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and application of spectroscopy-based technologies for assessing the microbiological quality of fresh-cut
produce

Department of Food Science and Human Nutrition
Laboratory of Microbiology and Biotechnology of Foods

Abstract

Fresh-cut produce satisfies the ever-growing consumers’ need for healthy and
convenient foods. However, the naturally occurring microbial populations along with further
microbial contamination during the processing tend to limit the shelf-life of these products.
Given that there 1s limited knowledge of the microbial communities associated with spoilage
of these products, the finer characterization of the fresh-cut produce microbiota, and
monitoring of the impact of important environmental factors on its composition during storage
is needed. On the other hand, the establishment of rapid and effective methods for
microbiological spoilage evaluation also is of great importance to the fresh-cut food industry.
The two main objectives of the present thesis were: 1) to characterize the microbial
communities associated with spoilage of these commodities during storage at different
temperatures, using a metagenetic approach, (Section A: Chapters 2 and 3), and 11) to evaluate
the microbiological spoilage of different fresh-cut produce commodities using rapid
spectroscopy-based technologies (Section B: Chapters 4, 5 and 6).

Concerning Chapter 2, the fungal and bacterial communities associated with the
spoilage of ready-to-eat (RTE) pineapple during storage at different temperatures were
characterized using the ITS2 and gyrB metagenetic sequencing, respectively. Significant
variability in fungal species composition was observed among the different batches of RTE
pineapple. The initial microbiota composition was the main influencing factor determining the
progress of spoilage. Depending on the initial prevalent fungal species, the temperature’s and
storage time’s impact varied. With reference to the subdominant bacterial communities, neither
temperature nor batch significantly influenced the bacterial diversity and composition.

In Chapter 3, a metagenetic amplicon approach, based on gyrB sequencing, was applied
for deciphering the bacterial communities associated with the spoilage of RTE rocket and baby
spinach stored at different temperature conditions. The vegetable communities differed in the

dominance of specific bacterial species. Specifically, Pseudomonas viridiflava was dominant



in most samples of rocket, while a new Pseudomonas species, as well as P. fluorescens and/or
P. fragi were highly abundant or even dominant in baby spinach. Significant variability in
bacterial species composition among the different batches of each vegetable also was observed.
At batch-level, the impact of temperature and/or storage time on bacterial microbiota was not
apparent for baby spinach. Concerning rocket, the storage time was the most influencing factor
for some batches resulting in reduction and increase of Pseudomonas species and lactic acid
bacteria abundance, respectively. To conclude for both Chapters 2 and 3, a large-scale sampling
of fresh-cut RTE produce should be conducted in order to assess the full biodiversity of its
spoilage microbiota and unravel the impact of important environmental factors on microbial
diversity and composition.

In Chapter 4, the suitability of four analytical technologies (sensors) coupled with
different machine learning algorithms for the evaluation of RTE pineapple’s quality was
assessed, while the utilization potential of selected analytics tools, namely the Unscrambler
software and the SorfML platform, also was explored. Pineapple samples stored at different
temperature conditions were subjected to microbiological (total viable count, TVC) and
sensory analyses, with parallel acquisition of Fourier transform infrared (FTIR), near infrared
(NIR), fluorescence (FLUO), visible (VIS), and multispectral imaging (MSI) spectroscopy
data. Similar trends concerning the applicability of the different sensors and algorithms were
observed for both analytics tools. For TVC, almost all the combinations of sensors and the
partial least squares regression (PLSR) algorithm showed relatively satisfactory performances.
Moreover, most of the studied sensors in conjunction with linear support vector machine (SVM
Linear) resulted in similar performances. Overall, the tested sensors apart from the NIR
constitute promising tools for the assessment of pineapple’s microbiological spoilage.
Concerning sensory features, FLUO spectral data and MSI sensor seem to be also promising
for the evaluation of pineapple odour.

Chapter 5 provided a comparative assessment of sensors and machine learning
approaches for evaluating the microbiological spoilage of RTE rocket and baby spinach stored
at different temperature conditions under modified atmosphere packaging (MAP). The samples
were subjected to microbiological analysis (TVC and Pseudomonas spp.), and parallel
acquisition of FTIR, NIR, VIS and MSI data. Two data partitioning approaches, namely

random and dynamic data partitioning, and two machine learning algorithms, namely PLSR



and radial support vector regression (SVR), were comparatively evaluated. Concerning baby
spinach stored under passive MAP, the two algorithms yielded similar performances for most
of the developed models. The random data partitioning resulted in better (for MSI and NIR) or
similar (for FTIR and VIS) performances to the ones attained with the dynamic approach.
Regarding rocket, the SVR algorithm resulted in better prediction for most of sensors, while
random data partitioning yielded also considerably or slightly better results compared to the
dynamic test set. The microbiological spoilage of baby spinach stored under passive MAP was
better assessed by models derived mainly from the VIS sensor, while FTIR and MSI models
were more suitable in rocket, with the selected best models exhibiting satisfactory
performances. Contrarily, FTIR and MSI were more appropriate for TVC prediction of baby
spinach stored under active MAP, exhibiting an even higher predictive power. The results
indicated that personalised (i.e. product-specific) sensor applications and data analysis
workflows are needed, while the applied storage conditions should be also taken into account.

In Chapter 6, the assessment of microbiological spoilage of oyster mushrooms
(Pleurotus ostreatus) using FTIR and MSI technologies was studied. Fresh-cut mushrooms
were stored at different temperature conditions and were subjected to microbiological analysis
(TVC) as well as to FTIR and MSI measurements. The FTIR and MSI data were collected for
both the cap and the gills sides of mushrooms. Developed PLSR models for both mushroom
sides exhibited poor prediction performances, regardless of the applied data partitioning, the
reduction of the observed high spectral variability and the selection of the most informative
independent variables. The results indicated that, under the conditions of this study and the
applied computational analysis, the application of FTIR and MSI do not appear to be promising

for the evaluation of the microbiological spoilage of oyster mushrooms.
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XapaKTNPLopos TOV PIKPOPLOK®Y KOVOTHTOV oV 6YeTilovTol pe TNV ariloioon péco aiiniodyiong
ETONEVNG YEVEAS KOl EQUPLOYT TEYVOLOYLAOV pg Ao TN PUoHOTOCKOTIN Yo TNV aSl0AdYN6N TG
HIKPOPLOLOYIKIG TOLOTNTUS PPECKMOV KOUREVOV TPOTOVTOV QUTIKNG TPOELEVOG

Tunuo. Emaotiunc Tpopinwv ko Aiozpopns AvBpamov
Epyootipio Mixpofioloyiog kou Bioteyvoloyiag Tpopiuwv

Hepiinyn

Ta ppéoka kopupuévo TPOIOVTO  1KOVOTOOVV TNV GLVEYMG OEAVOUEVT OVAYKY TOV
KOTOVOA®TOV Y10l VYLEWVE KOl TOVTOYPOVO YPTYOPQ KOl EVKOAO GTNV TPOETOLUAGIO TPOPILAL.
BéBaia, o1 puowd amoaviopevor pikpoPiakoi minbucpol oe cuvovacud pe v emmpochen
empoAvvon kato v ddpkela g enegepyaciog teivouv va meplopilovv Tov ¥pdvo [mng
AVTAOV TOV TPOIOVIOV. AESOUEVNG TNG TEPLOPIGUEVIC YVAOTG Y10 TIG LIKPOPLOKES KOWVOTNTESG
mov oyetifovror pe TV oAloimon TOV QPECKOV KOUUEVOV TPoidvtwv, o guphTEPOG
YOPAKTNPIOUOG TOV KOWOTHT®V CLTOV KOl 1 HEAET TOV ONUOVIIKOV TEPPAAAOVIIK®V
TAPOYOVI®V OV €MNPEALOVV TN GVGTACT] TOVG KATA TNV JIPKELN TNG amodNKeLoNG TV €V
AOY® Tpoidvtov, amarteital. Ao TNV GAAN TAELPA, 1) EPOPLOYT TOYEDV KO OTTOTEAEGLOTIKMOV
pefdO@V Yoo TNV aviyvevon g HkpoPloAoyIKnG aALoimoNng Tovg eival eTiong SNUOVTIKY Yo
mv avtictoym Prounyavia. Ot dVvo kOplol 6TdYol T™EC Tapovoag dSoTptPrig NrTav: 1) o
YOPAKTNPIOUOS TOV LKPOPLOK®Y KOWVOTHT®V TOL GYETILOVTAL LE TNV AALOI®MOT) S1a(pOPETIKMY
PPECKOV KOUUEVOV TPOIOVTMV KOTA TNV amoOKEVGOT) TOVG G LUPOPETIKEG BepoKpacies, e
™ xpnom petayevetikng tpooéyytong (Evotnta A: Kepdioia 2 ko 3), kot ii) n a&oddynon
™G WKPOPLOAOYIKNC OALOI®MONG TV TOPOTAvV® TPOIOVI®OV UEC® TNG YPNONS YPNYOP®V
asOntypov pe Bdon v eacpatookonio (Evomnta B : Kepdiaia 4, 5 kat 6).

Ooov agopd oto Kepdato 2, ot kovotnteg TV COUMV-UVKNTOV Kol ToV Baktnpiov
nov oyetifovral pe MV aAAoimon Tov £TooV-Tpoc-katavaiwmon (ready-to-eat, RTE) avava
Katd v omobnkevon tov oe dapopeTikég Oepupokpacieg tavtomomOnKav HECHO TNG
HETOYEVETIKNG OAANAOUYIONG TV yevetikav mepoywv ITS2 ko gyrB, avtioctoyo.
[Mapampndnke vymAn TopoAlokTikdTnTo 6T GUVOEST TV €10V JLUOV-UVKNITOV HETAED
TOV O10POp®V TapTidwVv avavd. H apyikn pikpoPiakn cvvBeon ftav o KHplog mapdyoviog Tov
kaBopioe v mpO0do ™S aALOIMoNC. AESOUEVOV TOV OPYIKAOV ETIKPUTECTEPWOV EOMV, M

emidpaon ¢ Bepuoxpaciog Kot Tov xpovov amobnKeLoNS NTAV TOIKIAN. ZYETIKA [HE TN U



Koplopyn Paxtnplokr kKowotnto, N Oeppokpacio oAl kot 1 wOPTidN TOV TPOIOVTOG OEV
eEMMPEACAV CNUOVTIKA TNV PaKTNPLOKN TOIKIAOTNTO, Kot GOVOEDT).

Y10 Kepdhowo 3, pa petayevetikny mpocéyyion, Paciopévn 6ty aAANAOVYIoT TOV
yeveTikov oeiktn gyrB, epapupootnke emione yio tov YopokTNPopd TOV POKTNploK®v
KOWOTNTOV oL oyetilovion pe v aAloimon RTE pdkac Kot Tpugepdv QUAA®V GTOVIKLOV,
KaTa TNV oamobnkevor] tovg oe dnpopetikég cuvOnkeg Beppokpaciog. Ot Paktnprokég
KOWOTNTEG TOV OVO AAYOVIKAOV SEPEPAY GTNV KVPLAPYI0 GUYKEKPIUEVOV POKTNPLOUKDVY ELODV.
Yvykekpuéva, To Pseudomonas viridiflava ntav xvpiapyo ota mepiocodtepa deiypota poKac,
eve éva véo gidog Pseudomonas, kabmg kot o P. fluorescens 1 / ko P. fragi tav aitepa
deBova 1M axopo kot kvpioapye oto omavdakt. ITlapatnprnke emiong onupavikn
TAPOAAAKTIKOTNTO 0T obvOeon TV Paknplok®dv WOV PeTald TOV SEOpOV ToPTId®V
K60 gldovg Aayavikod. e eninedo maptidag, n enidpaon tng Oepprokpasciog 1 /Kot Tov ¥pdvov
amofNKeVoNG OTIG PAKTNPLOKES KOWVOTNTES TOV GTOVAKIOD OEV NTAV EUPAVIG. LYETIKA LE TNV
poOKa, 0 XPOVOG OO KELGONG MTAV O MO CNUAVTIKOG TOPAYOVTAS TOL £iYE MG AMOTEAEGHLA TN
ueioon g apboviog kdmolwv 0@V Pseudomonas kot tnyv mopdAAnin avénon mg apboviag
yohokTik®v Baxtnpiov. Xvurnepoacpatikd yio to Kepdiowa 2 ko 3, n oweloymynq peyaing
KMUOKOG TEPAUATOV GE PPEGKO KOUUEVE, TTPOIOVTA PLTIKNG TPOEAELGT|G Elvan amapaitnTn Yio
™V TANPN aEoAOYNoN TS PLOTOIKIAOTNTOC TOV UKPOPBLOKMY KOWOTHT®Y TOV GUUUETEXOVV
011 Oladtkacion aAAOImONG Kot Yol TNV avAdEEN NG EMIOPACTG CNUAVTIKDV TEPPAALOVTIKOV
TapaydVTOV oTNV HKpofilakn cuvheon.

Y10 Kepdhowo 4, M KOTOAANAOTNTO TEGGAP®V AIoONTNPOV GE GLVOVOCUO UE
OLPOPETIKOVG  OAYOpOpovS pnyoavikhig pdbnong aoroynnke yuw v extipgnon g
nodmtoag RTE avavd, eved depeuvinOnkav emiong ot SuvaTdTNTES EMAEYUEVOV OVOAVTIKDV
«gpyoreiovy, Tov Aoytoutkod The Unscrambler kot tng dadiktvakne miotedpuag SorfML.
Ta delypota ovoavéd oamodnkevnkav oe Spopetikés ovvinkeg Oeppokpaciog ot
vroPANOnkav oe pkpofroroyikny (oAkn HeEcOPIAN yAwpida, OMX) kot opyavoAnmTikn
aVOALOT UE TOPAAANAT GLALOYN QOGUATIK®V OEGOUEVOV QUGLOTOOKOTIOG VITEPLOpPOL e
uetaoynpatioud Fourier (FTIR), eyyog vrépvbpov (NIR), pbopiopov (FLUO), opatod (VIS),
Kabmng kot moAveacpotikedv ewovov (MSI). Tlapduoteg taoelg oyetikd pe ) dvvatdTnTa,
EPAPLOYNG TOV OOPOPETIK®OV oucOnmpov kol alyopiBuov mapoatnpnOnkav yia to dvo

hoyopukd. o mv OMX, ta povtédo amd 6yeddv GAOVG TOVS GLVOLAGHOVS GO TPV UE



TOV aAYOp1Oo TaAvdpounong pepik®v edayiotav tetpay®vov (PLSR) tapovciacay oyetikd
KOVOTOMTIKEG €MO00ELS. EmumAéov, 1 ypappiky punyovny dtavuspdtov vrootpiéng (SVM
Linear) og cuvovacpd pe tnv mtAeloyneio Tov aicntpov mopovsioace mopOUoles EMOOGELS.
2VVOAIKA, Olot ot acOntpec ektdc Tov NIR amoteAoOv vooydueva «epyoieio» yioo TV
extiumon ¢  MIKPOPloAoYIKG oAAOImoNG QPPECKMOV  KOUUEVOV TPOIOVIOV  QUTIKNG
TPOEAELONG. ZYETIKA LLE TOL OPYAVOANTITIKA Yopaktnplotikd, T FLUO @acpatikd dedopéva
kol 0 MSI aueOntpag gaiveton va eival emiong KatdAAniot yioo TV aEl0AOYNoT TS OCUNG
TOV AVOVA.

To Kepdhowo 5 mapelye (o ocuykpitiky] a&loA0ynor SlQopeTIKGOV osnTpmv Kot
TPOGEYYIGEMV UNYOVIKNG HABNoNG Yoo TNV eKTipnom g pikpoBoroyikng arioimwong RTE
POKOG Kol TPLPEPOV PUAL®V (baby) oravakiod Kotd TV amobNKeLG TOVG GE SLUPOPETIKES
Oepokpaciec kot vTd cvokevacio Tpomomomuévng oatpoocealpos (MAP). Ta deiypata
voPAnOnkay oe pukpoProroyikéc avoivoelg (TVC ko Pseudomonas spp.), pe mopdAinin
ovAloyn eacpatikav dedopévov FTIR, NIR, VIS kot MSI. TlpaypoatonomOnke cuykpitikn
a&lorloynon (i) 600 mpoceyyicemV KATAVOUNG TV JEOO0UEVOV GE GUVOAN EKTTOIOEVOTG Ko
emoAnfevong (tuyaio kotovopn kot duvapkd dedopéva Yo emaAndevon), ko (i) dvo
aAyopifuwv unyavikng udnong [PLSR kot modlvdpdunon davucudtov vrootpiEng (SVR)
Baciopévnoe mopnva aktvikng Bdong (radial basis function, RBF)]. Ocov agopd 6to oravakt
o€ madnTikd MAP, o1 dv0 aAyop1OLotl TapPoLGIacHY TOPOUOLES EMOOGELS Y10, TNV TAELOVOTNTO
TOV AVETTUYUEVOV LovTEA®V. H Tuyaio katovoun 0e00pévav ixe oG amoTEAEGIA KOAVTEPES
(v MSI kot NIR) 1} mapdpoteg (yioo FTIR kot VIS) emddcelg cuykpitikd pe tn ypnon tov
SVVOIKOV 0edOUEVOV Yoo emaAnBgvor. Xy mepimtwon g pokac, o aiyopiBuog SVR
00NyNoe o€ KaAOTEPN TPOPAEYT Y100 GYXEOOV OAOVG TOVS GO TNPES, EVM 1) TLYOIO KOTOVOUT
dedopévmv £dmoe emiong onUoVTIKE 1 eAappdg koldtepa aroteléopota. H pikpofiodoyikn
aAloioon Tov omavakov oe madntikd MAP ektyumbnke xoAvtepa pe pOvIEAQ OV
Baciotnrav kuping oe pacpatikd dedopéva VIS, evd ta povtédo ta onoio avamtoydnioy pe
Baomn dedopéva FTIR xou MSI ftav mo katdAinio otnv poka, OA0 HE KOVOTOMTIKEG
emdooels. Avtifeta, ot arcOnmpeg FTIR ko MSI tav katadinAdtepot yio v TpoPAreyn g
OMX 10V oravaxkiov oe evepyd MAP, ne vyniotepn wavotnrta tpdfrieyns. Ta amoteAéouata

vrédel&av Ot omonteitan eEatopkevpévn (yor kdbe mpoidv) ypnomn actnpmv Kot avdivon



dedopévmv, evad o1 cuvinkeg amobnkevong Twv mpoidvtwv Ba mpénel eniong, va Aapupdvoviot
VTOY.

>10 Kepdiaio 6, a&loroynnke n epappocipdtta tov texvoroyidv FTIR kot MSI vy
mv ektiumon ¢ UiKpoPlodoykng aAloimong tov povitopudv otpediwv  (Pleurotus
ostreatus). To @pécka LOVITAPLO OTOONKEDTNKAV O OLOUPOPETIKEG OEPLOKPAGIUKES GLVONKES
Kol vrofAnOnkav og pikpofroroyikég avarvoelg (TVC), pe mapdAinin culioyr| dedopuévmv
eaouatookorniog FTIR kot MSI kat yio Ti¢ dvo mhevpés (Tov Kamélov Kot ToV EAACUATOV)
TV povitopldv. Ta PLSR povtéda kot yio tig 00 TAELPEG LAVITOPIDOV TOPOVGIOGOV KOKT
emidoon mpoPAeyng, aveEaptnta omd Tov @apUolOUEVO TPOTO SLY®PIGHOD TOV dEGOUEVOV,
TNV TPOSTADELD HEIMONG TNG TAPATNPOVUEVNS VYNANG POCUOTIKTG TOPUAALOKTIKOTNTOS TOL
napotnPNOnKe Kor TNV EMAOYN TOV MO oNUovTK®V aveéapmtov petafintaov. Ta
amotedéopoto LVIEdEEAV OTL, KAT® omd TIG oLVONKEG NG Topovoas HEAETNG KoL NG
epapuolOpeVNC VTOAOYIGTIKNG ovaAivong, 1 epapuoyn towv FTIR wor MSI dev eivan
VIOGYOUEV] YL TNV OEWAOYNON TNG MKPOPOAOYIKNG OALOI®ONG TOV GUYKEKPUEVOV

TpoiovTv (povitdpila oTpeidn).
Emotnpovikn weproyn: MikpoPioroyia tpogipmy
AEEEIS KAEWO1A: ppETKO KOUUEVO TPoidVTa, LKPOPloAoyikn aAloimor), aweOntmpeg pe Pdon

TNV QPACUOTOCKOTI, UNYovikn udinomn, pikpoPloky] TowAdTNTO, HETOYEVETIKY OVOALGT),

enidopaot Beppokpaciog
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Chapter 1

1.1. Fresh-cut produce: Current trends

The International Fresh-cut Produce Association (IFPA) defines fresh-cut produce as
any fruit or vegetable that has been trimmed, peeled and/or cut into a fully usable product, and
Is subsequently packaged to offer consumers high nutrition, convenience and flavour, while
maintaining freshness. According to the United States Food and Drug Administration (FDA),
fresh-cut produce may or may not undergo a wash or other treatment before being packaged,
therefore can be ready-to-eat (RTE) or not ready-to-eat (NRTE). However, commodities that
have been processed by freezing, cooking, canning or packing in a juice, syrup or dressing, are
not included in this category (FDA, 2018). Advances in agronomic, processing, distribution
and preservation techniques have enabled the supply of nearly all types of fresh-cut fruits and
vegetables to those who desire and are willing to purchase them (Qadri et al., 2015). The
current global market includes mainly fresh-cut tropical fruits (melons, cantaloupe,
watermelon, mangoes, jackfruit, papaya, grapefruit, pineapples and fruit mixes), shredded
leafy vegetables and salad mixes (spinach, lettuce, rocket), fresh-cut vegetables eaten raw or
after cooking (peeled baby carrots, baby corn, broccoli and cauliflower florets, cut celery
stalks, cut asparagus and cut sweet potatoes), as well as fresh-cut herbs and mushrooms (James
& Ngarmsak, 2010; Pradas-Baena et al., 2015).

Fresh-cut products were initially distributed to supply the food service business with
the aim to reduce the manpower for food preparation, minimize special systems to handle
waste, and deliver specific forms of produce in a short time (Rojas-Gral et al., 2010). Whilst
these commaodities have been available to consumers since the 1930s in retail supermarkets, it
was not before the early 1980s that they started to gradually gain popularity (Baselice et al.,
2017). In recent years, the market of fresh-cut produce has witnessed a dramatic growth,
largely stimulated by changes in consumers’ lifestyle and food needs (Gorni et al., 2015). Fruits
and vegetables are a rich source of important nutrients and as such comprise an essential part
of balanced diet (Doona et al., 2015). Various international health organizations also
recommend the increase of fruit and vegetable intake, since they have been found to counteract
many of the chronic diseases, due to compounds with antioxidant and other health-promoting

properties (Rojas-Grall et al., 2010; Qadri et al., 2015). Therefore, consumers are increasingly
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embracing healthier dietary patterns and have become more concerned about the nutritional
and medicinal aspects of the food they consume. At the same time, the modern lifestyle
demands easy-to-consume products. Fresh-cut produce is a very convenient way to supply
consumers with washed, bite-size and packaged fresh products, thereby RTE commodities that
allow to eat healthy on the run save time on food preparation and reduce food waste at the
household level (James & Ngarmsak, 2010; Rojas-Gral et al., 2010; Qadri et al., 2015).
Nowadays, the fresh-cut produce supply is one of the growing industries of the agro-
food sector, worldwide (Sandhya et al., 2010). It has been converted to a multi-billion-dollar
industry, due to the supply of both the food service industry and retail market, as well as its
expanding access to new markets across the globe. The main producer and consumer are USA,
while UK and France follow (Jideani et al., 2017). According to a market report published in
2010, fresh-cut produce outlined 4% of the total volume of the EU vegetable market and 1%
of the EU fruit market. Fresh-cut fruits and salads reached 10 and 50% of the EU fresh-cut
markets volume, respectively (Gorni et al., 2015; Qadri et al., 2015; Baselice et al., 2017).

1.1.1. Fresh-cut produce quality and minimal processing

Fresh-cut products rather commonly undergo minimal processing in order to obtain a
fully edible product, which is often ready for consumption. The processing steps and their
sequence may vary depending on the type of commodity to be minimally processed. While
conventional processing methods are known to extend the shelf-life of fruit and vegetables, the
minimal processing to which fresh-cut produce are subjected renders products highly
perishable, requiring chilled storage to ensure a reasonable shelf-life (Rico et al., 2007). The
processing handling including mainly peeling, cutting and shredding steps, accelerates many
physiological changes and provides an ideal substrate for growth of microorganisms, including
spoilage microorganisms and foodborne pathogens (Rico et al., 2007; Francis et al., 2012).

Fruits and vegetables are living tissues not only when they are attached to the growing
parent plant but, even after harvest and until consumption. These products continue to perform
most of the metabolic reactions and maintain the physiological systems including respiration,
transpiration and ethylene production that were present when they were in their agricultural

environment (Kader, 2002; Wills & Golding, 2016). However, the physiology of minimally
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processed products is essentially that of living but also wounded tissues. The mechanical
damage induced by processing causes stress to plant tissues and accelerates ethylene
production, respiration rate, wound-healing processes (synthesis of secondary compounds,
suberization and lignification), biochemical (membrane and cell changes, browning and
degreening) and physical changes (softening and water loss) (Soliva-Fortuny & Martin-
Belloso, 2003; Ergun et al., 2006; Rico et al., 2007). All these biological processes result in
flavour loss, off-odours production, cut-surface discolouration, decay, rapid softening,
increased rate of vitamin loss and shrinkage, and finally cause irreversible loss of quality (Artes
& Allende, 2014; Jideani et al., 2017). A schematic presentation of the primary physiological
processes occurring during minimal processing of fresh-cut vegetables resembled with that of
fruit is shown in Figure 1.1.

However, microbiological spoilage is an important cause of quality deterioration in
fresh-cut produce. These commodities are naturally contaminated by high and diverse
microbial populations originating from a number of sources, including the farm environment,
pre-harvest treatments, as well as processing where further microbial contamination may occur
(Qadri et al., 2015). During processing, the natural protective barriers of cells are removed and
the intracellular nutrients and fluids are released. The exposed cytoplasm of plant cells
combined with the high water activity (aw) favor microbial growth (Parish et al., 2003). For
these reasons, fresh-cut produce commodities have long been known as vehicles of a large
amount of spoilage microorganisms, as well as pathogens (Leff & Fierer, 2013).

In general, microbiological spoilage may manifest as visible growth (slime, colonies),
textural breakdown (degradation of polymers), off-odours and off-flavours production (Gram
et al., 2002; Ragaert et al., 2007).Various pectinolytic bacteria are able to break down cell
walls resulting in exposure of enzymes and substrates, and finally in textural changes and
enzymatic browning. The metabolites produced by microbial activity and are related to
carbohydrate and protein decomposition, have unpleasant odours and flavours and induce the
softening and discoloration of fresh-cut produce. Additionally, vitamins and minerals are
utilized by spoilage microorganisms and thereby, pigments and flavour compounds are also

degraded, compromising sensory quality (Tournas et al., 2005; Ragaert et al., 2007).
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Figure 1.1. Effect of wounding on fresh-cut vegetables. The physiological processes in fresh-
cut vegetables after mild processing. Enzymes involved in decay processes. PG:
polygalacturonase and PME: pectinmethylesterase cause softening, LOX: lipoxygenase causes
off-flavors, PPO: polyphenol oxidase, POD: peroxidase, and PAL: phenylalanine ammonia-
lyase, modify the concentration of active compounds during fresh-cut processing. Adopted
from Pradas-Baena et al. (2015).

1.1.1.1. Microorganisms associated with fresh-cut produce spoilage

The overall composition, aw and pH of fresh-cut produce are favourable for microbial
growth, including bacteria, molds, and yeasts. Some of these organisms are plant pathogens
and they can start the decomposition process before harvest, but most spoilage losses are due
to non-plant-pathogens. These organisms can contaminate the commodity in the field, during
harvest, transport, processing and/or storage. (Tournas, 2005; Erkmen & Bozoglu 2016).

The predominant post-harvest spoilage of vegetables is caused by Gram-negative
bacteria and mainly those capable of degrading the vegetable polymer pectin and causing soft
rots. These organisms are typically species belonging to the Erwinia, Pseudomonas and
Xanthomonas genera and constitute the specific spoilage organisms (SSO) of several fresh —
cut vegetable products (Gram et al., 2002; Qadri et al., 2015). Lactic acid bacteria (LAB) are

present in lower populations largerly related to fermentation of vegetables, while yeasts (such
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as Rhodotorula spp., Candida spp.) can also cause spoilage during storage. On the other hand,
the low pH of the majority of fruits does not allow growth of most of the bacteria. Molds,
yeasts and aciduric bacteria (such as LAB, Acetobacter and Gluconobacter) are able to grow
on fruits (Tournas, 2005, 2006). The yeast genera Saccharomyces, Candida, Torulapsis and
Hansenula cause spoilage, while Penicillium, Aspergillus, Alternaria, Botrytis, Rhizopus and
other mold genera can cause rot in fresh fruits. However, yeasts are more often associated with
spoilage of cut-fruits than molds due to faster growth rate. Lactic and acetic acid bacteria can
cause souring in fruits (Erkmen & Bozoglu, 2016).

Moreover, several foodborne pathogens have been reported in fresh-cut vegetables and
fruits including the bacteria Listeria monocytogenes, Yersinia enterocolitica, Aeromonas,
Staphylococcus aureus, Escherichia coli O157:H7, Salmonella enterica and Clostridium
botulinum as well as, the fungal species Aspergillus flavus and A. carbonarius (Ergun et al.,
2006; Ragaert et al., 2007; Erkmen & Bozoglu, 2016)

1.1.1.2 Important environmental factors contributing to fresh-cut produce quality

All fresh-cut produce commodities are stored at refrigerated conditions to achieve the
aimed commercial shelf-life. Maintaining low temperature after harvest and during processing
and storage of fresh-cut produce in retail market is the most critical aspect of fresh-cut produce
quality. Temperature has a great impact on metabolic reactions and it strongly affects
respiration rate, ethylene production and changes in atmosphere within commercial packages
(Kader, 2002; Francis et al., 2012). Moreover, storage temperature is one of the most important
factors affecting survival and growth of spoilage microorganisms and pathogens on fresh-cut
produce (Gu et al.,, 2018). Hence, effective cold chain temperature control is of great
importance for fresh produce, since often there is no thermal treatment before consumption
(Castro-lbanez et al., 2017)

Modified atmosphere packaging (MAP) has also the potential to extend the shelf-life of
fresh-cut produce, mainly by limiting the oxidation processes and the proliferation of aerobic
spoilage microorganisms reaching specific levels of O, and CO:> (Artes & Allende, 2014). This
type of packaging relies on the rate of respiration of produce together with the transfer of gases
through the packaging material without any further alteration to the initial composition.

Passive MAP involves generation of modified atmosphere by reliance wholly on the natural
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process of respiration as well as the, permeability of the packaging film material. On the other
hand, active MAP involves the replacement of the gaseous composition in a packaged material
establishing the preferred gas mixture within the package (Jideani et al., 2017). The beneficial
effects of MAP include the reduction of respiration rate, ethylene production, enzymatic
reactions, and some physiological disorders (Sandhya et al., 2010; Francis et al., 2012).
However, the overall effects of modified atmospheres (MA) have been extensively evaluated
on a wide range of fruit and vegetables, but the responses vary considerably (Wills & Golding,
2016). The limits of tolerance to O2 and CO- levels (before resulting in physiological damage
with subsequent effects on sensory quality) depend on type of produce, cultivars, temperature,
physiological condition, maturity and previous treatment (Francis et al., 2012; Maet al., 2017).
With regards to microbial activity, the effect of MA is not consistent and the storage
temperature tends to largely control microbial growth (Ragaert et al., 2007). The application
of high O2 or superatmospheric levels have been reported to inhibit aerobic and anaerobic
microbial growth. However, CO: is the only gas that has a direct and significant antimicrobial
effect, but its inhibitory effect is not universal and is dependent on the microorganism and its
growth phase, the temperature, aw and product characteristics (Oliveira et al., 2015). On the
other hand, excessively low levels of O favour fermentative processes which might cause the
formation of acetaldehyde and the appearance of off-flavour compounds (Artes & Allende,
2014).

1.2. Advanced molecular technologies for the study of food microbial

ecology

Deep knowledge and understanding of microbial food ecology is crucial to ensure
production of safe and high-quality food. In particular, close monitoring of the diversity and
dynamics of food microbial communities throughout the production process allows the
effective management of the microbial processes involved in food processing, spoilage and
contamination (Juste et al., 2008; Cao et al., 2017).

Traditionally, the occurrence of microorganisms in a given environment or in an
industrial process has been studied by culture-based methods. So far, culture-dependent
methods have been the mainstay of food microbiology, since they have led to the description

of a number of habitats. However, they are extremely biased in their ability to unravel the
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microbial communities of complex matrices associated with food or environmental samples
(Ercolini etal., 2013; Zhou et al., 2015). Indeed, they are able to detect only 0.1% of a complex
community and even in relatively simple food matrices, such as fermented foods, at least 25—
50% of the active microbial community cannot be cultured in vitro. Moreover, stressed or
weakened cells often need specific culture conditions to recover and to become cultivable,
while there are also entirely non culturable cells (Juste et al., 2008).

These limitations have prompted the development of culture-independent techniques,
of which those based on polymerase chain reaction (PCR) amplification and detection of
nucleic acids are the predominant (Edet et al., 2017). Nucleic acids make the molecule an ideal
target for microbiota or microbiome characterization due to their ubiquitous nature and
specificity. Additionally, significant progress in sequencing chemistries have resulted in
evolution from low throughput sequencing to high throughput next generation sequencing

(NGS) technologies providing a broader microbial characterization (Cao et al., 2017).

1.2.1. Next generation sequencing technologies

The development of NGS technologies has enabled researchers to study food microbial
ecology from broader and deeper perspectives, revealing that food-associated microbial
communities are richer than expected and that some of them might play a yet unsuspected role
(Kergurlay et al., 2015). In the case of microbial spoilage, NGS has opened up new
perspectives of characterization and control management, since spoilage microbiota for most
of food products had remained poorly characterized due to their diversity and the lack of
selective culture media for their isolation. Such approaches can readily yield multiple
thousands of sequences from a single sample providing much more coverage of the community
present, and increasing the ability to detect less common taxa. Moreover, NGS offers the
opportunity to look beyond the presence of taxonomically defined entities and instead to
understand the relationships between microorganisms as well as their activities and
functionalities in a particular niche (Jackson et al., 2015; Cocolin et al., 2018).
Currently, the majority of microbial ecology studies apply NGS by focusing on either targeted
gene sequencing with phylogenetic (e.g., 16S rRNA) and also functional (e.g., amoA, nifH)
gene targets or on shotgun metagenome sequencing.  Targeted gene sequencing

(metataxonomics, metagenetics, metabarcoding or amplicon sequencing) provides information
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on specific genes within a microbial community, and is thereby a “taxonomy” oriented
approach. However, its suitability for analyzing the whole genetic and functional diversity of
communities is limited. On the other hand, metagenomics is an approach that is mainly
“function” oriented, although taxonomic composition of communities can also be revealed.
Metagenomics focus on the presence of genes and their transcripts, rather than the
identification of a specific organism (Cocolin et al., 2018). However, both metagenetics and
metagenomics cannot distinguish between expressed and non-expressed genes in a given
environment. In contrast, metatranscriptomics involve random sequencing of expressed
microbial RNA. In Figure 1.2, the most common NGS applications in applied microbiology
are reported. However, further development of proteomics and metabolomics is important to
understand microbial community functions in the environment (Zhou et al., 2015; Cao et al.,
2017).

1.2.1.1. Targeted gene sequencing (metataxonomics, metagenetics, metabarcoding or
amplicon sequencing)

The use of targeted gene sequencing to study microbiota is the most common NGS
application in microbial ecology of foods (Ercolini et al., 2013). The terms metataxonomics,
metagenetics, metabarcoding or amplicon sequencing refer to the amplification and high-
throughput sequencing of a specific barcode region (e.g. 16S for bacteria, 18S for most
eukaryotes, and ITS regions for fungi). This approach enables the study of all the microbial
taxa in a given environment, which is defined as the microbiota. It is important to underline
that microbiota refers to the taxonomic composition of the microbial community as determined
by metagenetic analysis, while microbiome refers to the entirety of the microbial genetic

material determined by metagenomics (Ursell et al., 2012).
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to better understand ecology and interactions of microorganisms in specific complex
ecosystems. Not only diversity, but also behaviour can be investigated through targeting of
DNA and RNA, respectively. Adopted from Cocollin et al. (2018).

The metagenetic approach includes five main steps: i) sampling; ii) DNA extraction;
i) targeted amplification; iv) sequencing and v) data analysis. A more detailed workflow is
presented in Figure 1.3 (Abdelfattah et al., 2018). Roughly, DNA is extracted from food
samples using various extraction and purification methods. Specific conserved primers are
used for targeted genes amplification which are barcoded with short oligonucleotide tags and
sequencing adapters, so that multiple samples can be pooled and sequenced simultaneously.
Then, target DNA is quantified, sequenced, and finally analyzed using advanced
bioinformatics tools (Zhou et al., 2015).

The sequencing step can be performed on different platforms that have been developed
and are widely used for NGS applications. Since multiple NGS platforms are available in the
market, the decision has to be made depending on the desirable outcome and taking into
account the varying features of platforms such as read length, degree of automation, throughput
per run, data quality, ease in data analysis and cost per run (Kumar et al., 2015). lHlumina®

and Thermo Fisher Scientific® have produced sequencers that are the most commonly used in
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metabarcode sequencing of microbial communities. These are the MiSeq™, NextSeq™ and
HiSeq™ from Illumina® (San Diego, California) and IonTorrent™ and IonProton™ from
Thermo Fisher Scientific® (Waltham, Massachusetts) (Zhou et al., 2015; Abdelfattah et al.,
2018). Illumina platforms are based on sequencing by synthesis method using cyclic reversible
termination (CRT). Thise approach is defined by the terminator molecules in which the ribose
3" OH group is blocked, preventing elongation. To begin the sequencing, DNA template is
primed by a sequence that is complementary to an adapter region, which will initiate
polymerase binding to this double-stranded DNA. For dNTP identification, total internal
reflection fluorescence (TIRF) microscopy using either two or four laser channels is applied,
since each dNTP is bound to a single fluorophore that is specific to that base type. Illumina
CRT system accounts for the largest market share for sequencing instruments compared to
other platforms (Goodwin et al., 2017).

Sampling

Collection of representative samples

Accurate handling to prevent contaminations
Storage:

- 4°Cfor transportation

= -20/-80°C or freeze-drying for long term storage

------------ Molecular work

DNA extraction

Barcode amplification (e.g. 16S, ITS, 185)
Amplicon purification

Adaptor and index ligation

Amplicon purification

Quantification, normalization and pooling
Denaturation

Sequencing

BNV R WN

‘.....‘

I. Generation of OTU table
1. Demultiplexing
. Quality filtering
. OTU picking
. Selection of representative sequences
. Taxonomy assignment
6. OTU table building
Il. Statistical analysis (examples):
= Diversity
* Multivariate analysis
* Multivariate visualization

B W

Figure 1.3. An outline of the metabarcoding approach. Adopted from Abdelfattah et al. (2018).
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The analysis of the mass high throughput sequencing data derived from these platforms
requires advanced bioinformatics tools before the results can be interpreted (Zhou et al., 2015).
The development of various open-source data storage and bioinformatics pipelines such as
QIIME, MOTHUR and Galaxy web server (Schloss et al., 2009; Caporaso et al., 2010; Afgan
et al., 2018) for analyzing community sequence data, has enabled researchers with limited
expertise in bioinformatics to undertake elaborative projects in meta-omics. These pipelines
involve various processing steps for the final generation of an Operational Taxonomic Units
(OTUs) table (Figure 1.4). First, the demultiplexing step assigns reads to each biological
sample according to the barcodes added during the PCR. The quality filtering is a step of great
importance aiming to discard reads with low quality base calls, chimeras and short reads that
could lead to erroneous results. Once the sequences are filtered, they are clustered using
algorithms that rely on the selection of sequences containing similar sequences according to a
pre-selected threshold of similarity. After this process, a representative set of sequences is
generated, where one representative sequence corresponds to each cluster. The representative
OTU sequence is then queried against a set of established databases for taxonomic assignment,
such as RDP for 16S, SILVA for 18S and UNITE for ITS2 (Wang et al., 2007; Quast et al.,
2013; Nilsson et al., 2019), or custom databases. Once the OTUs table is constructed, a wide
range of statistical analyses can be carried out between the samples. Before further analyses,
the OTUs table should be normalized due to variations in the size (number of reads) of each
sample. The main analysis of the OTU data commonly includes the characterization of alpha
and beta diversity, and statistical comparisons between samples with a wide set of multivariate
statistical procedures (e.g. ANOVA) and visualization tools (e.g. Principal Coordinates
Analysis (PCoA), Non-metric multidimensional scaling (NMDS) and heatmaps (Abdelfattah
et al., 2018).

1.2.1.2. Genetic markers

The bacterial 16S and the fungal ITS genes are the most widely used target barcodes
for studying the phylogenetic relationships present into the food-associated communities.
Several studies focus on the selection of specific sub-regions such as hypervariable regions
from V1-V9 in bacteria and ITS1 or ITS2 for fungi for improved characterization results. Both

genetic markers are considered ideal candidates for revealing microbial diversity since they
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consist of conserved regions, which serve as annealing sites for the design of universal PCR
primers. Their extensive utilization has also led to the development of large sequence databases
facilitating the analysis. However, taxonomic methods based on 16S rDNA and ITS profiling
analyses have also important shortcomings (Abdelfattah et al., 2018).

The extremely slow rate of evolution of 16S rDNA gene hinders the resolution of
closely related bacteria into individual phylotypes. Regarding the regions used, the obtained
results may vary widely. Many authors have favoured different hypervariable regions. The
rDNA V1-V3 region has been used in many studies of food microbiota due to the sufficient
discrimination among species of lactic acid bacteria. However, the requirement of short reads
for the recent and more accurate technologies (such as Miseq pair-end sequencing) has shifted
the focus on the rDNA V3-V4 region. This region does not exhibit the same discriminatory
power as the V1-V3 region for identifying species-level diversity and various difficulties in
taxon quantification are encountered. Consequently, 16S rDNA amplicon data are often
analyzed at the genus level only, lacking the power to yield informative answers to food
spoilage and food processing conditions which can be species- or even strain-specific (Cao et
al., 2017; Poirier et al., 2018). Similarly, insufficient genetic variability within the ITS regions
has been also acknowledged. The limited variability present in this barcode gene can make the
discrimination of closely related taxa very difficult, mainly for the phylogenetic studies aimed
at redefining the classification of fungi (Abdelfattah et al., 2018).

The genes that have been proposed instead of /together with 16S include those encoding
23S rRNA, DNA gyrase subunit B (gyrB), RNA polymerase subunit B (rpoB), TU elongation
factor (tuf), DNA recombinase protein (recA), protein synthesis elongation factor-G (fusA),
and dinitrogenase protein subunit D (nifD). Among these, the gyrB gene has a higher rate of
base substitution than 16S rDNA, and shows promising results for community-profiling
applications. This gene encodes the subunit B of DNA gyrase, a type |1 DNA topoisomerase
which catalyses breakage and reformation of double-stranded DNA. It is a single-copy gene
and is sufficiently large in size for use in analysis of microbial communities (Cocolin et al.,
2013; Leo et al., 2013; Poirier et al., 2018). To date, gyrB has been sparingly used in food
microbiota studies with promising results at species-level community characterization (Poirier
et al., 2018, 2020; Manthou et al., 2020; Zagdoun et al., 2020). In the case of fungal

characterization, the translation elongation factor 1-o (TEF1la), topoisomerase | (TOPI),
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phosphoglycerate kinase (PGK) and the RAS-related YPT1 gene have been also proposed as
effective universal fungal DNA barcodes (Abdelfattah et al., 2018).

1.3. Rapid technologies for detection of microbiological spoilage

Microbiological spoilage plays an important role in the limited shelf-life of fresh-cut
commodities, affecting significantly their quality and resulting in remarkably high economic
loss for the fresh-cut industry (Granato et al., 2018; Giannoglou et al., 2020). Therefore, apart
from the development of strategies for the suppression of microbial risks during production
and storage, the establishment of effective and rapid detection methods of food spoilage are of
great importance for the fresh-cut industry (Wang et al., 2018).

Conventional microbiological methods, including culturing and colony-counting
methods as well as biochemical assays are the gold standards in food microbiology. They are
cost-effective, easy to-use, and show limited requirements of specialized instruments
(Ripolles-Avila et al., 2020). Molecular based techniques are also widely used in food
microbiology as more reliable, accurate and rapid tools, even though high-tech instruments
and trained personnel are required. Nevertheless, all these methods are time-consuming
providing retrospective results, and usually destructive to test products, limiting thus their
potential to be used on-, in- or at-line (Nychas et al., 2016).

Compared to the aforementioned methods, spectroscopy and spectral imaging
approaches have become popular and attractive due to minimal sample preparation, non-
destructive sampling, rapid data acquisition, as well as detection during the production line
(Nychas et al., 2016; Efenberger-Szmechtyk et al., 2018) (Figure 1.4). These methods have
been successfully reported in the literature as promising tools for quality, safety and/or
authentication-adulteration assessment of different meat products, such as poultry (Barbin et
al., 2015; Grewal et al., 2015; Spyrelli et al. 2020), pork and beef (Argyri et al., 2013; Oto et
al., 2013; Ropodi et al., 2015; Trinderup et al., 2015; Fengou et al., 2019a), as well as fish (He
& Sun, 2013; Duan et al., 2014; He & Sun, 2015a; Saraiva et al., 2017; Fengou et al., 2019b).
Their application to fruits (Camps & Christen, 2009; Unay et al., 2011; Liu et al., 2015; Al-
Holy et al., 2015; Manthou et al., 2020) and vegetables (Wang et al., 2010; Lgkke et al., 2013;
Sravan-Kumar et al., 2015; Tsakanikas et al., 2018; Bureau et al., 2019) but also olive oil (de
la Mata et al., 2012; Guzman et al., 2015) and dairy products (Nicolaou & Goodacre, 2008;
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Subramanian etal., 2011; Jacquot et al., 2015; Lianou et al., 2019), has also been demonstrated.
The qualitative or quantitative evaluation of microbiological spoilage has been reported mainly
for meat and seafood products, but limited is the scientific work related to the evaluation of

microbiological spoilage of fruits and vegetables.

1.3.1. Spectroscopy and multispectral imaging technologies

The analytical technologies based on vibrational (infrared and Raman) spectroscopy,
fluorescence and ultraviolet-visible spectroscopy, as well as surface chemistry
(hyper/multispectral imaging) have been widely used in food quality assessment (Lohumi et
al., 2015). Recently, the aforementioned technologies have been also utilized for the rapid and
guantitative monitoring of microbiological spoilage. The general principle of these approaches
is that by-products of microbial metabolic activity display different biochemical profiles
resulting in a characteristic sensor fingerprint that could be used for quality evaluation (Ellis
& Goodacre, 2001; Nychas et al., 2008). The technologies applied in the experimental

procedures of the present thesis are described in more detail in the following sub-sections.
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Figure 1.4. Use of non-destructive rapid methods in the food industry. Adopted from Nychas
et al. (2016).
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1.3.1.1. Infrared spectroscopy (IRS)

Infrared (IR) spectroscopy is a technique based on the vibrations of the atoms of a
molecule. The energy at which any peak in an absorption spectrum appears corresponds to the
frequency of a vibration of a part of a sample molecule. The IR region can be subdivided into
near-infrared (12500 to 4000 cm™*), mid-infrared (4000 to 400 cm™) and far-infrared (400 to
33 cm?) regions. Both the near-infrared (NIR) and mid-infrared (MIR) regions can be used for
studying the quality of food products, since the absorption in these spectral ranges can be
related, to a greater or lesser degree, to the main chemical components of foods such as
proteins, carbohydrates, fats and water. They have been also employed for the detection of
microorganisms. Microorganisms have unique chemical components in their cell membrane
and cell wall, which in turn can provide distinct IR absorption spectra (Di Egidio et al., 2009;
Wang et al., 2018).

The MIR region provides information on fundamental frequencies of chemical bonds
in functional groups such as C-C, C—H, O-H, C= O and N-H. A typical MIR spectrum may
be roughly divided in two regions, the functional group region from 4000 to 1500 cm™* and the
fingerprint region from 1500 to 500 cm™. The fingerprint region is normally complex with
many overlapped bands, but it is also specific to the molecular structure of samples (Di Egidio
et al., 2009; Lohumi et al., 2015; Zhang et al., 2018). There are many absorption bands in the
MIR region arising from various functional groups present in water, lipids, proteins,
polysaccharides and nucleic acids. The absorption peaks around 3400 cm™ are primarily from
water. The absorption peaks around 2960, 2929, and 1740 cm™ are from fatty acids, while
peaks around 1650 and 1550 cm™ correspond to amide | and Il vibrations of protein or peptides.
In addition, the peaks between 1200 and 900 cm™ originate from the stretching vibrations of
the phosphate and the vibrations of polysaccharide compounds (Lin et al., 2009).

The NIR region is associated with molecular vibrations, specifically the overtones
(secondary vibrations) and combinations of fundamental vibrations. Chemical bonds between
light atoms, such as O-H, N-H C-H, and S-H have high vibrational frequencies, which result
in overtone and combination bands detectable in this region. These bands are mostly affected
by the formation of hydrogen bonds and can generate a characteristic spectrum, thereby the
fingerprint of the sample for chemical structure monitoring (Lohumi et al., 2015; Wang et al.,
2018).
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1.3.1.2 Ultraviolet-visible spectroscopy and fluorescence spectroscopy

Ultraviolet-visible (UV-VIS) absorption spectroscopy and fluorescence (FLUO)
emission spectroscopy correspond to the same range of wavelengths, but are caused by two
different phenomena. In both cases, the wavelengths used are the near-ultraviolet range (200
to 400 nm) and the visible range (400 to 750 nm). However, UV-VIS measures the absorption
of light in these two regions, while fluorescence measures the light emitted by a sample in this
range after absorbing light at a higher energy than it is emitting.

The phenomenon of UV and visible light absorption is restricted to specific
chromophores and several chemical species with defined molecular functional groups. In
particular, UV-VIS spectroscopy probes electronic excitations of molecules that are typically
related to absorption of photon energies corresponding to the two spectral regions (Power et
al., 2019). On the other hand, some molecules, promoted to an electronically excited state by
absorption of UV or visible radiation, return to their ground state by emission of photons with
an energy different from that absorbed. Therefore, fluorescence is the emission of light by a
fluorophore following the absorption of UV or VIS light. Fluorophores are fluorescent
molecules characterized by conjugated systems of double C=C bonds, aromatic character and
rigid molecular skeletons, and include polyaromatic hydrocarbons, heterocyclic compounds,

and a few highly unsaturated aliphatic compounds (Hassoun et al., 2019; Sikorska et al., 2019).

1.3.1.3 Multispectral imaging

Multispectral imaging (MSI) is a spectral imaging technology based on hyperspectral
imaging (HSI). Both of them integrate both imaging and spectroscopic units into one system
and provide a 3D hypercube containing rich spectral as well as spatial information. The
distinctive difference between these two technologies depend mainly on the number of spectral
bands involved in the hypercube. For HSI, there are more than 100 contiguous and regular
spectral bands, whereas normally 20 non-contiguous and irregularly spectral bands are applied
in the case of MSI. Although MSI systems cannot provide fine details in the spectral signatures
in every image pixel, the instrumental complexity and cost, as well as the data acquisition time,
are significantly lower compared to those of HSI systems (Zhang et al., 2018). Various
instruments have been developed to provide information over the UV, VIS and NIR regions of

the electromagnetic spectrum.
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1.3.2. Data analysis

Despite the advantages of spectroscopy and imaging techniques, mass data are
generated by these analytical technologies posing an extreme challenge for data mining and
processing (Zhou et al., 2019). The multivariate nature of the analytical output is rather
complex and its analysis demands a multi-disciplinary approach. Depending on the type of
sensor and data complexity, the analysis may involve computer vision / image processing,
signal processing, statistical analysis, machine learning and/or other advanced computational
techniques (Jollife & Cadima, 2016; Ropodi et al., 2016; Truong et al., 2019).

In most applications of analytical technologies, the main objective is the creation of a
model that correlates dependent and independent variables and predicts the unknown.
Machine learning approaches provide related information through the development of
classification or regression models using spectral or imaging data for model training and
validation (Nychas et al., 2016; Ropodi et al., 2016). Advances in data science have
introduced a plethora of machine learning approaches applied in tandem with the above
analytical techniques. However, choosing the appropriate machine learning approach based
on the question that should be addressed, is often challenging and involves a comparative

analysis in order to achieve the best possible solution (Estelles-Lopez et al., 2017).

1.3.2.1. Data pre-processing and pre-treatment

Prior to the specific statistical analysis, the data are often subjected to different pre-
processing and pre-treatment steps. According to Goodacre (2007), pre-processing is a generic
term for methods to go from raw instrumental data to clean data for data processing, while pre-
treatment is the transformation of the clean data to make them ready for data processing. All
these steps allow the signal from dissimilar samples to be compared as well as to eliminate
effects of unwanted signals such as fluorescence, scattering effects, detector noise, calibration
errors, cosmic rays, laser power fluctuations, signals from cell media or glass substrate
(Gautam et al., 2015). The selection of the most appropriate method is highly dependent on the
sample, instrumentation technique and purpose of analysis. The most widely used pre-
processing and/or pre-treatment methods in spectroscopy data are normalization,

standardization, multiplicative scatter correction (MSC), standard normal variate (SNV),
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Savitzky-Golay algorithm and Savitzky-Golay polynomial derivative filters (Rinnan et al.,
2009; Gautam et al., 2015; Roberts & Cozzolino, 2016).

1.3.2.2. Dimensionality reduction

Spectroscopy techniques have the capability to generate very large amounts of data. The
simplest decision is to include all of the available features in further data analysis reducing the
possibility to lose any important information. On the other hand, the irrelevant variables may
negatively influence the estimation/predictive performance of the developed statistical models.
Moreover, machine learning suffers from the phenomenon of dimensionality, which is related
to the existence of many variables and few samples. In particular, learning a model in high
dimensions is more difficult than learning a model in lower dimensional spaces. As a result,
some machine learning methods perform multivariate dimension reduction as a part of the
learning process (Mehmood et al., 2012; Torrione et al., 2014).

The data reduction approaches may be performed through projection methods, variable
selection or a combination of both. A wide range of statistical techniques have been applied
in research studies including principal components analysis (PCA) and partial least squares
(PLS), as the most popular in spectroscopy data, as well as the most recently introduced
random forests (RFs) (Torrione et al., 2014; Hu et al., 2018; Tsakanikas et al., 2018, 2020).
However, it should be emphasized that variable selection may also eliminate some useful
redundancy from the model, and using a small number of variables for prediction means large

influence of each variable in the final model (Mehmood et al., 2012).

1.3.2.3. Machine learning algorithms and model development

Machine learning methods can be divided into: supervised and unsupervised pattern
recognition. Unsupervised pattern recognition reveals clusters according to the sample
similarity without prior knowledge and assumptions. Among the unsupervised methods,
hierarchical cluster analysis (HCA) and PCA have been extensively used in food applications
(Argyri et al., 2014). In supervised pattern recognition, the developed model is trained using
an input learning subset, in order to unravel hidden patterns within the data and predict a target
variable or class. The prediction can be either a nominal value (classification model) or a

numeric value (regression model). These techniques include partial least squares regression
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(PLSR), partial least squares discriminant analysis (PLSDA), k—nearest neighbour (KNN) and
support vector machines (SVM) algorithms (Efenberger-Szmechtyk et al., 2018). A more
detailed description of supervised pattern recognition methods is provided below.

The PLS/PLSDA methods belong to linear regression methods that are extensively
used in food applications, since they are relatively easy to apply. The PLSR method projects
both observed and predicted values in a feature space and a linear regression model is
established. It can be also used for classification purposes when coupled with linear
discriminant analysis (LDA) (Barker & Rayens, 2003). The PLSR and PLSDA methods are
appropriate for spectroscopic data, since they can deal with high data dimensionality (where
the generated data contain many variables and insufficient number of samples) as well as with
strong collinearity and noise (Wold et al., 2001; Mehmood et al., 2012).

The KNN is a simple method that does not use any type of distribution assumption and
can be used for a small number of samples. This method can be used for classification of
categorical data variables and regression for continuous variables (Silverman & Jones, 1989;
Granato et al., 2018). In particular, it uses a similarity measure for comparing the testing data
with training data. For prediction of output variables, it chooses k data points from the training
dataset that are close to the testing dataset. Therefore, this method does not build a model or a
function, but yields the closest k records of the training dataset that are the most similar to the
points that are to be categorized or predicted (Al-Dosary et al., 2019).

The SVM is an effective machine learning technique suitable for both classification and
regression problems. This method is based on mapping data into a high-dimensional space that
allows for the separation of two groups of samples into distinctive regions using a kernel
function, in order to construct a maximal separating hyper-plane (Cortes & Vapnik, 1995).
This separation is achieved by identifying only a small fraction of the samples, referred to as
‘support vectors’, between which the separating hyper-plane is identified (Gromski et al.,
2018). There are various choices for the kernel functions applied, including linear, polynomial,
sigmoid and radial basis function (Ropodi et al., 2016).

The REs method generates many decision trees (classification and regression trees,
CART), each of which is constructed using different sets of randomly selected input (X)
variables (Breiman, 2001). The trees are created by drawing a subset of training samples

through replacement (bootstrapping). This means that the same sample can be selected several
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times, while others may not be selected at all. The data are segmented in a series of training
sets, which on average include 63.2% of all samples, and a series of test sets, which includes
the remaining 36.8% samples. The training datasets are used to construct the trees whereas the
test sets are used to estimate model performance (Belgiu & Dragut, 2016; Gromski et al.,
2018). Recently, a fast version of RFs, namely Ranger, has been introduced and is appropriate
for high dimensional data (Wright & Ziegler, 2017).

1.3.2.4. Model validation

After the calibration model has been developed, validation is an integral part of the
process in order to test the predictive ability of the model developed. The model capability to
predict unknown samples must be demonstrated using an independent set of samples. It is
generally agreed that the independent sets of samples should be sourced from other
experiments, batches or conditions. Model validation in its simplest form involves splitting the
data into training and test sets. The training data are used to build one or more possible models
and the independent test data are used to measure the generalization / predictive performance
of the model. The data partitioning may be performed empirically or through different methods
or algorithms such as PCA, Bayesian, Kennard—Stone algorithms and random sampling.

Internal validation (cross-validation) is used to optimize meta-parameters (e.g., number
of latent variables in PLS), but it is not a replacement for external model validation. There are
several methods in which the training and cross-validation sets are initially combined and then
subsequently partitioned into temporary training/cross-validation datasets, including
bootstrapping, leave-one-out (LOOCV), K-fold cross-validation (Goodacre et al., 2009;
Roberts & Cozzolino, 2016; Truong et al., 2019).

1.3.2.5. Model performance

Numerous statistics have been described to interpret the results obtained during model
development. In the case of regression models, mainly the root mean squared error (RMSE),
but also the standard error of prediction (SEP) or the residual predictive deviation (RPD) value
are used as performance indices and provide an estimation of the average uncertainty that can
be expected for predictions of future samples. Another commonly used statistic is the

coefficient of determination (R?), which represents the proportion of explained variance of the
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response variable in either the training or test sets (Truong et al., 2019). Additionally, the
correlation coefficient (r), slope and offset of the linear regression between the predicted and
actual (measured) dependent variables are also used for evaluating the ability of a calibration
model to predict new samples (Papadopoulou et al., 2011; Tsakanikas et al., 2018). In the case
of classification, the values of specificity, sensitivity, precision and accuracy are indicative of

the model performance (Ropodi et al., 2016).

1.4. Objectives of the thesis

The present thesis consists of two main sections, Section A and Section B. The former
includes the Chapters 2, 3 and concerns the metagenetic characterization of the microbial
communities associated with the spoilage of fresh-cut produce commodities during their
storage under different temperature conditions. The latter section includes the Chapters 4, 5
and 6 concerning the assessment of the microbiological quality of fresh-cut produce through
rapid, non-invasive spectroscopy-based technologies coupled with machine learning.

In Chapter 2, the fungal and bacterial communities associated with the spoilage of
RTE pineapple were characterized through the metagenetic sequencing of the ITS2 and gyrB
genetic regions, respectively. Moreover, the variability of RTE pineapple’s spoilage
microbiota as affected by temperature during storage was also assessed.

Chapter 3 describes the bacterial communities related to RTE baby spinach and rocket
spoilage. Additionally, the changes occurring in their composition and diversity during storage
at different temperatures was also evaluated. The bacterial characterization was performed
through the metagenetic amplicon approach based on gyrB sequencing.

The objective of Chapter 4 is the assessment of the microbiological as well as the
sensorial quality of RTE pineapple through the application of spectroscopy and multispectral
imaging technologies (sensors). The applied analytical technologies (FTIR, NIR, FLUO, VIS
and MSI) were coupled with different machine learning algorithms (linear and non-linear).
The suitability of the different algorithm-analytical technology combinations were
comparatively evaluated. Additionally, the capabilities and the limitations provided by two

commercially statistical data analytics tools were also explored.
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In Chapter 5, spectroscopy-based sensors (FTIR, VIS, NIR and MSI) were used for the
assessment of the microbiological quality of RTE rocket and baby spinach salads stored under
passive and active MAP conditions. For model development, different machine learning
algorithms (PLSR and SVR) and two distinct data partitioning approaches were performed.
The applicability of the different sensors and machine learning approaches were compared for
the purpose of choosing the optimum combination in terms of model performance.

Chapter 6 concerns the evaluation of the microbiological spoilage of fresh oyster
mushrooms (Pleurotus ostreatus) using spectroscopy-based sensors. Two analytical
technologies (FTIR and MSI) were applied and PLSR algorithm was utilized for model
development.

Chapter 7 concludes the present thesis, providing a compilation and discussion of its

main findings as well as future research perspectives.
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SECTION A

Metagenetic characterization of microbial
communities associated with fresh-cut
produce spoilage
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Chapter 2

Metagenetic characterization of microbial communities
associated with ready-to-eat pineapple during storage under
different temperature conditions

Part of this chapter is published in Food Microbiology 97 (2021) 103736 (Appendix 1)
‘Evolution of fungal community associated with ready-to-eat pineapple during storage
under different temperature conditions’.

Evanthia Manthou, Gwendoline Coeuret, Stephane Chaillou, George-John E. Nychas
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Chapter 2
Abstract

The international market of fresh-cut produce commodities has witnessed dramatic
growth in recent years, stimulated by consumer’s demand for healthy, nutritious and
convenient foods. One of the main challenging issues for the quality of these products is the
potential microbiological spoilage that can significantly reduce their shelf-life. The complete
identification of the microbiota of fresh-cut produce commodities together with the evaluation
of environmental factors’ impact on microbial composition is of primary importance.
Therefore, the fungal and bacterial communities associated with the spoilage of ready-to-eat
(RTE) pineapple were characterized using a metagenetic amplicon sequencing approach, based
on the ITS2 and gyrB regions, respectively. The results revealed a significant variability in
fungal species composition among different batches of RTE pineapple. The initial microbiota
composition was the main influential factor and determined the progress of spoilage.
Temperature and storage time were the secondary factors influencing spoilage, with their
impact depending on the initial prevalent fungal species. Contrarily, both temperature and
batch factors did not significantly influence the bacterial pineapple communities. The results
strongly suggest that further large-scale sampling of RTE pineapple production should be
conducted in order to assess the full biodiversity range of fungal community involved in the
spoilage process and for unravelling the impact of important environmental factors on the

initial microbiota.
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2.1. Introduction

Fresh-cut market has grown dramatically in recent years, as a result of changes on
consumers’ attitude. Ready-to-eat (RTE) fruits and vegetables fulfil the growing demand for
healthy, convenient and minimally processed food products (Gorni et al., 2015; Qadri et al.,
2015). However, the quality and safety assurance of these new types of fresh products is a
major challenge for the fresh-cut industry and requires full involvement and increasing
investigations of food scientists (Padron-Mederos et al., 2020).

Fresh-cut fruit and vegetable products have a limited shelf-life due to accelerated
physiological and biochemical changes occurring during their processing and storage (Di
Egidio et al., 2009; Torri et al., 2010; Zhang et al., 2014). Indeed, processing treatments render
such products prone to both spoilage and pathogenic microorganisms (Leff & Fierer, 2013;
Qadri et al., 2015). Various studies underline the presence of phytopathogens and human
pathogens, but also microorganisms with antagonistic properties against these pathogens,
which have a significant influence on human health and products’ quality (Gorni et al., 2015).
Therefore, a better insight into the microbial community and its potential interactions in food-
associated matrices is required to provide safe and high-quality food (Juste et al., 2008; Cao et
al., 2017).

So far culture-dependent methods have been the gold standards in food microbiology,
since they have led to the description of a number of habitats. However, they are extremely
biased in their ability to unravel the microbial communities of complex matrices associated
with food or environmental samples (Juste et al., 2008; Ercolini et al., 2013; Zhou et al., 2015;
Edet et al., 2017). On the other hand, the development of next generation sequencing (NGS)
techniques has enabled researchers to study food microbial ecology from broader and deeper
perspectives. Recently, metagenetic and metagenomic approaches have resulted in improved
understanding of food microbiota by providing a species- and strain-level characterization
(Abdelfattah et al., 2016; Abdelfattah et al., 2018; Poirier et al., 2018; Cauchie et al., 2020).
Most NGS food microbiota studies have focused on fermented foods of different origins and,
to a lower extent, on fresh meat and seafood products. On the other hand, NGS microbiota
studies concerning fruits and vegetables are limited and mainly focus on epiphytic microbial

communities (Lopez-Velasco et al., 2010; Rastogi et al., 2012; Jackson et al., 2013; Dees et
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al., 2014; Abdelfattah et al., 2016; Sodergvist et al., 2017; Saminathan et al., 2018; Angeli et
al., 2019; Tatsika et al., 2019; EFSA, 2020).

Pineapple (Ananas comosus) is one of the most popular tropical fruit worldwide and it
is commonly found in the fresh-cut market. However, little has been reported about the
associated microbial community and its response to various environmental factors (Montero-
Calderon et al., 2008; Di Cagno et al., 2010; Dos Santos Souza et al., 2019). According to the
limited studies based on the pineapple diversity, fungi have the leading role in fresh-cut
pineapple’s spoilage. The fungal species, even the prevalent ones, reported in pineapple differ
among various studies (Tournas et al., 2006; Di Cagno et al., 2010; Chanprasartsuk et al., 2010;
Leneveu-Jevrin et al., 2020). Interestingly, the existing literature is based on earlier generation
molecular methods combined largely with culture-dependent and recently with culture-
independent techniques.

In the present study, a metagenetic amplicon sequencing approach, based on the 1TS2
region, was used with the objective to assess the fungal communities associated with the
spoilage of RTE pineapple. Additionally, characterization of bacterial communities in
pineapple was also performed using gyrB amplicon sequencing. To our knowledge,
metagenetic analysis has never been applied to pineapple’s microbiota. Therefore, this work
sheds light on the variability of RTE pineapple’s spoilage microbiota and on how it is changing

during the product’s shelf-life under the influence of storage temperature.

2.2. Materials and Methods

2.2.1. Sample preparation and storage conditions

Four batches of fresh-cut pineapple were supplied by a local manufacturer in Athens.
The pineapple was packed in PVC trays containing 220 g of fruit. The trays were transported
to the laboratory within 24 hours from their production and stored at three different constant
temperatures, namely 4, 8 and 12 °C, and under dynamic temperature conditions (8 h at 4 °C,
8 hat8°Cand8h at 12 °C) in high precision (x0.5) programmable incubators (MIR-153,
Sanyo Electric Co., Osaka, Japan). The incubation temperature was recorded every 15 minutes
using electronic temperature devices (COX TRACER®, Cox Technologies Inc., Belmont, NC,

USA). The first sampling was conducted at the time of the product’s arrival to the laboratory
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and also at 38 , 72 , 134 and 230 h of storage at 4, 8 °C and at the dynamic temperature

conditions, while with regard to storage at 12 °C, the final sampling point was 134 h.

2.2.2. Microbiological analysis and pH measurements

The samples (25 g of pineapple) were aseptically transferred into a sterile Stomacher
bag (Seward Medical, London, UK), diluted with 225 ml of Ringer buffer solution (Lab M
Limited, Lanchashire, UK) and homogenized for 60 sec in a stomacher device (Lab Blender
400, Seward Medical). The appropriate serial decimal dilutions were prepared and the
following microbial determinations were performed: total mesophilic microbial populations
(total viable count, TVC) by the spread method on tryptic glycose yeast agar (Plate Count
Agar, Biolife, Milan, Italy), after incubation of plates at 25°C for 72 h; yeast and moulds by
the spread method on Rose Bengal Chloramphenicol agar (RBC, Lab M Limited) and
incubation at 25°C for 3-5 days. The results were expressed as the average (+ standard
deviation, n=4) log colony forming units per gram (log CFU/qg) of the four pineapple batches.

The pH values of fruit samples were measured with a digital pH meter (RL150, Russell

pH Cork, Ireland) with a glass electrode (Metrohm AG, Herisau, Switzerland).

2.2.3. DNA extraction of the microbiota recovered from plates

After the enumeration of the microbial populations, appropriate countable RBC plates
were selected. All the colonies present on the surface of each plate were suspended in 2 ml
aliquots of quarter-strength Ringer’s solution (Lab M Limited), transferred with a sterile
pipette in a 2-ml vial, and stored by freezing at -80°C after addition of sterile glycerol (50%
vIv).

Microbial DNA was extracted as previously described by Hoffman and Winston (1987)
with slight modifications. Briefly, 0.3 ml of lysis solution and 0.3 ml of phenol/chloroform
were added in the microbial pellets obtained after centrifugation (for the removal of glycerol).
The solution was transferred in tubes with 0.3 g of glass beads which were then vortexed for 4
min. The tubes were centrifuged for 2 min at 13,000 rpm (at room temperature) and the
supernatant was carefully transferred in 1.5-ml tubes. Absolute ethanol was added in 800 pl
portions in each tube, and the tubes were centrifuged at the same conditions. After

centrifugation, 1 ml aliquots of 70% ethanol were added in each tube, the tubes were
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centrifuged once more, and the supernatants were discarded. The DNA was resuspended in
100 ul of TE buffer solution and stored overnight at 4 °C. Before further analysis, 1 ul of RNase
was added and the DNA was incubated for 15 min at 37 °C.

2.2.4. DNA extraction of the pineapple microbiota

Ten grams of each pineapple sample were homogenized with 20 ml of Ringer’s solution
(Lab M Limited) in filter Stomacher bag (Interscience, St-Nom, France) in a stomacher device
as described previously. Then, 20 ml of the homogenate were collected in 50-ml Falcon tubes
(SARSTEDT AG & Co. KG, Germany) and centrifuged (Heraeus Multifuge 1S-R, Thermo
Electron Co., US) at 8000 x g for 20 min at 4 °C. The supernatant was discarded, the microbial
pellet was washed with 20 ml of distilled-dionized water and centrifuged (Heraeus Fresco 21,
Thermo Scientific, US) once more at the same conditions. The cells were resuspended in 1.7
ml of sterile ultrapure water, transferred in 2-ml eppendorfs (SARSTEDT AG & Co. KG), and
centrifuged at 17000 x g for 10 min at 4 °C. The supernatant was discarded and the microbial
cells were stored at -80°C. Fungal DNA was extracted according to the protocol described
above for plates, while bacterial DNA was extracted with the DNeasy PowerSoil Kit (Qiagen,

Hilden, USA) according to manufacturer’s instructions.

2.2.5. Barcoding PCRs and Illumina Miseq PCR
2.2.5.1. ITS2

Amplicon libraries were constructed following two rounds of PCR amplification. The
first amplification of the ITS2 rRNA gene was performed with the primers ITS3 (5°-
GCATCGATGAAGAACGCAGC-3’) and ITS4 (5’-TCCTCCGCTTWTTGWTWTGC- 3°).
The final primer concentration used was 10 uM. Forward and reverse primers carried the
llumina 5’>-CTTTCCCTACACGACGCTCTTCCGATCT-3’ and the 5’-GGAGTTCAGACG
TGTGCTCTTCCGATCT-3’ tails, respectively. The first round of PCRs was performed with
the high-fidelity AccuPrime Taq DNA polymerase system (Invitrogen, Carlsbad, USA) and 5
uL of microbial DNA. The cycling conditions were: 94°C for 1 min, followed by 30 cycles of
amplification at 94°C (60 sec), 55°C (60 sec), and 72°C (60 sec), with a final extension step of
10 min at 72°C. The amplicon size, quality, and quantity of the amplified DNA were checked
on a DNA1000 chip (Agilent Technologies, Paris, France). Then, the second Miseq PCR and
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the Miseq sequencing was conducted with V3 illumina MiSeq kit as described in Poirier et al.
(2018). Raw read sequences were deposited at the Sequence Read Archive under the
Bioproject number PRJINA665125 and the accession numbers SAMN16242305 to
SAMN16242366.

2.2.5.2.gyrB

Two rounds of PCR amplification took place for the construction of amplicon libraries. The
first amplification of the 250 bp region of gyrB was performed with the primers F64 (5°-
MGNCCNGSN ATGTAYATHGG -3”) and R353 (5>~ ACNCCRTGNARDCCDYCNGA- 3%).
Forward and reverse primers carried the [llumina 5’-CTTTCCCTACACGACGCTCTTCCG
ATCT-3" and the 5’-GGAGTTCAGACGTGTGCTCTTCCGATCT-3’ tails, respectively. The
first round of PCR was performed again with the high-fidelity AccuPrime Tag DNA
polymerase system (Invitrogen, Carlsbad, USA), 20 uM final primer concentration and 5 uL
of microbial DNA. Amplification of gyrB was performed with the following cycling
conditions: 94 °C for 2 min, followed by 35 cycles of amplification at 94 °C (30 sec), 55 °C
(60 sec), and 68 °C (90 sec), with a final extension step of 10 min at 68 °C. The amplicon size,
quality, and quantity of the amplified DNA were checked on a DNA100O chip (Agilent
Technologies, Paris, France). For each pineapple batch, the amplified DNA samples derived
from the different storage times (38, 72, 134, 230 h) were pooled together in terms of
temperature and were further analysed together with the initial bacterial communities (0 hour).
The samples derived from dynamic temperature conditions were not sequenced. The second

Miseq PCR and the Miseq sequencing were conducted as described in Poirier et al. (2018).

2.2.6. Quality filtering of reads and taxonomic assignment of Operational
Taxonomic Units (OTU)

Raw sequencing reads were imported into the FROGS (Find Rapidly OTUs with Galaxy
Solution) pipeline (Escudie et al., 2017) for quality control and assembly into OTU. Roughly,
the pipeline was as follows: quality-filtered ITS2 and gyrB paired-end sequences were merged
into contigs with VSEARCH v2.15.0 (Rognes et al., 2016) using 0.1 mismatch rate in the
overlapped region. Only amplicons with size above 150 bp but no longer than 500 bp and 350

bp were kept for fungi and bacteria, respectively. Merged amplicon sequences were
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dereplicated and clustered using SWARM v3.0.0 algorithm (Mahe et al., 2015) with a distance
threshold of 3. Chimeras were removed with VSEARCH v2.15.0. The resulting sequences
were filtered for spurious OTUs by keeping only those with at least 0.01% of relative
abundance within the whole dataset (Auer et al., 2017). Taxonomic assignment of OTUs was
performed using the UNITE 6.1 ITS2 for fungi, the gyrB_03 2019 for bacteria as reference

databases (Nilsson et al., 2019 https://unite.ut.ee/), as well as the Blastn+ algorithm (Camacho
et al., 2009).

2.2.7. Analysis of alpha and beta diversity
Fungal diversity was analysed using the R package Phyloseq (McMurdie & Holmes,
2013). OTU abundance was normalized using the median sequencing depth of all samples.

Analyses of alpha and beta diversity were carried out using standard or custom Phyloseq
command lines.

2.3. Results

2.3.1. Growth of dominant fungal microbiota is temperature dependent
A comparative analysis of TVC and fungal counts on four independent pineapple

batches revealed that fungi and mostly yeasts are the main component of the cultivable
microbiota over storage (Figure 2.1).
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Figure 2.1. Total viable counts (TVC) (A) and fungal populations (B) in ready-to-eat pineapple
during storage at 4 °C (e), 8 °C (m), 12 °C (® ), and dynamic temperature conditions (A ). The

microbial populations are expressed as means + standard deviations (n=4).

The yeast populations almost coincide with those of total mesophiles throughout storage
and for all the studied temperatures. As expected, the growth of the fungal population was
faster at the highest temperatures. The initial level of fungi (mean + standard deviation, n=4)
was 4.69 + 0.65 log CFU/g, and reached a final average level of 7.36 + 0.44 and 7.41 + 0.72
log CFU/g at 8 and 12 °C, respectively. Storage at 4 °C revealed more stringent than the three
other temperature conditions on growth. In this case, the fungal population reached only 6.11
+ 0.99 log CFU/g after 230 h. The microbial growth monitored during dynamic temperature
conditions resembled that recorded at 8 °C. As far as the pH is concerned, no considerable
differences in pH measurements were found among the different temperatures and during
storage (Table 2.1).

Table 2.1. The initial and final pH values of ready-to-eat pineapple during storage at 4, 8, 12

°C and dynamic temperature conditions.

pH
Storage - Final
Initial value
temperature values
4°C 3.60 £ 0.07
8°C 3.56 + 0.06
3.32+0.25
12°C 3.66 + 0.06
Dynamic 3.64+0.11

2.3.2. Fungal OTU richness and alpha-diversity is different among pineapple
samples and cultivation media.

Pineapple and plates samples were sequenced at an average of 45.067 £22.083 reads.
The rarefraction curves (Figure 2.2) performed on quality-filtered reads indicated that

sequencing depth was sufficient for all the samples tested in order to assess the OTU richness
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present in pineapple and plates. Subsequently, it was investigated whether cultivation methods
were underestimating the level of fungal population during storage. The fungal diversity by
ITS2 amplicon sequencing between DNA extracted directly from pineapple samples and from
the fungal population that grew on agar plates was compared. As shown in Table 2.2 and also
indicated by Figure 2.3, the fungal OTU richness was significantly (p<0.01) lower on plates.

Pineapple Plates

40

30

20

Species Richness

0 10000 20000 30000 0 10000 20000 30000
Sample Size

Figure 2.2. Rarefaction curves obtained from ITS2 amplicon sequencing of the pineapple and
plate samples communities. The x-axis represents the sequencing depth in number of reads,

while the y-axis represents an estimation of the OTU richness detected.

Moreover, Figure 2.3 shows how the 33 fungal species detected by non-cultural
metagenetic analysis could be detected and quantified from the microbiota recovered from agar
plates. In general, the detection of most species from the Basidiomycota phylum was
unsuccessful in comparison to species from the Ascomycota phylum. In addition, detection of

Fusarium species was also strongly biased on plates, in particular Fusarium circinatum was
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highly abundant in pineapple samples compared to plates. Therefore, to avoid any bias in our

analysis, only data from pineapple samples were used further.

Table 2.2. Fungal OTU richness (merged at different taxonomic levels) among pineapple

samples and agar plate samples.

Number of genera  Number of species =~ Number of OTUs

Pineapple samples 22 33 47
Plate samples 18 25 39
Pineapple Plate
samples samples
Rhodotorula glutinis 7
Sporidiobolacege wmmmmmmmmmm— Sporobo.l'qmyces salmoneus
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Yarrowia keelungensis
Candida sake [ 2
Wickerhamomyces anomalus §
Wickerhamiella spandovensis . E
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Figure 2.3. Heatmap showing the comparison among fungal species’ relative abundances

detected by non-cultural methods (pineapple samples) and by cultural methods (plate samples).
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Each column shows the average relative abundance of the 33 species after merging of the
various samples from the four pineapple batches and for the different storage temperatures.
Main fungal families and phyla are depicted by bracklets.
2.3.3. Effect of temperature and time of storage on fungal diversity

The effect of different temperatures and storage times was analysed on fungal richness
after merging OTUs at species-level (Figure 2.4). The species’ richness was significantly
(p<0.01) higher in pineapple samples stored at 4 °C. The samples stored at dynamic conditions
and 8 °C followed, while the samples stored at the highest temperature (12 °C) had the lowest
number of species. The fungal richness was also comparable for the different storage times
(p<0.01). At the beginning of the storage (time-zero), the diversity was higher compared to all
the other storage times. Although the species richness decreased over time, the species’ number
at 230 h did not follow the same declining course. This observation is not unexpected, since
the samples at 230 h came exclusively from storage at 4 °C. The corresponding samples (at

230 h) stored at 8 °C and dynamic conditions were not successfully sequenced.

301 301

25 ‘ Q 251
= =

: » ; = B

[} ] — StorageTime
s 1 Temperature < i b

Z A4 2 e

g . F3 c_12 g L; D_134

(& Dynamic &) . o

] | | e |

20 —— J 204 .

a =3

< <

60



Figure 2.4. Fungal richness in ready-to-eat pineapple samples. The box plot shows the number
of species in samples of different temperatures (A) and time (B) of storage. The boxes represent
the interquartile range between the first and third quartiles and the vertical line inside the boxes
is the median obtained from the samples analysed per condition. Note: The storage time of 230
h corresponds exclusively to samples stored at 4 °C, since the corresponding samples (at 230

h) stored at 8 °C and dynamic conditions were not successfully sequenced.

Non-Metric Multidimensional Scaling (NMDS) on Bray-Curtis distances were also
performed to statistically compare the fungal diversity within the samples of different
temperature and time of storage. In all cases, communities recovered from a given temperature
or storage time did not cluster together on the factorial plane (data not shown). On the other

hand, there was a discrete clustering among samples of the different batches of pineapple,
presented in Figure 2.5.
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Figure 2.5. Non-Metric Multidimensional Scaling (NMDS) based on Bray-Curtis distances

among fungal communities of the four ready-to-eat pineapple batches. The points represent
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the fungal communities of the various samples, while the lines represent the rank orders
(distances) among them. P1, P2, P3 and P4 correspond to batch 1, batch 2, batch 3 and batch
4,

The fungal diversity of most of the samples from batch P1 and P2 was distinct of that of batches
P3 and P4 together. The differences on fungal diversity among the four batches are presented
in Figure 2.6, where the composition plot of relative abundances is illustrated according to
Bray-Curtis hierarchical clustering of pineapple samples. A phylogenetic tree of the different
fungal species based on the ITS2 sequences is illustrated in Figure 2.7. Pineapple samples
from batches P3 and P4 had a quite similar fungal community dominated by two
phylogenetically related species, namely Candida argentea and C. sake from the family
Saccharomycetales_incertae_sedis. Most samples from batch P4 can be distinguished from
those of batch P3 with the presence of Hanseniaspora uvarum, which is also closely related
phylogenetically to the aforementioned Candida. Pineapple samples from batches P1 and P2
displayed a set of completely different fungal communities dominated by species from the
phylogenetically related Nectriaceae (Fusarium) and Metschnikowiaceae (Clavispora/
Candida) families. Candida intermedia and Fusarium circinatum were the most abundant
species in samples of batch P2, whereas some samples from batch P1 showed higher level of
diversity with  Pichia fermentans (Pichiaceae) and Meyerozyma caribbica
(Debaryomecytaceae).

At batch level, the effect of storage time and temperature varied across the different
fungal species. Interestingly, the initial composition of pineapple microbiota had a great impact
on the evolution of spoilage at different temperatures and storage time. Therefore, situations
varied from one batch to another. Starting with batch P1 (Figure 2.8), it was observed that both
temperature and storage time drove a strong change on the fungal community composition.
Temperature was the most influential parameter separating samples stored at 4 °C from those
stored at 12 °C with, in both cases, a gradual change over longer storage time. Samples stored
at the intermediate temperature of 8 °C, clustered at intermediate positions between samples
stored at 4 °C and 12 °C. Only samples stored at dynamic temperature conditions scattered
randomly with no logical order. Among the most striking changes, it was observed that F.

circinatum had high abundance (>75%) at time-zero of storage, while following the next stages
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of storage C. intermedia or P. fermentans finally dominated depending on the temperature.
Specifically, C. intermedia succeeded to dominate in samples stored at 12 and 8 °C from the
early stages of storage, while P. fermentans in samples stored at 4 °C at the final stages (134
and 230 h). On the other hand, M. carribica was able to dominate only at the middle of storage
(72 h) for 8 °C and dynamic conditions. Concerning batch P2 (Figure 2.9), a trend similar to
that observed in batch P1 was observed with, at time-zero, a large dominance of F. circinatum
which was progressively replaced by C. intermedia at high storage temperatures and by C.
argentea at 4 °C. As shown in Figures 2.10 and 2.11, the fungal communities from samples of
batches P3 and P4 were not affected significantly by temperature and storage time. Unlike
pineapple samples from batches P1 and P2, the fungal community of batch P3 was covered by
the great dominance of C. argentea throughout storage at all studied temperatures. C. sake,
which was the second most abundant species for the most of the samples, was not specifically
affected by temperature or time in P3. However, in the case of samples from batch P4, a slight
impact of temperature and storage time on H. uvarum and C. argentea was noticed. Although
there is no information for the initial composition (due to unsuccessful sequencing of 0-h
sample), H. uvarum prevailed at 8 and 12 °C in the middle of storage (72 and 134 h), while the
latter prevailed at 4 °C for the two storage times and at 12 °C and dynamic conditions at the
early stages of storage (38 h). C. sake became more abundant during storage at dynamic

conditions and finally prevailed at 134 h.
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Figure 2.6. Composition plot showing the relative abundances of the nine main Ascomycota species found in ready-to-eat pineapple

samples. On the top: hierarchical clustering of batches samples according to Bray-Curtis distance and ward algorithm (blue for P1,

red for P2, yellow for P3 and green for P4 as shown in Figure 2.5.
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Figure 2.7. Neighbour-Joining phylogenetic tree of the different species based on the ITS2 sequences of ready-to-eat pineapple

samples. Bootstrap values are indicated on the main nodes.
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Figure 2.8. Impact of storage time and temperature on fungal species composition of ready-
to-eat pineapple samples from batch P1. Samples are ordered from left to right according to
Bray-Curtis distance. The asterisk (0 h) indicates the initial analysis before packaging and

storage at any other conditions.
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Bray-Curtis distance. The asterisk (0 h) indicates the initial analysis before packaging and

storage at any other conditions.
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Figure 2.11. Impact of storage time and temperature on fungal species composition of ready-
to-eat pineapple samples from batch P4. Samples are ordered from left to right according to

Bray-Curtis distance.

2.3.4. Bacterial diversity and the effect of temperature

As far as the bacteria are concerned, results derived from preliminary microbiological
analysis indicated that Pseudomonas spp. and bacteria of the Enterobacteriaceae family were
often below the detection limit or not more than 2 log CFU/g throughout storage at all the
studied temperatures (data not shown). However, Pseudomonas colonies grown on agar
plates were not macroscopically the typical ones (not shiny but dehydrated colonies), even
though the results from the oxidase, catalase and Gram stain tests for some of them that were
randomly selected and tested, were often the expected ones. Moreover, the population of
lactic acid bacteria (LAB) was not easily detectable with common microbiological analyses

due to the dominance of yeasts in the MRS medium (even when cycloheximide was added to
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the medium). With regard to the above difficulties and the bias of conventional
microbiological methods, this observation led to the investigation of the bacterial pineapple
microbiota.

The rarefraction curves (Figure 2.12) performed on quality-filtered gyrB reads indicated
that sequencing depth was sufficient for all samples tested. In total, 158 OTUs were detected
at the species taxonomic resolution. As it was previously mentioned, the bacterial samples of
each pineapple batch have been pooled according to temperature, since it was initially
hypothesized that temperature could possibly have a significant impact on microbial
communities and also the subdominant bacterial populations would not considerably change
during storage. The 0-h samples represent the initial community composition for each batch.
Not surprisingly, the species richness and diversity of pooled samples was significantly
(p<0.05) higher than samples derived from 0 h (data not shown).

The effect of the different temperatures on bacterial diversity was investigated after
merging OTUs at species-level. The species’ diversity was not significantly influenced by the
temperature in terms of both richness and evenness. Indeed, the communities recovered from
a given temperature did not cluster together using NMDS on Bray-Curtis and Unifrac
distances. Similarly, there were no significant differences among samples of the different

batches of pineapple (data not shown).
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Figure 2.12. Rarefaction curves obtained from gyrB amplicon sequencing of the ready-to-eat
pineapple communities. The x-axis represents the sequencing depth in number of reads while

the y-axis represents an estimation of the OTU richness detected.

According to the composition plot (Figure 5.13), Pseudomonas was the most prevalent
genus in pineapple bacterial microbiota. Among the Pseudomonas species, Pseudomonas
viridiflava was the most abundant for all the samples. In some cases, this species showed the
highest relative abundance among the 19 bacterial species illustrated in Figure 2.13. Members
of the Enterobacteriaceae family as well as LAB also were present. Few samples derived from
different batches and temperatures showed higher abundances of Lecleria adecarboxylata,
Lelliottia amnigena, Citrobacter freundii and Pectobacterium carotovorum (belonging to the
Enterobacteriaceae family) compared to the others. The same samples had also higher

abundance of the lactic acid bacterium, Lactococcus piscium.
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Figure 2.13 Composition plot showing the relative abundances of the 19 main bacterial species
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2.4. Discussion

The aim of the present study was to characterize the microbial community involved in
the spoilage of RTE pineapple and determine the changes of the diversity when stored under
different temperatures, using a metagenetic approach. The results demonstrated that fungi and
mainly yeasts were the predominant spoilage microorganisms found in RTE pineapple. Not
surprisingly, the high yeast population is likely attributed to the high level of sugars and the
low pH of pineapple, which is ideal for their growth (Maciel et al., 2013; Da Cruz Almeida et
al., 2018; Leneveu-Jenvrin et al., 2020). Similar levels of mesophilic populations and fungi in
pineapple were also recorded in previous studies (Tournas et al., 2006; Montero-Calderon et
al., 2008; Di Egidio et al., 2009; Leneveu-Jevrin et al., 2020). Two of these studies also pointed

out significant differences in the initial and final microbial concentrations among distinct
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product batches (Tournas et al., 2006; Leneveu-Jevrin et al., 2020). However, there is a lack
of information about the populations of specific bacterial groups in fresh-cut pineapple, since
the majority of the studies enumerate only the total microbial populations and the dominant
yeasts. The results from the preliminary research revealed low populations of bacteria, but also
various difficulties in determining specific bacterial groups. Contrarily, Di Cagno and
colleagues (2010) reported initial LAB populations close to 6 log units. Moreover, Leneveu-
Jevrin et al. (2020) reported initial Enterobacteriaceae populations ranging from 3.0 to 5.3 log
CFU/g, while after storage at 4 °C for 10 days, these populations reached maximum values of
7.8 log CFU/qg.

Although cultural methods have been extensively used in food microbiology, they are
considered extremely biased in their ability to capture the microbial diversity of complex
environments (Ercolini et al., 2013; Cao et al., 2017; Edet et al., 2017). Consequently, a
comparative analysis of the culture-dependent and culture-independent characterization of
fungal community of pineapple was first attempted in the context of the present study. It was
demonstrated that a whole phylum (i.e. Basidiomycota) was hardly detected in plates, while
one of the most abundant species detected in one batch (F. circinatum) was unsuccessfully
represented in the microbiota recovered from plates. This is indicating that non-cultural
analytical methods should be used for further microbiota analysis of pineapple.

The effect of temperature and storage time on fungal diversity of pineapple samples was
further analysed. Both factors had a significant impact; specifically, species richness decreased
in the course of storage and with increasing storage temperature. However, when the fungal
diversity within the samples was comparatively assessed for different temperatures and storage
times, based on Bray-Curtis distances, no radical clear clustering could be evidenced under the
conditions of this study. On the other hand, the analysis revealed a significant batch effect on
fungal diversity and composition. Leneveu-Jenvrin et al. (2020) also observed that the
pineapple communities clustered mostly according to batches and not to storage time. The high
biological variability is a common observation in plant-origin products due to the strong impact
of various factors such as cultivar, geographical region and agricultural practices on their
microbiological quality status (Leff & Fierer, 2013).

In the present work, the two batches (P3 and P4) had similar fungal composition, since

the phylogenetically related C. argentea and H. uvarum (only in batch P4) or C. sake were the
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dominant species. On the other hand, most samples from P1 and P2 were dominated by the
species F. circinatum or C. intermedia which are also phylogenetically related to each other.
Moreover, some samples of P1 showed higher level of diversity, since P. fermentans and M.
caribbica were present in high abundances. There are few previous studies on the fungal
composition of pineapple, albeit not using NGS and being mainly based on culture-dependent
techniques. Tournas et al. (2006) detected Schwanniomyces polymorphus (formerly known as
Debaryomyces polymorphus), Candida pulcherrima, Pichia spp. and in low abundances
Penicillium spp., while Di Cagno et al. (2010) found Meyerozyma guilliermondii (formerly
known as Pichia guilliermondii) as the only species recovered on plates. Chanprasartsuk et al.
(2010) identified M. guilliermondii and H. uvarum as the main yeasts of fresh pineapple juices
from different locations and countries. These two species were characterized both by culture-
dependent and -independent techniques, using in the latter case denaturing gradient gel
electrophoresis (DGGE). Zhang et al. (2014) used Candida argentea, C. sake and M. caribbica
isolates for the investigation of the headspace oxygen level during the shelf-life of pineapple,
since they were previously isolated from spoiled commercial fresh-cut pineapple. Ibrahim et
al. (2017) identified Fusarium proliferatum, F. verticillioides, F. sacchari and Fusarium sp. in
diseased pineapple tissues. Some of the Fusarium sp. isolates appeared to be phylogenetically
related to F. circinatum. Recently, Lima et al. (2019) found that in tropical fruit-based ice
creams (including pineapple based) the predominant species were Candida intermedia,
Torulaspora delbrueckii, Candida parapsilosis, Clavispora lusitaniae, Saccharomyces
cerevisiae and Pichia kudriavzevii. It is obvious that there are differences in fungal
composition of pineapple samples among various studies. As it was mentioned above, these
differences could be attributed to various pre- and post-harvest environmental factors,
agricultural practices, but also plant genotype. Additionally, there is a low species diversity in
previous studies which may be related to the bias of culture-dependent techniques (as discussed
above) or the limitations of conventional genomic methods (Subasinghe et al., 2019).

In the light of the available scientific literature and by comparing the findings of the
aforementioned studies with the data obtained in this work, it is evident that pineapple may
harbour a rather diverse fungal microbiota. However, the present study provides additional
information on how such variable microbiota may behave as function of the applied storage

conditions. Indeed, a thorough observation at batch level allows for various conclusions to be
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drawn regarding the impact of storage temperature and time. Specifically, the batches P1 and
P2 were characterized by the great dominance of F. circinatum. Multiple species of Fusarium
are associated with fruit rot and leaf spot diseases of fruits and especially pineapple (Jacobs et
al., 2010). However, at the later stages of spoilage in batch P1, P. fermentans prevailed at 4
°C, while C. intermedia prevailed at 8 and 12 °C. Both P. fermentans and C. intermedia have
been studied with great potential in the biological control of phytopathogenic molds. Rosa-
Magri et al. (2011) identified C. intermedia as one of the yeasts with biocontrol activity against
Colletotrichum sublineolum and C. graminicola. Giobbe et al. (2007) investigated the dual
nature of a strain of P. fermentans which controls brown rot on apple fruit, but becomes a
destructive pathogen when applied to peach fruit. Consequently, it could be postulated that
these two yeasts could possibly play a competitive role in supressing the growth of F.
circinatum and depending on the temperature, one of the two closely related yeasts is able to
dominate. The same trend was observed in the batch P2, but C. argentea prevailed finally at 4
°C. On the contrary, when C. argentea was present in great dominance (batch P3) at first place,
there was no significant impact of temperature and time. Nonetheless, the conclusion is
differentiated when H. uvarum was initially present together with C. argentea as the second
most dominant species (batch P4). These two closely related species seem to be affected by
the temperature and time in an opposite way, but to a lesser extent. Consequently, the progress
of spoilage appears to depend firstly on the initial composition and secondly on the effect of
temperature and time.

With regard to the bacterial microbiota of pineapple, no significant compositional
differences were observed among the different pineapple batches and applied storage
temperatures. The bacterial populations seem to be subdominant compared to the fungi present
to the pineapple. These bacterial communities consisted mainly of Pseudomonas spp. which
was the most prevalent genus in pineapple samples. Although the pH of pineapple does not
allow the growth of most bacteria, the members of this genus may come from the field. Indeed,
Pseudomonas species have been reported as important plant pathogens in fruits and vegetables
(Bophela et al., 2019). Pseudomonas viridiflava, a well-known multi-host plant pathogen
(Sarris et al., 2012), was the most abundant Pseudomonas species in the present study.
Members of the Enterobacteriaceae family, as well as LAB, were also present as part of the

pineapple microbiota in lower or even similar abundances to P. viridiflava. Enterobacteriaceae
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may originate from field sources including soil, insects, irrigation water, wastes, animals, but
also from human and equipment contamination during harvesting and processing (Erkmen &
Bozoglu, 2016). Three lactic acid bacteria species, namely Lactobacillus plantarum,
Lactobacillus rossiae and Weissella cibaria were also identified by Di Cagnio et al. (2010) in
pineapple flesh, with the former species being the most abundant. Indeed, various LAB have
been reported as spoilage members and occasionally as bacterial inhibitors in fruits (Pothakos
et al., 2014; Saraoui et al., 2016).

2.5. Conclusions

The findings of the present study contribute to the understanding of the fungal and
bacterial communities associated to fresh-cut RTE pineapple. It is the first time that the impact
of storage temperature and time on microbial diversity is being studied for a fresh tropical fruit
product. With regard to fungi, the results demonstrated that the composition of fungal
communities may be different and highly variable among different batches of pineapple. The
initial microbial composition of this commodity appears to constitute an important factor with
regard to the evolution of its spoilage. Depending on the initial prevalent fungal species, the
impact of temperature and storage time varies. It is obvious that fresh-cut pineapple products
are a very complex (and hard to predict) ecological niche, where the specific spoilage species
may have a totally different response to the changes of important environmental factors
prevailing during storage, and which are however important in the shelf-life assessment of
these RTE fruit. On the other hand, bacterial communities were not significantly affected
neither by the product batch nor by the applied storage temperature. With regard to future
research perspectives, further and thorough research is necessary in order to unravel how the
various environmental factors of pineapple production may drive the initial pineapple
microbial composition. In this view, a large-scale analysis of multiple pineapple samples from

various production facilities is advisable.
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Chapter 3
Abstract

Ready-to-eat (RTE) and fresh-cut vegetables meet the current needs for healthy and
easy-to-prepare food. However, raw vegetables are widely known to harbor large and diverse
bacterial communities promoting spoilage and reducing their shelf-life. A better understanding
of their bacterial community and the impact of various environmental factors on its
composition is essential to ensure the production of safe and high-quality fresh-cut produce.
Therefore, a metagenetic amplicon approach, based on gyrB sequencing, was applied for
deciphering the bacterial species communities associated with the spoilage of RTE rocket and
baby spinach, and monitoring the changes occurring in their composition during storage at
different temperatures. The results indicated that Pseudomonas genus was the main spoilage
group for both leafy vegetables. Specifically, Pseudomonas viridiflava was dominant in most
samples of rocket, while a new Pseudomonas species, as well as Pseudomonas fluorescens
and/or Pseudomonas fragi were highly abundant in baby spinach. Moreover, a significant
variability in bacterial species composition among different batches of each vegetable type was
observed. On the other hand, the impact of storage temperature and/or time on bacterial
microbiota was not explicitly revealed for baby spinach. Concerning rocket, storage time was
the most influential factor resulting in the reduction of Pseudomonas species’ abundances and
the parallel increase of lactic acid bacteria’s abundances. The results suggest that a large-scale
sampling of RTE produce combined with a broader range of studied temperatures should
facilitate the development of effective microbial control strategies and thus, enhance the safety

and quality of RTE produce.
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3.1. Introduction

Ready-to eat (RTE) and fresh-cut produce commodities satisfy the ever-growing need
for consumption of healthy and high quality food products, combined with time saving and
convenient food preparation (Conte et al., 2008; Pilone et al., 2017; Tsironi, et al., 2017). Plant
food products are known to harbour high populations of diverse microbial communities
originating from various sources, including the farm environment and post-harvest handling
(Soderqvist et al., 2017; Gu et al., 2018). In the fresh-cut produce production chain, microbial
communities may be further enriched during mild processing resulting in faster quality
deterioration (Francis et al., 2012; Qadri et al., 2015). Therefore, the microbial contamination
is the cause of significant economic losses for the fresh-cut sector by reducing the shelf-life of
the products and increasing the risk of potential foodborne illnesses (Rico et al., 2007; Gorni
et al., 2015; Giannopoulou et al., 2020).

The surface of vegetable leaves is inhabited by several microorganisms among which
bacteria are considered the most numerous colonists (Rastogi et al., 2012; Cao et al., 2017;
Soderqvist et al., 2017). Bacteria can be also found within the plant tissues as endophytes
entering through the root system or mechanical damages and could be the source of additional
microbial dissemination (Rastogi et al., 2012; Soderqvist et al., 2017). The overall bacterial
communities associated with raw vegetables consist of pathogenic and spoilage
microorganisms. Moreover, specific members are known to act as potential competitors to
pathogens colonization and their addition may control significantly the quality and safety of
such products (Schuenzel & Harrison, 2002; Cooley et al., 2006; Klerks et al., 2007; Lopez-
Velasco et al., 2010; Soderqvist et al., 2017).

Until recently, leaf microbiota has been typically characterized using traditional
cultivation methods or molecular culture-based approaches (Jackson et al., 2015). However,
the development of culture-independent DNA-based methods enabled the detection of a
broader range of bacteria that are present in low abundances or grow slowly and may have
escaped identification (Jackson et al., 2013). Next generation sequencing (NGS) technology
and bioinformatics analyses have promoted a finer characterization of microbial communities
from various environments than previously obtained using culture-based approaches (Kumar
et al., 2015; Goodwin et al., 2016; Cao et al., 2017). Several NGS diversity studies have

attempted to assess the impact of plant genotype and origin, season, farming practices, as well
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as processing methods on the compositions of vegetables’ bacterial communities (Hunter et
al., 2010; Rastogi et al., 2012; Jackson et al., 2013; Dees et al., 2015; Cao et al., 2017; Darlison
etal., 2019; Tatsika et al., 2019). The majority of the results derived by these studies indicated
that the aforementioned factors can strongly influence the bacterial communities of such
products. Less common are the NGS studies conducted to monitor the impact of storage
conditions, and mainly storage temperature, on the bacterial communities established on the
leaves (Lopez-Velasco et al., 2011; Soderqvist et al., 2017; Gu et al., 2018; Rosberg et al.,
2020). The main conclusion of these limited studies was that distinct temperatures lead to
accordingly different composition and abundance of the leafy vegetable microbiota. However,
there is still a limited understanding of the diversity of produce-associated bacterial
communities, the way various factors influence and shape these communities, and the
distributions of individual taxa across produce types (Leff & Fierer, 2013).

The objective of this study was to characterize the bacterial communities associated
with the spoilage of RTE rocket and baby spinach during storage at refrigeration and abusive
temperatures. So far, few studies investigating the microbial communities of raw leafy
vegetables have focused on the final RTE product (Jackson et al., 2013; Leff & Fierer, 2013;
Soderqvist et al., 2017; Tatsika et al., 2019). Among these studies, only Jackson et al. (2013)
and Soderqvist et al. (2017) analysed both epiphytic and endophytic communities of RTE baby
spinach, and this is the approach that has been also followed in the present work. The
innovation of the present study lies in the applied metagenetic amplicon approach based on
gyrB sequencing. This genetic marker has been previously used in bacterial characterization
of meat and seafood microbiota (Poirier et al., 2018; Poirier et al., 2020; Zagdoun et al., 2020)
and recently in RTE pineapple (Manthou et al., 2020). The main advantages of the latter
approach have been (i) the achievement of more accurate (at intra-species level) taxonomic
assignment than classical VV3-V4 region of thel6S rRNA (usually family- or genus-level), and
(i) the avoidance of contamination by chloroplastic 16S rDNA ,which is very common in 16S-
based metagenetic analysis from plant materials. Therefore, the main goal of this study was
the investigation and characterization of the bacterial species communities associated with the
spoilage of RTE leafy vegetables and the changes occurring in their composition during storage

at different temperatures.
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3.2. Materials and Methods

3.2.1. Leafy vegetable samples and storage conditions

Fresh-cut and RTE rocket and baby spinach salads, already packed in sealed plastic
bags (each one containing 125 g of product) were supplied by a local manufacturer in Athens.
All RTE produce was provided by the same manufacturer, except for one batch of rocket salad
which supplied by a local supermarket. The salads were transported to the laboratory within
24 h from production and stored in their original package at three different constant
temperatures (4, 8 and 12 °C), as well as at dynamic temperature conditions (8 h at 4 °C, 8 h at
8 °C and 8 h at 12 °C). One batch of rocket salad was received and stored few hours after its
production, thus corresponding to a more fresh state. The storage took place in high precision
(x0.5) programmable incubators (MIR-153, Sanyo Electric Co., Osaka, Japan), while the
temperature was recorded every 15 min using electronic temperature devices (COX
TRACER®, Cox Technologies Inc., Belmont, NC, USA). On the day of arrival (time-zero) at
the laboratory and also at 38, 72, 134 and 230 h, samples from four independent batches of
each vegetable were analyzed. The storage at 12 °C ended at 134 h compared to all the other

temperatures that was extended up to 230 h.

3.2.2. Microbiological analysis, pH and gas composition measurements

Prior to microbiological analysis, the O./CO, composition inside the packages was
measured using a headspace gas analyzer (CheckMate 9900, PBI Dansensor, Denmark).
Subsequently, a 25 g-portion of each salad was aseptically transferred into a sterile Stomacher
bag (Seward Medical, London, UK), diluted with 225 ml of quarter-strength Ringer’s solution
(Lab M Limited, Lanchashire, UK) and placed in a homogenization device for 60 sec (Lab
Blender 400, Seward Medical). Appropriate serial decimal dilutions were prepared and the
surface plating technique was used for the determination of total mesophilic microbial
populations (total viable count, TVC) and Pseudomonas spp. populations. The TVC was
determined on tryptic glycose yeast agar (Plate Count Agar, Biolife, Milan, Italy) after
incubation of plates at 25 °C for 72 h. Pseudomonas spp. were determined using the same
technique on pseudomonas agar base with selective supplement cephalothin-fucidin-cetrimide
(CFC, Lab M Limited), after incubation of plates at 25 °C for 48 h. The results were expressed

as the average (£ standard deviation, n=4) log colony forming units per gram (log CFU/qg) of
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vegetable salad. Additionally to microbiological analysis, the pH values of vegetable samples
were measured with a digital pH meter (RL150, Russell pH Cork, Ireland) with a glass
electrode (Metrohm AG, Herisau, Switzerland).

3.2.3. Preparation of microbial pellets and DNA extraction of the vegetable
microbiota

A 10g-portion of each vegetable sample was transferred in filter Stomacher bag
(Interscience, St-Nom, France) containing 20 ml of Ringe’s solution (Lab M Limited) and
homogenized for 60 sec in the stomacher device. The homogenate was collected in 50-ml tubes
(SARSTEDT AG & Co. KG, Germany) and centrifuged (Heraeus Multifuge 1S-R, Thermo
Electron Co.) at 8000 x g for 20 min at 4 °C. The obtained bacterial pellet was washed in 20
ml of distilled-dionized water and centrifuged once more under the same conditions. An extra
washing step followed, adding 1.7 ml of sterile ultrapure water, the diluted pellet was
transferred in 2-ml Eppendorf tubes (SARSTEDT AG & Co. KG), and the bacterial pellet
collected after centrifugation (Heraeus Fresco 21, Thermo Scientific) at 17000 x g for 10 min
at 4 °C was stored at -80°C until the DNA extraction procedure. Bacterial DNA from all
samples was extracted with the DNeasy PowerSoil Kit (Qiagen, Hilden, Germany) according

to manufacturer’s instructions.

3.2.4. Barcoding PCRs and Illumina Miseq sequencing

Two rounds of PCR amplification took place for the construction of amplicon libraries.
The first amplification of the 250 bp region of gyrB was performed with the primers F64 (5°-
MGNCCNGSNATGTAYATHGG -3°) and R353 (5°- ACNCCRTGNARDCCDYCNGA -
3’). Forward and reverse primers carried the [llumina 5’- CTTTCCCTACACGACGCTCT
TCCGATCT-3> and the 5-GGAGTTCAGACGTGTGCTCTTCCGATCT-3" (tails,
respectively. The first round of PCR was performed with the high-fidelity AccuPrime Taq
DNA polymerase system (Invitrogen, Carlsbad, USA), 20 uM final primer concentration and
5 uL of microbial DNA. Amplification of gyrB was performed with the following cycling
conditions: 94 °C for 2 min, followed by 35 cycles of amplification at 94 °C (30 sec), 55 °C
(60 sec), and 68 °C (90 sec), with a final extension step of 10 min at 68 °C. The amplicon size,

quality, and quantity of the amplified DNA were checked on a DNA1000 chip (Agilent
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Technologies, Paris, France). The second Miseq PCR and the Miseq sequencing were
conducted as described in Poirier et al. (2018). Raw read sequences were deposited at the
Sequence Read Archive under the Bioproject number PRINA694950 and the accession
numbers SAMN17579174 to SAMN17579262.

3.2.5. Sequencing data analysis
3.2.5.1. Quiality filtering and taxonomic assignment of Operational Taxonomic Units
(OTUs)

The quality control, definition of OTUs and taxonomic assignment were performed
using FROGS (Find Rapidly OTU with Galaxy Solution) pipeline (Escudie et al., 2017).
Briefly, the quality-filtered paired-end sequences were merged into contigs with VSEARCH
v2.15.0 (Rognes et al., 2016) using the maximum of 10% mismatch in the overlapped region.
The minimum and maximum amplicon size was set at 150 and 350 bp, respectively. Merged
amplicon sequences were dereplicated and clustered using SWARM v3.0.0 (Mahe et al., 2015)
with a distance threshold of three. Chimeras were removed with VSEARCH v2.15.0. The
resulting sequences were filtered for spurious OTUs by keeping only those with at least 0.01%
of relative abundance within the whole dataset (Auer et al., 2017). Taxonomic assignment of
OTUs was performed using gyrB_03_2019 as reference databank (Poirier et al., 2018) and the
Blastn+ algorithm (Camacho et al., 2009).

3.2.5.2. Alpha and beta diversity

Bacterial diversity was analysed using the R package Phyloseq with standard or custom
Phyloseq command lines (McMurdie &Holmes, 2013). The median sequencing depth of all
samples was used as a normalization step for OTU abundance, before the analyses of alpha

and beta diversity.

3.3. Results

3.3.1. Effect of storage temperature on bacterial growth

The initial bacterial load of both vegetables was high (Figure 3.1). The initial level of
TVC (mean * standard deviation, n=4) was 7.31 = 0.48 log CFU/g for rocket and 6.96 + 0.25
log CFU/g for baby spinach. At the final stage of storage, the TVVC in rocket reached an average
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level (+ standard deviation) of 7.79 (x 0.26), 8.49 (£ 0.22), 8.25 (+ 0.33) and 7.85 (+ 0.68) log
CFUl/g at 4 °C, 8 °C, 12 °C and dynamic conditions, respectively. In baby spinach, the final
TVC was similar for the majority of temperature conditions. However, the TVC throughout
storage was higher in baby spinach, with larger differences being observed at 4 °C. The
Pseudomonas spp. populations were close to the TVC with a maximum difference of 0.5 log
throughout storage. According to preliminary analysis where additional microbial groups
(enterobacteria, lactic acid bacteria) were determined, Pseudomonas genus is the main
component of the leafy vegetable microbiota. The same trend mentioned for TVC was
observed for Pseudomonas spp., since their growth was also higher in baby spinach compared

to rocket throughout storage. As expected, the recorded bacterial growth was faster with

increasing storage temperature.
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Figure 3.1. Total viable counts (TVC) (Al) and Pseudomonas spp. populations (A2) in ready-
to-eat (RTE) rocket, and TVC (B1) and Pseudomonas spp. populations (B2) in RTE baby
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spinach during storage at 4 °C (e), 8 °C (m), 12 °C (), and dynamic temperature conditions

(A). The microbial populations are expressed as means * standard deviations (n=4).

However, the impact of temperature on bacterial growth was not notably large. It is also

interesting to note that the variability of bacterial counts among the different batches of rocket,

was higher than that of baby spinach. One of the rocket batches supplied by a different

manufacturer (batch R1) had higher initial TVC and Pseudomonas spp. counts compared to

the other batches, with a recorded difference as high as 1.5 log units in some cases. Moreover,

a second batch of rocket was stored in a more fresh state, having considerably lower bacterial

loads at the initial stage of storage.
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Figure 3.2. O, (Al) and CO2 (A2) compositions in ready-to-eat (RTE) rocket, O, (B1) and
CO2 (B2) compositions in RTE baby spinach during storage at 4 °C (e), 8 °C (m), 12 °C (),

and dynamic temperature conditions ( A ) and under passive modified atmosphere packaging.
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For rocket, the results concern only the batches R2, R3 and R4. The results are expressed as

mean = standard deviation (n=4 or n=3).

With regard to gas composition inside the sealed packages (Figure 3.2), the initial O
level composition in baby spinach was lower than those of rocket, while the initial level of
CO:2 was higher. The final O2> compositions in rocket reached values quite close to those of
baby spinach, while the final CO2 percentages were similar for both vegetables. The storage
temperature influenced considerably and similarly the respiration rate for the two vegetables.
The consumption and production of O; and CO: respectively, was higher at increasing
temperatures, while in dynamic conditions resembled that of 8 °C. It should be also mentioned
that in the case of rocket the gas composition of the three out of four batches is presented in
Figure 3.2. As it was mentioned above, the batch R1 was supplied by a different manufacturer.
The initial O, composition was 15.80 % and reached 11.70, 13.40, 15.00 and 11.90 % for 4, 8,
12 °C and dynamic conditions, respectively. The final CO2 did not exceed 1.5 % throughout
storage and for all temperatures, indicating that the packaging film has low gas permeability
compared to those used for the other batches. In general, there were great variations in gas
composition during storage even among different batches originating from the same
manufacturer. Moreover, the initial pH of baby spinach was higher than that of rocket and
reached also higher values during storage at the same temperatures (Table 3.1). Overall, no
considerable differences in the pH values of rocket were observed among the different storage
temperatures and during storage. Contrarily, the increase of pH during the storage of baby

spinach was lower at 4 °C compared to the higher temperatures.
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Table 3.1. The pH values of ready-to-eat rocket and baby spinach during storage at different

temperatures.

pH
Storage . )
Initial pH Final pH
Product temperature
40C 6.48 + 0.26
80C 6.86 +0.18
Rocket 6.34 £ 0.13
120C 6.46 + 0.25
Dynamic 6.58 £ 0.23
40C 6.79 £ 0.13
Baby 8oC 7.01+0.14
_ 6.49 + 0.07
spinach  120C 6.75+0.12
Dynamic 6.96 + 0.03

3.3.2. Bacterial alpha-diversity

The rarefraction curves (Figure 3.3) performed on quality-filtered reads indicated that

sequencing depth was sufficient for all samples tested. Across all samples, a total of 373 and

370 gyrB OTUs were detected for rocket and baby spinach, respectively. As shown in Figure

3.4, the bacterial diversity between rocket and baby spinach using data merged at the species-

level was compared. Unlike species richness showing similar range of species in both types

of product, Shannon indice was significantly (ANOVA, p<0.05) different for the two

vegetables, indicating that baby spinach bacterial evenness was higher than that of rocket.
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Figure 3.3 Rarefaction curves obtained from gyrB amplicon sequencing of the ready-to-eat
baby spinach and rocket communities. The x-axis represents the sequencing depth in number

of reads while the y-axis represents an estimation of the species richness detected.

To better illustrate this finding, a composition plot was produced (Figure 3.5)
comparing the relative abundances of bacterial species according to Bray-Curtis hierarchical
clustering of rocket and baby spinach samples. This analysis confirmed the presence of
Pseudomonas spp. as the main component of vegetable leaf microbiota. Exceptions were
observed for some samples of rocket originating from batch R2 that showed great prevalence
of Xanthomonas campestris. All the samples of batch R3 and some samples of batch R2 were
clustered together with baby spinach. Interestingly, there was a clear difference between the
two vegetables. Pseudomonas viridiflava reached higher abundances, but also was dominant
among Pseudomonas group and in some cases among all bacterial species for most of the
rocket samples, while Pseudomonas RIT357 was present in very low abundances. However,
almost all samples of batch R3 showed a great dominance of P. fluorescens, but had very low

abundances of P. viridiflava compared to the other rocket batches.
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Figure 3.4. Comparison of ready-to-eat (RTE) rocket and baby spinach bacterial diversity.
The box plots show the number of species (Observed) and the Shannon indice as measures of
species diversity between RTE rocket and baby spinach communities. The boxes represent the
interquartile range between the first and third quartiles and the vertical line inside the boxes is

the median obtained from the samples analysed per vegetable.

On the contrary, in the case of baby spinach, P. RIT357 was present in considerably higher
abundances compared to P. viridiflava. The former was the dominant species or prevailed
together with Pseudomonas fragi or Pseudomonas fluorescens over the other Pseudomonas
species. Moreover, baby spinach samples showed higher abundances of Janthinobacterium S3-
2 and in some samples higher abundances of Janthinobacterium lividum compared to rocket.

It becomes evident that batches influenced the bacterial communities’ composition, and
that the batches of rocket had larger compositional differences than baby spinach batches.

Specifically, although batch R4 was supplied by the same manufacturer as batches R2 and R3,
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its composition was closer to that of batch R1. Even though the rocket batches R1 and R4 were
clustered closer to each other, there were obvious differences among them. Specifically, the
batch R1 had higher abundances of Pseudomonas syringae and Lactococcus piscium compared

to the other batches.

3.3.3. Effect of storage temperature and time on bacterial diversity

The effect of storage time and temperature was studied separately for each vegetable
salad. In the case of rocket, the number of species (observed) was not significantly different
among storage times, but Shannon indice (ANOVA, p<0.05) increased with storage time
(Figure 3.6). This means that there was more equilibrium in the abundance of dominant and
subdominant species over longer storage time. The temperature seems that did not influence
significantly the species diversity of rocket (data not shown). On the contrary, the impact of
temperature (and not of storage time) on baby spinach diversity was significant. Again, the
number of species (observed) was not significantly different among the different temperatures,
but Shannon indice (ANOVA, p<0.05) followed an upward course with temperature increase
(Figure 3.7). The samples stored at dynamic conditions were between the samples stored at 8
and 12 °C, as it was expected, while baby spinach samples stored at 12 °C had a more diverse

community.
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Figure 3.5. Composition plot showing the relative abundances of the 19 main species found in vegetable samples. On the top:
hierarchical clustering of batches samples according to Bray-Curtis distance and ward algorithm (different shades of red and blue
represent the four batches of ready-to-eat rocket and baby spinach, respectively). The two first characters of each sample are indicating

the type of vegetable (e.g. GR and GS for rocket and baby spinach, respectively). The number following these two letters depicts the

batch number.
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When the impact of temperature and storage time on RTE baby spinach and rocket
composition was studied, there was no discrete clustering among samples of different
temperatures and storage times for each one of the two vegetables (data not shown). According
to Figure 3.8, the batches had a strong influence on the type of community, indicating that
there is a little chance to assess the impact of both factors on the overall composition of both
vegetables.

A deeper analysis at the batch level did not reveal a clear effect of storage time and/or
temperature on bacterial diversity for baby spinach. At Batch BS1, Pseudomonas marginalis
had a high abundance at time-zero, but it was present in very low abundances for almost all
the temperatures and without gradual change for the following storage stages (Appendix I,
Figure S.3.1). Moreover, J. lividum showed a slight higher abundance during storage and the
change was sharper at 8, 12 °C and even dynamic conditions. At Batch BS2, P. RIT357 reached
higher abundances at 4 °C compared to the most but not all samples stored at the higher
temperatures (Appendix I, Figure S.3.2). For the two other batches of baby spinach, it was
difficult to reveal any impact of time and temperature (data not shown). In the case of rocket,
on the other hand, the storage time was the most influential factor for some species of Batch
R1. Data shown in Figure 3.9 indicate that rocket samples of Batch R1 are separated in two
branches, one containing most samples stored under 4 °C and 8 °C, whereas, the second branch
those stored under 12 °C or dynamic conditions. Furthermore, storage time affected this
clustering as samples from early storage for 12 °C and dynamic are located in the left branch
of the tree, whereas samples of 4 °C and 8 °C corresponding to long storage time are clustered
on the right branch. More specifically, P. viridiflava lost ground in the storage time course for
each one of the four temperatures, while Carnobacterium inhibens and Lactococcus piscium
(lactic acid bacteria) became more abundant. At the first stages of storage (0, 38, 72 h), P.
viridiflava was the most abundant species; its abundance reduced during storage but it
remained the most prevalent species in samples stored at 4 °C. On the other hand, although C.
inhibens showed small increase of abundance in all cases, L. piscium became prevalent at 8 °C
and dynamic conditions. Moreover, the abundance of P. syringae was also reduced during
storage, but this observation was clearer at 8 and 12 °C and at dynamic conditions. Concerning
Batch R2 (Figure 3.10), Xanthomonas campestris showed reduction of abundance over longer

storage time mainly at 12 °C, but also at 4 °C and dynamic conditions. In Batch R3, there were
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missing a lot of samples for solid conclusions to be drawn, while Batch R4 did not show any
significant changes in terms of time and temperature, regardless of the high prevalence of P.
viridiflava and the closest composition similarity with Batch R1 compared to the other batches

(data not shown).
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Figure 3.6. Bacterial diversity in ready-to-eat rocket. The box plot shows the number of
species (Observed) and the Shannon indice as measures of species diversity in samples of
different storage time. The boxes represent the interquartile range between the first and third
quartiles and the vertical line inside the boxes is the median obtained from the samples
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Figure 3.8. Multidimensional Scaling (MDS) based on Bray-Curtis distances among bacterial
communities of the four batches of ready-to-eat A) rocket and B) baby spinach. R_1,R_ 2,R_3
and R_4 or correspond to Batch 1, Batch 2, Batch 3 and Batch 4 of rocket and BS_1, BS 2,
BS 3 and BS_4 correspond to Batch 1, Batch 2, Batch 3 and Batch 4 of baby spinach.

96



-

0 hour*

72 hours
38 hours
38 hours
38 hours

I “ 134 hours

I |. 72 hours —

@
S
0
<
<
™
A
I

0.50
0.25
0.00 I

@
S
o
<
<
o™
-

Relative Abundance

e LT

[
_
3
o
=
<t
o
A

I .l 230 hours

— T
T Wb
—

Rocket samples from Batch R1

Storage temperature:
4°C
8°C

12 °C
Dynamic

Species

. Carnobacterium_inhibens
Cedecea_sp.

l Citrobacter_freundii
Comamonas_aquatica

. Lactococcus_piscium

. Lecleria_adecarboxylata
Lelliottia_amnigea

B Leuconostoc_sp.
Pseudomonas_fluorescens
Pseudomonas_Leaf127

. Pseudomonas_libanensis
Pseudomonas_lurida
Pseudomonas_moraviensis
Pseudomonas_proteolytica
Pseudomonas_RIT357

. Pseudomonas_sp.

. Pseudomonas_syringae_pv._primulae

. Pseudomonas_viridiflava
Serratia_Leafb1

. Stenotrophomonas_maltophilia

W oter

Figure 3.9. Impact of storage time and temperature on bacterial species composition of ready-

to-eat rocket samples from Batch R1. Samples are ordered from left to right according to Bray-

Curtis distance. Samples are colored according to storage temperature in blue (4 °C), green (8

°C), red (12 °C) and Dynamic (grey).

97



Storage temperature:
4°C
8°C

12 °C
Dynamic

:
]

B
1

38 hours
134 hours
230 hours

Species
] Comamonas_aquatica

38 hours
72 hours
38 hours
134 hours
134 hours
134 hours

Janthinobacterium_lividum
Janthinobacterium_S3-2
Pseudomonas_22 E 5
. Pseudomonas_24 F 1

| Pseudomonas_fluorescens
. Pseudomonas_fragi

. Pseudomonas_grimontii
Pseudomonas_Leaf127
Pseudomonas_lurida

Pseudomonas_moraviensis
Pseudomonas_proteolytica

r| Pseudomonas_psychrophila
Pseudomonas_RIT357

. Pseudomonas_sp.

- Pseudomonas_syringae

. Pseudomonas_syringae_pv._primulae

. Pseudomonas_viridiflava

. Psychrobacter_aquaticus

- Xanthomonas_campestris_pv._campestris

W oter

-
0.75 ‘
0.50
0.2
0.00

Rocket samples from Batch R2

Relative Abundance

w

Figure 3.10. Impact of storage time and temperature on bacterial species composition of ready-
to-eat rocket samples from Batch R2. Samples are ordered from left to right according to Bray-

Curtis distance. Samples are colored according to storage temperature in blue (4 °C), green (8

°C), red (12 °C) and Dynamic (grey).

3.4. Discussion
In the present study, gyrB amplicon sequencing was applied to characterize the bacterial

communities associated with RTE leafy vegetables and examine the impact of different
temperatures on the composition of the vegetable microbiota during storage. The results of this
study indicated from both the plate counting and metagenetic approach, that the Pseudomonas
genus was the dominant spoilage group in the majority of rocket samples and all samples of
baby spinach. Indeed, Pseudomonas spp. have been previously reported as the most prevalent
bacteria in raw leafy salad vegetables, including RTE rocket and baby spinach (Rastogi et al.,
2012; Jackson et al., 2013; Soderqvist et al., 2017; Rosberg et al., 2020). Members of this
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genus are widely distributed in the nature and are highly capable of competing with other
bacteria in food and food production environments (Hibbing et al., 2010). Some species are
recognised as potential plant pathogens and spoilage causative agents since they have the
ability to produce pectinolytic enzymes that cause soft rot and fleshy vegetables (Tatsika et al.,
2019). Contrarily, Tatsika et al. (2019) observed that in RTE baby spinach but not rocket, the
Enterobacteriales order had higher abundances compared to Pseudomonadales which is
mostly represented by the Pseudomonas genus. Also, Jackson et al. (2013) have reported other
genera that may be prevalent to various leafy vegetables, such as Ralstonia, Xanthomonas,
Flavobacterium, Stenotrophomonas Serratia and Erwinia.

Despite the increasing number of metagenetic studies dealing with fresh produce,
almost all of them remain at the taxonomic level of family or genus. Although the application
of 16S rDNA amplicon sequencing is one of the most popular techniques for the
characterization of food microbiota, it lacks the necessary resolution required to provide
species-level/strain-level identification (Cao et al., 2017). However, spoilage development is
a complex biological phenomenon, which can be species- or even strain-specific. Moreover,
certain microbial species may be influenced differently by a given set of storage conditions,
driving unpredictably the time and type of spoilage (Kergourlay et al., 2015; Poirier et al.,
2018). Therefore, a deeper understanding of microbial ecology is needed with the primary goal
to monitor microbiological food spoilage and safety. The present study succeeded, for the first
time, in reaching a species-level characterization of the bacterial community of the studied
RTE vegetables, using gyrB genetic marker.

According to diversity indices, although the species richness was not significantly
different between the two vegetables, baby spinach showed higher species evenness than
rocket. The bacterial community of baby spinach has been previously reported as more diverse,
but in terms of OTU richness (Tatsika et al., 2019). As far as the differences in species
composition are concerned, high abundance and occasionally dominance of P. viridiflava in
RTE rocket were observed. This species is a soft-rotting spoilage bacterium capable of acting
at and below 4 °C and it is reported as prevalent in decayed vegetables (Saranraj et al., 2012;
Sarris et al., 2012). On the contrary, a new species, namely P. RIT357, which is an isolate from
trees of the Salix genus, was highly abundant or even dominant in baby spinach. P. fluorescens

and/or P. fragi were also highly abundant in baby spinach and have long been known to be
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responsible for chilled food spoilage (Franzetti & Scarpellini, 2007). Moreover, J. S3-2, which
is currently published as Janthinobacterium psychrotolerans, as well as J. lividum showed
higher relative abundances in most samples of baby spinach compared to rocket. The former
species was initially isolated from a frozen freshwater pond and has also the ability to grow at
very low (even -3 °C) temperatures (Gong et al., 2017). The latter species (i.e. J. lividum) has
been previously found in romaine and green leaf lettuce, as well as RTE escarole and red
chicory, and is commonly isolated from soils and water of rivers, lakes and springs (Pantanella
et al., 2006; Jackson et al., 2013; Gaglio et al., 2019). Several factors contribute to the
community patterns and it is often difficult to determine which of them are responsible for
driving the divergence between the bacterial communities on different produce types. Leaf
bacterial communities are known to differ across plant species due to variations in metabolites,
physical characteristics, and symbiotic interactions with the host (Redford et al., 2010; Leff &
Fierer, 2013). However, the findings of this study indicated that the different batches differed
slightly or largely in bacterial community composition, even when originating from the same
supplier, an observation which was more intense in rocket (Figure 3.8). Differences in growing
conditions, handling, transport procedures, and minimal processing (e.g. washing or cutting)
can also shape the microbial community composition and may be responsible for these
variations among batches (Leff & Fierer, 2013).

The present study also provided additional information on how different microbiota
may behave as affected by storage conditions. The role of storage at low temperatures is known
to reduce bacterial growth. Indeed, the growth of total mesophiles and Pseudomonas spp.
populations was faster at higher temperatures and this is also reported by other researchers
(Conte etal., 2008; Gu et al., 2018; Georgopoulou et al., 2020). Previous diversity studies have
also revealed that storage of RTE spinach or rocket at different temperatures and prolonged
time influenced the bacterial diversity and composition at least in higher taxonomic levels
(Lopez-Velacso et al., 2010; Lopez-Velacso et al., 2011; Soderqvist et al., 2017, Gu et al.,
2018; Rosberg et al., 2020). In the present study, the diversity analysis indicated that the impact
of temperature was significantly stronger in baby spinach evenness, while the storage time
influenced more the rocket diversity in terms of evenness. However, when the impact of the
aforementioned factors on the bacterial community composition of each type of vegetable was

investigated, the inter-batch impact proved to be stronger.
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The deeper analysis at batch level did not reveal specific and clear trends with regard to
the impact of temperature and time on baby spinach communities (Appendix I). On the other
hand, the impact of storage time was evident in some batches of rocket, as it was also indicated
by the diversity indices (Figure 3.5). The most striking observation was that in Batch R1, where
members of Pseudomonas genus, mainly P. viridiflava but also P. syringae, became less
abundant during storage. Both species are multi-host plant pathogens of great economical
importance (Morris et al., 2007; Sarris et al., 2012). In parallel to Pseudomonas species
reduction, L. piscium and C. inhibens showed increase of their abundance during storage. Many
studies have now widely studied lactic acid bacteria such as Carnobacterium, Lactobacillus,
Lactococcus and Leuconostoc, for biopreservation and bacterial inhibition in fruits, fermented
and raw vegetables. L. piscium has been previously isolated from RTE minimally processed
vegetable salads and is described either as a bioprotective or spoilage microorganism
depending on the strains and the food matrix (Pothakos et al., 2014; Saraoui et al., 2016).
Moreover, in the case of Batch R2, X. campestris which is an economically important bacterial
plant pathogen causing black rot disease (Papaianni et al., 2020), became less abundant
throughout storage at almost all temperatures, while various other Pseudomonas species
showed increased abundances. Various Pseudomonas species have been also reported as
bacterial antagonists to pathogenic molds, but also bacteria, in fruits and vegetables, depending

again on the product and the microbial strain (Sharma et al., 2009).

3.5. Conclusions

The present study provided insights into the bacterial community compositions and
dynamics of RTE leafy vegetables as affected by storage conditions. It was the first time that
a metagenetic approach allowed for bacterial characterization at the level of species. The
results demonstrated that the prevalence of some Pseudomonas species in bacterial
communities was vegetable-specific. However, product batch was evaluated as the factor with
the strongest impact on bacterial communities of RTE baby spinach and rocket. This work also
highlighted the difficulty in revealing the impact of important environmental factors on

bacterial communities of fresh-cut produce. The impact of storage temperature and time was
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not revealed for the baby spinach batches, while for rocket only the impact of storage time was
observed in some cases.

Given the high biological variability of plant products, a large-scale sampling of RTE
produce is needed in order to allow for improved and integrated analysis, resulting in turn, in
deeper knowledge of the diverse bacterial communities on leafy vegetables. The study of the
biodiversity of these communities is also related to the need of a more detailed information on
the bacterial interactions specifically associated with food spoilage. Moreover, the various
environmental factors shaping the microbial communities during storage and before
consumption of leafy vegetables should be further investigated. Then, the manipulation of
bacterial interactions (e.g., promoting specific desirable inetractions) in tandem with the
application of appropriate storage conditions, could bring scientists one step closer to the

development of effective control strategies assuring quality and safety of RTE produce.
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Chapter 4
Abstract

Recently, rapid, non-invasive analytical methods relying on spectroscopy and
hyper/multispectral imaging, are increasingly gaining popularity in food science. Although
such instruments offer a promising alternative to the conventional methods, the analysis of
generated data demands complex multidisciplinary approaches based on data analytics tools
utilization. Therefore, the objective of this work was to: (i) assess the predictive power of
different analytical technologies (sensors) coupled with machine learning algorithms in
evaluating quality of ready-to eat (RTE) pineapple (Ananas comosus), and (ii) explore the
potential of The Unscrambler software and the online machine learning ranking platform,
SorfML, in predictive model development for the purpose of food quality assessment.
Pineapple samples were stored at 4, 8, 12 °C and dynamic temperatures and were subjected to
microbiological (total viable count, TVC) and sensory analysis (colour, odour, texture) with
parallel acquisition of spectral data. Fourier transform infrared (FTIR), near infrared (NIR),
UV/VIS spectroscopies, as well as multispectral imaging (MSI) were used. The results from
both analytics tools revealed similar trends. For TVC, almost all the combinations of sensors
and partial least squares regression (PLSR) algorithm from both analytics tools reached values
of root mean square error (RMSE) of prediction up to 0.63 log CFU/g, as well as the highest
coefficient of determination values (R2). Moreover, linear support vector machines (SVM
Linear) combined with almost each one of the sensors reached similar performance. For odour,
the model based on FLUO spectral data achieved the highest overall performance, when
combined with partial least squares discriminant analysis (PLSDA) in both platforms with
accuracy close to 85%, but also with values of sensitivity and specificity above 85%. The SVM
Linear and MSI combination achieved similar performance. On the other hand, all models
developed for colour and texture showed poor prediction performance. Overall, all the sensors
tested with the exception of NIR, constitute promising tools for the microbiological quality

evaluation of RTE pineapple.
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4.1. Introduction

In the context of tremendous technological change, a growing lack of natural resources,
and a continuous evolution of consumers’ life-styles and consumption habits across the globe,
food industry is challenged to provide safe and qualitative food to consumers. To address the
need for efficient, safe and environmentally respectful production, as well as strict
communication and connection with the consumers, several approaches have been developed
(Nychas et al., 2016). Among these, analytical methods based on vibrational spectroscopy and
hyperspectral / multispectral imaging have gained scientists’ attention, since they could fulfill
the needs of food industry as rapid and efficient methods for assessing food quality, safety and
authentication (Papadopoulou et al., 2011; Gromski et al., 2015; Estelles-Lopez et al., 2017).

In contrast with the time-consuming and expensive conventional and molecular-based
techniques, the aforementioned approaches constitute a non-destructive and sensible
alternative, also suitable for in-, on- and at-line monitoring (Kumar et al., 2014; Nychas et al.,
2016; Efenberger-Szmechtyk et al., 2018). Such tools have been reported in the literature as
promising tools for quality and safety assessment of different meat products (Ammor et al.,
2009; Prieto et al., 2009; Papadopoulou et al., 2011; Panagou et al., 2014; Barbin et al., 2015;
Grewal et al., 2015; Ropodi et al., 2015; Trinderup et al., 2015; Ropodi et al., 2017; Fengou et
al., 2019a), fish (Fengou et al., 2019b), as well as fruits (Camps & Christen, 2009; Suhandy et
al., 2009; Unay et al., 2011; Coldea et al., 2013; Liu et al., 2015) and vegetables (Lakke et al.,
2013; Sravan-Kumar et al., 2015; Tsakanikas et al., 2018).

It should be noted that although these instruments/approaches can be considered as
efficient, the multivariate nature of the sensor output, is rather complex and usually needs
processing and/or dimensionality reduction, before the results can be interpreted (Jollife &
Cadima, 2016). Nowadays, in the food sector, a plethora of machine learning approaches has
been proposed by different authors in order either to qualitatively or quantitatively predict
safety and quality of different foods (Ropodi et al., 2016; den Besten et al., 2018). At the same
time, open source platforms are contributing to the improvement of food quality and safety
management systems (Nychas et al., 2008; Tenenhaus-Aziza & Ellouze, 2015).

Indeed, the need of computational tools in the area of food science /microbiology has
been recognised, due to their capacity to analyse high volumes of heterogeneous data generated

from innovative technologies (Roberts & Cozzolino, 2016; Granato et al., 2018; Truong et al.,
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2019). This trend is clearly followed by the development of various algorithms including,
among others, ordinary least squares (OLS), stepwise linear modelling (SL), principal
component analysis (PCA), partial least squares (PLS), support vector machines (SVM),
random forests (RFs) and k-nearest neighbours (KNN) which can be applied through free or
commercial software with user-friendly and easy-to-use interface. However, choosing the
appropriate machine learning approach based on the question that should be addressed, is often
challenging and involves a comparative analysis among various algorithms in order to achieve
the best possible and realistic performance. This procedure often requires strong statistical and
deep interpretation knowledge (Estelles-Lopez et al., 2017).

Even though, the spectroscopy and multispectral imaging techniques have been
implemented in a broad range of food products, the application of these technologies to fresh-
cut and RTE produce such as pineapple (Ananas comosus), is limited, regardless their
popularity and market value. Lunadei et al. (2011) evaluated the enzymatic browning of fresh-
cut apple slices using multispectral imaging, while a second study of Lunadei et al. (2012)
focused on the colour quality of RTE spinach leaves using the same analytical method.
Recently, Tsakanikas et al. (2018) studied the microbial quality of RTE green salads (rocket
and baby spinach) using different non-invasive sensors based on spectroscopy. As far as RTE
pineapple is concerned, only Di Egidio et al. (2009) have studied its shelf-life using vibrational
spectroscopy. Therefore, the aims of this work were: (i) to develop mathematic models based
on data derived from different analytical instruments to evaluate the sensory and
microbiological quality of RTE pineapple, (ii) to compare the models’ performance and assess
the suitability of different algorithms and analytical technologies for monitoring the various

features, and (iii) to explore, the capabilities and the limitations of each data analytical tool.

4.2 Materials and methods

4.2.1. Sample preparation and storage conditions

Fresh-cut and RTE pineapple, packed in PVC trays (each containing 220 g of fruit), was
supplied by a local manufacturer in Athens and transported to the laboratory within 24 h from
production. The pineapple samples were stored in their original package at three different
temperatures, namely 4, 8, 12 °C, and under dynamic temperature conditions (8 h at 4 °C, 8 h
at8°Cand 8 hat12°C) in high precision (x0.5°C) programmable incubators (MIR-153, Sanyo
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Electric Co., Osaka, Japan). The incubation temperature was recorded at 15-minutes intervals
using electronic temperature devices (COX TRACER®, Cox Technologies Inc., Belmont, NC,
USA). The sampling was conducted at regular time intervals, depending on the storage
temperature, for a maximum period of 10 days. Specifically, the analyses were carried out
every 14 and 10 h ,according to the following sampling time points: 0, 14, 24, 38, 48, 62, 72,
86, 96, 110 h, for the first 5 days and every 24 h until the end of storage. The final time points
were 230 h for 4, 8 °C and the dynamic temperature conditions, and 134 h for storage at 12 °C.

For each sampling time point, duplicate samples originating from the same temperature
conditions but different trays were analyzed. Each sample (tray) was subjected to the following
analyses: (i) microbiological analysis and pH measurements; (ii) sensory analysis; (iii) Fourier
transform infrared (FTIR) spectroscopic measurements; (iv) near infrared (NIR) spectroscopic
measurements; (v) fluorescence (FLUO) spectroscopic measurements; (vi) visible (VIS)
spectroscopic measurements; and (vii) multispectral image (MSI) acquisition. Different
pineapple parts of the same tray were used for the microbiological analysis to prevent any
contamination of the samples during the spectroscopic measurements. Four independent
storage experiments were conducted, using four different batches of pineapple. In the case of
the fourth experimental replication and only for FLUO and VIS data, the corresponding
spectroscopic measurements were carried out every 24 h throughout storage. Moreover, the
NIR measurements were performed only for the two pineapple batches, since the sensor was
not available for all the experimental period. Consequently, the total number of samples for
FTIR and MSI sensors was 424, for FLUO and VIS was 392, while for NIR was 180. However,
for TVC model development, the samples were slightly fewer, since there were no
microbiological data due to plate contamination. Specifically, the total number of samples for
TVC prediction were 417 for FTIR and MSI sensors, 385 for FLUO and VIS, and 177 for NIR.

4.2.2. Microbiological analysis and pH measurements

A 25-g portion of fresh-cut pineapple was aseptically transferred from each tray to a sterile
Stomacher bag (Seward Medical, London, UK) , diluted with 225 ml of Ringer buffer solution
(Lab M Limited, Lanchashire, UK) and homogenized for 60 sec in a stomacher device (Lab
Blender 400, Seward Medical). After the preparation of appropriate serial dilutions with Ringer

solution, the following microbial determinations were performed: total mesophilic microbial
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populations (total viable count, TVC) by the spread method on tryptic glycose yeast agar (Plate
Count Agar, Biolife, Milan, Italy) , after incubation of plates at 25°C for 72 h; yeast and moulds
by the spread method on Rose Bengal Chloramphenicol agar (RBC, Lab M Limited) and
incubation at 25°C for 3-5 days; Pseudomonas spp. by spread method on pseudomonas agar
base with selective supplement cephalothin-fucidin-cetrimide (CFC, Lab M Limited) and
incubation at 25°C for 48 h; lactic acid bacteria by pour method (with overlay) on de Man,
Rogosa and Sharpe agar (MRS, Biolife) and incubation at 30°C for 72 h; and bacteria of the
Enterobacteriaceae family by pour method (with overlay) on violet red bile glucose agar
(VRBG, Biolife) and incubation at 37°C for 24 h. The results were expressed as the average
( standard deviation, n=8) log colony forming units per gram (log CFU/g) of fruit. The pH
values of fruit samples were measured after the microbiological analysis, using a digital pH
meter (RL150, Russell pH Cork, Ireland) with a glass electrode (Metrohm AG, Herisau,

Switzerland).

4.2.3. Sensory analysis

Two staff members evaluated in duplicate the freshness rate of three different sensory features
of the samples: odour, colour, and texture. For each sensory parameter, a score was given; 1
for fresh, 2 for intermediate, and 3 for unacceptable. Finally, the samples were classified in
two classes: Class 1 for fresh (or acceptable) and Class 2 for non-acceptable pineapple samples.
The intermediate samples were also classified in Class 2 to simplify the pipeline process and

interpretation, since the samples with score 2 and 3 were commercially unacceptable.

4.2.4. FTIR spectroscopy

In parallel to microbiological analysis, FTIR spectra were collected using a ZnSe 45° HATR
(Horizontal Attenuated Total Reflectance) crystal (PIKE Technologies, Madison, Wisconsin,
United States) on a FTIR-6200 JASCO spectrometer (Jasco Corp., Tokyo, Japan) equipped
with a triglycine-sulphate (TGS) detector and a Ge/KBr beamspliter. The samples were cut in
small slices of such dimensions in order to cover the crystal and then, they were covered with
a piece of aluminum foil. The spectral data were collected over the range of 4000-400cm™ at
room temperature (22 + 2°C), using the Spectra Manager™ Code of Federal Regulations (CFR)

software version 2 (Jasco Corp.). Reference background spectra were collected every four
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sample measurements by placing and acquiring a spectral measurement of the cleaned blank
crystal. For both background and sample readings, 100 scans were accumulated at a nominal
resolution of 4 cm™. The collection time for each sample spectrum was 2 min. At the end of
each sample measurement, the crystal surface was cleaned with detergent, washed with
distilled water, dried with lint-free tissue, cleaned with acetone and finally dried with lint-free

tissue.

4.2.5. NIR spectroscopy

Spectra were acquired using a NIR spectrometer (SGS1900), developed by Fraunhofer IMPS
(Institute fiir Photonische Mikrosysteme, Dresden, Germany). The NIR spectrometer covers a
wavelength range from 1000 to 1900 nm, and it is comprised of a MEMS-based scanning
grating for spectral dispersion and an uncooled InGaAs diode for detection (Pligner, Knobbe,
Griger & Schenk, 2012). The software “Quickstep” (Hiperscan GmbH, Dresden, Germany)
was the operation software for the measurements. The organology and data acquisition

procedures have been described in detail by Tsakanikas et al. (2018).

4.2.6. VIS and FLUO spectroscopy

The UV-VIS spectrometer used was the Hamamatsu C12880MA (Hamamatsu Photonics K.K.,
Shizuoka, Japan). The device has a spectral range from 850 to 340 nm and spectral resolution
of 15 nm. It can be employed either for visible or fluorescence range spectroscopy by
switching the mode of spectrometer and changing the settings. Specifically, the scan count was
set at 10 and 3, while integration time at 250 ps and 100.000 ps for acquisition in visible and
fluorescence mode, respectively. A UV filter with 400 nm cutoff wavelength was placed in the
front of the spectrometer to obtain spectra only to the visible region. Before the samples
measurements, a dark calibration and a reference acquisition are performed. Dark calibration
Is performed with the light source off placing the spectrometer on a dark surface for both
modes. The white reference was performed with the light on using a white material (in our
case a folded piece of paper) for visible mode and a non-fluorescent reflective reference
standard (a black plastic surface) for fluorescence mode, respectively. The samples were

placed in a petri dish covering the entire surface and 10 measurements (absorbance values)
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were performed in different spots of each sample. The spectral values are expressed as the

average of the 10 measurements for each wavelength after a normalization step.

4.2.7. Multispectral Image analysis

Multispectral images were captured using the VideometerLab device in 18 different
wavelengths ranging from UV (405 nm) to short wave NIR (970 nm) (Carstensen & Hansen,
2003). The device has been commercialized by Videometer A/S. The spectral radiation is not
continuous, but operates at wavelengths 405, 435, 450, 470, 505, 525,570, 590, 630, 645, 660,
700, 850, 870, 890, 910, 940 and 970 nm. The system is first calibrated radiometrically and
geometrically using well-defined standard targets and a light setup is loaded based on the type
of the product in each fresh form. The pineapple samples were placed in a Petri dish so that its
surface was fully covered, and the dish was placed inside an Ulbricht sphere. The image
acquisition and pre-treatment processes have been described previously in detail (Panagou et
al., 2014) and have been implemented using the VideometerLab system software (version
2.12.39). For each image, the mean reflectance spectra (along with the standard deviation

values) were calculated by averaging the intensity of pixels at each wavelength.

4.2.8. Data analysis
4.2.8.1. The Unscrambler software

Multivariate data analysis was initially carried out using the data analytics software,
The Unscrambler© ver. 9.7 (CAMO Software AS, Oslo, Norway). Partial least squares
regression (PLSR) was performed for the correlation between spectral data and microbial
counts where, the spectral data were used as independent variables (X) and the TVC as
dependent variables (). This method is considered suitable for spectroscopy datasets where
the dimensionality problem exists (many variables but few samples) and also when the data
show strong collinearity and noise (Wold et al., 2001; Mehmood et al., 2012; Gromski et al.,
2015). For sensory features, since they are categorical variables, partial least squares
discriminant analysis (PLSDA) was performed (Barker & Rayens, 2003).

For MSI, both the mean reflectance values and their standard deviations (in total 36
features) were used for model development, as it is considered that the second ones contain

relevant and important information. For FTIR, PLSR was performed over the range 1800 and
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870 cm™1, since this range reflects the metabolic activity of microbial spoilage (Al-Jowder et
al., 1999; Ellis et al., 2002; Di Egidio et al., 2009). For both FLUO and VIS spectral data, the
range 700-400 nm was used for further analysis, while all the acquired spectra were used for
model development in the case of NIR.

Prior to PLSR/PLSDA, several pre-processing techniques were tested on each dataset
with the aim to minimize any irrelevant information such as noise, particle size deviations,
scattering and drifting effects (Wang et al., 2015; Dixit et al., 2017; Suhandy & Yulia, 2017;
Li et al., 2018). Specifically, for TVC prediction, standard normal variate (SNV) was the best
pre-treatment for FTIR and FLUO, while VIS spectra were subjected to first derivative
normalization with a second-order polynomial and a 9-point window. In the case of odour,
MSI and NIR data were normalized using SNV, while for texture, only FLUO data were
subjected to first derivative normalization with a second-order polynomial and a 9-point
window. Additionally, the data from all sensors were mean-centered and scaled (1/SDEV).

The data derived from isothermal storage temperatures were used for the calibration
process (training set) and those derived from dynamic temperature conditions for external
validation (test set). During the calibration process, leave-one-out cross validation in parallel
with Marten’s uncertainty test was employed in order to eliminate the risk of over-fitting and
test the predictive significance of the model, but also to select the significant X-variables
(Westad & Martens, 2000; Wold et al., 2001). The significant independent variables were
finally used for the construction of FTIR and FLUO models for texture assessment. In the case
of NIR, a random data partitioning scheme (training set: 70%, test set: 30%) and the selection
of significant wavelengths based on RFs regression ensemble (Breiman, 2001) were also used
for TVC model development. Concerning RFs feature selection, spectra were initially
normalized under the robust version of SNV, namely RNV (Barnes et al., 1989; Guo et al.,
1999).

The prediction performance of the developed PLSR models for each type of spectral
data was evaluated based on the following statistical parameters: slope (a), offset (b),
correlation coefficient (r), the root mean square error (RMSE), the normalised RMSE
(NRMSE) (Eq.1) and the coefficient of determination (R?) of the linear regression between the

predicted and measured microbial counts. For PLSDA models, the parameters for performance
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evaluation were accuracy (Eq. 2), sensitivity (Eq. 3) and specificity (Eq. 4), where positive

samples are the fresh or acceptable samples and negative samples are the non-acceptable ones.

RMSE
max(DV) — min(DV)

NRMSE =

(Eq.1)
where DV is the dependent variable (i.e. TVC).
samples correctly predicted
Accuracy = x 100
total number of samples
(Eq. 2)
o true positive samples
Sensitivity = — , x 100
true positive samples + false negative samples
(Eq. 3)
. true negative samples
Specificity = - — x 100
true negative samples + false positive samples
(Eq. 4)

4.2.8.2. SorfML platform
SorfML is a machine learning classification and regression analysis ranking system

(www.SorfML.com). Specifically, it is a free web-platform able to automate the procedure of

identifying the best machine learning method for comparing data from several analytical
techniques and predict the freshness profiles as well as counts of microorganisms responsible
for food spoilage. Using SorfML, users are able to securely upload raw experimental data
collected using rapid and/or non-invasive analytical technologies (e.g. Multi/Hyper-spectral
imaging, Electronic nose, Gas chromatography-Mass spectrometry) in CSV format, and apply
various machine learning classification and regression modelling algorithms (e.g. SVM,

Neural Network, RFs) in order to identify the best combination of analytical technology and
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machine learning algorithm to predict given bacterial species or quality indices. An indicative
workflow of the pineapple analysis followed in SorfML is presented in Figure 4.1.

The algorithms used in this study are kNN (Silverman & Jones, 1989), Ranger, a fast version
of RFs (Wright & Ziegler, 2017), linear support vector machine (SVM Linear), radial support
vector machine (SVM Radial) (Boser et al., 1992), PLSR (Wold et al., 2001) and PLSDA
(Barker & Rayens, 2003). In order to generate each model, the dataset was randomly
segmented into a training dataset for optimisation, with the 65% of the total samples, and a
testing dataset for model validation with the left 35%. The different classes of data were
equally represented in the training and test datasets. The spectral ranges used for each sensor
were mentioned above (subsection 4.2.8.1), while the raw data were also centered and scaled,
but no other data pre-processing was performed. It should be also noted that the NIR data were

not included in the analyses performed with the SorfML platform.
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Figure 4.1. Workflow of SorfML. The workflow is divided into five sections with different

colours corresponding to distinct parts of the applied methodology.

The predictive power of the developed models for sensory features was evaluated based
on the accuracy parameter, but sensitivity and specificity parameters’ values also are provided.
For TVC models, the RMSE and NRMSE (Eqg. 1) parameters for each analytical technology
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were ranked in heatmaps, while R? values also were presented. Training performance was
assessed using k-repeated fold cross-validation with a k value of 4 and a total number of 10

repetitions to choose the best parameters for each model.

4.3. Results

4.3.1. Microbiological spoilage and pH data

The initial level of TVC (mean % standard deviation, n=8) was 5.09 + 0.60 log CFU/g, while
the final populations were 7.14 = 0.50, 7.69 + 0.40, 7.52 £ 0.30 and 7.91 £0.20 log CFU/g
during storage at 4, 8, 12 °C and under dynamic conditions, respectively. Similarly, the initial
population of yeasts (mean + standard deviation, n=8) was 5.01 + 0.60 log CFU/g and reached
at the end of storage 7.07 £ 0.50, 7.67 £ 0.40, 7.53 = 0.30 and 7.78 £0.30 log CFU/g at 4, 8,
12 °C and under dynamic conditions, respectively. The microbiological analysis indicated that
the dominant spoilage group in pineapple was yeasts, with their counts coinciding with the
total mesophiles’ counts throughout storage (Figure 4.2). Bacterial population, for both
Pseudomonadaceae and Enterobacteriaceae families, was very low with no more than 3 log
CFU/g throughout storage at all the studied temperatures (data not shown). Moreover, the
population of lactic acid bacteria was not detectable with common microbiological analyses,
due to the overgrowth of yeasts on MRS agar plates even when cycloheximide was

incorporated in the medium’s formulation.
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Figure 4.2. Total viable count (TVC) (A) and yeasts populations (B) in ready-to-eat pineapple
during storage at 4 °C (e), 8 °C (m), 12 °C (#) and dynamic temperature conditions (4). The
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populations are expressed as means + standard deviations (n=8 for FTIR, UV/VIS and MSI
and n=4 for NIR).

As expected, the growth of the TVC and yeasts population was faster with increasing storage
temperatures, while the growth monitored during storage at the dynamic temperature
conditions resembled the one recorded during isothermal storage at 8 °C. As far as the pH is
concerned, the values for pineapple were quite low and similar during storage at all studied

temperatures (Table 4.1).

Table 4.1. The initial and final pH values of ready-to-eat pineapple during storage at different

temperatures.
Storage o ]
Initial pH  Final pH
temperature
4°C 3.57+£0.04
8°C 3.55+0.07
3.45 +0.05
12 °C 3.55+0.17
Dynamic 3.52+0.17

4.3.2 TVC models

Concerning TVC, the linear regression between the predicted (estimated) and the
measured (observed) TVC values is presented in Table 4.2 and Figure 4.3 for The
Unscrambler, and in Figure 4.4 for SorfML. The solid lines in Figures 4.3 and 4.4 are the ideal
y=x lines, while the dashed ones determine the £1 log unit area. Additionally, SorfML
platform provides a ranking of performance (with RMSE and NRMSE values) of the various
models developed for each analytical technology and machine learning algorithm, which is
illustrated in a heatmap plot (Figure 4.5). In Table 4.4, the R? values are also presented for
each model developed on SorfML software.
Starting with The Unscrambler, the presented NIR model (using random data partitioning
and feature selection based on RFs) was the one with the best performance among the
developed NIR models, but the poorest performance among the tested sensors. The

corresponding results for NIR were not illustrated due to poor performance. Contrarily, the a
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and b values of the linear regression between the estimated and the observed TVC values for
FTIR, MSI, FLUO and VIS had a narrow range from 0.57 to 0.61 and 2.61 to 3.00,

respectively.

Table 4.2. Performance metrics of the partial least squares reggresion models, based on the
different analytical technologies (sensors), for the total viable count prediction of ready-to-eat
pineapple on The Unscrambler software. (a: slope, b: offset, r: correlation coefficient, RMSE:
root mean square error (log CFU/g), NRMSE: normalised root mean square error (%), R

coefficient of determination)

Data a b r RMSE NRMSE R?
FTIR 0.61 2.61 0.70 0.59 13.43 0.43
NIR 0.27 5.05 0.44 0.52 11.84 0.15
MSI 0.61 2.78 0.74 0.53 12.06 0.54
FLUO 0.59 2.96 0.77 0.51 11.61 0.58
VIS 0.57 3.00 0.77 0.51 11.61 0.58

Additionally, the RMSE and NRMSE values were quite low for these sensors. Actually, the
RMSE values were close to 0.5 log CFU/g. The R? values were under 0.6 for the four sensors,
while the r value ranged from 0.70 to 0.77. The FLUO and VIS models exhibited the highest r
and R? values, as well as the lowest RMSE and NRMSE values. The number of components

selected for each PLSR model are presented in Table 4.3.
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Figure 4.3. Linear regression between the predicted and the measured by the partial least
squares regression model, total viable count (TVC) values of prediction based on FTIR (A),
MSI (B), FLUO (C) and VIS (D) data for ready-to-eat pineapple, using The Unscrambler
software (solid line: the ideal y=x line; dashed lines: the + 1 log unit area). The corresponding

results for NIR were not illustrated due to poor performance.

In SorfML, RMSE values for all the studied sensors and algorithms were also below 1
log CFU/g. For almost all sensors, PLSR and SVM Linear algorithms exhibited the lowest
values of RMSE (and NRMSE), with a range from 0.58 to 0.64 log CFU/g and the highest R?
values, with a range from 0.41 to 0.50. On the other hand, Ranger, kNN and SVM Radial
exhibited the highest RMSE values, above 0.65 log CFU/gr, as well as the lowest R? values.
The regression lines between the estimated and the measured TVC values for non-linear
models are not presented in Figure 4.4. The best model accuracy was achieved through the
PLSR model combined with FLUO spectral data, showing the lowest RMSE/NRMSE values
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and the highest R? values. The tuning parameters selected for each model in SorfML software

are presented in Table 4.5.

Table 4.3. Number of latent variables for partial least squares regression (PLSR) and partial

least squares discriminant analysis (PLSDA) models developed for the total viable count and

sensory features prediction of ready-to-eat pineapple on The Unscrambler software.

Feature Sensor PLSR/PLSDA | Feature Sensor PLSR/PLSDA
nc nc
FTIR 7 FTIR 6
NIR 3 NIR 1
TVC MSI 11 Odour MSI 10
FLUO 7 FLUO 6
VIS 12 VIS 7
FTIR 7 FTIR 5
Colour VS| > Texture VS| !
FLUO 6 FLUO 3
VIS 7 VIS 6

*nc: number of components

119



=) ] ~ o 7]

(8/n4D 301 DAL pajeumsy

10

(=] =) -] r~ N-] i

(3/0.4D 8op) DAL pajermsg

10

4

10

4w

ed TVC (log CFU/g)

Observ

Observed TVC (log CFU/g)

10

=)}

] [l o W

(8/14D 801) DAL pajeumsy

10

=)}

-] -~ A W

(8/1:10 Sop) DAL poyeumysy

10

w

10

w

Observed TVC (log CFU/g)

Observed TVC (log CFU/g)

(=]
-

=)

-] [ N-] w

(8/1:12 Sop) DAL poyeumysy

(=]
-

=)

-] [ N-] i

(8/1:1D Sop) DAL poyeumysy

10

"

10

"

Observed TVC (log CFU/g)

ed TVC (log CFU/g)

Observ

120



D) 10 D ii)

Estimated TVC (log CFU/g)
*
L)
'
*
Estimated TVC (log CFU/g)
L]
o 0

4 5 6 7 8 9 10 4 5 6 7 8 9 10
Observed TVC (log CFU/g) Observed TVC (log CFU/g)

Figure 4.4. The linear regression between the predicted and the measured total viable count
values by i) support vector machine (SVM) Linear and ii) partial least squares regression
(PLSR) models, based on FTIR (A), MSI (B), FLUO (C) and VIS (D) data for ready-to-eat
pineapple, using SorfML software (solid line: the ideal y=x line; dashed lines: the £ 1 log unit

area).
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Figure 4.5. Performance heatmap of the different models developed for each analytical

technology for the total viable count prediction of ready-to-eat pineapple. In the heatmap, the

rows correspond to the five different algorithms, while the columns to the four different

analytical technologies. The root mean square error (RMSE: log CFU/g) and normalized root

mean square error (NRMSE: %) values are presented. The colour key depicts the extreme

intensity for the extreme values. The colour key begins from green (higher performance) to red

(lower performance).

Table 4.4. The coefficient of determination (R?) of the models derived from the various

combinations of the different analytical technologies (sensors) and algorithms, for the total

viable count prediction of ready-to-eat pineapple using the SorfML software.

Sensor Algorithm R? | Sensor Algorithm R?
KNN 0.07 KNN 0.22
Ranger 0.16 Ranger 0.19
FTIR SVMLinear 0.42 | FLUO SVM Linear 0.46
SVM Radial 0.12 SVM Radial 0.39
PLSR 0.42 PLSR 0.5
KNN 0.09 KNN 0.08
Ranger 0.13 Ranger 0.21
MSI SVM Linear 0.44 | VIS SVM Linear 0.48
SVM Radial 0.12 SVM Radial 0.26
PLSR 0.41 PLSR 0.27
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Table 4.5. Tuning parameters used in the development of the different models for the total

viable count and sensory features prediction of ready-to-eat pineapple using the SorfML

software.
VM VM PLSR
Mode|  SENSOTY kNN Ranger I_Sinear RSadiaI PLSSDA
Feature k mtry splitrule mir;.irzlgde C sigma ¢ nt
TVC 13 | 963 variance 5 1 0.03 4 7
Colour 5 7  extratrees 1 1 0.02 1 8
FTIR Odour 23 | 620 gini 1 1 0.02 128 7
Texture 9 11  extratrees 1 1 0.01 0.25 7
TVC 17 31  variance 5 1 0.05 2 11
MSI Colour 23 2  extratrees 1 1 005 025 | 5
Odour 11 26 gini 1 1 0.06 16 14
Texture 15 2  extratrees 1 1 0.06 0.5 14
TVC 33 122  extratrees 5 1 0.01 8
Colour 9 67 gini 1 1 001 05
FLUO -
Odour 17 57 gini 1 1 0.01 4
Texture 11 113 gini 1 1 0.01 32 11
TVC 27 94  variance 5 1 0.02 4
VIS Colour 5 2  extratrees 1 1 0.02 05 5
Odour 5 104 gini 1 1 0.02 16 11
Texture 5 85 gini 1 1 0.02 4 15

KNN: k=number of neighbours considered,

Ranger: mtry=number of variables to possibly split at in each node, splitrule=splitting rule,
min.node.size=minimal node size,

SVM: c=cost of constraints violation, sigma=scale parameter of the hypothesized (zero-mean)
Laplace distribution estimated by maximum likelihood

PLSR/PLSDA: nt=number of components

4.3.3. Sensory models
Due to the limited data used for sensory analysis, the corresponding results are

presented as supplementary information. Table 4.6 presents the number of acceptable and non-
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acceptable (in terms of freshness) samples for the three sensory features. It should be noted
that for colour and texture, the number of fresh samples are four and three times higher than
that of non-acceptable, while for odour, the samples are more equally distributed to both
classes. Therefore, it seems that odour is the quality attribute that better reflects the spoilage
of pineapple compared to the colour and texture. The prediction performances of the models
developed for each one of the tested analytical technologies are summarized in Table 4.7 for
The Unscrambler and the number of components selected for each PLSR model are presented
in Table 4.3. The accuracy ranking of models generated for sensory features using the SorfML
software is illustrated in Figure 4.6, while Table 4.8 provides the corresponding values of
sensitivity and specificity.

For The Unscrambler, none of the models reached 90% of accuracy. The models for
texture prediction had the lowest accuracy values, while for colour and odour, exceeded 80%

for almost all the sensors (apart from FTIR and NIR in the case of odour).

Table 4.6. Total number of the measured fresh (acceptable) and non-acceptable samples for

each sensory feature.

Number of
Sensory  Number Total
Sensor Non-
Feature of Fresh Number
Acceptable
Colour 333 91
FTIR/ Odour 147 277 424
MSI Texture 314 110
Colour 314 78
FLUO Odour 143 249 392
I VIS  Texture 292 100

However, in the case of colour, the satisfactory accuracy values of models were not followed
by similar sensitivity and specificity values. As far as the odour prediction is concerned, FLUO

model is the only model, which has the highest values of both sensitivity (88.46%) and
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specificity (85.90%), and the highest value of accuracy (86.54%) among the analytical

technologies.

Table 4.7. Performance metrics of the partial least squares discriminant analysis models based
on the different analytical technologies (sensors), for the sensory features prediction of ready-

to-eat pineapple using The Unscrambler software.

Sensory Accuracy Sensitivity Specificity

Sensor
Feature (%) (%) (%)
Colour 83.04 97.62 39.29
Odour 76.79 50.00 84.88
FTIR
Texture 72.32 90.00 28.13
NIR Odour 71.43 18.18 90.32
Colour 85.71 100 42.86
Odour 83.04 61.54 89.53
MSI
Texture 72.32 95.00 15.63
Colour 84.62 93.67 56.00
Odour 86.54 88.46 85.90
FLUO
Texture 70.19 90.54 20.00
Colour 81.73 98.73 28.00
Odour 83.65 57.69 92.31
VIS
Texture 68.27 90.54 13.33

In SorfML, the accuracy percentage of all the models generated for all of the three
features, did not exceed 89.23%. As far as the colour and texture are concerned, the models
with accuracy values above 80% showed also high sensitivity and low specificity. For odour,
FLUO combined with PLSDA, SVM Radial and SVM Linear, but also MSI combined with
SVM Linear, showed the highest accuracy values. The combinations with the best accuracy,

sensitivity and specificity values were FLUO and PLSDA, as well as MSI and SVM Linear.
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Figure 4.6. Performance heatmaps of the different models developed for each analytical
technology for the Colour (A), Odour (B) and Texture (C) prediction of ready-to-eat pineapple.
In each heatmap, the rows correspond to the five different algorithms, while the columns to

the four different analytical technologies. The accuracy (%) values are presented for the
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sensory features. The colour key depicts the extreme intensity for the extreme values. The

colour key begins from red (lower performance) to green (higher performance).

4.4, Discussion

The introduction of spectroscopic and optical sensing (computer vision) methods in
food science and their growing application in a wide range of food products is becoming a
clear trend during the last decade. Although these analytical techniques offer rapid and in many
cases efficient answers in a non-destructive way, the management and analysis of data and the
interpretation of results are still a great challenge (Zhou et al., 2019).

Data analysis tools is a set of technology that enable users to analyze and visualize data
in order to identify trends and correlations with the goal of supporting decision making.
Therefore, data analysis software is considered to be a central requirement for any sector /
business (Vassakis et al., 2018). Although a large number of tools are available nowadays,
only a limited number of these have proven to be useful for food science. The two applied
statistical software, The Unscrambler and SorfML, provide a user-friendly and easy-to-use
interface for analyzing large experimental datasets. These automated software also provide the
opportunity for scientists, let alone food microbiologists with limited statistical and
mathematical knowledge, to perform the challenging task of data mining and predictive
modelling. However, the users are responsible for learning the advantages and the limitations
of each tool and also realize that conflicting outputs are even possible (Nunes et al., 2015).

The Unscrambler software provides the option of limited in number and only linear
algorithms, namely PLSR and PLSDA. On the other hand, SorfML platform offers the wide
option of choosing linear and non-linear algorithms often used in data analysis. The approach
of using different algorithms for the same data, allows comparing the performance of each
created model and evaluate their suitability for different scenarios (Estelles-Lopez et al., 2017).
Apart from algorithms, the big differences between the two data analytics tools lie in the
partitioning of data in training and external validation sets, the pre-processing of data and the
cross-validation method.

Starting with data partitioning when using The Unscrambler, model testing was
performed on samples stored in dynamic temperature conditions, since these data include the

information from all temperatures and are also considered as a simulation of real life in the
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food supply chain (Tsakanikas et al., 2018). On the other hand, in SorfML, the data were
randomly segmented ensuring that all temperature and storage time groups were equally
represented in both datasets and finally provided a less biased selection of sample. Furthemore,
using The Unscrambler, various pre-processing methods were tested and those with the best
results were finally applied. The purpose was to remove the irrelevant information from data
and facilitate their interpretation. However, in SorfML, the data were subjected to the
minimum treatment, with the aim not to lose important information. As far as the cross
validation was concerned, leave-one-out (or full-cross) was used in the The Unscrambler,
while k-fold cross-validation was used in SorfML. Full-cross validation is a common method,
where all samples are used in an exhaustive way providing repeatability of the results, but also
may lead to over-optimistic results. On the other hand, a k-fold partitioning could potentially
result in folds where samples are not represented in an equal manner (Ropodi et al., 2016).

Besides all these different approaches, the summarized results indicated similar trends
about the ability of the studied sensors and algorithms to assess the quality of RTE pineapple.
Specifically, for TVC assessment, all acquired spectral data (apart from NIR in The
Unscrambler and VIS in SorfML) combined with PLSR algorithm showed satisfactory
performance in both The Unscrambler and SorfML. In The Unscrambler, the best models with
slight differences compared to the others, were the ones based on FLUO and VIS data. In
SorfML, FLUO and PLSR combination also exhibited the best performance with slight
differences compared to the other PLSR models. Apart from the PLSR algorithm, the SVM
Linear combined with every sensor was also appropriate for TVC prediction. Contrarily, non-
linear algorithms, tested in SorfML, did not manage to predict the spoilage of RTE pineapple.
In the case of NIR, the model performance was poor compared to the other sensors, indicating
that this analytical technology is not appropriate for the evaluation of the microbiological
spoilage of pineapple.

An important observation on these results, is that the R? values were quite low even
for the best model performances. It could be argued that according to these low R? values the
prediction performance is poor. However, the variability present in the data strongly
influences this parameter. Indeed, the variability among the experimental replications
(batches), as well as between the two biological replicates (duplicate samples) of the same

experimental replication was rather high (data not shown). This excessive variability is very
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common in plant origin products due to their natural variability and the strong impact of
various factors such as, cultivar, geographical region, agricultural practices and post-harvest
factors (i.e. processing, storage) results in large spectral and microbiological variations (Rico
et al., 2007; Zhang et al., 2018). Although, there is no guarantee that a high value of R? is
indicative of the ‘goodness of fit’, a low value of this parameter is most problematic when
precise predictions are necessary (Granato et al., 2014). In food microbiology, 0.5 log
deviations in microbial counts are common even within the same laboratory, but also RMSE
values under 1 log CFU/g are acceptable for food microbiology applications (Tsakanikas et
al., 2018). In the present study, most of the predictions of the best-performing models
presented in this study were within this limit. However, large datasets containing more
variability should be obtained in order to develop more universal and accurate models for
better assessment of the studied phenomenon.

For sensory features, the results were presented in order to reveal a potential trend which
would be helpful for further investigation. The results derived from the two platforms showed
similar conclusions. Regarding the low number of non-acceptable over the fresh samples for
colour and texture, the models generated by both software were biased over the fresh samples.
Consequently, the presence of a dataset with a more balanced proportion of the two classes,
could possibly result in better model performances and safer conclusions for colour and texture
assessment. For odour, the most representative of spoilage attribute, FLUO data and PLSDA
algorithm emerged as one of the most appropriate combinations for both tools. Additionally,
SorfML software indicated that the combination of MSI and SVM Linear may be also

appropriate for odour assessment in pineapple.
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Table 4.8. The specificity and sensitivity values of the partial least squares discriminant analysis models, derived from the various

combinations of the different analytical technologies (sensors) and algorithms, for the sensory features prediction of ready-to-eat

pineapple on SorfML software. The accuracy values are presented in heatmaps.

Sensor  Algorithm Sensory  Sensitivity Specificity | Sensor Algorithm Sensory  Sensitivity Specificity
Feature (%) (%) Feature (%) (%)
Colour 91.15 10.71 Colour 95.61 46.43
kNN Odour 24.00 80.82 kNN Odour 58.00 76.71
Texture 99.06 10.71 Texture 97.17 21.43
Colour 92.04 14.29 Colour 99.12 42.86
Ranger Odour 46.00 72.60 Ranger Odour 48.00 87.67
Texture 93.40 28.57 Texture 97.17 17.86
” Colour 99.11 28.57 _ Colour 100.00 21.43
= SVM Linear Odour 74.00 73.97 ‘§ SVM Linear Odour 84.00 86.30
L Texture 99.06 17.86 Texture 93.40 32.14
Colour 97.35 10.71 Colour 93.86 50.00
SVM Radial Odour 36.00 75.34 SVM Radial  Odour 50.00 80.82
Texture 100.00 10.71 Texture 98.11 14.29
Colour 92.92 39.29 Colour 100.00 35.71
PLSDA Odour 82.00 75.34 PLSDA Odour 78.00 82.19
Texture 96.23 10.71 Texture 91.51 35.71
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Table 4.8 (continued)

Sensor  Algorithm Sensory  Sensitivity Specificity | Sensor Algorithm Sensory  Sensitivity Specificity
Feature (%) (%) Feature (%) (%)
Colour 98.15 39.13 Colour 95.33 34.78
kNN Odour 83.67 75.00 kNN Odour 57.14 59.38
Texture 95.00 12.50 Texture 87.88 25.00
Colour 97.22 39.13 Colour 96.26 21.74
Ranger Odour 67.35 84.38 Ranger Odour 65.31 84.38
Texture 97.00 29.17 Texture 92.93 25.00
o Colour 100.00 26.09 Colour 95.33 60.87
3 SVVM Linear Odour 79.59 90.63 g SVM Linear Odour 73.47 76.56
L Texture 100.00 8.33 Texture 86.87 33.33
Colour 97.22 30.43 Colour 97.20 34.78
SVM Radial  Odour 79.59 92.19 SVM Radial Odour 63.27 64.06
Texture 97.00 29.17 Texture 97.98 12.50
Colour 99.07 26.09 Colour 98.13 26.09
PLSDA Odour 85.71 85.94 PLSDA Odour 81.63 71.88
Texture 93.00 33.33 Texture 94.95 33.33
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4.5. Conclusions

The implementation of different data analytics tools requires good knowledge of their
range of applications and limitations and the results should always be evaluated critically.
According to the the results of this study, both The Unscrambler and SorfML revealed similar
trends for the various sensors. Specifically, the assessment of pineapple spoilage could be
potentially achieved by the various spectroscopy-based technologies studied, namely FTIR,
FLUO, VIS as well as MSI, but not the NIR sensor. As far as the sensory features are
concerned, the odour could be possibly assessed by FLUO spectroscopy, provided that a more
integrated and representative analysis is conducted in the future. The findings of this work also
demonstrate that the comparative application and evaluation of various algorithms may lead to
new options and more reliable results.

However, the design of large-scale experiments containing a satisfactory level of
variability and the conduction of further research on data analysis including significant feature
(wavelength/wavenumber) selection and data fusion strategies are needed. All the above will
contribute to the development of even more robust and accurate models for microbiological
spoilage of RTE pineapple aiming to the future replacement of the conventional

microbiological methods.
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Chapter 5
Abstract

Based on both new and previously collected experimental data (Tsakanikas et al., 2018),
the present study provides a comparative assessment of sensors and machine learning
approaches for evaluating the microbiological spoilage of ready-to-eat leafy vegetables (rocket
and baby spinach) stored under passive modified atmosphere packaging (MAP). Fourier
transform infrared (FTIR), near-infrared (NIR), visible (VIS) spectroscopy and multispectral
imaging (MSI) were used. Two data partitioning approaches and two algorithms, namely
partial least squares regression and support vector regression (SVR) based on radial basis
function (RBF) kernel, were evaluated. Moreover, the abovementioned spectroscopy-based
technologies were applied for microbiological spoilage assessment of baby spinach stored
under active MAP. Concerning baby spinach, when model testing was performed on samples
randomly selected, the performances were better or similar to the one attained when testing
was performed based on dynamic temperatures data, depending on the applied analytical
technology. The two applied algorithms yielded similar model performances for the majority
of baby spinach cases. Regarding rocket, the random data partitioning approach performed
considerably better results in almost all cases of sensor/algorithm combination. Furthermore,
SVR algorithm resulted in considerably or slightly better model performances for the FTIR,
VIS and NIR sensors, depending on the data partitioning approach. However, PLSR algorithm
provided better models for the MSI sensor. Overall, the microbiological spoilage of baby
spinach stored under passive MAP was better assessed by models derived mainly from the VIS
sensor, while FTIR and MSI were more suitable in rocket. On the contrary, FTIR and MSI
were more appropriate for baby spinach stored under active MAP. The results indicated that a
distinct sensor and computational data analysis workflow is needed, not only for each

vegetable type but also, for the different packaging conditions.
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5.1. Introduction

In the last decades, fresh-cut produce supply is one of the growing industries of the
agro-food sector, worldwide (Sandhya et al., 2010). Ready-to-eat (RTE) vegetable salads
constitute a major category of the fresh-cut market, since their production and variety show a
progressive increase over the years, due to important changes in consumers’ lifestyle (Arienzo
et al., 2020). Nowadays, modern food preferences include healthy, nutritious, minimally
processed, but at the same time convenient food products (Qadri et al. 2015; Chaudry et al.,
2018).

Despite the health benefits of consuming raw vegetables, these commodities are
considered highly perishable (Leff & Fierer, 2013). The mild processing operations applied to
RTE vegetable salads accelerate the physiological deterioration process, the evolution of
biochemical changes, while at the same time enhancing microbial contamination and
degradation of microbial etiology (Lunadei et al., 2012; Qadri et al., 2015). Since fresh
produce commodities are naturally contaminated with a large amount of spoilage
microorganisms, proliferation of spoilage microorganisms may considerably affect the already
limited shelf-life of these commaodities resulting in remarkably high economic losses (Granato
et al., 2018; Giannoglou et al., 2020). Therefore, the development of effective and rapid food
spoilage detection methods may be very supportive for the purpose of quality management in
the fresh-cut produce industry (Wang et al., 2018).

The exploration for rapid analytical techniques has become an important research topic
for the assessment of food safety and quality. Compared to conventional microbiological
methods, spectroscopy and imaging approaches have become popular and rather attractive due
to minimal sample preparation, non-destructive sampling, rapid data acquisition, as well as in-
, on- and at-line detection potential (Nychas et al., 2016; Wang et al., 2018). However, the
massive amount of data derived from such analytical approaches pose an important challenge
for data mining and analysis purposes, usually demanding a multidisciplinary approach. For
this reason, such technologies are commonly coupled with advanced computational methods
including chemometrics, machine learning approaches and artificial intelligence techniques
(Jollife & Cadima, 2016; Ropodi et al., 2016; Truong et al., 2019; Tsakanikas et al., 2020).

Advances in data science have introduced various machine learning approaches, applied

in tandem with the above analytical technologies for the qualitative and/or quantitative
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evaluation of the microbiological spoilage of various food products, including mainly meat
products (Argyri et al., 2013; Grewal et al., 2015; Oto et al., 2013; Panagou et al., 2014;
Fengou et al., 2019a; Spyrelli et al. 2020) but also fish (Duan et al., 2014; He & Sun, 2015a;
He & Sun, 2015b; Saraiva et al., 2016; Fengou et al., 2019b), and to a lesser extent, dairy
products (Nicolaou & Goodacre, 2008; Lianou et al., 2019), fruits (Di Egidio et al., 2009; De
Sousa Marques et al., 2013; Al-Holy et al., 2015; Manthou et al., 2020) and vegetables (Wang
et al., 2010; Tsakanikas et al., 2018). However, it is often challenging to select the appropriate
combinations of analytical technologies and machine learning approaches and, thus,
comparative evaluation for choosing the best approach for specific type of data is still needed
(Cozzolino et al., 2015; Estelles-Lopez et al., 2017).

Beyond this, the application of analytical technologies for the evaluation of the
microbiological quality of fresh-cut produce is limited in the scientific literature. In this
context, the objective of the present study was the comparative assessment of non-invasive
sensors and machine learning approaches for evaluating the microbiological spoilage of RTE
leafy vegetables when stored at passive and/or active modified atmosphere packaging (MAP)
conditions. For this purpose, four analytical technologies, based on Fourier transform infrared
(FTIR), near-infrared (NIR) and visible (V1S) spectroscopies as well as multispectral imaging
(MSI), were used for the assessment of microbiological quality of RTE rocket and baby
spinach salads. Although part of the experimental data (derived from FTIR, NIR and VIS) was
previously generated by Tsakanikas et al. (2018), different computational analysis was applied
herein, while a considerable dataset enrichment via new experimental measurements also was
performed. With reference to data analysis, two machine learning algorithms and two distinct
data partitioning approaches were utilized. To the best of our knowledge, this is the first time
that different analytical technologies and machine learning approaches are comparatively
evaluated for the purpose of assessing the microbiological quality of vegetable products, with
the ultimate goal of choosing the optimum combination in terms of model prediction

performance.
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5.2. Materials and Methods

5.2.1. Samples and storage conditions

Fresh-cut and washed RTE rocket and baby spinach salads were purchased from a local
manufacturer (Athens) and transported to the laboratory within 24 h from production. The
vegetables were packaged in plastic bags each one containing 85-g or 125-g portions of rocket
or baby spinach leaves, respectively. Baby spinach and rocket samples were stored in their
original commercial packaging under passive MAP due to their respiration, while some
samples of baby spinach were also stored under active MAP. The latter were enclosed in plastic
packages (length: 25 cm, width: 25 cm, thickness: 90 um, permeability of ca. 25, 90, 6 cm® m-
2day-1bar-1(1 bar=10°Pa), at 20 °C and 50% RH for CO:, O2 and N2, respectively) and flushed
with 95%0: and 5%CO- using a HenkoVac 1900 Machine (Howden Food Equipment BV, The
Netherlands). According to Allende et al. (2004), the super atmospheric O, treatment seems to
contribute to lower tissue electrolyte leakage and higher overall quality scores and reduce
aerobic mesophilic growth. The samples from both packaging conditions were stored at three
different constant temperatures, namely 4, 8 and 12 °C, in high precision (x0.5) programmable
incubators (MIR-153, Sanyo Electric Co., Osaka, Japan). The baby spinach and rocket samples
stored under passive MAP were also stored under dynamic temperature conditions (8 h at 4
°C,8hat8 °Cand 8 h at 12 °C), The temperature was recorded at 15-minutes intervals using
electronic temperature devices (COX TRACER®, Cox Technologies Inc., Belmont, NC,
USA). At regular time intervals, depending on the applied storage temperature and the
packaging conditions, duplicate samples (originating from different packages) were subjected
to the following analytical procedures: (i) microbiological analyses and pH measurements; (ii)
FTIR spectroscopy measurements; (iii) VIS spectroscopy measurements, (iv) NIR
spectroscopy measurements, and (v) MSI acquisition.

In the case of passive MAP, two independent experimental replications were conducted
for baby spinach and three for rocket. A total of 265 rocket samples and 216 baby spinach
samples were analysed. In the third experimental replication of rocket, dynamic conditions
were not applied. Part of the above experimental data (referring to the FTIR, NIR and VIS
sensors) were previously utilized in the development of a unified spectra analysis workflow
(Tsakanikas et al., 2018). Nonetheless, the originally generated dataset has been enriched both

qualitatively (via the addition of MSI) and quantitatively (the third experimental replication in
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rocket), whereas a distinct computational analysis procedure has been embraced in the
framework of the present study. With regard to baby spinach stored under active MAP, two
independent experimental replications were conducted and the microbiological spoilage was
assessed through FTIR and MSI; a total of 120 samples were analysed for both sensors, since

no dynamic conditions were applied.

5.2.2. Microbiological analyses, pH and gas composition measurements

Prior to microbiological analyses, the O2/CO, composition inside the packages was
measured using a headspace gas analyzer (CheckMate 9900, PBI Dansensor, Denmark).
Subsequently, a 25-g portion of fresh-cut vegetable was aseptically transferred from each
plastic bag to a sterile Stomacher bag (Seward Medical, London, UK), diluted with 225 ml of
quarter-strength Ringer’s solution (Lab M Limited, Lanchashire, UK) and homogenized for 60
sec in a stomacher device (Lab Blender 400, Seward Medical). Appropriate serial decimal
dilutions were prepared in Ringer’s solution and were surface plated on tryptic glycose yeast
agar (Plate Count Agar, Biolife, Milan, Italy) for the determination of the total mesophilic
microbial population (total viable count, TVC). Presumptive Pseudomonas spp. were also
enumerated by surface plating on pseudomonas agar base with selective supplement
cephalothin-fucidin-cetrimide (CFC, Lab M Limited). The plates were incubated at 25 °C for
72 h and 48 h for TVC and Pseudomonas spp., respectively. Additional microbial
determinations were performed, including lactic acid bacteria (LAB) by pour method (with
overlay) on de Man, Rogosa and Sharpe agar (MRS, Biolife) and incubation at 30°C for 72 h;
and bacteria of the Enterobacteriaceae family by pour method (with overlay) on violet red bile
glucose agar (VRBG, Biolife) and incubation at 37°C for 24 h. The results were expressed as
the average (z standard deviation) log colony forming units per gram (log CFU/qg) of vegetable.
Upon completion of the microbiological analyses, the pH values of the vegetable samples were
measured with a digital pH meter (RL150, Russell pH Cork, Ireland) with a glass electrode
(Metrohm AG, Herisau, Switzerland).

5.2.3. Spectroscopy and multispectral imaging technologies
All the analytical technologies (sensors) used in the present study have been previously

described in Chapter 4.
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5.2.4. Data analysis

Prior to model development, specific spectral ranges were selected for each one of the
analytical technologies. The selected wavenumbers for FTIR were in the range of 1800-870
cm?, since this range is expected to depict chemical changes related to the metabolic activity
of spoilage microorganisms (Al-Jowder et al., 1999; Ellis et al., 2002; Di Egidio et al., 2009).
The wavelength range of 700-400 nm was selected for the VIS spectral data, while for NIR all
the available spectrum was used in further analyses. As far as MSI is concerned, both the mean
reflectance values (18 wavelengths) and their standard deviations (in total 36 features) were
used, since standard deviation contains relevant and useful information. All spectral data were
normalized under the robust version of Standard Normal Variate (SNV) scheme, aiming at
correcting spectra for light scatter and adjusting for baseline shifts among samples (Barnes et
al., 1989; Guo et al., 1999). The spectral/imaging data were used as independent variables (X),
while the TVC and Pseudomonas spp. populations as dependent variables (Y) for the purpose
of model development.

For each one of the tested analytical technologies, two data partitioning approaches and
two machine learning algorithms were employed and their performance was compared. With
reference to data partitioning, the data corresponding to the dynamic temperature conditions
were used for external model validation (test set) or, alternatively, a random partitioning of
data in training (80%) and test (20%) sets was followed. The machine learning algorithms
evaluated herein were: (i) the linear partial least squares regression (PLSR) algorithm, since it
is considered suitable for spectroscopy datasets (Mehmood et al., 2012; Wold et al., 2001); and
(i) the support vector regression (SVR) algorithm based on the radial basis function (RBF)
kernel, which are among the most popular statistical methods (Cortes & Vapnik 1995; Kiala
et al., 2016). In the case of the baby spinach stored under active MAP, only PLSR and random
data partitioning were performed since there were no data derived from dynamic conditions.

The performance of the developed PLSR and SVR models for each analytical
technology was evaluated based on the statistical parameters of slope (a), offset (b), root mean
square error (RMSE) and the coefficient of determination (R-squared, R?) of the linear

regression between the predicted and actual (measured) microbial counts.
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5.3. Results and Discussion

5.3.1. Microbiological spoilage and pH data for vegetables stored under passive
MAP

The initial level of TVC (mean + standard deviation, n=4) for baby spinach was 6.99 +
0.23 log CFU/g, while the final levels were 8.39 + 0.20, 8.26 + 0.05, 8.69 + 0.32 and 8.04 +
0.12 log CFU/g at 4 °C, 8 °C, 12 °C and dynamic temperature conditions, respectively (Figure
5.1). The Pseudomonas spp. populations had no more than an average of 0.6 log units
difference from the TVC throughout storage. On the other hand, the average level of the
Enterobacteriaceae family and lactic acid bacteria (LAB) for baby spinach throughout storage
and at all storage temperatures was below 6.0 and 4.0 log units, respectively (data not shown).
All the above indicate that Pseudomonas spp. are the main spoilage microorganisms in baby
spinach. With regard to rocket, the initial TVC was 6.63 £ 1.13 log CFU/g, while the TVC
recorded at the final stages of storage was 8.03 £ 0.34, 8.70 £ 0.36, 8.81 £ 0.14 and 8.56 + 0.34
log CFU/g at 4 °C, 8 °C, 12 °C and dynamic temperature conditions, respectively. The average
level of LAB did not exceed 5.5 log units throughout storage and at all temperatures, while the
members of the Enterobacteriaceae family reached a final average concentration of not more
than 7.5 units (data not shown). Consequently, Pseudomonas was also identified as the main
bacterial genus associated with rocket spoilage, with even smaller differences from the TVC
compared to baby spinach. The dominance of Pseudomonas in fresh-cut and RTE salads has
also been reported by other researchers in the scientific literature (Conte et al., 2008; Tsironi
et al., 2017; Giannoglou et al., 2020). Even though the initial TVC and Pseudomonas
populations were higher in baby spinach, the microbial populations in rocket reached higher
final values for all studied temperatures, except for 4 °C. As expected, the microbial growth
was faster at increasing storage temperatures, particularly in the case of rocket as also observed
by other investigators (Gu et al., 2018; Giannoglou et al., 2020). Interestingly, the microbial
loads of both vegetables were remarkably high even from the beginning of storage. Similar or
even higher initial microbial concentrations have been reported by other researchers for both
minimally processed produce commodities (Lopez-Velasco et al., 2010; Medina et al., 2012;
Rosberg et al., 2020). However, the range between the initial and the final TVC or
Pseudomonas counts in baby spinach is considerably narrow, namely less than 1.5 log CFU/g.

For rocket, the initial and final values lie in an average range of more than 2 log CFU/g, except
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for samples stored at 4 °C. Giannoglou et al. (2020) and Rosberg et al. (2020) have also
observed this microbiological range in minimally processed rocket and spinach.

A considerably high variation of TVC and Pseudomonas counts was observed among
the different experimental replications (different batches) of vegetables but also between the
two biological replicates (duplicate samples originating from different packages), in both
vegetables but mainly in rocket (Figure 5.1). Indeed, the large variation in microbial
populations among the different batches can be attributed to a range of pre-harvest factors,
such as genotype, maturity stage, growing and harvesting conditions, but also to post-harvest
and pre-processing operations (e.g., washing, drying and packaging) (Martinez-Sanchez et al.,
2006; Conte et al., 2008; Medina et al., 2012; Garrido et al., 2015). On the other hand, the
differences observed between the duplicate samples tested at each sampling interval within a
certain batch can only be regarded as indicative of the extensive biological variability
characterizing the microbiota of fresh produce (Rico et al., 2007). It has been opined that
produce commodities are also subject to within plant variability (spur age, crop load, plant age
and location). Consequently, the great variation in microbial counts observed within same-
brand products with identical “use by” dates tested on the same day, may be justifiable for such
reasons too (Valentin-Bon et al., 2008).
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Figure 5.1. Total viable count (TVC) (Al), Pseudomonas spp. populations (A2) in ready-to-
eat (RTE) baby spinach and TVC (B1), Pseudomonas spp. populations (B2) in RTE rocket
during storage at 4 °C (e), 8 °C (m), 12 °C (@), and dynamic temperature conditions ( A ) stored
under passive modified atmosphere packaging. The populations are expressed as means +

standard deviations (n=4 for baby spinach and n=6 for rocket).

With reference to the pH of the studied vegetables, although the initial values were
similar between the two RTE products, the pH of baby spinach finally reached higher values
than those recorded for rocket, at all four different temperature conditions (Figure 5.2). A
considerable pH increase was observed during baby spinach storage at 12 °C potentially
associated with the proteolytic activity of bacterial species belonging to the genus
Pseudomonas. Nonetheless, no remarkable differences were overall observed in the pH values

of rocket among the different temperatures throughout storage.
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Figure 5.2. The pH values of ready-to-eat baby spinach (A) and rocket (B) during storage at
4°C (o), 8°C (m), 12 °C (@), and dynamic temperature conditions ( A) stored under passive
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modified atmosphere packaging. The pH values are expressed as means + standard deviations

(n=4 for baby spinach and n=6 for rocket).

The changes in atmosphere composition inside the packages of leafy vegetables are also
presented in Figure 5.3. The initial Oz concentration in baby spinach was lower (3%) than that
of rocket, while the initial level of CO, was higher (1.5%). The final gas compositions in baby
spinach reached lower levels of O> compared to rocket. On the other hand, the final CO:
percentages were similar for both vegetables when samples were stored at 8 °C and dynamic
conditions, higher (1.3%) in baby spinach for storage at 4 °C, but also higher (2.3%) in rocket
at 12 °C. The storage temperature influenced considerably the respiration rate. The
consumption and production rate of O2 and CO: respectively, was higher at increasing
temperatures. Although, rocket showed a higher microbial growth rate compared to baby
spinach, the respiration increase of the latter was more intense. This high respiration rate for

baby spinach has been also reported in the literature (Allende et al., 2004).
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Figure 5.3. Oz (Al) and CO2 (A2) compositions in ready-to-eat (RTE) baby spinach, O, (B1)
and CO> (B2) compositions in RTE rocket during storage at 4 °C (e), 8 °C (m), 12 °C (#), and

dynamic temperature conditions ( A ) stored under passive modified atmosphere packaging.

For baby spinach, the gas compositions concern only one batch due to experimental inability
to measure the corresponding compositions for the second batch and are expressed as mean +
standard deviation (n=2 for duplicate samples). For rocket, the results concern the three
batches for the isothermal temperatures, but the two batches for dynamic temperature since
there were no samples stored at such conditions for one of the batches The results are
expressed as mean = standard deviation (n=6 for constant temperatures or n=4 for dynamic

conditions).

5.3.2. Microbiological spoilage and pH data for vegetables stored under active
MAP

The initial TVC and Pseudomonas spp. populations (means + standard deviations, n=2)
for baby spinach stored under active MAP was 7.37 + 0.60 and 7.03 £ 0.60 log CFU/qg,
respectively (Figure 5.4). The initial microbial counts were not considerably different (i.e. no
more than 0.4 log units) between samples stored under active and passive MAP. However, the
TVC, but mainly Pseudomonas spp. growth, was higher in active MAP at the higher storage
temperatures, reaching almost 1-log unit difference compared to passive MAP. Nonetheless,
the growth curves recorded at 4 °C were similar for both packaging conditions. Again, the
microbial growth at 12 °C was higher compared to 4 °C, while considerable variations in
microbial populations among the batches and between the duplicate samples were present. As
far as the pH is concerned, the initial value was 6.45 + 0.05, while the final values
corresponding to similar final storage times of passive MAP were 7.07£0.06, 7.02+0.00 and
7.04+0.11 for 4, 8, and 12 °C, respectively. Therefore, the above values were slightly higher
than those of passive MAP. According to the changes in gas composition during storage
presented in Figure 5.5, the super atmospheric Oz inside the packages was finally reduced to
values not below 70% for all the tested temperatures, while the CO> reached values of 18% at

the highest temperature.
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Figure 5.4. Total viable count (A) and Pseudomonas spp. populations (B) in ready-to-eat baby
spinach stored under active active modified atmosphere packaging at 4 °C (e), 8 °C (m) and 12

°C (#).The populations are expressed as mean = standard deviation (n=4).

As it was mentioned above, the temperature influenced the atmosphere composition.
Regarding microbial growth, the reports on the impact of super atmospheric O2 MAP for the
different commodities vary considerably in the literature (Oliveira et al., 2015). In the present
study microbial growth and mainly the growth of the dominant spoilage group in baby spinach
was increased under conditions of super atmospheric O2. Although the antimicrobial activity
of CO: at high concentration has been well established, the aerobic populations in the present
study increased, although there were higher levels of CO, accumulation compared to the
passive MAP. Moreover, Allende et al. (2004) reported insignificant reduction in aerobic as
well as anaerobic microbial growth in super atmospheric O2 and perforated MAP compared to
the conventional MAP. It should also be mentioned that the sensory quality of baby spinach in
the tested active MAP was improved during storage in terms of odour but not in terms of water

leakage.
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Figure 5.5. Oz (A) and CO2 (B) compositions in ready-to-eat baby spinach stored at 4 °C (e),
8 °C (m), 12 °C (#), as well as under active modified atmosphere packaging. The results are

expressed as means + standard deviations (n=4).

5.3.3. Models for RTE vegetable salads in passive MAP

In the present study, we evaluated not only the prediction of the TVC, but also the
Pseudomonas spp. populations, since the latter is the dominant spoilage group of
microorganisms in RTE vegetable salads. Two approaches of data partitioning into training
and external validation sets were applied and evaluated in terms of model performance. Non-
isothermal temperatures are simulating better the conditions encountered in the cold chain for
refrigerated food products such as RTE vegetables (Ndraha et al., 2018). Hence, the selection
of data derived from dynamic temperature conditions as test set, may allow for the
development of meaningful predictive models. On the other hand, the random data partitioning
approach provides a less biased sample selection, ensuring that all temperature and storage
times are equally represented in both training and test datasets, and allowing for robust model
training (Manthou et al., 2020). Beyond the above mentioned data partitioning schemes, two
machine learning algorithms, namely PLSR and SVR based on the RBF, were employed to
unravel which captures better the microbiological spoilage of the tested vegetables. PLSR is a
linear approach for modelling the relationship between the dependent and the independent
variables, while radial SVR is a non-linear method. The main advantages of SVR is that its
computational complexity does not depend on the dimensionality, it has excellent

generalization capability and high prediction accuracy (Awad & Khanna, 2015). On the other
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hand, PLSR is suitable for spectroscopy datasets that encounter dimensionality issues, strong
collinearity and noise (Wold et al., 2001; Mehmood et al., 2012).

5.3.3.1. Baby spinach

In Table 5.1, the prediction performances of PLSR and SVR models for TVC are
presented. It was observed that when model testing was performed on samples randomly
selected, the performance of the PLSR and SVR models was dependent on the applied
analytical technology, being either similar or better compared to the one attained when testing
was performed based on the dynamic temperatures data. Specifically, for MSI and NIR sensors
the overall performance depicted by the slope, offset and R-squared values was quite better
with random partitioning, while the RMSE was low (below 0.5 log CFU/qg). For FTIR and VIS,
the models exhibited slightly better, but actually in most cases similar overall performances.
However, for the combination of FTIR sensor and SVR algorithm, the random partitioning
approach resulted in quite higher R-squared value.

Regarding the Pseudomonas spp. prediction, relatively similar trends were overall
observed for the two data partitioning approaches (Table 5.2). In the case of the VIS and FTIR
sensor, the PLSR performance was similar for both approaches. For MSI, higher R-squared
value was obtained with the random data partitioning (as compared to the utilization of the
dynamic temperatures data set for model external validation), but for NIR the performance was
similar for the two approaches. Concerning SVR models, in the case of MSI and NIR the
performance metrics (a, b, and R-squared) were notably better in random partitioning, while
the RMSE was below 0.5 log CFU/g. For FTIR, the performance was similar for the two
approaches. However, when the dynamic data were used as test data set in VIS, the overall
performance of the SVR model was better in terms of R-squared value. In general, the random
partitioning approach seems to result in better performances for MSI and NIR, but in similar

performances when FTIR and VIS are applied.

Table 5.1. Performance metrics of the partial least squares regression (PLSR) and support
vector regression (SVR) models for the different analytical technologies (sensors) used in the
prediction of total viable count in ready-to-eat baby spinach. Parameters a, and b are the slope

and offset of the linear regression (y=ax+b) between predicted and measured
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values,respectively, RMSE is the root mean square error of the fit, and R? is the coefficient of

determination.

Analytical Algorithm Data a b R? RMSE
platform segmentation
FTIR PLSR Random 0.54 3.55 0.34 0.45
SVR Random 0.48 4.09 0.46 0.35
PLSR Dynamic 0.53 3.72 0.28 0.45
SVR Dynamic 042 461 0.32 0.33
MSI PLSR Random 0.64 272 0.4 0.51
SVR Random 0.48 4.03 0.56 0.33
PLSR Dynamic 039 4.64 0.27 0.26
O SVR Dynamic 0.26 5.77 0.24 0.17
|2 VIS PLSR Random 0.74 2.04 0.65 0.4
SVR Random 0.69 2.48 0.59 0.39
PLSR Dynamic 069 241 0.57 0.41
SVR Dynamic 0.61 3.06 0.61 0.35
NIR PLSR Random 0.63 292 0.61 0.41
SVR Random 055 3.54 0.53 0.39
PLSR Dynamic 043 4.63 041 0.3
SVR Dynamic 0.44 4.59 0.39 0.3

As far as the different regression algorithms employed are concerned, i.e. PLSR and

SVR, the resulting models exhibited similar performances in the majority of the cases in
terms of TVC prediction. However, the SVR models derived from FTIR and MSI data

combined with random data partitioning exhibited quite higher R-squared values. For

Pseudomonas spp. prediction, the two algorithms resulted also in similar results for the most

of the cases. One exception was observed for the VIS sensor, where the SVR model

combined with the dynamic partitioning approach showed considerably better slope, offset

and R-squared values than the PLSR models. Furthermore, the PLSR model derived from the

MSI data and for the dynamic partitioning had considerably higher predictive power than that

of the corresponding SVR model.
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Table 5.2. Performance metrics of the partial least squares regression (PLSR) and support

vector regression (SVR) models for the different analytical technologies (sensors) used in the

prediction of Pseudomonas spp. populations in ready-to-eat baby spinach. Parameters a and b

are the slope and offset of the linear regression (y=ax+b) between predicted and measured

values, respectively, RMSE is the root mean square error of the fit, and R? is the coefficient of

determination.

Analytical Algorithm Data a b R? RMSE
platform segmentation
FTIR PLSR Random 0.56 3.36 0.4 0.37
SVR Random 05 38 0.45 0.32
PLSR Dynamic 0.62 288 0.32 0.48
SVR Dynamic 0.54 3.55 0.41 0.36
MSI PLSR Random 056 3.32 0.6 0.39
SVR Random 0.51 3.76 0.72 0.32
S PLSR Dynamic 063 276 041 032
3 SVR Dynamic 026 547 02 017
% VIS PLSR Random 047 4.02 0.37 0.37
S
§ SVR Random 0.63 2.8 0.54 0.41
o PLSR Dynamic 045 415 036  0.33
SVR Dynamic 0.73 2.06 0.69 0.39
NIR PLSR Random 072 21 0.52 0.48
SVR Random 0.69 2.38 0.5 0.47
PLSR Dynamic 0.57 341 0.4 0.4
SVR Dynamic 0.52 3.75 0.3 041

Models with relatively good performance for TVC prediction were the models derived

from the combinations VIS/PLSR and VIS/SVR under random partitioning, as well as

VIS/PLSR with dynamic partitioning. The former exhibited a slightly better performance in

terms of offset and R-squared value. The linear regression y=ax+D, i.e. first order polynomial

regression between the predicted and the measured microbiological values, is presented in
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Figure 5.6. The solid lines are the ideal y=x lines (slope = 1 and offset/bias = 0), while the
dashed ones exhibit the “acceptable” microbiological limits (+1 log CFU/g). Based on the
slope parameter a values, ranging from 0.69 to 0.74, a satisfactory correlation was
demonstrated between predicted and actually measured TVC values, which was also suggested
by the values of the goodness-of-fit measure of R? (0.57-0.65). The RMSE values were low
from a food microbiology perspective, since deviations in TVC of approximately 0.5 log cycles
are rather common (even within the same laboratory using traditional analytical approaches)
and justifiable given the extensive variability encountered in biological systems. Parameter
values close to the above were obtained for the models developed with the sensor/algorithm
combination VIS/SVR under dynamic partition and NIR/PLSR under the random data

partitioning scheme (Figure 5.6).
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Figure 5.6. Prediction of total viable count in ready-to-eat baby spinach salad: VIS/PLSR with
random data partitioning (A), VIS/SVR with random data partitioning (B), VIS/PLSR with

dynamic data partitioning (C),VIS/SVR with dynamic data partitioning (D), NIR/PLSR with
random data partitioning (E).

Concerning the Pseudomonas spp. prediction, the combination VIS/SVR using as test
dataset the data from the dynamic temperature conditions exhibited the best performance
among the generated models, which was a relatively good performance. The slope value was
0.73, showing good correlation between predicted and actual values, while the R? was 0.69.
The model derived from the combination of MSI/PLSR using the random approach exhibited
performance lower to that of the aforementioned model. Additionally, the models derived from
the combinations of NIR/PLSR and NIR/SVR using the random data partitioning scheme
showed predictive power less satisfactory, mainly in terms of R-squared value. The slope
values of the regression between estimated and measured Pseudomonas spp. counts were in
the range of 0.69 to 0.72. Additionally, the R-squared values varied from 0.50 to 0.52 and the
RMSE values were quite low. The linear first order polynomial regression between the
predicted and the observed Pseudomonas spp. values of the aforementioned models is
presented in Figure 5.7.
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Figure 5.7. Prediction of Pseudomonas spp. populations in ready-to-eat baby spinach salad:
VIS/SVR with dynamic data partitioning (A), MSI/PLSR with random data partitioning (B),
NIR/PLSR with random data partitioning (C), NIR/SVR with random data partitioning (D).

5.3.3.2. Rocket

The prediction performances of the PLSR and SVR models developed under the two
data partitioning approaches are presented in Tables 5.3 and 5.4 for TVC and Pseudomonas
spp., respectively. Concerning the PLSR and SVR models for TVC prediction, the application
of random partitioning of the data, resulted in considerably higher predictive power for all the
analytical technologies. All the models had better performance in terms of slope, offset, R-
squared, while also the RMSE was below 0.8 log CFU/g, which is an acceptable value from a
food microbiology perspective. One exception was observed for FTIR and PLSR combination,
where the performances for the two different data partitioning approaches were similar. Similar
trends were observed for the PLSR and SVR models for Pseudomonas spp. prediction, since

the performance metrics were considerably better compared to the ones attained using the
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dynamic temperature data partitioning, and the RMSE values were also in the acceptable range.
The low efficacy of the dynamic temperature data partitioning in rocket compared to baby
spinach may be explained by the absence of dynamic conditions for the third batch of rocket.
As it was mentioned before, one of the batches of rocket was stored only at isothermal
temperatures and therefore, the prediction dataset did not include the variability of all the
batches. Additionally, this is supported by the fact that apart from the high variability in
microbial counts, we observed great spectral variability among the different batches of rocket
(data not shown). Zhang et al. (2018) reported that factors affecting microbial counts in
vegetables (e.g., genotype, maturity stage, growing and harvesting environmental conditions,
as well as post-harvest and pre-processing operations) have been associated with spectral
variability in non-destructive analytical approaches utilizing imaging and NIR spectroscopy
technologies. Therefore, the success of random data split in rocket probably lies in the fact that
the overall high variability is represented better in this approach for both training and
prediction (test) processes.

The comparison of the two algorithms, showed similar trends for both microbial groups
(TVC and Pseudomonas spp.). Specifically, SVR prevailed considerably or slightly in overall
prediction power for FTIR, VIS and NIR sensor, depending on the data partitioning method.
The differences were notably larger for the random splitting in most cases, but lower in the
dynamic temperature data partitioning, resulting in more or less similar performances. Even
though the models validated with the dynamic temperature data for VIS and NIR were not at
all appropriate for prediction, the same trend for the two algorithms was observed. However,
similar performances of the two algorithms were only observed when random partitioning was
used for NIR and FTIR data, in the case of TVC and Pseudomonas spp., respectively. On the
other hand, PLSR was the best algorithm for the MSI sensor with higher differences for the

random but slight differences (similar performance) for the dynamic partitioning approach.
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Table 5.3. Performance metrics of the partial least squares regression (PLSR) and support

vector regression (SVR) models for the different analytical technologies (sensors) used in the

prediction of total viable count in ready-to-eat rocket. Parameters a and b are the slope and

offset of the linear regression (y=ax+b) between predicted and measured values, respectively,

RMSE is the root mean square error of the fit, and R?is the coefficient of determination.

Analytical Algorithm Data a b R? RMSE
platform segmentation
FTIR PLSR Random 0.62 2.85 0.41 0.82
SVR Random 071 214 0.70 0.72
PLSR Dynamic 049 391 0.36 0.72
SVR Dynamic 045 4.10 0.43 0.61
MSI PLSR Random 072 217 0.61 0.81
SVR Random 051 3.80 0.59 0.58
PLSR Dynamic 043 4.13 0.42 0.57
O SVR Dynamic 0.30 5.07 0.31 0.47
VT PLSR Random 032 528 017 073
SVR Random 057 325 0.56 0.71
PLSR Dynamic 0.06 7.16 0.00 1.30
SVR Dynamic 0.16 6.24 0.07 0.53
NIR PLSR Random 041 4.45 0.31 0.69
SVR Random 047 4.06 0.43 0.66
PLSR Dynamic 0.07 6.94 0.02 0.42
SVR Dynamic 0.07 6.90 0.01 0.55
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Table 5.4. Performance metrics of the partial least squares regression (PLSR) and support
vector regression (SVR) models for the different analytical technologies (sensors) used in the
prediction of Pseudomonas spp. populations in ready-to-eat rocket. Parameters a and b are the
slope and offset of the linear regression (y=ax+b) between predicted and measured values,
respectively, RMSE is the root mean square error of the fit, and R? is the coefficient of

determination.

Analytical Algorithm  Data a b R- RMSE
platform segmentation squared
FTIR PLSR Random 0.57 3.16 0.48 0.78
SVR Random 0.64 2.67 0.61 0.77
PLSR Dynamic 0.50 3.77 0.39 0.72
SVR Dynamic 0.45 4.08 0.44 0.61
MSI PLSR Random 0.76 1.86 0.75 0.83
SVR Random 0.55 3.51 0.62 0.67
S PLSR Dynamic 053 321 051 0.64
3 SVR Dynamic 038 438 042 0.51
= VIS PLSR Random 025 566 033 042
S
D SVR Random 0.54 3.53 0.50 0.73
& PLSR Dynamic -0.09 8.32 0.00 1.33
SVR Dynamic 0.14 6.37 0.04 0.59
NIR PLSR Random 0.32 5.07 0.24 0.63
SVR Random 0.41 4.55 0.44 0.58
PLSR Dynamic 0.14 6.21 0.04 0.62
SVR Dynamic 0.11 6.55 0.02 0.57

The best models for TVC prediction were those derived from the combinations
FTIR/SVR and MSI/PLSR using the random data partitioning scheme. The former exhibited
a slightly better performance in terms of R2and RMSE. The slope, offset and R? values were
0.71, 2.14, and 0.70, respectively, while the RMSE was 0.72 log CFU/g. The statistical metrics

indicated a relatively good performance. The linear first order polynomial regression between
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the predicted and the measured TVC values is presented in Figure 5.8. Lower to the above was
the performance for the combination VIS/SVR with random data splitting, and even less

satisfactory was the predictive power for MSI/SVR using the random approach (Figure 5.8).
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Figure 5.8. Prediction of total viable count in ready-to-eat rocket salad: FTIR/SVR with
random data partitioning (A), MSI/PLSR with random data partitioning (B), VIS/SVR with
random data partitioning (C), MSI/SVR with random data partitioning (D).

Accordingly, a good model for Pseudomonas spp. was also derived from the
combination of MSI/PLSR with random data partitioning. In this case, the performance values
of slope, offset and R-squared were 0.76, 1.86 and 0.75, respectively and are illustrated in
Figure 5.9. The combinations of FTIR/SVR and MSI/SVR with random partitioning exhibited
quite lower performances, in terms of R-squared values. Additionally, the combinations of
FTIR/PLSR and VIS/SVR with the random approach as well as, MSI/PLSR with the dynamic
approach exhibited even lower performances (Figure 5.9).
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Figure 5.9. Prediction of Pseudomonas spp. populations in ready-to-eat rocket salad:
MSI/PLSR with random data partitioning (A), FTIR/SVR with random data partitioning (B),
MSI/SVR with random data partitioning (C), FTIR/PLSR with random data partitioning (D),
MSI/PLSR with dynamic data partitioning (E), VIS/SVR with random data partitioning (F).

Interestingly, FTIR and MSI sensors seem to be more appropriate for rocket, while
mainly VIS but also NIR were evaluated as such for baby spinach. According to literature,
NIR, as well as VIS/NIR and MIR (FTIR) are the regions that contain the greatest number of
applications pertaining to fruit and vegetable. Mainly, NIR and FTIR spectroscopy have been

successfully applied in quality evaluation of vegetables (Bureau et al., 2019; Krivoshiev et al.,
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2000; Nicolai et al., 2007). More recently, multispectral imaging methods have been used to
determine the quality of various fruits and vegetables (Lokke et al., 2013; Lunadei et al., 2012).
However, the application of the aforementioned analytical technologies in evaluation of
vegetable microbiological spoilage, has been studied only for shredded cabbage, using NIR

spectroscopy (Suthiluk et al., 2008).

5.3.4. Models for RTE baby spinach in active MAP

The prediction performances of PLSR models for TVC estimation of RTE baby spinach
stored under active MAP are presented in Table 5.5. Additionally, the linear first order
polynomial regression between the predicted and the measured TVC values is illustrated in
Figure 5.10. The populations of the dominant spoilage group, namely Pseudomonas spp., were
not evaluated herein, as the results in subsection 5.3.2. showed the same trends for both
microbial groups. The presented models were developed using only random data partitioning
due to the lack of samples stored under dynamic temperature conditions. However, the random
partitioning scheme exhibited similar or better performance compared to dynamic partitioning
in baby spinach stored under passive MAP, indicating that the former is an ideal option in any
case. Moreover, the PLSR algorithm was the only algorithm applied in the present dataset since
SVR showed similar results to PLSR for all the developed models in the passive MAP case.
With regard to the performance metrics, both models derived from FTIR and MSI data
exhibited good performances, similar to those of the best models presented for baby spinach
stored under passive MAP in terms of R%and RMSE. However, the values of slope and offset
showed a slightly better predictive power. Interestingly, FTIR and MSI were appropriate
sensors for TVC prediction of the baby spinach samples stored under active MAP but not for
the samples stored under passive MAP. Therefore, the sensors’ applicability may be not only

product-specific, but also storage-specific.

Table 5.5. Performance metrics of the partial least squares regression (PLSR) models for the
different analytical technologies (sensors) used in the prediction of total viable count in ready-
to-eat baby spinach stored under active modified atmosphere packaging. Parameters a and b

are the slope and offset of the linear regression (y=ax+b) between predicted and measured
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values, respectively, r is the correlation coefficient, RMSE is the root mean square error of the
fit, and R? is the coefficient of determination.

Sensors a b r R?2 RMSE
FTIR 0.83 1.22 0.84 0.57 0.48
MSI 0.85 1.13 0.85 0.67 0.42
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Figure 5.10. Comparison between the observed and the predicted total viable count by the
partial least squares regression model based on FTIR (A) and MSI (B) data of ready-to-eat
baby spinach stored under active modified atmosphere packaging for the external validation

dataset (solid line: the ideal y=x line; dashed lines: the + 1 log unit area).

5.4. Conclusions

In the present study, for the first time, to our knowledge, different data partitioning
schemes and machine learning algorithms were comparatively evaluated for assessing the
microbiological quality of vegetable products using various spectroscopy-based technologies.
The results obtained in this work demonstrate that the random data partitioning scheme resulted
in considerably better performance in almost all cases of sensor/algorithm combination of
rocket. On the other hand, it was observed that when random partitioning was selected for baby
spinach, the performance of the models was often dependent on the applied analytical
technology, being either similar (for FTIR and VIS) or better (for NIR and MSI) compared to

the one attained when testing was performed based on the dynamic temperatures data. With
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regard to the different algorithms used, the predictive power was similar for the two algorithms
in the majority of baby spinach cases. In rocket, SVR algorithm provided considerably or
slightly better models for the FTIR, VIS and NIR sensors, depending on the data partitioning
method. The differences were notably larger for the random approach in most cases, but lower
in the dynamic temperature data partitioning, resulting in similar performances. Contrarily,
PLSR was the best algorithm for the MSI sensor with considerably higher differences for the
random but slight differences (similar performance) for the dynamic partitioning approach.

The present study also revealed that mainly VIS spectroscopy could be more
appropriate for TVC and Pseudomonas spp. population prediction in RTE baby spinach, while
FTIR spectroscopy and MSI for RTE rocket. Although both salad products belong to the leafy
vegetables category and seem quite similar to each other, it is evident that they should be
treated distinctively in terms of sensor and computational analysis application.

With regard to the baby spinach stored under active MAP, FTIR and MSI sensors were
interestingly appropriate for microbiological spoilage evaluation. Therefore, the application of
the various sensors may also differ for the different packaging conditions of the same product.

Future research should, by all means, contribute to improved characterization of the
extensive physical and biological variability characterizing fresh produce commodities,
through the administration of large-scale experiments involving RTE fresh salads such as the
ones studied herein. Moreover, additional computational analysis information including,
among others, selection of the most informative (in each case) wavelengths and data fusion
approaches, should also be at the disposal of researchers, allowing for the development of
reliable and robust prediction models and contributing to the expansion of the current

knowledge.
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Chapter 6

Assessment of microbiological spoilage of fresh-cut oyster
mushrooms through Fourier transform infrared spectroscopy
and multispectral imaging
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Chapter 6
Abstract

Pleurotus ostreatus (oyster mushroom) is one of the most commercially important
edible mushrooms worldwide. However, the limited shelf-life of this produce commodity
requires rapid and efficient methods for assuring its quality. The aim of this study was the
assessment of the microbiological spoilage of oyster mushrooms under different temperature
conditions, using Fourier transform infrared (FTIR) spectroscopy and multispectral imaging
(MSI). Oyster mushrooms were stored at isothermal (4, 10 and 16 °C), and dynamic
temperature (12 h at 7 °C and 12 h at 13 °C) conditions. At regular time intervals during
storage, duplicate samples were analyzed for the determination of the total mesophilic
microbial populations, while, in parallel, spectral measurements and multispectral images were
acquired for both the cap (pileus) and the gills (lamellae) side of the mushrooms. Three
independent experiments were conducted and partial least squares regression (PLSR) was
applied to establish the correlation between spectral and microbiological data. Different data
partitioning approaches into training and validation sets, as well as selection of the most
informative independent variables (spectra) were tested in order to achieve better model
performances. Moreover, given the high variability observed between duplicate samples, for
both the microbial counts and the spectral measurements, the average values were used for
model development. The models derived from FTIR and MSI data exhibited poor predictive
power for both mushroom sides. The results indicated that, under the conditions of this study
and for the applied data analysis, the application of FTIR and MSI is not promising for the

evaluation of the microbiological spoilage of oyster mushrooms.
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6.1. Introduction

In recent years, there has been an ongoing increase in the worldwide production and
consumption of fresh edible mushrooms (Venturini et al., 2011). Mushrooms are appreciated
not only for their unique flavour and texture, but also for their nutritional value and functional
properties (Jafri et al., 2013). They constitute an important source of high-quality protein,
dietary fibers, vitamins and minerals, while they are low in sodium, fat and cholesterol
(Jayawardena & Silva 2013; Ventura-Aguilar et al., 2017). These products are also rich in
various nutraceutical compounds, including A-glucans, specific unsaturated fatty acids,
triterpene and antioxidant compounds (Meenu & Hu, 2019). Among all edible species, the
oyster mushroom (Pleurotus ostreatus), is the second most cultivated mushroom worldwide,
following Agaricus bisporus (Ding et al., 2011).

Oyster mushrooms, similar to other species of mushroom-producing fungi (mainly
belonging to the Phylum Basidiomycota), present increased respiration, metabolic rate and
several biochemical reactions after harvest, resulting in rapid quality deterioration. They are
also an ideal medium for microbial growth, since they have high moisture content, a water
activity of 0.98 or higher and neutral pH. The high initial microbial load accelerates
mushrooms’ spoilage and limits their post-harvest shelf-life to a few days (Venturini et al.,
2011; Sun & Li, 2017). Consequently, the development of rapid and effective spoilage
detection methods are important for their quality assurance, as well as the reduction of food
waste and economical losses for the food industry (Wang et al., 2018).

Although conventional microbiology (e.g. colony counting methods) is commonly used
for monitoring of food spoilage, the scientists have to deal with important restrictions.
Specifically, the culture-based techniques are time-consuming providing retrospective results,
costly and destructive to test products (Nychas et al., 2016). On the other hand, spectroscopy-
based analytical technologies have been forwarded for rapid and non-destructive food spoilage
evaluation. Compared to conventional methods, they require minimal sample preparation, and
they are cost-effective and appropriate for in-, on- and at-line detection of quality/safety issues
(Efenberger-Szmechtyk et al., 2018). However, the interpretation of the enormous amount of
data generated by these analytical technologies is a very challenging task. Depending on the
type of sensor and data complexity, the data analysis involves advanced computational

methods, including machine learning (Ropodi et al., 2016). Therefore, various machine
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learning approaches coupled with spectroscopy-based technologies have been proposed for the
qualitative and/or quantitative evaluation of the microbiological quality and safety of various
food products including meat and fish products, dairy products, fruits and vegetables (Al-Holy
et al., 2015; Barbin et al., 2015; Sravan-Kumar et al., 2015; Tsakanikas et al., 2018; Fengou et
al., 2019a, 2019b; Lianou et al., 2019; Manthou et al., 2020; Spyrelli et al. 2020).

Among the various spectroscopy-based technologies that have been implemented in a
broad range of food products, Fourier transform infrared (FTIR) spectroscopy is the most
widely applied technology in fresh mushrooms. Near-infrared (NIR) spectroscopy and
hyperspectral imaging have also been reported in the literature (Taghizadeh et al., 2009; Gaston
et al., 2010; Taghizadeh et al., 2010; Meenu & Hu, 2019). However, the majority of these
technologies has been mainly used to explore Ganoderma lucidum and only a few studies have
reported their application in Pleurotus spp. (Meenu & Hu, 2019). Moreover, to date, these
technologies have been only proposed to identify various filamentous fungi, discriminate the
species according to their geographical origin, assess potential adulterations and evaluate the
post-harvest quality and chemical composition (Bekiaris et al., 2020).

Therefore, given the above and the practical absence of relevant data, the objective of
the present study was to assess the microbiological spoilage of oyster mushrooms using FTIR

spectroscopy and multispectral imaging (MSI) technologies.

6.2. Material and Methods

6.2.1. Sample preparation and storage conditions

Oyster mushrooms were obtained from a local producer (Athens, Greece) and
transferred to the laboratory under controlled refrigeration temperature (ca. 4 °C) conditions
within 24 h from harvest. Four or five mushroom portions (consisting of both the cap/gills and
the stipe) were placed in styrofoam trays (22.5x13.5x3 cm), and were covered with household-
use cling wrap (cellophane membrane) which was perforated at several points to allow for
aerobic storage conditions and unobstructed sample respiration. The trays were stored at
different isothermal (4, 10 and 16 °C) and dynamic temperature (12 h at 7 °C and 12 h at 13
°C) conditions in high-precision (£0.5 °C) incubation chambers (MIR-153, Sanyo Electric
Co., Osaka, Japan) for a maximum duration of 10 days. The applied storage temperatures were

within the temperature range recorded throughout the food supply chain (Giannakourou et al.,
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2001), including retail premises (super markets, groceries and street markets), and/or reported
in the ComBase database (https://www.combase.cc/index.php/en/). Throughout storage of
mushroom samples, the incubation temperatures were recorded at 15-min intervals using
electronic temperature-monitoring devices (Cox Tracer, Cox Technologies Inc., Belmont, NC,
USA).

On the day of arrival to the laboratory (time-zero) and at regular time intervals during
storage, depending on the applied storage temperature, duplicate mushroom samples (i.e.
distinct trays) were subjected to: i) microbiological analyses and pH measurements; (ii) FTIR
spectroscopic measurements; and (iii) acquisition of multispectral images. The spectroscopy
and imaging data were collected for both the cap (pileus) side and the gills (lamellae) side of
mushrooms. Three independent experiments, corresponding to different time instances and
mushroom batches, were conducted in the context of the present study, and a total of 237

mushroom samples were analysed.

6.2.2. Microbiological analysis and pH measurements

A 25-g portion of mushroom was aseptically weighed in a 400-ml sterile stomacher bag
(Seward Medical, London, UK) containing 225 ml of sterile quarter strength Ringer's solution
(LAB M Limited, Lancashire, UK), and homogenized in a Stomacher apparatus (Lab Blender
400, Seward Medical) for 60 sec at room temperature. Appropriate serial decimal dilutions in
Ringer's solution were surface plated on tryptic glucose yeast agar (Biolife, Milan, Italy) for
the determination of total mesophilic microbial populations (total viable count, TVC), and
Pseudomonas agar base supplemented with CFC (Cephalothin, Fucidin, Cetrimide) selective
supplement (LAB M Limited) for the enumeration of Pseudomonas spp populations. Total
mesophiles and presumptive Pseudomonas spp. were enumerated after incubation of the
corresponding plates at 25 °C for 72 and 48 h, respectively. The obtained microbiological data
were converted to log (colony forming units) per gram of mushrooms (log CFU/qg).

Upon completion of the microbiological analyses, the pH values of the mushroom
samples were measured using a digital pH meter (RL150, Rusell pH, Cork, Ireland) with a

glass electrode (Metrohm AG, Herisau, Switzerland).
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6.2.3. FTIR spectroscopy and MSI
The analytical technologies applied in the present study have been previously described in
Chapter 4.

6.2.4. Data analysis

Prior to model development, specific spectral ranges were selected for each one of the
two analytical technologies. The selected wavenumbers for the FTIR sensor were in the range
of 1800-870 cm™, since this range is expected to depict chemical changes related to the
metabolic activity of spoilage microorganisms (Al-Jowder et al., 1999; Ellis et al., 2002; Di
Egidio et al., 2009). As far as the MSI is concerned, both the mean reflectance values (18
wavelengths) and their standard deviations (in total 36 features) were used, since standard
deviation contains relevant and useful information. Moreover, several pre-processing
techniques were tested on each dataset with the aim to minimize any irrelevant information
such as noise, particle size deviations, scattering and drifting effects (Wang et al., 2015; Dixit
etal., 2017; Suhandy & Yulia, 2017; Li etal., 2018). All the spectral data were mean-centered
and scaled (1/SDEV). In the case of FTIR, the data were also pre-processed using the Savitzky—
Golay smoothing numerical algorithm with a second-order polynomial and a 9-point window.
On the other hand, for MSI, standard normal variate (SNV) was the pre-processing treatments
applied for the data corresponding to gills, while no further treatment was used for the data
corresponding to caps. The spectral/imaging data were used as independent variables (X),
while the TVC as dependent variables (Y) for the purpose of model development.

Partial least squares regression (PLSR) was performed for the correlation between
spectral data and TVC. This machine learning algorithm is considered suitable for
spectroscopic datasets, where the dimensionality problem exists and also when the data show
strong collinearity and noise (Wold et al., 2001; Mehmood et al., 2012; Gromski et al., 2015).
The data derived from isothermal storage temperatures were used for the calibration process
(training set) and those derived from dynamic temperature conditions for external validation
(test set). However, other data partitioning methods were also tested. Specifically, the selection
of a whole batch as test set as well as the random partitioning scheme were applied. During the
calibration process, leave-one-out cross validation in parallel with Marten’s uncertainty test

were employed in order to eliminate the risk for over-fitting and test the predictive significance
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of the model, but also in order to select the significant X-variables (Westad & Martens, 2000;
Wold et al., 2001). Additionally, a feature selection of significant wavenumbers on the basis
of random forests (RFs) regression ensemble (Breiman, 2001) was also tested for the FTIR
data. Concerning feature selection, spectra were initially normalized under the robust version
of SNV, namely RNV (Barnes et al., 1989; Guo et al., 1999), while for model development the
random data partitioning was used.

The prediction performance of the developed PLSR models for each sensor was
evaluated based on the following statistical parameters: slope (a), offset (b), correlation
coefficient (r), the root mean square error (RMSE), and the coefficient of determination (R?)

of the linear regression between the predicted and measured microbial counts.

6.3. Results and Discussion

6.3.1. Microbiological spoilage and pH data

The TVC values of oyster mushrooms during storage at different temperatures are
presented in Table 6.1. The initial level of TVC (mean + standard deviation, n=6) was 5.24 +
0.73 log CFU/g, while the final populations were 7.02 + 0.69, 6.74 + 0.53, 8.36 + 0.50 and
7.54 £0.61 log CFU/g during storage at 4, 10, 16 °C and under dynamic temperature
conditions, respectively. Accordingly, the initial and final populations of Pseudomonas spp.
(mean * standard deviation, n=6) were similar to TVC, indicating that species of this genus
constitute the dominant spoilage microorganisms of oyster mushrooms (data not shown).
Indeed, Pseudomonas spp. have been strongly associated with mushroom pathology
(Largeteau & Savoie, 2010; Sajben et al., 2011) and spoilage (Santana, et al., 2008; Wang et
al., 2017). The microbial populations observed in the present study are consistent to those
reported in previous studies (Ding et al., 2011; Venturini et al., 2011; Wang et al., 2017).
Moreover, as expected, the temperature of storage influenced microbial growth, with the later
being faster at higher temperatures.

Interestingly, a considerably high variation of TVC and Pseudomonas counts was
observed among the different experimental replications (different batches) of mushrooms, but
also between the biological replicates (duplicate samples originating from different packages)
(data not shown). Various pre-harvest and post-harvest factors may contribute to the observed
high inter-batch variability (Martinez-Sanchez et al., 2006; Conte et al., 2008; Medina et al.,
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2012; Garrido et al., 2015). With reference to the intra-batch variability, this observation may

be attributed to variability within P. ostreatus fruiting bodies arising from spatial

characteristics during growing period, the abiotic environment’s direct effect as well as biotic

interactions.

Table 6.1. Total mesophilic microbial populations (total viable count, TVC) on oyster

mushrooms during storage at different temperature conditions.

TVC (log CFU/g)?

Storage

temperature 4°C 10 °C 16 °C Dynamic

0 5.24+0.73 0 524+0.73 524+0.73 524+0.73

38 485+1.13 14 516+1.01 559+051 4.85+0.57

62  5.48+0.66 24 569+092 500+062 4.98+1.24

86  5.27+0.52 38 6.06£097 6.17+1.26 557+1.32

§ 110 5.35+0.70 % 48  6.56+0.44 6.10+0.90 5.89+0.90
i 134  6.31+0.36 i 62 582+0.73 6.91+0.83 5.66+0.89
(;g 158 6.52+0.87 g 72 5.38+0.93 7.22+0.88 6.25+1.20
182  6.84+0.56 86  6.31+0.73 6.93+1.22 6.12+1.04

206 6.49+0.35 96 6.68+0.57 7.73+0.61 6.59+0.80

230 6.87+0.63 110 6.96+0.70 8.16+0.48 6.45+1.32

254  7.02+0.69 120 6.74+0.53 8.36x+0.50 7.54+0.61

2 Values are means * standard deviations (n = 6)

With reference to the pH of oyster mushrooms, no remarkable changes were observed

during storage at 4 and 10 °C (Table 6.2). However, a considerable pH increase was observed

during mushroom storage at 16 °C, potentially associated with the proteolytic activity of
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bacterial species belonging to the genus Pseudomonas (Franzetti & Scarpellini, 2007; Caldera
etal., 2016).

Table 6.2. The pH values (means + standard deviations, n=6) of fresh-cut mushrooms during
storage at different temperatures.

tS(:r?\rsgreature Initial pH  Final pH

4°C 5.93+0.04
10 °C 5 924011 5.95+0.08
16 °C o 6.52 £ 0.33
Dynamic 5.91+0.08

*The final storage time was 254 h for 4 °C and 120 h for the rest storage temperature conditions.

6.3.2. Models

Different approaches of data partitioning into training and external validation sets were
applied and evaluated in terms of model performance. The random data partitioning approach
provides a less biased sample selection and ensures that all temperature and storage times are
equally represented in both training and testing datasets (Manthou et al., 2020). On the other
hand, the selection of dynamic data as test set, may allow for the development of more
meaningful predictive models, since the non-isothermal temperatures are more realistically
imprinting the fluctuations in the food supply cold chain (Ndraha et al., 2018). Moreover, the
selection of data derived from a whole batch as test set was also performed in order to examine
more options for achieving the best model performance. Apart from the selection of the most
influential X-variables based on Marten’s uncertainty, a feature selection scheme based on RFs
regression ensemble was also applied in the case of FTIR. The reduction of data dimensionality
Is an important process for avoiding overfitting and removing features that are not correlated
to the phenomenon studied (Tsakanikas et al., 2018).

According to Principal Component Analysis (PCA) plots, a great spectral variability
within batches was observed (data not shown). The high spectral variability was also obvious
between the duplicate samples originating from different packages and subjected to identical
storage conditions. As it was mentioned before, it is well established that agricultural products

show high biological variability, resulting in correspondingly high spectral variability
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(Esquerre et al., 2012; Zhang et al., 2018). In the context of this observation, averaging of the
spectral and microbiological data of duplicate samples was applied. It could be argued that the
inclusion of all the variability present is important for developing models with increased
generalization properties. However, averaging was practiced herein in order to simplify the
process, reduce the variability and reveal potential correlations between spectra and microbial

counts.

6.3.2.1. FTIR sensor

The performance parameters of all the developed PLSR models derived from FTIR data
are presented in Table 6.3. Regardless of the data partition scheme and the reduction of within-
batch variability, all the models derived from FTIR data, for both the caps and gills, presented
considerably poor prediction performance. Therefore, the models were not capable to estimate
the microbiological spoilage of oyster mushrooms. The reduction of variability by mean
calculation of spectra and microbial values of the duplicate samples, seemed to provide slightly
better predictions for the majority of cases. The feature selection approach based on RFs was
also ineffective in considerably improving the model performance (data not shown).

Previous studies utilizing FTIR spectroscopy for the evaluation of mushroom quality,
have an important technical difference with the present study: the mushroom samples were
freeze-dried and ground into fine particles (Gorman et al., 2010; Bekiaris et al., 2020).
Consequently, the excessive water levels (that potentially mask the relevant information to
microbiological spoilage) were reduced and a significantly higher sample homogeneity was
achieved compared to the present study. Moreover, the gills, whose physical structure may be
challenging for spectra acquisition, were also included in dried samples providing additional
information. However, this type of preparation is time consuming, destructive and limits the

industrial applicability of FTIR spectroscopy.
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Table 6.3. Performance parameters of the partial least squares regression models, based on
FTIR data, for the total viable count prediction of fresh mushrooms. (a: slope, b: offset, r:
correlation coefficient, RMSE: root mean square error (log CFU/g), R?: coefficient of

determination).

_ Duplicate
Side Test set a b r R? RMSE
samples
Dynamic  0.01 5.95 0.04 -0.08 1.26
N Random 0.2 4.99 0.3 -0.07 1.19
0
_ Batch 1 0.25 4.57 0.4 0.07 1.08
averaging
Batch 2 0.33 4.36 0.36 -0.18 1.03
§ Batch 3 0.09 6.09 0.13 -0.62 1.67
@)
Dynamic  0.08 5.49 0.29 0.08 1.1
_ Batch 1 0.43 3.26 0.58 0.17 0.93
Averaging
Batch 2 0.53 3.01 0.41 -0.62 1.05
x Batch 3 0.14 5.68 0.45 -0.13 1.27
T Dynamic 008 56 021 001  1.21
N Random 0.27 4.47 0.47 0.17 1.05
0
] Batch 1 0.2 5.42 0.33 -0.15 1.27
averaging
Batch 2 0.19 4.93 0.22 -0.46 1.15
= Batch3 023 531 052  -012  1.39
Q)
Dynamic  0.17 511 0.34 0.07 1.07
) Batch 1 0.43 3.53 0.44 -0.11 1.07
Averaging
Batch 2 0.23 4.61 0.25 -0.55 1.03
Batch 3 0.25 5.08 0.58 -0.04 1.22
6.3.2.2. MSI

The performance parameters of all the developed PLSR models for MSI data are
presented in Table 6.4. In the case of caps, the overall performance of all the developed models
Is not by no means satisfying for mushroom spoilage evaluation. Although a similar trend was

observed for the gills side, the model developed after variability reduction and using Batch 1
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as test set showed a satisfactory performance. The slope parameter a indicated a relatively
satisfatory correlation between predicted and actually measured TVC values (0.63), which is
also suggested by the goodness-of-fit measure of R?. It should also be mentioned that the
RMSE value was below 1 log CFU/g, which is acceptable for applications in food
microbiology. Among all these models with poor prediction efficacy, the relatively satisfactory
performance of the aforementioned model seems to be an occasional observation. Therefore,
this finding could not be regarded as indicative of the reliability and applicability of MSI as a
means of evaluating the microbiological spoilage of oyster mushrooms.

Overall, the geometrical shape of the mushroom cap may constitute an important
limitation for MSI. It is well known that the lighting reflectance is not uniformly distributed
when the sample has spherical shape and this results to great spectral variability (Zhang et al,
2018). Similar limitations to the surface side, could be also arise for the gills due to the
numerous physical cavities present, resulting in irregular reflectance. Gowen et al. (2008)
investigated the application of hyperspectral imaging for detection of bruise damage on white
mushrooms (Agaricus bisporus). In order to reduce the spectral variations caused by surface
curvature, they applied and tested four spectral pre-processing methods to the mushroom
spectra, including multiplicative scatter correction, maximum normalization, median
normalization and mean normalization. Mean normalization constituted the best pre-treatment
for decreasing spectral variability, but when the same pre-treatment was tested in the present
data, the results were not promising (data not shown). Therefore, it could be overall opined
that the phenomenon of microbiological spoilage in mushrooms is, most likely, difficult to be

evaluated using spectral imaging technologies.
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Table 6.4. Performance parameters of the partial least squares regression models, based on
MSI data, for the total viable count prediction of fresh mushrooms. (a: slope, b: offset, r:
correlation coefficient, RMSE: root mean square error (log CFU/g), R?: coefficient of

determination).

_ Duplicate
Side Test set a b r R?> RMSE
samples
Dynamic  0.11 5.42 0.26 0.04 1.19
N Random 0.2 4.86 0.46 0.16 1.06
0
_ Batch 1 0.29 4.37 0.51 0.23 0.98
averaging
Batch 2 0.53 2.65 0.57 0.06 0.92
§ Batch 3 0.25 5.55 0.54 -0.51 1.61
@)
Dynamic  0.15 5.15 0.3 0.04 1.09
_ Batch 1 0.46 3.22 0.66 0.38 0.8
Averaging
Batch 2 0.8 1.09 0.65 0.04 0.81
_ Batch 3 0.33 5.03 0.7 -0.47 1.44
)
= Dynamic 025 449  0.43 0.16 1.14
N Random 0.39 3.78 0.58 0.31 0.95
0
_ Batch 1 0.35 4.19 0.46 0.12 1.05
averaging
Batch 2 0.46 3.14 0.58 0.18 0.86
= Batch3 025 524 051 -016 141
Q)
Dynamic  0.23 4.79 0.42 0.13 1.04
_ Batch 1 0.63 2.33 0.76 0.58 0.66
Averaging
Batch 2 0.66 1.87 0.68 0.25 0.72
Batch 3 0.3 4.96 0.55 -0.22 1.31

6.4. Conclusions

Rapid and non-invasive analytical technologies based on spectroscopy were, for the
first time, applied for the evaluation of the microbiological spoilage of fresh oyster mushrooms.
The results of the present study indicated that the application of FTIR and MSI is not promising
for the evaluation of microbiological spoilage associated with such products. The models for
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both mushroom sides (i.e. caps and gills) exhibited poor prediction performances, regardless
of the applied data partitioning and spectral variability reduction.

Regarding the extensive physical and biological variability characterizing these
products, a large-scale sampling of fresh mushrooms may constitute a better and integrated
approach for extending the current knowledge. The methodologies used in sample preparation
and sensor application should also be revised, maintaining the rapid and easy-to-use
characteristics of the applied spectroscopy-based technologies. Moreover, additional
computational analysis including, among others, the comparative analysis of various machine
learning algorithms and data fusion approaches, could be also valuable for the development of
reliable and robust predictive models that will better explain the process of microbiological

spoilage of oyster mushrooms.
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Chapter 7

7.1. General discussion

Along with the growing production and consumption of fresh-cut and ready-to-eat
produce, important challenges concerning the quality of these products continue to exist
(Chaudry et al., 2018). However, specific knowledge about the diversity of produce-associated
microbial communities related to spoilage is still scarce (Leff & Fierer, 2013; Gorni et al.,
2015). Therefore, a better and deeper insight into the microbial communities, and the way
various environmental factors influence and shape them, is definitely required to develop
strategies for quality control and assurance (Juste et al., 2008; Leff & Fierer, 2013; Cao et al.,
2017). Given also their notably limited shelf-life, which is to an important extent due to
microbial activity, the establishment of rapid and effective methods for microbiological
spoilage assessment is a first priority action for the fresh-cut food industry (Wang et al., 2018;
Giannoglou et al., 2020).

The research undertaken in the present thesis initially aimed at exploring the microbial
communities associated with the spoilage of fresh-cut produce and the changes occurring in
their composition during storage at different temperatures through a culture-independent NGS
technology (Section A). Although culture-dependent methods have been widely used in food
microbiology, it is well established that they are not able to provide a broad and fine
characterization of food microbial communities (Ercolini et al., 2013; Zhou et al., 2015; Edet
et al., 2017). Subsequently, the application of spectroscopy-based technologies as alternative
tools for the microbiological spoilage assessment of various fresh-cut produce commodities
was also evaluated (Section B). Compared to conventional microbiological methods, these
technologies provide minimal sample preparation, non-destructive sampling and rapid data
acquisition (Nychas et al., 2016). Thus, they could allow real-time and onsite assessment at

food industries and potentially at food retail and service premises.

7.1.1. Section A: Discussion

Numerous NGS studies, based mainly on metagenetic approaches, have investigated
the plant microbiota associated with edible or inedible plant parts (Knief et al., 2014;
Abdelfattah et al. 2018; Angeli et al., 2019). However, there is limited understanding of the
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diversity and composition of the microbial communities of fresh and even more of fresh-cut
produce (Leff & Fierer, 2013). The microbiota of such products changes following harvest,
processing, packaging and storage (Jackson et al., 2015, Soderqvist et al., 2017; Gu et al.,
2018). However, the microbial communities present at the time of purchase and consumption
are more relevant to study, given the fact that they represent the communities to which
consumers are exposed. In Chapters 2 and 3, the microbial communities of RTE pineapple and
leafy vegetables were characterized, while the influence of temperature on their composition
also was investigated using a metagenetic sequencing approach. The fresh-cut produce
commodities were stored at different isothermal and dynamic temperature conditions. An
important innovation of the present thesis was that the bacterial communities were
characterized through gyrB sequencing providing species identification. Instead, all the
published studies for fresh-cut produce utilize the widely used 16S rRNA analysis and remain
at the taxonomic level of phylum, group or genus (Cao et al., 2017).

The study described in Chapter 2 reports on findings regarding the evolution of fungal
(as the predominant spoilage microorganisms) and bacterial communities associated with RTE
pineapple during storage under different temperature conditions. The fungal characterization
was performed through a metagenetic amplicon sequencing approach, based on the ITS2
region, whereas bacterial identification was achieved through gyrB amplicon sequencing.
Initially, a small scale comparative analysis of the culture-independent (metagenetic approach)
and culture-dependent (plates) characterization of pineapple’s fungal community indicated that
a whole phylum (i.e. Basidiomycota), as wells as abundant Ascomycota species, were hardly
or unsuccessfully detected in plates. Therefore, in accordance with literature, the applied
culture-dependent method was evaluated as extremely biased in its ability to capture the fungal
diversity of pineapple (Ercolini et al., 2013; Cao et al., 2017; Edet et al., 2017). With regard
to the metagenetic analysis, the temperature and storage time showed a statistically significant
impact in species richness which decreased over storage time and when the temperature
reached higher levels. However, when the influence of different storage temperatures and times
on fungal diversity and composition was investigated, a strong batch effect was revealed.
Indeed, pineapple samples from two of the four studied batches (i.e. P3 and P4) had a quite
similar fungal community (dominated by Candida argentea or Hanseniaspora uvarum), while

samples from the other two batches (i.e. P1 and P2) displayed a set of completely different
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fungal communities (dominated mostly by the species Fusarium circinatum or Candida
intermedia, and in some cases by Pichia fermentans and Meyerozyma caribbica). These
compositional variations may be attributed to the natural variability of plant-origin products,
as well as the variability driven by various biological, pre-harvest and post- harvest factors
(Rico et al., 2007; Leff & Fierer, 2013). A deeper analysis at batch level revealed that the
impact of temperature and storage time varied on recovered fungal species, depending on their
initial prevalence. Specifically, the abundant F. circinatum (phytopathogen) was gradually
suppressed during storage, whereas other yeast species (Pichia fermentans or C.argentea at 4
°C, and C. intermedia at 8 and 12 °C) finally prevailed according to the temperature, indicating
a potentially competitive action. The bioprotective activity of these yeasts against
phytopathogenic molds, has been previously reported in the literature (Giobbe et al. 2007,
Rosa-Magri et al. 2011). There were also species (e.g., C. argentea) which were initially
dominant and remained as such throughout storage. As far as the subdominant bacterial
microbiota is concerned, the Pseudomonas spp. was the most abundant genus, but bacteria of
the Enterobacteriaceae family and lactic acid bacteria (LAB) also were present. However, the
temperature and the batch factors did not significantly influence these microbial communities.

In Chapter 3, the bacterial epiphytic and endophytic communities associated with the
spoilage of RTE rocket and baby spinach during storage at compliant and abusive temperatures
were characterized using gyrB amplicon sequencing. Among the NGS studies concerning fresh
or fresh-cut leafy vegetables, only few of them analysed both epiphytic and endophytic
communities (Jackson et al., 2013, Soderqvist et al., 2017). The findings of the study indicated
that Pseudomonas species were the most prevalent bacteria in both vegetables. The species
diversity of baby spinach was significantly higher compared to that of rocket in terms of
evenness. Furthermore, a striking difference in the bacterial community composition of the
two vegetables was observed. Specifically, Pseudomonas viridiflava was highly abundant and
occassionaly dominant in RTE rocket, while a new Pseudomonas species, namely P. RIT357,
showed high abundances and even dominance in baby spinach. Moreover, Pseudomonas
fluorescens and/or Pseudomonas fragi as well as Janthinobacterium psychrotolerans, and
Janthinobacterium lividum were also highly abundant in some cases of baby spinach compared
to rocket. The differences in species composition of the two vegetables may be attributed to

variations in metabolites, physical characteristics, and symbiotic interactions with the host
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(Redford et al., 2010; Leff & Fierer, 2013). However, the different batches within each type of
vegetable differed slightly or largely in bacterial community composition, even in samples
provided by the same supplier. The results also highlighted that the impact of temperature was
significantly stronger in baby spinach evenness, while the storage time influenced more the
rocket evenness. Similarly to the pineapple case, the impact of the aforementioned two
environmental factors on species composition was not stronger than the batch impact. At batch
level, no specific and clear impact of temperature and time was revealed on baby spinach
communities. On the other hand, the impact of storage time was present in some batches of
rocket. Interestingly, Pseudomonas species (P. viridiflava and Pseudomonas syringae), which
are considered plant pathogens, became less abundant during storage, while members of the
LAB group showed increased abundances. Indeed, LAB are also described in the literature as
Important bioprotective bacteria depending on the strain and the food product (Pothakos et al.,
2014; Saraoui et al., 2016).

7.1.2. Section A: Conclusions and future perspectives

In the present section, the microbiota related to the fresh-cut produce spoilage during
storage at different temperatures was successfully characterized at the species level, through
metagenetics based on ITS and gyrB genetic markers for fungi and bacteria, respectively. A
great variability in microbial communities among the different batches of the fresh-cut produce
was observed, indicating that these commodities are very complex and unpredictable
ecological niches. As it was previously mentioned, various factors including geographical
origin, season of harvest, farming practices, as well as fresh-cut processing and storage
conditions can shape distinctively the microbial communities and result in high compositional
variations (Rastogi et al., 2012; Jackson et al., 2013; Leff & Fierer, 2013; Dees et al., 2015;
Cao et al., 2017; Darlison et al., 2019; Tatsika et al., 2019). As a result of the extensive
variability, the batch effect on microbial composition was stronger than that of temperature
and storage time. Subsequently, a batch-level analysis was conducted with the aim to reveal
any potential impact of storage temperature and/or time. In the case of pineapple, the impact
of these two factors varied, according to the initial prevalent fungal species. Contrarily, the in-
depth analysis did not reveal a specific and clear effect of temperature and time on baby spinach

communities, while for rocket only the impact of storage time was observed in some cases.

179



Given all the above, a large-scale sampling of RTE produce commodities from various
production facilities should allow for a broader and integrated analysis, resulting in better
characterization of the diverse microbial communities specifically associated to the spoilage
of these products. Further research is also necessary in order to unravel how important
environmental factors may drive the spoilage of end products, before purchace and
consumption. However, the successful distinction of the various batches of the studied fresh-
cut produce commodities through the present metagenetic analysis could constitute an
important tool for the industry. Specifically, this technology could provide a molecular
fingerprint for each produce batch that would further contribute to the development of an
advanced treacability system for quality management.

The results of the present thesis also reported potential microbial interactions during
spoilage. The reduction of dominant species abundances were followed by the dominance of
others. In pineapple, various yeasts finally dominated over a widely known pathogenic mold,
which was initially prevalent. In the case of leafy vegetables, the potential suppression of
bacterial species, often reported as plant pathogens, by LAB also was indicated. According to
the scientific literature, several bacterial and yeast species or strains have been reported as
natural microbial antagonists against fungal and bacterial pathogens of plants, but also human
pathogens on a variety of harvested commodities (Giobbe et al. 2007; Sharma et al., 2009;
Lopez-Velasco et al. 2010; Rosa-Magri et al., 2011; Soderqvist et al., 2017). However, the
application and efficiency of biocontrol strategies has yet to be demonstrated in fresh-cut
products. Indeed, spoilage is a complex biological phenomenon and little is known about the
actual roles played by the microbial species involved in this procedure (Galimberti et al., 2015;
Poirier et al., 2018). Even if valuable information can be gained through taxonomic description,
conclusions are limited due to the lack of functional information. Microorganisms exhibit a
wide genetic variability even within species, especially with respect to their metabolic
pathways and host-interactive capabilities (Massart et al., 2015). Although, the metagenetic
approach used in the present thesis is a powerful, cost-effective and easy to apply tool for
taxonomic description, it does not provide any information on the genes present in the
microbial communities (Massart et al., 2015). On the other hand, metagenomics can provide
taxonomic and functional information by identifying the genes present in the food microbiome.

Such functional analysis could yield a more accurate description and a better understanding of
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the role of microbial species and their interactions in fresh-cut produce (Angeli et al. 2019).
Although such analysis is more complex and costly in terms of sequencing and bioinformatics,
it should be prioritised for a better understanding of the microbial ecology (Soderqvist et al.,
2017). However, the integration of metagenomics and metatranscriptomics data is also
important since the latter identify not only the highly abundant genes but also the most
transcribed genes and pathways, further refining the functional understanding of microbiota’s
roles and functions. To conclude, the in-depth study of microbial communities and the various
taxa (but mainly species) interactions with the aim to control and promote the growth of
potential bioprotective/biocontrol agents is also important for the development of effective

strategies concerning quality of RTE produce.

7.1.3. Section B: Discussion

Although spectroscopy-based technologies have been implemented in a broad range of
food products (mainly meat products) with the aim to assess various aspects of quality, limited
are the corresponding studies that have attempted to evaluate the microbiological spoilage in
fresh produce, let alone fresh-cut and ready-to-eat (RTE) commodities (Suthiluk et al., 2008;
Di Egidio et al., 2009). In Chapters 4, 5 and 6, different spectroscopy-based technologies were
used for the assessment of microbiological quality of RTE pineapple, RTE leafy vegetables
and fresh-cut oyster mushrooms, respectively. Given that microbial communities and their
populations related to food spoilage depend on the product itself, as well as the applied storage
conditions, the experiments were designed so as to include storage under different
temperatures and, wherever applicable, under different packaging conditions (i.e. passive and
active modified atmosphere packaging). Non-isothermal storage was also applied, since it is
considered more realistic with regard to the conditions encountered in the cold chain for
refrigerated food products (Ndraha et al., 2018). The products under study were subjected to
parallel spectroscopy and microbiological analysis, aiming for the correlation of the data
derived from the two methods and the development of appropriate predictive models.
However, advanced computational tools are needed for the analysis of the collected data and
the interpretation of results derived from these methods (Jollife & Cadima, 2016; Truong et

al., 2019; Zhou et al., 2019). Therefore, various machine learning approaches were performed
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and often comparatively evaluated in order to achieve the best possible and realistic model
performance for the assessment of microbiological spoilage of fresh-cut produce.

In Chapter 4, various analytical technologies (sensors), namely Fourier-transform
infrared (FTIR), near-infrared (NIR), fluorescence (FLUO) and visible (VIS) spectroscopies
as well as multispectral imaging (MSI), were utilized in evaluating the microbiological (total
viable count, TVC), but also sensory (colour, odour, texture) quality of RTE pineapple (Ananas
comosus). The suitability of different machine learning algorithms (linear and non-linear) and
sensors for monitoring the various features was assessed comparing the prediction
performances of the models developed. The potentials of The Unscrambler software and the
online machine learning ranking platform, SorfML, also were explored. Since various easy-to-
use software are commercially provided, it is important to learn the potentials and the
limitations of each platform, realizing that conflicting outputs are often possible (Nunes et al.,
2015). For the two statistical software, different data pre-processing, data partitioning schemes
and cross-validation methods were applied for model development. Besides all these distinct
approaches, the results indicated similar trends about the ability of sensors and algorithms to
assess the quality of RTE pineapple. Specifically, for TVC prediction, almost all the models
developed with the partial least squares regression (PLSR) algorithm showed relatively
satisfactory performances in both The Unscrambler and SorfML software. However, the MSI,
and mainly FLUO and VIS model exhibited better performances in The Unscrambler, with R?
values varying from 0.54 to 0.58 and RMSE of prediction not above 0.53 log CFU/g. In
SorfML, FLUO and PLSR combination also exhibited the best performance with slight
differences compared to the majority of the PLSR models.Apart from PLSR, all the support
vector machine (SVM) Linear models were also satisfactory for TVC prediction, exhibiting
RMSE and R? values close and occasionally (in the case of VIS data) improved to those of
PLSR models in SorfML. On the other hand, non-linear algorithms exhibited poor model
performances. The applicability of NIR spectroscopy was assessed using only The
Unscrambler software, and the corresponding model exhibited the poorest performance of all
the PLSR models developed in both software. Consequently, the results indicated that the
assessment of the microbiological spoilage of RTE pineapple could be potentially achieved by
the majority of the studied spectroscopy-based technologies. In the case of sensory quality, the

conduction of a more integrated and representative analysis of sensory attributes is needed for
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solid conclusions to be drawn. However, FLUO and MSI seem to be also promising for the
evaluation of pineapple’s odour.

A comparative analysis of non-invasive sensors and machine learning approaches for
evaluating the microbiological spoilage of RTE leafy vegetables was conducted and presented
in Chapter 5. Sensors based on FTIR, NIR and VIS spectroscopies as well as MSI, were used
for the assessment of TVC and Pseudomonas spp. populations of RTE rocket and baby spinach
salads stored in passive MAP. Along with the various sensors, two machine learning
algorithms, PLSR and support vector regression (SVR, radial), and two distinct data
partitioning approaches [i.e. random and dynamic (as test set) data partitioning] were utilized.
The results demonstrated that the random data partitioning scheme resulted in better
performances in the case of rocket and in almost all cases of sensor/algorithm combinations.
On the other hand, in the case of baby spinach, the random partitioning approach resulted often
in better performances for MSI and NIR, but in similar performances when FTIR and VIS were
applied. With regard to the different algorithms used, the predictive power was similar for the
two algorithms in baby spinach, with few exceptions. Contrarily, in rocket, the SVR algorithm
provided considerably or slightly (depending on the data partitioning approach) better models
for the FTIR, VIS and NIR sensors but lower performance for the MSI sensor. Overall, the
microbiological spoilage of baby spinach was better assessed by models derived mainly from
the VIS (i.e. slope: 0.74; offset: 2.04; R?: 0.65; RMSE: 0.4) sensor, while FTIR (i.e. slope:
0.71; offset: 2.14; R?: 0.70; RMSE: 0.72) spectroscopy and MSI (with similar or even better
performances in some cases) were found to be more suitable in the case of rocket. In Chapter
5, FTIR spectroscopy and MSI were applied also for the evaluation of the microbiological
spoilage of RTE baby spinach stored under active MAP conditions. In contrast to the above
results in baby spinach, FTIR spectroscopy and MSI appeared to be promising tools, since the
performance indices indicated good performances, which were also the highest performances
among all the developed models. Finally, the results indicated that a tailor-made sample and
data analysis workflow is needed for the two leafy vegetables. Therefore, it is evident that the
different types of vegetables, as well as the datasets derived from the same product but
corresponding to different storage conditions, should be treated distinctively in terms of sensor

and computational analysis application.
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Concerning Chapter 6, the microbiological spoilage of oyster mushrooms (Pleurotus
ostreatus) was assessed using FTIR spectroscopy and MSI. Prior to PLSR, various data
partitioning methods were tested. All the developed PLSR models for both mushroom sides
(cap and gills) and both sensors exhibited quite poor prediction performances, regardless of
the applied data partitioning schemes, feature selection and reduction of spectral variability.
The results derived from the applied data analysis indicated that FTIR spectroscopy and MSI
are not promising tools for the evaluation of the microbiological spoilage of oyster myshrooms.
The poor applicability of the two sensors could be attributed to a combination of potential
methodological failures, limitations of analytical technologies and structural difficulties of the

product resulting, in turn, in the observed extensive spectral variability.

7.1.4. Section B: Conclusions and future perspectives

The majority of the tested spectroscopy-based technologies coupled with machine
learning showed promising results for the evaluation of the microbiological spoilage of fresh-
cut produce, with the exception of oyster mushrooms. Currently, these technologies could
provide additional information to the well-established microbiological and molecular analyses,
allowing for the time-efficient, non-destructive and onsite screening of fresh-cut produce
samples in the production line. However, future research is necessary for these methods to be
eligible for the accurate and precise evaluation of fresh-cut produce spoilage and to be able to
replace the above conventional retrospective and expensive methods.

Interestingly, all the fresh-cut produce datasets showed a great microbiological and
spectral variability among batches, as well as between the two biological replicates (duplicate
samples originated from different packages). This excessive variability is very common in
plant-origin products due to the strong impact of biological characteristics (e.g., cultivar and
geographical region), as well as various pre-harvest (agricultural practices) and post-harvest
(processing and storage conditions) factors on the final product attributes and quality
(Martinez-Sanchez et al., 2006; Conte et al., 2008; Medina et al., 2012; Garrido et al., 2015;
Zhang et al., 2018). Even among produce samples from the same field, strong variations may
be present due the great natural variability of such products (Rico et al., 2007). Therefore, the
administration of large-scale experiments is advised to improve the characterization of the

extensive variability of fresh produce commodities. Samples derived from different cultivars,
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geographical regions and seasons, as well as from different producers and fresh-cut processing
facilities (with different pre-processing and packaging steps) should allow for a better
representation and integration of the encountered variability in model calibration (Zhang et al.,
2018). Moreover, the development of open databases that could be continuously enriched with
data derived from various certified laboratories seems to also constitute a great option for
developing more robust and universal models.

During the model development procedure, various data analysis approaches were
evaluated along with the tested spectroscopy-based sensors in the present thesis in order to
achieve the best possible model performances. First of all, the application of a data partitioning
scheme based on data derived from dynamic temperature conditions was proposed. The data
derived from the dynamic conditions include the information from all temperatures and depict
realistic temperature fluctuations during produce distribution in the food supply, and, hence
should allow for the development of meaningful predictive models (Tsakanikas et al., 2018).
Indeed, the results demonstrated that when model external validation was performed based on
the dynamic temperature data, the models performance was in some cases similar to the one
attained when validation was performed on samples randomly selected. Moreover, different
machine learning algorithms were comparatively evaluated for their suitability to assess the
microbiological spoilage of produce commodities. Among the machine learning algorithms
tested, PLSR exhibited relatively satisfactory or even good predictive power and in some cases
the best model performances. PLSR is a linear method widely used for spectroscopy datasets
that encounter dimensionality issues, strong collinearity and noise (Wold et al., 2001;
Mehmood et al., 2012). However, the present results indicated that other algorithms, even non-
linear, were also suitable for the evaluation of microbiological spoilage. Specifically, SVM
Linear (for regression and classification) utilized in pineapple and SVR (non-linear) based on
radial basis function kernel in leafy vegetables exhibited similar or even better performances
compared to PLSR. Therefore, additional computational analysis including, among others, the
utilization of various data pre-processing methods, and selection of the most informative (in
each case) wavelengths and data fusion approaches, should also be applied and comparatively
evaluated, allowing for the development of more reliable and robust predictive models.
Interestingly, the applicability of the various sensors and machine learning approaches in the

evaluation of microbiological spoilage seems to be food-specific. According to Chapter 5,
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although the two leafy vegetables tested seem quite similar to each other, different sensors and
algorithms were more appropriate for each vegetable type. The results were also differentiated
among datasets derived from the same food product but different packaging conditions.
Therefore, it is evident that the different commodities, as well as same products subjected to
different storage conditions, should be treated distinctively in terms of sensor and machine
learning approach application.

Overall, the utilization of spectroscopy-based technologies in food science applications
requires the involvement of different scientific disciplines including food microbiology,
chemistry, physics, engineering and statistics. A multi-disciplinary approach is anticipated to
contribute to a better understanding of the complex microbiological spoilage mechanisms
related to fresh-cut produce, and, thereby, to a focused and optimized application of
spectroscopy-based technologies in food quality control. The conduction of informative
metabolomic analysis, focused on the identification and quantification of specific metabolites
related to food spoilage, would provide valuable information for the biochemical activity of
spoilage microorganisms, and would support future research with regard to non-invasive

analytical technologies such as the ones studied in the present thesis.
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Figure S.3.1. Impact of storage time and temperature on bacterial species composition of

ready-to-eat baby spinach samples from Batch BS_1. Samples are clustered according to

storage time. Samples are coloured according to storage temperature in blue (4 °C), green (8

°C), red (12 °C) and Dynamic (grey).
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Figure S.3.2. Impact of storage time and temperature on bacterial species composition of

ready-to-eat baby spinach samples from Batch BS_2. Samples are clustered according to

temperature. Samples are coloured according to storage temperature in blue (4 °C), green (8

°C), red (12 °C) and Dynamic (grey).
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mefficients in the tmining procsss by estimating the “lnes-point™ on the explained variance plot. Training
proceses were hassd an microbiological and spectral data derived during storage of gresn salsd samples at
isothermal conditions (4, 8 and 12°C), wheress testing was performed on data during storsge under dynamic
iemperature conditions (simulating real-life empemtune fuchetons in the food supply chainl. Since an in
Teasing interest in the e of non-imvasive sensars in food quality ssseszment has been made svident in recent
years, the unified spectra analysis workdflow described herein, by being based on the creation /usage of limited
sized featured sets, muld be very useful in food-specific low-cost sensor development.

Rt pwerik
Moot oilongl cal ¢ onmumdn ation aesement
el om mcded

Regression

Gaeen saladks

Non-lnwmahve sefmos

1. Introduction

In repent years, the production, sale and consumption of fresh mw
frufis and vegetahles, esperially a8 pre-cut and ready-to-eat (minimally
processed by washing, slicing or shredding and packaging) salads have
undergone substantial increases in the Eumpean Undon s well & the
United States This i3 the resull of consumer preferences for fredher,
more convendent and muritows foods that meet the needs of buser
lifestyles, at least in the developed countres. Vegetables are highly
contaminated by natme die elther to agronomic systems employed in
thelr production (eg, rrigatm with contaminated water, organic
fertilizers such as manure, etc.) or during processing, handling, and
marketing, (Francls et al, 2012; Skandamis and Nychas, 2011). Nome-
theless, consumers demand fesh produce commaodities, which should
e mast only perfectly safe for human consumption, but visually atme-
tve & well.

ver the past decade, a number of sensos based on vibratiomnal

= Comesponding authars.

speciroscopy or hyperspectral /multispeciral imaging have been devel
oped (Ratenl et al, 2017). Although such sensors have started gaining
popularity as mpld and efficient mathods for asessing food quality
and for food compositon, thelr utlkzation in landling of micm-
blodogical isswes related to the curment EU legislation | Commission,
2005) still remains 1o be finnly establehed. Indeed, the challenge of
uEing non-mvasive sendors as sensible allematives to the costly and
time-consuming conventional microbiological techniques has not been
adequately tackled yei.

Spectmscopy which indeed allows mpid, nondnvasdve and non-de-
structive analysis (Nychas et al, 2016), cannot be congidered as target-
apecific method and it must be asoclated with complex data amalyties
tos exiract the relevant microblological and biochemical information.
Thiz can be achieved by the slections of the wawlength mange for
souree and detector, and of the messurement setup. It is evident that
dse to the mult-dimensona] maiure of the data generated from such
analyses, the outpul needs 1o be coupled with a sultable staristieal
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ARTICLE INFO ABSTRACT

Feywords: The growth kinetic beharvicur of Peandomonas spp. naturally ecourring on oyster mushrooms (Plesroms osmeans])
Growih knotics was evaluated during storage at different isothermal conditions (4, 10 and 16°C), and was described quanti-
Microblal spollzge tztively using a ooe-step global parameter estimation method. In the context of this modelling approach, the
Mideng prowth knetic parameters of maximum specific growth rate (0,,.) and lag phase duration (L) were estimated
Elorage axperments using the Baranyi model, whereas the efect of temperature o0 gy was described uwsing a secondary square-root-
type madel. The global model's gocdness-ci-fit indices of root mean square error (AMSE) and adjusted coefficient
of datermination (adjusted-R%) were estimated to be 0.206 and 0.948, respectively. The global model was then
extermally validated using growth data generated during omge of oyster mushrooms under dymamic tem-
perature conditions. Specifically, the differential form of the Baranyi model merged with the square-root-type
madel was solved numerically using the fourth-order Runge-Kutta method in order to predict the Prendomonas
spp. concentration on mushrooms under fluctuating temperature conditions. The developed dynamic modelling
approach exhibited sxtisfactory performance, with the mean deviation and the mean absolute deviation being
0.10 and 0.22 log CFU/g, respectively. Along with further substantiation and optimization, the developed
maodel should be useful in food quality management systems, aiming in particular at the improvement of the

microbiclogical quality of oyster mushrocms.

1. Introduction

Edible mushrooms are known as nutrient-rich food commoditles
containing high amounts of proteins, minerals and bicactive com-
pounds (Wanl, Bodha, & Wanl, 2000). At the same Hme, due to thelr
high molsture content and neatral pH, fresh mushrooms constitute an
Ideal substrate for microbial growth (Venturini, Reyes, Rivera, Orla, &
Blanco, 2011} Although numerous edible mushropm specles exist in
nature, oyster mushroom (Fleuroms oseremas) 1s one of the most com-
maonly produced and consumed species in the world (Venturind et al,
2011). Bacterial specles balonging to the genus Psewdomonas tend o
dominate on ovster mushrooms (Reyes, Venturinl, Ora, & Blanco,
2004; Venmrini at al., 2011), with the microbial spoilage of these food
commuodities proceeding fast and their commercial value being lost

= Comesponding authar.
E-mail address gindeuagr (G-I E Nychas).
1 Thess authars cantributed equally to this study.
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within a few days from production (Ventura-Agullar, Colinas-Ledn, &
Bautista-Bafios, 20171

Conventlonal microbfologleal andsor physicochemical methods
appliad In the framework of food storage expariments, frequantly under
abusive environmental conditions, have been extensively used by both
the food Industry and academia for the purposs of shelf-life assesment.
Monetheless, since several limitations of this approach have besn
ldentified, Its utillzation for the accurate and reproducible estimation of
a food products shelf-life was early treated with scepticism by the
sclentific community (Mcheekin & Ross, 1996). For instance, the astl-
mation of shalf-life based on this approach is valid only for the condi-
tioms tested, while any changes to these conditions require repetition of
the storage experiments. Furthermore, no information ks provided on
the magnitude of influence of the controlling factors on microbial
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ARTICLE INFO ABETRACT

Keypwords: Recenily, rapid, non-invasive analytical methods relying on vibrational spectroscopy and hyper/multispectral
Fineapple imaging, are increasingly gaining popularity in food science. Although such instruments offer a promising al-
‘Quality ternative to the conventional methods, the analysis of genemted data demands complex multidisciplinary ap-

Vibrational spectroscopy
Muinspertral tmaging
Machine learning
SormiL

proaches besed on data analytics tools ntilization. Therefore, the objective of this work was to (i) amess the
predictive power of different analytical plasforms (sensors) coupled with machine leaming algorithms in eval-
uating quality of ready-to-=at (RTE) pineapple (Angnas comosus) and (if) explore the potentials of The
Unscrambler software and the online machine-learning ranking platform, SorfML, in developing the predictive
madels required by sach instruments to assess quality indices. Pineapple sumples were stored at 4, 8, 12 "C and
dynamic temperatares and were subjectsd to microbiological (total mesophilic micmbial populations, TVC) and
sensory analysis (colour, odoar, texture) with parallel acquisition of spectml data. Fourier-transform infrared,
fluorescence (FLUO) and wisthle sensors, as well as Videometer mstrument were used. For TVC, almost all the
combinatioas of sensors and Partial -least squares regression (PLSR) algorithm from both analytios tools reached
values af root mean squars error of prediction (EMSE) up to (063 log CFU/g, as well as the highest coefficient of
determination values (R*). Moreover, Linsar Support Vector Machine (SWVM Linear) combined with each one of
the sensors reached similar performance. For odoar, FLUD sensor achieved the highest overall pecformance,
when combinsd with Partial-least squares discriminant analysis (PLSDA) in bath platforms with accumcy close
to ES%%, but also with values of sensitivity and specificity above 85%. The S¥M Linear and MEI combination alse
achieved similar performance. On the other hand, all models developed for colour and texture showsd poor
prediction performance. Owerall, the use of both analytics tocls, resulted in similar trends concerning the fea-
sibility of the different analytical platforms and algorthms on quality evaluation of ETE pineapple.

1. Introduction

In the context of tremendous technological change, &8 growing lack
of natural resources, and & continuous evolutlon of consumers' life-
styles and consumption hablis across the globe, food Industry Is chal-
lenged to provide safe and qualitative food to consumers. To address
the need for efficlent, safe and environmental respectful production, as
well as sirict communication and connection with the consumers,

* Correspanding authar.
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several approaches have been developed (Nychas et al., 2016).
Among these, analytical methods based on vibrational spectroscopy
and hyperspectral/multispectral Imaging have galned the attention of
sclentists, since they could fulfill the needs of food Industry as rapid and
efficlent methods for assessing food quality (Fengou et al, 2019k;
Barbin et al., 2015; Papadopoulou et al., 2011; Ammor et al., 200,
‘Camps and Christen, 2009), safety (Grewal et al., 2015; Brandily et al.,
2011; Davis et al, 2010; Wang et al., 20107 and authentication-
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Abstract Current information from comventional microbiological methods on the microbial diversity
of table olives is insufficient. Next-generation sequencing (NGS) technologies allow comprehensive
analysis of their microbial community, prowviding microbial identity of table olive varieties and their
designation of origin. The purpose of this study was to evaluate the bacterial and yeast diversity
of fermented olives of two main Greek varieties collected from different regions—green olives,
ow Halkidiki, from Kavala and Halkidiki and black olives, ov. Konservolia, from Magnesia and
Fthiotida—~wvia conventional microbiological methods and NGS. Total viable counts (TVC), lactic
acid bacteria (LLAB), yeast and molds, and Enferobacteriacese were enumerated. Microbial genomic
DMA was directly extracted from the olives’ surface and subjected to NG5S for the identification of
bacteria and yeast communities. Lactobacillacese was the most abundant family in all samples. In
relation to yeast diversity, Phafformycetacese was the most abundant yeast family in Konservolia olives
from the Magnesia region, while Pichizcear dominated the yeast microbiota in Konservolia olives
from Fthiotida and in Halkidiki olives from both regions. Further analysis of the data employing
multivariate analysis allswed for the first time the discrimination of ov. Konservolia and o, Halkidikd
table olives according to their geographical origin.

Keywords: table olives; Halkidiki olives; Konservolia olives; NGS; Greek-style fermentation;
Spanish-sty le fermentation; microbiclogical analysis; metagenomic analysis

1. Introduction

Table olives are an important fermented food in Mediterranean countries with great nutritional
and economic significance. Their content in bicactive compounds, vitamins, dietary fibers, unsaturated
fatty acids, minerals, and anticxidants with demonstrated positive effects on human health meets
the consumers’ needs toward natural or minimal processed foods that, beyond basic nutrition, offer
additional health benefits [1]. Raised awareness of the health benefits of olives may be partially the
driving force for the increased global table olive consumption that has doubled over the past three
decades and is expected to increase by 2.1 percent in 2020, as predicted by the International (live
Council (I0C) [2].
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ARTICLE INFO ABSTRACT

Keywords: The international market of fresh-cut products has wi 1 d ic growth in recent years, stimulated by
Ready-to-eat pineapple s d d for healthy, itious and © foods. One of the main challenging issues for the
Spollage quality and safety of these products is the potential microbial spoflage that can significantly reduce their shelf.
“Mz‘:mm life. The complete identification of fresh-cut product microbiota together with the evaluation of environmental

factors impact on microbial composition is afpn‘nury importance. We !hnrrl'lx'e assessed the fungal commumities
associated with the spoilage of ready-to-eat (RTE) p pple using a i icon sequencing approach,
based on the ITS2 region. Our results revealed a significant variability on fungal q':enrs composition between the
dlffﬂ'fm batches of RTE plnnpple The initial microbiota compositicn was the main influencing factor and
ined the progress of spoilage. Temp and storage time were the secondary factors influencing
spoilage and their impact was depending on the initial prevalent fungal species, which showed different re.
s[lmrs to the various modifications. Our results mrngly suggest that further large-scale sampling of RTE
duction should be d d in order to assess the full biodiversity range of fungal community
mml\rd in lhc spoilage process and for unravelling the impact of important environmental factors shaping the
initial microbiota.

Temperature and time offoct

1. Introduction

phytopathogens and human pathog but alzo mi izma with
antagoniztic propertiez against thece pathogens, which have a zignifi-

Frech-cut market has grown dnm:uc:.l}y in recent yearz, as a result
of changes on dy [RT!] fruits ;m! vege-

cant influence on human health and products’ quality (Jorni et al |
2015). Thgmfm, a better incight into the mmobul commumty and itz

tables fulfil the growing d d for healthy and minimall
procemed food pzodum (Gorni et al, 2015; Qadsi et al., 2015). How~
ever, the quality and safety assurance of these new types of fresh
Wu:m)uchllmgefwxheﬁe.hmmduacyanquumfuﬂ
and i 1 of food scientista (Padron--

Mederos et al, 2020). -
Prech-cut fruits and vegetables products have a limited dulf life due
to 1 4 rl. . | ieal “‘l Sinsk SN m

in food iated iz required to provide
..afe and high-quality food (Juste et al., 2008; Cao et al,, 2017).

So far culture-dependent methods have been the gold standandz in
food microbiology, since they have led to the description of a number of
habi H ,dxya.re ly biazed in their ability to unravel
the microbial of pl ices azsociated with food or
environmental samples (Juste ez al.| 2003; Ercolini, 2013; Zhou et al |
2015; .,Je: et al., 2017). On the other hand, the development of next

their processing and mnge (Di Bgidio et 2l , :009; Torri et al, 2010; ing (NGS) techni has enabled h w
Zhang et al, 2014). Indeed, the processing treatments render the .tudv food mu:vaul ecology from bco:de: and deeper perspectives.
productz more prone to zpoilage microorganiomsz, a: well as R X :ml hes have resulted in
micro-organizms of public health significance (Leff and Fierer, 2013; improved und g of 3 microbi bv providing 2 species- and
Qadri et al, 2015). Various studies underline the presence of strain-level ch (Abdelfartah et al., 2016, 2018; Poirier
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