
GO:0070887	cellular response to chemical stimulus	0.098021969			
GO:0065009	regulation of molecular function	0.098021969			
GO:0042221	response to chemical	0.128434511			
GO:0006810	transport	0.156516304			
GO:0051234	establishment of localization	0.158252587			
GO:0023052	signaling	0.19301415			
GO:0007154	cell communication	0.19301415			
GO:0051179	localization	0.194692569			
GO:0016043	cellular component organization	0.194692569			
GO:0071840	cellular component organization or biogenesis	0.19777057			
GO:0051716	cellular response to stimulus	0.208699375			
GO:0050896	response to stimulus	0.238768747			
GO:0050789	regulation of biological process	0.322767833			
GO:0065007	biological regulation	0.340927287			
GO:0009987	cellular process	0.468379297			
GO:0008150	biological process	0.527139103			
GO:0006611	protein export from nucleus	0.06589752			
GO:0006913	nucleocytoplasmic transport	0.06589752			
GO:0051169	nuclear transport	0.06589752	RANRP3		
GO:0051168	nuclear export	0.06589752	iunibi 5		
GO:0043547	positive regulation of GTPase activity	0.06589752			
GO:0043087	regulation of GTPase activity	0.06589752			

GO:0051345	positive regulation of hydrolase activity	0.080766253	
GO:0070727	cellular macromolecule localization	0.086221054	
GO:0051336	regulation of hydrolase activity	0.086221054	
GO:0046907	intracellular transport	0.086221054	
GO:0045184	establishment of protein localization	0.086221054	
GO:0044093	positive regulation of molecular function	0.086221054	
GO:0042886	amide transport	0.086221054	
GO:0034613	cellular protein localization	0.086221054	
GO:0006886	intracellular protein transport	0.086221054	
GO:0043085	positive regulation of catalytic activity	0.086221054	
GO:0015833	peptide transport	0.086221054	
GO:0015031	protein transport	0.086221054	
GO:0071705	nitrogen compound transport	0.086934161	
GO:0050790	regulation of catalytic activity	0.091209558	
GO:0008104	protein localization	0.094563221	
GO:0071702	organic substance transport	0.094563221	
GO:0051641	cellular localization	0.09484316	
GO:0033036	macromolecule localization	0.095237313	
GO:0065009	regulation of molecular function	0.095237313	
GO:0051234	establishment of localization	0.146530173	
GO:0006810	transport	0.146530173	
GO:0051179	localization	0.185859161	
GO:0065007	biological regulation	0.341996024	
GO:0008150	biological process	0.527139103	

GO slim category ID	Definition	Counted terms	Fraction	Gene
GO:0008150	biological_process	44	42.31%	
GO:0016043	cell organization and biogenesis	31	29.81%	ST A IND
GO:0006996	organelle organization and biogenesis	16	15.38%	SLAIN2
GO:0007010	cytoskeleton organization and biogenesis	13	12.50%	
GO:0008150	biological_process	345	41.37%	
GO:0007275	development	101	12.11%	
GO:0008152	metabolism	96	11.51%	
GO:0009653	morphogenesis	43	5.16%	
GO:0030154	cell differentiation	40	4.80%	
GO:0009058	biosynthesis	32	3.84%	
GO:0007154	cell communication	30	3.60%	
GO:0007165	signal transduction	26	3.12%	
GO:0006139	nucleobase, nucleoside, nucleotide and nucleic acid metabolism	23	2.76%	ACVR1
GO:0019538	protein metabolism	23	2.76%	
GO:0006464	protein modification	16	1.92%	
GO:0008219	cell death	15	1.80%	
GO:0009790	embryonic development	13	1.56%	
GO:0000003	reproduction	10	1.20%	
GO:0009719	response to endogenous stimulus	9	1.08%	
GO:0007049	cell cycle	8	0.96%	
GO:0006950	response to stress	4	0.48%	
GO:0008150	biological_process	29	40.28%	
GO:0008152	metabolism	27	37.50%	
GO:0009058	biosynthesis	9	12.50%	ST3GAL3
GO:0019538	protein metabolism	5	6.94%	
GO:0006464	protein modification	2	2.78%	

 Table S4. Gene Ontology (GO) slim categories obtained by CateGOrizer per candidate gene.

GO:0008150	biological_process	133	47.84%	
GO:0008152	metabolism	41	14.75%	
GO:0006810	transport	36	12.95%	
GO:0009058	biosynthesis	19	6.83%	
GO:0006811	ion transport	15	5.40%	CACNA1H
GO:0006629	lipid metabolism	14	5.04%	
GO:0000003	reproduction	13	4.68%	
GO:0009719	response to endogenous stimulus	4	1.44%	
GO:0007154	cell communication	3	1.08%	
GO:0008150	biological_process	78	37.50%	
GO:0008152	metabolism	64	30.77%	
GO:0009058	biosynthesis	30	14.42%	
GO:0006139	nucleobase, nucleoside, nucleotide and nucleic acid metabolism	20	9.62%	ZNFX1
GO:0016043	cell organization and biogenesis	9	4.33%	
GO:0040029	regulation of gene expression, epigenetic	5	2.40%	
GO:0006996	organelle organization and biogenesis	2	0.96%	
GO:0008150	biological_process	62	50.41%	
GO:0006810	transport	21	17.07%	
GO:0016043	cell organization and biogenesis	21	17.07%	
GO:0006996	organelle organization and biogenesis	11	8.94%	VPS11
GO:0008152	metabolism	4	3.25%	
GO:0009056	catabolism	2	1.63%	
GO:0015031	protein transport	2	1.63%	
GO:0008150	biological_process	35	64.81%	
GO:0006810	transport	17	31.48%	COPA
GO:0015031	protein transport	2	3.70%	
GO:0008150	biological_process	66	47.14%	
GO:0006810	transport	29	20.71%	CACNB1
GO:0006811	ion transport	23	16.43%	

GO:0009719	response to endogenous stimulus	8	5.71%	
GO:0007154	cell communication	6	4.29%	
GO:0007267	cell-cell signaling	5	3.57%	
GO:0016043	cell organization and biogenesis	3	2.14%	
GO:0008150	biological_process	30	66.67%	
GO:0006810	transport	12	26.67%	RANBP3
GO:0015031	protein transport	3	6.67%	

Table S5. Predicted target genes for gga-mir-6646-2.

Gene Symbol	Gene Description	Target Rank	Target Score
ZNF555	zinc finger protein 555	1	98
TSTD2	thiosulfate sulfurtransferase like domain containing 2	2	96
XKR6	XK related 6	3	
ITM2B	integral membrane protein 2B	4	95
SETBP1	SET binding protein 1	5	
MYH10	myosin, heavy chain 10, non-muscle	6	02
LOC107053409	mucin-5AC-like	7	95
SMG1	SMG1, nonsense mediated mRNA decay associated PI3K related kinase	8	02
LCAT	lecithin-cholesterol acyltransferase	9	92
ENDOUL	endonuclease, polyU-specific-like	10	
TMLHE	trimethyllysine hydroxylase, epsilon	11	01
SEPT7	septin 7	12	91
CALN1	calneuron 1	13	
CCBE1	collagen and calcium binding EGF domains 1	14	
EPHA7	EPH receptor A7	15	00
SGIP1	SH3 domain GRB2 like endophilin interacting protein 1	16	90
TPD52	tumor protein D52	17	
ACTN1	actinin, alpha 1	18	
GRB2	growth factor receptor bound protein 2	19	89
C13H5orf15	chromosome 13 C5orf15 homolog	20	
KPNA3	karyopherin subunit alpha 3	21	88
KPNA4	karyopherin subunit alpha 4	22	87

KHDRBS3	KH RNA binding domain containing, signal transduction associated 3	23	
GDAP1	ganglioside induced differentiation associated protein 1	24	
AZI2	5-azacytidine induced 2	25	
CDAN1	codanin 1	26	96
NCOA3	nuclear receptor coactivator 3	27	80
GRSF1	G-rich RNA sequence binding factor 1	28	
LZTS3	leucine zipper tumor suppressor family member 3	29	
CREB5	cAMP responsive element binding protein 5	30	
LRRK2	leucine rich repeat kinase 2	31	85
C1HXORF59	chromosome 1 open reading frame, human CXORF59	32	
B4GALT5	beta-1,4-galactosyltransferase 5	33	
TBL3	transducin beta like 3	34	81
CABLES1	Cdk5 and Abl enzyme substrate 1	35	04
EPT1L	ethanolaminephosphotransferase 1-like	36	
LOC771066	claw keratin-like	37	
PSMA1	proteasome subunit alpha 1	38	
FBXO41	F-box protein 41	39	83
TCF12	transcription factor 12	40	
RAB5B	RAB5B, member RAS oncogene family	41	
REEP2	receptor accessory protein 2	42	87
BAZ2B	bromodomain adjacent to zinc finger domain 2B	43	62
LMX1B	LIM homeobox transcription factor 1 beta	44	
PYCRL	pyrroline-5-carboxylate reductase-like	45	
TMEM98	transmembrane protein 98	46	
MVB12B	multivesicular body subunit 12B	47	81
SGCZ	sarcoglycan zeta	48	
SLC16A8	solute carrier family 16 member 8	49	
PDIK1L	PDLIM1 interacting kinase 1 like	50	
L3MBTL3	L3MBTL3, histone methyl-lysine binding protein	51	
IGSF3	immunoglobulin superfamily member 3	52	80
CCDC71	coiled-coil domain containing 71	53	00
SYNPO2L	synaptopodin 2 like	54	
TRPS1	transcriptional repressor GATA binding 1	55	70
HNRNPK	heterogeneous nuclear ribonucleoprotein K	56	17

TRABD2B	TraB domain containing 2B	57	
CENPM	centromere protein M	58	
DGKG	diacylglycerol kinase gamma	59	
C2H8ORF37	chromosome 2 open reading frame, human C8orf37	60	
BBX	BBX, HMG-box containing	61	
СНМР6	charged multivesicular body protein 6	62	
KNSTRN	kinetochore-localized astrin/SPAG5 binding protein	63	78
MIF4GD	MIF4G domain containing	64	
GRHL2	grainyhead like transcription factor 2	65	
TUB	tubby bipartite transcription factor	66	
SYNE3	spectrin repeat containing nuclear envelope family member 3	67	
OSBPL9	oxysterol binding protein like 9	68	
LOC426218	claw keratin-like	69	
CDC14B	cell division cycle 14B	70	77
HAO2	hydroxyacid oxidase 2	71	
CAP2	cyclase associated actin cytoskeleton regulatory protein 2	72	
LOC101748210	uncharacterized LOC101748210	73	
TMEM135	transmembrane protein 135	74	
OLFML1	olfactomedin like 1	75	
GLRA4	glycine receptor alpha 4	76	
LOC101750514	LIM homeobox transcription factor 1-alpha-like	77	
NFATC3	nuclear factor of activated T-cells 3	78	
PAK3	p21 (RAC1) activated kinase 3	79	76
PSEN1	presenilin 1	80	
RTCA	RNA 3'-terminal phosphate cyclase	81	
ANKRD16	ankyrin repeat domain 16	82	
RNF103	ring finger protein 103	83	
PAPPA	pappalysin 1	84	
RFLNA	refilin A	85	
PTPN2	protein tyrosine phosphatase, non-receptor type 2	86	
RAB3C	RAB3C, member RAS oncogene family	87	75
HS3ST4	heparan sulfate-glucosamine 3-sulfotransferase 4	88	
EPHB6	EPH receptor B6	89	
FLRT3	fibronectin leucine rich transmembrane protein 3	90	

AGK	acylglycerol kinase	91	
ARHGEF12	Rho guanine nucleotide exchange factor 12	92	
ADAMTS7	ADAM metallopeptidase with thrombospondin type 1 motif 7	93	74
OMP	olfactory marker protein	94	74
SNCB	synuclein beta	95	
SLC7A1	solute carrier family 7 member 1	96	
RBBP4	RB binding protein 4, chromatin remodeling factor	97	
BNIP3L	BCL2 interacting protein 3 like	98	
HOXB1	homeobox B1	99	73
CLC2DL4	C-type lectin domain family 2 member D-like 4	100	
GPATCH2L	G-patch domain containing 2 like	101	
MCHR1	melanin-concentrating hormone receptor 1	102	
SLC38A1	solute carrier family 38 member 1	103	
TMEM136	transmembrane protein 136	104	72
STK38	serine/threonine kinase 38	105	
IRS4	insulin receptor substrate 4	106	
SMAD7B	TGF-beta signal pathway antagonist Smad7	107	
EHF	ETS homologous factor	108	
BTAF1	B-TFIID TATA-box binding protein associated factor 1	109	71
ELMSAN1	ELM2 and Myb/SANT domain containing 1	110	
FAM189A1	family with sequence similarity 189 member A1	111	
ECT2	epithelial cell transforming 2	112	
NAXD	NAD(P)HX dehydratase	113	
LARP1	La ribonucleoprotein domain family member 1	114	
VPS45	vacuolar protein sorting 45 homolog	115	70
FOXO4	forkhead box O4	116	
MAG11	membrane associated guanylate kinase, WW and PDZ domain containing 1	117	
<i>CD44</i>	CD44 molecule (Indian blood group)	118	
CHTF8	chromosome transmission fidelity factor 8	119	
FSIP1	fibrous sheath interacting protein 1	120	69
GNA12	G protein subunit alpha 12	121	
ZNF516	zinc finger protein 516	122	
CUEDC1	CUE domain containing 1	123	68
CAPN7	calpain 7	124	

DUSP23	dual specificity phosphatase 23	125	
LRRC66	leucine rich repeat containing 66	126	
DVL2	dishevelled segment polarity protein 2	127	
DUSP3	dual specificity phosphatase 3	128	
PDE7B	phosphodiesterase 7B	129	
SSTR2	somatostatin receptor 2	130	
FBXO3	F-box protein 3	131	
SKI	SKI proto-oncogene	132	67
CD83	CD83 molecule	133	07
PLEKHG3	pleckstrin homology and RhoGEF domain containing G3	134	
KMT2C	lysine methyltransferase 2C	135	
IGSF9B	immunoglobulin superfamily member 9B	136	
IQSEC3	IQ motif and Sec7 domain 3	137	
MUC4	mucin 4, cell surface associated	138	
OARD1	O-acyl-ADP-ribose deacylase 1	139	
TNFRSF8	TNF receptor superfamily member 8	140	
ZDHHC2	zinc finger DHHC-type containing 2	141	66
MYEF2	myelin expression factor 2	142	
VANGL1	VANGL planar cell polarity protein 1	143	
RANBP10	RAN binding protein 10	144	
KLHDC10	kelch domain containing 10	145	
VPS36	vacuolar protein sorting 36 homolog	146	
TLE4Z1	transducin like enhancer of split 4-Z 1	147	
BRAF	B-Raf proto-oncogene, serine/threonine kinase	148	
LOC428541	tetraspanin-18-like	149	
CLIP2	CAP-GLY domain containing linker protein 2	150	65
C3H1ORF131	chromosome 3 open reading frame, human C1orf131	151	05
FNDC3A	fibronectin type III domain containing 3A	152	
GBE	eye-globin	153	
CPE	carboxypeptidase E	154	
PALM	paralemmin	155	
LOC422090	uncharacterized LOC422090	156	
NVL	nuclear VCP-like	157	64
IVD	isovaleryl-CoA dehydrogenase	158	

ABI2	abl interactor 2	159	
PDE8A	phosphodiesterase 8A	160	
UTP15	UTP15, small subunit processome component	161	
TMEM74B	transmembrane protein 74B	162	
SNX29	sorting nexin 29	163	
ATG16L1	autophagy related 16 like 1	164	
TMEM266	transmembrane protein 266	165	
EXOC2	exocyst complex component 2	166	62
MGAT4D	MGAT4 family member D	167	05
HOMER3	homer scaffold protein 3	168	
LARGE1	LARGE xylosyl- and glucuronyltransferase 1	169	
GREM2	gremlin 2, DAN family BMP antagonist	170	
KRT75L2	keratin, type II cytoskeletal 75-like 2	171	
SPR	sepiapterin reductase (7,8-dihydrobiopterin:NADP+ oxidoreductase)	172	
B4GALNT3	beta-1,4-N-acetyl-galactosaminyltransferase 3	173	62
CLIC5	chloride intracellular channel 5	174	
MEF2A	myocyte enhancer factor 2A	175	
CACNA2D4	calcium voltage-gated channel auxiliary subunit alpha2delta 4	176	
ARSA	arylsulfatase A	177	
FADS1	fatty acid desaturase 1	178	
RBPMS2	RNA binding protein, mRNA processing factor 2	179	
KCNK16	potassium two pore domain channel subfamily K member 16	180	61
SPOCK1	SPARC/osteonectin, cwcv and kazal like domains proteoglycan 1	181	
RIMS4	regulating synaptic membrane exocytosis 4	182	
GHRH	growth hormone releasing hormone	183	
CRISP2	cysteine rich secretory protein 2	184	
KIAA1958	<i>KIAA1958</i>	185	
FGF18	fibroblast growth factor 18	186	
RNF38	ring finger protein 38	187	
MICAL1	microtubule associated monooxygenase, calponin and LIM domain containing 1	188	60
SIRT1	sirtuin 1	189	
KCNJ12	potassium voltage-gated channel subfamily J member 12	190	
ASB1	ankyrin repeat and SOCS box containing 1	191	
WASF2	WAS protein family member 2	192	

BTBD3	BTB domain containing 3	193	
PAG1	phosphoprotein membrane anchor with glycosphingolipid microdomains 1	194	
SPRY3	sprouty RTK signaling antagonist 3	195	
GRIK1	glutamate ionotropic receptor kainate type subunit 1	196	
STAU1	staufen double-stranded RNA binding protein 1	197	
LOC107054473	uncharacterized LOC107054473	198	
ADAMTS15	ADAM metallopeptidase with thrombospondin type 1 motif, 15	199	59
KIF3B	kinesin family member 3B	200	
LMOD3	leiomodin 3	201	
TECTB	tectorin beta	202	
MXD1	MAX dimerization protein 1	203	
ZDHHC1	zinc finger DHHC-type containing 1	204	
SLC9A4	solute carrier family 9 member A4	205	
SLC31A1	solute carrier family 31 member 1	206	59
GLP2R	glucagon-like peptide 2 receptor	207	50
ТТҮНЗ	tweety family member 3	208	
TXNDC11	thioredoxin domain containing 11	209	
SRD5A2	steroid 5 alpha-reductase 2	210	
NIPAL2	NIPA like domain containing 2	211	
KIAA0232	<i>KIAA0232</i>	212	
CDRT1	CMT1A duplicated region transcript 1	213	57
RLTPR	RGD motif, leucine rich repeats, tropomodulin domain and proline-rich containing	214	57
PRDM11	PR/SET domain 11	215	
NPFFR1	neuropeptide FF receptor 1	216	
PCNX4	pecanex homolog 4 (Drosophila)	217	
LOC107049932	deleted in malignant brain tumors 1 protein-like	218	
NT5C2	5'-nucleotidase, cytosolic II	219	
ZNF608	zinc finger protein 608	220	
TGFBR1	transforming growth factor beta receptor 1	221	56
RREB1	ras responsive element binding protein 1	222	50
WDR37	WD repeat domain 37	223	
PLEKHG4	pleckstrin homology and RhoGEF domain containing G4	224	
PPME1	protein phosphatase methylesterase 1	225	
NR6A1	nuclear receptor subfamily 6 group A member 1	226	

ADAMTSL2L	ADAMTS-like protein 2-like	227	
AVL9	AVL9 cell migration associated	228	
TMEM273	transmembrane protein 273	229	
UBAP1L	ubiquitin associated protein 1 like	230	
LRRCC1	leucine rich repeat and coiled-coil centrosomal protein 1	231	
AMN1	antagonist of mitotic exit network 1 homolog	232	
MAPK1	mitogen-activated protein kinase 1	233	
COMMD10	COMM domain containing 10	234	55
RORA	RAR related orphan receptor A	235	
NBEA	neurobeachin	236	
JAG1	jagged 1	237	
SESN3	sestrin 3	238	
ATG14	autophagy related 14	239	
СР	ceruloplasmin	240	
IL11RA	interleukin 11 receptor subunit alpha	241	
ADHFE1	alcohol dehydrogenase, iron containing 1	242	
TMEM8C	transmembrane protein 8C	243	
IGDCC3	immunoglobulin superfamily DCC subclass member 3	244	
NFAT5	nuclear factor of activated T-cells 5	245	54
FADS1L2	fatty acid desaturase 1-like 2	246	54
BDKRB1	bradykinin receptor B1	247	
USP45	ubiquitin specific peptidase 45	248	
CACNA1B	calcium voltage-gated channel subunit alpha1 B	249	
ZIC3	Zic family member 3	250	
TIMM17A	translocase of inner mitochondrial membrane 17 homolog A (yeast)	251	
TTC1	tetratricopeptide repeat domain 1	252	
SFRP1	secreted frizzled related protein 1	253	
POMT2	protein O-mannosyltransferase 2	254	
ТМСО3	transmembrane and coiled-coil domains 3	255	53
TOP2A	topoisomerase (DNA) II alpha	256	55
MED26	mediator complex subunit 26	257	
KCNK10	potassium two pore domain channel subfamily K member 10	258	
FLT4	fms related tyrosine kinase 4	259	
UHRF1BP1	UHRF1 binding protein 1	260	

TRIM27.1	tripartite motif containing 27.1	261	
SLC30A9	solute carrier family 30 member 9	262	
PIANP	PILR alpha associated neural protein	263	
CPPED1	calcineurin like phosphoesterase domain containing 1	264	
PTHLH	parathyroid hormone like hormone	265	
IL20RB	interleukin 20 receptor subunit beta	266	52
PRELID1	PRELI domain containing 1	267	
CDC42EP1	CDC42 effector protein 1	268	
SLC13A4	solute carrier family 13 member 4	269	
GAN	gigaxonin	270	
REPS1	RALBP1 associated Eps domain containing 1	271	
PRAM1	PML-RARA regulated adaptor molecule 1	272	
LOC101751874	uncharacterized LOC101751874	273	
SSPN	sarcospan	274	
ANGPTL7	angiopoietin like 7	275	
FARP1	FERM, ARH/RhoGEF and pleckstrin domain protein 1	276	
PDE6H	phosphodiesterase 6H	277	
TMEM88B	transmembrane protein 88B	278	51
NHLRC4	NHL repeat containing 4	279	
TMED3	transmembrane p24 trafficking protein 3	280	
DCX	doublecortin	281	
SYNM	synemin	282	
PSKH2	protein serine kinase H2	283	
ABRA	actin binding Rho activating protein	284	
TMEM45A	transmembrane protein 45A	285	
AKT3	AKT serine/threonine kinase 3	286	
CREB3L1	cAMP responsive element binding protein 3 like 1	287	
C5H15orf52	chromosome 5 C15orf52 homolog	288	
RAD9B	RAD9 checkpoint clamp component B	289	50
MRPL38	mitochondrial ribosomal protein L38	290	50
PBRM1	polybromo 1	291	
CCNL2	cyclin L2	292	
AKAP11	A-kinase anchoring protein 11	293	
TTC26	tetratricopeptide repeat domain 26	294	