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Abstract

Knowledge of tree structural characteristics is gaining importance in advanced fruit growing, especially when
implementing precision horticulture techniques. Accurate extraction and processing of tree structure is critical for
precision horticulture, whereas spatio-temporal crop monitoring aim to optimize farm management practices such
as pruning, thinning, selective harvest, chemical and fertilizer spraying. Growers have traditionally obtained this
information by using manual sampling techniques, which tend to be laborious, spatially sparse, expensive,
inaccurate and prone to subjective biases. Three-dimensional (3D) sensing, offers new possibilities for a more
efficient agricultural practice with the use of highly advanced technological instruments and methodologies.
Essential reasons contributing to this possibility include the increasing computational processing power of
computers, the decrease in cost and size of electronics, the increase of efficiency in laser emitting diodes. Therefore,
the demand for advanced knowledge of individual crops, requires robust and accurate data processing techniques
needed by the grower to support precision agriculture protocols.

In the present study, precision horticulture techniques were applied in apple orchards. The aim of this study was
to extract 3D structural information of apple trees spatially and to associate this information with soil properties,
microclimate, tree physiology, yield and fruit quality. To meet this end, a light detection and ranging (LiDAR)
system was mounted on a commercial tractor to scan tree rows of the orchard.

The first contribution of this thesis is the development of a tree segmentation methodology to detect individual
trees in 3D domain, based on stem position in high density orchards. The approach focuses on trees trained as
slender spindled, which presents unique challenges for segmentation algorithms due to their intertwined nature.
Initially, the accuracy of the LiDAR system assessed using a metal-box with known dimensions in field conditions.
Tree stem position of each tree was estimated based on a bivariate point density histogram. Each tree was
segmented using a cylindrical boundary projected around the estimated stem positions. Therefore, geometrical
parameters of the segmented tree point clouds were estimated and compared with manual measurements. The

assessment of the LIDAR system considering the metal box exhibited enhanced error due to points with enhanced



distance between laser aperture and the object. The coefficient of determinations were achieved between the
measurements and estimated data from the segmented point clouds in terms of tree height, stem diameter and
canopy volume.

The second contribution considers the implementation of structural parameters in a water balance model for
observing their interaction with microclimate and soil properties over growing season. In particular, leaf area (LA)
and height of trees, estimated LiDAR system, with daily weather data and soil variables are utilized to estimate the
daily tree water needs different areas of soil electrical conductivity (ECa). The results revealed that tree geometry
interacts with ECa. Furthermore, the utilization of 3D plant and microclimate informationincreased the spatial
resolution of the water balance model, and its accuracy. Furthermore, the estimated LA by the LiDAR presented
high correlations with ECa at different areas. In parallel, a correlation was observed between the ECa and total
available water content in the root zone. Whereas, the implementation of LA information from different ECa areas
pointed to the reasonability of spatially resolved water balance, allowing to estimate daily tree water needs.

Moreover, the study emphasized in the spatio-temporal estimation of tree geometry in 3D using the LiDAR
system at different growth stages. Firstly, the spatial impact of ECa and orchard landscape in the growth of tree
volume was analyzed, indicating high variation over the season and its significant dependence with the soil
properties. The LiDAR system was used to monitor the whole field repeatedly over the growth season. The
estimated canopy volume related negatively with ECa areas (low, mid, and high) of the orchard, indicating that tree
growth was approximately 30% higher in low ECa compared to mid and high ECa areas. These results suggest that
the canopy growth varies spatially, whereas the terrestrial laser scanning offers a feasible method for
implementation in decision support systems, in precision horticulture.

Additionally, LIDAR-based estimation of LA was achieved using LA of defoliated trees with the corresponding
points per tree. In parallel, linearity and backscattered reflectance of LIiDAR, which suggested in fruit detection
methodology, were utilized to segment the woody parts from points per tree (PPT) at different growth stages,
improving the relationship with LA. The spatial responses of LA were investigated with the ECa and yield over
the season. Whereas, a k-nearest neighbor model, was built to predict the fruit fresh mass (FM) and soluble solids

content by means of soil ECa and LA. These results confirm spatio-temporal variation of canopy growth.



Furthermore, the results suggest the value of LA data in decision support systems aimed at optimizing orchard
management practices, particularly addressing the impact of orchard management on fruit quality.

Estimation of LA was improved when points of woody parts were removed from points per tree, providing
higher adjusted coefficient of determination at 55 days after bud break. ECa and LA were positively correlated
with fruit size. Motivated by these correlations, k-nearest neighbor models were built to predict fruit quality at
harvest. Validation was performed by applying the model of one year on data of the subsequent year. Based on
geoposition and ECa, classification accuracy in the test set validation was 39.7 %, whereas classification with
geoposition and LA resulted in increased accuracy by 63.3 %. Results confirm spatio-temporal variation of canopy
growth as was expected.

Tree structural parameters can impact on fruit size, number and quality parameters. Therefore, in the final part
of the study, fruit detection algorithms using the LiDAR system were proposed to estimate fruit diameter at
different growth stages. Trees were scanned pre and after defoliation at each individual date. Fruit segmentation
was based on threshold values of LiDAR calibrated backscattered reflectance and the geometrical features of
linearity and curvature. The high complexity of tree structure highlights the need to set up an assessment pipeline
considering fruits from defoliated trees as reference points. Therefore, evaluation of fruit number and position
founded on foliated trees is performed by comparison against the reference labels on defoliated. The results show
the high efficacy of LIDAR to localize and estimate fruit size in 3D domains, overpassing imaging systems
limitations susceptible to highly variable external factors that lead to significant appearance variations.

An analysis of LiDAR calibrated backscattered reflectance of tree elements was performed, exhibiting discrete
values for leaves, woody parts and apple fruits, respectively. The diameter of apple fruits estimated from the
foliated trees was related to the reference values based on the perimeter of the fruits, revealing high adjusted
coefficient of determination at DAFB12. When comparing the results obtained on foliated and defoliated tree’s
data, the estimated number of fruit’s on foliated trees at 120 days after full bloom 94.8% of the ground truth values.
The algorithm resulted in maximum values of 88.2% precision, 91.0% recall, and 89.5 F1 score at 120 days after
full bloom.

The components of this thesis have been designed to address to future machine vision challenges under the local

variable environmental conditions identified in high density apple orchards. Regarding tree segmentation, the



accuracy of the proposed methodology should be evaluated at different perennial trees and planting systems. Future
research should further investigate the implementation of 3D temporal plant information (e.g. LA, volume) from
high density orchards in variable rate applications such as irrigation, fertilisation. The inner relationship of fruit
quality and LA should be observed at different cultivars and climates to improve decision making in orchards.
Estimating fruit number over the growing season can optimise crop load and selective harvesting. In the future, the
detection accuracy of the proposed methodology should be assessed under different apple cultivars and LiDAR

sensors potential and architecture.

Scientific area: Precision horticulture
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Xopoypoviki] e£ay®yn) Kot EKTIPUNGT YOPIKTNPIGTIKAOV TOV QUTAOV pE yxpion 3D aicOntipa 6 pniedveg

Tunua Aéromoinong ®voikwv Iopwv & I'ewpyikn Myyovikng
Epyaotipio I'ewpyixns Myyovoloyiag

Iepidnyn

Ta dopukd YOapoKTNPIGTIKA TOV dEVIPOV OMOKTOVV OAOEVE KOl PEYAAVTEPT ONUAGio 6TV KOAMEPYEWD TOV
OmO®POPOPOV SEVTP®V, 101G KUTA TNV EPAPUOYT TOV TEYXVIK®V NG devdpokopiag axpipeiag. Kpioyoa otoyegio yo
TNV TANPECTEPT EPAPLOYN TNG ATOTEAOVV 1) akpiPng e&aywyn kot enelepyacia Tng Sopng TV EVTIPpOV KaBdG Kot
N {OPIKN Kol YPOVIKT TOPAUKOAOVONOT TV KAAMEPYEIDY, LEG® TNG OTolng eMLTLYYAvETOL 1 PEATIGTOTOINGT TV
TPOKTIKOV OO EIPLONC, OTMG TO KAUSELD, TO APAIUA, T) ETIAEKTIKT GLYKOUION, O YEKAGUOG LLE PUTOPAPLLOKO KO
Mmdopata, Tov onwpmva. [Tapadociakd, 1 GVALOYN TOV TUPATAVE® TANPOPOPLOV YIVOTAY UEGH YELPMVAKTIKNG
detypatolnyiog, M omoio yopaktneloTay amd LYNAO KOCTOG €PYaciag, YpOVO OEKTEPAINONG Kol WEYGAN
mBavotta cpdipatog. Ilpog eniivon Tov ev Adym poPAnudtov, avantoydnke n tpiodidotatn (3D) aviyvevon,
TPOCPEPOVTOG VEES DUVATOTNTES OTIG YEMPYIKEG TPOKTIKEG KOl ALEAVOVTOG TNV amdd00T TOVG LECH TNG XPNOTNG
KaTGAANA©V atednmpov. Y70 1o TANIG10 0Td, 01 KUPLOL TaPEYOVTES TTOL GUUPBAAALOLY GE GVTH TN dSLVATOTNTA
elvar n cuvelopevn avénon g eneEepyacTiKiG IOYVOG TOV VTOAOYISTAVY, 1) Lelmon kOGToVG Kot peyéfoug Tov
NAEKTPOVIKOV GUGKELMV, 1| EVIGYVOT NG OmOdooNg TV 010dmv ekmoumg Aélep. Zvvemde, 1 ovaykn yuo
KaTavONGoT Kol POVTION TV EMPUEPOVS KaAlepyeldV amartel axpiPeic ko a&lomotes Teyvikég enelepyaciog
dedoUEV@V Yo TNV eE0Y@YN TANPOPOPLOY DYNANG EVKPIVELNG TTOL ¥PEIGLETOL O KOAALEPYNTNG Y10 TNV VITOGTAPIEN
™G devopokouiag axpipeiac.

2NV TOPOLGH LEAETT) EQUPLOCTNKAY TEYVIKES devopokoiog akpieiog oe PnAedveg. ZTOY0G TNG LEAETNG NTAV
N e€aywyn kat avdivon tpiedidctatoy (3D) dopukdv TANPOPOPLOY TOV EVTIPOV GE GLVAPTNOT UE TN PLGLOAOYIN
TOVG, TIG WOTNTEG TOL €3APOVS, TOV LKPOKAILATOG, TNV omddooT Kol TV TowoTnte TV Koprnodv. Lo myv
EKTAN PO avTod TOL 6TOY0L, TomobeTnOnke éva ovotnua light detection and range (LIiDAR) méve oe éva
TPOKTEP YO TN CAPMOT| TWV GEPDOV TOL OTWPDVO.

H npmtn cvveispopd g mopovcag datpiPng eivar  avantuén pebodoroyiag KaTaTUNoNS TV dEVIPOV LE
oKOTO TOV EVIOTIGUO TOL eKAoToTE 0éVvTpov o€ 3D amewovion, pe Pdon ) BEon Tov KopuoD TOL GE OTMPMOVESG

mokvig evTtevons. H mpocéyyion eotidlel oe UNALEG CLGTILOTOC TTOAUETOGC, Ta 0TToin YopakTnpilovTol g Wiaitepa



ATOITNTIKA otV ovATTuén oAyopibumy katdtunong e&attiog Tov Sk adM®cE®Y HETAED TOV PUTOV. ApyKd, M
akpifei tov ocvotyuotog LIDAR a&oloynnke otov omopdva ypNOUOTOIOVTAG VO UETOAMKO KOovTi
OLYKEKPIEVOY dlooTacewv. Ev cuveyegio, évo 10TOYpOUpa TUKVOTNTOC onueiov ypnouomombnke yioo Tov
EVTOTIOUO TOV OEVIP@V e Paon T BEom Tov KOpHoD TOVG, VD £vag KOAIVOPOG TomofeTONKE YOp® 0td TO KOPUO
Yl TNV KOTATUNOT) TOL EKACTOTE dévTpov. Katd cuvéneia, yio tov eEaymyn| TOV GUUTEPAGUATOV TNG TOPOVGOC,
exTyMOnKay dopikéc TANpoPopieg TV dEVIPOV, OTMG TO VYOS, 0 OYKOG Kol 1 dIAUETPOG Tov Kopuov. Kpicio
oToyElo Yo TNV €£0y@YN TOV €V AOY® GLUTEPAGUATMV OMOTELEGE O CNUOVTIKOG GUVTEAESTIG CLGYETIONG UETAED
TOV XEPOVOKTIKOV UETPNCEWDV ETL TOV GTOEIDOV aVTOV Kot TV 3D dedopuévav mov emedncav pe t xpnorn Tov
ovotiuatog LIDAR. Qotoc0, aéopvnuovento kabiototar 10 yeyovog 0Tl HECH TNG ¥PNONG TOL GLGTNUATOG
LiDAR pe to mpoavagepOuevo HETOAMKSO KkovTi, mopovotdotnke ovénpuévn mbovotnTo cOAANATOS el TOV
onueiov mov Ppickovtay o€ pueyaddtepn andotacn HeTald Tov avolyuatog AEIep KoL TOL OVTIKEUEVO.

H de01epn cvvelspopd oyetiletal pe TNV EQAPUOYN TOV SOUKAOV TAPOUETP®V EVTOG EVOS LOVTEAOL VOOTIKOD
16olvYiov, OTOCKOTMVTOG GTNV TAPUTNPNGCT TNES AAANAETIOPACNC TOVE LUE TO MIKPOKALUO KOl TIC 1010TNTES TOV
€04poVG KOTA TN SLAPKELN TNG KOAAEPYNTIKNG TEPLOOOL. TVYKEKPIUEVA, 1| PLAAMKT empdavela (LA) kot To vyog
TOV 3EVIPOV, OTMG AVTA VIoAoYioTnKay HES® Tov cvotiuotog LiIDAR, cuvdvdotniav pe To PHETEMPOLOYIKA
OEOOUEVE, KOL TIC €00QIKEG METAPANTES YLOL TNV EKTIUNGT TOV MUEPNOIOV AVAYKOV TMV OEVIPOV GE VEPO GE
OLPOPETIKEG TTEPLOYEG NAEKTPIKNG ayyludtTag Tov £ddeovg (ECa). Ta amoteléopata £dei&av OTL M YemueTpio
TV dévipmv oAinAoemdpd pe v ECa, xobmng xar 6tt 1 alonoinon 3D dedouévev TV QUTOV KAl TOL
WKPOKAILATOG ahENCE TN YOPIKT EVKPIVELD TOL LOVTEAOL VOATIKOD 160LVYio, TapEYovTag Leyolutepn axpifeia
oe avtifeomn pe tic mopadootakég pebodovg. Emmiéov, n extiucdpevn LA pe to LiDAR moapovcioce vynioig
ovoyetiopove ue 1o ECa og dwapopetikég meployés. Iapdiinia, mapatnpndnke cvoyétion petaé&d tov ECa kot
NG GLVOMKNG SLOBECIUNG TTEPIEKTIKOTNTOG GE VEPO ML TOV P{IKoD GLGTAWATOC, VG 0 cuvovacuog Tov ECa ko
tov LA avédei&e v évvola g yoptkng exilvong tov 16oluyiov vepov, EXITPETOVTAG TV TANPESTEPT] EKTIUNON
TOV NUEPNOIMV AVAYKDV TOV OEVOPOV GE VEPOD.

Ev ovveyeia, 1dwaitepn éupacn 600nKe 61N yOPIKN Kot YPOVIKY EKTIUNOT TG Ye®UETPiog TV dévipwv o 3D
ue n xpnon tov cvotiuatog LIDAR katd ta 6tadio avamtuéng toug. Apyika avolddnke n ympikn enidpacn g

ECa kot poppoAoyiog Tov om@p@ve 6TV avarTuén ToL OYKOL TV SEVIPWOV, TOPOLGIALoVTIS DYNAT SaKkOHaVOT)|



KOTA TN SIPKELN TNG KOAALEPYNTIKNG TEPLOGOL KOl GNUAVTIKT EAPTNOTN TNG OO TIG 1010TNTEG TOV €dAPoLS. To
ocvotnua LiDAR ypnopomombnke yio toug oKomovg g eniPreyng tng KaAMEPYELOS OAOKAT|POV TOL OWPDOVL
K0T TN SIAPKELD TNG TEPLOSOV OVATTVLENG. O EKTILMUEVOG OYKOG TV OEVOP®YV GuoyeTioTNKE apvnTika e tnv ECa
o€ OAEG TIC TEPLOYES TOL OTMPDVO (YOUUNAEG, necaieg kot VYNALG), epeovilovtag 0Tt  avarTuén TV dEVIP®V GE
xapnAd enineda ECa avénonke kotd mepimov 30% oe oOykpion pe tig pecaieg kot vyniég meployég ECa. Avtd ta
OTOTELECUOTA VTOONADYOLV OTL M avATTLEN TOV OEVOPOL KUUOIVETOL YOPIKE, KOOIGTOVTIOG £TCL TNV EMIYELL
chpwon pe Aélep wa ypnoun péBodo yia tn AMym amopdcemv oty devopokouio akpiPeiog.

¥t ouvvéyewn, mpaypatomomdnke N ektipnon ™mc LA pe Pdon to LIDAR ocvoyetifoviag mv LA tov
ATOQUAL®UEVOV OEVTPOV UE T avtioTotya onueior avd 6évipo (PPT). IMapdAinia, 1 YPOUUIKOTNTO KOL M
Babpovounuévn avakiaon tov LIDAR, ypnoporomnkay yio tnv Kotdtunon t@wv ELA®dmvV tunudtov and ta
PPT ota d10popetikd otddio avantuéng, PEATidvovTag Tn oxéon He TV xepovaktikn LA. Ot yopikéc cuoyetioelg
g LA diepevviOnkav pe v ECa kot v amdooon katd tn SidpKeld g Teptddov, EVM KATUCKEVAGTNKE £V
povtédo K-nearest neighbour yio v mpoPfreyn g vomng palag tov KOPTOV, NG SUETPOL KOl TG
TEPLEKTIKOTNTOG 0€ O10AVTA 0TEPEd, pHécw g ECa kot LA. Ta anotehéopato avtd emPefaidvouy n ympikn Kot
YPOVIKY| SKOUAVON TNG AVATTUENG TOV PLUAADUOTOS, VTOINAM®VOVTOG TapdAANAa TNV a&io TV dESOUEVOV TNG
LA og cuatiuate vtootpiEng omopacE®Y OV GTOXELOLY 6T PEATIOTOTOINGN TG SLUYEIPIONG TOV OTOPOVAOV.

H extipnon tov LA Beltidbdnke Otav eviomiotnkav kot agapédnkav to onueio tov ELAOIOV HEPDV,
TOPEYOVTAS VYNAOTEPO TPOCUPUOGLEVO GUVTEAEGTI] GUGYETIONG OTIG 55 NUEPEC LETA TO GTTAGIULO TV 0POUAUDY.
Emmpdcbeta, mapoatnpnonke 6tin ECa kot 1 LA cvoyetiomnkav Betikd pe 1o péyebog twv ppovtwv. Me kivntpo
AVTOVE TOLG GUGYETIGUOVG, dnuovpyHOnkav povtéra k- nearest neighbour ya va TpoPAéyovy v moldtnTo. TOV
QPOVT®V KUTA TN GLYKOMON, PapUOLOVTAS TO LOVTELD TPMTOV £TOVE TNE UEAETNG OTA 0EO0UEVA TOV EMOUEVOD
étovc. Me Baon ) yewypapwkn 0éon kot ) ECa, n akpifelo ta&vopumong oty enaindevon tov cuvoriov Tov
dedopévav NTov 39.7%, evd M Tto&vounon pe Pdon ) yemypapikn 0éon kot o LA odfynoe oto 63.3%. Ta
amoTeléouata ETPBERAIDVOLY TN YOPIKTN KoL YPOVIKT| HETAPOAT TG AVATTUENG TOV JEVPOV.

270 TEMKO TURHO TNG TOPOVGOG LEAETNG, TopaTnPpnONnKeE OTL Ol SOMUKEG TAPAUETPOL TV OEVTIPMV UTOPOHV VO
emnpedoovy to péyebog, Tov aplBd Kol TIC TOLOTIKEC TAPUUETPOVS TOV KOPTAOV. Q¢ €K TOVTOV, TPOTAONKAY

aAyOpLOpOL aviyvenong TV KapTdV e TN ¥pNon Tov ovatiuetog LIDAR ya v extipnon g dtapétpov tovg



KOTO ToL 6TASIN AVATTVENG TOV BEVOPOV. Xg KAOe PETPNOT, TO dEVTIPA GUPMOT KOV TPV Kot PETE TV OTOPVAAMOT.
O dypiopog TV Kaprdv Paciotnke 6T oplakés Tég g Padpovounuévng avakiaong tov LIDAR kot ota
YEDUETPIKA YOPOKTNPIOTIKA TNG YPUUUIKOTNTOG Kol TG KapmvAdmrag . H vynAn molvmlokotnto e Soung tmv
dévpav emPBardel TNV avaykn dnuovpyiog piog pebodov a&loAdynong mwov Ba Aapfavel vTOYN TOVE KaPTOHS AT
T0. OTOPLAL®UEVE BEVTPA MG oNElo avapopdc. Xvven®g 1 a&lohdynor Tov apBpov Kot g 8éong TV Kapmdv
7OV VTOTILOVTAL GE OEVTPA LE PUAAQ TTPOLYLOTOTTOIELTAL. ZVYKPIVOVTOL 0L TE LE TO GTUELR avapopag TTov Bpebnkay
ota amoPuAmpéve dévdpa. Ta anotedéopato £dsi&av TNy vYNAN wavotnto tov LIDAR va gvtomilel kot va
voAoyilel To uéyebog tav koapndv oe 3D, EemepvdvTtag TOVG TEPLOPIGUOVE TMV CLGTIUATOV EIKOVAG, TO OToiln
elvar gvaicOnto 6ToVg PETAPANTONG e£MTEPIKOVG TOPAYOVTIEG TOL OJNYOUV GE OTUOVTIKEG OLOKLUAVGELS GTO
dedopéva.

TUyKeEKPLUEVA, TpayOTOTOOnKe avaivon g fabuovounuévng avaxiaong tov LiDAR exi tov otoryginv tov
dévtpov, Ociyvovtag OlaKkpitég TWEG Yo @OAAM, EVADON pépn kol kopmovs. H diduetpog tov piiov mov
VTOAOYIGTNKE OO TO PLAADUEVO OEVTPO. GUGYETIOTNKE GNUAVTIKA [LE TO GTIUELD OVAPOPAC TOV UTOPUALDUEVOY
0évdpmv katd tn cvykoudn. [apdAinia, ot GUYKPION TOV ATOTEAEGUATMOV OV TPOEKLYAV OO TO. OEQOUEVA
TOV QLAADOTOG KOL TOV ATOPUAAMUEVOD OEVTPOV, O EKTILAUEVOS aplOUOS TV GPOVT®V GTA GLAA®UEVA SEVTPOL
oTig 120 nuépeg petd v mAnpn avonon, arotérece 10 94.8% TV TPOYUATIKOV TIUAV ovaopds. O aiyopdpog
elye og amotéleopa péyroteg Tipég axpifetac 88.2%, avaxinong 91.0% xon 89.5 F1 score og 120 nuépeg petd tmv
T pn dvonon.

Ta pépn owtng NG SLoTPIP1g £XOVV oXESOGTEL Y100 TNV AVTILETMTICT] TOV LEAAOVTIKOD UNYAVIKOD OPAUOTOG VIO
70 TPioUA T®V SVCKOA®V TEPPUALOVIIKOV GUVONK®V TOL TOPATIPOVVIOL GE OTMPMVES VYNANG TUKVOTITOC.
‘Ocov apopd TNV KOTATUNGCT TOV dEVIpOV, N axpifeia tng mpotevouevnc pebodoroyiag Oa mpénet vo, aktoloynOel
o€ J1POPa TOAVETT SEVTIPA Kl GLGTILOTA PVTEVGNG Y10 TV TOPOYH TANPESTEP®V amoterecatov. H peddovtikn
épevva Do TPEMEL Vo SlEPEVVIGEL TEPOLTEP® TNV EQUPLOYN TPICOICTOTMV YOPIKDOV KL ¥POVIKDOV TANPOPOPLOV
eni etV (7). LA, 6yK0g) amd omtmpdveS VYNANG TUKVOTNTOG GE GUGTHIOTA EPOPUOYNAG LETOPANTAG dOONG OTWS
N adpdevon kou | Aimavon. e kdbe mepinTmon, N oxéon NG TodTNTAg TV EPoVT®V Kal Tov LA Oa mpémel va
napatnpnOel o S10PopeTIKEC TOIKIMES KOl KAILATO, GTOYEVOVTOG 0T PEATIOON ANYNG ATOQAGE®MY GE OMWPDVEC,.

Ev xataxAeidt, n ektipnon tov aplfpod Tov gpovTtov KOTA T SIUpKELN TNG KOAAEPYNTIKNG TEPLOSOV UTOPEL VA



GUVEICQEPEL GTO OPUIOUO TOV KOPTOV KOl TNV EMAEKTIKY ovykoudn. o v opBotepn xor minpéotepn
a&lohdynon g mpotewvouevng pebodoroyiog, Ba mpémetl avty va kpiBel peAlovtikd pe SapopeTicés ToKIAleg

uAov kot aictntipeg LiDAR.

Emotmpovuc meproyn: Aevdporxopio akpifeiog

Aé&Earg kKherdna: 3D dedopéva, PLAAIKY empaveln, néyedog Kapmov, YEUETPio dEVTPOL
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3D
2D

Cin
Cov
DManuaI
Diipar
Dr,i
DLipar, i
Dr, i

De,i
DAFB
DABB
DP;
ECa
Eca, Low
ECa, mid
ECa, High
ECEF
ENU
ET,
ETo
ET.

ETcrr

ETcLipar

e

€a

€s

FN

FP
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GLA
Hiipar
Hmanual
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K

ch

Keb,ini
ch,mid
ch,end

Kc, min
Keb,mid,RF
ch,end,RF
Keb, full,mid
Keb,full,end
Keb,full,max

Three-dimensional

Two-dimensional

Curvature estimated by eigenvalues [%]

Mean value of curvature in defoliated trees [%]

Curvature of apple class [%]

Curvature of leaf class [%]

Curvature of wood class [%]

Curvature threshold with the highest likelihood within the apple class [%]
Covariance matrix of the k-nearest neighbors points, Pi

Manually measured diameter of apples [mm]

Estimated diameter of apple cluster or subcluster [mm]

Actual reference dimension of the metal box profile [mm]

Dimension of the metal box estimated by the LiDAR for time instance i [mm]
Water depletion in the root zone at the end of day i [mm]

Daily cumulative depth of water depleted from the surface of day i [mm]
Days after full bloom

Days after bud break

Water loss out of the root zone by deep percolation on day i [mm]

Apparent soil electrical conductivity [mS m™]

Areas within the orchard with low ECa values

Areas within the orchard with middle ECa values

Areas within the orchard with high ECa values

Earth-centered earh fixed coordinate system

East north up coordinate system of IMU

Actual evapotranspiration [mm]

Potential evapotranspiration [mm]

Crop evapotranspiration [mm]

Crop evapotranspiration adjusted to soil texture and plant height considering mean root depth
of 1 according to Allen et al., (1998)

Crop evapotranspiration adjusted to soil texture, LIDAR measured leaf area and considering
mean root depth of 1 m

First numerical eccentricity of the earth ellipsoid

Actual vapour pressure [kPa]

Saturation vapour pressure [kPa]

False negatives

False positives

Soil heat flux [MJ m~2d?]

Estimated LA at t [m?]

LiDAR estimated tree height [mm]

Manually measured tree height [mm]

Mean tree height [m]

Irrigation on day i [mm]

Iterative closest point algorithm

Inertial measurement unit

Total number of point set defined from k- nearest neighbors algorithm

Basal crop coefficient

Basal crop coefficient during bud break and full bloom, adjusted to field conditions
Basal crop coefficient during full bloom and harvest, adjusted to field conditions
Basal crop coefficient after harvest, adjusted to field conditions

Minimum crop coefficient for bare soil

Kebmia according table 12 (Allen et al., 1998)

Kebend according table 12 (Allen et al., 1998)

Crop coefficient based on daily weather conditions and h during bud break and full bloom
Crop coefficient based on daily weather conditions and h after harvest
Maximum value of K¢, during the cultivation period
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PPT

RAW
RAW 0w
RAWwig
RAWoigh
RANSAC
REW

RH
RMSE
RMSEcvy

Soil surface evaporation coefficient

Growth rate of LA at t [m?day!]

Soil water stress coefficient

was the Viipar growth rate [m?® day?]

Soil evaporation reduction coefficient (Allen et al., 1998)
K-dimensional space

Linearity of apple class [%]

Linearity of leaf class [%]

Linearity of wood class [%]

Linearity threshold with the highest likelihood within apple class [%]
LiDAR estimated leaf area considering PPT [m?]

Manually measured leaf area [m?]

Leaf area index [m? m?]

Least absolute residuals

Light detection and ranging

Geodetic latitude longitude altitude in spherical coordinate

Center of fruit points created by k-means clustering in defoliated trees
Center of apple created by k-means clustering in foliated trees

Mean absolute error [mm]

Mean bias error [mm]

The sum of true positives, true negatives, false positives, false negatives
Total number of samples

Total number of apple clusters in defoliated trees.

Total number of manually counted apples

North East down coordinate system of IMU

The average fraction of TAW that can be depleted from the root zone before the revealing of
moisture stress [mm]

Tabulated p values (Allen et al., 1998)

Average of set of points defined from k- nearest neighbors algorithm
Precipiation on day i [mm]

Set of points defined from k- nearest neighbors algorithm

Segmented points per tree

Radius used in the k- nearest neighbors [mm]

Mean value of apparent reflectance intensity in defoliated trees [%]
Pearson coefficient of determination

Coefficient of determination

Adjusted coefficient of determination

Adjusted coefficient of determination of calibration

Adjusted coefficient of determination of leave-one-out cross validation
Apparent reflectance intensity of apple class [%]

Apparent reflectance intensity of leaf class [%]

Relative growth rate at t [m? day™]

Solar radiation [W m~]

Reflectance of board target coated with urethane [%]

Reflectance of board target coated with barium sulphate [%]

Apparent reflectance intensity at 905 nm of LIDAR laser scanner [%]
Apparent reflectance intensity threshold with the highest likelihood within the apple class [%]
Apparent reflectance intensity of wood class [%]

Readily available water content in the root zone [mm]

Readily available water content in the root zone in low ECa regions [mm]
Readily available water content in the root zone in depth in mid ECa regions [mm)]
Readily available water content in the root zone in high ECa regions [mm]
Random sample consensus algorithm

Cumulative depth of evaporation [mm]

daily relative humidity [%]

Root mean square error [%]

Cross validation root mean square error [%]
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RMSEc
RO;

Rot

RTK-GNSS
S

Smanual
SLibAR

SSC

qunsor-frame
LiDAR

ts—geo
TLiDER
u
Vo
Vmanual
Vi
VLibAR
VLiDAR, FB
VLiDAR, Fs
VLiDAR, BH
VManuaI
VLibAr
Vi
Wiipar
Wmanual
WBRgrr
WB_La
W, Wo,
Wa W,
Z
Ze
o
Y

Y
AW

Occ
Owp
At

v

Calibration root mean square error [%]

Run off at the end of day i [mm]

Rotation matrix for three-dimensional tilt orientations in the point cloud considering the
LiDAR timestamp t

Real time kinematic -global navigation satellite system

Slope of the saturation vapour pressure [kPa °C]

Manually measured tree stem diameter [mm]

LiDAR estimated tree stem diameter [mm]

Fruit soluble solids content [%]

Statistical outlier removal

Trees after defoliation

Trees before defoliation

Mean temperature

Max temperature [°C]

Min temperature [°C]

Total available water for the root zone assuming field-homogeneous root depth of 1 m [mm]
Maximum cumulative of depletion from the soil surface [mm]

Time of flight

True negatives

True positives

Translation matrix for three-dimensional tilt orientations in the point cloud considering the
LiDAR timestamp t

Days after bud break

Transformation matrix from the ECEF to the ENU coordinate system

Transformation matrix from the coordinate system of the LiDAR sensor to the coordinate
system of the RTK-GNSS

Transformation matrix considering three-dimensional tilt of the IMU data

Wind speed [m s?]

Initial horizontal asymptote of Viipar [M®]

Manually measured tree volume [m?®]

Upper horizontal asymptote of Vi ipar [M?]

LiDAR estimated tree volume [mq]

LiDAR estimated tree volume during full bloom [m?]
LiDAR estimated tree volume during fruit set [mq]
LiDAR estimated tree volume during before harvest [m?]
Manually calculated volume of apples [mm?]
Estimated volume of apple clusters [mm?q]

Estimated Viipar at time t and At

LiDAR estimated tree width [mm]

Manually measured tree width [mm)]

Water balance model [mm] soil-adjusted

Water balance model [mm] considering tree leaf area.

Four horizontally parallel wires supporting the trees

Uniform root depth of 1 m (Allen et al., 1998) for apple trees

Effective depth of soil evaporation layer [m]

Semi-major axis length of the earth [m]

Psychrometric coefficient [kPa °C ]

Acceleration and deceleration constant rate of approximation to the two asymptotes
Tree region between the ground and W1, W2, W3, W4

Volumetric soil water content at field capacity (FC) [m® m?]

Volumetric soil water content at WP, [m® m?]

Time interval between the measurements

Distance from earth’s surface to the z-axis along the ellipsoid normal
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ITe Position in ECEF coordinates

I, Position in the local ENU coordinate system

p apparent soil resistivity [Q m]

Xmin Initial horizontal asymptote of extracted features

Xmax Upper horizontal asymptote of extracted features

[w.0,0] ['Yaw, pitch, roll] angles [°] from IMU

[xi, v., z] Points in three dimensions

[0, A, h] [Latitude, longitude, altitude] in ECEF coordinate system

1. Introduction
1.1. Precision agriculture

Definition
The term precision agriculture refers to the spatio-temporal management of crops, to improve harvest efficiency

and minimize environmental impacts (Gemtos et al., 2013). What differentiates precision agriculture from the
conventional agriculture lies on the spatial variability of the field management based on the particular demands of
each field segment. precision agriculture is that management during the cultivation tasks varies for each part of the
field, according to the needs of that particular part. This allows for the accurate and optimized use of inputs relevant
to each individual field parts, which minimizes costs and environmental impacts (Stafford, 2000). Lowenberg-
DeBoer and Swinton (1997) defined precision agriculture as the digital control of data acquisition, processing of
information and decision making by means of spatial and temporal inputs of agricultural production. Precision
agriculture is a production system that involves crop management according to field variability and site-specific
conditions. Precision agricultural technologies are technologies used either separately or in combination as the
means to realize precision agriculture (Tey and Brindal, 2012). Recently, the International Society of Precision
Agriculture specified precision agriculture as a management strategy; it gathers, processes and analyzes temporal,
spatial and individual data and combines it with other information to support management decisions according to
estimated variability for improved resource use, efficiency, productivity, quality and sustainability of agricultural

production (ISPA Newsletter, 2019).
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1.2. Technologies in precision agriculture
1.2.1. Real time kinematic- global navigation satellite system (GNSS)

The first step in precision agriculture concerns the acquisition of data related to the crop, orchard, and
environment. To achieve this, precision agriculture utilises various sensors and technologies such as: global
navigational systems (GPS), remote sensing, wireless sensors and networks, etc. Usually, data processing in
precision agriculture deals with spatio-temporal data (maps, management zones, geostatistics) and as a
consequence, the use of global navigational satellite systems (GNSS) is necessary to acquire the location
corresponding to each measurement.

The GNSS was first developed in the early 70s to improve navigation using satellites (Lasisi and Chris, 2021).
GNSS provides the position (latitude, longitude and elevation) of the object on the surface of the Earth in real time,
by using the signal code and/or carrier phase and, therefore, measuring the distance (pseudorange) from the receiver
antenna to the orbital position of at last four satellites within a certain time (Catania et al., 2020). Therefore, each
individual measurement in precision agriculture is marked with a location and can be georeferenced. The main
satellite constellations from which the antenna of the various GNSS receivers can receive signals are Galileo,
operated by the European Union; global positioning system (GPS), operated by the US Department of Defense and
using 31 satellites; global navigation satellite system (GLONASS), operated by the Russian Federation and using
23 satellites and BeiDou, operated by China and using 49 satellites (Balafoutis et al., 2017). The GNSS systems
receiver antenna (rover) presents different levels of accuracy ranging from 1 m to 1 cm, which depends on the
differential information or corrections provided by a nearby reference GNSS station or network of such stations
(Perez-Ruiz and K., 2012). Due to its accuracy, GNSS can be implemented in numerous applications in agriculture,
such as auto-steering (Groth et al., 2013), navigation of robotic platforms (Fountas et al., 2020) and variable rate
applications (Bourodimos et al., 2019; Colago and Molin, 2017).

Field positioning in agriculture is necessary to perform site specific applications related to precision agriculture.
Based on the aforementioned information, various field applications require high accuracy for calculating the
location or navigation within the field. Over the last decade, the use of the real time kinematic-global navigation

satellite system (RTK-GNSS), which offers position accuracy dow to cm level, has been broadly expanded,
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introducing new possibilities related to agricultural applications. Apart from the satellite signal, the antenna (rover)
receives an additional corrective signal from the base. Therefore, GPS accuracy can reach accuracy down to 2 cm,
rendering application in demanding tasks (e.g. navigation) feasible. One of such tasks was the development of
auto-steering systems, which have thoroughly been assessed for their accuracy (Easterly et al., 2010; Groth et al.,

2013).

1.2.2.Satellite imaging

Earth observation satellites have found application in precision agriculture. They can be categorized based on
the trajectory height (low, middle and geosynchronous), purpose (meteorological, environmental and mapping),
and the equipped sensor (active or passive). A series of satellites, such as Landsat, SPOT 1, IRS-1A were launched
during the past decades to provide high quality images to end users. Satellite products from these missions were
employed for land use and crop classification in many large earth regions, however the spatiotemporal resolution
was not adequate (< 30 m) for applications in precision agriculture.

A plethora of satellites, such as IKONOS, ResourceSat-1, KOMPSAT-2 were launched after 1999, improving
the spatial resolution (~ 4m) of image acquisition in visible and near infra-red bands with a revisit period of up to
five days (Mulla, 2013). Imageries collected from IKONOS have been used for multiple purposes in precision
agriculture, including soil mapping, crop growth and yield prediction, nutrient management, and evapotranspiration
estimation (Enclona et al., 2004; Sullivan et al., 2005; Yang et al., 2014).

Numerous nanosatellite constellations have been launched during the past decade (GeoEye-1, Pleiades-1A,
Superview-1), addressing further limitations associated with high spatial (< 2m), spectral, and temporal (daily)
resolution of satellite imagery (Sishodia et al., 2020; Zare et al., 2020). Nanosatellite constellations consist of
clusters of small satellites bearing compact sensors that are cheaper and replaceable. Several data fusion approaches
have been proposed for the combination of high/moderate spatial resolution data with high temporal resolution
data (and vice-versa) in order to generate high spatial-temporal resolution data products with the aim of taking
advantage of a wide variety of publicly available satellite data (Knipper et al., 2019; Xiaolin Zhu et al., 2018). This

technology was substantially applied in arable crops enabling the monitoring of biotic (e.g. weeds, diseases) and
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abiotic (e.g. deficiency of water, nutrients) parameters that can influence the plant (Janareva, 1978; Sishodia et al.,
2020; Vinh et al., 2019). The recent launch of the ICESat-2 LiDAR satellite (September 2018) and the attachment
of the GEDI LiDAR sensor to the international space station (December 2018) has opened up many new avenues
for research, providing opportunities to map vegetation structure at a global scale and at high resolutions (Prins

and Van Niekerk, 2020).

1.2.3.RGB cameras

Colour images with red, green and blue channels (RGB) are utilized in precision agriculture for the detection of
a great number of agricultural parameters related with plant vigour, water stress, diseases and soil properties. The
cost effectiveness of RGB cameras combined with the development of image analysis and computer vision
techniques has led to their extensive use in precision agriculture. These applications include the estimation of plant
vigour (Z. Khan et al., 2018; Vollmann et al., 2011), yield (Fernandez-Gallego et al., 2018; M. Zhang et al., 2020)
weed detection (Bosilj et al., 2018; Hamuda et al., 2017; Kounalakis et al., 2018), diseases detection (Ali et al.,
2017; Zhou et al., 2015) and insects detection (Ebrahimi et al., 2017; Rustia et al., 2020). This type of camera owes
its potential to the use of efficient image analysis algorithms and image resolution. However, the captured images
are sensitive to light variation and detection can be biased in cases where the fruit, leaves and branches are of the
same color (Kurtulmus et al., 2011; Linker et al., 2012). Thus, image processing is rather challenging, given that
intensity is not decoupled from chromaticity, resulting in a high correlation between the components R, G and B

(Garcia-Lamont et al., 2018).

1.2.4.Spectral cameras
Plant and soil particles absorb, transmit and reflect the sun’s electromagnetic radiation in a unique way, which
is determined by chemical and morphological characteristics of the object’s surface. It is well known that the water
content of plant particles (wood, leaves, tissues, fruits) varies and so does the reflectance of light spectra. Although
numerous studies that have been conducted in agriculture using low-cost passive imagery sensors, such as visible

and near infrared, many applications require higher spectral fidelity that only multispectral and hyperspectral
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sensors can offer (Kiti¢ et al., 2019; Zarate-Valdez et al., 2012; Zude, 2003). Both of the indicated spectral-based
methods consist of the acquisition of images where, for each of the image’s spatially distributed elements, a
spectrum of the energy reaching the respective sensor is measured. The main difference between them is the number
of bands (also referred as channels) and their width. There are nondestructive, contactless optical methods, widely
adopted and recognized as an option for routine monitoring of photosynthetic activity and plant status (Behmann
et al., 2015; Gonzalez-Dugo et al., 2015). These optical methods include hyperspectral imaging, spectroscopy, and
fluorescence, and are based on the analysis of the plant’s optical signature in visible and near infrared region, i.e.
on the analysis of the light reflectance from the plants’ surface (Bauriegel and Herppich, 2014; Behmann et al.,
2015; Kiti¢ et al., 2019; Pefiuelas and Filella, 1998).

Multispectral imaging systems acquire a small number of spectral bands by using parallel sensor arrays (M. J.
Khan et al., 2018). Three to six spectral bands with large optical band intervals are typically utilized ranging from
visible to near infrared regions of the electromagnetic spectrum. The most used and implemented indices of plant
vigour from multispectral wavebands in precision agriculture is the normalized difference vegetation index (NDV1)
and normalized difference red edge (NDRE) derived either from multispectral camera (Candiago et al., 2015;
Geipel etal., 2016) or dedicated sensors (e.g., GreenSeeker, CropCircle) (Reyniers et al., 2006; Scotford and Miller,
2004) These sensors have been used to determine biophysical parameters, such as the green biomass and leaf area
index (Fitzgerald, 2010; Flynn et al., 2008), and the nitrogen (N) status (Shaver et al., 2011; Tremblay et al., 2009).
Furthermore, the NDVI has been related with vine vigor (Tagarakis et al., 2018; Trought and Bramley, 2011), yield
(Matese and Di Gennaro, 2015) and quality (Anastasiou et al., 2019; Tagarakis et al., 2018). Berni et al. (2009)
used a multispectral camera MCA-6 (Tetracam Inc., CA, USA) in an unmanned aerial vehicle to produce vegetation
indices in corn plants and olive trees.

Hyperspectral cameras, as opposed to multispectral cameras, can collect image data in tens to hundreds of very
narrow (5-20 nm, each), continuous spectral bands throughout the visible and infrared ranges. As a result,
hyperspectral cameras can produce a larger number of vegetation indices than multispectral ones. Yang et al. (2009,
2007) derived NDVI from 102-band hyperspectral images and related them to yield. They also applied spectral

angle mapper and linear spectral unmixing techniques to the 102-band hyperspectral images to generate single-
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layer spectral angle images and plant cover fraction images, respectively, in order to map the variation in crop
yields. Their results showed that the spectral angle images and plant cover fraction images provided better
correlations with yield than most of the narrow-band NDVIs derived from the hyperspectral images. Ye et al.
(2007) used partial least squares (PLS) regression models to predict the yields of citrus trees based on their canopy
features obtained from airborne hyperspectral imagery as compared with vegetation indices and multiple linear
regression models. Their results showed that vegetation indices and multispectral regression models failed to
predict citrus yield, but PLS models successfully predicted citrus yield with r-squared values of 0.51-0.90. Zarco-
Tejada et al. (2013) used the hyperspectral camera, which was adapted onto a UAV to calculate carotenoids in
vineyards with a 0.84 linear regression coefficient (R?). Calderon et al. (2013) used a multispectral and a
hyperspectral camera mounted on a UAV to locate olives infected by the pathogen Verticillium wilt through various
by applying vegetation indices. Okamoto and Lee (2009) utilized a hyperspectral imaging system to detect green
immature citrus fruit of three different varieties, and reported 80-89 % correct identification of foreground fruit by

employing pixel discriminant function and applying spatial image processing steps.

1.2.5.Thermal cameras

Thermal cameras can generate images related to object temperature, because they operate in the infrared
wavelength ranging from 3-35 um. However, day images between 3 and 5 um overlap with solar reflection
producing noise, whereas 17 - 25 um regions have not yet been well investigated (Ishimwe et al., 2014). As a
consequence, 8 - 14 um regions have been of greatest interest for thermal remote sensing since this is where the
atmosphere is fairly transparent and the signal is only lightly attenuated by atmospheric absorption (Prakash, 2000).

Several studies used thermal imaging techniques to measure the crop water status by means of the crop water
stress index (Jones, 1999; Kathner et al., 2017). While thermal imaging is easily applied in the laboratory, the
technique has also been developed for field studies, particularly in the semi-arid and arid sub-tropics (Ben-Gal et
al., 2009; Cohen et al., 2012). Consequently, thermal cameras are frequently mounted on tractors or unmanned

aerial vehicles to estimate the crop water stress index spatially (Gan et al., 2018; Zarco-Tejada et al., 2013). In
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peach and apple orchards located in a semi-arid environment, the crop water stress index was found to vary
significantly between different irrigation treatments (Bellvert et al., 2016; Nagy, 2015).

In addition, thermal imaging has been applied in fruit detection. Bulanon et al. (2009) built a multi-modal system
using a thermal camera and a color camera to detect mature citrus fruit. Similarly, thermal cameras produced 90.4
% recall rates and 95.5 % precision rates in immature green citrus fruit detection (Gan et al., 2018). Stajnko et al.
(2004) demonstrated the applicability of thermal imaging for predicting the number and diameter of apple (Malus
domestica) fruits to calculate the yield in an apple orchard. They demonstrated that image fusion of the two types
of images improved fruit detection compared to using a thermal image alone,while recently the method was utilized

in the detection of sunburn in apple trees (Ranjan et al., 2020).

1.2.6.Robotic platforms

In an effort to decrease labor costs and automate agricultural tasks to address the constant rise of demand for
higher yields, several small field robots have been proposed for specific purposes, such as automated weeding or
field data collection. Weed control can be applied electrically using electrodes (Blasco et al., 2002; Reiser et al.,
2019), mechanically (Astrand and Baerveldt, 2002) or by utilizing weed map information (Bak and Jakobsen,
2004). Robotic weed management systems have also been reported (Kunz et al., 2018), aiming at maximizing the
weed treatment efficiency and success rate using a combination of tactics. Bawden et al. (2017) proposed a
heterogeneous weed management system that is capable of selectively applying a mechanical or chemical control
method based on the species of the weeds. Chang and Lin (2018) developed a small scale agricultural robot that
can automatically weed and perform variable rate irrigation within a cultivated field. In general, weed detection
precision recorded with mechanical weeding robots was < 25 mm (Bakker et al., 2006) or higher of 3 cm (Bochtis
et al., 2011; Jorgensen et al., 2007).

Yield monitoring and harvesting are two more repetitive tasks where robotic systems have been implemented.
However, these are complex tasks due to the non-uniform maturation of the crop/fruit due to the biotic and abiotic
factors affecting plant growth and cause high variation in-field. Harvesting robots in horticulture and specifically
in apple trees exhibited picking speeds of 7.5 to 9 sec (Baeten et al., 2008; Silwal et al., 2016) per apple and even

90 % accuracy detection (De-An et al., 2011). Similar systems have been developed for horticultural products,
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such as tomatoes (L. L. Wang et al., 2017), sweet pepper (Arad et al., 2020; Ringdahl et al., 2019) and cucumber

(Van Henten et al., 2006).

1.3. Data Processing
1.3.1.Geographical information systems
Geographical information systems (GIS) have grown exponentially over the past decades and in nowadays are
considered a potential geographic-based information processing tool for spatial data analysis and management
(Braud et al., 2005; Malczewski, 2006). Upon the implementation of GIS in agriculture, spatiotemporal variability
of biotic and abiotic parameters became feasible, thus improving the management of natural resources and
environmental protection, regional and urban planning and development, and the management of utilities
(Montgomery et al., 2016). Spatiotemporal information can mainly be quantified with geostatistics, allowing the
observation of autocorrelations within parameters and the creation of maps. The data type can be either continuous,
creating more robust models or point data (e.g. soil data) to reduce the sampling cost (Aggelopoulou et al., 2011;
Liaghat and Balasundram, 2010). GIS supports high level decision making for effective management of fertilizers
and pesticides, stress mapping, and irrigation (Ali et al., 2017; Clay and Shanahan, 2011; Knipper et al., 2019).
Crop and soil bio-physical attributes and data derived remotely are used with the help of GIS for radical

improvement of agricultural productivity (Anastasiou et al., 2018; Knipper et al., 2019).

1.3.2.Machine learning
There are two types of machine learning techniques, supervised and unsupervised learning. They require less prior
information and are applicable to a wider range of tasks as they derive the underlying distributions and model
assumptions implicitly from training data (Behmann et al., 2015). In supervised learning, data are presented with
training example inputs and the corresponding outputs, and the objective is to construct a training model which can
be used to predict test data. In some cases, inputs may be only partially available with some of the target outputs
missing or given only as feedback to the actions in a dynamic environment (Liakos et al., 2018). Supervised

machine learning techniques, such as Principal components analysis (PCA), are often used to learn patterns from
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big-data, reducing high dimensionality in datasets so that computational speed and classification accuracy could
potentially be improved (Kamilaris et al., 2017;Zhang et al., 2020). Karkee (et al., 2009) adopted PCA to reduce
the dimensionality of normalised differential vegetation index (NDVI) datasets. The results indicated that PCA
could effectively remove the redundant information either to preserve a high classification accuracy or to decrease
the calculating time. Crop area fractions within a pixel were predicted with an RMSE of 1.3% and an average
estimated emergence date error of 4 days.

Some of the most efficient algorithms in machine learning that are applied in precision agriculture are: support
vector machine, K-nearest neighbor (KNN) and neural networks. For example, Linker et al. (2012) used KNN for
detection of apples. Apple surface was detected using growing region based on color and texture information, then
contour of each region was segmented into an arc so that the apple could be recognized. The authors reported that
85.0% of apples were detected under direct lighting conditions. They also claimed that 95.0% of green apples were
detected under diffused lighting conditions. Whereas, Wachs et al. (2010) used thermal images and color images
for green apple detection. Support vector machine was used to identify the shape of apples on trees based on pixels
value of apples in hue, luminance, and saturation color space (Ji et al., 2012; Wang et al., 2009). Furthermore,
neural networks models were built up from multispectral images to predict the spatial variability of stem water
potential in vines, resulting in an R? between 0.57- 0.87 when the bands 550, 570, 670, 700 and 800 nm were

included (Poblete et al., 2017).

1.3.3.Variable rate

The method of variable rate application is a vital component of precision agriculture. More specifically, it can
adjust treatment rates based on the vehicle’s spatial location (water, fertilizer, pesticides, etc.) according to maps
or management zones (Roberson et al., 2000). This optimum utilization of resources helps to maintain economic
profit ensuring sustainability and environmental safety. Various sensors mounted on a platforms(tractor, UAV,
satellites) have been to dynamically measureto measure the crop indexes and transmitted the signal to the controller
in real time so that the appropriate dose to be adjusted. Optical reflectance canopy sensors mounted on agricultural
machines, such as Greenseeker®, N-Sensor®, and Crop Circle®, enable real-time reflectance monitoring with high

spatial resolution, allowing variable rate nitrogen fertilization. Raun et al.( 2005) showed that the use of the
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Greenseeker sensor for N fertilizer recommendation for wheat resulted in 15% increase in N use efficiency. The
use of these sensors as a tool in N management involves the development of algorithms that estimate the N dose to
be applied at variable rates based on different vegetation indexes evaluated by the canopy sensors, such as the
NDVI (Clay et al., 2018; Sun et al., 2020). Moreover, applying variable rate on herbicides can reduce the amount
of herbicide by 29 % (Carrara et al., 2004) or lead to savings up to 60 % (Dammer, 2016). Another variable rate
application approach is based on variability maps of the crop or the soil. This approach can be implemented after
grid sampling or delineation of management zone. Implementation of this approach in corn, wheat and grapes has
shown that the technology can increase profits (Chen et al., 2008; Kitchen et al., 2005; Liakos et al., 2020).
Currently, the latter two technologies are exploited by numerous agricultural machinery (market ready), including
fertilizers (Forouzanmehr and Loghavi, 2012; Liakos et al., 2020), sprayers (Colago and Molin, 2017), seeding

machines (Velandia et al., 2013) and irrigation systems (Sanchez et al., 2017) for orchards and arable crops.

1.4. Precision horticulture

Precision horticulture targets individual trees or zones of tree blocks adaptively to its apparent status that shall
trim down environmental footprint of fruit and vegetables production through enhanced resource efficiency and
improved production (Zude-Sasse et al., 2016). Digital horticulture is a recent terminology that refers to the use
of a range of digital technologies (including plant sensing devices) used in different horticultural applications such
as the high-throughput phenotyping and precision horticulture (often referred as site-specific management) (Colago
etal., 2018).

However, horticultural products are characterized by high value, therefore quality analysis of the product is
more important than in any other crop. In contrast to arable crops, the size of orchards is usually small with low
plant density and trees are treated individually. Furthermore, the planting system remains stable over years, with
canopy morphology and rooting system to be adapted according to the environment and soil system . The first step
includes data acquisition of parameters related to the orchard and fruit trees. More specifically, data acquisition of
soil, plant physiology, yield and quality, is monitored throughout the season within the orchards with manual

measurements, using in situ sensors or in the laboratory. In perennial fruit trees, are necessary additional, e.g.,
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thinning of flowers and fruits, pruning. In orchards, structures for irrigation, hail nets or frost protection limit, the
use of methods for soil mapping, e.g. for electromagnetic measurements, which are disturbed by iron installations
(Gebbers et al., 2009). Time data series, is a significant source of information throughout the growth season,

revealing parameters exhibiting temporal stability and the causes which lead to temporal variability.

1.4.1.S0il mapping

Soil is a key factor that determines the growth and vigour of perennial trees and therefore the yield and fruit
quality. Spatial variability of soil properties affects the variance of plant data (Aggelopooulou et al., 2013), whereas
the necessity of soil variability in orchard management has not been proven so far leaving for future studies. Soil
influences fruit trees at least to down the depth covered by the roots, and soil electrical conductivity (ECa)
measurements should be extended to the same depth. This type of sensors emit several electromagnetic signals at
different soil depths, which may reveal properties of the topsoil or even the whole profile depending on the sensor
range or the user adjustment. Thus, spatial maps of ECa or soil properties can be produced and ultimately used by
farmers.

The electrical conductivity (EC) and apparent electrical conductivity (ECa) of soil are influenced by numerous
factors such as salinity or mechanical composition (Corwin and Plant, 2005), the content of humidity, soil depth
(Tsoulias et al., 2020a) and the content of organic matter (Gemtos et al., 2013; Shaner et al., 2008). Therefore, EC
and ECa can provide valuable information about the variation of soil properties and for the deliniation of
management zones.

The spatial variability of soil can be derived by the ECa measurement even if many potentially influential factors
need to be considered (e.g. soil humidity, temperature). A methodology for guided soil sampling using ECa data
was suggested (Horney et al. 2005) for targeting samples of each ECa zone. The steps are to map ECa, delineate
zones, and identify the locations for soil sampling (Shaner et al. 2008). This method has been successfully applied
in fields, orchards, and vineyards (Daccache et al. 2014; Hedley and Yule 2009; Oldoni and Bassoi 2016). Also,
ECa mapping has been frequently used for guided soil sampling and the mapping of available water content by

means of clustering algorithms (Haghverdi et al. 2015; Peeters et al. 2015). However, when measuring at field
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capacity, ECa is assumed to be influenced mainly by soil texture and soil water content. This is interesting
considering the plant water supply.

Mapping ECa [mS m™] can be used as a key sensing system to understand and evaluate how soil varies spatially
in the framework of precision fruticulture (Shaner et al., 2008; Trought and Bramley, 2011). As ECa varies on a
similar spatial scale as many soil physico-chemical properties (Sudduth et al., 2003; Carroll and Oliver, 2005),
these soil monitoring systems have been widely accepted. Specifically, good correlations with soil salinity, soil
water content and soil texture have been widely documented (Heil and Schmidhalter, 2012; Lesch et al., 2005).
Other soil properties affecting conductivity may be the organic C (Sudduth et al., 2003; Martinez et al., 2009),
cation exchange capacity (Sudduth et al., 2005) and the CaCQOj3 content (Kiihn et al., 2009). Additionally, ECa was
used to predict the content of Na*, Mg*? in salty and clay soils (Rodriguez-Pérez et al., 2011). Valente et al. (2012),
evaluating soil physical and chemical properties in coffee fields, used geostatistical analysis combined with fuzzy
c-means clustering analysis to define management zones within coffee fields. Fountas et al. (2011) delineated
management zones for fertilization in olive trees orchards, using soil chemical properties. Aggelopoulou et al.
(2010) produced fertilization maps for apple trees fields, based on the amount of nutrients that were removed from
the soil with the previous year yield. Mapping the thickness or depth to a contrasting textural layer using ECa has
been also referenced in several studies to detect clay horizons (Doolittle et al., 1994; Saey et al., 2009), or estimate
topsoil depth explored by roots (Khan et al., 2016). Finally, the elevation, slope and the soil depth of the field are
frequently correlated with the historical yield in vineyards (Tagarakis et al., 2018).
Kéthner and Zude-Sasse (2015) show that even in small orchards there may be differences in soil properties that
relate to tree growth and fruit size. The authors concluded that more than one soil variable should be used to define
management zones. In an apple orchard in Greece, Aggelopooulou et al. (2013) delineated management zones
combining ECa, soil properties and plant attributes (e.g., SSC, Hue, Firmness, yield), dividing the apple orchard
into four zones and suggesting the potential of site specific management of soil fertility, irrigation and cultural
practices. Furthermore, yield and fruit quality of peach fruits were affected by soil texture and water content
spatiotemporally, enabling the creation of stable management zones and site-specific management. However, the

quality parameters of apples are highly variated with reduced spatial stability resulting in poor relation to ECa
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(Aggelopoulou et al., 2010). Manfrini et al., (2020) observed no effectamong the spatial patterns of ECa, crop load
and fruit weight, suggesting the necessity of over time spatial plant data to improve site specific management within
the orchard. Despite the relation of fruit yield and quality to the growth of perennial trees, their spatial interaction

during the growth season has been rarely investigated.

1.4.2. Tree water needs

Irrigation scheduling is the core of irrigation management and precision irrigation, increasing grower
profitability while protecting and improving our environment. The latter is of great importance in agriculture due
to global warming effect which affects tree water needs, fruit quality (e.g. fruit sunburn) and consequently the
yield. Furthermore, water in plants plays an essential role in supporting photosynthesis, regulating plant
temperature via evaporative cooling, maintaining structure through cell turgor pressure (i.e. maintaining leaf
orientation), and transporting nutrients into and throughout the plant, thereby supporting its growth.

Irrigation scheduling is usually applied by the farmer based on basic estimations or recommendations from the
federal agriculture organization (FAO) (Allen et al., 1998; Pereira et al., 2015) regarding the field. Irrigation
calculators provide growers with a practical tool to compute their irrigation needs based on their growing practices,
types of soil and vegetation, and to specify their precision management plans based on the calculated needs.

For purposes of irrigation scheduling, plant water requirements are estimated according to the guidelines of
FAO56 (Allen et al., 1998) using weather data based Penman-Monteith reference evapotranspiration (ETo) and
crop coefficients (Kc). To calculate ETo the following data are needed: solar radiation, air temperature, humidity
and wind speed measured at 2m (or converted to that height) above an extensive surface of green grass, shading
the ground and not short of water (Gu et al., 2020). ETo can be estimated at different time intervals adjusted for
the cultivation requirements and field. Among various approaches of irrigation scheduling, theevapotranspiration
combined with soil properties and plant data can be utilized for estimating thedaily tree water needs.

Hedley and Yule (2009), reported that spatial variation in soil water retention characteristics was strongly
correlated with spatial variation in soil texture across a field, noting that obviously, areas with heavier soil zones
within a field had increased water-holding capacity in comparison to those with light textured soils, presenting

higher percentage of enhanced particle size related to sand. Therefore, when calculating the water balance of an
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orchard, texture determines field capacity which is crucial for calculating the total available water content of the
soil (TAW). So, ECa maps might be used for precision irrigation if they mainly represent the TAW. Another
significant factor that should be considered is the water needs of the trees in the orchard. This dynamic parameter
also depends on soil properties, microclimate, and tree physiology. Thus, it is important to understand the spatial
variability of soil texture as this remains the most stable property and could be interpreted as a key parameter for
the estimation of water needs (Hedley et al., 2009). Understanding temporal and spatial variability of readily
available water content (RAW) is a factor of major significance as it indicates the threshold inducingwater stress
(Jensen et al., 1990; Allen et al., 1998). Calculation of water needs during the cultivation period could improve
management in orchards (Alexandridis et al., 2014). The spatial variability of TAW was calculated based on the
ECa and soil texture in cereals (Haghverdi et al., 2015). An example of variable rate irrigation based on ECa maps
and TAW was shown earlier (Hedley et al., 2010).

Furthermore, trees may respond to short-term changes of TAW in the root zone: In drought stress situations,
the root water potential may be affected by means of physiological mechanisms such as decreased osmotic potential
(Blum, 2017; Herppich et al., 2001). Such decrease would lead to reduced root water potential and resulting
enhanced capability of the root to obtain water from the soil. By definition, root water potential represents the
actual wilting point in the calculation of readily available water content (RAW). Both, TAW and RAW are
calculated considering the field capacity and wilting point. TAW and RAW are used for analyzing the actual
evapotranspiration (ET,), aimed at calculating the water balance of an orchard. The methods that are used for the
estimation of ET. are either empirical (Courault et al., 2005) or climate data driven (Verstraeten et al., 2008). The
second category utilizes meteorological data from weather stations. As mentioned before, the Penman—Monteith
method is commonly used to calculate ET. (Allen et al.,1998; Jensen et al., 1990). For orchard management, only
water balance methods can provide the required level of detail (Alexandridis et al., 2014; Hunink et al., 2015).
However, water balance at an even finer spatial scale might be desirable, when the soil presents with spatial
variability and response of trees to the growth factors can be demonstrated.

Beside soil parameters determining water supply, water consumption is affected by plant properties, such as the

rootstock (Tworkoski et al., 2016), developmental stage (Allen et al. 1998), crop load (Haberle and Svoboda, 2015;
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Hunsaker et al., 2015), and plant response to drought stress, such as the change in solute content per cell (osmotic
adjustment) (Dodd et al., 2010; Lauri et al., 2014). Thus, plant parameters need to be considered during the
calculation of TAW (Allen et al. 1998; Haberle and Svoboda 2015; Hunsaker et al. 2015). A water balance model
based on observed and calculated TAW considering root depth and water depletion was developed for several
annual crops, such as potatoes, maize, cereals, sugar beet, and oil seed rape (Haberle and Svoboda 2015) in
temperate climate. When calculating TAW in orchards, particularly in perennial fruit trees, root depth should be
considered, since the effects of soil texture and available water on root growth accumulate (Pérez-Pastor et al.,
2014).

However, tree water needs are affected also by morphological and physiological parameters, such as the
development stage, height and leaf area. It should be noted that the canopy volume in fruit trees is influenced by
the tree water needs throughout the cultivation period (Naor et al., 2006; Bustan et al., 2016). Furthermore, a
positive relationship of leaf area index (LAI) and evapotranspiration rate was found in citrus and olive trees
(Ayyoub et al.,2017). Thus, these parameters and weather variables need to be considered during the calculation
of ET. and subsequently in the water balance model. Additionally to the yield, fruit quality can potentially be
influenced by the spatial variability of TAW (Hunsaker et al., 2015). The relationship between soil water status
and tree growth parameters has been specified in arid and semi-arid conditions (Blum, 2017; Kéthner et al., 2017).

Advances in precision irrigation will improve retention of soluble fertigated nutrients in the root-zone of
irrigated orchards. Traditionally, fertigation has ignored soil and crop variability, making uniform applications
across an orchard. Improved understanding of soil variability and use of geostatistical techniques may allow for
the creation of several irrigation management zones within fields, allowing variable rate irrigation and improving
the overall match between water required and applied. Furthermore, decision support systems may facilitate the
effective monitoring of the spatial variability of tree water status. For example, thermal sensors installed on
unmanned airborne vehicles can be also provided field measurements for variable rate irrigation methods
refinement (Gonzalez-Dugo et al., 2015).

The pro and cons of ground-based thermal remote sensing techniques regarding the estimation of

evapotranspiration and drought stress have been reviewed (Maes and Steppe, 2012). Ideal, it would be the

24


https://link.springer.com/article/10.1007/s11119-019-09680-8#ref-CR3
https://link.springer.com/article/10.1007/s11119-019-09680-8#ref-CR25
https://link.springer.com/article/10.1007/s11119-019-09680-8#ref-CR34
https://link.springer.com/article/10.1007/s11119-019-09680-8#ref-CR25

development of a system that could allow individual nutrient and water applications to be made to single trees
according to their requirements. Engineering limitations, including imprecision in emitter discharge rates, fluid
travel times, sloping orchard soil surfaces and the high cost of wireless networked sensors and valves, prevent the

use of a large number of simultaneously operating hydrozones (Coates et al., 2012).

1.4.3. 3D sensing
Two-dimensional (2D) vision systems have been an integral part of the successful implementation of agricultural
automation and robotics in the food production chain. Nevertheless, the development of most horticultural plants,
such as of fruit trees, takes place in 3 dimensions (3D). The advancement in machine vision systems over the last
decade allowed the acquisition of 3D data from plants. The number of publications related to horticultural 3D
vision systems are increasing exponentially. The increase of computers’ processing power in relation with the
continuous decrease of cost and size of electronics are some of the main factors that allowed the implementation
of such systems in agriculture. In comparison with the traditional systems, 3D sensing techniques ensure:
o Faster data acquisition
o Larger datasets
e More representative data
e Data of high resolution
o Less labour intensive techniques
o New type of data, inconceivable to be obtained before
More specifically, higher temporal resolution data along with increased temporal variability became available.
Furthermore, larger datasets with improved quality allowed the acquisition of high resolution spatial data. Manual
methods for estimating structural parameters (e.g., leaf area, height, width) or fruit detection were destructive and
cost-effective. The implementation of 3D sensing improved accuracy and objectivity of the measurement, since
plants could be monitored from different sides, remotely and spatially. Complex parameters (e.g., volume) with

less measuring uncertainty as compared to manual measurements became available.
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Figure 1. Implementing 3D data in the cycle of precision agriculture (P.A.) (Zhang et al., 2002).

1.4.4. Time of flight (ToF) sensors in horticulture
Among others, triangulation and time of flight (ToF) principles are probably the most important techniques of 3D
data acquisition in agriculture. Triangulation is a geometrical calculation of a target point in 3D which belongs in
a triangle with the other two points are known parts of the measurement system (Vazquez-Arellano et al., 2016).
Therefore, depth can be determined. There are digital photogrammetry (passive), structured light (active) (Saudreau
et al., 2007; Zhang et al., 2018), shading, focus and theodolite measuring techniques of triangulation (Hsu et al.,
2004).

A stereo vision system was used to detect the 3D shape of apples for yield monitoring (Wang et al., 2012). The
measurement was carried out at night using ring flashes to illuminate the site, reported problems due to occlusion,
specular reflections, colour heterogeneity, and a bias in the shape-from-stereo algorithm that caused the apple
location to be estimated closer to the camera. In a different study, the location and size of fruits was determined by
a single camera mounted on a robot platform (Mehta and Burks, 2014) . The position of fruit was obtained by
transforming the coordinates from the camera to robot base reference coordinate system using extrinsic camera
parameters, achieving 15 mm accuracy in estimating the position. Zhao et al. (2012) obtained the 3D shape of

zucchini leaves using a light beam triangulation sensor mounted on a 2-D scanning platform, in order to detect the
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plant’s water stress by tracing its morphological traits. Research on an automatic process for ground vineyard yield
estimation by acquiring five images with an off-the-shelf camera and reconstructing the grape clusters at a close
range reported that the main constrains concern weather conditions and suggested the use of artificial light and
light diffusers to overcome them (Herrero-Huerta et al., 2015). The combination of RGB cameras with depth
information was utilized in red sweet pepper, performing 90.9 % of true positive rates under natural light conditions
(Vitzrabin and Edan, 2016).

On the other hand, ranging sensors such as ultrasonic, ToF, RGB-D cameras but mostly light detection and
ranging (LiDAR) laser scanners are applied in fruit trees. These types of sensors are designed to monitor using ToF
principle. More specifically, a range sensing unit consists of a laser source to emit pulsed laser beams and a sensor
to receive the beam reflected back from the objects. The time required for the laser beam to reflect back from the
objects is proportional to the distance between the object and the sensor (Bufton, 1991; Gokturk et al., 2004) ToF
cameras were mounted on a mobile platform and driven along the rows of an apple orchard for fruit detection
(Gongal et al., 2015). The error derived from varying lighting conditions was reduced using LED lights, producing
an identification accuracy of 79.8 %. The research did not assess absolute location accuracy with this camera
system but observed that some of the errors in the system were due to errors in registering 3D location information
based on the apples identified in the color camera images. Whereas in sequence of this experiment, the size of
apples based on the 3D coordinates from a 3D camera was obtained, resulting in 30.9 % MAE, which dropped to
15.2 % when pixel information from an RGB camera was considered (Gongal et al., 2018). Gene-Mola et al. (2019)
used range corrected data capturing color, depth and backscattered reflectance in the near-infrared wavelength
range from an RGB-D camera to detect the apple shape at the tree, resulting in 0.89 F1-score and 94.8 % average
precision. The authors pointed out that the depth and backscattered reflectance provided the most robust variables
in the calibration model, while RGB was highly influenced by light shading in the canopy. In mango, RGB-D
imaging enabled the detection of mangoes with 81% precision, and the estimation of the length and width of the
fruit, achieving a root mean square error (RMSE) of 4.9 mm and 4.3 mm, respectively (Wang et al., 2017). Both
studies were conducted after sunset to achieve consistent lighting conditions. It was noticed that the sensor failed

to acquire distance information over 3.5 m. However, ToF cameras available in the market have lower resolution
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and are expensive. Data acquisition and processing for 3D localization can be faster with 3D cameras compared to
other 3D sensing systems such as a stereovision camera. These cameras are also believed to provide better accuracy
in 3D reconstruction as compared to stereovision systems (Beder et al., 2007).

The initial applications of ranging sensors in horticulture, deployed ultrasonic sensors (Giles et al., 1988;
O’Connell et al., 2006). The sensors were arranged at different heights along a vertical pole, facing a side of the
tree row. Each ultrasonic unit measured its distance to the canopy as the system moved along the row at constant
speed for the calculation of height, width and tree row volume (TRV). This system was utilized to control variable
rate application in real-time, resulting in spray volume savings up to 52 % in apples, 28 % in peaches (Giles et al.,
1988), 30% and 37% in citrus (Molto et al., 2000). In a similar study, actual tree width measured by the ultrasonic
sensorwas used in spray application, reducing by 70 %, 28 % and 39 % the spray deposits in olive, pear and apple
orchard, respectively (Solanelles et al., 2006). Moreover, Zaman et al. (2005) developed a real time variable
application method of nitrogen fertilizer in citrus, considering the TRV and the nitrogen concentration of leaves,
reducing costs by 40 %. However, ultrasonic sensors exhibited lower resolution, higher inaccuracies due to sound
divergence or distance within the sensors and slower sampling rate in comparison with LiDAR sensors (Tumbo et
al., 2002).

The implementation of LiDAR sensors enabled the detection of structural and geometrical parameters of fruit
trees with higher accuracy. The LiDAR sensors, mimicking the arrangement of the ultrasonic, were mounted on a
vehicle and moved along the tree rows to generate 3D point clouds. In earlier studies, the structural parameters of
apple and citrus trees had been described by simplified geometrical equations (Lee and Ehsani, 2009; Walklate et
al., 2002). Rosell Polo et al. (2009), after analyzing the TRV in 3D, obtained a significant correlation with the leaf
area in pear trees (R?= 0.84), apple trees (R?=0.81) and vineyards (R?=0.80). In a similar experiment, a logarithmic
equation was used to describe the relationship of the TRV with the leaf area density (R?=0.89) in pear trees, apple
trees and vineyards denoting the reciprocal relation of these two parameters (Sanz et al., 2018). The LAI, which is
one of the most widely used indices to characterize grapevine vigor, was well estimated using the TAI (tree area
index) from LiDAR scanning (R? = 0.91 (Rosell Polo et al., 2009) ; and R? = 0.92 (Amo et al., 2013). Escola et al.

(2017) developed tools for point cloud data analysis from the LiDAR-based system which are proposed to extract
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further geometrical and structural information, enabling the creation of maps with high spatial resolution. Spatial
dependence between soil electrical conductivity and leaf area has been observed in apple trees (N. Tsoulias et al.,
2019a). Moreover, the spatial information of leaf area was implemented in a water balance model, revealing
variation in water needs according to the soil electrical conductivity zone. In another study, direct root-zone
irrigation treatments showed a significant effect on canopy growth in grapevines, due to the high soil moisture
content (Tagarakis et al., 2018).

Currently, LiDAR intensity data are being applied for feature extraction, classification, and object detection and
recognition on rural and urban areas (Kashani et al., 2015). In forestry applications LiDAR’s backscattered
reflectance intensity (Rtor) and geometric features such as the linearity (L) and other were used, based on
decomposed eigenvalues of the covariance matrix, to discriminate LA from woody parts of trees (Ma et al., 2016;
Xi Zhu et al., 2018). Thresholding methodology by means of Rror and L was proposed to segment and label tree
point cloud components as LA or wood (Wang et al., 2018). Beland et al. (2014) suggested a voxel methodology
(Béland et al., 2011) to develop thresholds based on Ror frequency for retrieving the LA per tree. The results are
sensitive to voxel size, and the choice of voxel size is influenced by occlusion. Hackel et al. ( 2016) analysed
several geometric features, including L, to extract and select contour surfaces. Their method was based in the
eigenvalues, eigenvectors and the angles (e.g. tangle) of points in 3D space. Similarly, Lin et al. (2014) calculated
geometric features using a weighted principle component analysis (PCA) a with a geometric median. In each point
was assigned a weight to represent its spatial contribution in the weighted PCA and to estimate the geometric
median, which can be regarded as a localized center of a certain shape. In fruit production, working in a 3D space
allows for the identification of geometric tree features such as shape and size, aiming at fruit localization (Barnea
etal., 2016). The spatial distribution of geometric features can be illustrated by the decomposition of the covariance
matrix from a set of points in 3D. Brodu and Lague (2012) proposed that the set of points within the spherical
neighborhood can be utilized to define whether the geometric structure of points is closer to a line, plane surface,
or a random cluster. Several researchers in forestry applications used the method to include reflectance intensity
(Rtor) and geometric features such as linearity to discriminate foliage from woody parts (Ma et al., 2016; Xi Zhu

et al., 2018) or to estimate leaf angle (Kuo et al., 2019). Whereas in agriculture, Gene-Mola et al. (2019a) proposed
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a methodology that combines backscattered reflectance intensity with a geometric factor for spherical shapes based
on the eigenvalues of clusters in apple trees to localize the fruits. The method achieved 87.5 % localization success,
82.4 % identification success, and a F1-score of 0.86 in relation to the total number of fruits. Moreover, eigenvalues
of geometric data on curvature and linearity have been computed to distinguish cotton balls from branches,
achieving 90 % detection accuracy (Sun et al., 2020). Similarly, intensity and geometric features have been

exploited to train harvesting robots in greenhouse applications (Lin et al., 2020; Tao and Zhou, 2017).

1.4.5.Monitoring and mapping yield of apples

Spatial information of historical yield is essential for analysis and evaluation in precision horticulture. This
information indicates regions of the field with different performance, enabling the site-specific management within
the orchard (Bramley and Ouzman, 2019). Harvesting machine equipped with flow sensors or hand-held devices,
are frequently used for yield mapping. Geographic coordinates are acquired through a GNSS receiver. Rains et al.
(2002) used a moving platform equipped with load cells and GPS to acquire the weight and the location of yield
in pecans orchard. The collected samples were weighed every second corresponding to 1 m of row. A prototype
platformhas been developed in Spain to measure, in situ, the yield and quality parameters (e.g., colour, size) of
oranges (Gonzalez-Gonzalez et al., 2020). The platform monitored the variables’ spatial variability, creating
thematic maps in real time. Furthermore, high density olive trees were mechanically harvested when maximum
oil content was achieved with harvest efficiency of 92 and 90 % for ‘Barnea’ and ‘Frantoio’ varieties and a mean
2.5 % slight damages in the canopy (Ravetti and Robb, 2010). Applications in mechanically harvested vegetables
have also been presented: Pelletier and Upadhyaya (1999) developed a yield monitor for processed tomato using
load cells under the conveying chains of the machine.

However, most horticultural crops are not mechanically harvested and therefore many customised approaches
for specific horticultural crops have been tested for yield mapping. In Florida citrus plantations, Schueller et al.
(1999) used a system to weigh palette bins where oranges were collected manually. It was assumed that each bin

represented the yield of the surrounding trees, since workers would empty their bags into the nearest bin. Yield
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was estimated by dividing the weight by the area covered by each bin. Position and yield were used to prepare
yield maps. In a different study adopting a similar approach, Colago et al., (2020), compared two types of data
processing for calculating the yield variability of oranges in Brazil. The two types of data processing tested in this
study — one based on the coverage area of each bag and another based on bag distribution across an area — performed
similarly in normal field situations. Maps were able to reproduce general spatial variability patterns, but their
accuracy varied (between 5 and 11 Mg ha™) depending on the yield spatial variability. In fact, yield varied spatially
even in small citrus orchards (< 3.6 ha) (Peeters et al., 2015; UNLU et al., 2014).

In the contex of experiments of mapping apple yield, Aggelopoulou et al. (2010) handpicked apples, and placed
in 20-kg plastic bins along rows of spindle-formed trees. Each bin was weighed and geo-referenced using DGPS.
The bins, corresponding to 5 or 10 trees, were grouped to represent their yield. Similarly, Tsoulias et al., 2021
measured the yield of 500 trees in a conventional apple orchard for two consecutive years. The yield was related
to ECa and leaf area at different growth stages in both seasons. Manfrini et al., (2020) observed no effect among
the spatial patterns of ECa, crop load and fruit weight, suggesting the necessity of over time spatial plant data to
improve site specific management within the orchard. Results pointed to low correlation of elevation, soil ECa and
generative plant growth (Kéthner and Zude-Sasse, 2015). Despite the correlation of fruit yield and quality with
the growth of perennial trees, their spatial interaction during the growth season has been rarely investigated.

The same procedure for yield mapping was also pursued for pears in a small field of less than 1 ha by Vatsanidou
etal., (2017). Oldoni et al., (2019) mapped yield in a peach orchard of 1.5 ha size. Selective harvest was performed
(n =101), over three consecutive years, by weighting all fruits per tree and recording fruit firmness, TSS, and soil
properties. Results showed high spatial variability of yield and quality of peaches, while the TSS was related with
the yield. In an different study for the same crop, RFID tags were placed on the collecting bins, while a weighting
machine with RFID reader and GPS was used to record weight and position of each bin (Ampatzidis et al., 2009).
Similarly, Taylor et al. (2007) used barcodes on bins to monitor yield in kiwifruits. Fountas et al. (2011) monitored
yield variation in olive tree orchards. Olives in conventional orchards were picked by hitting fruit branches with
sticks. Olives dropped on plastic sheets placed underneath each tree. The olives were placed in bags and categorised

in groups where they were filled, for loading on platform. Each bag was weighed and geo-referenced using DGPS.
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Each cluster of bags was considered to represent the yield of surrounding trees and was the basis for yield mapping.
the previous experimental procedure highlighted the spatial variability on the olive field.

Pozdnyakova et al. (2005) analysed spatial variability of yield in a cranberry plantation. They used 0.3 x 0.3 m
frames to measure the number of fruits before harvesting. Using mean berry mass, they estimated the yield. High
spatial variability was also observed here. With regard to hand-picked vegetables, Qarallah et al. (2008) developed
an impact type sensor for yield mapping of dry onions. The sensor was used in the laboratory to weigh individual
bulbs. In another study, a harvesting machine was used for the harvest of carrots, to remove the soil, cut the leaves
and place the carrots on the left side of the harvester. Damaged roots or roots that did not fit market standards were
removed by experienced collectors, while the rest were placed in plastic boxes measuring 0.30 m x 0.33 m x 0.55
m and with a capacity of 52 L (Wei et al., 2020). The box location was acquired by a GNSS receiver and the yield
map was created. Saldana et al. (2006) developed a yield monitoring system mounted on a platform used as a
harvesting aid for broccoli. During the harvesting process, four load cells were placed on the lane of the platform
to weight the broccoli. Yield variation from 1 to 8 t ha* was observed. Fountas et al (2015) measured yield of
watermelons for two years, dividing the field into blocks and monitoring the yield of each block by weighing the
platforms carrying watermelons from each block. At the same time, quality (e.g. maximum penetration force of the
fruit flesh) and ECa were measured and mapped, resulting in a positive correlation between the yield, sugar content
and the piercing force.

As mentioned above, advances in machine vision have been implemented in precision horticulture allowing for
the development of yield prediction systems. Aggelopoulou et al. (2011) demonstrated a positive correlation
between image based flower density estimates (using pixel counts of classified flower regions) about individual
trees and the measured fruit weight. An autonomous platform has been developed in Australia for measuring plant
features and soil parameters in almond trees. The 3D canopy volume calculated by a LiDAR laser scanner of
individual trees and was correlated with yield measurements (Underwood et al., 2016). Recently, ground
hyperspectral images were combined with a LIDAR laser scanner to count and predict the number of mango fruits
(Anderson et al., 2019). The models were validated and tested on hundreds of trees and subsequently mapped.

Colago et al. (2019) observed the spatial relationship of canopy V and height (using a LiDAR) with the historical
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yield and soil electrical conductivity (ECa) in three different orange groves. The V was spatially and temporally
related to yield and ECa in 2 of the 3 orchards, suggesting that V information can improve the identification of
management zones in yield and soil attributes. Recent studies in viticulture showed that vegetative and reproductive
growth can have similar spatial patterns with the final yield and ECa at different years but not with the quality

parameters of the grape (Tagarakis et al., 2018).

1.4.6.Management zones

Upon creation of thematic maps, the next step in precision horticulture is the determination of management
zones. The farmers can select which plant parameters should be employed in order to adapt site specific
management e.g., pruning, irrigation, fertilization, pesticides, selective harvest.

Several studies have been conducted in arable crops, where variable rate application is employed and
management zones can vary in terms of size, shape and location (Gavioli et al., 2016; Haghverdi et al., 2015;
Peralta et al., 2015). However, perennial trees require a different approach in the delineation of management zones,
due to the stable planting system throughout the years, while morphological adaptation of canopy and root varies
according and adapt to the micro-climate and soil properties. Fountas et al. (2011) adopted data fusion from soil
characteristics and yield maps in an olive orchard to quantify spatial variation through semivariogram parameters
and to apply site-specific fertilization management using two management zones, based on kriging maps. Principal
component and fuzzy c-means clustering analyses were used to delineate the management zones in a peach orchard
(Oldoni et al., 2019). Yield and fruit quality depicted high spatial variability compared to soil attributes. It was
found that the optimal number of management zones for the experimental peach orchard was two and most of the
soil and tree attributes exhibited statistical differences in each defined management zone.

Aggelopoulou et al. (2013) used a multivariate approach to delineate management zones in apple trees. The
results showed that the spatial patterns of yield and fruit quality (SSC, fruit firmness) were consistent, contributing
positively in the delineation of management zones. A similar methodology was suggested for delineating
management zones in grapefruits using hot spot analysis to present tree-based data spatially (Peeters et al., 2015).
However, Manfrini et al., (2020) observed no effect of the spatial patterns of ECa, crop load and fruit weight,

suggesting the necessity of over time series of spatial plant data to improve site specific management within the
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orchard. Despite the relation of fruit yield and quality to the growth of perennial trees, their spatial interaction
during the growth season has been rarely investigated.

Tagarakis et al. (2013) applied fuzzy clustering in a vineyard to delineate management zones, using ECa, slope,
soil depth, NDVI, yield and grape composition as reference parameters. The vineyard was divided in cells,
therefore comparing matching cells between zone maps was a useful way to evaluate relationships between soil
and production parameters. An ultrasonic sensor was utilized to estimate the tree canopy volume in a citrus orchard,
revealing a correlation coefficient of 0.85 with yield and explaining 73 % of its variation (Mann et al., 2011).
Therefore, tree canopy volume was used to classify grove productivity into management zones. Colago et al. (2019)
observed the spatial relationship of canopy V and height with the historical yield and soil electrical conductivity
(ECa) in three different orange groves. The V was spatially and temporally related with the yield and ECa in 2 of
the 3 orchards, suggesting that V information can improve the identification of management zones in yield and soil

attributes.

1.4.7.Decision support systems

Another technology that contributes to decision making in precision agriculture applications is Decision Support
Systems (DSS). The DSS systems utilize computational models and databases to provide information concerning
decision making in the context of optimum management (Lindblom et al., 2017). In other words, decision making
systems is the connection between the farmer and precision agriculture, converting data into decision (McBratney
et al., 2005). Data can derive from a single or various types of sensors as mentioned above, such as satellites,
spectral cameras, spatial maps and manual measurements. Several decision support systems have been developed
for crop monitoring, plant protection, irrigation scheduling, yield prediction (Rupnik et al., 2019; Zhang et al.,
2017). However, research is not successful in the implementation of decision support systems in the field. The lack
of functional decision-making tools explains, to a certain extent, why rapid and widespread adoption of precision
agriculture is difficult. Kitchen et al. (2005) indicated that more precise crop models in precision agriculture might
help in the development of successful decision support systems. The inadequate development of control and
decision support systems for implementing PA decisions has been identified as a major stumbling block to the

adoption of precision agriculture (McBratney et al., 2005).

34



1.4.8.Apple trees

Apples are the fourth most cultivated fruit crop following citrus types, grapes and bananas. According to
FAOSTAT (2019), apple production increased worldwide from 82 mega tones (mt) in 2015 to 87 mt in 2019. More
specifically, China was the largest producer with 40 mt, representing 48 % of the total production in 2019. During
the same year, the USA was the second largest producer with 5 mt, with Poland and Turkey holding the fourth and
the fifth place, respectively, with approximately 3 megatones each. The reason for this development lies in the
physiological value of the apple fruit, which is high in vitamin, antioxidant and mineral content. The comparison
between countries in terms of the average annual production volume and productivity (Fig. 1) reveals a large
difference in the average prosduction per hectare. The reasons for these differences are the diverse climate

conditions (Lakso et al., 2001), growing systems (Robinson et al., 1991), and intensities of production.
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Figure 2: Average apple production (grey bar) of the 14 countries with the world‘s highest apple production (2015-

2019). (FAOSTAT; access 22. April, 2021)
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The apple belongs to the Rosaceae family and started to be cultivated and popularized in the daily diet about
10,000 years ago. Apples have been classified in the Maloideae subfamily because they produce pome type fruits.
They originated from southwest of China, Kazakhstan and Kirgizia, and from there spread via the historic Silk
Road to the Near East, and from there through the Greeks and Romans to Europe. Malus sieversii is regarded as
the major progenitor of the domesticated apple, hybridizing with the M. hupehensis Borkh. (in China), M. baccata
Borkh. (in Caucasus), and M. sieboldii (in Asia) and with M. turkmenorum and M. sylvestris Mill. (in Europe
(Badenes and Byrne, 2012; Pereira-Lorenzo et al., 2018). However, the number of species in the genus Malus is
still not completely defined. Harris et al., (2002) identified 55 species based on the classification of Phillips et al.,
(1990). Zhi-Qin ( 1999), classified 30-35 species, whereas 27 primary, 5 secondary species with 11 Malus hybrids
have been reported by Forsline et al., (2010). Among others, the most cultivated and developed varieties are: Fuiji
kikiu, Firiki, Gala Shinga, Gala, Golden Delicious, Granny Smith, Jonagold, Mutsu, Odysseus, Pink Lady, Red
Delicious, Red chief, Starking Delicious, Super Red chief. Furthermore, the color (green, red, yellow), toughness,
taste or harvest day, are some of the macroscopic characteristics which can be used to distinguish apple varieties.

During the annual life cycle of the apple, the trees alternate between winter dormancy and the vegetative period,

which is divided in the following main phases (Meier, 2001):

e Dormancy: leaf buds and thicker inflorescence buds closed and covered by dark brown scales
e Beginning of bud break: first green leaf tips just visible.

e Mouse-ear stage: Green leaf tips 10 mm above the bud scales; first leaves separating.

e Beginning of shoot growth: axes of developing shoots visible.

o Flower buds visible (still closed).

e Pink bud stage: flower petals elongating; sepals slightly open; petals just visible.

e Full bloom.

e Fruit size up to 10 mm; fruit fall after flowering.

e Fruit about half final size.

e  Fruit ripe for harvest.
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Over the winter period, the buds of the apple tree are in dormancy. A specific number of chill units needs to be
accumulated for bud sprouting (bud break) and, therefore, the full bloom date. Flowering lasts for approximately
10 days, and during this period a temperature higher than 15 °C is required, with the most adequate temperature
being 20 - 25 °C. However, this depends significantly on the micro-climate, the latitude and the variety. Pereira-
Lorenzo ( 2018) mentioned that the full bloom date can vary from 3 to up to 6 months between apple cultivars,
classifying them according to the chill unit requirements in six classes, and correlated a shorter rest period with
lower growth. Varieties with low chilling hour requirements are usually selected in temperate climate, whereas in
areas of adequate winter chilling, cold hardiness is often a concern as is later blooming to avoid spring frosts
(Labuschagné et al., 2003). However, global warming, during the last decade, revealed new challenges to apple
producers such as new pathogens or sunburn susceptibility.

After pollination and fertilization of the egg cells in each of the ovules at the base of the flower, cell division
takes places for 3-4 weeks approximately. Fruit thinning in the latter stage, as well as temperature during
development can improve fruit size. After petal fall, the ovary starts to expand, signifying the initiation of the cell
expansion period during which the fruit stores metabolites and energy in the form of starch or sugars, continuously
increasing until late in the season. The fruit starts to form by gaining weight each day until harvest. The growth
rate is influenced by temperature and it usually declines before harvest. The harvest date ranges from middle of
August to late October and mostly depends on thecultivar. Finally, the leaves fall in autumn signifying the begin
of winter dormancy.

Early stages of cell division and late stages of cell expansion contribute the most in fruit growth as well as in the
final fruit diameter (Corelli-Grappadelli and Lakso, 2004; Scorzal et al., 2019). The size of cells has generally little
to no impact on fruit size, whereas the opposite applies to cell number (Sablowski and Carnier Dornelas, 2014).
An apple measuring 65-70 mm in diameter (average) can reach 50 million cells (Malladi and Hirst, 2010), however
the number can vary according to the variety, reaching 37-59 and 54 million cells in Empire and Gala, respectively
(Costa et al., 2001; Goffinet et al., 1995). Malladi and Hirst (Malladi and Hirst, 2010) reported that cell expansion
rate and consequently final fruit size is determined by cell division magnitude during the first 30 days after full

bloom. On the other hand, air temperature is related to the fruit growth rate. More specifically, low temperatures,
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at cell division, can lead to small size fruits with low growth rates at cell expansion (Corelli-Grappadelli and Lakso,
2004; Warrington et al., 1999). Furthermore, temperatures above 19 °C can reduce ovule elongation producing
smaller fruits (Tromp and Borsboom, 1994). At the same time, anthocyanin content can be limited by temperatures
> 17 °C temperatures (Yamada et al., 1988). Warrington et al. (1999) proved that expansion rates were highly
temperature-responsive only during the cell-division 40 days after pollination. Fruit expansion was 10 times greater
at a mean temperature of 20 °C than at a mean of 6 °C.

The ratio of fruit length to diameter is usually referred to as fruit shape. However, this ratio is very sensitive to
temperature, with more elongated fruits being produced when temperatures as measured by degree days above 5°C
between full bloom and harvest are relatively low, and rounder fruits being produced in warmer climates
(Westwood, 1978). Desirable elongated shape is a determined parameter in apple marketing and in customer
recognition of the variety when choosing an apple to purchase.

Another external quality factor is skin color which is mainly attributed to anthocyanins, i.e., glycosides of
anthocyanidins. The final red color of apples is a function of anthocyanins, chlorophylls and carotenoids (Lister et
al., 1994). Among other varieties, Gala is distinguished for high anthocyanin pigmentation resulting in red colour
strips on the skin. Consumer preference in apple fruits is subjective, however redder fruits are usually chosen
because consumers associate their appearance to a better internal quality and higher sugars, a fact confirmed by
quality analyses (Hamadziripi et al., 2014). A profound environmental factor that stimulates the anthocyanins in
fruit skin is the integral of sunlight irradiation and the time this irradiation takes place. Red coloration development
is improved under cooler temperatures. Anthocyanin accumulation in fruit skin is highly depended on the
carbohydrates sink. However, global warming during the past decades resulted in high temperatures and
consequently increased respiration loss of carbohydrates, suppressing the pigment development (Red blush).
Additionally, enhanced temperatures in sub epidermal tissues or the outer surface of fruit can be the cause for
sunburn susceptibility in apples (Ranjan et al., 2020). An evaporative cooling approach that uses overhead
sprinklers to wet the fruit is a widely adopted strategy that assists in manipulating the canopy climate and reducing

fruit surface temperature in apple orchards (Evans, 2004; Iglesias et al., 2002; Li et al., 2014).
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As fruit matures, starch is converted into sugars which is a driven factor of internal quality of apples for
consumer preference. Usually, it is expressed in total soluble solids (TSS), total acidity or TSS to acidity ratio using
instruments e.g., refractometer or chemicals methods (i.e., colourimetric assay, gas-liquid chromatography) (Nath
et al., 2014). TSS, acidity and firmness measurements can predict consumer acceptability, reflecting a significant
variation of sweetness perception by consumers (Hoehn et al., 2003). This variation is significantly affected from
fruit position on the tree, for example TSS from outer canopy in ‘Starking’, ‘Golden Delicious’ and ‘Granny Smith’
fruit was consistently higher over two growing seasons than from inner canopy fruit (Hamadziripi et al., 2014). In
contrast, the structure and geometry of the inner canopy establishes microclimatic conditions with lower
temperature and light intensity influencing negatively fruit quality (Musacchi and Serra, 2018). Fruit acidity affects
taste perception and therefore stands as an important component of organoleptic quality in apple (Etienne et al.,
2013; Khan et al., 2013). Similarly, fruit position within the canopy and exposure in sunlight affects the content of
acidity in apples. In other words, malic acid (main organic acid in apples) in fruit flesh can be higher in apples
situated in the outer canopy compared to fruits found in the inner canopy (Feng et al., 2014). On the other hand,
inner canopy ‘Starking’, ‘Golden Delicious’ and ‘Granny Smith’ fruit had higher TA compared to fruit in the outer
canopy during one growing season, with no differences being observed between the two canopy positions in
another year (Hamadziripi et al., 2014).

Texture is usually evaluated by trained panels on sensory evaluation methods and combined with instrumental
measures. Apple firmness, juiciness and absence of mealiness are the most preferred textural traits by consumers
(Brookfield et al., 2011). Flesh firmness is usually measured by a penetrometer, or pressure tester, a device that
measures the resistance of the peeled flesh to the penetration of a metal probe (approx. 8 mm depth,). Recently,
non-destructive methods have been introduced for fruit quality assessment in order to evaluate a greater number of
fruit samples over time (Zude et al., 2006) and speed up the sorting step, eliminating undesired fruits (Abbott,
1999). In respect to firmness, the majority of non-destructive methods consist of acoustic methods (Kim et al.,
2009). Another non-destructive technology is hyperspectral scattering imaging based on NIR spectroscopy (Wang

etal., 2012).
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2. Objectives

The aim of this study was to contribute to the methodology for extracting tree structural parameters and apply

the methods for assessing the spatio-temporal responses of apple trees in the orchard. In order to accomplish this

aim, the following objectives should be fulfilled.

Enabling the detection of tree positions and tree segmentation in commercial apple orchard by means of
3D point cloud, and validate the method by assessing the LiDAR uncertainty on a portable
instrumentation in field conditions.

Analysis of individual tree point clouds by estimating structural parameters accuracy of singularized
tree.

Enabling the measurement of LA by means of 3D point cloud obtained with terrestrial LIDAR system.
Quantifying the impact of LA in daily tree water needs in different ECa areas of an orchard.
Investigating the seasonal growth of LA and volume in commercial apple orchard, and evaluate their
response to ECa.

Analyzing the effect of LA and ECa as determinants for predicting fruit quality.

Detecting 3D apples points based on reflectance and geometric features in foliated and defoliated trees.
Development of a fruit segmentation methodology for measuring fruit size in defoliated trees at different

growth stages, and evaluate the accuracy of this methodology on foliated trees.
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3. Materials and Methods

3.1. Site description

The study was conducted in two apple orchards: the experimental station of ATB (0.5 ha) in Marquardt
(Latitude: 52.466274° N, Longitude: 12.57291° E) and in three commercial orchards located in Altlandsberg (3
ha) (Latitude: 52.607340° N, Longitude: 13.816763° E), in Markendorf (1 ha) (Latitude: 52.283° N, Longitude:
4.458°E), and in Glindow (Latitude: 52.923 ° N, Longitude: 10.576° E), in the region of Brandenburg, in Germany.
The experimental field was planted with Malus x domestica Borkh ‘JonaPrince’ and ‘Gala’ in 2015, whereas the
commercial orchards were planted only with the latter cultivar in 2014. Furthermore, ‘Red Idared’ pollinator trees
each on M9 rootstock with 0.95 m distance between the trees were used in both fields. The trees were trained as
central leader at spacing of 3.5 m x 1.10 m (36 rows), 3.3 m x 0.9 m (20 rows), 6m x 1m (24 rows), and 3.2 m x
0.95 m (12 rows) in Altlandsberg, in Markendorf, in Glindow, and Marquardt, respectively. All orchards were drip
irrigated (max. 2 L tree! d!) and managed according to the national regulations of integrated production. The
experimental and the Altlandsberg orchard were located on a 3 % slope with southeast orientation, whereas an 8%
slope with northeast orientation was observed in Markendorf.

The cultivation treatments carried out by the farmer were similar for each year. The time of application of the
cultivation treatments varied by a few days from one year to another, depending on the weather conditions and the
tree development. The cultivation tasks of the year would start between late November to early February with
pruning. At the same time, removal of suckers, dead, damaged, or diseased shoots took place, while young shoots
mounted through the horizontally parallel wires. To achieve variation in the number of fruit per tree in order to
explore the model, each year, 60 of the selected trees were hand thinned to low (=60 fruit tree), medium (=100
fruit tree™!) and high (=140 fruit tree™) crop loads. All trees were thinned with ammonium thiosulphate (20 % N;
15 kg ha?) at full bloom and with 6-benzyl adenine (500 g hat) three weeks after full bloom. Soil fertilization was
applied 4-5 weeks (early February) before bud break. At the same time, fungicides for the prevention of downy
and powdery mildew were applied immediately after bud break. Typically, five applications were carried out till

the beginning of apple ripening (early August). Weed control and soil aeration between the trees was carried out
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manually, on a regular basis, at the experimental station, whereas in the commercial orchard the same cultivation

tasks were performed only after full bloom.

3.2. Soil sampling

Soil electrical conductivity is a well-suited parameter for precision agriculture applications using the indirect
method of electrical resistivity (i.e., Wenner array) to determine in-field soil properties. The electrical resistivity
method introduces an electrical current into the soil through current electrodes (C1, C2) placed at the soil surface
and the difference in current flow potential is measured using potential electrodes (P1, P2) that are placed in the
vicinity of the current flow (Corwin and Plant, 2005) (Figure 3). Resistivity varies according to soil texture and
moisture. In a hypothetical case of homogenous soil, the current flow would be radially emitted from the current
source, generating equipotential surfaces perpendicular to the current flow lines and forming half spheres. In real
conditions, the variation of soil texture and moisture differentiates the current flow lines, forming a more uneven

pattern of equipotential lines as the current flow lines will bend at boundaries, where resistivity changes.

Equipotential e )
surface R

Current flow line

Figure 3. Schematic of Wenner array working principle

The four electrodes in a straight line configuration is typically referred to as Wenner array configuration. The

electrodes are equidistantly spaced (Figure 3) parallel to the soil surface. As mentioned above, the two outer
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electrodes (C1, C2) serve as the current or transmitter electrodes, whereas the two inner electrodes serve as the
potential or receivers electrodes (P1, P2). The depth of investigation is defined by the inter-electrode spacing (a).
It was set to 50 cm, which corresponds to an investigation depth of 25 cm. The measurements provided soil

resistivity (Eg. 1), which were converted to ECa (Eq. 2).

1)

AV
p:2an=2nmR

1
ECa=-
p (2)

where p represented soil resistivity (€ m), m electrode spacing (m), AV difference of voltage (V), I current (A)
and R resistance (Q). The reciprocal of p was utilized to calculate ECa (mS m™). Data were obtained for every
third tree and every second row, the values were saved by the data logger (4-Point Light, LGM, Schaufling,
Germany) and analyzed in ArcGIS (10.2.2 ESRI, USA). Several studies suggest that ECa and texture relations are
more stable and prevalent when soil water content is at field capacity (Auerswald et al., 2001; McCutcheon et al.,
2006; Taylor et al., 2003). Therefore, the measuring date of ECa determined according to the soil moisture that
derived from the weather station. The measurement was conducted each year and only in the commercial apple
orchards. Specifically, in Markendorf (n = 338) and Glindow (n = 460) the measurement was conducted only after
full bloom in 2018. In the case of Altlandsberg, ECa was sampled at full bloom (n = 432) and harvest (n = 425) in
2018, whereas in the following year the measurement was repeated only at full bloom (n = 435). Moreover, the
elevation [m] of the Markendord orchard was acquired utilizing the RTK-GNSS system (Tagarakis et al., 2018).

After calculating the ECa map, 10 sampling locations covering the range of ECa values within the orchard were
selected in Altlandsberg. Samples were collected at a 30 cm depth using an Edelman combined soil sampler. The
samples were analyzed using the sedimentation method, which is based on the different settling time of different-
sized particles defined as clay, silt, and sand, which make up the soil texture (Taubner et al. 2009).

Soil sampling was carried out in 10 locations guided by the range of the ECa data in Glindow in 2017. From the

results of soil texture analysis, the field capacity (FC) and the wilting point were derived based on the proposed
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values for typical soils in Germany (Sponagel et al., 2005). On 60 additional soil samples, cores were retrieved at
30 cm and subjected to oven-drying for 2 days at 105 °C in order to analyze bulk density and porosity(Cater et al.,

2007).

3.3. Light detection and ranging (LiDAR)

In this study, a mobile terrestrial light detection and ranging (LiDAR) laser scanner (LMS-511, Sick AG,
Waldkirch, Germany) was used to scan both sides of each individual row within the orchards (Figure 4). The
LiDAR is an optical non-contact laser scanner sensor that scans the surrounding perimeter radially on a single
plane using light pulses. The sensor measures in two-dimensional (2D) space in radial coordinates. The scanner’s
measurement method is based on the time-of-flight (ToF) principle (Figure 4). A microcontroller sends two timed
pulses: a control pulse to the laser control circuit and a start pulse to the time-to- digital converter. The laser control
circuit controls the laser emitter, which starts emitting the laser beam pulse. If a laser beam emitted is reflected by
a target object, it returns to the photo-detector. A circuit converts the signal from the detector into a logic signal
sent to the time-to- digital converter, which stops the time measurement. Thus, the position of the object is given
in the form of distance and angle. A clock in the sensor’s processor measures the timestamp between the transmitted
and the reflected beam. The time between the emission and the reflection of the beam is proportional to the distance

between the scanner and the objects. The laser beam is rotated in a specific range by an internal rotating mirror.

Laser control circuit

Microcontroller
4 Laser emitter Emi
mitt o
Start Pulse - Ed_p_‘_”_s_e ~_ 0y
- ::: \ § “E
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\
Time-to-digital < < > s
converter Distance

Figure 4. Overview of Time of (ToF) flight principle.
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A rigid aluminium sensor-frame carrying the sensors (Figure 5a) was mounted on the three-point-hitch (front
or rear) of a tractor. The LiDAR laser scanner was mounted at 1.6 m above the ground level, which corresponded
to the middle height of the trees. The sensor frame was driven along the rows on both sides of the trees with an
average speed of 0.13 m s™%. The three-dimensional tilt of the tractor was monitored by an inertial measurement
unit (IMU) MTi-G-710 (XSENS, Enschede, Netherlands), which was placed 0.24 m aside from the LiDAR. The
accuracy of the sensor was 1.0° root mean square error (RMSE) for the heading at static and dynamic mode, and
0.25° RMSE and 1.0° RMSE for both pitch and roll in static and dynamic mode, respectively (Xsens Technologies,
2014). The measured data were georeferenced by an AgGPS 542 RTK-GNSS (Trimble, Sunnyvale, CA, USA)
mounted at a 1.74 m height. The horizontal accuracy of the RTK-GNSS was + 25 mm + 2 ppm and the vertical +

37 mm + 2 ppm.

( a) ZSEHSGI"—fJ’ﬁHle (b)

YSFIISOJ’:,FFRHIL’

YLiDAR
ZLiDAR

1.81m

XLiDAR

Figure 5. (a) Representation of the sensor-frame system showing the coordinate system of LiIDAR and RTK-GNSS. (b) Metal box
of known distances.

Two digital filters were activated to optimize the measured distance values: a fog filter that could not be

avoided according to the manufacturer’s setting; and a N-pulse-to-1-pulse filter, which filtered out the first reflected

45



pulse in cases where two pulses were reflected by two objects during a measurement (Table 1). The sensor was

configured with a 0.1667° angular resolution, 25 Hz scanning frequency and a scanning angle of 190°.

Table 1. LMS 511 specification data.

Functional Data General Data

Operating range: up to 10 m LiDAR Class: 1 (IEC 60825-1)

Scanning angle: 190° Enclosure rating: IP 67

Scanning frequency: 25 Hz Temperature range: -40 °C to 60 °C

Systematic error: + 25 mm Light source: 905 nm (near infrared)

Statistical error: £ 6 mm Total weight: 3.7 kg

Angular resolution: 0.1667° Laser beam diameter at the front screen: 13.6 mm

3.3.1. Sensor Frame Analysis

Mounting the sensors on the metal frame allowed us to measure the distances and angles between the sensors
with high precision, which were utilized as inputs in point cloud reconstruction. However, uncertainty can be
derived by the movement of the tractor on the soil and the vibration of the engine. Therefore, error analysis is an
important factor in the calibration of a LIDAR system to establish the validity of the measurements. The calibration
can be established by studying the systematic (biases) and random (uncertainty) errors of the LIiDAR system on
surfaces of known dimensions and material. Thus, a metal box measuring 1.81 m x 0.60 m x 0.60 m was
constructed to validate the measuring uncertainty of the sensor-frame system (Figure 5b). Five bars were placed
horizontally on the metal box at a 0.3 m distance from each other. The sensor-frame mounted on a tractor was
applied to scan each side of the box separately at a speed of 0.13 m s™1. The measurements were carried out next
to the apple trees in order to simulate the real-world operating conditions.

The measured objects, hit by the laser beam, were assumed to be perfectly diffuse reflectors (Lambertian),
excluding the influence of incidence angle (Calders et al., 2015; Dassot et al., 2012). Thus, the apparent signal was
considered as an approximation of hemispherical reflectance. Board targets (Figure 6), coated with white barium
sulphate (BaSO4, CAS Number: 7727-43-7, Merck, Germany) for maximum referencing (Rmax) and blackened
urethane (S black, Avian Technologies, New London, NH, USA) for minimum (Rmin) referencing were applied to

calibrate the backscattered intensity (Rtor) of the LIiDAR, obtaining the Rror [%] at 905 nm for each point in the
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3D point cloud (Eg. (3)).

Rmeasured Rmin

RT F~ "5 5
¢ Rmax - Rmin (3)

2m

Figure 6. Schematic of board target coated with barium sulphate and blackened urethane.

The LIiDAR sensor RTK-GNSS and IMU were connected to a computer for data management and storage
(Figure 7). The 12 Vdc tractor battery supplied power to the LiDAR laser scanner using a 12Vdc to 24 V DC
converter. USB ports were used to connect the RTK-GNSS receiver and the IMU to the computer, and an ethernet
port was used for the LiDAR sensor. Software with multi-thread architecture was developed in Visual Studio
(version 16.1, Microsoft, Redmond, WA, US) in order to acquire the sensor data. Parallel data acquisition was
achieved by creating a dynamic thread for every connected sensor. Consequently, when the raw sensor data were
read by each thread, the corresponding measurement and the time stamp from the real-time clock (1 ms resolution)
were assembled into a text string. The string was stored in a text file for post-processing. The multi-threaded data

acquisition of the sensors resulted in non-concurrent measurements. Therefore, the cubic spline interpolation
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method was used before synchronizing time instances, based on their individual timestamps.

Converter
égttvedr; ........... 12 Vdcto 24V -=eree- ;
DC :
GPS-Antenna :
" :
1 LiDAR SICK-
! LMS 511
GPS-Ag(ISPSS 42 IMU XSENS G710
1
1
1
i
L __. Laptop with
Multi thread s st
software

Figure 7. LIDAR, GPS receiver and computer. Scheme of communication. The dotted line indicates the connectivity of LMS
511 LiDAR with the power supply and the computer, the solid and dashed lines show the corresponding USB connections of IMU

and RTK-GNSS with the computer.

3.3.2. Acquisition dates

Calibration of the sensor frame in real conditions and stem detection were performed at the end of fruit cell
division in the experimental station of ATB located in Marquardt during early July of 2018. In the same field, data
were recorded during fruit growth starting when the end of the cell division stage of fruit was reached and the
cultivar-typical red blush colour (Sadar et al., 2013) appeared and on three subsequent dates, i.e., 42, 72, 104, and
120 days after full bloom (DAFB4,, DAFB7,, DAFB104, DAFB120, respectively) in 2020. On each measuring date,
two apple trees (n = 8) were initially scanned with leaves (T.) and then the measurement was repeated with the
plants defoliated (Top). After scanning, the total number of apples on the tree was counted. After harvest, the fruit’s
diameter (Dmanuat) Was manually measured in the lab. All apples of each tree were categorized according to their
growing position on the slender spindle. The wires (W) were used as borders to discriminate the apples between
the ground and W1 (AWa.g); W1 and W2 (AW2.1); W2 and W3 (AW32); Ws and Wa (AWas3).

On the other hand, the LiDAR sensor frame was used in Altlandsberg during 2018 and 2019. The trees were

first scanned 10 days after bud break (DABB1o) during the stage of green tip, during the initiation of the emergence
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of leaves, with further data being recorded when the end of the cell division stage of fruit was reached and the
cultivar-typical red blush colour (Sadar et al., 2013) appeared, i.e. 55, 85, 115, and 140 days after budbreak
(DABBss, DABBss, DABB115, DABBu4o, respectively). On each measuring date, four apple trees (n = 4) were
manually defoliated to investigate the relation between the points per tree (PPT) and the leaf area (LAmanual). The
trees were scanned before and after defoliation. The leaves were measured with a desktop scanner (Scanjet 4850,
HP, USA) and their surface as estimated by counting the green pixels was analyzed, considering pixels per leaf,
with a script written Matlab script (2018b, Mathworks, Natick, MA, USA). An area of 6241 pixels in the image
equaled an area of 1 cm?.

In Markendorf, measurements were obtained from every second row of trees (n =1109). A cylindrical boundary
was projected around the estimated stem positions to segment each individual tree as proposed in sub-chapter 2.5.7
(N. Tsoulias et al., 2019b). Subsequently, Viipar Spatio-temporal variability of the segmented tree point clouds
was estimated during full bloom (VLibar, r8), fruit set (Viioar, rs) and before harvest (Viipar, s1). The measurements

of Viipar, r8, VLibARr, rs and Viipar, s1 Were carried out 10, 31 and 81 days after full bloom (DAFB), respectively.

Table 2. Corresponding phenological dates on LiDAR type of measurement in each field. Days after full bloom (DAFB), Days after
bud break (DABB).

Field Phenological Stage (DAFB-DABB) Measurement (Year)

- Stem detection-Frame calibration
Cell division (DAFBs2)

(2018)
End of Cell division (DAFBa2)
Marquardt . - ;
Cell expansion (DAFB72) Fruit detection (2020)
Fruit ripening (DAFB10s)
Harvest (DAFB120)
Cell division (DABBss)
Cell expansion (DABBgs) Leaf area model-Growth analysis
Altlandsberg o
Fruit ripening (DABB115) (2018-2019)
Harvest (DABB140)
Full bloom (DABB10) .
. Volume growth analysis
Markendorf Fruit set (DAFB31)

(2018)
Before harvest (DAFBs1)
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3.4. Weather data
The meteorological data were recorded by the weather station (IMT 280, Pessl, Austria) located inside the
commercial orchards. The station recorded air temperature (T), relative humidity (RH), wind speed (u), solar
radiation (Rn) and stored all data in the database http://technologygarden.atb-potsdam.de. The potential

evapotranspiration (ETo) was estimated according to Penman—Monteith equation, (Eq. (4)).

900
0.408 s (Rn - G)+Y m u(es—ea)

ETo = sty (11034 u) (4)

with the daily net radiation at the surface [Rn (MJ m day)], soil heat flux [G (MJ m day)], which was assumed
to be zero on the daily scale (Allen et al. 1998), and daily average air temperature [Tm (°C)] (Eq. (5))

(Tmax + Tmin)

=" (5)

with Tmax and Tmin representing the maximum and minimum daily air temperatures, respectively, the average
wind speed at 2 m above the surface [u (m s™)]; the saturation vapour pressure [es (kPa)] and the actual vapour
pressure [e, (kPa)]. Additionally, y represented the psychrometric coefficient (kPa °C?) and s (kPa °C?) was the
slope of the saturation vapour pressure at Trm. The estimates of the net radiation and the aerodynamic terms were

based on the FAO-56 paper (Allen et al. 1998).

3.5. Soil available water content
The ET, (mm day) provided by the weather station was multiplied with the soil water stress co-efficient (K),
the basal crop coefficient (K,) and added in the soil surface evaporation coefficient (K,) for the calculation of the
crop evapotranspiration (ET¢), as proposed FAO-56. Two cases of ET. were tested in the present study (Egs. (6)-
(7)) which were obtained by considering, (i) the reference data tabulated in FAO (Allen et al. 2005) for the entire

orchard and (ii) the leaf area based on the LiDAR data (ET ) as shown below.

C, LIDAR
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ETC,RF = (KS,RF ch,RF+Ke ) ET0 (6)

ETC, W= (KS,RF ch,LA+ Ke ) ETO (7)

The basal crop coefficient K, gpwas estimated according to the tabulated values from FAO (K, rp) (Allen et
al., 1998), and based on the leaf area values derived from the LIDAR (K, 1ipar)- Changes in vegetation and ground
cover mean that the K, varies during the growing period. According to FAO (Allen et al., 1998) K, trend can be
described by minimum three values during the season. Therefore, the K, was in all cases calculated for three
phenological stages: The value for the initial-season (K, i;) from bud break till full bloom, for mid-season (K, mia)
from full bloom till harvest period and for end-season Ky, ., from harvest period till defoliation.

During the initial season (K, in;), the constant value of 0.8 was used, as suggested by FAO (Allen et al., 1998;
Pago et al., 2012), and applied in all cases (K¢, rr, Keb1.4). The tabulated values were utilized for Ky, g, from cell
division till harvest, set at 1.20 (K¢, miq rr) and from harvest till leaf drop at 0.85 Ky, eng rr respectively (Allen

etal. 1998; Table 12). However, for the stages after full bloom, the values were adjusted to the local crop parameters

and daily climatic conditions (Allen et al., 1998) for K., 14 (Egs. (10)(11)).

103

Kb futlmid = Kebmia,rr + [0.04 (u =2) — 0.004 (RHyin— 45)] 3 )
103

Keb,fulend =Keb,end,rr + [0.04 (u =2) = 0.004 (RHpin —45)] 3 (9)

ch,mid = Kc,min+ (ch,full,mid - Kc,min) (1' 60'7 LA) (10)

ch,end = Kc,min+ (ch,full,end - Kc,min) (1' 60'7 LA) (11)

Where u was the wind speed, RH,,;, was the mean daily minimum relative humidity (%) for initial-season, mid-
season, end-season, as recorded by the weather station. Whereas h was the mean crop height of 3 +0.5 m. In the
case of Pinova field in Glindow, the manually measured range of leaf area (LA) has been implemented (Egs.
(10)(11)). Whereas, in Gala orchard in Altlandsberg, the estimation of LA derived from the LiDAR system. The
duration of the phenological stages for Gala and Pinova apple trees was set for a deciduous orchard of low altitude;

the initial period lasted 23 days after bud break, mid-season 190 days, and end season 60 days.

51



3.6. RAW irrigation thresholds
The soil water stress coefficient (K) used in Egs. (6)-(7), and the total (TAW) and readily available soil water
content (RAW) for high depletion of water from the root zone (D), with D;>RAW (Pereira et al., 2015) were

calculated according to Egs. (12):

K = _TAWgs ~ Dy
SRF ~ TAWgr —RAWgr (12)

with
Dy = Dyiy — (P, — RO) — I ET¢; + DP; (13)
DP =P; +1; = ET.; — Dy (14)

The adopted variables captured the depletion of water in the root zone D,; expressed daily by an estimation
(mm) (Eq (13)), the water content in the root zone at the end of the previous day [D..i-1 (mm)], the precipitation on
day i [Pi (mm)], the runoff from the soil surface on day i [RO; (mm)] was assumed zero, the net irrigation depth on
day i that infiltrates the soil [l (mm)]. The irrigation events took place early in the morning, with 6 mm per day
regardless of the actual weather conditions. DP; (mm) was the water loss out of the root zone by deep percolation
on day i calculated only during high precipitation (Eq. (14)Xedipa! To apycio Tpoélevong The avaopag dev
Bpédnke.). Dy was recorded for each of the sampling points according to guided sampling derived from soil ECa,
considering ECaiow, ECamid, ECanigh.

and with

TAW = 1000 (Opc-Owp) Z (15)

TAW (mm) was the total available soil water for the root zone assuming field-homogeneous root depth of 1 m.
The volumetric water content at field capacity [@rc (cm® cm®)] was set according to the German soil classes

(Sponagel et al., 2005) based on the soil particle size distribution measured. The @y was the volumetric water
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content (cm® cm) at wilting point (WP) that was assumed — 1.5 MPa, Z is the average root depth for the apple
trees as indicated by FAO with 1 m (Egs. (15)).
and with
RAW=p TAW (16)
P= Py, 0.04 (5-ET¢)

(17)

RAW (mm) (Eq. (16)) represented thresholds for water stress. It was estimated on a daily basis according to the
soil texture analyses. Consequently, three thresholds were considered in the spatial water balance as shown below.
The average fraction of TAW that can be depleted from the root zone before moisture stress occurs was p (Eq. (17)),
where p,, equaled a constant value as recommended by Allen and co-workers (Allen et al. 1998).

The estimation of K. takes place when the soil starts to dry. In other words, when the daily cumulative depth of
water depleted from the surface (De,) exceeds readily evaporable water (REW). This can be defined by the soil
evaporation reduction coefficient (K,) (Eqg. (18)). REW was at 8 [mm], (Allen et., al., 1998; table 12). TEW (Eqg.
(19)) is the maximum evaporable water, which was defined according to the soil texture analyses. Furthermore, Z.

is the depth of soil that can be dried from evaporation, which was 16 [mm] (Allen et., al., 1998; table 12).

Ke =K, (ch,full,max' ch,mid,end) (18)
_ TEW-Deji

Kr= TEW-REW (19)

TEW= 1000 (Orc-Owp) Ze (20)

Consequently, two ET. cases were implemented in the water balance (WB) of the orchard, field-homogeneously
(WBke) and considering the spatial variability of plant data (WB_a) in the low, mid, and high ECa regions. Initially,
the range of LA found were implemented in model for calculating the WBLa [mm] in the Pinova orchard. As, in
Gala orchard, the estimation of WB_a was based on LiDAR values and compared with the WBgr according to the

tabulated values from FAO (Egs. (21)-(22)). P is the daily precipitation [mm].
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WBRrr = ET¢,rr—P 1)

WBLA = ETCY LA— P (22)

3.7. Yield
For yield mapping, the apples were harvested manually (n = 120) and placed in plastic bags in 2018 and 2019.
The plastic bags were transferred in the sorting line where the fruit number and the weight for each tree was
determined (Kg tree ). The production of ten trees was weighed and the geographical position in the middle point

of the ten trees was recorded using the RTK-GPS.

3.8. Quality

The position of sample trees was recorded with RTK-GNSS. For fruit quality analysis, 20 apple trees were
selected in low, middle and high ECa regions (n = 60), and 10 apples were harvested from each tree on the four
measuring dates (n = 2400) for each year. The fresh mass (FM) [kg] was measured by weighting each fruit from
all sample trees. Soluble solids content (SSC) [%] was analysed, from juice squeezed of each fruit, with digital
refractometer (Pal-1, Atago, Tokyo, Japan). Fruit diameter (D) [mm] was measured considering height and mean
of two diameters for each fruit. The FM dataset was equally partitioned in three categories, between 0.01 and 0.09
kg as low, from 0.09 to 0.13 as mid and from 0.13 kg to 0.32 kg as high. The D dataset was analysed separately
according to the market price data, between 40 and 65 mm as low, from 65 to 75 as mid and from 75 mm to 90
mm as high. Whereas the SSC dataset was equally divided in categories (Harker et al., 2008) 8 % - 10 % classified

as low, 10 % - 11.5 % as mid, and 11.5 % - 13.5% mm as high quality.
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3.9. Data analysis
3.9.1.Point cloud reconstruction

The field data was processed using mainly the Computer Vision System ToolboxTM of Matlab (2017b,
MathWorks, Natick, MA, USA) and the function of the statistical outlier filter (SOR) and cloud to cloud distance
(C2C) of CloudCompare (EDF R&D) for point cloud processing.

LiDAR data were filtered to consider only those detections with distance measurements between 0.05 m and
4.00 m since these were corresponded to average tree width. The resulting detections were transformed from polar
to Cartesian coordinates (XLipar, Yiibar, Ziioar). The 3D dynamic tilt orientation (yaw (y), pitch (0), roll (¢)) of the
sensor-frame during the tractor movement was acquired by the IMU sensor in east north up (ENU) local frame.
Thus, any point of interest on the sensor-frame could be calculated using coordinate transformation. The position
data, latitude (¢), longitude (1) and the altitude (h) (LLA), which was obtained by the RTK-GNSS receiver, were
expressed in the geodetic frame defined by WGS84.

The RTK-GNSS and the IMU output data had to be converted in the same coordinate system in order to be
fused. The fusion was utilized in north east down (NED), since the IMU output data was already in this local
coordinate system. However, the RTK-GNSS output data was converted twice, first the LLA to earth-centred earth
fixed (ECEF) frame and second to the NED frame.

The conversion from the geodetic coordinates to the ECEF coordinates was performed using the following

equations (Egs. (23)-(24))

xe=(v(@)+h) cos (¢) cos (1) 23)
¥ =(v(@)+h) cos (¢)sin (1) 24)
2V(@)(1-¢*) ] sin (0) (25)

where e = 0.0818 is the first numerical eccentricity of the earth ellipsoid, ITe= [x..y, ,z.]" is the position in ECEF

coordinates and v(¢) is the distance from the earth's surface to the z-axis along the ellipsoid normal given by
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«
V) = J1—e?sin ¢ (26)

where a = 6,378,137 m is the semi-major axis length of the earth. The conversion from the ECEF coordinates
to the local ENU coordinates was estimated from the equation IT,=T¢Ile, where where I1,= [n, €, d]" is the position
in the local ENU coordinate system andT; is the transformation matrix from the ECEF to the ENU coordinate

system

-sin () cos (M) 0
T = -sin(@)cos (L) -sin(@)sin(A) cos(9)
" |cos (p)cos(h) sin(A)cos(p) sin(e)

¢ (27)
0 0 0

_ o O O

The sensor-frame enabled transformations and translation, due to the known distances and angles between the

sensors. The LiDAR frame was transformed into the RTK-GNSS frame by several translations (Trans (X,y;s , -a) X

Trans (y +b) X Trans (z,;s , -C)) and one rotation (Rot (‘roll’, g)) in order to georeference each point of the

axis ’

LiDAR

sensor—frame
[X sensor—frame Y sensor—frame’ Z sensor—frame» 1]T [TLiDAR ] X [X LiDAR’ Y LiDAR’ Z LiDAR~ 1]T (28)

sensor-frame

where Ty :par is the transformation matrix from the coordinate system of the LiDAR sensor to the

coordinate system of the RTK-GNSS

T T
TSLeirSXﬁiﬁame = Rot (‘roll’, E) X Rot (‘yaw’, — E) X Trans(Vaxis , —a) X Trans(zas, +b) (29)
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The general matrix form of all rotations (Rot) and translations (Trans) are shown in Eq. (30), and by substituting
them in Eq. (29), a matrix form representation of the equations can be generated. The three-dimensional tilt

orientations were implemented in the point cloud considering the LiDAR timestamp (t).

1 0 0 0 1 0 0 0
o |0 cos(p) -sin(p) O . _ 0 1 0 0
Rot (roll , ([))— 0 sin ((Pt) oS ((Pt) ol’ Trans( Xaxiss Xtranslation)_ 0 0 1 ol
0 0 0 1 Xtranslation 0 0 1
[ cos(8;)) O sin(8) O 1 0 0 0
AR 0 1 0 0 ; , 10 1 0 0
Rot (pltCh > 9)— -sin (et) 0 cos (et) ol Trans( Yaxis 2 ytranslation) “10 0 1 oV (30)
0 0 0 1 0 Yeransiation 0 1
[cos (Y¢) -sin(i) O O 1 0 0 0
' ' i 0 0 . , 0 1 0 0
Rot (yaW ’ W)z Slnélpt) COS(gl/Jt) 1 0 5 Trans( Zaxis » Ztranslation) = 0 0 1 0
0 0 0 1 0 0 Ztranslation 1

The three-dimensional tilt of the IMU data was implemented to stabilize the orientation of the coordinate system
of the sensor-frame (Eq. (31))

Tlfisg 820 = TISBRR™™ex Rot (roll -g) x Rot ('pitch ,-0) x Rot ('yaw',y) (1)

3.9.2.Point cloud rigid registration and stitching

The process started by implementing the SOR filter to each point cloud pair to compute first the average distance
of each point to its neighbors and then reject the points that were further than the average distance considering also
the standard deviation. Furthermore, the random sample consensus (RANSAC) algorithm was used to remove
points that belonged to the ground. The distance threshold value between a data point and the plane was determined
at 5 mm, while the slope of the field was also considered in the plane model through the implementation of the
RTK-GNSS height difference of each row. As mentioned above, a plane of 5 mm height was applied in both rows
to remove the soil. The RANSAC algorithm was applied in each path separately.

The pairwise pathways were pre-aligned due to the aforementioned georeferencing method of point clouds using
the RTK-GNSS. The alignment of the pairwise pathways was operated with the iterative closest point algorithm
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(ICP), which iteratively minimizes the distances of corresponding points. A binary search tree, where each node
represents a partition of the k-dimensional space (K-d tree) was used to speed up the ICP process (Vazquez-
Arellano et al., 2018b). Moreover, the local surface normal vector and the curvatures were considered as variants
in the ICP to select the corresponding point. A weight factor that incorporates the difference of eigenvalues of
matched values for the minimization of distances was assigned to X, y, z and the normal vector. Higher weight was
assigned to the x axis, since it was the axis of the driving direction producing the highest deviation between the
point cloud pairs. The maximum correspondence distance was set to 0.1 m. Thus, the ICP minimized the distance
between a point and the surface of its corresponding point, or the orientation of the normal. Finally, the two sides
were merged together into a single point cloud, using a voxel grid filter (1 mm x 1 mm x 1 mm).

A similar methodology was followed for the reconstruction of each individual side of the metal box. Initially, a
SOR filter was used in order for the point clouds of each individual side to be denoised. Subsequently, the normal
vectors and curvatures were estimated and integrated into the ICP algorithm. Thus, the edges of the sides were
aligned and later merged. Each side was divided vertically and horizontally into 6 parts using a 0.3 m step in order
the maximum and minimum point of each vertical part for each individual side. Whereas the width was obtained
by the subtraction of the maximum and minimum width of each horizontal part.

Furthermore, the height and the width of each individual extended bar (EB) were measured. The average height
difference between the EB (AEB) was estimated, using 4 vertical planes to obtain the difference between the

minimum and maximum point.

3.9.3.Tree row alignment

The methodology for stem position determination relied on Vazquez-Arellano et al., (2018a). A first-order
polynomial curve considering the least absolute residuals (LAR) was used to connect the reference stem positions

in each row (Eqg. (32))

y=a*x+p (32)

The slope of the line was utilized by rotating the merged point cloud until it was aligned with the x-axis.
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3.9.4.Tree stem estimation

The stem position of each tree (n = 224) was defined using a real time kinematic global navigation satellite
system (RTK-GNSS), whereas a wooden meter was used to estimate the tree height manually (Hwanuat). The average
width of each tree (Wwanual) Was specified at three different heights across the x and y axis. Furthermore, the stem
diameter (Smanual) Was measured at 0.3 m height, which was always above the grafting area and above the ground,
using a tape scale. The value of the Wwmanuar in the X and y axes and of the Hmanua Of the tree was multiplied to
determine the volume of each tree (Vwmanual).

The generated and rotated point clouds were used to acquire 3D point density histograms using a bivariate
approach by pairing the x and y values of every point in the point cloud. The bivariate histogram depicts the
frequency of points, which fall into each bin sized 3 cm?. The closer to the stem position the higher the frequency.

A bivariate histogram of the entire row was used to detect the stem position, with the highest frequency. A
cylinder with the coordinates of the highest peak as a base, with a 0.65 m radius and 4 m height was applied in
order to bring a point density histogram within this frame. The point with the highest frequency was considered as
the starting point, since it was the one with the highest probability of being a stem. The position of the next stem
was estimated in both directions of the x-axis by adding the average intra row distance (0.95 m). At this point, a
second cylinder, with the aforementioned dimensions and the coordinates of the next stem as the center of the base
was applied. A point density histogram was used within the cylinder frame to test whether the coordinates of the
next stem would remain the same or needed to be repositioned. The tree point cloud within the latter cylinder was

segmented and this process was repeated for all the trees of each row.

3.9.5.Tree height

When each tree was segmented based on its stem position, its height was estimated by calculating the difference
between the maximum and the minimum point in the z-axis (Hiioar). However, the plane that was fitted into the
soil points with the RANSAC algorithm led to the classification of some plant points, which were close to the soil,
as soil points (Soudarissanane et al., 2011). Therefore, the rigid transformations that were used to register the tree

point clouds were implemented to align and merge the soil point clouds. The merged soil point cloud was filtered,
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using the SOR filter and merged with the tree point cloud. The merged point cloud with the tree and soil information

was considered as the final one and it was used for height estimation.

3.9.6.Stem diameter
As mentioned above, the Smanua Was measured at a height of 0.30 m above the ground for each tree. Thus, the
region between 0.05 m and 0.3 m above the soil was selected in each individual segmented tree to calculate the
trunk diameter (SLipar). The selected points were plotted in x and y-axis. A line connected the points on the
boundaries with each other, creating a polygon. The k-means clustering method was applied in order to define the
coordinates of the centre inside the polygon. Consequently, the maximum Euclidean distance between the centre

and the boundary points was estimated and compared to the manually measured reference trunk radius.

3.9.7.Canopy volume

The Hmanual OF the tree and the distance of the branching point of the tree from the ground were recorded. The
canopy width of each tree at height intervals of 0.5 m was measured from both sides. The cross-sectional area of
each zone was calculated by multiplying the mean value of the top and bottom width measured with the
corresponding height. As mentioned above, the product of the area and hmanua Of the tree was multiplied to
determine the Vmanual (Sanz et al., 2018; Vazquez-Arellano et al., 2018a).

On the other hand, the convex hull was applied in the segmented tree point clouds. This method fits a boundary
around the structure specified and calculates the volume for that region. For measuring volume with this method,
an algorithm was developed using the boundary function in Matlab (Barber et al., 1996) with a shrink factor of 1

to estimate the volume.

3.9.8.LA Estimation

The 3D point cloud dataset was generated and processed in the Computer Vision Toolbox™ of Matlab (2018b,
Mathworks, Natick, MA, USA). Random consensus was applied to filter points belonging to ground surface
(Vazquez-Arellano et al., 2018b). The aforementioned rigid translations and rotations were applied on each point
of the 3D cloud, while alignment of pairing tree sides was carried out with iterative closest point algorithm, using
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a k-dimensional space to speed up the process. Trees were segmented based on stem position and planting distance
to gain points per tree (PPT).

The geometric feature of linearity (L) and apparent reflectance intensity (Rvor) derived from the 3D point cloud
were used to extract points of woody parts from PPT of each segmented apple tree for all four growth stages. For
this purpose, k-nearest neighbors classification method was performed on each segmented tree to analyse the local
neighborhood of points P; = [x;, y., z,] in 3D. A radius (r) determined by the mean value of stem diameter, (n = 50)

measured manually at DABB1o, was used to define the relevant space of neighboring points. The total number of

the P; set (N) was used to estimate the average Pz% Ny (P,) of the nearest neighbours. Thus, the covariance matrix

(Cov) was built after mean centering by means of subtraction of the P value from each P; of the nearest neighbours

set (Eq. (33))

N
1 - -
Cov (P)= N Z(Pi-P) x (P;-P)’ (33)
p

The Cov was decomposed based on singular value decomposition, producing the eigenvalues (44,
Ay, A3), which were sorted in ascending order A;>A,2A;, and the corresponding eigenvectors. The

linearity of each point L(Pi) in 3D structure was calculated (eq. (34)).

M =2

L(R) = »

(34)

More specifically, the closer the values of L to 100, the higher the likelihood for the shape of points to be
linear (Hackel et al., 2016; Lin et al., 2014). Linearity and reflectance thresholds of wood points were determined
based on data measured DABB1o, when no leaves appeared in the data set, of each year. The percentage of
segmented points belonging to woody parts was quantified considering the thresholds in each PPT [%]. The

probability density of quantified points of wood was calculated for each date of measurement.
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Before and after filtering of the woody parts, linear regression models were built to express the relationship
between LAwmanwa and (remaining) PPT, separately for each growth stage (Egs. Xedaipa! To apysio apoélevong T
NG avoQopdg dev Bpédnke.-Zpaipa! To apysio mpoéievong g ava@opdg dev Bpédnke.). The linear calibration
was applied to convert PPT into LA of each segmented tree in the orchard. A leave one-out cross-validation was
used to evaluate the error of calibration models for each measuring date. The performance of calibration was
assessed considering adjusted coefficient of determination in calibration (R?aj,c) and cross-validation (R%g;cv), and
root mean squared error of calibration (RMSEc), cross-validation (RMSEcv).

Partial least-squares regression (PLS) was carried out to relate fruit quality parameters of both years with tree
position (longitude, latitude, elevation) and (i) ECa or (ii) LA of trees. Pre-processing captured autoscaling of
variables by subtracting their mean and dividing by their standard deviation. The optimum number of latent
variables was selected according to minimum RMSEcv in leave-one-out cross validation. Resulting latent variables
were used as predictors in the k-nearest neighbours (KNN) method to classify fruit quality as low, mid and high
(Matlab, Version R2018b, Mathworks Inc., MA, USA). Data from 2018 was utilized to train the model. The KNN
model was cross validated with the k-fold method (n = 8) to select the number of K neighbours according to lowest
mean standard error. The quality classification models obtained were validated in real-world with the dataset of
the following year providing an independent test set.

On each measuring date, four apple trees (n = 4) were manually defoliated to investigate the relation between
the points per tree (PPT) and the leaf area (LAwmana). The trees were scanned before and after defoliation. The
leaves were measured with a desktop scanner (Scanjet 4850, HP, USA) using the aforementioned (sub-chapter
3.3.2) written Matlab script (2018b, Mathworks, Natick, MA, USA).

Georeferenced datasets of ECa, yield, and LA were expressed as point data. Descriptive statistics were applied
to remove possible outliers, while an ordinary Kriging interpolation method was applied to interpolate points
(Aggelopoulou et al., 2010). All variables were normally distributed. A spherical variogram model was fitted in
ECa and yield and an exponential in the LA to interpolate the points by ordinary Kriging method. The average
nearest neighbours method was utilized to set the average distance between points and define the number of

neighbours (lag) in each variogram. The lag bin sizes were selected at 8 m to obtain as stable a variogram as
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possible. Data were classified in three classes according to the quantile method by which each class has the same
number of points. The degree of spatial dependence (SpD) was estimated (Cambardella et al., 1994). The
geostatistical analysis was carried out in ArcGIS (v.10.2.1, ESRI Inc., USA). The measured parameters, initially
given as point data, were joined with the grid layer by averaging the values of the points that fall in each grid cells.

Hence, the samples were categorized and compared according to the ECa zones: low, mid and high.

3.9.9.Growth analysis

Temporal data acquisition allowed us to characterize the development of LA. Growth curves were based on
mean LA values estimated for all trees. A three-parameter logistic model was used to fit growth curves of LA (Sun

etal., 2018).

Xmin Xmax
Xmin + (Xmax - Xmin) et (35)

Gra(t) =

where t represented days after bud break, G(t) denoted the estimated LA at t, x,,,;,, was the initial value and x,,, 4
the upper horizontal asymptote of extracted features and y was the acceleration and deceleration constant rate of

approximation to the two asymptotes (Gottschalk and Dunn, 2005).

Gt _Gt-At
KaO= —5 (36)
l Gt ‘1 Gt' t
Ria(0= G 37)

where K was the growth rate of LA, G, was the estimated LA at time t and At denoted the time interval.
Furthermore, the relative growth rate (Rpa) of LA was calculated.

A cylindrical boundary was projected around the estimated stem positions to segment each individual tree

in Markendorf. The estimation of Viipar Was based on the convex hull approach, fitting a boundary around the

structure specified. Subsequently, the Viipar spatio-temporal variability of the segmented tree point clouds was
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estimated during full bloom (VLiipar, rs), fruit set (Viioar, rs) and before harvest (Viioar, sn). The growth trend was
determined as the variation of mean Vi ipar over the monitoring period in low, mid and high ECa zones. A three-
parameter logistic model (3PLM) was used to fit growth curves of the three detected traits for each ECa zone (Sun

et al., 2018) (Equation (38)).

VOvn

V() =
® Votr(V, — Vgle™

(38)

Where V(t) was the detected tree volume [m?] at time t, V, was the initial horizontal of tree volume [m?],
V,, declared the upper horizontal asymptote [m®], y was an acceleration or deceleration parameter related to time.
Furthermore, the growth rate was determined as the average change in measured Viipar Over time interval for each

individual EC,zone (Equation(39)):

Vi—V,_
K, = t Att At (39)

Where K, was the Vi ipar growth rate, Viwas the measurement of Viipar at time t and At the time interval

between the measurements.

3.9.10. Apple detection
The total number of P; within a tree’s cloud was used to estimate the mean f’=§2{il(Pi) of the nearest
neighbors.The information of the 3D local neighbourhood of points P; = [x;, y,, z]] was determined using the k-
nearest neighbours within a radius (r) equal to the Dwmanual OF apples (Hackel et al., 2016). After mean centering,

each P; with P value per nearest neighbors set and decomposition of Cov (Eq. (33)), orthogonal eigenvalues were

ordered according to decreasing percentage of explained variance in the data 1,>1,>4;.
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The eigenvalues, which represent the highest orthogonal variance of the matrix, provided the points dispersion
within k- nearest neighbours describing the local spatial structure in 3D. The eigenvalues were normalized between
0 and 100, allowing for the comparison of different clusters. Thus, the local geometry of each P;in the point cloud
was analyzed by means of eigenvalues to illustrate the spatial structure considering its linearity (L, Eq.X@aAipa! T

o apyeio Tpoéhevong g avapopdg dev Bpédnke.) and curvature (C, eq. (40)):

A = —;\3
C(Pl) - A1tz +A3 (40)

where L and C described the variation of linearity and curvatures for all points along the direction of the
corresponding eigenvalues, respectively (Hackel et al., 2016; Lin et al., 2014). More specifically, the closer the
values of L or C to 100, the higher the likelihood for the shape of points to be linear or curved, respectively.
Therefore, L was used to segment the foliage and woody parts of the tree (branches, stem), while C was used to
distinguish the apple points.

The data set of Tp (N = 2) was used to define the range of Rror, C and L for the class of apple (Ra, Ca, La) and
of woody parts (Rw, Cw, Lw), while the range of leaf class for the same features (R., C, L) was defined in the T..
Thresholding was performed for each class by employing the exploratory analysis of normal distribution using the
probability density function to define the threshold that will distinguish the 3D points of apples from leaves and
woody parts (Gené-Mola et al., 2019a; Koenig et al., 2015). The value with the highest likelihood (mode) within
the Ra, Ca, and La classes was used as a threshold (Rw, Ci, and Lw). Points which fulfilled the criteria of La< L,
Cin< Ca, and Rin<Ra were segmented and categorized as apples. Figure 8 presents a flowchart of the protocol for

apple detection and sizing using the defoliated trees (Tp).
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Figure 8. Flowchart showing the protocol for apple detection and sizing using defoliated trees (TD), starting with the threshold
application in the registered point cloud pair, through filtering and partitioning, until the counting of ground truth centres of
clusters.

Subsequently, a density-based scan algorithm (DBSCAN) (Ester et al., 1996) was applied to find the point set,
using the mean Dwmanual OF apples that was found in each AW as a neighborhood search radius (¢) and the value 10
as a minimum number of neighbors. The value 10 resulted from manually run tests showing that less neighboring
points result in random appearance of sets. The mean Ror (R) and mean C (C) for each individual set of points
were extracted, while the convex hull algorithm, as utilized before in Tsoulias et al.(2019b), was applied to acquire
the Viipar Of each group. The Delaunnay approach (Barber et al., 1996) was selected for triangulation, whereas a
shrink factor equal to 1 was used to create a compact boundary that envelops the points. The maximum distance in
x and y axes was considered as the diameter (Dp) of each point set recognized as an apple.

The k-means clustering was applied to count and find the fruit center (Mp) in each cluster in Tp. However, the
shape variation of each apple and the clustering of more than one apples produced different C and Rror.
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Consequently, the utilization of Ci, and Ri, values excluded points at the edge of the fruit. Therefore, a sphere was
placed in each individual apple cluster, with the coordinates of Mp as the center and a radius equal with the Dp to
include the filtered apple points. The k-means algorithm was reapplied to estimate the Mp of each cluster based on
the added 3D points, while the Viipar, R and € were recalculated.

The fact that more than one apples developed per inflorescence led to close appearance of 2-3 fruits in the cloud,
resulting in the creation of augmented clusters with more than one apples. Thus, the clusters of 3D points within
the sphere were evaluated and partitioned based on their extracted features, creating sub-clusters and defining the
number of Mp. Therefore, partitioning was performed for each cluster only on the condition that the four variables,
VLibar, Do and R, € €, were close to mean values of Vanuai and Dyansal for each AW and Ry, Cin. The features of
each sub-cluster were iteratively extracted and re-evaluated, and partitioning was continued until the sub-cluster
features stopped while fulfilling the condition. Subsequently, the spheres were placed based on the Mpand the Dp
of each sub-cluster. Those spheres showing a calculated distance between the Mp centres below the minimum value
Of Dmanwal in each AW, were merged. Therefore, their Mp was redefined and their extracted features were
recalculated. It should be mentioned that the Mp clusters were considered as ground truth labels for the later
evaluation of the method in T..

Similarly, the L, Ci, Rt Were applied to the same trees before their defoliation to segment the apples and find
their centers (M.) (Figure 9). The DBSCAN was used to group the segmented point, and the M_ centres were
defined by the k-means algorithm. Furthermore, the maximum distance in the x and y axes was considered as the
diameter (D.) of each point set recognized as an apple. The partitioning condition remained unchanged using the
generated features from each cluster. Thus, the features of each T, sub-cluster were iteratively extracted and re-
evaluated while fulfilling the conditions. The number of partitions was used in the k-means algorithm to determine
the centres of M. sub-clusters. The only difference between analysing Tp and T, was the use of € in Tp, whereas
this manually measured fruit information remained unknown in T, analysis.

However, in T, some of the apples were fully or partially covered by the leaves of the tree. In the latter case,

the combination of DBSCAN and k-means algorithm overestimated the number of apple classes. Thus, apple
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classes producing lower or equal Euclidian distance between their M. centres compared to the minimum Dwmanual

were combined and considered as one fruit.
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Figure 9 Flowchart showing the protocol for apple detection and sizing using foliated (TL) trees, starting with the threshold
application in the registered point cloud pair, through filtering and partitioning, until the counting of centres of clusters

3.9.11. Assessment

The mean absolute error (MAE), the bias (MBE), the RMSE, the pearson correlation (r), the coefficient of
determination (R?) and the adjusted R2 (Rﬁdjusted), were used to estimate the measuring uncertainty and model

performance in regression analysis considering the manual and the LIDAR measurements of the variables in the

study (Equations (41)-(46))
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where n is the sample size, x; and y; are the individual sample points of the datasets, . is the predicted value

of y;, ¥ is the mean value of yiand p is the number of predictors. The above equations (41- 46) were used to estimate
the measuring uncertainty considering the manual and the LiDAR measurements of the metal box, stem position,
tree height, stem diameter, and canopy volume and apple diameter. Whereas the pearson correlation was mainly
used to evaluate the spatio-temporal relationship of plant parameters with soil properties and fruit quality.

On the other hand, calibration of the apple detection method was carried out considering data from Tpand T,
at DAFBi120 (N = 2) to define the Ry, Cin and L that describe only the apple points. Cross-validation, applying

thresholds extracted at DAFB12, was performed on the Tpand T, data sets of the three earlier measuring dates (N
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= 6). The fruit detection methodology was evaluated by calculating the accuracy, the precision, the recall, and the

F1 score:

TP + FP

Accuracy = [%] (47)

Precision = T %
recision = -5 [%] (48)

TP
Recall = o [%] (49)
Bl — 2 X Precision X Recall y

~ Precision + Recall [%] (50)

The Mp were considered as ground truth labels for the evaluation of M. The M. clusters which coincide with
the Mp points >50 % were considered as true positive (TP). Whereas the M, clusters which matched <50 % were
counted as false negative (FN). The clusters which revealed a Viipar sSmaller than the minimum value of Vmanua
that was found in each AW were categorized as false positives (FP). N denoted the total number of measurements.
The values of Mp, were given as percentage.

The apple position of each individual M. was evaluated with the Mp using the Euclidean distance, pairing the
centres that revealed the minimum distance between them. Subsequently, the RMSE, the MAE, the MBE were
calculated for each measuring date. Similarly, Dp was applied as ground truth for D..

Descriptive statistics were applied to all datasets for minimum (min), maximum (max), mean, standard deviation
(SD) and coefficient of variation (CV). The descriptive statistics were carried out in Matlab (Version R2018b,

Mathworks Inc., Natick, MA, USA).
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4. Results and discussion

4.1. Estimating canopy parameters based on the stem position in apple trees using a 2D LiDAR

Tsoulias, N., Paraforos, D. S., Fountas, S., & Zude-Sasse, M. (2019). Estimating canopy parameters based on

the stem position in apple trees using a 2D lidar. Agronomy, 9(11), 740. Impact Factor (2021): 2.603

4.1.1.Measuring Uncertainty of the System Applied in the Field
After reconstructing the sides of the metal box, the LIiDAR system was able to detect the slope of the soil, and
the structural details of the box (Figure 10). The extended metal bars on one side were depicted, whereas their
shape was also shown in the main body of S1. However, gaps of points were visible due to the sun’s reflection
from the metal box. The angular resolution of 0.1667° resulted in an average of 20 hits per mm?. In total, 565 planes
were recorded on Si, S3, and S, while 643 planes were recorded in S2. The ICP algorithm was utilized to align and
register the sides together and then merged together (Figure 10b). The C2C function was utilized to estimate the

average overlapping of the sides, revealing a mean distance error of 12 mm with a standard deviation of 0.5 mm.
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Figure 10. (a) Reconstruction of the four sides from the metal box. Sz and Sa4 are the sides parallel to the y axis, while Siand Sz are
the sides parallel to the x axis. (b) The resulting merged point cloud after registration and alignment of the four sides of the metal
box.

The highest MAE and RMSE of height estimation was found for S; with 8.18 mm and 1.63%, respectively,
while the highest MBE of 2.75 mm was noted at the same side (Table 3). For S4 the lowest MAE and RMSE were

depicted with 1.06 mm and 0.21 %, respectively. On the other hand, the results of the width showed generally

y [m]

lower MAE, while enhanced MBE was found.

Table 3. Height and width results for each side (S) of the metal box (n=6), maximum (Max), minimum (Min), standard deviation

0.5

(SD), mean absolute error (MAE), bias (MBE), root mean square error (RMSE).

Mean [m] Max [m]  Min [m] SD [mm] MAE [mm] MBE [mm] RMSE [%]

S1 1.83 1.83 1.81 13.98 8.18 2.75 1.63

. S2 1.80 1.81 1.79 13.34 3.00 1.75 0.60
Height

Ss 1.80 1.82 1.79 1.78 3.31 0.68 0.66

S4 1.79 1.81 1.79 5.37 1.06 -0.81 0.21

S1 0.60 0.60 0.58 2.10 451 2.33 0.90

. S2 0.59 0.60 0.58 7.10 1.50 -1.5 0.30
Width

3 0.58 0.59 0.58 7.96 2.06 -4.06 0.81

S4 0.59 0.61 0.59 8.5 2.18 -2.22 0.43

the results regarding the extended bars (EB) on S; are becoming more pronounced. The measuring uncertainty
increases, when considering the analysis of height and width of EB. The EB located closest to the ground, were
found to be deviated to the highest extent from the actual dimensions of the bars (Table 4). The EB4and EBs were

closer to the LiIDAR height level and less gaps were recognized. Consequently, the measuring uncertainty was less.
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The mean height of EBs revealed 29mm with lowest MAE of 0.2 mm and -0.2 mm MBE. The highest MBE of 2.8

mm and -2.8 mm and RMSE of 5.5 % and 5.3 % were depicted in EB;and EB,, respectively.

Table 4. Estimated height and width of the extended bars (EB) (n=6), maximum (Max), minimum (Min), standard
deviation (SD), mean absolute error (MAE), bias (MBE), root mean square error (RMSE).

Mean [mm] Max [mm] Min [mm] SD [mm]  MAE [mm] MBE [mm] RMSE [%)]
EB:1 21 30 11 7.9 21 -2.1 42
EB2 10 30 10 8.5 2.8 -2.8 5.6
AHeight EBs 27 29 20 4.8 0.8 -0.8 15
EBs 28 30 20 4.8 0.6 -15 3.2
EBs 29 30 28 0.9 0.2 -0.2 3.0
EB1 89 100 81 8.5 2.8 2.8 5.5
EB. 81 85 79 2.6 0.4 -2.8 5.3
AWidth EBs 104 120 85 4.8 0.8 -0.8 15
EBs 102 103 100 19 15 0.4 0.8
EBs 102 104 100 1.9 1.6 0.4 0.7

The mean distance between EB; and EB; (AEB:) was 312.67 mm illustrating, among the other AEB, the lowest
SD (1.74 mm) and MAE of 1.27 mm, but also the highest MBE 3.1 mm. Furthermore, the AEB3deviate the most
from the known dimensions of the metal box, with a 293 mm mean and £6.68 mm SD. It should be mentioned that
the mean values of AEB;and the AEB3; were rather close with 295.2 mm and 296.8 mm, depicting a 4.77 mm and

3.17 mm MBE, respectively.

4.1.2.Separation of trees by means of the stem position

Each side of the row was scanned from both sides by the LiDAR system. The structure of the left side of the

trees was described by the a and ¢ pathways, while the right side from the b and d (Figure 11a, b).
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(a) (b)

Figure 11. Representation of the point clouds were reconstructed when the LiDAR system on the tractor drove (a) through the
path a, c at the left side and (b) through the path d, b at the right side of apple trees. For illustration purposes, only a part of each
row was presented.

The registration and alignment of the point clouds was carried out pairwise, utilizing the ICP algorithm. The
ICP algorithm was utilized in two cases: on the pairwise sides with the soil points ( Figure 12a) and on the pairwise
sides after the removal of soil points using RANSAC (Figure 12b) in order to evaluate which case provides a better
alignment. The C2C function was used to quantify the overlapping differences. Alignment including the soil points
resulted in distance error of 163.5 mm with 31.1 mm SD and 80.5 mm MBE. Removal of the soil points reduced
the mean distance error of 81.6 mm with a 21.4 mm SD and lower RMSE of 0.71 % with an MBE of 5.2 mm.

The point clouds of both rows were merged into a single point cloud. The structure of the trees was clearly
defined. However, it was observed that weed points above 5 mm remained within the rows (Figure 12b).

The raw data of the 3D reconstructed point cloud consisted of 18,441,933 points. The application of SOR filter
reduced the point cloud by 12.17% removing 2,241,786 points. The segmentation of the soil points using RANSAC
algorithm revealed that further 58.59% of the data (10,820,983 points) belonged to the soil. The remained
5,382,849 points belong to the trees representing 29.23% of the total amount of points.

The bivariate point density histogram enabled the detection of the peak of laser hits for each individual tree
(Figure 13). The assumption that the stem points are concentrated in the center of the plant was based on previous

studies (Vazquez-Arellano et al., 2018b; Walklate et al., 2002). Consistently, the area closer to the stem position
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was assumed to appear with enhanced frequency. However, the assumption is needed confirmation considering the
formation of the tree canopy and, furthermore, the analysis of the number and position of peaks can be affected by
the quality of the point cloud. The potential noise or the low quality of overlapping of the point cloud could lead
to more peaks since the local bin count becomes more uneven. The use of a stable bin size triggered the filtering

of the peaks in the bivariate histogram and, therefore, affected the detection of the highest peak.
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Figure 12. Registration and alignment using ICP algorithm of single tree point cloud under two cases (a) tree point cloud with soil
points (b) tree point cloud after soil removal with RANSAC. The trees with the best results for each case are presented.

The coordinates of the estimated stem position were compared with the stem position, which was defined with
the RTK-GNSS (Fig. 6). The estimated stem positions were closely related to the RTK stem positions, revealing a
33.7 mm MAE with 36.5 mm MBE. Despite the fact that the alignment occurred with a certain error, the algorithm

was able to miss only one stem position out of 224 trees (Figure 14).
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Figure 13.Result of the registration and alignment of one apple row point cloud after merging and filtering. (a) Intensity
image, where the warmer squares indicate the peaks and (b) the bivariate point density histogram of the resulted row point cloud.
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Figure 14. Estimation of tree (n = 224) stem position compared to the RTK-GNSS defined stem position

4.1.3.Estimation of tree variables
After the determination of stem position, the subtracted soil was merged with the point cloud of trees (Fig.
Figure 15 a) to avoid loosing tree hits. The coordinates of the estimated stem position were utilized as the center
for the segmentation cylinders in order to obtain the points that belonged to each individual tree. The points within
the boundaries of the cylinder were segmented and considered as the tree points (Figure 15 b).
The difference between the maximum and the minimum point in the z-axis was considered to estimate the

height. As was mentioned above, the radius of the cylinder was based on the manually measured average width of
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the trees (n = 224). However, some tree points of long branches laid out of the cylinder resulting in an
underestimation of the canopy volume. Nevertheless, this error did not reveal an underestimation of the height

(Table 5).
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Figure 15 (a) Merged point cloud with estimated stem position and stem position defined by RTK-GNSS. For illustration
purposes, only first part of row 1 is represented. (b) Projected cylinders for single tree segmentation based on the estimated stem
position.

Table 5. Descriptive statistics of manual measurements of height (Hmanuar) [mm], stem diameter (Smanua) [mm], canopy volume
(Vmanua) [Mm?] and LiDAR-based measurements HLipar, SLipar, VLibar (N=224) regarding maximum (Max), minimum (Min),
mean absolute error (MAE), bias (MBE), root mean square error (RMSE), coefficient of determination (R?).

Min Max Mean MAE MBE RMSE (%) R?
Hmanual [Mm] 1900 2800 2310 5.55 0.62 571 0.87
Huipar [mm] 1870 2820 2350
Smanual [Mmm] 55 1325 97.1 2.52 -3.75 2.23 0.88
Stipar [mm] 63 136 99.5
Vmanual [m?] 0.23 1.12 0.55 5.23 5.93 4.64 0.77
ViipAr [m?] 0.38 1.05 0.58

In the present study, the tree height profile of each row was measured manually, as the ground-truth in order to
validate the results of the point cloud, pointing out a 900 mm variation in height (Table 5). The average values of
manual measurements (Hmanua) and estimated height, derived from LiDAR data (Hiipar), varied by 40 mm
regarding the means comparison means. Similar values can be expected in commercial, well pruned apple orchards.

The reference and estimated values were correlated, revealing an R? = 0.87 with a MAE of 5.55 mm and MBE of
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0.62 mm. The RMSE of 5.7 % can be explained by the measuring uncertainty of the LiDAR as well as the

uncertainty of defining the highest point of the stem elongation by means of manual measurements.
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Figure 16 (a) Stem point selection marked in red between 0.1 m and 0.3 m and (b) selected stem points detected by the LIiDAR
(Svipar) plotted in 2D with stem boundaries and stem position.

The section of stem between 0.10 m and 0.30 m was selected in the segmented tree point clouds to analyse
the stem diameter (Figure 16). The grafting region of the cultivar and rootstock appeared always below this section.
The Smanval @nd Siipar depict 2.4 mm difference in their means, whereas 8 mm difference in minimum values was
illustrated. The latter results were described by a considerable difference in the MAE of 2.52 mm and the MBE of
-3.75 mm, however, reference and estimated values showed high R? = 0.88 and relatively low 2.23% RMSE
recognizing the pertubating effects of enhanced incident angle when measuring on the extended bars of the box
(Table 5).

The convex hull algorithm was used to estimate the canopy volume (Figure 17b). The boundary for each
individual volume was illustrated with a different colour in order to be easily distinct. The convex hull method
does not compute volume considering the gaps within the canopy, similar to ground-reference methods but instead
considers the overall canopy geometry in all the zones. The manual measurement of the volume showed a strong
correlation with the volume data from the segmented tree point clouds (R? = 0.77) (Table 5). The rough

simplification of the canopy structure by the manual method based on the cylinder-fit method mainly overestimated
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the actual data and the ones computed with the convex-hull algorithm. Consequently, the highest bias was found

for the volume analysis (Table 5), while slightly reduced RMSE was observed compared to height estimation.
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Figure 17.Point cloud of four example apple trees and visualization of convex hull method showing the canopy volume (VLipar 1) of
singularized tree (Tn).

4.1.4.Discussion

Measuring Uncertainty of the System Applied in the Field

The scanning process can basically be affected by the scanner mechanism, the atmospheric conditions and
environment, the object properties and scanning geometry (Soudarissanane et al., 2011). The highest MBE and
MAE have been denoted in the EB measured at high incident angle. Consequently, the point cloud quality is
affected by the scanning geometry, when increased incidence angles and enhanced distances from the scanner
occurred (Forsman et al., 2018; Kaasalainen et al., 2011). While the bias may be corrected, the lack of precision
remains. It should be also considered that materials of high reflectance can distort the backscattered signal
(Soudarissanane et al., 2011). This was the case for Ss, where 440 missing hits were found. The distortion is
especially pronounced if part of the beam falls outside the target, the likelihood of which additionally depending
on the angular resolution (Forsman et al., 2018). Therefore, the combination of the perturbating factors can possibly
increase the MBE and MAE especially in objects of smaller dimension such as the EB. While this was an expected
finding, the quantification can highlight the measuring uncertainty that can be expected in the the analysis of tree

stem. Palleja et al. (2010), who mentioned that the LiDAR height misposition due to the roughness of the ground
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and the oscillations of the tractor engine the trajectory during the operation, can influence the measurement errors

up to 3.5%.

Separation of trees by means of the stem position

Regarding the case after removal of soil points low measuring uncertainty considering the overlapping was
found (Kaasalainen et al., 2011; Sun et al., 2018). The biggest challenge of the algorithm settings was the
discrimination between ground and plant points. Weeds within the trees or hanging branches close to the ground
produce occlusions in the laser beam decreasing the density of soil points. RANSAC model could potentially be
improved by utilizing the LiDAR backscattered reflectance to discriminate ground from plant points. Furthermore,
repeating driving in both sides of the same row could increase the point density of soil points. Vazquez-Arellano
et al., ( 2018b) have pointed out the dominance of soil hits in their 3D reconstructed point clouds, suggesting the
alignment of plant points separately from the soil points.

As was prevously above, high density orchards are typically trained as slender spindle, where plant organs (e.g.,
branches, leaves) are significantly intervene among trees. However, as the trees in orchards are often pruned at the
bottom, the trunks and parts of the stem are generally visible and act as distinct markers for separate trees.
Consistently, the area closer to the stem position was assumed to appear with enhanced frequency. The use of stable
bin size allowed to observe the highest peak in this area. The detected tree position was evaluated over the RTK
coordinates, presenting low measuring uncertainty. In similar studies, tree segmentation was performed based on
tree height changes applying hidden Markov model (Gao et al., 2020; Jagbrant et al., 2015; Underwood et al., 2016;
Wellington et al., 2012). This approach mostly finds application in orchards of low density, where the boundaries
of separate trees are discrete, while is not representative for estimating tree location (Bargoti et al., 2015). Bargoti
(et al., 2015) presented a perception pipeline to localize and segment trees trained in V and | trellis based on

individual trunk position, suggesting 99 and 98.9 % accuracy during full bloom.

Estimation of tree variables
Avrellano et al. (Vazquez-Arellano et al., 2018a), with a similar method, determined the stem position in maize

and acquired the height profile of the plants pointing to a MAE of 7.3 mm from the actual height. Walnuts trees
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were segmented and their height was estimated considering the Min and Max values in Z axis, resulting in a
significant relationship with the manual measurements (R?= 0.95) (Estornell et al., 2017). Malambo et al. (et al.,
2019) utilized a similar methodology with cylinder boundaries to segment sorghum trees, reporting a correlation
of r = 0.86 with RMSE = 11.4 cm.

The cylinder fitting method based on stem position for estimating the stem diameter is rather scarce in
horticulture. The automatic detection that fits cylinders on stem points, has been investigated broadly in forestry
(Calders et al., 2015; Dassot et al., 2012; Srinivasan et al., 2015). However, the majority of these studies employed
a 3D terrestrial LiDAR, able to provide a 3D representation of stem points without moving the system and as a
consequence the limitation of errors during the alignment. Moreover in forest, the tree stem has no coverage by
leaves for a few meters above the ground, allowing more hits per stem and segmentation of stem points without
coinciding structures.

Summarizing, the LIDAR system was able to detect geometric variables in apple trees that could be used in
agricultural applications to measure structural parameters and implementation in tree-individual orchard

management considering mechanical pruning, irrigation, and spraying.
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4.2. Calculating the water deficit of apple orchard by means of spatially resolved approach

Tsoulias, N., Paraforos, D., Brandes, N., Fountas, S., Zude-Sasse, M. (2018). Calculating the water deficit of apple orchard by
means of spatially resolved approach. In14th International Conference on Precision Agriculture (ICPA), 24. -27.06, Montreal,
Quebec, Canada.

4.2.1.So0il properties

The results from soil sampling revealed that in the tested orchards the soil texture is characterized as silty sand
and loamy sand. In the ANOVA analysis, with the ECa to be considered as the depended variable, it was observed
that the ECa is affected by coarse silt, with F ratio = 6.3 and p = 0.09. Furthermore, the ordinary Kriging
interpolation revealed that the highest values of ECa located mainly in the north and south part of the field, while
the lowest values in the center of the orchard (Figure 18). Nevertheless, the soil texture analysis at 30cm showed
low to middle variation (Table 6). The soil was mainly composed by sand and more specifically by middle sand,
which also had a low coefficient of variance (CV = 12 %). The values of ECa varied between 10 to 27.26 mS m™*

characterized as low, between 27.27 to 39.22 mS m™ as mid, and between 39.23 to 60 mS mas high ECa zone.

Table 6. Descriptive statistic of soil texture. N= 20 the number of samples, providing standard deviation (SD), and coefficient of
variance (CV).

Mean SD Range Minimum Maximum CV%
Fine silt [mg kg™] 26.00 8.12 27.00 11.00 38.00 31
Middle silt [mg kg?] 40.25 11.92 39.00 22,00 61,00 30
Coarse silt [mg kg™] 77.75 19.33 73,00 42.00 115.00 25
Fine sand [mg kg] 302.85 60.76 228.00 153.00 381.00 20
Middle sand [mg kg?] 395.20 47.17 146.00 323.00 469.00 12
Coarse sand [mg kg?] 117.75 63.64 245.00 40.00 285.00 54
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Figure 18.Thematic map of apparent soil electrical conductivity at 25 cm [mS m1]. The locations of guided soil samples at 30 cm
are illustrated with crosses throughout the orchard. The locations of guided soil samples at 30 cm and LA measurement are
illustrated with stars.

The mean value of bulk density was 1.08 g cm and the mean porosity of the soil sample at 26.5%. The mean
value of LA was 5.42 m? (Table 7). It should be noted that the values of TAW varied between 7.11 and 59.47 mm
between sand and silt soils according soil texture analyses. At significance level of 5% using Pearson correlation,
the soil texture partially correlated with the ECa: silt related positively (r = 0.52), while the sand was correlated
negatively (r = -0.51). Furthermore, a significant correlation was observed between the ECa and the TAW r =0.78
simply indicating that enhanced ECa areas can hold increased amount of water in the root zone. Recently, Lo
investigated and correlated the spatial patterns of the available water in the root zone and the ECa (McCutcheon et
al., 2006, Lo et al., 2017) confirming our results. Considering the plant response, in low ECa region the LA was
1.5 m?, in mid ECa regions varied between 3 m?and 5.5 m?, and in high ECa zone between 8 m?and 12 m?,

Consequently, the ECa was correlated with the LA in the present study (r = 0.80).
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Table 7. Descriptive statistics for apparent soil electrical conductivity (ECa), total available water in the root zone (TAW) in 25
cm, porosity, bulk density (BD), and leaf area index (LA). N=the number of samples, providing standard deviation (SD), and
coefficient of variance (CV).

N Mean SD Range Minimum Maximum CV%
ECa [mS/m] 461 35.83 16.13 98.18 8.15 60 45
TAW [mm] 20 38.36 12.68 52.36 7.11 59.47 33
Porosity [%] 20 26.4 17.17 56.08 11.23 67.13 65
BD [g cm?] 20 1.08 0.19 0.60 0.87 1.47 17.98
LA[M?] 10 5.42 3.50 9.69 1.50 11.19 65
4.2.2 Water balance

The precipitation rate remained low during the bud break in 2017. During full bloom, of the same year, frosts
occurred, while the air relative humidity ranged between 65% and 80%, whilst in the rest of the season a decrease

in the RH range was noted with values close to 90% at harvest (Figure 19).

120
Bud
break

——Air relative humidity
(%)
80

~=-Temperature (°C)
60

Full bloom Cell division Harvest

,Precipitation (mm)

=a—Precipitation (mm)

Air relative humitity (%), Temperature(°C)

. MM Vo :j{:

\ &3 D D “l 5d o
N N Q@ Q Q Q" Q
B P I

&

> Y

& @

\ S
RO

o O P P P P P E P P e P R &
& & F P § & &
S R N G R G AR '

Figure 19. Daily weather conditions during the cultivation period in 2017 considering air humidity (circle), temperature (square)
and precipitation rate (triangle).

The water balance model was employed to estimate the monthly water needs. The determination of the threshold
according to the soil water properties and the influence of canopy size in the different ECa regions on ETc enabled
the understanding of variance of spatially resolved daily water balance.

Low irrigation threshold was found for low ECa region and high irrigation threshold for high ECa area, since

high ECa corresponds to enhanced volumetric water content and vice versa expressed as RAW. These two
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thresholds were kept for all three ECa cases found in the orchard (Figure 20Figure 22). Furthermore, five values of
LA, according to the range from the measured values, have been applied in the calculation of K¢, values in order
to evaluate the effect of LA on the water needs in low, mid and high ECa soils.

In regions with low ECa values, the LA of 12 m?and 8 m?found steep fluctuations always above the thresholds,
indicating water stress, with the highest water deficit of 180 mm after harvest period (Figure 3). The water needs
for LA below 5.5 m?remained lower with the highest value reaching 80 mm during July. Furthermore, the reduced

LA of 1.5 m? and 3 m? exceed the high threshold, corresponding to enhanced RAW, mainly during June and July.
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Figure 20. Simulation of LA values (1.5, 3, 5.5, 8 and 12) in Geisenheim model in low ECa regions [mm]. Readily available water
content (RAW) in 80% field capacity from low ECa regions considered as two orchard-uniform thresholds values.

The trees from mid ECa showed reduced water deficit with the maximum value to be observed at 52.5 mm
(Figure 20). More specifically, as a consequence of enhanced precipitation rate, two steep decreases have been
noted during June and July in all models. The water needs of 5.5 m? LA and above reveal drought stress during
June, July and late September. However, the trees with diminished LA of 1.5 m? had reduced water needs and only
3 m2 exceeded the high and the low threshold during June, July. It should be noted that during May none of the LA
values exceeded the thresholds, a fact which signifies that the trees did not face water stress in full bloom

considering this mid ECa region of the orchard.
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Figure 21. A Simulation of different LA values (1.5, 3, 5.5, 8 and 12) in Geisenheimer model in mid ECa regions [mm]. Readily
available water content (RAW) from low ECa regions considered as thresholds values.

Trees from high ECa areas show slightly enhanced water needs compared to the mid ECa regions with
maximum value around 63 mm. Similarly as in the previews graph, the pattern of water deficit for the LA remained
the same. However, a slight increase in water needs of LA 5.5 m? and above was observed. Consequently, the water
balance for these values point to drought stress between June and July and during August, which escalated during

harvest period.
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Figure 22. A Simulation of different LA values (1.5, 3, 5.5, 8 and 12) in Geisenheimer model in high ECa regions [mm]. Readily
available water content (RAW) from low ECa regions considered as thresholds values.

The average monthly values from each ECa region were compared for each model. This was performed utilizing

Kruskal and Wallis test, a non-parametric model used to test the differences among the models (Table 8). The
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model of 1.5 m?and 3 m? LA were statistical different between low-mid ECa and low-high ECa regions (p<0.05),
whereas no statistical significance have been observed in mid-high regions (p = .429, p = .148). However, the

water balance of 5.5 m?, 8 m? and 12 m? LA were different in all ECa regions.

Table 8. Kruskal- Wallis non parametric analysis among the water balance models for low, mid and high ECa areas.

Redion WB WB WB WB WB
i
g LA=1.5 LA=3 LA=5.5 LA=8 LA=12
Low ECa [mS/m]-

. [ ] .000 .000 .000 .000 .000
Mid ECa [mS/m]
Low ECa [mS/m]-

. [ ] .000 .000 .000 .000 .000
High ECa [mS/m]
Mid ECa [mS/m]-

. [ I 429 .148 .008 .024 .024
High ECa [mS/m]

4,2,3.Discussion

The water demand was rapidly increased from bud break till the canopy was fully developed by the end of
April. In parallel, the temperature rise and enhanced VPD increased the evapotranspiration demands. During June
and July, the maximum water use takes place by the tree. A water balance experiment was utilized in citrus orchard,
where researchers examined the differences on water balance of a non-irrigated area and an irrigated area at the
same field (Petillo and Castel, 2007). They suggested that the variation in daily ET. values, even in short intervals,
in the same month could be due to lack of water availability to the trees or the influence of climatic conditions.
Ferreira, (2017), suggested that due to the adaptation of perennial trees in soil conditions, the modeling of water

balance considering the RAW and K; need to be considered for an irrigation scheduling.

Implementing the LA in the WB showed that tree water needs can vary among ECa regions. In addition to that,
the profound effect of tree structure in ET. and consequently in water needs over the growing period was
highlighted by increasing the LA. Naor et al., (2006), A positive relationship of LA with evapotranspiration rate
was found in citrus and olive tree (Ayyoub et al., 2017). While the use of tree structural data such as LA over the

growing season in WB can reduce the uncertainty in the estimation of daily K. (Odi-Lara et al., 2016).
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Consequently, the referenced K. values from FAO can be optimized considering the actual plant, soil and the

microclimate data from the field.
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4.3, Calculating the water deficit spatially using LiDAR laser scanner in an apple orchard

Tsoulias, N., Paraforos, D. S., Fountas, S., & Zude-Sasse, M. (2019, July). Calculating the water deficit spatially using
LiDAR laser scanner in an apple orchard. In Proceedings of the European 12th Conference of Precision Agriculture,
Montpellier, France (pp. 8-11).

4,3.1.Implementing leaf area in a water balance model

The results from soil samples according to the guided soil sampling revealed that the soil texture was loamy
sand. The highest ECa values were located in the northern extreme of the orchard while the lowest values in the
middle section of the orchard (Figure 23). The values of ECa varied between 30.92 to 48.8 mS m™ characterized

as low, between 48.81 to 54.04 mS m as mid, and between 54.05 to 77 mS m™* as high ECa zones.
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Figure 23 Spatial distribution of (a) ECa [mS m™] and (b) LA. In ECa map the sample locations are illustrated with triangles
whereas the soil samples with crosses.

Table 9. Pearson correlation between apparent soil electrical conductivity (ECa) and LA. n = the number of samples. Correlation
at 0.01 level (**) and at 0.05 (*) level of significance.

N Low ECa Mid ECa High ECa

LA[mM?]. 28 0.74* 0.86** 0.68%*

A significant correlation was revealed between the LAwanua and the PPT from the six defoliated trees (r?= 0.87).

The LA revealed a similar spatial distribution with ECa (Figure 24b). This was also described by a significant
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correlation between the ECa and the PPT (Table 9). A result which indicates that trees in areas of high ECa can

have larger canopy surface compared to low ECa areas.
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Figure 24 Water needs [mm] according to water balance model for tabulated values from FAO (WBrr) and considering the leaf
area per tree measured by means of LiDAR (WBLa) in low (a), mid (b), and high (c) regions of soil electrical conductivity (ECa).
Readily available water content (RAW) in low (RAWiow), mid (RAWnmid) and high (RAWhigh) ECa region were set as thresholds,

respectively.

Frosts occurred from April to May in 2018. Precipitation remained low during the full bloom. In June,

precipitation height above 30 mm were recorded, representing an extremely dry year for this area (overall

precipitation height: 295 mm). The air relative humidity fluctuated from 40% to 85%, between full bloom and

harvest. The temperature descended, while the precipitation remained below 8 mm during harvest and leaf drop.

The highest water demands were traced during harvest in low ECa areas with 78.7 mm for WBgr and 115 mm

for WBLa (Figure 2). The WBke dispersion around the mean was enhanced in comparison with the WBLipar,

especially in July in mid ECa areas (C.V. % = 60.52). However, none of the models showed significant variation

between May and June in all ECaregions.

The results of WBRgr and WBL_x illustrate the same patterns in all ECaregions (Figure 2). A steep drop of water

needs occurred in May due to increased precipitation. In low ECa areas, the water needs according to WBa

overpassed the threshold (RAW ) in early June in comparison with mid and high ECa in the end of this month.
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Moreover, WBgr revealed 20.2 mm and 23.3 mm less water need from WB_a, resulting no water stress during May,
in mid and high ECa areas, respectively. Furthermore, in August and September, a difference of approximately

36.3 mm was found between WB_a and WBRgr, in low ECa areas.

4.3.2. Discussion

Scanning with the LiDAR sensor allowed to sample the 3D structure of trees at different locations of the
orchard. However, extracting the points from each tree does not provides a direct indication about plant geometry
or physiology. Relating the LAwmana With the corresponding PPT allowed the LiDAR spatial information
conversion to LA. The LA was inhomogeneous through the field, while it was shown that can be influenced at
different ECa levels. The implementation of LA in the WB calculation, considering the ECa properties of the field
increased water needs compared to FAOQ referenced values (WBgr). In this study, the results revealed that trees in
low EC, areas had reduced LA and enhanced water stress. However, the WB_a did not differ significantly from
the WBRger in all months. Ferreira (2017), pointed out that perennial trees adapt to soil conditions, and the modelling
of water balance needs to take into account the plant structure, RAW and Ks coefficient based on field conditions
for an irrigation scheduling.

A steady deficiency of water were illustrated after harvest, nevertheless both models remained above their
thresholds. It is well known that plants reduce transpiration rate under drought stress due to physiological responses
such as stomatal closure and subsequent reductions in photosynthesis rate. Furthermore, water stress adversely
affects the physiological and nutritional development of crops, leading to reduced biomass, yield, and quality of
crops (Rossini et al., 2013). Also, the variation in rooting depth with soil texture can affect the water needs spatially

(Pérez-Pastor et al., 2014).
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4.4, Vegetative factors of tree volume per ECa level

Tsoulias, N., S. Fountas & Zude-Sasse, M. (2021). Estimating the canopy volume using a 2D LiDAR in apple trees. virtual
4th International Symposium on Horticulture in Europe (SHE/Virtual), 8. -11.03, Stuttgart, Germany. (In print)

The EC, ranged between 1.08 and 13.06 mS m* with 2.57 mS mstandard deviation (SD), whereas the slope
varied between 0.53 and 8.80 % with 1.55% SD. The variability of EC. (CV=34.1%) and slope (CV=2.23%)
remained low. The highest values of the EC,were mainly detected in the regions enhanced slope between 2.82 and
8.80 % (Figure 25). In fields where the slope is the dominant factor of soil formation the lower terrain, North East
area of this field, is usually characterized by sediments providing enhanced water holding capacity, which can

explain the enhanced ECavalues (Tardaguila et al., 2011).
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Figure 25. (a) Spatial distribution of ECa [mS m 1] and (b) slope [%6].

In the regions of low and middle slope, tree canopies show middle and high volume. In particular, the trees
with higher canopy volume were observed in the west side of the orchard during full bloom and fruit set (Figure
26, b), whereas a second patch of the same class was traced in the east region of the field before harvest (Figure
26, ¢). Moreover, the lowest values of Viipar Were observed in the north and east side of the orchard. This
assumption was evident by the negative correlation of Vi ipar and the slope during FB (r = -0.63), FS (r=-0.66) and
BH (r = -0.56) (Table 10). On the other hand, the ECa was also negatively related with the Viipar,re (r= -0.55),

and VLiipar,sH (r = -0.58).
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Table 10. Linear regression coefficient of apparent soil electrical conductivity (ECa) and elevation with Viipar (n=1109)
during full bloom (ViiparFs), fruit set (Vviiparrs) and before harvest (Viipargn).

VLiDAR,FB VLiDAR,FS VLiDAR,BH
ECa[mS m-] -0.55 -0.45 -0.58
Slope [%] -0.63 -0.66 -0.56
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Figure 26. Spatial variability of tree canopy volume [m?] during (a) full bloom (VLibar,es), (b) fruit set (Viioar,rs) and (c) before
harvest (VLipAR,BH).

Table 11 Tree canopy volume [m?] during full bloom (VLipar,rs), fruit set (Viipar,rs) and before harvest (Viioar,sH) categorized
based on the soil electrical conductivity, low (ECa,Low), mid (ECa,mid) and high (ECa,nigh) regions. Maximum (Max), minimum
(Min), standard deviation (SD), coefficient of variation (CV).

Mean [m?] SD [m?] Min [m?] Max [m?3] CV [%]
VLiDAR,FB 171 0.49 0.73 2.89 28.65
ECa Low n=322 VLiDARFs 191 0.43 0.32 311 2251
VLiDAR BH 1.99 0.45 0.58 2.62 22.61
VLiDAR,FB 147 0.37 0.73 2.79 25.17
ECa mid n=334 VLiDARFs 1.68 0.38 0.90 2.82 22.61
VLiDAR BH 1.72 0.39 0.60 2.62 22.67
VLiDAR,FB 1.34 0.38 0.95 2.71 28.35
ECa nigh n=453 VLiDARFs 1.67 0.44 0.81 3.20 26.34
VLiDAR BH 1.70 0.45 0.64 2.85 26.47
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4.4.1.Growth rate

In comparison with the ECa mis and ECa wigh, the apple trees in ECa 0w regions revealed the highest mean values
of Viipar considering all growth stages, reaching 1.99 m? before harvest (Table 11). The mean value Viipar rs Was
increased by approximately 0.3 m?between FB and BH in ECa 0w, Whereas the SD ranged greatly from 0.45 to
0.49 m3. In ECa wviq regions, the mean values ranged from 1.47 to 1.72 m®between FB and BH, revealing also the
lowest SD values among the rest EC, regions. However, the highest rise of Vi ipar Was observed between FB (1.34
m?3) and BH (1.70 m?), reaching 0.36 m®in ECa nign. Furthermore, the maximum V' ipar values were detected during
FS and BH from the trees of the same area, 3.20 and 2.85 m?, respectively. Variability in all ECa areas over the

growth stages (FB-BH) ranged from 22.61 to 28.65 %.
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Figure 27. Spatial variability of canopy growth between (a) full bloom (FB) and fruit set (FS) and (b) fruit set (FS) and before
harvest (BH).

Spatial variability of canopy volume might be affected by the heterogeneity of local topology of the orchard
and the soil texture. The monitoring of canopy volume once or throughout the vegetation period allows the
generation of growth maps (Figure 27). The highest tree K, values between FB and FS were classified from 0.05
to 0.07 m® day* and were delineated in the west south side of the orchard, where the slope was no greater than
2.81% (Figure 27a). The areas of low K, were mainly detected in north and east edges of the orchard, ranging from
0.02 to 0.04 m®day ** between the cell division and harvest was observed in regions of high ECa. However, the

spatial pattern of K, between FS and BH differentiated, due to the decrease of K, by approximately 0.01 m? day *
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(Figure 3b). Therefore, most of the apple trees were classified with low Ky, ranging from 0.001 to 0.03 m? day 7,
which were mainly found in the north and south east side of the orchard. Overall, the mean variation of Viipar in
the three ECa levels showed different increment of growth during the vegetation period (Figure 42). The V; curve
in ECaLow (Vy,Low) reached the maximum volume (2 m®) 81 DAFB. Whereas, at the same period, the V:curve of
apple trees in ECa,mid (V1,mid) and ECa,nigh (V1,High) Was approximately 30% lower than Vi, Low. The Vimia and Vipign

reached the maximum values of 1.70 and 1.67, respectively, at the same time.
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Figure 28. Averaged growth curve of canopy volume [m3] in low (VLipar, Low), Mid (VLipar, mid) and high (VLiipar, nigh) ECa regions
during the developmental stages.

4.4.1.Discussion
Vegetative factors of tree volume per ECa level

From a macroscopic perspective, a rinse of soil was noted from the south to north part of the orchard, where the
slope was reduced. The latter hypothesis was confirmed by the correlation of ECa with the slope, illustrating high
values in the north-west part of the orchard. However, the V was negatively related with the latter parameters over
the season, illustrating trees with higher values in areas of ECa,Low. The opposite may have been assumed from
earlier work (Kéthner and Zude, 2015) in young trees and the assumption of high correlation between growth and

soil water (and nutrient) content, which should be enhanced in the high ECaregion. The fact that the trees can adapt
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to the environmental conditions by developing deeper root systems in lower ECa soil, allowing them to have higher
availability of soil water content, could possibly explain the high Vi ow (Tsoulias, et al., 2020). Furthermore, this
assumption is likely if the water and nutrients are considered limiting factors, while in orchards with drip irrigation
and fertigation, effects are outweighed. Colaco et al., (2019), observed the spatial relationship of canopy V and
height with the historical yield and ECa in three different orange groves. The V was spatial and temporally related
with the yield and ECa in 2 of the 3 orchards, suggesting that V information can improve the identification of

management zones in yield and soil attributes.

Growth rate
Monitoring the volume of apple trees over the season spatially, enabled to estimate their growth rate (Ky). The

spatial maps depicted higher Ky in the west side of the orchard the, especially between full bloom and fruit set.
Recent studies in viticulture showed that vegetative and reproductive growth can have similar spatial patterns with
the ECa at different growing stages. Manfrini et al., (2020) observed no affect among the spatial patterns of ECa,
apple tree growth, suggesting the necessity of over time spatial plant data to improve site specific management
within the orchard. On the other hand, using spatio-temporal plant data allowed to model V and increase the
resolution of growth models. Whereas, shorter time intervals within the LIDAR measurements could potentially
provide higher resolution in the curve per ECa level, allowing the application of site specific management. The
growth of the V influences the fruit crop load and the fruit size. More specifically, the daily carbon demand of
growing fruit is associated with the photosynthetic capacity and the vegetative growth of each individual
tree(Robinson et al., 2017). Penzel et al., (2020) estimated the daily carbon requirement of seasonal apple growth
and the associated demand of LA. In their model, the LA carbon demand calculated based on LiDAR laser hits per
tree, suggesting the feasibility to predict the target fruit number and the significance of seasonal LA data in crop

load management.
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4.5. Effects of soil ECa and LiDAR-derived leaf area on fruit quality and yield in the apple production

Tsoulias, N., G. Xanthopoulos, S. Fountas & Zude-Sasse, M. (2021). Effects of soil ECa and LiDAR-derived leaf area on
fruit quality in apple production. (Submitted)

4,5.1 Wood segmentation and its impact on leaf area estimation
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Figure 29 The probability density of wood considering (a) calibrated reflectance intensity (RW,year) [%0], (b) and linearity
(LW,year) [%] measured 10 days after bud break in years 2018 and 2019 (n = 16).

The probability of segmented woody parts at DABBss ranged between 28 % to 55 % in 2018, whereas in the
following year 2019, values appeared in a broader range from 35.5 % to 65.4 % (Figure 3). Leaves expanded in
terms of size during canopy development, which resulted in enhanced leaf surfaces and reduced percentage of
wood parts considering the entire canopy point cloud (Figure 30a, b). In year 2018, first and second measuring date
showed coinciding probability of woody parts. The mode value of woody parts marginally changed with 43 % and
44 % in DABBss and DABBgs, respectively. Whereas in the following year 2019, probability of wood decreased
from 50 % at DABBss to 42 % at DABBss due to leaf expansion. In 2018, the probability of wood parts decreased
DABB:15 showing high variation ranging from 15 % to 60 % and further decreased on DABB14. In year 2019 the
last two measuring dates DABB11sand DABB14 showed already coinciding patterns resulting in highest likelihood

(mode) at 28.3 %.
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Figure 30 In years 2018 (a,c) and 2019 (b,d), subplots present the probability density of percentage of wood considering the entire
tree point cloud (n = 4506) at 55, 85, 115, 140 days after bud break (DABB), and 3D point cloud of medium sized tree at the last
measuring date DABBu140, when mature canopies appeared.

Destructive measurements of LAwanua @and points per tree excluding points of wood were used to build a linear
regression model for estimating the LA of each tree from the 3D tree point clouds (Figure 31). Cross-validation of
LA calibration model was performed including all phenological stages, before and after the exclusion of woody
parts from tree 3D point cloud (Table 31). Retaining the wood points in the tree point cloud resulted in R?%gj, cv =
0.81 with RMSEcy = 7.85 %. After removal of points, which exceeded the RW and LW thresholds that are assumed
to represent wood, the measuring uncertainty was reduced at 4.52 % considering RMSECV. Consequently, the LA
estimation showed an enhanced RZgj, cv = 0.92 and this model was used to calculate the LALipar Of each tree
scanned (n = 4506) in the orchard.
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Table 12. Calibration and cross validation results of leaf area (LA) estimation from 3D tree point cloud (LALipar) and manual
analysis (LAwmanual) (n = 32, excluding one tree as outlier, in total 31 trees) before and after removal of wood parts and considering
all growth stages of both years; providing root mean squared error of calibration (RMSEc) and in leave-one-out cross validation
RMSEcv), adjusted coefficient of determination of calibration (R2adj,c) and cross validation (R?dj.cv).

RMSEc [%] RZadj.c RMSEcv [%] RZadj.cv
with Wood 6.56 0.82 7.85 0.81
without Wood 3.31 0.95 4,52 0.92

2
LAManuaI (m]

Figure 31. Linear relationship between the manual (LAmanual) and LiDAR based measurements of leaf area (LALipar) (n = 31)
after removing points of wood from entire points per tree (PPT), including all growth stages of years 2018 and 2019. LA =0.92 x
PPT

The regression model of each individual growth stage was considered to convert the points per tree (PPT) to LA

after subtracting the points of woody parts of the canopy.

4.5.2.Growth factors
Weather conditions and soil variability were recorded, since they are determinants for yield and fruit quality.
According to the daily weather data, frosts occurred at the beginning of March in 2018, during bud break, reaching
-10 °C, whereas no frosts were indicated in 2019 (Figure 32). Frost in 2018 affected the vegetative growth, visible
as leaf damage in early foliage development, while no effect on the flower set was observed occurring in April.
During cell division of the latter year high precipitation rates > 40 mm were monitored, in contrast with 2018,

which appeared as a relatively dry year.
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Figure 32. Daily weather conditions within the cultivation period indicating the phenological stages of the flower and fruit in 2018
and 2019. a”bud break, b” full bloom, ¢* cell division, d” harvest.

While weather can be considered similar in the entire orchard, the soil showed typical variability frequently
found in the Brandenburg fruit growing region. The apparent soil electrical conductivity (ECa) ranged between
2.78 mS m* and 8.66 mS m™ in 2018, while values appeared enhanced ranging from 4.47 mS m? to 14.85 mS m-
1in 2019 (Figure 33). The lowest ECa revealed in the south west and east regions, whereas highest values
accumulated in the north east and south east side of the orchard in 2018. In the following year, the low ECa areas
appeared in the south west side and two patches of high ECa were found diagonally in the south and north side of
the orchard. From visual comparison of the two maps, the spatial correlation is evident due to extended high ECa
areas in the north east side of the orchard appearing in both years. Moreover, similar coefficients of variation of
ECa maps were depicted, in 2018 (CV = 20.3 %) and 2019 (CV = 20.6 %), with strong spatial dependence (Table

13).
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Figure 33. Spatial distribution of apparent soil electrical conductivity (ECa) [mS m-1] in (a) 2018 and (b) 2019.

Table 13. Descriptive statistics of leaf area (LA) at 55, 85, 115, 140 days after bud break (DABB), apparent soil electrical
conductivity (ECa) and yield in 2018 and 2019. Standard deviation (SD), coefficient of variation (CV), spatial dependence (SpD)
are provided.

Mean SD CV [%] SpD

LAss [m?] 3.46 0.66 19.01 0.71

LAgs [m?] 5.58 0.43 7.71 0.65

2018 LA115[m?] 5.16 0.58 11.24 0.47
LA140[m?] 6.25 0.36 5.76 0.50

ECa[mS m?] 5.18 1.05 20.27 0.42

Yield [ka] 14.1 0.43 30.49 0.45

Crop load [fruit tree!] 92.26 27.74 30.01 0.37

LAss [m?] 4.43 0.75 16.93 0.58

LAgs [m?] 6.26 0.55 8.78 0.51

2019 LAu115 [m?] 6.01 0.37 6.15 0.42
LAu40 [m?] 7.15 0.28 391 0.45

ECa [mS m?] 5.92 1.22 20.59 0.51

Yield [kg] 19.1 0.48 25.36 0.48

Crop load [fruit tree!] 105.2 274 26.05 0.42

4.5.3.Vegetative growth
The mean of LA increased from 3.46 m? to 6.25 m? during vegetation period 2018, whereas in the following year
trees developed higher LA with 4.43 m?and 7.15 m? between DABBss and DABB1.4o, respectively (Table 13). Trees
with lower LA occurred in the south and middle part of the orchard in both years (Figure 34a). Spatial patterns of
high LA appeared in the west region of the orchard while the east side was characterized mainly by middle LA
trees at DABBss (Figure 34b). Whereas in the latter growth stages trees of high LA were distributed in the west

and north regions of the orchard in 2018 (Figure 34c, d).
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Figure 34. Spatial distribution of leaf area (LA) [m?] (n =4506 at 55, 85, 115 and 140 days after bud break in 2018 (upper row, a-
d) and 2019 (lower row, e-h).

Moreover, a correlation coefficient (r = 0.55) was observed between LAssand LA115 in 2018, while correlation
between the earlier stages of the same year was reduced. This was the period when slight frost damage was visible
on the leaves, whereas, subsequently, foliage developed visually more homogeneously. In 2019, areas of low LA
were initially found in the middle of the field and extended towards the south region of the field (Figure 7e). The
variability found in LA11s matched with LA (r = 0.62). However, the highest relationship (r = 0.87) was indicated
between LA115in 2018 and 2019. The ECais was correlated with LA140.18 (r = 0.53), but no consistent spatial
correlation between ECa and LA was found in 2018. In the following year, correlation of ECais and LA was

enhanced with r = 0.51 at LAsgs19and r = 0.62 at LA140,10.
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4.5.4.Growth rate
The growth curve of LA was simulated per experimental year by a logistic model interpolating the experimental
values from all trees (Figure 8). The growth curves of LA indicated that 55.4% and 62.4% of the total LA expanded

until DABBgs in 2018 (GLa18) and 2019 (GLa19), respectively (Figure 35 a).
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Figure 35. Analysis of leaf area (LA) in terms of (a) growth curve (Gta), (b) absolute growth rate (Kta) and (c) relative

growth rate (Rta) in 2018 and 2019.

Consistently with the hysteresis of LA growth and the occurrence of frost in March 2018, canopies were fully
developed in 105 and 95 DABB during 2018 and 2019, respectively. The Gra19 was 13.03% higher than Gra,sat last
measuring date (DABB140). The impact of frost was also measurable in the Gra 18 data (Figure 8b). Furthermore, the
absolute growth rate of LA in 2018 (Kta,8) was 0.07 m? day! compared to Rra,i9 = 0.10 m? day™! in subsequent year

without frost events (Figure 35 C).

4.5.5. Yield

Each year, yield and crop load data were obtained in tree-wise (n = 120) sorting line measurements. In total
10980 and 12508 apples were analyzed in 2018 and 2019, respectively. Similar spatial patters can be noticed when
comparing the maps of yield and crop load (Figure 36). A consistent pattern of variability was visually observed
between crop load maps of both years (Figure 36a,b) and yield maps comparing the two years (Figure 36c,d).
Consequently, the two spatial data were correlated. The fruit yield per tree ranged between 6.77 kg and 21.71 kg

in 2018. In the following year, the orchard gained higher yield reaching 32.64 kg. Low and moderate correlation
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coefficients were estimated for ECa and yield as r = 0.44 and r = 0.58 in 2018 and 2019, respectively. In both years,

LA at harvest, LA140,18 and LAu40,19, appeared correlated with yield, r = 0.48 and r = 0.52, respectively.
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Figure 36. Spatial distribution of crop load (number of fruit per tree) (a,b) and yield [kg] per tree (c,d) (n = 120 trees) in 2018 (a,c)
and 2019 (b,d).

4.5.6.Classification of fruit quality at harvest based on soil ECa and leaf area

Red blush colour on 100% of the fruit’s surface was reached in all apples at harvest. Flesh firmness decreased
over the growth stages of DABBssand DABB14o from 124.3 to 76.6 N. The fresh mass (FM) revealed a mean value
of 0.06 kg £0.01 SD at DABBss and increased to 0.17 kg +0.04 SD at DABB149 in 2018. Lower values were found

in the same stages of following year with 0.14 kg +0.02 SD at harvest. Similarly fruit diameter (D) at DABB14o
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was higher in 2018 (74.3 mm £5.1 SD) compared to 2019 data (69.9 mm +4.9 SD). In 2019, crop load was increased
and consequently fruit size decreased.

Correlation between the estimated fruit quality parameters showed a moderate relationship of FM and D with
highest correlation at DABBss (r = 0.92). In later stages the correlation decreased, but also shortly before harvest
at DABB14 FM and D were correlated (r = 0.67) due to irregular shape of the apple.

ECa was correlated with FM115 (r = 0.35), D115 (r = 0.25), and SSCass (r = -0.28). The LAss was correlated with
FMss (r = 0.72), Dss (r = 0.66). The LA115 was related with FM11s (r = 0.62), D115 (r = 0.69), and SSCiis (r = -0.11),
while the correlations decreased at harvest stage.

No correlation was found between colour or firmness of fruit with ECa and LA. ECa revealed a low correlation
with FM1ss (r = 0.35), D115 (r = 0.25), and SSCiis (r = -0.28). The LAss was correlated with FMss (r = 0.72), Dss (r
=0.66). The LA11swas related with FM115(r = 0.62), D11s (r = 0.69), and SSCi1s (r =-0.11). However, the correlation
coefficient values decreased at harvest stage.

The soil ECa and LA were applied to predict fruit FM and D at harvest stage. The leave-one-out cross
validation of PLS regression model showed that the first two latent variables can predict FM and D with lowest
RMSEcyv. For classification, the k-fold cross validation of KNN model indicated the lowest error with 8 neighbours.

The prediction of FM class by means of ECa revealed 31.2 % overall accuracy (Table 14). Specifically, low
recall was illustrated in FMwmiq and FMuigh. Furthermore, overall accuracy for D classification was slightly
enhanced, reaching 48.1 %. Considering the dataset of LA, overall classification accuracy was enhanced (58.6 %
and 67.9 % for FM and D, respectively) compared to the classification accuracy based on soil ECa. Lowest recall

appeared for Dwiq (Table 14).

Table 14. Confusion matrix of fruit mass (FM), diameter (D) and soluble solid content (SSC), (N = 2400), at different days after
bud break (DABB).

Predicted
ECa Low Mid High Precision [%] Recall [%)] gzsﬂigcy [%]
FMvLow 9 1 0 3.2 90.0
FM wmid 238 126 17 54.5 33.1 31.2
Measured FM High 37 104 70 80.5 34.1
Drow 69 58 73 345 67 8.1
Dwid 12 37 101 24.7 26.2
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Drigh 22 46 183 72.9 51.3

SSCrow 101 30 10 716 58.0
SSC wi 70 268 72 65.4 85.9 66.9
SSChigh 3 14 33 66.0 28.7
Predicted
LA Low Mid High Precision [%] Recall [%] g‘égﬂ"’r‘gcy -
FMiow 186 66 8 715 655
FMuia 73 113 25 53.6 48.9 58.6
FMrign 25 52 54 412 62.1
Diow 53 22 19 56.4 515
Measured Dwid 19 39 22 48.8 275 67.9
Drign 31 80 316 74.0 88.5
SSCrow 98 26 10 731 56.3
SSCwid 74 276 77 64.6 88.5 66.9
SSChigh 2 10 28 70.0 243

4.5.7.Discussion

Leaf area analysis considering the removal of Wood

The quantification of points from woody parts considering four growth stages allowed thesubtraction of wood
surfaces from the tree 3D point cloud. The thresholds of linearity (>57.0 % and >57.5 % in 2018 and 2019,
respectively) confirmed earlier findings (Gené-Mola et al., 2019a). The threshold considering reflectance intensity
was similar in 2019 (<40 %), whereas in 2018 the mode value was enhanced in the present study. The linear
relationships between LAwmana and PPT for each growth stage were improved after removal of woody parts,
revealing a substantial increase in LAss (R%gjcv = 0.98) and LAy (R%gjcv = 0.99) (Table 12). Furthermore,
although the detected percentage of wood was reduced during canopy growth (Figure 30), the RMSEcv remained
stable when estimating the LA after wood removal. However, the method has been broadly exploited in forestry
(Béland et al., 2014; Vicari et al., 2019), it has been rarely applied in horticulture. The segmentation based on
linearity, reflectance and also curvature were used to segment apples from leaf and branches (Gené-Mola et al.,
2019a). Zhang et al. (2018) used bounding boxes for segmenting the branches in apple trees, reaching 92 % recall
and 86 % accuracy when the pseudo colour and depth information were combined. The detection of cordons
trajectories and shape, in the early growth stage of vines were modelled (R?= 0.98) to improve shoot thinning
(Majeed et al., 2020). Based on the results presented on LA estimation in the present study, application of LA
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information would provide an important tool in the production processes.

Spatio-temporal analysis

Spatial dependence at LAss 15 was highest (Cambardella et al., 1994) with also high CV, which may be due to
frosts, which occurred in March. Frost between bud break and full bloom can damage the vegetative buds, flower
buds, or flowers, causing variability in growth patterns (Breen et al., 2016; Charrier et al., 2015). It can be also
assumed that the frost impact on the vegetative buds affected the LAss 15 resulting in high variability ranging from
2.52 - 6.76 m? (Figure 34a). This assumption is further supported by the delayed development of LA in 2018
compared to 2019. According to the growth curve of LA (GLa) (Figure 35a) 55.4 % and 62.4 % of the total LA
were developed at DABBss, in 2018 and 2019, respectively. The inflection point of G and maximum of K also
occurred earlier in 2019 compared to previous year suffering from frost. The growth rate of LA of all trees (n =
4506) indicated the full development of canopies at DABB1os and DABBgs in 2018 and 2019, respectively.

In the fruit growing region of federal state Brandenburg, the higher the ECa, the more vigorous the trees appear
as an obvious finding (Tagarakis, Koundouras, Fountas & Gemtos, 2018), and consequently the ECa and LA are
correlated. However, the correlation showed no consistence and ECa had no effect on LAss and LA1s5 in both years.
This can possibly be attributed to the drip irrigation system of the orchard (De Benedetto et al., 2013;
Uribeetxebarria et al., 2018). Additionally, an earlier study in this orchard showed that the fruit trees adapted the
rooting depth according to the ECa pattern, compensating for reduced water supply in low ECa zones (Tsoulias,
Gebbers & Zude-Sasse, 2020). ECa and LA are further decoupled in commercial orchard due to adopted cultivation
practises. In the present study, in both years a slight decrease of LA occurred between DABBss, DABBgs and
DABB:115, which was assumable related to flower and fruit thinning measures and slight pruning for plant
protection. However, these practises, affecting LA, are not correlated with ECa.

The LA14o interacted with yield of both years. Colago and co-workers (2019) found that tree geometry can be
correlated with historical yield data in citrus production, providing a determinant for delineating management
zones. The relationship between spatio-temporal variability of tree vigour and yield was confirmed in pear and
vineyards (Perry, Dezzani, Seavert, & Pierce, 2010; Tagarakis, Koundouras, Fountas & Gemtos, 2018). In the

present study, higher values of LA140,19 cOmpared to LA14015 corresponded to enhanced yield in 2019 (r = 0.52).
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From a physiological point of view, such relationship is explained by enhanced light interception and growth
capacity. This holds true at least in the slender spindle trees avoiding excessive shading effects (Wiinsche and
Lakso, 2000). Mann et al. (Mann et al., 2011) created productivity zones using fruit yield, ultrasonically measured
tree canopy volume, NDVI, elevation and apparent electrical conductivity of soil. Although all the properties were
strongly correlated with yield and were able to explain the productivity of the orchard, citrus tree canopy volume
and yield was most strongly correlated (r = 0.85), explaining 73% of its variation. Consequently, the correlation of
LA and yield appears reasonable.

Impact of soil ECa and LA on fruit Quality

Comparing the two years of experiments, early frost events occurred in 2018 shortly before bud break, negatively
affecting the vegetative growth. FM and D appeared slightly enhanced in 2018 than in 2019. The yield and also
crop load followed the trend of LA, revealing lower values in 2018 compared to 2019 (Figure 36d). Consequently,
higher yield in 2019 was caused by increased number of fruit per tree, while no effect of fruit size on yield can be
concluded when comparing both years. Aggelopoulou et al. (2010) analyzed the spatio-temporal variability of
quality in apple trees, observing no relationship between yield and fruit mass similar to the present study. As
individual trees require variable intensity of crop load management, lack of tree-specific crop load management
can even be seen as an important cause for heterogeneity in fruit size.

During seasonal fruit development, interaction of FM and D at different growth stages revealed the highest
correlation at DABB55 (r = 0.92). The seasonal decrease of correlation between both quality parameters was
expected due to non-linear relationship of FM and D in later fruit developmental stage. The SSC was autocorrelated
between DABBss and DABBgs, but no correlation was found with ECa and LA. This may have been expected,
since SSC is mainly influenced by the year and position into the canopy, i.e. exposure to light.

Despite the spatial stability of ECa patterns within the two cultivation years, no consistent correlation of ECa
with FM and D was found. The absence of correlation between soil properties and fruit quality can temporally be
observed in orchards (Liakos et al., 2020; Manfrini et al., 2020; Uribeetxebarria et al., 2018), which are subject to
intensive management, such as irrigation, thinning, and pruning. Considering the effect of LA within one season,

larger fruit size at enhanced LA to fruit ratio was reported earlier and form the basis for crop load management
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(Charrier,Ngao, Saudreau & Améglio, 2015). Consistently, FM and D were correlated with LA. This has been
confirmed in several studies capturing preharvest effects on postharvest quality (Teh et al., 2020).

LA of fully developed foliage of trees, crop load, and fruit quality were within the ranges of results reported by
other authors for cultivars with medium size apple grown on dwarfing rootstocks (Naor et al., 1995; Xia et al.,
2009). The KNN was applied to predict fruit quality parameters based on the datasets of ECa and LA. This approach
was motivated by the correlation found and physiological background. The LA provided high classification
accuracy considering the use of an independent test set in the validation of the model (Table 3). This can strengthen
the assumption that soil properties reveal temporal stability, while trees can adapt to the conditions. Furthermore,
production measures affect fruit quality, particularly through the impact on LA and correlation of LA and fruit

guality as pointed out in the classification results in the present study.
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4.2. In-situ detection of apple fruit using LiDAR radiometric features

Tsoulias, N., Xanthopoulos, G., Fountas, S., & Zude, M. (2020, November). In-situ detection of apple fruit using a 2D
LiDAR laser scanner. In 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)
(pp. 278-282). IEEE.

4.2.1. LiDAR apparent reflectance

Studying the calibrated LIiDAR backscattered reflectance in defoliated trees allowed to observe possible
differences between plant organs. The LiDAR reflectance was scattered at the edges of the objects, including the
metal wires (WE) resulted in an R between 0 to 1% (Figure 37). Most R values for the branches and the stem were
indicated between 1.1 - 47.9 % and 48.6 — 78.0 %, respectively; the apple points ranged between 78.6 - 88.0 %.
The values above 90% were mostly noise and therefore removed. The R thresholds allowed distinguishing apple
points from the remaining tree parts of the 3D point cloud (Figure 38b). The segmented points of WE, branches,
stem and apple occupied 7.01 %, 27.07 %, 44.44 % and 17.67 % of the total amount of points in both trees,

respectively.
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Figure 37. (a) Segmented histogram of tree parts based on the apparent reflectance (R [%0]) (b) histograms of grouped R points of
(i) wires and edges (WE), (ii) branches (iii) stem, and (iv) fruit along z axis [m].

The points of WE were highly distributed along z axis, revealing 59.33% coefficient of variation (CV) (Figure

37) (Table 15). Furthermore, most of the branches were found to lie between 1 and 2 m, with mean R=30.7 % and
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13.2 % standard deviation (SD). A low CV of 13.0 % was found along the z axis for the fruit, indicating 73.3 %
of R as the most frequent class in the 3D point cloud. However, their uneven distribution, especially between 1 and
2 m, could be a result of overlapping with the points of branches, since both classes were described by high SD

(Gené-Mola et al., 2019a). On the other hand, the mean R of apple points was depicted at 81.1 % having 2.2 % SD

and 2.8% CV.
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Figure 38. (a) 3D reflectance point cloud, (b) Segmented apple points after applying the reflectance threshold.

Table 15. Descriptive statistics of segmented points of wires and edges (WE), branches, stem and apples based on reflectance
values including maximum (Max), minimum (Min), standard deviation (SD).

Mean sD Min Max Median Mode Ccv
WE [%] 0.01 0.07 0 1 0 0 59.33
Branches [9%] 30.72 13.16 1.13 47.89 33.86 47.89 42.85
Stem [9%6] 65.48 8.51 48.56 77.95 67.26 73.27 13.01
Apples [%] 81.07 2.23 78.62 87.97 80.62 78.62 2.75

4,22 Fruit localization at different tree heights

The segmented apple points were used to obtain the bivariate histograms by pairing, x with z axis and y with z
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axis for each point in the point cloud (Figure 39). The local maxima appeared with approximately 18-point
frequency. The combination of both bivariate histograms enabled to identify 38 out of 44 apples. The fact that the

points were classified under different height allowed the comparison with the Hmanual.
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Figure 39. (a) Intensity map of apple points within y-z and x-z axis, where warmer colour indicates the local maxima and (b) the
bivariate point density histogram of the resulting apple points within the y-z and x-z axis with grid resolution of 72 mm.

Applying the bivariate method each individual apple was identified in W2.3 and Ws.4, where the apples were
distributed more sparsely. More specifically, the Huana Was correlated with Hiipar (R%gj = 0.72) in W,.3 with 3.3
mm RMSE and 2.3 mm MBE (Table 16). Whereas the apples in Ws.4 area revealed a lower correlation (R?gj= 0.65),

with 4.2 % RMSE and 1.3 MBE.

Table 16. Descriptive statistics of manual measurements of apple height (HManual) and LiDAR-based measurements HLiDAR.
capturing maximum (Max), minimum (Min), standard deviation (SD), mean absolute error (MAE), bias (MBE), root mean square
error (RMSE), adjusted coefficient of determination (R2adj).

n Mean [mm] SD [mm] MBE [mm] MAE [mm] RMSE [%)] R
Wea Hmanual 16 73.1 4.2 0.6 4.3 5.5 0.4
HLipar 10 70.1 35
Wiz Hmanual 12 711 5.6 1.7 2.7 4.3 0.4
HLipAR 735 4.2
Wa3 Hmanual 69.6 11 2.3 2.8 3.3 0.7
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HLiipar 6 70.1 2.3
W34 Hwmanual 14 74.8 6.1 1.3 3.3 4.2 0.6
Hiipar 14 76.2 3.4

4.2.3. Discussion
LiDAR apparent reflectance

The LiDAR reflectance varied among the tree elements, allowing to set discrete thresholds between the fruits
and the woody parts on the tree. The points from branches and stem showed the highest range in R values, which
can possibly be attributed to the dependance of the laser beam incidence angle on the target properties considering
R and surface roughness. More specifically, the incidence angle increases due to the energy dispersion caused by
spot spreading, while the rate of angle-dependent decay increases with the backscatter R measured at normal
incidence if a regular surface is considered (Pesci and Teza, 2008). Kukko et al. (2008) presented a comprehensive
experiment how backscatter intensity depends on the incidence angle using a set of natural and artificial samples.
They demonstrated that the incidence angle effect is stronger for high reflectance targets. The angle effect also
depends on the surface roughness of targets with a large grain size compared to the laser spot size, while reflectance
other than roughness plays a stronger role for targets with small grain size (Kukko et al., 2008). However, in this
study we considered apple trees as objects with perfect Lambertian distribution (Coren and Sterzai, 2006).

Regarding the laser hits along the z axis, higher frequencies were mostly observed between 1.5 and 1.7 m, where
the LiDAR has been placed. However, the 3D point cloud data could restore the shape of fruit trees, providing high

spatial data distribution for fruit localization.

Fruit localization at different tree heights

After applying the R thresholds, the apple points were segmented. The combination of two bivariate point
density histograms allowed to study the fruit size at different heights. However, in the regions with high fruit
density (We.1, W1-2) the method miscounted the fruit number, depicting low correlation with the Huanua. Keeping
the bin size in point density histogram constant and considering only the bins connected to the regional maxima as
fruits, was inevitably included less points from the outer region of the apple .The latter could be attributed in the

bin size of Malambo et al., (2019) utilized the point density to estimate the height of sorghum panicles, reporting
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a correlation coefficient of r = 0.86 with RMSE = 11.4 cm. Despite the 62.5 % and 66.7 % localization success, no
correlation was indicated between Hmanval and Hiipar in Wa.1 (R%g; =0.45) and Wi-, (R%g; =0.45) areas, respectively.
Tsoulias et al., (2020b) estimated the diameter of apples, at different growth stages, in foliated and defoliated tress
combining the backscattered reflectance from a LIDAR and geometrical features. The LiDAR estimated diameter
was related with the reference values, revealing an adjusted coefficient of determination (R%g;) of 0.95 and RMSE
0f 9.5% at harvest stage. When comparing the results obtained on foliated and defoliated tree’s data, the maximum
of 88.2% precision, 91.0% recall, and 89.5 F1 score were observed at harvest stage, where the fruit was fully

developed.
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4.3. Apple shape detection based on geometric and radiometric features

Tsoulias, N., Paraforos, D. S., Xanthopoulos, G., & Zude-Sasse, M. (2020). Apple shape detection based on geometric and radiometric

features using a LiDAR laser scanner. Remote Sensing, 12(15), 2481.

4.3.1. Thresholds

Shape geometry combined with Rror were utilized as inputs to set the threshold values under which the fruit
points are found. The calibrated reflectance intensity Rroe varied in the 3D point cloud of the foliated trees (Figure
3b). The Ror values of apples (Ra) and woody parts (Rw) appeared above 70 % and below 55 %. The leaves (R.)
ranged between 40 and 80 %. The C values of leaves (C.) ranged between 35.2 % and 70 % (Figure 3c). The C
values of apples (Ca) were observed above 50 %, whereas the points of woody parts (Cw) did not exceed 60 %. On
the other hand, the L of leaves (L) ranged between 20 % and 80 %, while the woody parts (Lw) were scored above
60 % (.Figure 40d). The definition of apple class was carried out on the data set of last day’s measurements at
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.Figure 40. Representation of 3D point clouds of (a) RGB image (b) reflectance (Rtor) [%6], (c) curvature (C) [%] and (d) linearity
(L) [%0] of trees measured before defoliation DAFB120.
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However, the occlusions of leaves and woody parts did not allow the acquisition of the full range of Rror, C, and
L values of apples. Therefore, the trees that at the DAFB120 were defoliated and scanned again with the LIiDAR
system (Figure 41). The Rw values ranged between 0 and 60 %, while the Ra appeared from 42 to 90 % (Figure
41Db). The Ca values of apples ranged between 56 and 98 %, whereas the Cw appeared between 0.1 and 55.2%
(Figure 41c). The 3D points of the latter category revealed the highest values varying between 48.8 and 98.8 %.

Nevertheless, the L values of apple points (La) were more discretely ranging between 0.2 and 38.3 %. (Figure 41d).
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Figure 41. Representation of 3D point clouds of (a) RGB image (b) reflectance (Rtor) [%6], (c) curvature (C) [%0] and (d) linearity
(L) [96] in defoliated trees during DAFB120.

As was mentioned above, the R values of apples could overlap with the leaves or the woody parts, while some
of the surfaces may reveal similar C with apples, producing falsely clusters from leaves or woody parts. The Rw
revealed a mean value of 38.2 %, standard deviation (SD) of 18.5 %. On the other hand, the Rr.r of leaves (RL)
and of apples (Ra) was marginally deviated (Figure 42a), while most of their values appeared from 50 to 70 % and
from 65 to 71.8 %, respectively. More specifically, the mean value of R was indicated at 58.8 % with 12.1 % SD,

and 63.2 % as the value with the highest likelihood (mode) within the class. However, the highest mean value was
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obtained from the Ra class at 71.8 %, whereas the mode value (76.1 %) was utilized as Rw for the 'Gala’ trees.

Gene-Mola et al. (Gené-Mola et al., 2019b) suggested a Ri, at 60 % for the segmentation of apples in 'Fuji' trees.

A similar pattern of the probability density of Rror was obtained in the C feature (Figure 42b). The most frequent

value within the Cawas illustrated at 73.2 % (C). The C of leaves (C) values were partly overlapped with the Ca,

revealing a mean value at 60.7 %, and 9.1 % SD. The Cw revealed a mean value of 30.1 %, with 19.4 % SD. The

3D points of Lw depicted the highest values (Figure 42c), reaching a mean value of 60.2 %, and 94.1 % as a mode

value (Figure 43).
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Figure 42 . The probability density of (a) calibrated reflectance intensity (Rtor) [%0], (b) curvature (C) [%] and linearity (L) [%6]

for wood, leaves and apples.

The Ra, Ca and La values were distinct from the residual classes, allowing the discrimination and localization

of apples in the 3D point cloud. The apples were described with Raand Ca values 76.1 % and 73.2 % (Figure 43).

Therefore, the Ry, and Ci were combined and used as thresholds to distinguish the apple points from woody parts.

Whereas the remaining points of the latter class were removed using the Lw mode value of 15.5 % as threshold

(Lw) (Figure 43).
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Figure 43. Box-Whisker plot of segmented points of wood (W), leaves (L) and apples (A) based on reflectance (R+.s), curvature (C) and linearity
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4,32 Fruit segmentation

When performing the DBSCAN algorithm the clusters of filtered points of apples appeared in the 3D point cloud
(Figure 44). Subsequently, the k-means partition method was applied to the points of each cluster to acquire the
Mop. A sphere of variable radius based on the Dvipar Of the cluster, enclosed the points of the cluster when placed
at Mp. For evaluating the performance of the segmentation process in foliated trees, T\, the data set of defoliated
trees Tp was employed as ground truth. For this purpose, the My clusters found in T, were compared to the clusters,

Mp, found in Tp.
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Figure 44. Apple centres detection (Mp) using sphere segmentation (b) representation of selected Mp apples classes enveloped in
the sphere. The blue colour depicts the apple points of the defoliated trees (Ap)

After the localization of Mp, the estimated fruit diameter, Diipar, Was compared to the Dmana for each AW
during the growth stages (Table 17). The Diipar Was related to the Dmanual. In the upper sections, AW3.and AWa.3
of the canopies where the fruits grow more distinctly, the analysis of apple size resulted in R%gq = 0.95 with a
RMSE = 3.2 %. However, high measuring uncertainty was noticed on the first two measuring dates when the fruit
size was smaller, particularly in the lower sections of the trees with overlapping structures. Actually, no relation
was observed on the first measuring date in AW1.cand AW, presenting an MBE of 18.6 mm and 20.8 mm,
respectively. Similarly, during DAFB+; in the same areas, the MBE was raised at -29.0 mm and -30.5 mm, while
their mean values differed 18.3 mm and 24.8 mm respectively. On the other hand, the highest relation was revealed
in AWa3 (R%g = 0.95) and AW3., (R%g = 0.90), during DAFB10s. Whereas, in the same stage, a less pronounced
R2qj was observed in AW1.g (R%g; = 0.55) and AW2.1 (R?%g; = 0.66). The MAE decreased DAFB12, reaching the

highest error of 0.2 mm.
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Table 17. Results of manually measured mean diameter (Dmanuar) [Mm] and the mean LiDAR-based measurement (DLipar)
[mm] in defoliated trees regarding mean absolute error (MAE) [mm], bias (MBE) [mm], root mean square error (RMSE) [%0],
and adjusted coefficient of determination (R%adj).

Dmanual DtLipar MBE MAE RMSE R2..
[mm] [mm] [mm] [mm] [%] “
AW1ic 32.0 47.6 18.6 0.4 10.8 0.46
AW21 36.1 65.1 20.8 0.7 12.0 0.45
DAFBa42
AW32 39.2 47.9 5.9 0.5 3.6 0.69
AWas3 39.3 41.2 3.1 0.6 3.2 0.74
AW1ig 66.4 48.0 -29.0 0.4 145 0.42
AW21 62.8 37.9 -30.5 0.5 15.8 0.38
DAFB7.
AW3-2 65.6 63.7 -3.2 0.4 1.7 0.81
AWa3 67.0 63.7 -3.0 0.5 5.9 0.82
AW1ig 74.8 70.3 -4.8 0.3 4.6 0.55
AW2.1 71.1 69.5 -3.3 0.1 45 0.66
DAFB104
AW32 69.6 68.7 -8.3 0.1 55 0.90
AWa3 74.8 70.3 -5.2 0.2 6.1 0.95
AW1ig 69.3 67.3 -7.3 0.2 5.2 0.67
AW2-1 70.5 68.4 -3.2 0.1 4.8 0.74
DAFB120
AW3. 69.7 68.6 -4.6 0.1 4.6 0.81
AWa3 68.6 66.4 -7.5 0.1 4.6 0.75

As was previously mentioned, the ¢ of DBSCAN was based on the Dmanua of each AW during DAFB120. That
served as calibration for the modes, but also the sphere radius. Thus, earlier growth stages would be influenced by
the generation of augmented clusters. Consequently, it can be assumed that the uncertainty was elevated mainly in
the DAFB.; stage, but also DAFB7,, when a lower D of the fruits was measured manually.

This uncertainty could lead in under- or over-counting of the DBSCAN clustering since the ¢ remained constant,
and the fruit may be bigger or more small fruit are collected in one cluster. In Sun et al. (Sun et al., 2020), the wide
range of size and shape of cotton boll influence the splitting operation of clusters. Furthermore, the shape of apples
is not perfectly spherical producing an error in the estimation of Diipar. Gongal et al. (Gongal et al., 2018) measured
the size of apples based on the 3D coordinates from a 3D camera and they obtained a 30.9 % MAE, while the MAE
decreased to 15.2 % when the pixel information from an RGB camera was considered.

Nevertheless, the present results indicate that the data set of C and Rror can enable feasible counting and sizing
of apples from the 3D point cloud, allowing their discrimination even in areas with high apple density. Whereas,

scanning the Tp trees from both sides enriched the 3D objectiveness of the apple size. Furthermore, the values of
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C and L were described through the surface of apples, increasing the resolution in the classes, and subsequently
the determination of the mode value. The acquisition of the 3D shape of apples from both sides led in the estimation

Diipar analogous to the Dwanual, revealing low deviations (data not shown).

4.3.3.Evaluation

After the determination of the Mp location, the same procedure was followed in the T, applying the threshold
values. The detection results of M were evaluated for each AW region, considering the Mp clusters as ground truth
labels (Table 18). The highest F1 score was acquired in AW2.1, reaching 84.4 %, with 85.2 % accuracy, 82.6 %
precision and 86.3 % recall during DAFB.. A less pronounced accuracy was noted in DAFB7,, with the values
ranging from 65.8 to 75.1 %, while the highest values of F1 were depicted in AW (85.6 %) and AW, (89.6 %).
In parallel with the fruit development, the number of apple points in the 3D point cloud increased, enhancing the
performance of the detection algorithm. More specifically, the precision was ranged from 81.1 to 86.6 % and the
F1 between 83.7 and 92.8 % during DAFB10s. However, the highest performance was observed in AW,3 of

DAFB:2, revealing an 89.5 % F1, 88.2 % precision, and 90.9 % recall.

Table 18. Performance assessment of the localization algorithm on the segmented apple points in foliated trees (TL) considering
the apple in defoliated trees (Tp) as ground truth during the growth stages. Manually counted fruit number (Nmanual), counted
fruit number of To (Nb) and true positives (TP) are given.

NManual ND TP Accuracy [%] Precision [%] Recall [%] F1 [%]

AW1-G 10 10 9 76.9 80.0 83.8 84.2

AW2-1 19 18 16 85.2 82.6 86.3 84.4
DAFBa42

AW3-2 34 34 30 745 75.6 83.7 79.4

AW4-3 17 17 15 76.9 85.0 89.4 87.1

AW1-G 6 6 6 71.4 85.7 80.8 85.6

AW2-1 15 14 12 75.1 82.8 82.3 84.8
DAFB72

AW3-2 14 14 12 733 83.3 86.6 89.6

AW4-3 7 7 5 65.8 71.4 83.3 76.9

AW1-G 11 11 9 77.2 81.1 88.8 87.4

AW2-1 18 18 16 84.1 85.7 81.8 83.7
DAFB104

AW3-2 11 11 10 825 85.7 87.0 86.3

AW4-3 12 12 11 80.2 86.6 88.5 92.8
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Gene-Mola et al. (Gené-Mola et al., 2019a) used the reflectance and the curvature, derived from a LiDAR
system, as principal features in fruit detection with slightly lower results. However, similar results have been
reported from the implementation of 3D shape information with RGB vision systems, reaching a precision of 86.4
% and recall 88.9 % in fruit localization (Lin et al., 2020; Tao and Zhou, 2017). On the other hand, the woody parts
in AWy revealed similar Rror and C values with the apples, enhancing the FP cases and subsequently the decline
of accuracy in this region. The occlusions produced by branches and leaves hide partly or totally the fruits, resulting
in undercounting of apples. Mendez et al. (Méndez et al., 2019) used a LiDAR laser scanner to count the number

of fruits in pruned orange trees (R? = 0.63), however, the correlation was significantly reduced (R?=0.18) when the

method was applied in unpruned trees due to occlusion by leaves.

(@)

Figure 45. Representation of (a) detected centres in foliated trees (ML) and (b) after defoliation (Mp). The red colour depicts the
apple points of the foliated tree (AL) while the blue colour show the points of the fruits in the defoliated tree (Ap).
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The distance difference between the M. and Mp was measured in each AW (Figure 45). The highest distance for
DAFB.4; was illustrated in AW4.3 with a 37.3 % RMSE, while the mean value was illustrated at 0.5 mm with 0.6
mm SD (Table 19). The measuring uncertainty was enhanced in AW¢.1, AW2.1, and AW3.,, revealing an RMSE of
22.2 %, 16.8% and 11.5 % in DAFB7,, respectively. However, a less pronounced RMSE was depicted during

DAFB104, reaching a maximum value of 6.4 % in AW4.3 and a minimum value of 3.7 % in AW4.3.

Table 19. Differences between the position of the centres of defoliated (Mp) and foliated (ML) clusters as well as the fruit diameter
estimated D and ground truth Dp in TL and in Tp, respectively, regarding the standard deviation (SD) root mean square error
(RMSE) [%] during the fruit growth given in days after full bloom (DAFB).

Mpb - ML [mm] SD [mm] RMSE [%] Do-Di [mm] SD [mm] RMSE [%]
DAFBa2 0.2 0.22 19.9 22.3 0.3 6.3
DAFB72, 0.1 0.1 151 12.6 0.2 5.9
DAFB104, 0.1 0.1 6.7 11.3 0.2 8.7
DAFB120 0.1 0.1 5.7 8.7 0.1 49
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Figure 46. Representation of the (a) worst- and the (b) best-case scenario of the distance of the centre of clusters in defoliated
(Mp)and foliated (ML) during DAFB120. The red colour depicts the apple points of the foliated trees (AL) while the blue colour the
points of the defoliated tree (Ap).

On the other hand, lower RMSE were acquired at DAFB12 (Table 19). No differences were found between the
sectors. More specifically for DAFB120, the AW4.3 region depicted the worst-case scenario with a mean value of
0.1 mm and 8.1 % RMSE (Figure 46a). The minimum difference between the Mp and M. was observed in AW4.3

with an RMSE of 3.7 % RMSE (Figure 46b). The growth of apples resulted in the acquisition of a higher amount
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of points, generating clusters similar to the Mp. However, some of the fruits were partly or totally occluded by
branches, creating smaller clusters. Thus, the use of k-means clustering differentiated the position of M. centre

from the Mp, increasing the measuring uncertainty.

4.3 4.Discussion

Thresholds
The use of a LIDAR system enabled the acquisition of tree point cloud, allowing the utilization of radiometric

(Rvor) and geometric features (C, L) as classifiers for fruit detection in the proposed algorithm. The apple features
(Ra, Ca, La) were distinctively delimited from woody parts (Rw, Cw, Lw) after tree defoliation. The discrete range
of Ra (42 - 90%) from the Rw (0 — 60 %) can be attributed in their different type of surface (Kaasalainen et al.,
2011) and the available water content (Zhu et al., 2017) (Figure 5). Furthermore, the spherical shape of apples
resulted in higher Ca values (56 — 98 %) than Cw (0.1 — 55.2 %) due to the linear shape of woody parts, while a
reciprocal opposite range was observed in the correspondent classes of linearity, La (0.2 -38.3 %) and Lw (60.2-
94.1 %). Therefore, the apples segmented from the woody parts and later clustered using the DBSCAN. Whereas,
the application of sphere in each Mp enabled higher resolution in the determination of Ry (76.1 %), Ci (73.2 %)
and L (15.5%), during DAFB120. Similar value of Ry (60%) was suggested by Gene-Mola et al. (Gené-Mola et al.,
2019b) for the segmentation of apples in 'Fuji' trees.

As was previously mentioned, the ¢ of DBSCAN was based on the Danuai of each AW during DAFB12. That
served as calibration for the modes, but also the sphere radius. Thus, earlier growth stages would be influenced by
the generation of augmented clusters. Consequently, it can be assumed that the uncertainty was elevated mainly in
the DAFB.; stage, but also DAFB7,, when a lower D of the fruits was measured manually.

Fruit segmentation

This uncertainty could lead in under- or over-counting of the DBSCAN clustering since the ¢ remained
constant, and the fruit may be bigger or more small fruits are collected in one cluster. In Sun et al. (Sun et al.,
2020), the wide range of size and shape of cotton boll influence the splitting operation of clusters. Furthermore,
the shape of apples is not perfectly spherical producing an error in the estimation of Dp. Wang et al. (2017),

combined a cascade detection and an ellipse fitting to recognize and estimate the size of mangoes, using an RGB-
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D depth image. However, the not perfectly elliptical shape of fruits produced 4.9 mm and 4.3 mm RMSE in the
detected height and width of fruits, respectively.Gongal et al. (Gongal et al., 2018) measured the size of apples
based on the 3D coordinates from a 3D camera and they obtained a 30.9 % MAE, while the MAE decreased to
15.2 % when the pixel information from an RGB camera was considered. However, all of the aforementioned
studies carried out only before harvest period, whereas there was not sufficient literature on temporal fruit detection
using 3D information.

Nevertheless, the present results indicate that the data set of L, C and Rror can enable feasible counting and
sizing of apples from the 3D point cloud, allowing their discrimination even in areas with high apple density.
Whereas, scanning the Tp trees from both sides enriched the 3D objectiveness of the apple size. Furthermore, the
values of C and L were described through the surface of apples, increasing the resolution in the classes, and
subsequently the determination of the mode value. The acquisition of the 3D shape of apples from both sides led

in the estimation Dp analogous to the Dwmanuai, revealing low deviations.

Evaluation
The apple clusters in Tp were used as ground truth labels. This derived from the assumption that the shape

and the size of apples could be fully described due to the reduced occlusions. Mack et al. (et al., 2017) employed
random sample consensus algorithm to fit a 3D sphere model in grapevine berries, reconstructing the shape of
berries with 98% precision and 94% recall. However, the sphere size (Dp) was also applied in Tp as an additional
step to evaluate the segmented region. In Rakun et al. (et al., 2011), a reconstructed sphere to evaluate the 3D shape
of segmented voxels was employed. The apple clusters in Tp were used as ground truth labels. This derived from
the assumption that the shape and the size of apples could be fully described due to the reduced occlusions. Gene-
Mola et al. (Gené-Mola et al., 2019a), labelled manually the possible locations of apples in 3D point cloud, placing
3D rectangular bound boxes on each apple. Furthermore, the reflectance and the sphericity derived from a LiDAR
system have been utilized as principal features in fruit detection, achieving 87.5% localization success and 0.85
F1. However, similar results have been reported from the implementation of 3D shape information with RGB
vision systems, reaching a precision of 86.4 % and recall 88.9 % in fruit localization (Lin et al., 2020; Tao and

Zhou, 2017). On the other hand, the woody parts in Awi-c revealed similar Rror and C values with the apples,
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enhancing the FP cases and subsequently the decline of accuracy in this region. The occlusions produced by
branches and leaves hide partly or totally the fruits, resulting in undercounting of apples. Mendez et al. (Méndez
etal., 2019) used a LiDAR laser scanner to count the number of fruits in pruned orange trees (R? = 0.63), however,
the correlation was significantly reduced (R?=0.18) when the method was applied in unpruned trees due to
occlusion by leaves.

The fruit size of the calibration data set reduced the accuracy of the method, when smaller fruit size occurred.
The accuracy of the proposed methodology was reduced at the first two growth stages, resulting in the lowest
percentage (65.8%) in AWa.3 at DAFBy7,. Stajnko et al. (et al., 2004) monitored the diameter of green apples several
times during the vegetation period, combining thermal and RGB camera. The highest relation between the manually
measured and detected fruit diameter (R? = 0.70) was observed at harvest stage, when the fruit reached their
maximum size. Confirming, a less pronounced relation (R? = 0.68) was observed in apples of smaller size after
fruit drop.

Some of the fruits were partly occluded by branches, creating smaller clusters in T... This deviation was presented
in the high RMSE between the Dp-D.. The growth of apples resulted in the acquisition of a higher amount of
points, generating clusters similar to the Mp. However, the use of k-means clustering differentiated the position of
M. centre from the Mp, increasing the measuring uncertainty (Table 3). Therefore, the evaluation of distance

difference between the My and Mp centers, allowed to quantify the possible deviations in the cluster.
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5. Conclusion
5.1. Estimating canopy parameters based on the stem position in apple trees using a 2D LiDAR

The technical capabilities of a 2D LiDAR laser scanner to reconstruct canopy morphology in three dimensional
domain and measure plant parameters were studied. To this end, chapter 3.1 presents the core component of tree
segmentation and extraction of plant variables in outdoor conditions. A sensor frame platform was mounted on a
tractor, tested on a box with known dimensions and applied in an apple orchard to obtain the 3D structural
parameters of the trees. The LiDAR system was able to estimate simple structure of objects, with the highest RMSE
of 1.63 in the case of missing hits due to reflectance of the object and increased incident angle of laser scanner with
enhanced distance between laser aperture and the object. The method that was proposed was able to detect the tree
stem position with an MAE of 43.7 mm and MBE of 36.5 mm.

A methodology based on a bivariate point density histogram is proposed to estimate the stem position of each
tree. The cylindrical boundary was projected around the estimated stem positions to segment each individual tree.
Subsequently, the height, stem diameter, and volume of the segmented tree point clouds were estimated and
compared with manual measurements. The estimated stem position of each tree was defined using a real time
kinematic global navigation satellite system, (RTK-GNSS) resulting in an MAE and MBE of 33.7 mm and 36.5
mm, respectively. It also provided meaningful information about the Hiipar, which was correlated strongly with
the Hmanuat (R?=0.87). Furthermore, the approach for the estimation of Siipar indicated a high relationship with the
Smanual (R?=0.88). Considering the Vmanua and the Viipar revealed a lower correlation in comparison with the above
parameters (R?=0.77), probably due to errors in Vmanua OF the presence of weeds within the trees in the point cloud

data. The convex-hull method for estimating the canopy volume was confirmed in apple trees.

5.2. Calculating the water deficit of apple orchard by means of spatially resolved approach
Chapter 3.2 explores the potential of estimating daily water balance model based on LA at different ECa areas.
The ECa was measured at field capacity, together with soil properties, and meteorological data was recorded daily
from a weather station. These values were implemented in the irrigation model for calculating the daily water needs
in the crucial developmental stages: full bloom, cell division stage, and harvest. A positive correlation was observed

between ECa and total available water content in the root zone (r = 0.78, p < 0.05). Furthermore, the influence of

127



LA on water balance was quantified, pointing to the reasonability of spatially resolved water balance. Specifically,
the water balance revealed differences when considering the spatial variability of the soil and the leaf area. In the
center of the orchard, the ECa values mainly were lower than in the south or in the north, while lower LA values
were also detected in the center of the field. According to the soil texture analysis regions of high ECa hold
enhanced amounts of water content resulting in varying, here two, thresholds. Considering the trees with high LA,
enhanced water deficits were found particularly in low ECa regions and vice versa. However, the orchard had a
light soil profile with high amounts of sand and silt, a fact which assist high soil evapotranspiration within the

orchard, which might be reduced in heavier soils.

5.3. Calculating the water deficit spatially using LiDAR laser scanner in an apple orchard

The estimation of LA by means of LiDAR was confirmed. Thus, the LIDAR laser scanner system was used
to estimate the leaf area per tree. Furthermore, an impact of LA and soil patterns on water needs was found in the
apple orchard. The spatial dependence of LA on the ECaregion was revealed. The LA correlated positively with
ECa in low (r =0 .74), mid (r = 0.86), and high (r = 0.68) areas. The monthly values of the reference water
balance model (WB&gr) based on adjusted FAO values were 36.3 mm lower than values of the model
implementing LA(WBL») in low ECa regions. With LiDAR-derived plant data, land managers can improve

water scheduling in fruit orchards.

5.4, Vegetative factors of tree volume per ECa level

The temporal variability of apple canopy volume was negatively correlated with the ECa and the slope of the
orchard pointing to adaptation capacity and lack of water shortage in the irrigated orchard. It can be postulated that
spatial analysis in orchards should consider the tree variability, but, different from arable, rain-fed farming, the
effect of soil is diminished. However, the repeated measurements of Vi ipar by means of the laser scanner allowed
the estimation of Kv— spatially, indicating the spatial and temporal heterogeneity of Kv pointing to the potential of
instrumental growth modeling and management zone delineation. In the future this should result in variable rate
application not only in plant protection, but also for other tree individual managemet such as pruning, thinning,
spray application of fertilizer. However, the study should be repeated considering also the variation of soil water
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content at each growth stage. In parallel, daily weather data need to be added in the following studies. Whereas,

the growth pattern of volume should be further studied including data from several years.

5.5. Effects of soil ECa and LiDAR-derived leaf area on fruit quality in apple production

The quantification of wood parts showed the high variation of canopy coverage that can be found in individual
stages within the orchard. LiDAR-based estimation of leaf area (LA) was achieved by means of machine learning
using the LA of defoliated trees (LAwmanual) With the corresponding points per tree (PPT) derived from LiDAR 3D
point cloud during seasonal development of the trees. The LA models were improved when the points of woody
parts were removed, especially at LAgs (R%djcvc = 0.95, RMSEc = 4.67 %) and LA11s (R%dgjcv = 0.99 , RMSEc =
2.71 %).

The spatio-temporal analysis of LA showed that the later patterns of LA11s and LA140 Were stable, despite the
frost in 2018, which reduced the growth of LA in early stages as well as crop load and yield. The temporal stability
of ECa interacted with the LAi401s (r = 0.53) and LAss19 (r = 0.62), but correlation showed no consistent
relationship. The seasonal growth analysis of LA followed similar patterns within the two years, depicting the
highest K_a between DABBss and DABB11s. The growth rate of LA was temporally interpolated by a sigmoid
growth function quantifying the full development of canopies at DABBigs and DABBgs in 2018 and 2019,
respectively

The implementation of LA information in the KNN fruit quality classification increased the overall
classification accuracy compared to KNN model based on ECa. Classification accuracy in the test set validation
based on ECa was 39.7 %, whereas classification based on LA resulted in 63.3 %. The prediction of quality
parameters from the LA can greatly support variable rate application in apple orchards given that growers are able
to tailor input requirements to local yield goals. Moreover, the results suggest the value of LA data in decision
support systems aimed at optimizing orchard management practices, particularly addressing the impact of orchard

management on fruit quality in the context of precision horticulture.
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5.6. In-situ detection of apple fruit using LiDAR radiometric feature

Tree structure variables such as the LA or V can influence the number and size of fruits on the tree. Yield
monitoring systems in fruit production mostly rely on color features, making the discrimination of fruits
challenging due to varying light conditions. Thus, the potential of LIDAR backscattered reflectance (Rvoe) in fruit
segmentation. An intensity analysis of tree elements was performed, obtaining mean intensity values of 28.9%,
29.1%, and 44.3% for leaves, branches and trunks, and apples, respectively. These results suggested that the Rror
parameter can be useful to detect apples. A four-step fruit detection algorithm was developed to localize and
estimate the height (Hripar) and diameter (Dvripar) Of fruits. A mean detection success of 92.5% was obtained in
relation to the total amount of fruits on the defoliated trees during the stages of fruit development. A mean
correlation of R? = 0.83 was obtained for Hmanua and Hiipar, Whereas a less pronounced link was observed between
DLipar and Dwmanuar (R% = 0.72) during fruit development. The mean detection success was decreased to 70.5% when
the fruit detection algorithm was applied to the foliated trees. From the experimental results it was concluded that
LiDAR-based technology and, particularly, its intensity information has potential for remote apple detection and
3D localization. However, the less pronounced accuracy in foliated trees has led to the creation of a more advance

method.

5.7. Apple shape detection based on geometric and radiometric features

The LiDAR system was employed to obtain a 3D point cloud of apple trees during fruit development. The
LiDAR system was used to scan apple trees before (T) and after defoliation (Tp) four times during seasonal
tree growth. An apple detection method based on calibrated apparent backscattered reflectance intensity (Rtor)
and geometric features, capturing linearity (L) and curvature (C) derived from the LiDAR 3D point cloud, is
proposed. The thresholds for distinguishing apples from the remaining canopy resulted from a data set consisting
of foliated, Ty, and defoliated trees, Tp, avoiding the coinciding geometric and radiometric features of leaf and
fruit. The proposed methodology of sphere in Tp increased the resolution in the determination of threshold values
of Rin (76.1 %), Cin (73.2 %) and L+ (15.5 %) that define the apple points. Whereas, the Mp clusterswere considered

as ground labels, while the fruit size, Dp, illustrated the highest correlation (R%g; =0.95) with Dmanua fruit size in
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AW,3 at DAFB10s. However, the uncertainty was increased in the first two growth stages, while the highest was
observed in AW-.; at DAFB7; (15.8 % RMSE and 10.5 mm MAE), due to the generation of augmented clusters of
the smaller apples. The apple detection algorithm was developed to generate the Mp and M. of apple clusters on
trees. The M. values were evaluated by means of the Mp clusters, resulting in 89.5 % F1 with 91.0 % recall and
88.2 % precision in AW».; at DAFB120. Whereas, as a further step of evaluation, the estimated distance between the
centres of Mp and M. revealed a 0.1 mm mean deviation with 5.7 % RMSE at DAFB12. Moreover, at the same
growth stage, the minimum difference between Dpand D, was observed, reaching 8.7 mm with 9.5 % RMSE. The
method presented, shows promising results for in situ yield monitoring using a 2D LiDAR system. Further research
should be carried out, to test the method in different apple varieties having less spherical shape in order to identify

and tackle possible deviations of geometric and reflectance values.
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6. General discussion
6.1. Estimating canopy parameters based on the stem position in apple trees using a 2D LiDAR

Investigating the potential of 3D data in fruit trees presents some specific characteristics as compared to 2D
approaches. Contrary to arable crops, the growth of most of the perennial trees takes place in 3D space. This should
be taken into consideration when 2D based remote sensing technologies are employed to monitor fruit trees.
Specifically, the objectiveness of the acquired data is limited, given that these technologies cannot, due to their
nature, include all the information of tree individuals. This is one of the main reasons why the LiDAR laser scanner
was chosen to monitor and extract 3D plant parameters.

Aiming to scan with the LiDAR tree rows throughout the whole orchard, a sensor-frame was constructed and
mounted on a tractor. Subsequently, data from an RTK-GNSS, an IMU, and the LiDAR were fused to calculate
the 3D tree profiles in absolute coordinates. Sensor frames mounted on vehicle platforms have been widely used
in agriculture to acquire 3D data ( Underwood et al., 2016; Vazquez-Arellano et al., 2018a; Hobart et al., 2020).
By utilizing the presented methodology, the sensing system could be carried by other agricultural vehicles, while
stem detection was independent of the vehicle that was carrying all the required sensors. Beside the LiDAR laser
scanner, the inertial measurement unit (IMU) was recording the three-dimensional tilt (roll, pitch, yaw) of the
sensor frame, whereas the RTK-GNSS was providing georeference of these data. A critical task was to develop the
proper methodology to store and synchronize the data, since all sensors had a different output frequency. Thus, a
multi-thread architecture software was developed in Visual Studio (16.1, Microsoft, Redmond, WA, US) for data
acquisition purposes The provided time-stamps eased post-processing where the cubic spline interpolation method
was used to calculate sensor values in synchronized time instances.

Nevertheless, the process of using raw multi-sensor data to reconstruct 3D surface geometry can be influenced
by uneven ground conditions, vibrations originated from the tractor engine or the vehicle speed, parameters that
can lead to measuring uncertainty. Scanning an object of simple structure and of known dimensions, such as a
metal box, in field conditions allowed researchers to quantify the measuring uncertainty of the sensor frame. It was
shown that driving at 0.5 km h, the MAE was 8.18 mm and the MBE was 2.75 mm, representing an RMSE of

1.63% due to gaps in the point cloud and increased incident angle with enhanced distance between the laser aperture
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and the object. Whereas, studying the uncertainty in smaller objects, such as the metal bars, an RMSE <1 % with
an MAE of 0.8- 1.6 mm was observed in the bars closer to the LiDAR height.

Addressing measurements on tree rows differs from single objects, because the position of tree individuals is
not defined. Several methods have been developed to tackle this problem in fruit trees, either clustering each tree
using convex hull (Auat Cheein et al., 2015), semi-Markov model (Underwood et al., 2016) or following a row
wall approach (Escola et al., 2017). The latter can extract the variability of tree information in the row, however,
it does not provides the number and position of trees. On the other hand, clustering approaches are not applicable
in high density apple orchards, since the boundaries among trees are not well defined. This is the reason why a
tree segmentation methodology was developed to estimate plant variables for each individual tree. Assessing the
accuracy of the detected tree position with the RTK-GNSS resulted in an MAE and MBE of 33.7 mm and 36.5
mm, respectively.

The 3D points of tree individuals do not provide plant information. Therefore, plant manual measurements
should be exploited and utilized as reference parallel to the LiDAR data. The comparison of manual measurements
to LiDAR based measurements from 224 trees, revealed significant correlation with respect to low measuring
uncertainty, indicating the adequacy of LIDAR sensor to estimate simple and more complex structural parameters
of fruit trees. However, plant structure is not fixed, instead, it varies according to the different stages of plant
growth over the season. Therefore, LIDAR measurements should be calibrated based on manual measurements
from the corresponding growth stage of the plant. In particular, manual measurements should be carried out at
different heights that cover the tree profile. Since LiDAR scans radially, objects closer to sensor level are described
with a greater amount of LiDAR scanning points. Further research should be conducted on the optimum sampling

density of a calibration dataset to establish a robust correlation with LiDAR data.

6.2. Calculating the water deficit of apple orchard by means of spatially resolved approach
The implementation of LiDAR data of LA was chosen because it can be implemented in the calculation of
daily tree water needs. Both orchards depicted loamy sand soil texture, depicting high coefficient of variation. In
practice, soil spatial variability, among other factors. results in significant differences in orchards (Fountas et al.

2011; Uribeetxebarria et al. 2018). As mentioned above, soil texture is a major determinant of water holding
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capacity, therefore a soil texture map can be used to establish an efficient irrigation plan. However, a sufficient
number of samples must be taken to map the full range of soil variability, although this is typically cost prohibitive
in commercial applications. Nonetheless, ECa mapping has proven to be an effective tool to describe soil spatial
variability in orchards (Aggelopooulou et al., 2013; Vatsanidou et al., 2017). With the use of a four-electrode
Wenner array, ECa was acquired spatially, allowing the definition of low, mid and high ECa areas within the
orchards. In soil soils characterized by salinity lackness or low solubility of salts, it has been shown that ECa can
be used to capture soil texture and soil moisture content information (Hunsaker et al., 2015). It is well established
that, plants can access soil water through their root system, but this is mediated by soil texture and the plants’
ability to extract the water. Therefore, readily available water content (RAW) was daily estimated and utilized as
a threshold in the WB at each ECa region. In both orchards, the daily RAW in low ECa areas was reduced, while
in high ECa regions the opposite happened. Knowledge of RAW is a factor of major significance as it indicates the

threshold before the beginning of water stress (Jensen et al., 1990; Allen et al., 1998).

6.3. Calculating the water deficit spatially using LiDAR laser scanner in an apple orchard

However, tree water needs are affected also by morphological and physiological parameters, such as the
development stage, height and leaf area. The hypothesis was initially confirmed in chapter 3.2, when the daily tree
water needs were increased according to the range of manually sampled LA and height at different ECa regions.
More specifically, trees of high LA in low ECa regions presented high water demands, indicating that ETc is
affected by the spatial information pertaining to soil and plants, and should therefore be considered in the estimation
of WB.

Many regional meteorological networks provide reference or potential ET estimates, but these are not local
in the sense that they may only consider ET estimates at the scale of square kilometers, county boundaries, or for
entire regions, and are often based on either remotely sensed data (Anderson et al., 2012; Knipper et al., 2019) or
on sparse networks of meteorological stations (Gowda et al., 2008). However, the unique microclimate that can be
created in individual orchards in combination with the heterogeneity of tree structural parameters, requires higher
resolution in the calculation of ET. The suggested values of Kc from FAO do not fulfill the aforementioned

requirements, especially in perennial trees where plant development takes place in 3D. This was confirmed in
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chapter 3.3 when the suggested values from FAO were implemented in WB, indicating significantly lower daily
water needs from the WB of LiDAR. Extracting the LA from the 3D point cloud at different ECa areas increased
the resolution in the WB model. Thus, spatial information of plant parameters should be considered during the
calculation of WB in orchards, since the implementation of 3D data in the WB can increase the temporal resolution
and allow us to observe the plant responses with respect to environmental conditions, soil properties and fruit

quality spatially.

6.4. Vegetative factors of tree volume per ECa level

Mounting a LiDAR sensor frame on ground vehicles gives us the opportunity to acquire 3D spatial data, while
temporal information can be acquired by repeating the measurement over the growing stages of fruit trees. As
mentioned above, reconstructing 3D point clouds from fruit trees does not necessarily provide any information
about the plant status. In other words, 3D plant information should not be considered as a reference in the later
process for extracting plant information. Instead, 3D data needs to be calibrated with related manual measurements
from the tree (e.g LA, height, brunch width, stem diameter) at each measuring date. Constructing robust
relationships between the latter parameters over the growth stages would provide clarity in the interpretation of
spatio-temporal responses of plant physiology. For example, in chapter 3.6 the width and height of trees were
temporally measured to estimate the Vmanua and calibrate the Viipar. Whereas, in the following chapter, several
trees (n = 32) were defoliated at each measuring date to build a relationship converting PPT to LA. A similar
methodology was proposed by Sanz et al., (2018) who defoliated various perennial trees in different phenological
stages to develop a linear model that uses the estimated volume from a LiDAR laser scanner as input to predict the

LA.

6.5. Effects of soil ECa and LiDAR-derived leaf area on fruit quality in the apple production

However it should be considered if the sensor data really represent in which extent the manual measurements.
In the case of LA, it was obvious that 3D point clouds of the segmented trees include points from woody part,
leaves and the fruits. Forestry applications adopt LIDAR’s backscattered reflectance intensity (Rror) and geometric

features such as the linearity (L) and others, based on decomposed eigen values of the covariance matrix, to
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discriminate LA from woody parts of trees (Ma et al., 2016; Xi Zhu et al., 2018). Thresholding methodology by
means of Rrorand L was proposed to segment and label tree point cloud components as LA or wood (Wang et al.,
2018). Beland et al. (2014) suggested a voxel methodology to develop thresholds based on Rror frequency for
retrieving the LA per tree. The results are sensitive to voxel size, and voxel size is influenced by occlusion. Hackel
et al. (2016) analysed several geometric features, including L, to extract and select contour surfaces. Their method
was based in the eigen values, eigen vectors and the angles (e.g. tangle) of points in 3D space. Similarly, Lin et al.
(2014) calculated geometric features using a weighted principle component analysis (PCA) along with geometric
median. In each point is assigned a weight to represent its spatial contribution in the weighted PCA and to estimate
the geometric median, which can be regarded as a localized centre of a certain shape. However, LA analysis by
means of LIiDAR laser scanning needs to be further advanced for application in orchards, particularly in early
season after bud break, when the percentage of wood surfaces is high compared to the trees foliage.

Thus, before using PPT to predict the LA, it should be considered that LAwmanual CONtains only the leaves that
have been defoliated. Due to this fact, in Chapter 3.7, points from woody parts (e.g. stems, branches) were
segmented from each individual tree. The method was based on the thresholding approach, which was part of the
fruit detection methodology, using L and reflectance Rror to segment the woody parts from the point cloud.

The first derivate of wood segmentation was the quantification of woody parts over the season. The bare points
of wood materials can be used as an indication of canopy coverage variation. Whereas their potential spatial
interpretation can be implemented for the optimization of selective or site specific pruning applications. Karkee
and Adhikari (2015) explicitly state that these traits could be used to develop pruning rules, showcasing preliminary
success on tall spindle apple trees (Karkee et al., 2014). Recently, Lietal. (2017) proposed an adaptive extracting
method of tree skeleton based on the point cloud data with a terrestrial laser scanner, and obtained consistent tree
structure to identify unwanted branches in fruit trees for automated, selective pruning. Furthermore, in Medeiros
etal.(,2017), a laser sensor was used to collect observation data of fruit trees aiming for automatic dormant pruning,
with the results showing that the system is able to identify the primary branches with an average accuracy of 98%
and estimate their diameters with an average error of 0.6 cm. Mapping the pruning wood can be related with the

early vigor in vie and utilized as a predictor with historical yield (Tagarakis et al., 2018).
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On the other hand, segmenting woody parts from the point cloud allowed the optimization of the prediction of
LA. Especially at DABBss (R%j,c = 0.97) and DABB14 (R%gj,c = 0.92), where wood materials were more profound
on trees and when LA was fully developed. Furthermore, the spatial interpretation of the latter variable revealed
similar spatial patterns between the two seasons, which was confirmed by several correlations. Similar correlations
with ECa were partly found, indicating that trees can adapt LA according to the type of soil. Opposite results have
been reported between ECa and LA in plums (Kédthner et al., 2017).Nonetheless, the inextricable relation of LA
with the final yield (Wagenmakers and Callesen, 1995; Wiinsche and Lakso, 2000), which mainly lies in the
intercepted light, was noted only at DABB14o in 2019. As mentioned above, frosts occurred in February 2018,
which delayed plant development and presumably led to yield reduction in the same year. Studies conducted in
New Zealand showed that fruit growth is affected by daily temperature regimes: smaller fruit were produced from
trees growing in low temperature conditions (Warrington et al., 1999). Especially in the first 40 days after full
bloom (DAFB), low temperatures induce small fruit production. Stanley et al. (2000) identified a positive
relationship between fruit size and growing degree-days accumulated in the first 50 DAFB.

On the other hand, the utilization of ECa and LA datasets to predict fruit quality (FM, D, SSC) was relatively
limited. In general, in commercial orchards several cultivation tasks, such as soil fertilization, drip irrigation,
pruning, crop load management are applied intensively, reducing the impact of soil and canopy geometry on fruit
quality. Soil properties are characterized by temporal stability and low spatial variability, however, the latter it
might be high to observe the effect on fruit level. In commercial apple trees no relation was found between fruit
quality and ECa (Aggelopoulou et al., 2010; Manfrini et al., 2020), while similar results were indicated in plums
(Kéthner and Zude-Sasse, 2015). Similarly, in a commercial olive orchard, spatial variation in soil characteristics
(nutrients, pH, and penetration resistance) revealed no relationship with yield time series, possibly due to extreme
biennial bearing and bad prunning in olives (Fountas et al., 2011).

On the other hand, the LA collected information presented a more profound accuracy regarding fruit quality
prediction. Therefore, the interaction of fruit quality with 3D plant structure should be highly considered and further
studied in the future. Penzel et al. ( 2020) implemented a LiDAR laser scanner to model the daily demand of LA

per fruit, showing that the fruit bearing capacity of individual trees varied according to the total leaf area of each
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tree. However, sources of the managerial effects on production may be diverse and could range from different
treatments between the two sections during block establishment, different management within this season or
possibly different management in previous seasons. With perennial systems it is possible for management effects
to linger for several years, for example, a different pruning strategy in year 1 will affect canopy and fruit
development in year 2 and so on. As shown in this study, 3D data can be used to monitor and model tree geometry
with high accuracy, presenting potential for the prediction of fruit quality. Future studies should focus on the time
intervals of LIDAR measurements and define the resolution in order to bolster and facilitate the prediction of fruit
quality. This is a key part of any spatial analysis and the next step in developing a spatial management strategy for
the orchard, such as targeting differential, spatial, pruning, thinning and/ or harvesting strategies based on variable

fruit set and maturity patterns to meet market targets.

6.6. In-situ detection of apple fruit using LiDAR radiometric features

In the proposed detection algorithm, with reflectance being the principal feature, showed that apples have higher
reflectance than woody parts at 905 nm. The points from branches and stem showed the highest range in R values,
which can possibly be attributed to the dependance of the laser beam incidence angle on the target properties
considering R and surface roughness. In this study, plant materials including such as apples, leaves and woody
parts have been assumed to be Lambertian scatters. Incidence angle effect on LiDAR backscatter intensity has been
studied for about a decade with monochromatic laser scanners (Kaasalainen et al., 2011; Pesci and Teza, 2008).
The laser beam wavelength effects of incidence angle were recently discussed by in the case of LiDAR laser
scanning, suggesting that the differences in incidence angles were similar at different near-infrared wavelengths
(Gaulton et al., 2013).

The bivariate histograms allowed to classify the segmented in x-z and y-z axis. The points binned within a
uniform grid, chosen to cover the range of each axis and reveal the underlying shape of the distribution.
Nonetheless, the latter approach reduced the resolution of fruit detection. Specifically, binning the points decreased
the resolution that is provided by the 3D point cloud. The limitation became more obvious in the center of tree
canopy where fruit density was increased. However, the Hiipar Was correlated with the Hwyanual, €specially in the

upper region of the tree where fruit were more distinct.
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6.7. Apple shape detection based on geometric and radiometric features

The point cloud segmentation, fruit detection and counting approaches presented in this chapter can be applied
to other orchards, based on data recorded over different seasons. The usefulness of 3D data in horticulture relies
on the fact that fruit trees have a complex architecture that a 2D approach often fails to fully describe. The
objectiveness that is provided by 3D renders fruit segmentation approaches flexible and adaptable to a wide range
of classification problems.

Most of fruit detection systems in horticulture are based either on RGB or RGB-D images which are subjected
to extensive light varying conditions in the field. Consequently, a larger amount of data is required to create and
train a more convoluted classification architecture that can predict the nonlinear produced uncertainty from light
variation. Some of the studies were undertaken in more controlled sunlight conditions (afternoon or dawn) where
sunlight was reduced (Gené-Mola et al., 2019b; Z. Wang et al., 2017). However, farming applications take place
in daytime, therefore the developed systems should ideally comply accordingly. In contrast, the LiDAR laser beam
is not affected by lighting conditions as it relies on infrared wavelength (905 nm), providing 3D point clouds of
high density.

The segmentation method of this study was based on the backscattered reflectance of the LiDAR and 3D
geometrical features. However, supervised segmentation requires training examples, provided as a reference 3D
point cloud, denoting the indicative values of shape and reflectance that a candidate fruit region should fulfill.
Instead of labelling part of the data set in the foliated point cloud, it was preferred to manually defoliate each tree
and use its point cloud as reference. This allowed us to acquire more discrete thresholds in radiometrical and
geometrical features (Ra, Ca and La), but also estimate the position error for each individual fruit between the ideal
(defoliated) and the realistic (foliated) case. A sensitivity analysis should be performed in future work to estimate
the uncertainty of the inputs of the methodology.

The method could be characterized as a hybrid, because fruit detection relies on manual measurements.
Following this approach, occlusions due to branches or leaves were avoided in the reference apple clusters. Fruit

level labelling techniques should be adopted in the future for the evaluation of detection performance. Whereas
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reverse engineering techniques such as 3D digitizers could be used in the future to reduce the time during fruit
labeling.

An alternative process would be to label parts of the foliated point cloud and utilize them as training examples.
This approach is relatively common in fruit detection algorithms irrespective of their data origin (e.g. 2D, 3D)
(Gené-Mola et al., 2019a; Jia et al., 2020; Wu et al., 2020). The creation of a fruit detection system which can
estimate fruit size at different growth stages (Figure 47) requires ground truth measurements, self-sufficient from

the sensors, that can evaluate fruits over the stages.
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Figure 47. Apple fruit segmented from the tree 3D point cloud 120 days after full bloom, fruit size is 69.7 mm (Zude-Sassel et al.,
2021)

Besides, combining manual measurements at different heights of the tree with 3D information can improve the
assessment of the detected fruit number. From a physiological perspective, the presence or absence of fruit on apple
trees has a major effect on their photosynthetic performance and growth rate (Corelli-Grappadelli and Lakso, 2004;
Penzel et al., 2020). On the one hand, fruit detection results can be utilized to produce a pipeline that predicts the
yield spatially (Bargoti and Underwood, 2017), nonetheless, most of the yield maps are the product of single
measurements before harvest (Bramley and Ouzman, 2019; Gutiérrez et al., 2019). At this specific period, the
cultivation practices that can be applied by farmers are limited, since most of the fruit growth has taken place. On
the other hand, monitoring of fruit growth over the season and exploitation of the resolution provided by 3D data

can be employeed to model the relationship of structural parameters (e.g. LA) with fruit number at different heights
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on the tree. Thus, cultivation tasks such as late thinning would be able to be carried out by the farmer site
specifically in order to produce apples of similar shape. Adjusting the crop load by thinning is an important factor
of fruit quality through the alteration of the fruit:leaf ratio. Thinning modifies the carbohydrate availability and has
a strong effect on fruit size, quality at harvest and return bloom. It is proven that thinning has a strong effect on
source-sink relationships, in fact fruitlets are competing for carbon among themselves and growing shoots (Flore

and Lakso, 2011).
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7. Contributions

This thesis developed a framework for utilizing 3D data in apple trees, which is a crucial component of future
precision horticulture. The proposed algorithms and systems, advance the state-of-the-art in LIDAR processing of
orchard data to provide generalizable and principled approaches to estimating, mapping and modelling structural
parameters. Additionally, 3D sensors are becoming smaller, smarter and cheaper. Therefore, technology
breakthroughs are possible if enough research is commercialized since it is already economically justified to use
3-D sensors for producing agricultural products. The advantage of 3D data in fruit trees, is precisely the enhanced
perception to describe not only the tree geometry, but also exploit their complex interaction with soil, microclimate,
and fruit quality, spatio-temporally as was shown in the later chapters.

To date, there is scarce information regarding the extraction of 3D data from fruit trees in high density orchards
by means of precision horticultural techniques. In this study, a tree segmentation pipeline was proposed utilizing a
LiDAR laser to detect geometric variables that could be implemented in tree-individual orchard management,
specifically mechanical pruning, irrigation, and spraying. The method contributed in trials on sweet cherries (Saha
et al., 2020) and apple (Penzel et al., 2020) trees facilitating the data analysis process with respect to point cloud
reconstruction and tree segmentation.

There is also limited information on how 3D structure could be implemented in the estimation of tree water
needs. Spatial information of tree structure (LA, height) from different ECa regions was combined with weather
data to produce a daily water balance model. The results of the mappings and the processing of the data provided
high spatio-temporal resolution in water balance which was used for the estimation of tree water needs at different
ECa levels. Thus, the estimation of daily water needs could be adjusted to the micro-conditions of individual
orchards, improving the quality that is provided by FAO without having an impact on production.

Despite the physiological relationship of fruit yield and quality with vegetative growth of perennial trees, their
spatial interaction during the growth season has been rarely investigated. In this study, applications of LiDAR laser
scanning of apple trees addressed monitoring of 3D canopy variables at different growth stages. Specifically, the
effect of ECa in the growth of tree volume was analyzed spatially. Moreover, LA models were presented at different
growth stages of two consecutive seasons and utilized to express LA spatially. The soil-climatic properties and the
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yield were exploited to study the interaction with the growth of LA. According to the measurements of the
physiology of apple trees, having a clear picture of the properties of each part of the orchards helps make decisions
for its management. Furthermore, the LA dataset performed better than the ECa in the prediction of fruit quality
parameters. In parallel, the estimation of LA, based on the proposed methodology, was contributed as input for
modelling the fruit bearing capacity in Pinova trees (Penzel et al., 2020).

A novel fruit segmentation method was proposed based on the LiDAR’s backscattered reflectance (905 nm) and
geometrical features. This allowed us to overcome limitations of RGB systems in 2D and 3D, which are mainly
affected by light variations. Moreover, working in a 3D space enabled the identification of geometric tree features,
such as shape and size, aiming at fruit localization. A new pipeline process which exploits ground truth labels based
on in situ measurements (defoliation, fruit diameter) was proposed. Thus, information from leaves, fruits and
woody parts could be acquired with higher resolution, increasing the segmentation accuracy of fruits. In parallel,
the size of fruits could be monitored at different stages of apple tree growth. Finally, this study could be integrated
in the development of a Decision Support System (DSS) for the development of a decision support system and for

the optimization of site-specific management in apples orchards.
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8. Future work

The components of this thesis are designed to address future machine vision under the challenging
environmental conditions in high density apple orchards. This conditions have led to significant quantified
improvements in accuracy and estimation of 3D informatin across the different stages of tree and fruit. Regarding
tree segmentation, the accuracy of the proposed methodology should be evaluated at different plant density
orchards and cultivars, since different fruit sphericities will test the accuracy of the proposed methodology.
Moreover, further research needs to be done with the use of clustering algorithms for single plant segmentation
(e.g. Euclidian, max-flow/min-cut theorem, region growing segmentation) so that parts of the canopy are not cut
off from the tree point cloud, and that plants at a later growth stage can be analyzed. Also, non-rigid registration
and alignment need to be explored to reduce the effect of miscellaneous errors that reduce overlapping between
point cloud pairs.

The proposed framework of fruit detection is intended to be used by growers and agronomists to optimise
decision making at the farm. It therefore enables the next stage of research, which involves designing data driven
operational strategies that leverage the understanding of spatial distribution of fruit number at different tree heights
to optimize tasks such as crop load management and selective harvesting. In addition, fruit growth variation should
be modelled at different positions on the tree in relation to the microclimate properties within the canopy (e.g.
radiation, humidity, temperature). The ability to associate the number and quality of fruits to individual trees and
rows across orchard blocks helps maintain a database that could be systematically updated throughout the seasons
and cultivation years, which will enable a quantified experimental approach to test the benefits of fully data driven
decision-making at the orchard.

In the context of precision horticulture in perennial trees, further advances should focus on the impact of canopy
management such as pruning, flower and fruit thinning on 3D derived structural parameters (e.g. LA, V). It would
also be important to further monitor the structural parameters spatio-temporally at different perennial trees and
study the impact of soil properties on their growth and fruit quality. Moreover, the inner relation of structural
parameters with fruit quality at fruit growth stages should be further observed. The promising results of fruit
prediction accuracies using LA could potentially be improved by providing more datasets from fruit growth stages.
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The whole process of a complete precision agriculture cycle that was mentioned in the introduction could be
improved by the implementation of 3D technology in perennial trees (Figure 48). Specifically, the first step
concerns data acquisition, where plants would be monitored over the growth stages and be supported by
microclimate, soil data and manual measurements. Therefore, temporal data of high spatial resolution would be
processed and analyzed to extract plant information. The main advantage of this stage and of 3D data is that various
information regarding the tree (e.g.LA, height, volume) or the fruit (fruit size) can be extracted from the same data
set. The dataset could be further supported with the extraction of soil information (e.g. ECa), intensity of canopy

management (pruning thinning etc.) and weather data.
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Figure 48. Cycle of fruiticulture based on 3D data.

The primary aim of the extracted information will aim toward their integration to physiological models.
Therefore, fruit and tree growth would be modelled with respect to the fruit’s spatial position on the tree or the
tree’s spatial position within the orchard. Increasing the resolution of the model would allow us to better
comprehend the spatial interaction among the variables. Moreover, model derivatives would be the input of a DSS
facilitating site specific applications such as selective harvesting, pruning, thinning. Whereas the 3D core of the

data can potentially improve variable rate applications of fertilizers, pesticides and irrigation. The improvement of
145



the whole process would depend on model prediction, where its database could be systematically updated
throughout the seasons and over multiple years, but mainly the feedback from the farmer or the worker who apply
cultivation tasks site-specifically. 3D data and processing techniques in agriculture can help to bridge the gap
between the artificial intelligence and the real world since, rapid prototyping and digital agriculture by generating
physiological models derived from scanned data. Furthermore, the ability to transfer models based on different 3D
sensors and/or sensor configurations needs to be examined, as it would allow more flexibility in hardware
configuration without requiring repeated efforts for training. The applicability of transfer learning could potentially
encourage the development a public database containing pre-learned models, allowing the deployment to new
orchards without the need for extensive data labelling. Therefore, enables the next stage of research, which involves
designing data driven operational strategies based on 3D data that leverage from the understanding of tree spatial

distribution, to optimise tasks such as irrigating, thinning, pruning, and harvesting.
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