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Implementation of rapid methods of analysis and model development in quality assessment 

of raw and processed poultry meat 

 

Department of Food Science & Human Nutrition 

Laboratory of Food Microbiology & Biotechnology 

 

Abstract 
 

Non-invasive rapid methods have been introduced over the years in the assessment 

of food quality and they have been well established in the food industry in the context of 

technological evolution as consumers’ demands for high quality and safety foods 

constantly increases. In the present thesis, rapid spectroscopic and biomimetic sensors have 

been investigated for their potential to accurately assess quality in different poultry 

products (chicken breast and thigh fillets, chicken marinated souvlaki and chicken burger). 

Multispectral Imaging (MSI), Fourier Transform Infrared spectroscopy (FT-IR) and 

electronic nose (E-nose) were employed (individually and in combination) in tandem with 

multivariate data analysis for the assessment of the microbiological quality and the spoilage 

level in chicken samples, as well as in the determination of the “time from slaughter”. For 

this purpose, different batches of chicken samples were subjected to storage experiments 

including both isothermal and dynamic temperature conditions and analyzed 

microbiologically to determine the population dynamics of the indigenous microbiota. In 

parallel, spectroscopic data were acquired through MSI and FT-IR instrumental analysis, 

whereas the volatile fingerprint of samples during storage was recorded by means of an E-

nose. Regression and classification (linear and nonlinear) models assessing poultry meat 

quality were developed and validated with data from independent experiments (different 

batch/season of slaughter, dynamic temperature conditions of storage or different analysts). 

Moreover, ensemble methods and data fusion were performed to the existing data in an 

attempt to enhance the predictive performance of the developed models. Furthermore, the 

safety of poultry meat with special focus on Campylobacter spp. presence and survival in 

stored marinated chicken at refrigeration temperatures was explored via predictive 

modeling and molecular analysis. 

In chapter 2, MSI analysis was implemented on an industrial scale in chicken 

products for the assessment of their quality. For this purpose, chicken breast fillets, thigh 
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fillets, marinated souvlaki and burger were analyzed microbiologically for the enumeration 

of TVCs and Pseudomonas spp., while MSI spectral data were acquired at the same time 

points as for microbiological analysis. Partial Least Squares Regression (PLS-R) models 

were developed based on MSI data for the determination of the “time from slaughter” 

parameter for each product type. Results showed that PLS-R models could predict 

accurately the time from slaughter in all products with the chicken thigh model providing 

the lowest RMSE value (0.160), followed by the chicken burger model (RMSE= 0.285). 

In chapter 3, FT-IR and MSI spectroscopic methods were evaluated for their 

efficacy to assess spoilage on the surface of chicken breast fillets in tandem with 

multivariate data analysis. Briefly, stored samples of chicken breast fillets at isothermal 

conditions (0, 5, 10, 15 οC) were analyzed microbiologically for the enumeration of TVCs 

and Pseudomonas spp. and also by FT-IR and MSI sensors. Multivariate data analysis was 

performed via two software platforms (a commercial software and a publicly available 

developed platform) by applying several machine learning models for the estimation of 

TVCs and Pseudomonas spp. population of the surface of the samples. The performance 

of the obtained models was assessed by intra batch and independent batch testing. PLS-R 

models from the commercial software predicted TVCs with RMSE values of 1.359 and 

1.029 log CFU/cm2 for MSI and FT-IR analysis, respectively. Moreover, RMSE values for 

Pseudomonas spp. model were 1.574 log CFU/cm2 for MSI data and 1.078 log CFU/cm2 

for FT-IR data. From the implementation of the in-house sorfML platform, ANN models 

developed with MSI data provided the lowest RMSE values (0.717 log CFU/cm2) for intra-

batch testing, while least-angle regression (lars) models developed with FT-IR data 

demonstrated RSME values of 0.904 and 0.851 log CFU/cm2 in intra-batch and 

independent batch testing, respectively. 

In chapter 4, FT-IR and MSI spectral data were employed in combination with 

machine learning classification models for the evaluation of spoilage in chicken breast 

fillets. In this context, chicken breast samples were subjected to storage experiments using 

eight isothermal (0, 5, 10, 15, 20, 25, 30, 35 oC) and two dynamic temperature profiles for 

up to 480 h. At pre-determined intervals, samples were analyzed microbiologically for the 

enumeration of TVCs, while in parallel MSI and FT-IR instrumental analysis was 
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performed. In addition, sensory analysis was undertaken by 14- member untrained panel 

for the assessment of fresh and spoiled samples. Based on the outcome of sensory analysis 

(threshold of spoilage: TVCs = 6.2 log CFU/cm2), samples were divided in two quality 

classes, namely fresh and spoiled. Eight machine learning models (single-based and 

ensemble) were developed with MSI and FT-IR spectral data for the detection of spoilage, 

whereas their performance was validated by an independent data set from the two dynamic 

temperature profiles. MSI analysis and subspace ensemble provided the highest overall 

accuracy (64.8 %), while this combination demonstrated also acceptable values of 

specificity and sensitivity (69.7 %). On the contrary, FT-IR spectral data presented slightly 

better performance with Partial Least Squares-Discriminant Analysis (PLS-DA), as the 

samples were classified correctly with an overall accuracy of 67.6 %. 

In chapter 5, FT-IR and MSI rapid techniques were employed for the assessment 

of the microbiological quality in chicken thigh fillets via qualitative and quantitative 

machine learning models. For this purpose, chicken thigh fillets were stored at eight 

isothermal (0, 5, 10, 15, 20, 25, 30, 35 oC) and two dynamic temperature profiles and 

analyzed microbiologically for the determination of TVCs and Pseudomonas spp., whereas 

MSI and FT-IR spectral data were acquired at the same time points. Samples were also 

evaluated by a sensory panel which established a TVC spoilage threshold at 6.99 log 

CFU/cm2. PLS-R models were implemented for the estimation of TVCs and Pseudomonas 

spp. counts on chicken’s surface. Moreover, classification models (LDA, QDA, SVMs, 

QSVMs) were developed for the discrimination of samples in two quality classes (fresh vs. 

spoiled). PLS-R models coupled to MSI data predicted TVCs and Pseudomonas spp. 

counts satisfactorily, with RMSE values of 0.987 and 1.215 log CFU/cm2, respectively. 

SVM model developed with MSI data exhibited the highest performance with an overall 

accuracy of 94.4%, while in the case of FT-IR, acceptable classification was obtained with 

the QDA model (overall accuracy 71.4%). 

In chapter 6, FT-IR, MSI and E-nose have been explored individually and in 

combination via data fusion for their efficacy in the evaluation of quality in marinated 

chicken souvlaki. In brief, chicken marinated souvlaki samples were subjected to storage 

experiments at both isothermal and dynamic temperature conditions. During storage, 
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microbiological analyses were performed for the determination of the population dynamics 

of TVCs and Pseudomonas spp. in parallel with FT-IR, MSI and E-nose analyses. PLS-R 

and SVM-R models were developed and validated for the estimation of TVCs on chicken 

marinated souvlaki. Furthermore, three classification models (LDA, LSVM and QSVM) 

were investigated for the classification of stored samples in 2 and 3 quality classes (fresh 

vs spoiled; fresh, semi-fresh and spoiled). The developed models were externally validated 

with data obtained by six different analysts and three different batches of marinated 

souvlaki. The PLS-R models developed on MSI and FT-IR/MSI spectral data provided the 

best predictions of TVCs, with RMSE values of 0.998 and 0.983 log CFU/g, respectively. 

Moreover, for SVM models developed on MSI and FT-IR/MSI data, the population of 

TVCs was efficiently predicted with RMSE being 0.973 and 0.999 log CFU/g, 

respectively. For the classification models with 3 quality classes, the overall accuracy was 

calculated below 60 % in all cases. On the contrary, for the 2-class models, FT-IR/MSI 

spectral data analyzed by CSVM model exhibited overall accuracy of 87.5 %, followed by 

MSI data analyzed by LSVM model providing overall accuracy of 80 %. Finally, middle 

level data fusion of FT-IR to MSI was proven as a promising alternative for the assessment 

of quality in this poultry product.  

In chapter 7, the survival of Campylobacter spp. was investigated after inoculation 

of six strains (four Campylobacter coli strains and two Campylobacter jejuni strains) in 

chicken marinated souvlaki. Moreover, the microbial growth of the indigenous microbiota 

of the inoculated and non-inoculated chicken marinated souvlaki was examined. Inoculated 

and non-inoculated chicken marinated souvlaki samples were stored at three different 

isothermal conditions (0, 5, and 10 oC) and a dynamic temperature profile. At 

predetermined intervals, inoculated and non-inoculated samples were microbiologically 

analyzed for the enumeration of TVCs, Pseudomonas spp., anaerobic bacteria and 

Campylobacter spp. A one-step modelling approach was employed for chicken marinated 

souvlaki (inoculated and non-inoculated) for the determination of the kinetic parameters of 

growth for TVCs and Pseudomonas spp. Model validation was performed with an 

independent dataset derived from a dynamic temperature profile storage experiment. 

Further on, survival models predicting Campylobacter spp. counts during low storage 

temperatures were developed and assessed. Molecular analysis via Random amplified 
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polymorphic DNA PCR (RAPD-PCR) was conducted with isolates obtained from three 

time points during the experiments. The developed models for TVCs and Pseudomonas 

spp. in inoculated and non-inoculated samples exhibited RMSE values lower than 0.941 

log CFU/g. Campylobacter spp. survived despite the barrier of the low storage temperature 

where a decline of 1.5 log CFU/g was observed. From the survival models, the highest 

accuracy was provided by the Weibull model at 5 oC with RSME values of 0.112 log 

CFU/g. Molecular results confirmed that both C. coli and C. jejuni strains could survive 

during low temperature storage experiments with the exception of 5 oC, where only C. coli 

could be retrieved. 

 

Scientific area: Food microbiology 

Keywords: poultry products; spectroscopic methods; microbiological quality; biomimetic 

sensors; multivariate data analysis; data fusion; safety 
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Εφαρμογή σύγχρονων ταχέων αναλύσεων και ανάπτυξη μοντέλων εκτίμησης της αλλοίωσης 

νωπού και επεξεργασμένου κρέατος πουλερικών 

Τμήμα Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου 

Εργαστήριο Μικροβιολογίας και Βιοτεχνολογίας Τροφίμων 

 

Περίληψη 

 

Η ραγδαία αύξηση της τεχνολογίας και η απαίτηση των καταναλωτών για ποιοτικά 

και ασφαλή τρόφιμα έχει οδηγήσει τα τελευταία χρόνια στην ανάπτυξη και εφαρμογή 

ταχέων σύγχρονων αναλυτικών μεθόδων που έχουν ως στόχο της έγκαιρη ανίχνευση της 

υποβάθμισης της ποιότητας στα τρόφιμα. Στην παρούσα διατριβή μελετήθηκε η 

αποτελεσματικότητα των ταχέων, μη επεμβατικών τεχνικών της  φασματοσκοπίας 

υπέρυθρου με μετασχηματισμό Fourier (FT-IR), της πολυφασματικής απεικόνισης (MSI) 

και της ηλεκτρονικής μύτης (Ε-nose) στην εκτίμηση της ποιότητας σε διάφορα προϊόντα 

κοτόπουλου. Οι τεχνικές αυτές εφαρμόστηκαν σε συντηρημένα δείγματα από φιλέτο στήθος 

κοτόπουλου, φιλέτο μπούτι κοτόπουλου, μαριναρισμένο κοτόπουλο και μπιφτέκι 

κοτόπουλου, και σε συνδυασμό με πολυμεταβλητή ανάλυση δεδομένων (multivariate data 

analysis) αναπτύχθηκαν και επικυρώθηκαν μοντέλα εκτίμησης του μικροβιακού 

πληθυσμού, της ποιότητας καθώς και του χρόνου από την σφαγή στα εν λόγω δείγματα. 

Ποσοτικά και ποιοτικά (γραμμικά και μη γραμμικά) μοντέλα αναπτύχθηκαν μετά από τη 

συσχέτιση των μικροβιολογικών, οργανοληπτικών και των δεδομένων που προήλθαν από 

τους αισθητήρες. Η επικύρωση των εν λόγω μοντέλων, πραγματοποιήθηκε με δεδομένα που 

συλλέχθηκαν από ανεξάρτητα πειράματα συντήρησης προϊόντων κοτόπουλου σε 

ενδιάμεσες θερμοκρασιακές συνθήκες ή σε δυναμικά χρονο- θερμοκρασιακά προφίλ, όπου 

η περίοδος σφαγής, η παρτίδα καθώς και ο αναλυτής διέφεραν. Πέρα από την ανάπτυξη και 

επικύρωση μεμονωμένων μοντέλων ανά αισθητήρα διερευνήθηκε επίσης και η επίδοση 

μοντέλων που είτε συνδύαζαν διαφορετικούς αλγόριθμους εκμάθησης (ενοποίηση, 

ensemble), είτε βασίζονταν στη συγχώνευση των δεδομένων από διαφορετικούς αισθητήρες 

(συγχώνευση δεδομένων, data fusion) για τη ανάπτυξη ενός ενιαίου μοντέλου πρόβλεψης 

της ποιότητας. Επιπλέον, εκτός από την εκτίμηση της ποιότητας στα προϊόντα κοτόπουλου 

εξετάστηκε και η συμπεριφορά του παθογόνου μικροοργανισμού Campylobacter spp. σε 

δείγματα μαριναρισμένου σουβλάκι κοτόπουλου που συντηρήθηκε υπό ψύξη. 
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Ειδικότερα, στο κεφάλαιο 2, η μέθοδος της πολυφασματικής απεικόνισης 

(Multispectral imaging, MSI) εφαρμόστηκε σε βιομηχανικές εγκαταστάσεις, παράλληλα με 

τη γραμμή παραγωγής σε τέσσερα είδη από προϊόντα κοτόπουλου: φιλέτο στήθος 

κοτόπουλου, φιλέτο μπούτι κοτόπουλου, μαριναρισμένο σουβλάκι κοτόπουλου και 

μπιφτέκι κοτόπουλου. Δείγματα από διαφορετικές παρτίδες παραγωγής αναλύθηκαν 

μικροβιολογικά ενώ παράλληλα ελήφθησαν φασματοσκοπικά δεδομένα με τη χρήση του 

εγκατεστημένου στην παραγωγή οργάνου πολυφασματικής απεικόνισης. Τα 

μικροβιολογικά αποτελέσματα συσχετίστηκαν με τα αντίστοιχα φασματοσκοπικά δεδομένα 

για την ανάπτυξη μοντέλου εκτίμησης του χρόνου από την σφαγή (time to slaughter) μέσω 

της γραμμικής παλινδρόμησης με τη μέθοδο μερικών ελαχίστων τετραγώνων (Partial-least 

Squares Regression, PLS-R). Η επίδοση των ανεπτυγμένων μοντέλων ήταν υψηλή σε όλες 

τις κατηγορίες προϊόντων, με τα μοντέλα εκτίμησης του χρόνου από τη σφαγή για το φιλέτο 

μπούτι κοτόπουλου και το μπιφτέκι κοτόπουλου να παρουσιάζουν την μικρότερη ρίζα 

μέσου τετραγωνικού σφάλματος (Root Mean Squared Error, RMSE) κατά την επικύρωση, 

με τιμή ίση με  0,160 και 0,285 αντιστοίχως.  

Στο κεφάλαιο 3, εξετάστηκε η αποτελεσματικότητα των μεθόδων FT-IR και MSI 

για την ανάπτυξη μοντέλων εκτίμησης της μικροβιακής αλλοίωσης στην επιφάνεια φιλέτου 

από στήθος κοτόπουλου. Για το σκοπό αυτό, δείγματα συντηρήθηκαν σε τέσσερις 

ισοθερμοκρασιακές συνθήκες (0, 5, 10, 15 οC) και ανά τακτά χρονικά διαστήματα 

αναλύονταν για την εκτίμηση του μικροβιολογικού τους φορτίου (Ολική Μεσόφιλη 

Χλωρίδα, ΟΜΧ και Pseudomonas spp.), ενώ παράλληλα στα ίδια χρονικά σημεία 

ελήφθησαν φάσματα FT-IR και MSI. Από τα αποτελέσματα των αναλύσεων αυτών 

αναπτύχθηκαν μοντέλα (γραμμικά και μη γραμμικά) για την εκτίμηση του πληθυσμού της 

OMX και του βακτηρίου Pseudomonas spp. με τη χρήση ενός εμπορικού λογισμικού 

προγράμματος ανάλυσης δεδομένων καθώς επίσης και με τη χρήση μίας διαδικτυακής 

πλατφόρμας επεξεργασίας δεδομένων. Η επικύρωση των μοντέλων πραγματοποιήθηκε με 

τον διαχωρισμό των φασματοσκοπικών δεδομένων σε αναλογία 70/30 

(ανάπτυξη/επικύρωση), ενώ επιπλέον πραγματοποιήθηκε και εξωτερική επικύρωση 

(πρόβλεψη) με διαφορετική παρτίδα δειγμάτων κοτόπουλου. Κατά την εφαρμογή του 

εμπορικού προγράμματος ανάλυσης δεδομένων, η εκτίμηση της ΟΜΧ μέσω του μοντέλου 

PLS-R παρουσίασε τιμή RMSE κατά την πρόβλεψη ίση με 1,359 και 1,029 log CFU/cm2, 
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για τα δεδομένα της MSI και της FT-IR ανάλυσης αντιστοίχως. Για την εκτίμηση των 

βακτηρίων του γένους Pseudomonas  μέσω των φασματοσκοπικών δεδομένων της MSI, η 

τιμή RMSE της πρόβλεψης ήταν ίση με 1,574 log CFU/cm2, ενώ μέσω της ανάλυσης FT-IR 

η αντίστοιχη τιμή RMSE υπολογίστηκε σε 1,078 log CFU/cm2. Σε ότι αφορά στα μοντέλα 

που προέκυψαν μέσω της διαδικτυακής πλατφόρμας sorfML, το μοντέλο που παρουσίασε 

τη μικρότερη τιμή RMSE κατά την πρόβλεψη (0,717 log CFU/cm2) ήταν αυτό που 

αναπτύχθηκε με τη χρήση τεχνητών νευρωνικών δικτύων (Artificial Neural Networks, 

ANN) μέσω των δεδομένων της πολυφασματικής απεικόνισης (MSI) και την επικύρωση με 

δείγματα από την ίδια παρτίδα. Αντιθέτως, το μοντέλο least-angle regression (lars) 

προσαρμόστηκε καλύτερα στα φασματοσκοπικά δεδομένα από την ανάλυση FT-IR ) 

εμφανίζοντας τιμές RMSE ίσες με 0,904 και 0,851 log CFU/cm2 κατά την επικύρωση με 

δείγματα από την ίδια και διαφορετική παρτίδα αντιστοίχως. 

Στο κεφάλαιο 4, εφαρμόστηκαν οι ταχείες μέθοδοι FT-IR και MSI σε περισσότερα 

δείγματα και παρτίδες φιλέτου από στήθος κοτόπουλου για την ανάπτυξη ποιοτικών 

μοντέλων εκτίμησης της αλλοίωσης των δειγμάτων. Όμοια με την πειραματική διαδικασία 

του κεφαλαίου 3, δείγματα φιλέτου από στήθος κοτόπουλου συντηρήθηκαν σε οχτώ 

ισοθερμοκρασιακές συνθήκες συντήρησης και δύο δυναμικά χρονο-θερμοκρασιακά 

προφίλ. Κατά τη δειγματοληψία, τα δείγματα αναλύονταν μικροβιολογικά, 

φασματοσκοπικά (FT-IR και MSI) ενώ παράλληλα πραγματοποιήθηκε οργανοληπτική 

αξιολόγηση των δειγμάτων από ομάδα 14 ατόμων για την εκτίμηση του βαθμού αλλοίωσής 

τους (φρέσκο και αλλοιωμένο). Με βάση τα αποτελέσματα του οργανοληπτικού ελέγχου 

ορίστηκε το όριο μικροβιολογικής αλλοίωσης και τα δείγματα χωρίστηκαν σε δύο 

κατηγορίες ποιότητας (φρέσκο και αλλοιωμένο). Εν συνεχεία, οκτώ μοντέλα μηχανικής 

μάθησης (μεμονωμένα και συνδυασμοί τους) αναπτύχθηκαν για κάθε κατηγορία 

φασματοσκοπικής μεθόδου και επικυρώθηκαν με δεδομένα από ανεξάρτητα πειράματα 

συντήρησης σε δυναμικά θερμοκρασιακά προφίλ. Ο συνδυασμός της πολυφασματικής 

απεικόνισης (MSI) με το ενοποιημένο μοντέλο subspace παρουσίασε το μεγαλύτερο 

ποσοστό συνολικής ακρίβειας (64,8 %). Αντιστοίχως, αποδεκτή ήταν και η επίδοση κατά 

την εφαρμογή του μοντέλου της διακριτικής ανάλυσης με τη μέθοδο μερικών ελαχίστων 

τετραγώνων (Partial Least Squares- Discriminant Analysis, PLS-DA) στα δεδομένα από τη 

φασματοσκοπία FT-IR, όπου το ποσοστό της συνολικής ακρίβειας ανήλθε σε 67,6 %. 
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Στο κεφάλαιο 5, φιλέτο από μπούτι κοτόπουλου αναλύθηκε με όμοια πειραματική 

διαδικασία με τα κεφάλαια 3 και 4, ωστόσο τα φασματοσκοπικά δεδομένα FT-IR και MSI 

αξιοποιήθηκαν για την ανάπτυξη ποσοτικών και ποιοτικών μοντέλων εκτίμησης της 

μικροβιακής ποιότητας στην επιφάνεια του φιλέτου από μπούτι κοτόπουλο. Επίσης, όπως 

και στο κεφάλαιο 4, κατά τη δειγματοληψία πραγματοποιήθηκε και οργανοληπτική 

αξιολόγηση των δειγμάτων κατά συντήρηση, τα αποτελέσματα της οποίας καθόρισαν ως 

όριο μικροβιακής αλλοίωσης στο συγκεκριμένο προϊόν την τιμή 6,99 log CFU/cm2 για την 

ΟΜΧ. PLS-R μοντέλα εφαρμόστηκαν στα φασματοσκοπικά δεδομένα από τις τεχνικές FT-

IR και MSI για τον ποσοτικό προσδιορισμό της OMX και του βακτηρίου Pseudomonas spp. 

Επιπρόσθετα, αναπτύχθηκαν ποιοτικά μοντέλα (Linear Discriminant Analysis, LDA; 

Quadratic Discriminant Analysis, QDA; Support Vector Machines, SVM; Quadratic 

Support Vector Machines, QSVM) για τον διαχωρισμό των δειγμάτων σε δύο κατηγορίες 

ποιότητας (φρέσκο και αλλοιωμένο) με βάση το όριο που προσδιορίστηκε από την 

οργανοληπτική αξιολόγηση των δειγμάτων. Η εκτίμηση του πληθυσμού της ΟΜΧ και των 

βακτηριών του γένους Pseudomonas μέσω της τεχνικής MSI και του μοντέλου PLS-R ήταν 

ικανοποιητική, με τιμές RMSE κατά την επικύρωση 0,987 και 1,215 log CFU/cm2 

αντιστοίχως. Η εφαρμογή του μοντέλου SVM στα φασματοσκοπικά δεδομένα της τεχνικής 

MSI παρουσίασε την καλύτερη επίδοση με ποσοστό συνολικής ακρίβειας κατάταξης των 

δειγμάτων στις δύο κατηγορίες ποιότητας που ανήλθε σε 94,4%. Ικανοποιητική κρίθηκε 

επίσης η χρήση του μοντέλου QDA στα φασματοσκοπικά δεδομένα της τεχνικής FT-IR, με 

ποσοστό συνολικής ακρίβειας κατά την ταξινόμηση των δειγμάτων σε κλάσεις ποιότητας 

ίσο με 71,4%. 

Στο κεφάλαιο 6, εκτός από την εφαρμογή των φασματοσκοπικών μεθόδων FT-IR 

και ΜSI, εξετάστηκε και η αποτελεσματικότητα της ηλεκτρονικής μύτης (E-nose) στην 

εκτίμηση της ποιότητας δειγμάτων από μαριναρισμένο σουβλάκι κοτόπουλο. Για τον σκοπό 

αυτό, τα δείγματα συντηρήθηκαν σε τρία ισοθερμοκρασιακά και σε ένα δυναμικά χρονο- 

θερμοκρασιακό προφίλ ψύξης. Ανά τακτά χρονικά διαστήματα, τα συντηρημένα δείγματα 

αναλύονταν μικροβιολογικά για την απαρίθμηση της ΟΜΧ και του βακτηρίου 

Pseudomonas spp., ενώ παράλληλα ελήφθησαν φασματοσκοπικά δεδομένα (FT-IR και 

MSI) και ταυτόχρονα πραγματοποιήθηκε καταγραφή του πτητικού αποτυπώματος των 

δειγμάτων μέσω της ηλεκτρονικής μύτης (E-nose). Μοντέλα PLS-R and SVM-R 
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αναπτύχθηκαν και επικυρώθηκαν για τον προσδιορισμό της OMX στα μαριναρισμένα 

δείγματα, για κάθε όργανο ξεχωριστά καθώς και συνδυαστικά. Επιπλέον, διερευνήθηκε η 

δυνατότητα ταξινόμησης των δειγμάτων σε τρεις (φρέσκο, αποδεκτό, αλλοιωμένο) ή δυο 

(φρέσκο, αλλοιωμένο) κατηγορίες ποιότητας, με την εφαρμογή ποιοτικών μοντέλων (LDA, 

LSVM, CSVM) που αναπτύχθηκαν είτε με τα δεδομένα του κάθε οργάνου ξεχωριστά είτε 

συνδυαστικά. Η επικύρωση όλων των μοντέλων πραγματοποιήθηκε με δεδομένα από 

ανεξάρτητα πειράματα συντήρησης των δειγμάτων κοτόπουλου από τρεις διαφορετικές 

παρτίδες που ελήφθησαν από διαφορετικό αναλυτή (έξι αναλυτές συνολικά). Σε ότι αφορά 

στα μοντέλα PLS-R για την εκτίμηση της OMX, η χρήση φασματοσκοπικών δεδομένων  

από την τεχνική MSI παρουσίασε την καλύτερη επίδοση με τιμή RMSE κατά την πρόβλεψη 

ίση με 0,998 log CFU/g, ενώ ο συνδυασμός δεδομένων από δύο φασματοσκοπικές μεθόδους 

FT-IR/MSI παρουσίασε επίσης καλή επίδοση με τιμή RMSE κατά την πρόβλεψη ίση με 

0,983 log CFU/g. Ομοίως, τα μοντέλα SVM που αναπτύχθηκαν με τα φασματοσκοπικά 

δεδομένα της πολυφασματικής απεικόνισης (MSI) και του συνδυασμού FT-IR/MSI 

παρουσίασαν ικανοποιητική επίδοση με τιμές RMSE κατά την πρόβλεψη ίσες με 0,973 και 

0,999 log CFU/g, αντιστοίχως. Κατά την επικύρωση των ποιοτικών μοντέλων 

κατηγοριοποίησης των δειγμάτων σε τρεις κλάσεις, η συνολική ακρίβεια ήταν μικρότερη 

από 60 %, για όλες τις εξεταζόμενες περιπτώσεις. Αντιθέτως, για τα μοντέλα των δυο 

κλάσεων, το μοντέλο CSVM που αναπτύχθηκε με τα δεδομένα που προήλθαν από το 

συνδυασμό των τεχνικών FT-IR/MSI εμφάνισε ποσοστό συνολικής ακρίβειας κατάταξης 

των δειγμάτων στις δύο κλάσεις 87,5 %, ενώ η ανάπτυξη του μοντέλου LSVM με τα 

δεδομένα της τεχνικής MSI παρουσίασε ποσοστό ταξινόμησης των δειγμάτων στη σωστή 

τους κλάση 80 % στο στάδιο της πρόβλεψης. Η συνδυαστική χρήση των φασματοσκοπικών 

δεδομένων των μεθόδων FT-IR και MSI αποδείχθηκε ως μία αποτελεσματική εναλλακτική 

λύση για την εκτίμηση της ποιότητας στο συγκεκριμένο προϊόν. 

Στο κεφάλαιο 7, μελετήθηκε η ασφάλεια ενός επεξεργασμένου προϊόντος 

κοτόπουλου σχετικά με τον παθογόνο μικροοργανισμό του γένους Campylobacter που 

συναντάται συχνά στο κοτόπουλο. Για τον σκοπό αυτό, δείγματα από μαριναρισμένο 

σουβλάκι κοτόπουλο εμβολιάστηκαν με έξι στελέχη Campylobacter (τέσσερα στελέχη C. 

coli και δύο στελέχη C. jejuni) και μελετήθηκε η συμπεριφορά του εν λόγω 

μικροοργανισμού καθώς και της αυτόχθονος μικροχλωρίδας του προϊόντος κατά την 
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συντήρησή του σε θερμοκρασίες ψύξης (τρείς ισοθερμοκρασιακές συνθήκες και μία 

δυναμικά μεταβαλλόμενη θερμοκρασιακή συνθήκη). Παράλληλα, μελετήθηκε η 

συμπεριφορά της αλλοιογόνου μικροχλωρίδας σε μη εμβολιασμένα με το παθογόνο 

βακτήριο δείγματα του ίδιου προϊόντος. Πρωτογενή και δευτερογενή μοντέλα της αύξησης 

της ΟΜΧ και του βακτηρίου Pseudomonas spp. σε σχέση με την θερμοκρασία συντήρησης 

αναπτύχθηκαν και επικυρώθηκαν για τα ενοφθαλμισμένα και μη δείγματα. Επιπλέον, 

πρωτογενή μοντέλα επιβίωσης του Campylobacter spp. αναπτύχθηκαν με τα δεδομένα από 

τα τρία ισοθερμοκρασιακά προφίλ συντήρησης. Τέλος, η επιβίωση των στελεχών του 

παθογόνου βακτηρίου σε κάθε θερμοκρασιακή συνθήκη πραγματοποιήθηκε με τη χρήση 

της μοριακής μεθόδου Random amplified polymorphic DNA PCR (RAPD-PCR) σε 

απομονώσεις που πραγματοποιήθηκαν στο αρχικό, ενδιάμεσο και τελικό στάδιο κατά τη 

διάρκεια συντήρησης των δειγμάτων. Τα πρωτογενή μοντέλα για την εκτίμηση της 

κινητικής συμπεριφοράς της ΟΜΧ και του βακτηρίου Pseudomonas spp. εμφάνισαν τιμές 

RMSE μικρότερες από 0,941 log CFU/g για τα ενοφθαλμισμένα και μη δείγματα. Από τα 

μοντέλα επιβίωσης των στελεχών Campylobacter spp., το μοντέλο Weibull που 

αναπτύχθηκε με τα δεδομένα από τη θερμοκρασία 5 οC παρουσίασε ικανοποιητική επίδοση, 

με τιμή RMSE ίση με 0,112 log CFU/g. Τέλος, τα αποτελέσματα των μοριακών αναλύσεων 

έδειξαν ότι  τα είδη C. coli και C. jejuni επιβίωσαν κατά την ψύξη του μαριναρισμένου 

κοτόπουλου, με μοναδική εξαίρεση τη θερμοκρασία 5 oC, όπου μόνο το είδος C. coli ήταν 

ανιχνεύσιμο.  

 

Επιστημονική περιοχή: Μικροβιολογία Τροφίμων 

Λέξεις-κλειδιά: προϊόντα πουλερικών, φασματοσκοπικές μέθοδοι ανάλυσης, μικροβιακή 

αλλοίωση, βιομιμητικοί αισθητήρες, πολυμεταβλητή ανάλυση δεδομένων, ασφάλεια 

πουλερικών
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In the last decades, the continuous evolution and implementation of technologies in 

time-temperature indicators (TTIs), smart sensors (package level freshness visibility), 

smart labels (QR codes) and integrated software systems have enriched consumers’ 

knowledge and awareness in food quality and safety (Sanz-Valero et al., 2016; 

Bouzembrak et al., 2019; Li & Messer, 2019; Dey et al., 2021; Kumar et al., 2021). 

Consumers’ demands for high quality and safety in food with nutritional and healthy 

benefits have been increased. Moreover, the recall and withdrawing of food products due 

to poor quality aspects or to foodborne pathogens have forced the authorities and the 

producers to establish the guidelines for the quality and safety assessment of foods through 

the farm to table chain (EC regulation 852/2004, EC regulation 2073/2005). In order to 

meet consumer’s demand which has been constantly evolving and expanding as quality 

food standards rise, the industries have invested in the development and continuous 

improvement of techniques assessing foods quality and shelf- life (Chen, 2015; Verdouw 

et al., 2016). Furthermore, real-time monitoring of temperature and other important factors 

influencing foods quality and safety at the retail’s points and consumer fridges have been 

employed for the avoidance of food recalls and food loss and waste (Kouma & Liu, 2011). 

1.1 Quality and Safety in foods 

According to FAO, the food loss index was worldly estimated at 13.80 % until 2016, 

including post-harvest losses (FAO, 2019), indicating that both food loss and waste should 

be reduced by half in 2030 globally (UNEP, 2021; FAO, 2022). Quantitative and 

qualitative food loss and waste are a result of industries inability to properly estimate foods 

deterioration from intrinsic and extrinsic factors during production, packaging, storage and 

distribution, as well as of retailers, food services and consumers unawareness concerning 

the optimum conditions of storage and cooking.  Food rejection is strongly linked with 

spoilage which is defined as the process of physical, chemical and sensory (off-flavours, 

off-odours, appearance, texture) changes in a food product that characterize it unacceptable 

from the consumers point of view (Koutsoumanis, 2009; Macé et al., 2013; Lianou et al., 

2016). More than 25% of global food waste at post-harvest or post slaughter processes is 

attributed to the microbial activity in the food matrix. Nevertheless, microbiological 

spoilage in foods has been described by many researches as the most responsible cause of 
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deterioration in food quality during storage (Gram et al., 2002; Iulietto et al., 2015; 

Remenant et al., 2015; Koutsoumanis et al., 2021). 

1.1.1 Quality and Safety in poultry  

Poultry meat is popular among consumers as it contains high percentages of protein, 

vitamins, minerals and essential polyunsaturated fatty acids (PUFAs), especially the omega 

(n)-3 fatty acids (Lin et al., 2011). Moreover, it has an affordable price and it is 

recommended to populations which exclude beef or pork meat for religious reasons (FAO, 

2022). Taking into account these benefits, as well as the fact that the poultry sector is fast 

growing and the most flexible of all livestock sectors, it is forecasted that poultry 

production will expand by 1.8 Mt annually by 2025 (Souza et al., 2018; FAO, 2022). 

However, due to its nutritional content and intrinsic factors (pH, water activity, initial 

microbiota and redox potential) poultry products are susceptible to microbial spoilage and 

pathogens survival or growth (Baston & Barna, 2010; Dawson et al., 2013; Iulietto et al., 

2015). The sensorial attributes that signify poultry’s spoilage are the presence of slime on 

some parts or on all the surface of chicken, the development of off-odours (slight 

sulphurous or ammoniacal, rancid, acid, putrid), the deterioration in colour (light cream 

and grey or greening) and loss in muscles elasticity (no return) (Baston & Barna, 2010; 

Baston et al., 2010; Dawson et al., 2013; Chmiel, M. and Słowiński, 2018). During 

microbial spoilage and more specifically during the proteolytic activity of the indigenous 

microbiota on chicken, the off odours from the produced volatile molecules of sulphure- 

and ammonia-based compounds are traceable (Nychas & Tassou, 1997; Nychas et al., 

2008; Alexandrakis et al., 2012). Extended presence of slime on the surface of chicken is 

related to Pseudomonas spp. biofilm formation on chilled meat (Wickramasinghe et al., 

2019, 2020). 

1.1.2 Spoilage microorganisms in poultry  

The indigenous microbial groups associated with spoilage in poultry products are 

Pseudomonas spp. (Pseudomonas fragi, Pseudomonas lundensis, and Pseudomonas 

fluorescens), Enterobacteriaceae (Hafnia spp., Serratia spp., Rahnella spp.), Enterococcus 

spp., Lactobacillus spp., Brochothrix thermosphacta and Shewanella spp. (Gram et al., 

2002; Lee et al., 2017; Lindblad, 2007; Säde et al., 2013). These microorganisms can be 
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transmitted to the sterile chicken carcasses during slaughtering process from contaminated 

areas in the slaughterhouse (i.e., air, water bath, low hygiene in employees, equipment, 

surfaces, chilling) (Tompkin, 1994; Geornaras et al., 1999; Rouger et al., 2017). Each one 

from the abovementioned microorganisms could grow and dominate over the other 

depending on the conditions of storage and packaging in chicken products (Smolander et 

al., 2004; Doulgeraki et al., 2012; Holl et al., 2016). Storage of chicken meat in low 

temperatures at aerobic conditions favors the growth of Pseudomonas spp. which is 

reported in the literature as the main spoilage microorganism during raw or processed 

poultry meat (marinated) storage in aerobic conditions (Liang et al., 2012; Morales et al., 

2016). Moreover, a detailed description of Pseudomonas spp. growth behavior at chill 

temperatures (1-10 oC) and aerobic conditions of storage in poultry is presented by EFSA 

panel on Biological Hazards (EFSA Panel on Biological Hazards (BIOHAZ), 2016). On 

the contrary, modified atmosphere packaging (vacuum, N2/CO2, O2/CO2) favored the 

dominance of anaerobic and facultative anaerobic microorganisms such as LAB and 

Brochothrix thermosphacta during spoilage in poultry products (Björkroth, 2005; 

Balamatsia et al., 2007; Patsias et al., 2008; Franqueza & Barreto, 2011; Silva et al., 2018).  

1.1.3 Pathogen microorganisms in poultry 

Regarding safety in chicken and the presence of pathogenic microorganisms causing 

severe diseases, the most commonly isolated foodborne pathogens from chicken products 

are Campylobacter spp. and Salmonella spp. (EFSA/ECDC, 2021). The former 

microorganism has been reported as the cause of campylobacteriosis which has been the 

most frequent disease with food etiology since 2005 around the globe (Gharst et al., 2013; 

WHO, 2013; Repérant et al., 2016). Campylobacter spp. has been isolated from poultry 

plants and poultry products as this pathogen can survive under low temperature storage and 

acid conditions (Björkroth, 2005; Silva et al., 2011; Yun et al., 2016; Lanzl et al., 2020). 

For this reason, a modification of the EU 2073/2005 regulation was necessary for the 

detection of Campylobacter spp. in poultry meat after slaughter procedure (via ISO 10272-

2) and the upper limit concerning the safety of the inspected meat was defined at 1,000 

CFU/g. Likewise, Salmonella spp. has been transmitted through chicken meat consumption 

to humans and 91,857 incidences of salmonellosis have been reported in the EU in 2018 

(EFSA/ECDC, 2019). Therefore, in the EU 2073/2005 regulation on the microbiological 
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criteria of foodstuffs, the guidelines regarding this pathogen have been established in order 

to diminish salmonellosis originated from chicken meat consumption (EN/ISO 6579). 

Nevertheless, CAC/GL 78-2011 provides the guidelines for the control of both pathogens 

in chicken meat from primary production to consumption (CAC, 2011).  

1.2 Process Analytical Technologies (PAT) 

Poultry’s vulnerability to spoilage, consumers’ demand for qualitative food and the 

vast economic losses for the food industry due to food loss and waste necessitated for the 

adaptation of alternative methods assessing in real-time the spoilage in poultry meat. In the 

last decade, PAT concept has been implemented in the pharmaceutical as well as in the 

food industry (on-, in- and at- line) as an efficient suggestion for the evaluation of quality 

and freshness in meat (van den Berg et al., 2013; Cullen et al., 2014). Rapid analytical 

techniques (as smart sensors) could be associated with microbiological, chemical, 

molecular and sensory data via multivariate data analysis for the development of predictive 

models (food matrix specific models) assessing products’ quality. Afterwards, these rapid 

analytical techniques could be embodied in the production line and continuously updated 

with data sets for the detection of spoilage during meat processing, packaging or/and 

storage (Nychas et al., 2016). The implementation of PAT could be beneficial for all 

stakeholders in the food chain. From the producers’ point of view, this approach could 

facilitate the release time of a product, permit on-site inspections, allow continuous 

assurance of product quality and shelf-life avoiding recalls or complains from costumers. 

Similarly, retailers could check their supplier easily and rapidly and monitor in real- time 

the quality in stored food products (Gomes & Leta, 2012; Dey et al., 2021). Concerning 

the consumers, they could be alerted if the quality of a product deteriorates during 

refrigerated storage and thus, minimize or prevent food waste (Kamble et al., 2019). 

1.2.1 Noninvasive methods applied in Food Science 

In recent years, a variety of sensors have been developed, applied and evaluated for 

their potential to rapidly assess freshness in meat and poultry products. In order to be 

considered as an alternative for PAT application, a sensor should assess rapidly and 

efficiently the critical control parameter of interest without destruction of the product (van 

den Berg et al., 2013). Spectroscopic methods (FT-IR, NIR and RAMAN), hyperspectral 
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(HSI) or multispectral imaging (MSI) and biomimetic sensors (electronic nose, E-nose; 

electronic tongue, E-tongue) have been proposed (individually or in combination) as 

reliable, non-invasive methods for the evaluation of quality in meat and poultry products 

(Ghasemi-Varnamkhasti, 2010; Argyri et al., 2013; Pu et al., 2015; Ye et al., 2016; 

Falkovskaya & Gowen, 2020). In addition, these techniques are environmentally friendly, 

cost-effective and easy to be implemented by non-skilled personnel compared to the 

conventional, time consuming and expensive microbiological, chemical and molecular 

methods of analysis (Nychas et al., 2016; Khulal et al., 2017). 

1.2.2 Multispectral Imaging (MSI)  

Multispectral imaging combines spectroscopy (in the visual and near-infrared region, 

NIR) with computer vision for the acquisition of spectral and spatial data providing 

information on the metabolites on the surface of the examined food. This analysis combines 

fast image acquisition and processing methods and it has lower cost compared to 

hyperspectral imaging. Moreover, MSI does not require sample pre-treatment, it is simple 

to apply and hence it is appropriate for online monitoring during food production 

(Kutsanedzie at al., 2019). This novel technique has been employed in the evaluation of 

quality and the identification of defects, contaminants or adulteration in a variety of poultry 

products. Specifically, MSI has been applied in the range of 400 to 1700 nm (visual and 

NIR region) for the development and validation of quantitative or qualitative models 

predicting the bacterial populations of Total Viable Counts (TVCs) and Pseudomonas spp. 

on chicken meat during spoilage (Feng & Sun, 2013a, 2013b; Ye et al., 2016). Furthermore, 

this nondestructive technique could successfully identify fecal contaminants in poultry line 

and the presence of tumors on the surface of chicken breast (Yang et al., 2006; Nakariyakul 

& Casasent, 2009). MSI analysis could also efficiently detect the adulteration/food fraud 

of minced beef with chicken meat as well as food fraud in minced pork adulterated with 

chicken (Kamruzzaman et al., 2021; Fengou et al., 2021). 

1.2.3 Fourier Transformed Infrared Spectroscopy (FT-IR) 

Fourier Transform Infrared spectroscopy is a vibrational spectroscopy analysis 

adapted from the relationship of the interactions of infrared radiation (IR) to matter, where 

Fourier transformation is performed via an interferometer by multiplexing the wavelengths 
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in one measurement. When IR radiation passes through sample surface and the crystal, 

each specific vibrational mode absorbs IR at its characteristic frequency, so that each 

molecule will have its own distinct peak combination providing a unique molecular 

fingerprint of the sample (Gromski et al., 2015; Candoğan et al., 2021). In the literature, 

FT-IR sensors emitting mostly in the mid-infrared (MIR) region (400-4000 cm-1) have been 

proposed as nondestructive methods assessing spoilage in meat and poultry (Ellis et al., 

2002; Argyri et al., 2013; Ropodi et al., 2018; Alamprese et al., 2016; Candoğan et al., 

2021). Briefly, this spectroscopic method has been recommended as an effective method 

for the differentiation of intact chicken breast muscle during spoilage by Alexandrakis et 

al. (2012). Likewise, in other studies the time of storage as well as the spoilage microbiota 

was assessed via FT-IR models in chicken breast fillets stored under aerobic conditions 

(Ellis et al., 2002; Sahar & Dufour, 2014; Vasconcelos et al., 2014; Rahman et al., 2018). 

An attempt to discriminate beef from chicken samples and beef-chicken mixtures at 

different percentages with FT-IR measurements was undertaken successfully by 

Keshavarzi et al. (2020), whereas in a recent work successful clustering of chicken meat 

from other raw food matrices stored at different temperature and packaging conditions was 

reported (Tsakanikas et al., 2020). Furthermore, FT-IR spectroscopy has been satisfactorily 

employed for the detection of adulteration in beef with chicken and/or turkey meat and 

reversibly (Alamprese et al., 2013; Alamprese et al., 2016; Deniz et al., 2018). In addition, 

this rapid technique could efficiently classify fresh from frozen/thawed chicken meat 

according to Grunert et al. (2016). Regarding safety in chicken meat, FT-IR models 

exhibited good prediction of Salmonella spp. as well as of the indigenous spoilage 

microorganisms in inoculated and non-inoculated chicken liver samples (Dourou et al., 

2021). The potential of FT-IR in tandem with multivariate analysis to separate frozen 

chicken salami samples inoculated with L. monocytogenes, E. coli. P. ludensis and S. 

Enteritidis as well as spiked with P. ludensis, S. Enteritidis and untreated ones has been 

discussed by Grewal et al. (2015). 

1.2.4 Electronic nose (E-nose) 

The electronic nose (E-nose) is a biomimetic sensor imitating the olfactory system 

of humans. An E-nose instrument consists of an array of electronic chemical sensors with 

cross-sensitivity, partial specificity and an appropriate pattern recognition system, capable 
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for the identification of simple or complex odor via volatiles (Ghasemi-Varnamkhasti et 

al., 2010; Loutfi et., 2015; Di Rosa et al. et al., 2017). Until now, mostly metal-oxide 

sensors (n-type and p-type semiconductors) as SnO2, ZnO, Fe2O3, WO3, CuO, NiO and 

CoO have been employed for the recognition of H2, CH4, CO, C2H5 or H2S, O2, NO2 and 

Cl2 gases, respectively in food matrices (Baldwin et al., 2011; Lin et al., 2014; Haddi et al., 

2015; Handa & Singh, 2018). Different combinations of these metal-oxide sensors have 

been assembled in sensing systems and tested for their accuracy in the recognition of 

quality in meat and poultry products (Balasubramanian et al., 2004; Ghasemi-

Varnamkhasti et al., 2009; Wang et al., 2012; Papadopoulou et al., 2013; Estellez-Lopez 

et al., 2017; Shi et al., 2017). E-nose implementation has been suggested for the estimation 

of chicken fat (Rajamaki et al., 2006; Song et al., 2013). In another application, E-nose 

could accurately determine the level of TVCs on stored chicken (Timsorn et al., 2016). 

Moreover, the effect of the season of the year on different batches of chicken and beef meat 

were efficiently discriminated whereas the sensory attributes corresponding to these 

batches were predicted via E-nose data acquisition (Tian et al., 2014). Recently, E-nose in 

tandem with dispersive liquid–liquid microextraction–gas chromatography–mass 

spectrometry (DLLME-GC-MS) has been evaluated for the determination of the biogenic 

amine index in fresh chicken breast muscles (Wojnowski et al., 2019). 

1.3 Machine Learning  

An important and challenging decision in the development of predictive models with 

data originating from sensors is the selection of the most appropriate machine learning 

algorithm. Unsupervised pattern recognition techniques should be firstly applied to the data 

set of interest in order to comprehend the relationship between observations and the trend 

in the data subspace (Brereton & Loyd, 2014; Gromski et al., 2015). Supervised machine 

learning methods could be implemented in a data set containing independent and their 

corresponding dependent variables for the development of quantitative or qualitative 

models assessing a continuous (Regression models) or a categorical (Classification 

models) output (target) variable. The application of the abovementioned techniques in food 

science for the rapid estimation of quality in meat and poultry have been discussed by many 

researchers and a plethora of pertinent websites (e.g., sorfML, Metaboanalyst) or software 
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(R, MatLab, Python, The Unscrambler) have been developed for this purpose (Ropodi et 

al., 2016; Kumar & Karne, 2017; Candoğan et al., 2021). 

1.3.1 Unsupervised machine learning methods for pattern recognition 

Principal component analysis (PCA) and cluster analysis (CA) are two unsupervised 

methods capable of pattern recognition among data which are frequently employed in 

exploratory data analysis (Beruetta et al., 2007). PCA aims at the reduction of data 

dimensionality by transforming the original variables into new uncorrelated variables 

called Principal Components (PCs), containing linear combinations of the original data. 

The PCs graphically define (as vectors) the new subspace where its orthogonal axes 

represent the directions of greatest variance in the data. In general, the PCs contributing 

mostly to the visualization of the new subspace with percentages more than 95 % are the 

ones describing successfully the original data set. The new observation values located in 

this subspace are called PC scores. The obtained PCA scores could be further utilized as 

input variables to other more complex classification or prediction models through data 

fusion (Di Rosa et al., 2017). Concerning Cluster analysis, observations are grouped in a 

hierarchical dendrogram based on the distance (Euclidean, Manhattan or other) between 

them and an agglomerative distance model (Ropodi et al., 2016). 

1.3.2 Supervised machine learning methods 

Partial Least Squares-Regression (PLS-R) is a supervised predictive model widely 

employed in food science and chemistry for the development and validation of quantitative 

models. Through this analysis, a matrix of independent (X) variables (instruments/sensors 

data) is linearly correlated to a dependent numerical variable. Similar to PCA, PLS-R also 

represents geometrically the data set in a new sub-space (reduction of dimensionality) via 

linear combinations of the original variables. This method can be applied to collinear data 

with many X-variables (Wold et al., 2001). Optimized and validated PLS-R models using 

spectral or E-nose features have been proposed for the determination of microbial 

populations (spoilage or pathogens), chemical compounds as well as different 

batches/seasons in red meat and poultry (Kamruzzaman et al., 2013; Fengou et al., 2019; 

Rahman et al., 2018). 
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Support Vector Machines-Regression (SVM-R) is a merging of Support Vector 

Machines classification approach to linear or non-linear models, where the model’s 

response is a continuous variable. SVM-R separates the data set in a hyperplane defined 

by linear or nonlinear kernels (functions) by optimizing the maximum margin within them 

(Cortes & Vapnik, 1995). This approach is efficient with high dimensionally inputs and 

nonlinear relationships; however high computational time and difficulty in the final SVM 

outcome could occur due to the nature of programming (quadratic programming and 

nonlinear equation sets) (Balabin & Lomakina, 2011). SVM-R models coupled with data 

sets derived from rapid sensors have been recommended for the estimation of meat 

microbiota as well as for the enumeration of pathogens and the discrimination of different 

raw food matrices (Wang et al., 2012; Papadopoulou et al., 2013; Estelez-López et al., 

2017; Fengou et al., 2020; Tsakanikas et al., 2020; Dourou et al., 2021). SVMs are also 

frequently used as a classification algorithm for the separation of samples in classes. The 

appropriate choice of kernel function (linear, LSVM; polynomial SVMs of degree d as 

quadratic or cubic, QSVM, CSVM; radial basis function, RBF) is a challenging task when 

a SVMs model is developed and optimized (Luts et al., 2010). SVMs have been employed 

to spectral data for the assessment of quality and authenticity in meat products providing 

robust models (Ropodi et al., 2016; Jaafreh et al., 2019; Jiménez-Carvelo 2019; Fengou et 

al., 2021a, 2021b; Tsakanikas et al., 2020). 

Regarding classification models, Linear Discriminant Analysis (LDA) arranges the 

samples in sub-groups via a linear function of variables (canonical variables, CV) 

determined by the maximum distance between groups and the minimum distance of 

samples within each group. Likewise, in Quadratic discriminant analysis (QDA) the same 

rationale is followed with the exception that the relationship between X and Y variables is 

described by a quadratic function. Both discriminant methods assume a multivariate 

normal distribution in each sub-group while in QDA the covariance for each group differs. 

One disadvantage in these classification methods is that overfitting could be evident if the 

variables present high collinearly. Moreover, LDA could not be capable to separate 

samples if non-Gaussian distribution is observed on groups (Grouven et al., 1996; Kim et 

al., 2011; Kumar & Karne, 2017). Over the years, LDA has been undertaken with spectral 

data derived from stored meat for quality assessment and adulteration detection 
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(Balasubramanian et al., 2004, 2005; Chen et al., 2011; Restaino et al., 2011; Alamprese 

et al., 2013; Arredondo et al., 2014; Ropodi et al., 2015).  

Artificial Neural Networks (ANNs) are deep learning algorithms simulating the 

human neural system and they have been implemented for the development of regression 

and classification models. ANNs contain a network of interconnected nodes divided in 

three main layers, namely the input layer, the hidden layer and the output layer. 

Independent variables are inserted in the input layer which is mainly used for the 

summation of the input variables. The signals proceed to the next layer (hidden) where a 

transfer function (linear, sigmoidal) processes the signal/variable and transfers it to the 

following layer. The output layer of an ANN results in the calculation of the dependent 

variable which could be continuous or categorical (Jain et al., 1996; Marini, 2009). This 

analysis has been applied in tandem with signals from biomimetic sensors as well as with 

spectroscopic data for the assessment of meat quality exhibiting successful performance 

(Balasubramanian et al., 2009; Ghasemi-Varnamkhasti et al., 2009; Chen et al., 2014; Li 

et al., 2014; Timsorn et al., 2016). 

1.3.3 Ensemble approach 

In the last decades, ensemble learning methods have gained popularity among the 

single machine learning models as the collaboration of multiple algorithms can 

significantly enhance the performance of a model. Ensemble methods employ multiple 

well-known algorithms, by creating smaller subsets of the initial data set, training different 

classifiers with these partitions and combining their outputs. They have demonstrated 

improved performance compared to the outcome from their single base learners (Polikar, 

2006). The efficiency of these techniques has been investigated in many scientific fields 

such as face and emotion recognition, text classification, medical diagnosis and financial 

forecasting (Pintelas & Livieris 2020). Furthermore, boosting, bagging (Panov & Džeroski, 

2007; Seiffert et al., 2008), random forest (Jimenez-Carvelo et al., 2019) and random 

subset-based strategy (Sun & Zang, 2006; Rokach, 2010) have been employed for the 

development of reliable classification models in foods such as beef fillets (Mohareb et al., 

2016), minced meat, green olives, beer and oil (Kucheryavskiy, 2018). 
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1.3.4 Data Fusion 

Another state-of-the-art data manipulation technique that can be employed to 

enhance model performance is data fusion. In data fusion, signals/features from different 

sensors are conjoined (low- level fusion, mid- level fusion and high-level fusion) in order 

to describe more accurately phenomena with high complexity. For low-level fusion, 

features from different sensors are combined and machine learning model is fitted to the 

revised data set. In mid-level fusion, features of each sensor are modified via an 

unsupervised method (PCA or HCA) and the outcome of this analysis is utilized for the 

performance of a supervised regression or classification model. In high-level fusion, a 

machine learning technique is implemented to each sensor features individually and the 

results are embodied in a new data set in which a machine learning method is performed 

(Borràs et al., 2015; Di Rosa et al. et al., 2017). Data fusion has been familiar to human 

neural system which combines multiple senses and signals for the assessment of food safety 

and suitability for consumption for centuries. Taking into account the nature of food matrix 

(physical, biological and chemical properties) and the multiple processes occurring through 

meat spoilage, a combination of sensor features could frame both internal (metabolites, 

chemical compounds) and external (color, smell, texture, tenderness) alterations and thus 

could identify more accurately quality defects and contaminants in food (Huang et al., 

2014; Kutsanedzie at al., 2019; Weng et al., 2020; Chung & Yoon, 2021). 

1.3.5 Multivariate data analysis applied to poultry products 

Exploratory and supervised data analysis via the above-mentioned models and their 

combinations or fusion have been employed for the assessment of meat quality and 

specifically of poultry products. In Table 1.1 a summary of the existing literature is 

provided for poultry products, with main focus on spectroscopic and biomimetic sensors 

coupled with exploratory methods (PCA, HCA), regression (PLS-R, SVM-R) and 

linear/nonlinear classification models (SVM, PLS-DA, OPA, DA, LDA, DFA, SIMCA, 

ANNs and BPNN). It is worth mentioning that recent studies have been relied mostly on 

the combination of different machine learning approaches in an attempt to develop the 

optimum model for quality evaluation in poultry (Khulal et al., 2017; Tsakanikas et al., 

2020; Weng et al., 2020). 
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Table 1.1: Spectroscopic and biomimetic sensors implementation in tandem with machine learning methods for the assessment of quality and 

adulteration in poultry products. 

Sensor Product Purpose Data analysis 

method 

Reference 

HSI Chicken breast fillets Determination of TVCs PLS-R Feng & Sun, 2013a 

HSI Chicken breast fillets Determination of Pseudomonas spp. counts PLS-R Feng & Sun, 2013b 

HSI Chicken breast fillets Determination of TVCs via TBFI PLS-R Ye et al., 2016 

HSI Beef adulterated with 

chicken 

Determination of adulteration with chicken % PLS-R Kamruzzaman et al., 

2016 

MSI Pork adulterated with 

chicken 

Classification of samples based on the % 

adulteration with chicken 

SVM 

classification 

(RBF kernel 

function) 

Fengou et al., 2021a 

MSI Chicken breast, thigh, 

marinated souvlaki and 

burger 

Determination of time from slaughter PLS-R Spyrelli et al., 2020 

FT-IR and 

NIR 

Chicken breast fillets Detection of spoilage PCA, PLS-DA, 

OPA 

Alexandrakis et al., 

2012 

FT-IR Chicken breast fillets a) Determination of TVCs, Pseudomonas spp., 

Enterobacteriaceae and Brochothrix 

thermosphacta; b) Discrimination of samples 

based on the day of storage 

PLS-R, PLS-DA Sahar & Dufour, 2014 

FT-IR Chicken breast fillets Determination of TVCs PLS-R Ellis et al., 2002 

FT-IR Chicken breast fillets TVC, lactic acid bacteria (LAB), Pseudomonas 

spp.,Brochothrix thermosphacta, 

Enterobacteriaceae counts and pH 

PCA, DA, PLS-

R 

Vasconcelos et al., 

2014 

FT-IR Chicken breast fillets Determination of total plate count (TPC), 

Entetobacteriaceae count, pH, CTn (Color 

transmittance number) color analysis, TVBN, 

(total volatile basic nitrogen) contents, and shear 

force 

PCA, PLS-R Rahman et al., 2018 

FT-IR Beef fillets, chicken thigh 

fillets, mixed samples of 

chicken and beef 

Discrimination between beef and chicken meat and 

quantification of chicken in beef meat mixture 

PCA, PLS-R, 

ANNs 

Keshavarzi et al., 

2020 
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FT-IR Chicken marinated breast Classification of seven different types of food PCA, PLS-R, 

SVM 

classification 

Tsakanikas et al., 

2020 

UV–vis, NIR 

and MIR 

Beef and turkey minced 

meat mixtures 

Detection of minced beef adulteration with turkey 

meat 

PCA, PLS-R, 

LDA, low 

fusion for a 

PLS-R model 

combined with 

UV-vis, NIR 

and FT-IR data 

Alamprese et al., 2013 

FT-NIR Beef bottom round minced 

meat and turkey breast 

minced meat mixtures 

Identification and quantification of turkey meat 

adulteration in fresh, frozen-thawed and cooked 

minced beef 

PCA, PLS-R, 

PLS-DA 

Alamprese et al., 2016 

FT-IR Beef, chicken, and turkey 

minced meat mixtures 

Differentiation of beef mixtures adulterated with 

chicken or turkey meat 

PCA, HCA Deniz et al., 2018 

FT-IR Fresh and frozen/thawed 

chicken 

Differentiation of fresh and frozen/thawed chicken HCA, ANNs 

classification 

Grunert et al., 2016 

FT-IR Spiked chicken salami 

with 4 specific 

microorganisms 

Detection of Salmonella enteritidis, Pseudomonas 

ludensis, Listeria monocytogenes and Escherichia 

coli 

PCA, SIMCA, 

PLS-DA, PLS-R 

for pathogens 

levels 

Grewal et al., 2015 

FT-IR Inoculated and no 

inoculated chicken liver 

Estimation of total viable count, Pseudomonas 

spp., B. thermosphacta, LAB, Enterobacteriaceae, 

and Salmonella on chicken liver 

SVM-R Dourou et al., 2021 

E-nose Modified atmosphere 

packaged poultry meat 

Determination of the microbiota, sensory attributes 

and dimethyl sulphide and hydrogen sulphide 

concentrations (GC and HS-GC/MS results) 

PCA, PLS-R Rajamäki et al., 2006 

E-nose Sliced chicken breast Estimation of TVCs on chicken meat PCA, BPNN Timsorn et al., 2016 

E-nose Chicken meat Discrimination of chicken seasonings based on 

sensory attributes and quantitative estimation of 

sensory characteristics 

PCA, DFA, CA, 

PLS-R 

Tian et al., 2014 

E-nose Chicken breast Estimation of the Biogenic Amines Index of 

Poultry 

BPNN Wojnowski et al., 

2019 

E-nose, CV, 

AT sensory 

Chicken breast Evaluation of freshness in chicken Mid- fusion: 

PCA, SVM 

Weng et al., 2020 
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(RBF) 

classification for 

storage time, 

PCA and PLS-R 

for TVB-N 

Olfactory/E-

Nose system 

based on 

Colorimetric 

sensors, HIS 

Chicken breast fillets Determination of TVB-N with multiple level data 

fusion 

Multiple level 

data fusion: 

PCA in each 

sensor and in 

TVB-N values 

and after BP-

ANN for TVB-

N estimation 

Khulal et al., 2017 
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1.4 Objectives 

In the present thesis, the main objective was the development and validation of 

predictive models assessing poultry’s quality with independent data obtained by non- 

destructive spectroscopic and biomimetic sensors (MSI, FTIR, E-nose), at- line or off- line 

in raw and stored (isothermal conditions and dynamic temperature profile) chicken 

products. Different batches of many seasons of the year were used through the 

experimental procedure in an attempt to include many different scenarios in this project.  

In this context, in Chapter 2, MSI was explored as an alternative for the assessment 

of the quality in four poultry products on an industrial scale. In brief, chicken breast fillets, 

thigh fillets, marinated souvlaki and burger were analyzed microbiologically for the 

enumeration of TVCs and Pseudomonas spp. while MSI measurements were acquired at-

line. Partial Least Squares Regression (PLS-R) models were developed based on MSI data 

for the prediction of “time from slaughter” parameter for each product type. 

The efficacy of FT-IR and MSI in tandem with multivariate data analysis for the 

assessment of spoilage on the surface of chicken fillets was investigated in Chapters 3, 4 

and 5, as follows: 

In Chapter 3, two independent storage experiments of chicken breast fillets were 

executed at 0, 5, 10, and 15 oC until 480 h. At pre-determined intervals, samples were 

subjected to microbiological analysis for the enumeration of TVCs and Pseudomonas spp. 

and in parallel FT-IR and MSI spectral data were obtained from sensors. Two software 

platforms (a commercial and a publicly available developed platform) were employed for 

the development of nine linear and no linear models for the determination of the TVCs and 

Pseudomonas spp. counts on the surface of the samples. Models’ prediction skills were 

assessed by intra batch and independent batch testing.  

In Chapter 4, chicken breast samples were stored for up to 480 h at eight isothermal 

conditions (0, 5, 10, 15, 20, 25, 30, and 35 oC) and two dynamic temperature profiles 

(winter and summer transportation scenarios). Microbiological analysis for the 

enumeration of TVCs was undertaken at certain intervals, whereas MSI and FT-IR analyses 

were conducted. Samples were subjected to sensory analysis by 14 individuals for the 
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evaluation of fresh and spoiled samples. Eight machine learning models (single-based and 

ensemble) were investigated for their classification skills with their performance being 

validated by an independent data set from the dynamic temperature profiles. 

In Chapter 5, spoilage experiments were performed to chicken thigh fillets at eight 

isothermal and two dynamic temperature profiles. Samples were analyzed 

microbiologically (TVCs and Pseudomonas spp.), sensory analysis was undertaken by a 

panel, while simultaneously MSI and FT-IR spectra were acquired. PLS-R models were 

implemented for the estimation of TVCs and Pseudomonas spp. counts on chicken’s 

surface. Four classification models (LDA, QDA, LSVM, QSVM) were employed for the 

discrimination of fresh from spoiled samples. 

In Chapter 6, FT-IR, MSI and E-nose have been examined (individually and 

combined) as a potential for the quality assessment in chicken product via data fusion. 

Chicken marinated souvlaki samples were subjected to storage experiments (0, 5, 10 oC 

and a dynamic temperature profile: 12 h at 0 oC, 8 h at 5 oC and 4 h at 10 oC) at aerobic 

conditions. Samples were microbiologically analyzed for the enumeration of TVCs and 

Pseudomonas spp. while in parallel, FT-IR, MSI and E-nose data were acquired. 

Quantitative linear and no linear (PLS-R, SVM-R) models (for each sensor and combined) 

were developed and validated for the determination of TVCs on chicken marinated 

souvlaki. In addition, three classification models (LDA, LSVM, CVM) were optimized and 

evaluated for the separation of samples in 2 (fresh or spoiled) and 3 (fresh, semi- fresh and 

spoiled) quality classes for each case of sensor individually and in combination. Model 

performance was assessed with data obtained by six different analysts and three different 

batches. 

Further on, taking into account the safety in poultry products and the increased reports 

for Campylobacter spp. in poultry, in Chapter 7, Campylobacter spp. behavior (six 

different Campylobacter strains, belonging to the genera C. jejuni and C.coli) in inoculated 

chicken marinated souvlaki under different storage temperatures was investigated via 

survival models, as well as the indigenous microbiota’s growth behavior of the inoculated 

and non-inoculated chicken marinated souvlaki. 
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Chapter 2: Implementation of Multispectral Imaging (MSI) for 

Microbiological Quality Assessment of Poultry Products 
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Abstract 

The objective of this research was to investigate on an industrial scale the potential of 

multispectral imaging (MSI) in the assessment of the quality of different poultry products. 

Samples of chicken breast fillets, thigh fillets, marinated souvlaki and burger were 

subjected to MSI analysis during production together with microbiological analysis for the 

enumeration of Total Viable Counts (TVCs) and Pseudomonas spp. Partial Least Squares 

Regression (PLS-R) models were developed based on the spectral data acquired to predict 

the “time from slaughter” parameter for each product type. Results showed that PLS-R 

models could predict effectively the time from slaughter in all products, while the food 

matrix and variations within and between batches were identified as significant factors 

affecting the performance of the models. The chicken thigh model showed the lowest 

RMSE value (0.160) and an acceptable correlation coefficient (r = 0.859), followed by the 

chicken burger model where RMSE and r values were 0.285 and 0.778, respectively. 

Additionally, for the chicken breast fillet model the calculated r and RMSE values were 

0.886 and 0.383 respectively, whereas for chicken marinated souvlaki, the respective 

values were 0.934 and 0.348. Further improvement of the provided models is 

recommended in order to develop efficient models estimating time from slaughter. 
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2.1 Introduction  

In the last decade, meat consumption has rapidly increased while demand for high-

quality meat is expected to continue augmenting as the world population rises. Chicken 

meat products account for 37% of global meat production due to their low-fat content, 

affordable price and exclusion of beef and/or pork meat for religious purposes (FAO, 

2022). However, raw poultry products are susceptible to deterioration (short shelf life) and 

to unpleasant organoleptic attributes during spoilage (Baston & Barna, 2010; Dawson et 

al., 2013). These facts in tandem with consumers’ demand for fresh meat has led to the 

development of alternative approaches, such as Process Analytical Technology (PAT), that 

are considered efficient in predicting quality and freshness in meat products during 

production (Kamruzzaman et al., 2015; Nychas et al., 2016). 

PAT is a promising approach for the assessment of products’ quality and it is currently 

implemented not only in the pharmaceutical industry (Chen et al., 2011) but also in the 

food industry (van den Berg et al., 2013; Cullen et al., 2014). The main concept of PAT is 

the combination of multivariate data derived through real-time (in-, on-, at- line) analytical 

methods to multivariate data analysis for continuous feedback and information build-up 

(Grassi et al., 2018). As analytical techniques of PAT are considered among others 

spectroscopic methods such as vibrational spectroscopy (FT-IR, NIR, Raman) (Cai et al., 

2011; Teena et al., 2013; Alamprese et al., 2016), hyperspectral and multispectral imaging 

(Qin et al., 2013; Liu et al., 2014; Xiong et al., 2015) and biomimetic sensors (e-nose, e-

tongue) (Ghasemi-Varnamkhasti et al., 2010; Huffman et al., 2017). Moreover, this 

innovative approach coupled to microbiological analysis, quality factors and machine 

learning tools, can permit the understanding of the process, the identification of Critical 

Control Points (CCPs) and finally the application of a knowledge base to control the 

process (Vasconcelos et al., 2014; Estelles-Lopez et al., 2017; Tsakanikas et al., 2018). 

According to PAT approach, a potential analysis and sensor have to be able to estimate 

successfully and rapidly the critical control parameter of interest without the destruction of 

the product (van den Berg et al., 2013). These requirements are fulfilled in the case of 

multispectral imaging (Feng et al., 2018) that combines an optical technique (visible and 

NIR region) to computer vision in an attempt to obtain spectral and spatial data for the 

metabolites on the surface of the examined sample. The main advantage over hyperspectral 
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analysis is the fast image acquisition and the usage of simple algorithms for image 

processing (ROI region) and decision-making (Qin et al., 2013; Tsakanikas et al., 2016). 

In recent years, many researchers have recommended this nondestructive method and 

several machine learning algorithms for the rapid assessment of meat quality (Panagou et 

al. 2014; Pu et al., 2015; Nychas et al., 2016). Specifically, for poultry products qualitative 

models were constructed for the classification of intact chicken breast fillets based on three 

quality grades using hyperspectral analysis (Yang et al., 2018). Quantitative and/or 

qualitative models in the region of visible and near-infrared (400–1700 nm), were able to 

detect the bacterial population (TVCs, Pseudomonas spp. and Enterobacteriaceae) during 

spoilage of chicken meat (Feng & Sun, 2013a, 2013b; Feng et al., 2013; Ye et al., 2016). 

Other studies involving multispectral imaging were associated with the adulteration of 

minced beef with chicken meat (Kamruzzaman et al., 2016), the presence of fecal 

contaminants in a poultry line (Yang et al., 2005; Cho et al., 2006), defects (Park et al., 

2006; Yang et al., 2006; Chao et al., 2007) and tumors on the surface of chicken breasts 

(Barni et al., 1997; Nakariyakul & Casasent, 2009). 

So far there are limited studies on the implementation of spectroscopic methods during 

processing at meat industries (Dixit et al., 2017) and the majority is focused on the 

determination of fat and fatty acids in pork and chicken breast fillets with near-infrared 

sensors (i Furnols & Gispert, 2009; De Marchi et al., 2012; Sørensen et al., 2012; Prieto et 

al., 2017). Hence, the aim of this research was to investigate the potential of multispectral 

imaging, applied in a poultry processing industry, to determine the time from slaughter of 

four different poultry products and develop PLS-R models assessing the time from 

slaughter directly from spectral data. 

2.2 Materials and Methods 

2.2.1 Experimental design 

Multispectral Imaging (MSI) was performed at-line in a Greek poultry industry on 

four different poultry products: a) chicken breast fillets (n = 104, batches = 5), b) chicken 

thigh fillets (n = 97, batches = 5), c) chicken burger (n = 131, batches = 3), and d) marinated 

chicken souvlaki (n = 144, batches = 4). At regular intervals, samples from each batch were 

analyzed microbiologically for the enumeration of Total Viable Counts (TVCs) and 
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Pseudomonas spp. in parallel with MSI spectral data acquisition. In addition, samples from 

each product were stored at 4 °C for 216 h (9 days), since this time period is defined by the 

industry as the shelf-life of the product. In parallel to the spectral acquisition, the 

microbiological analysis was performed simultaneously with the other batches. 

Sample origins were extensive farming facilities where animals (Gallus domesticus: Ross 

strain) were fed from the company with a customized diet. Feeding consisted of grain, 

wheat, maize, soya bean oil and meat and premix for broilers (vitamin and mineral 

supplement). Chickens were slaughtered after 3 months of age and production was 

conducted according to the regulations of the EU 823/2004, 824/2004, 834/2004 and 

543/2008. 

2.2.2 Microbiological analysis 

From each sample, 10 g were added aseptically to 90 ml of sterile quarter strength 

Ringer’s solution (Lab M Limited, Lancashire, United Kingdom) in a stomacher bag 

(Seward Medical, London, UK) and homogenized in a stomacher device (Lab Blender 400, 

Seward Medical, London, UK) for 60 s at room temperature. For the enumeration of Total 

Viable Counts (TVC) and the dominant spoilage microorganism Pseudomonas spp., serial 

decimal dilutions were prepared in the same diluent and spread on the following media: a) 

tryptic glucose yeast agar (Plate Count Agar, Biolife, Milan, Italy) for TVCs incubated at 

25 °C for 72 h, and b) Pseudomonas Agar Base with selective supplement cephalothin-

fucidin-cetrimide (LabM Limited, Lancashire, UK) for Pseudomonas spp., incubated at 25 

°C for 48 h. After incubation, colonies were enumerated and microbial counts were 

logarithmically transformed (log CFU/g). Poultry samples with TVC counts exceeding 7.0 

log CFU/g were considered spoiled as reported elsewhere (Raab et al., 2008; Souza et al., 

2018; Baltic et al., 2019). 

2.2.3 Spectra Acquisition 

MSI analysis was performed using a Videometer-Lab instrument (Videometer A/S, 

Videometer, 2019, Herlev, Denmark) which was installed in close proximity to the 

production line (at-line measurement) with the possibility of sample conditioning (Porep 

et al., 2015). Videometer-Lab captures surface reflectance of samples in 18 different 

wavelengths (405–970 nm), namely: 405, 435, 450, 470, 505, 525, 570, 590, 630, 645, 660, 
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700, 850, 870, 890, 910, 940 and 970 nm. Surface reflectance is recorded by a standard 

monochrome charged coupled device chip (CCD). The object of interest is placed at the 

center of an Ulbricht sphere, which has a matte white coating inside and light-emitting 

diodes (LEDs) with narrow-band spectral radiation positioned side by side at spheres rim. 

The purpose of the coating is to ensure a diffused and spatially homogenous reflectance of 

the sample. During instrument performance, the diodes are turned on successively leading 

to a monochrome image with 32-bit floating-point accuracy for each wavelength. The final 

outcome of MSI analysis is a data cube of spatial and spectral data for each sample of size 

m × n × 18 (where m × n is the image size in pixels) (Dissing et al., 2013; Tsakanikas et 

al., 2015). 

A critical point before MSI application is the assurance that the range of LEDs 

intensity is stable while phenomena such as shadows and object’s disfiguration are avoided 

(Daugaard et al., 2010; Panagou et al., 2014). Therefore, a light set up procedure in which 

the acquisition captured at zero time of the experiment (auto light) is recalled and light-

emitting diodes (LEDs) intensities are stabilized. Subsequently, geometric and radiometric 

calibration is undertaken in the Region of Interest (ROI) area with the aim of prototype 

target. 

In order to exclude non-informative areas such as Petri dish surface, fat, connective 

tissue etc., a pre-process step is required. The segmentation of ROI on the sample from no 

relevant areas and the implementation of Canonical Discriminant Analysis (CDA) areas is 

conducted via Videometer-Lab version 2.12.39 (Videometer A/S, Herlev, Denmark). Also 

known as Fisher (Fisher’s discriminant analysis), CDA separates pixels to different classes, 

based on ROI, through the following Equation 2.1 (Duda et al., 2000; Carstensen et al., 

2003): 

                         R (a) = 
aT ∑ as

aT ∑ aN
                             2.1 

where Σs is the distribution between classes and ΣN is the distribution within a class. 

 

2.2.4 Data Pre-Processing and Model Development 

For the development of models estimating the time from slaughter, Partial Least 

Squares Regression (PLS-R) (Wold et al., 2001; Xiaobo et al., 2010) was chosen, where 
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spectral data were the independent variables (n = 36) and time from slaughter (ts) was the 

dependent variable. Time from slaughter is considered as the time elapsed from slaughter 

until the MSI measurement. For each poultry model, a two-stage model development 

approach was followed: (a) calibration and full cross-validation (using leave one out cross-

validation) for model optimization and (b) external validation with samples from different 

batches. More specifically, for chicken breast fillets, calibration was performed using a 

dataset from three independent batches (n= 82) and external validation was undertaken 

with two other batches (n = 22). Similarly, the PLS-R model for chicken thigh fillets was 

constructed using a training dataset from three batches (n = 67), whereas two other batches 

(n = 30) were used to assess the prediction performance of the model. Concerning the 

chicken burger, two batches (n = 87) were used in model training and one batch (n = 44) 

in prediction. Finally, for marinated chicken souvlaki, the dataset consisted of two batches 

(n = 91) for training and two different batches (n = 43) for external validation. 

Prior to analysis, spectral data for each type of poultry product were pre-processed 

by different transformation techniques in an attempt to reduce random or systematic 

variations (Brereton & Lloyd, 2014; Tsakanikas et al., 2016). Reducing the total volume 

of data results in effective multispectral imaging systems and image acquisition with 

relatively low spatial resolutions in a few important wavelengths (Qin et al., 2013). 

Standard Normal Variate transformation (SNV) Equation 2.2 was applied in the case of 

chicken thigh and burger in order to avoid collinear and “noisy” data areas (Bi et al., 2016). 

In contrast, spectral data from chicken breast and marinated souvlaki were pre-processed 

with baseline offset treatment (Rinnan et al., 2009; Engel et al., 2013) Equation 2.3. 

Regarding time from slaughter (y variable), a logarithmic transformation was considered 

necessary due to large differences in the intensities of the raw data (Berrueta et al., 2007). 

Data pre-treatment, model development and validation were implemented using the 

Unscrambler© v.9.7 software (CAMO Software AS, Oslo, Norway). 

sI
SNV =

SI − mean(S)

stdev(S)
 2.2 

where S refers to pixel-wise spectra, Si is the “old” information contained in a specific 

wavelength and SiSNV is the “new-transformed” information contained in a specific 

wavelength (Tsakanikas et al., 2016).  
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S(x) = x − min (x) 2.3 

where S denotes pixel-wise spectra for one sample, x is information contained at a specific 

wavelength, and min(x) is the minimum variable in the x dataset. 

2.3 Results 

2.3.1 Microbiological Analysis 

The range of the microbial population of TVC and Pseudomonas spp. for the 

different batches of poultry products and storage time is illustrated in Figure 2.1. 

Additionally, the spread of TVCs for fresh and spoiled samples is provided for each product 

case. More specifically, for chicken breast fillets, the initial number of TVCs and 

Pseudomonas spp. was 5.2 (±0.6) and 4.9 (±0.82) log CFU/g respectively, whereas in 

spoiled samples the respective values were 8.4 (±0.46) and 8.3 (±0.47) log CFU/g. 

Additionally, for chicken thigh fillets, samples were considered fresh with TVCs and 

Pseudomonas spp. counts at 5 (±0.83) and 4.5 (±0.98) log CFU/g. Spoiled chicken thigh 

samples had TVCs and Pseudomonas spp. values at 7.9 (±0.50) and 7.8 (±0.49) log CFU/g, 

respectively. 

For chicken burger samples, TVCs and Pseudomonas spp. counts in fresh samples 

were 5.5 (±0.36) and 4.8 (±0.75) log CFU/g, respectively, while in spoiled samples the 

respective counts were 10.7 (±1.9) and 7.8 (±0.25) log CFU/g. Finally, marinated chicken 

souvlaki fresh samples had TVCs and Pseudomonas spp. counts at 4.6 (±0.50) and 3.6 

(±0.71) log CFU/g, respectively. In contrast, TVCs and Pseudomonas spp. values for 

spoiled samples were 7.9 (±0.95) and 7.5 (±1.00) log CFU/g, respectively. 

Results from storage experiments at 4 °C showed that chicken breast fillets were 

determined as spoiled beyond 168 h of storage (TVCs > 7 log CFU/g) with TVCs value at 

7.76 log CFU/g and Pseudomonas spp. counts at 7.6 log CFU/g. For chicken thigh fillets, 

samples were characterized as fresh until 120 h when TVCs and Pseudomonas spp. counts 

were 7.5 log CFU/g and 7.5 log CFU/g, respectively. TVCs and Pseudomonas spp. counts 

were 8.8 log CFU/g and 7.7 log CFU/g in spoiled chicken burger samples (storage time 

216 h). Moreover, chicken marinated souvlaki was defined as spoiled after 168 h of storage 

in which TVCs were 7.3 log CFU/g and Pseudomonas spp. counts were 6.8 log CFU/g. 
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Figure 2.1: Boxplots for microbial counts (log CFU/g) of TVCs (1: blue,2: red) and Pseudomonas 

spp. (3: green,4: orange) in fresh (1: blue,3: green) and spoiled (2: red,4: orange) samples of each 

product. 

2.3.2 Spectral Measurements 

For the development of PLS-R models, each wavelength contributed differently to 

each category of poultry product, despite the fact that all these products have the same 

basic ingredient (i.e., poultry meat). This is demonstrated in Figure 2.2 where differences 

could be observed in the spectra among different product types during storage at 4 °C, 

based mostly on their nutrition composition difference (Cozzolino et al., 2004; 

Kamruzzaman et al., 2013). 

The same figure (Figure 2.2) confirms also the ability of this spectroscopic method 

to detect and/or separate spoiled from fresh samples for each of the four products. For 

instance, in the case of chicken breast, wavelengths with variations in reflectance for fresh 

and spoiled samples were located in the areas of 470–570 nm and 590–970 nm, 

respectively. Wavelength range from 660 to 970 nm seemed to affect the estimation of 
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spoilage for chicken thigh. Similarly, for marinated chicken souvlaki reflectance 

measurements at wavelengths above 570 nm deviated between fresh and spoiled samples, 

whereas for the chicken burger wavelengths of 850–970 nm were noticed as different. 

 

Figure 2.2: Spectra from MSI analysis (405–970 nm) for each poultry product at 24 h (blue line) 

and 216 h (red line) of storage at 4 °C. 

2.3.3. PLS-R Model Performance 

PLS-R models assessing the time from slaughter showed satisfactory performance 

for each category of poultry product as inferred both graphically (Figure 2.3) and 

computationally based on performance indices such as slope, offset, correlation coefficient 

(r) and root mean squared error (RMSE) (Table 2.1). 

For chicken breast fillets, time from slaughter was estimated quite accurately despite 

the variations between batches, with r and RMSE values for the prediction dataset of 0.886 

and 0.383, respectively. Differences between batches and ingredients (spices, herbs and 
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sauce) used in marinated chicken souvlaki did not affect the prediction performance of the 

PLS-R model, with r and RMSE values of 0.934 and 0.348, respectively. Even though 

chicken thigh muscle has a more complex texture, with a higher percentage of fat and 

connective fat tissue (Lin et al., 2011; Amorim et al., 2016), no differences were observed 

between batches and subsequently, external validation was performed satisfactorily with r 

and RMSE values of 0.859 and 0.160, respectively. Similarly, the presence of vegetables 

(peppers, onions and herbs) and spices in the homogeneous mixture of chicken burgers was 

not an obstacle for the external validation, where r and RMSE values were 0.778 and 0.285, 

respectively. The above-mentioned RMSE values of prediction indicate satisfactory 

accuracy of the models used to assess the observed data (Sant’Ana et al., 2012; Feng et al., 

2013).  

 

Figure 2.3: Comparison of observed (open symbols) and predicted (solid symbols) values of time 

from slaughter (log ts) after the development of the PLS-R model. Solid line depicts the line of 

equity (y = x) and dashed lines are ± 1.6 log ts (i.e., 48 h after slaughter). 
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Table 2.1: Performance indices (slope, offset, r and RMSE) for PLS-R model development and 

validation for each poultry product. 

Poultry Product Stage of 

Modelling 

No of 

Samples 

Slope Offset r (Correlation 

Coefficient) 

RMSE 

Chicken Breast Calibration 82 0.933 0.138 0.966 0.076 

FCV1 82 0.916 0.173 0.953 0.091 

Prediction 22 1.150 0.055 0.886 0.383 

Chicken Thigh Calibration 67 0.953 0.097 0.976 0.065 

FCV 67 0.933 0.136 0.957 0.088 

Prediction 30 0.854 0.243 0.859 0.160 

Chicken Burger Calibration 87 0.982 0.035 0.991 0.033 

FCV 87 0.968 0.063 0.987 0.040 

Prediction 44 0.513 1.172 0.778 0.285 

Chicken 

Marinated 

Souvlaki 

Calibration 91 0.962 0.073 0.981 0.067 

FCV 91 0.954 0.092 0.964 0.093 

Prediction 43 1.183 0.650 0.934 0.348 
1FCV: Full cross-validation. 

 The important wavelengths (mean values and standard deviations) reflecting the 

characteristics of spectral data for each poultry product were obtained based on the beta 

regression coefficients (Figures 2.4–2.7). 

 

Figure 2.4: Spectral data (mean and standard deviation) influence (b coefficients) on PLS-R model 

construction for chicken breast samples. Dashed bars represent data that influenced more the model 

(1,19: 405 nm; 2, 20: 435 nm; 3, 21: 450 nm; 4, 22: 470 nm; 5, 23: 505 nm; 6, 24: 525 nm; 7, 25: 

570 nm; 8, 26: 590 nm; 9, 27: 630 nm; 10, 28: 645 nm; 11, 29: 660 nm; 12, 30: 700 nm; 13, 31: 

850 nm; 14, 32: 870 nm; 15, 33: 890 nm; 16, 34: 910 nm; 17, 35: 940 nm and 18, 36: 970 nm). 
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Figure 2.5: Spectral data (mean and standard deviation) influence (b coefficients) to PLS-R model 

construction for chicken thigh samples. Dashed bars represent data that influenced more the model 

(1, 19: 405 nm; 2, 20: 435 nm; 3, 21: 450 nm; 4, 22: 470 nm; 5, 23: 505 nm; 6, 24: 525 nm; 7, 25: 

570 nm; 8, 26: 590 nm; 9, 27: 630 nm; 10, 28: 645 nm; 11, 29: 660 nm; 12, 30: 700 nm; 13, 31: 

850 nm; 14, 32: 870 nm; 15, 33: 890 nm; 16, 34: 910 nm; 17, 35: 940 nm and 18, 36: 970 nm). 

  

Figure 2.6: Spectral data (mean and standard deviation) influence (b coefficients) to PLS-R model 

construction for chicken burger samples. Dashed bars represent data that influenced more the model 

(1, 19: 405 nm; 2, 20: 435 nm; 3, 21: 450 nm; 4, 22: 470 nm; 5, 23: 505 nm; 6, 24: 525 nm; 7, 25: 

570 nm; 8, 26: 590 nm; 9, 27: 630 nm; 10, 28: 645 nm; 11, 29: 660 nm; 12, 30: 700 nm; 13, 31: 

850 nm; 14, 32: 870 nm; 15, 33: 890 nm; 16, 34: 910 nm; 17, 35: 940 nm and 18, 36: 970 nm). 
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Figure 2.7: Spectral data (mean and standard deviation) influence (b coefficients) to PLS-R model 

construction for chicken marinated souvlaki samples. Dashed bars represent data that influenced 

more the model (1, 19: 405 nm; 2, 20: 435 nm; 3, 21: 450 nm; 4, 22: 470 nm; 5, 23: 505 nm; 6, 24: 

525 nm; 7, 25: 570 nm; 8, 26: 590 nm; 9, 27: 630 nm; 10, 28: 645 nm; 11, 29: 660 nm; 12, 30: 700 

nm; 13, 31: 850 nm; 14, 32: 870 nm; 15, 33: 890 nm; 16, 34: 910 nm; 17, 35: 940 nm and 18, 36: 

970 nm). 

Based on these beta regression coefficients, equations were constructed for the 

assessment of time from slaughter for each product (equations 2.4–2.7). 

Yts,chicken breast = 2.016 + 0.063 Xmean,405 nm + 0.033 Xmean,435 nm – 0.042 Xmean,450 nm – 0.134 

Xmean,470 nm – 0.057 Xmean,505 nm + 0.103 Xmean,570 nm + 0.015 Xmean,630 nm + 0.027 Xmean,645 nm – 

0.081 Xmean,700 nm + 0.012 Xmean,870 nm + 0.023 Xmean,910 nm + 0.040 Xmean,940 nm + 0.039 Xmean, 970 

nm – 0.022 XSD,450 nm – 3.505 XSD,470 nm – 2.462 XSD,505 nm – 0.023 XSD,525 nm                                                                                                                 

(2.1) 

Yts,chicken thigh = −1.287 + 1.823 Xmean,405 nm + 1.596 Xmean, 435 nm – 2.277 Xmean, 470 nm – 1.835 

Xmean,505 nm + 0.774 Xmean,645 nm + 0.901 Xmean, 660 nm + 1.407 Xmean, 700 nm – 0.888 Xmean, 910 nm – 

0.754 XSD, 660 nm – 1.135 XSD, 700 nm 

(2.2) 

Yts,chicken burger = 3.042 + 5.092 Xmean,405 nm – 2.948 Xmean,435 nm – 1.332 Xmean,450 nm – 2.205 

Xmean,525 nm + 10.153 Xmean,570 nm – 15.754 Xmean,590 nm+ 1.397 Xmean,630 nm + 4.716 Xmean,645 nm + 

1.982 Xmean,660 nm – 4.230 Xmean,700 nm + 2.344 Xmean,850 nm – 2.989 Xmean,890 nm + 2.237 Xmean,910 

nm- 3.283 XSD,405 nm +2.382 XSD,505 nm + 2.161 XSD,525 nm + 2.304 XSD,570 nm – 1.799 XSD,590 nm –

1.402 XSD,660 nm – 1.874 XSD,700 nm +1.558 XSD,850 nm + 1.112 XSD,870 nm –2.188 XSD,970 nm 

(2.3) 

Yts,chicken marinated souvlaki = 3.071 – 0.205 Xmean,405 nm + 0.180 Xmean,435 nm + 0.255 Xmean,450 nm – 

0.442 Xmean,630 nm + 0.189 Xmean,645 nm + 0.223 Xmean,660 nm – 0.168 Xmean,700 nm – 0.122 Xmean,850 

nm + 0.119 Xmean,870 nm + 0.196 Xmean,940 nm – 0.150 XSD,435 nm – 0.185 XSD,450 nm + 0.232 XSD,505 

nm + 0.184 XSD,525 nm – 0.319 XSD,590 nm + 0.091 XSD,645 nm + 0.131 XSD,870 nm – 0.165 XSD,910 nm – 

9.849 XSD,940 nm             

                                                        

(2.4) 
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2.4. Discussion 

Microbiological analysis demonstrated variations between batches for each category 

of poultry product even though the examined samples were obtained by the same farming 

conditions, slaughter process and production. For chicken breast and thigh samples, 

differences occurred at the initial microbial load (TVCs and Pseudomonas spp.) based 

mostly on animal strain and fat content (Amorim et al., 2016). Furthermore, in the case of 

processed poultry products, the presence of additional ingredients such as vegetables and 

herbs seemed to influence the initial and final load of microorganisms. 

MSI acquisition showed variations in reflectance at many wavelengths between the 

four poultry products due to their differences in the food matrix (chicken breast and chicken 

thigh) and the supplementary ingredients used in the production process of different 

chicken products (i.e., burger and marinated souvlaki). Moreover, spectra figures for fresh 

and spoiled samples (Figure 2.2) provided by MSI application indicated reflectance 

differences at several wavelengths, which are firmly linked to biochemical alterations and 

metabolic compounds produced by the spoilage microbiota on the surface of meat and 

poultry products. More specifically, reflectance at 570–700 nm is related to respiratory 

pigments such as myoglobin (570 nm), oxymyoglobin (590 nm) and metmyoglobin (630 

nm) (Cozzolino & Murray, 2004; Panagou et al., 2014; Pu et al., 2015). In the NIR region, 

absorption bands at 910 nm are linked to denaturation of proteins (Kamruzzaman et al., 

2013; Ropodi et al., 2018) while at 750 and 970 nm, O-H second overtones are related to 

the moisture content in the samples (Xiaobo et al., 2010; Feng & Sun, 2013a; Dixit et al., 

2017). In addition, absorption bands observed in the NIR region (928 and 940 nm) are 

correlated to the presence of fatty acids and fat within the sample matrix (Alomar et al., 

2003; Kamruzzaman et al., 2013; Liu et al., 2014). 

PLS-R models predicted satisfactorily the time from slaughter for each poultry product 

(Table 2.1) where the chicken thigh model showed the lowest value of RMSE followed by 

the chicken burger model. RMSE and r values of prediction were in the range of 0.160–

0.348 and 0.778–0.943 respectively, for all PLS-R models. Model performance was 

gradually deteriorated from the calibration to the prediction stage. As illustrated in Figure 

2.3, batches used in external validation differed from the calibration dataset in all products 
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and especially in the case of the chicken breast. These findings indicate the importance of 

performing validation with independent datasets (distinct batches) and to include as much 

variability as possible in the developed model (Boulesteix et al., 2006; Ropodi et al., 2016; 

Ropodi et al., 2018). Additionally, the developed model addressed for at-line 

implementation must be validated by an independent dataset in order to construct an 

accurate and robust model (Wold et al., 2001; Pu et al., 2015). Despite this variation in 

batches, both calibration and prediction datasets in Figure 2.3 are situated within the limit 

area of ±1.6 log ts resulting in acceptable PLS-R models. For chicken marinated souvlaki 

and burger models, variations between batches and higher RMSE values could be 

explained due to different types of ingredients such as spices, chopped vegetables and 

marinade employed in the production process. 

Beta regression coefficients revealed the influence of each wavelength on the 

assessment of time from slaughter for each poultry product. According to Figures 2.4–2.7, 

wavelengths with high positive or negative values have an important contribution to the 

model and convey useful information. The comparison of these findings with the raw 

spectra shown in Figure 2.2 confirms the significant role of reflectance bands in the range 

570–700 nm and 700–970 nm for the development of PLS-R models (Park et al., 2002; 

Dixit et al., 2017). As mentioned above, absorption bands at NIR region of 910 nm seemed 

to be associated with proteins, which are in abundance in chicken meat, especially in 

chicken breast (Lin et al., 2011). The influence of muscle pigments and water content on 

the classification of chicken breast fillets was also highlighted by Yang et al. (2018) where 

samples were successfully classified in different quality grades (Yang et al., 2018). 
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Chapter 3: Spoilage assessment of chicken breast fillets by 

means of Fourier Transform Infrared spectroscopy (FT-IR) 

and Multispectral Image analysis (MSI) 
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Abstract  

The aim of this study was the evaluation of Fourier transform infrared spectroscopy 

(FT-IR) and multispectral image analysis (MSI) as efficient spectroscopic methods in 

tandem with multivariate data analysis and machine learning for the assessment of spoilage 

on the surface of chicken breast fillets. 

For this purpose, two independent storage experiments of chicken breast fillets 

(n=215) were conducted at 0, 5, 10, and 15 oC for up to 480 h. During storage, samples 

were analyzed microbiologically for the enumeration of Total Viable Counts (TVCs) and 

Pseudomonas spp. In addition, FT-IR and MSI spectral data were collected at the same 

time intervals as for microbiological analyses. Multivariate data analysis was performed 

using two software platforms (a commercial and a publicly available developed platform) 

comprising several machine learning algorithms for the estimation of the TVCs and 

Pseudomonas spp. population of the surface of the samples. The performance of the 

developed models was evaluated by intra batch and independent batch testing. PLS-R 

models from the commercial software predicted TVCs with Root mean squared error of 

prediction (RMSE) values of 1.359 and 1.029 log CFU/cm2 for MSI and FT-IR analysis, 

respectively. Moreover, RMSE values for Pseudomonas spp. model were 1.574 log 

CFU/cm2 for MSI data and 1.078 log CFU/cm2 for FT-IR data. From the implementation 

of the in-house sorfML platform, artificial neural networks (ANNs) and least-angle 

regression (lars) were the most accurate models with the best performance in terms of 

RMSE values. ANN models developed on MSI data demonstrated the lowest RMSE values 

(0.717 log CFU/cm2) for intra-batch testing, while lars outperformed ANNs on independent 
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batch testing with RSME of 1.252 log CFU/cm2. Furthermore, lars models excelled with 

the FT-IR data with RSME of 0.904 and 0.851 log CFU/cm2 in intra-batch and independent 

batch testing, respectively. These findings suggested that FT-IR analysis is more efficient 

than MSI to predict the microbiological quality on the surface of chicken breast fillets. 

 

 

3.1 Introduction  

According to the Food and Agriculture Organization (FAO, 2019) around 14 % of the 

world's food is lost after harvest and before reaching the retail level, including on-farm 

activities, storage and transportation. A key to the reduction of food loss and waste is to 

improve the efficiency of the food system by monitoring each production stage carefully 

(FAO, 2019). At the same time, consumers’ awareness and demand for high quality and 

safe food has been continuously arising, especially in the case of meat products. Poultry 

meat and more specifically chicken breast is one of the most preferable products due to its 

high protein content and low price (FAO, 2022). However, its susceptibility to spoilage 

(Dawson et al., 2013; Rouger, et al., 2017; Silva et al. 2018) necessitates the rapid quality 

assessment during production, transportation or retailing in order to avoid further food 

waste. 

An alternative approach for rapid quality assessment, feasible by technology and 

science evolution, is the implementation of spectroscopic methods such as vibrational 

spectroscopy (FT-IR, NIR, Raman) (Argyri et al., 2013; Alamprese, Amigo, Casiraghi & 

Engelsen, 2016; Grassi & Alamprese, 2018), hyperspectral and multispectral imaging (Liu 

et al., 2014; Qin et al., 2013) and biomimetic sensors (e-nose, e-tongue) (Loutfi et al., 2015; 

Wojnowski et al., 2017). These nondestructive methods can be combined with 

microbiological, sensory and multivariate data analysis for the development of models 

evaluating meat quality. In addition, the developed models accompanied by their datasets 

could be uploaded and maintained in cloud data repositories, updated constantly with new 

data in order to be consultative to food industries (Nychas et al., 2016; Tsakanikas et al., 

2020). 
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In the last decade, the performance of instruments based on light emission interaction 

with the surface according to its chemical and physical properties (Hyper and Multispectral 

Imaging) or vibrational spectroscopy (FT-IR) has been investigated in the evaluation of 

quality characteristics of various food commodities (Prieto et al., 2009; Xiong et al., 2015). 

Both spectroscopic methods have been proven promising and effective for the development 

of predictive models assessing the quality and microbiological load in many meat products 

(Pu et al., 2015). Specifically, for poultry products qualitative models have been 

constructed and evaluated for the classification of intact chicken breast fillets based on 

hyperspectral analysis (Yang et al., 2018). Moreover, qualitative as well as quantitative 

models developed on spectral data (400–1100 nm) could determine bacterial counts during 

spoilage of chicken meat (Feng & Sun, 2013a; Feng et al., 2013). Likewise, Alexandrakis 

et al. (2012) proposed FT-IR as effective method for the discrimination of intact chicken 

breast muscle during spoilage. The potential of FT-IR to accurately detect spoilage bacteria 

on the surface of chicken meat has been also confirmed by Ellis et al. (2002). 

An important and challenging decision in the development of predictive models with 

spectral data is the performance of the optimum machine learning algorithm resulting in 

efficient models that describe more accurately the dynamics of microorganisms during 

spoilage. Until now, many algorithms have been employed in the rapid assessment of meat 

quality through several software applications (Chen et al., 2011; Kamruzzaman et al., 

2015). SorfML is a publicly available Web platform that has the flexibility to provide rapid 

screening of experimental data by allowing the development and validation of a variety of 

linear and non-linear algorithms (Estelles-Lopez et al., 2017; Manthou et al., 2020). This 

leverage allows user to investigate data’s tendency, exclude models with poor performance 

and compare the most accurate ones. Additionally, it enables the comparison of different 

sensors’ performance in order to facilitate the selection of the most reliable analysis/sensor 

for food quality assessment. 

The aim of this research was (i) to develop models derived from different analytical 

instruments (FT-IR and MSI) assessing the microbiological quality of chicken breast fillets 

during storage at isothermal conditions, (ii) to assess the performance of different machine 

learning algorithms and analytical platforms, based on a commercial software and a 
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publicly available Web platform, to monitor the population dynamics of spoilage 

microorganisms during storage, and (iii) to infer on the potential and limitations of each 

analytical tool. 

3.2 Materials and Methods 

3.2.1 Experimental design  

Chicken breast fillets (ca. 245-280 g per fillet) were obtained from a Greek poultry 

industry and transported under refrigeration immediately to the laboratory. The samples 

were supplied by the industry in plastic packages (width: 25 cm, thickness: 90 μm, 

permeability of ca. 25, 90, 6 cm³ m-2day-1bar-1 at 20 °C and 50 % RH for CO2, O2 and N2, 

respectively) and stored aerobically at four isothermal conditions (0, 5, 10, 15 oC) for up 

to 480 h depending on storage temperature. At regular time intervals, spectral data (FT-IR 

and MSI) were collected from the surface of chicken meat samples and correlated with 

microbiological data. Two independent experiments were undertaken with two different 

chicken meat batches and duplicate samples were analyzed from each sampling point and 

storage temperature. Storage of samples was terminated at 480 h at 0 oC while for the 

highest storage temperature (15 °C) the duration of the experiments was 168 h. All samples 

originated from Ross strains broilers with the same feeding, farming and slaughtering 

conditions. Feeding was customized by the company and comprised of grain, wheat, maize, 

soya bean oil and meat and premix for broilers (vitamin and mineral supplement). Chickens 

were slaughtered after 3 months of age and all stages of production were in compliance 

with EU regulations (823/2004, 824/2004, 834/2004 and 543/2008). 

3.2.2 Microbiological analysis  

A slice of 20 cm2 (maximum thickness 2 mm) from the surface of chicken breast 

fillet was removed aseptically using a sterile stainless steel cork borer (2.5 cm in diameter), 

scalpel and forceps, added to 100 ml of sterile quarter strength Ringer’s solution (Lab M 

Limited, Lancashire, United Kingdom) and homogenized in a Stomacher device (Lab 

Blender 400, Seward Medical, United Kingdom) for 120 s at room temperature. Serial 

decimal dilutions were prepared in the same medium and 1.0 or 0.1 ml of the appropriate 

dilutions were spread or poured on the following media: a) Tryptic glucose yeast agar 

(Plate Count Agar, Biolife, Milan, Italy) for the enumeration of Total Viable Counts 
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(TVCs) incubated at 25 oC for 72 h; b) Pseudomonas Agar Base with selective supplement 

cephalothin-fucidin-cetrimide (LabM Limited, Lancashire, United Kingdom) for the 

enumeration of Pseudomonas spp. after incubation at 25 oC for 48 h. After incubation, 

typical colonies for each microbial group were enumerated and colony counts were 

logarithmically transformed and expressed as log CFU/cm2. Further on, the primary model 

of Baranyi and Roberts (1994) was fitted to the growth data of TVCs and Pseudomonas 

spp. to determine the kinetic parameters of microbial growth (maximum specific growth 

rate and lag phase duration).   

3.2.3 Gas composition 

Prior to microbiological analysis, the gas composition in the headspace of the 

packages was analyzed using a Dansensor CheckMate 9900 gas analyzer (PBI-Dansensor 

A/S, Ringsted, Denmark) to monitor the changes in the concentration (%) of O2 and CO2 

during storage. 

3.2.4 Spectra acquisition 

3.2.4.1 Multispectral imaging 

 MSI spectra were captivated via Videometer-Lab instrument (Videometer A/S, 

Herlev, Denmark) which frames surface reflectance of samples from 18 different 

monochromatic wavelengths (405–970 nm), namely: 405, 435, 450, 470, 505, 525, 570, 

590, 630, 645, 660, 700, 850, 870, 890, 910, 940 and 970 nm. The organology of this sensor 

and the image acquisition is thoroughly described in previous publications (Dissing et al., 

2013; Fengou et al., 2019). The result of the measurement is a data cube comprised of 

spatial and spectral data for each sample of size m×n×18 (where m×n is the image size in 

pixels) (Tsakanikas et al., 2015). Furthermore, a segmentation process is required for the 

selection of the Region of interest (ROI) on the samples surface. This process is 

accomplished by Canonical Discriminant Analysis (CDA) and it is implemented by 

Videometer-Lab version 2.12.39 software (Videometer A/S, Herlev, Denmark). 

3.2.4.2 FT-IR spectroscopy 

 FT-IR measurements were performed using a ZnSe 45 HATR (Horizontal 

Attenuated Total Reflectance) crystal (PIKE Technologies, Madison, Wisconsin, United 
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States), and a FT-IR-6200 JASCO spectrometer (Jasco Corp., Tokyo, Japan). The 

measurement crystal shows a refractive index of 2.4 and a depth of penetration of 2.0 μm 

at 1000 cm-1. Spectra were obtained at the wavenumber range of 4000 to 400 cm-1 using 

Spectra Manager Code of Federal Regulations (CFR) software version 2 (Jasco Corp., 

Tokyo, Japan), by accumulating 100 scans with a resolution of 4 cm-1 and a total integration 

time of 2 min. 

3.2.5 Data analysis 

3.2.5.1 PLS-R unscrambler 

 For the development of PLS-R models assessing TVCs and Pseudomonas spp. 

counts the statistical software The Unscrambler © ver.9.7 (CAMO Software AS, Oslo, 

Norway) was used. Prior to analysis, MSI data were pretreated by Standard Normal Variate 

(SNV) transformation for the exclusion of collinear and “noisy” data (Bi et al., 2016). 

Likewise, FT-IR spectral data were subjected to Savinsky- Golay pre-treatment (second 

polynomial order, 1st derivative, 9-point window) (independent variables = 829) to 

minimize baseline shifts and noise (Rinnan et al., 2009; Alamprese et al., 2016). 

Additionally, wavenumbers in the range of 900–2000 cm-1 were utilized for the analysis as 

suggested by other researchers (Argyri et al., 2013; Ropodi et al., 2018). Calibration and 

full cross validation (leave-one-out cross validation) were conducted using one batch (n = 

115) and prediction was implemented by the second batch (n = 99). Independent variables 

for PLS-R models were the spectral data acquired by MSI and FT-IR and TVCs and 

Pseudomonas spp. counts were considered as dependent variables. 

3.2.5.2 Using SorfML for model development and validation 

 An alternative approach was investigated by the implementation of the sorfML 

software (www.sorfml.com), in which nine algorithms were considered for the prediction 

of TVCs counts, namely Partial-least squares (pls) (Geladi & Kowalski, 1986); Support 

vector machine with linear kernel (svmLinear) (Cortes & Vapnik, 1995); Support vector 

machine with radial basis function kernel (svmRadial); Random forests (rf) (Breiman, 

2001); K-nearest neighbours (knn) (Cover and Hart, 1967); Principal component 

regression (pcr) (Jolliffe, 1982); Least-angle regression (lars) (Loubes & Massart, 2004); 

Ridge regression (ridge) (Hoerl & Kennard, 1970); Artificial neural networks (nnet) (Jain 
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et al., 1996). Spectral data were mean-centered and standardized prior to analysis. This 

modification allows every variable equal opportunity to influence the final statistical model 

(Verboven et al., 2012). FT-IR spectral data set was constricted from 800 to 4000 cm-1. 

 Another point of attention in the sorfML software analysis was the splitting 

procedure of the data sets, which consisted of two phases (Figure 3.1). In the first one, the 

dataset (one batch) was separated randomly into training and testing sets with a 70%–30% 

split. Each machine learning algorithm was applied to the training set using repeated k-fold 

cross validation (k = 10, repeats = 3) and grid search to obtain best performing models with 

the optimal parameters. After model development, prediction was undertaken by the test 

set to assess overall performance which is firmly depended on the random training/test split 

undertaken. In order to provide an appropriate and unbiased outcome, Monte Carlo cross 

validation was implemented (k = 100) for a number of times with different training and 

test splits, and giving an average of the performance of all iterations (Xu and Liang, 2001). 

In the second phase, one batch was trained with k-fold cross validation (k = 10, repeats = 

3) and the best model was validated on the other batch (B1 on B2: B1 as training set and 

B2 as testing one; B2 on B1: B2 as training set and B1 as testing one). 

 

Figure 3.1: Flowchart describing model’s development and validation though The Unscrambler 

and sorfML via data processing stage. 
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3.2.6 Model performance indices 

The assessment of model performance was based on the calculation of the root mean 

squared error (RMSE) (Sant’Ana et al., 2012; Feng et al., 2013), mean absolute error 

(MAE) (Sang et al., 2008), coefficient of determination (R2) (Asuero et al., 2006) and 

accuracy index. Unlike classification models, accuracy in the case of quantitative models 

could be defined as TVC predictions within 1 log CFU/cm2 off the actual (observed) values 

(Estelles-Lopez et al., 2017). Supplementary to these metrics, r (correlation coefficient) 

was computationally calculated via the Unscrambler software. Even though the above-

mentioned performance metrics were calculated, models’ accuracy on prediction was 

assessed based on RMSE values. 

3.3 Results 

3.3.1 Microbiological analysis 

The microbial population of TVCs and Pseudomonas spp. on the surface of chicken 

breast fillets for each storage condition is presented in Figure 3.2. The initial load of TVCs 

was 3.3 and 2.9 log CFU/cm2 in B1 and B2, respectively. Likewise, Pseudomonas spp. was 

enumerated at the beginning of storage at 2.0 and 2.1 log CFU/cm2 for B1 and B2, 

respectively. Storage temperature seemed to significantly influence the growth of 

chicken’s microbiota as inferred by the respective kinetic parameters for TVCs and 

Pseudomonas spp. as derived by the primary growth model of Baranyi and Roberts (1994) 

(Appendix I, Table 3A). Specifically, the lag phase duration and μmax of Pseudomonas spp. 

of chicken samples stored at 0 oC were 72.2 h and 0.036 h-1, respectively. On the contrary, 

samples stored at 15 oC exhibited μmax and lag phase duration of Pseudomonas spp. at 0.241 

h-1 and 8.8 h, respectively.  

 TVCs and Pseudomonas spp. counts in B1 and B2 presented variations during 

storage at 0 and 5 oC but always within the range of ± 1 log unit. At the end of storage, 

TVCs and Pseudomonas spp. counts on samples from B1 were 6.2 and 5.7 log CFU/cm2, 

respectively. Similarly, for B2 samples the level of final TVCs and Pseudomonas spp. 

counts was 6.3 and 5.5 log CFU/cm2, respectively. For B1 at 5 oC the number of TVCs and 

Pseudomonas spp. after a period of 360 h was 6.8 and 6.6 log CFU/cm2, respectively, while 

for B2 at the same storage conditions, TVCs and Pseudomonas spp. counts were 7.6 and 
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6.2 log CFU/cm2, respectively. This difference in microbial counts was expected as 

samples of B1 and B2 were collected with an interval of 4 months (winter- spring) to take 

into account seasonal variation. It is also worth noting that in all storage conditions, the 

final number of TVCs ranged between 6.2-7.6 log CFU/cm2, unlike other studies reporting 

spoilage level of poultry meat at 7.0-8.0 log CFU/cm2 (Rouger et al., 2017). The lower 

TVCs values during spoilage of poultry meat observed in this work could be attributed to 

the non-permeable film used by the poultry company as packaging material. Indeed, the 

percentage of CO2 inside the packages at the end of storage was 14.3 % and 47.5 % for 

samples stored at 0o C and 15o C, respectively (Appendix I, Figure 3A). 

 

Figure 3.2: Microbial counts of TVCs (batch 1: blue line), Pseudomonas spp. (batch 1: orange 

line), TVCs (batch 2: grey line) and) and Pseudomonas spp. (batch 2: yellow line) on the surface 

of chicken breast fillet samples stored at 0, 5, 10 and 15 oC.  
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3.3.2 Spectral measurements 

Typical MSI and FT-IR spectra of fresh (0 h corresponding to 3.3 log CFU/cm2) and 

spoiled (456 h corresponding to 5.9 log CFU/cm2) chicken breast fillet samples are 

illustrated in Figures 3.3, 3.4, respectively. The comparison of reflectance in MSI spectra 

between fresh and spoiled samples confirmed the role of myoglobin in meat color 

assessment (570 to 700 nm). Concerning FT-IR spectra, the contribution of the absorption 

bands in the range of 1,400-1,800 cm-1 for the prediction of the microbial counts on the 

surface of samples is highlighted in Figure 3.4. The absorbance in this region is mainly 

related to the metabolic fingerprint of samples which is derived from the metabolic activity 

of microorganisms during spoilage procedure (Alexandrakis et al., 2012). 

 

Figure 3.3: Spectrum of fresh (blue line, storage time: 0 h) and spoiled (red line, storage time: 

456 h) chicken breast fillet samples stored at 0 oC from MSI spectra (wavelengths: 405- 970 nm). 
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Figure 3.4: Spectrum of fresh (blue line, storage time: 0 h) and spoiled (red line, storage time: 

456 h) chicken breast fillet samples stored at 0 oC from FT-IR measurements (wavelengths: 

1,000- 2,000 cm-1). 

3.3.3 Models assessing microbial population via MSI analysis 

Performance metrics (r, RMSE, MAE, accuracy) as well as linear parameters (slope, 

offset) are provided in Table 3.1 for PLS-R model calibration, cross-validation and 

prediction, estimating the level of TVCs and Pseudomonas spp. on the surface of chicken 

breast fillets via MSI analysis. More specifically, RMSE and r values ranged between 

0.752- 1.359 log CFU/cm2 and 0.604- 0.876, respectively for the estimation of TVCs 

counts when B1 was used as training set and B2 as testing set. Similar performance was 

observed for PLS-R model assessing Pseudomonas spp. counts. In this case, the values of 

r increased from 0.665- 0.905, while RMSE exhibited values in the range of 0.724 to 1.574 

log CFU/cm2. Additionally, a graphical approach of these linear models is represented in 

Figure 3.5 where predicted vs observed TVCs and Pseudomonas spp. counts are 

illustrated. Beta coefficients of the models are provided in order to comprehend the 

contribution of specific wavelengths to model development. As demonstrated in Figure 

3.6, six of the 36 spectral variables were important in model optimization as their beta 

coefficients significantly differed from those of the other wavelengths. Wavelengths 

influencing PLS-R model were 630, 645 and 660 nm. Likewise, high values of b 

coefficients noticed at 850, 890 and 940 nm.  

Table 3.1: MSI model performance parameters (slope, offset, Latent variables LVs,) and metrics 

(r, RMSE, MAE, Accuracy %). 

TVCs N LVs slope offset Correlation 

coefficient r 

RMSE 

(log 

CFU/cm2) 

MAE % 

Accuracy 

Calibration 115a 9 0.768 1.177 0.876 0.752 
  

FCV 115a 9 0.719 1.428 0.807 0.931 
  

Prediction 100b 
 

0.534 3.139 0.604 1.359 1.042 59 

Pseudomonas 

spp. 

        

Calibration 115a 10 0.818 0.817 0.904 0.724 
  

FCV 115a 10 0.766 1.035 0.843 0.920 
  

Prediction 100b 
 

0.597 2.930 0.664 1.574 1.276 51 
a data set from batch 1; b data set from batch 2; LVs: Latent variables; FCV: Full-cross validation 
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Figure 3.5: Predicted versus observed TVCs and Pseudomonas spp. counts after MSI models 

validation. Blue line depictures the line of equity (y=x) and red lines indicate ± 1 log unit area. 

 

Figure 3.6: b coefficients of PLS-R model for MSI analysis per monochromatic wavelength from 

405 to 970 nm. Dashed bars represent data per wavelength that influenced more model’s 

performance. 

Results for MSI spectral data after the implementation of 9 algorithms via sorfML 

platform consisting of internal testing on B1 and B2, averaged over 100 iterations (Monte 

Carlo cross validation) are shown in Figure 3.7. RMSE values ranged from 0.717 to 1.387 

log CFU/cm2, MAE from 0.554 to 1.158, R2 from -12.064 to 0.725 and accuracy from 43.5 

% to 84.1 %. The highest performance was achieved with nnet with RMSE value of 0.717 

log CFU/cm2 on B1 and 0.752 log CFU/cm2 on B2 . Additionally, other machine learning 

algorithms such as ridge, lars, pcr, pls and svmLinear performed equally well with RMSE 

values below 0.78 log CFU/cm2. 
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Figure 3.7: Performance metrics (Accuracy, MAE, RMSE, R2) of MSI models with intra-batch 

validation. 

Following the same approach, results for batch-on-batch are provided in Figure 

3.8. A less satisfactory performance can be observed compared to intra-batch testing, with 

RMSE values ranging from 1.252 to 1.995 log CFU/cm2, MAE from 0.993 to 1.710, R2 

from -23.368 to 0.246 and accuracy from 27 to 56 %. More specifically, the models 

developed on B1, predicted TVC population from B2 with around 0.3 higher performance 

on RMSE values. In contrast to intra- batch case, the highest performance was 

accomplished by lars with RMSE of 1.252 log CFU/cm2. Model’s optimization with B1 

exhibited low values of RMSE (1.251 versus 1.544 log CFU/cm2 for lars model). However, 

in the case of B2 as a calibration data set, R2 values presented improved values, especially 

when lars, pls and ridge algorithms were applied. 
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Figure 3.8: Performance metrics (Accuracy, MAE, RMSE, R2) of MSI models with batch-on-batch 

validation. Model B1 on B2 was developed via batch 1 and tested via batch 2. The reversed 

procedure was followed for B2 on B1. 

3.3.4 Models assessing microbial population via FT- IR analysis 

The findings of models predicting TVCs and Pseudomonas spp. counts with FT-IR 

measurements are shown in Figure 3.9- 3.12. Performance metrics for PLS-R models are 

also provided in Table 3.2 for calibration, cross- validation and prediction procedures 

where B1 was used for model development and B2 for testing. For the estimation of TVCs 

on chicken breast, RMSE and r demonstrated values 0.739- 1.029 log CFU/cm2 and 0.679- 

0.882, respectively. PLS-R model for Pseudomonas spp. via FT-IR exhibited r values of 

0.739-0.916 and RMSE values were from 0.683 to 1.077 log CFU/cm2. The influence of 

each spectral variable is illustrated in Figure 3.10 in terms of beta coefficients of the PLS-
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R models per wavenumber. The main region between 1,004 to 1,222 cm-1 contained 

interesting information and therefore had great impact on model development. Absorption 

bands of 1,230-1,403 cm-1 were considered as important for the prediction of TVCs and 

Pseudomonas spp. Beta coefficients of 1,432- 1,498 cm-1 as well as 1,549- 1,584 cm-1 and 

1,658- 1,704 cm-1 had impact on model construction. 

Table 3.2: FT-IR model performance parameters (slope, offset, Latent variables LVs,) and metrics 

(r, RMSE, MAE, Accuracy %). 

TVCs N LVs slope offset Correlation 

coefficient r 

RMSE  

(log CFU/cm2) 

MAE % Accuracy 

Calibration 115a 5 0.777 1.128 0.882 0.739 
  

FCV 115a 5 0.654 1.805 0.778 0.989 
  

Prediction 99b 
 

0.493 2.883 0.679 1.029 0.861 65 

Pseudomonas 

spp. 

        

Calibration 115a 5 0.839 0.723 0.916 0.683 
  

FCV 115a 5 0.669 1.528 0.749 1.155 
  

Prediction 99b 
 

0.682 1.767 0.739 1.077 0.894 65 
a data set from batch 1; b data set from batch 2; LVs: Latent variables; FCV: Full-cross validation 

 

Figure 3.9: Predicted versus observed TVCs and Pseudomonas spp. counts after FT-IR models 

validation. Blue line depictures the line of equity (y = x) and red lines indicate ± 1 log unit area. 
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Figure 3.10: b coefficients of PLS-R model for FT-IR analysis for each wavelength within 1,000- 

1,800 cm-1. 

 

The results for intra batch training for FT-IR data are summarized as a heatmap in 

Figure 3.11 containing also the performance metrics for the 9 algorithms. RMSE values 

ranged from 0.857 to 1.536 log CFU/cm2, MAE from 0.669 to 1.164, R2 from -3.129 to 

0.546, and accuracy from 50.0 to 75.9 %. As Figure 3.11 indicates, prediction on B2 was 

more accurate than B1 based on RMSE values. Nnet exhibited acceptable performance on 

B1 with 1.047 log CFU/cm2 for RMSE, while lars and svmLinear algorithms performed 

better with RMSE being at 0.904 and 0.954 log CFU/cm2, respectively for B2. 
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Figure 3.11: Performance metrics (Accuracy, MAE, RMSE, R2) of FT-IR models with intra-batch 

validation. 

Likewise, batch-on-batch prediction metrics are represented in Figure 3.12. In 

comparison to MSI models, FT-IR models predicted TVCs counts satisfactory when B1 

was used as training set. RMSE values ranged from 0.851 to 3.924 log CFU/cm2 while 

training model on B1 and validating on B2 outperformed the second model around 

significantly with 55% lower RMSE. More specifically, nnet accomplished the lowest 

RMSE (0.851 log CFU/cm2) and MAE (0.67 log CFU/cm2) over the other algorithms as 

well as models trained on B2 and validated on B1.   
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Figure 3.12: Performance metrics (Accuracy, MAE, RMSE, R2) of FT-IR models with batch-on-

batch validation. Model B1 on B2 was developed via batch 1 and tested via batch 2. The reversed 

procedure was followed for B2 on B1.  

3.4 Discussion 

The initial population of TVCs and Pseudomonas spp. was 3.1 (± 0.29) and 2.1 (± 

0.15) log CFU/cm2, respectively, which is considered low compared to published data 

where the respective counts for TVCs and Pseudomonas spp. were above 5.0 and 3.5 log 

CFU/cm2, respectively (EFSA, 2016; Rouger et al, 2017). As presented in Figure 3.2, the 

final population of microbiota was considerably low in the case of samples stored at 0 oC 

in comparison to the threshold of spoilage of other meats (ca. 7.0-8.0 log CFU/cm2) 

(Nychas et al., 2008). Unlike literature (Rouger et al., 2017), Pseudomonas spp. counts 

were enumerated at the final sampling point at 0 oC below 7 log CFU/cm2 (Al-Nehlawiet 

al., 2013), due to the fact that packaging film did not permit diffusion of gases. Therefore, 
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the produced CO2 from microbiota’s metabolic reactions acted as modified atmosphere 

packaging (Koutsoumanis et al., 2008, Liang et al., 2012, Holl et al., 2016). The differences 

between and within batches could be attributed to animals’ variations (Marcato et al., 

2006), alterations of nutrition (Sakomura et al., 2015) as well as by the time of the year 

(winter-summer), slaughtering and distributing to retail points (Nychas et al., 2008; Collins 

et al., 2015). It is worth noting that the 2 analyzed chicken breast fillet samples per 

sampling point could not be from the same chicken as they were randomly selected. 

For MSI spectral data, model performance metrics predicted RMSE from 0.739 to 

1.536 log CFU/cm2. For the prediction of TVCs and Pseudomonas spp. counts with PLS-

R models, RMSE was 1.359 and 1.574 log CFU/cm2, respectively. It needs to be noted that 

all developed models presented the tendency of overestimating the predicted counts. The 

increased RMSE values could be further improved (reduced) by applying alternative 

algorithms and sample splitting. Indeed, the assessment of TVCs counts by sorfML 

platform showed satisfactory results, especially in the case of intra-batch validation and 

nnet algorithm. In this model, RMSE presented the lowest value (0.717 log CFU/cm2) 

while for ridge model RMSE was 0.769 log CFU/cm2. On the contrary, for batch-on-batch 

validation, three algorithms were considered acceptable for the evaluation of TVCs, with 

lars model having RMSE of 1.252 log CFU/cm2 followed by pls and ringle models 

with1.319 and 1.262 log CFU/cm2, respectively. 

FT-IR models showed satisfactory prediction of counts, with performance metrics 

achieving better values than MSI. For PLS-R models, TVCs and Pseudomonas spp. counts 

were predicted with RMSE being 1.029 and 1.078 log CFU/cm2, respectively. For intra 

batch testing, nnet algorithm for B1 and lars for B2 were considered effective for the 

evaluation of TVCs, with lars having lower RMSE (0.905 log CFU/cm2) than nnet (1.047 

log CFU/cm2). In contrast, in batch-on-batch validation, RMSE value for nnet (B1 on B2: 

0.912 log CFU/cm2) were higher than lars where RMSE had the lowest value (0.851 log 

CFU/cm2).  

The differentiation of model performance for the 2-sensor analysis highlights the 

important role of splitting process, data set selection and algorithm during model’s 

optimization. One significant factor for accurate prediction is inter-batch variability. 
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Moreover, MSI results on intra-batch performance and its low RMSE suggested that this 

analysis could be applicable for internal validation or quality control in the production line. 

The latter option has been confirmed via experiments performed in the production line of 

chicken products at industrial level (Spyrelli et al., 2020). Furthermore, the fundamental 

role of training and testing data set definition is demonstrated by FT-IR lars model during 

B1 on B2 validation, which significantly outperformed batch-on-batch performance of 

MSI (RMSE: 0.851 vs 1.251 log CFU/cm2). Additionally, several models of FT-IR were 

able to attain respectable prediction on different data sets. 

Another step affecting model’s performance is the selection of the appropriate cross- 

validation procedure. Leave-one out cross validation (LOOCV) implemented for PLS-R 

models is a variant of k-fold cross-validation which removes only one sample at a time 

from the training set and considers it as a test set. Subsequently, for this case k is equal to 

the number of objects. This method may be useful for small database size presenting the 

problem of the inability to divide the data set into fairly sized subsets for training and test 

sets. However, this cross-validation approach can lead to overfit when the sample size is 

not large enough, and thus, results in high prediction error (Beruetta et al., 2007). In 

contrast, k-fold validation separates training data into k random groups, trains the model 

on k-1 groups and evaluates it on the remaining group. This is iterated for each unique 

group, and for repeated k-fold cross validation, the whole process is repeated for the 

specified times. Overlapping within training and testing data set was avoided  (k=100) with 

Monte Carlo cross validation by repeating the process outlined above for a number of times 

with different training and test splits and by averaging the performance of all iterations (Xu 

& Liang, 2001). Regarding machine learning algorithms implemented for intra- and batch 

on batch models, artificial neural network (nnet) and least-angle regression (lars) exhibited 

better performance metrics overall than other models. The former algorithm is considered 

as a suitable for spectral data sets due to its high tolerance to noisy data. On the other hand, 

the accuracy of lars might be explained by its ability in dealing with correlated predictors 

which are abundant in the existing datasets. Moreover, overfitting could be eliminated by 

reducing predictors range, while simultaneously this reduction could lead to an 

increasement of  the generalising ability of the models (Hesterberg et al., 2008).  
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The influence of certain wavelengths to MSI model development was documented via 

b coefficient values for PLS-R models (Figure 3.6). Reflectance intensity at 570–700 nm 

is related to the presence of respiratory pigments such as myoglobin (570 nm), 

oxymyoglobin (590 nm) and metmyoglobin (630 nm) (Panagou et al., 2014; Pu et al., 

2015). Fatty acids and fat within the food matrix were mainly responsible for the intensity 

at 928 and 940 nm while reflectance at 910 nm is evidence of protein denaturation 

(Kamruzzaman et al.,2015; Ropodi et al., 2018). Proteins and proteolysis products are in 

abundance in chicken meat, especially in chicken breast (Lin et al., 2011) and hence 

absorption band at 910 nm is considered as one of the most significant wavelengths for 

quality assessment on chicken breast fillets. Moreover, O-H second overtones observed at 

750 and 970 nm are related to the moisture content in the raw samples (Dixit et al., 2017; 

Xiaobo et al., 2010). The influence of muscle pigments and water content on the 

classification of chicken breast fillets was also highlighted by Yang et al. (2018), where 

samples were successfully classified in different quality grades.  

The b coefficients of PLS-R models (Figure 3.10) for FT-IR spectral data revealed the 

important contribution of certain wavelengths in model development. Absorption bands at 

1,011, 1,032 and 1,111-1,143 cm-1 were related to polyglycines, polysaccharides (C-O 

stretch) and amines (NH2 rock/twist), respectively (Böcker et al., 2007). Specifically, the 

absorption at 1032 cm-1 which corresponds to polysaccharides, could be associated to 

biofilm formation by Pseudomonas spp. on stored chilled meat (Liu et al., 2015; 

Wickramasinghe et al., 2019; Wickramasinghe et al., 2020). Additionally, high absorption 

occurred in the regions of 1,222-1,230 cm-1, 1,284-1,289 cm-1 and 1,345-1,352 cm-1 which 

are linked to the presence of lipids, nucleic acids (asym PO2-stretch), amines from free 

amino acids and amide III (Argyri et al., 2014). The critical role of amides and free amines 

for the prediction of spoilage in meat is presented via high b coefficients at 1,369-1,426 

cm-1 and 1,464-1,567 cm-1 (Böcker et al., 2007). These outcomes are in compliance to the 

existing literature where absorption bands of 1,650, 1,550 and 1,400- 1,200 cm-1 are linked 

to amide I, II and III and subsequently to the proteolytic activity of Pseudomonas spp. on 

meat (Nychas & Tassou, 1997; Ellis et al., 2002). Especially for chicken breast analysis 

via FTIR and NIR spectroscopy, the estimation of spoilage in intact chicken breast muscle 

was influenced by the absorption bands at 1,080, 1,550 and 1,640 cm-1 and the increased 
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content in free amino acids and peptides as a result of proteolysis during storage 

maintenance (Alexandrakis et al., 2012). In another study the estimation of microbial 

spoilage was attempted at 600-1,110 cm-1 where the findings indicated the region of 1,000–

1,060 cm-1 corresponding to protein functional group, such as R-CO-NH2, R-NH2,R-CO-

NH-R and R-NH-R as the most significant (Lin et al., 2004).  
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Chapter 4: Implementation of spectroscopic sensors and 

multivariate data analysis for the assessment of quality on 

chicken breast fillets 
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Abstract 

Multivariate data analysis and pattern recognition methods coupled with 

nondestructive spectroscopic techniques have manifested their potential as powerful 

techniques assessing food quality. In this context, Multispectral Imaging (MSI) and Fourier 

Transform Infrared Spectroscopy (FT-IR) were employed together with machine learning 

techniques for the construction of qualitative models evaluating spoilage of chicken breast 

meat. For this purpose, chicken breast samples (n= 427) were subjected to spoilage 

experiments for up to 480 h at isothermal conditions (0, 5, 10, 15, 20, 25, 30, and 35 oC) 

and dynamic temperature profiles (winter and summer transportation scenarios). The 

samples were analyzed microbiologically for the determination of Total Viable Counts 

(TVCs), while in parallel MSI and FT-IR measurements were performed. Moreover, 

sensory analysis was undertaken by a 14- member untrained sensory panel for the 

evaluation of fresh and spoiled samples. Based on the sensory results the threshold TVCs 

value corresponding to the shelf-life of the samples was 6.2 log CFU/cm2. According to 

this limit, samples were separated in two classes (fresh and spoiled) that were further 

correlated to MSI and FT-IR spectra for the development of classification models. Eight 

machine learning models (single-based and ensemble) were investigated for their efficacy 

to identify spoilage whereas their performance was validated by an independent data set 

from the two dynamic temperature profiles. MSI analysis and subspace ensemble exhibited 

the highest overall accuracy of prediction (64.8 %), while this combination demonstrated 

also acceptable values of specificity and sensitivity (69.7 %). On the contrary, FT-IR 

features presented better performance with Partial Least Squares- Discriminant Analysis 

(PLS-DA), as the samples were classified correctly with an overall accuracy of 67.6 %. 

However, in all cases of algorithms developed on FT-IR data, the misclassification rate of 

spoiled samples as fresh was 36.7%. These results suggest that spectroscopic methods and 

the developed models could be beneficial for the rapid assessment of quality in the poultry 

industry and simultaneously result in significant reduction in food waste. 
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4.1 Introduction  

The continuous technology evolution and consumers expectation for food of high 

quality and safety resulted in the development of smart spectroscopic sensors assessing 

quality and freshness in foods and in particular in meat products (Tsakanikas et al., 2020). 

Nevertheless, in the last decade food waste increased (FAO, 2021) and the significant 

economic losses for the meat industry dictated the necessity for alternative rapid methods 

to assess microbial quality and freshness (Lytou et al., 2016), especially for poultry 

products (raw or processed) due to their short shelf life. Unlike the conventional methods 

(e.g., microbiological, chemical, sensory, molecular analysis) which are time consuming 

and destructive, these smart devices are non- invasive, easily established and applied at-, 

in- or on-line while they enhance productivity in the meat industry (Sørensen et al., 2012; 

Dixit et al., 2017; Prieto et al., 2017).  

In recent years, many researchers have proposed spectroscopic methods such as 

Fourier-Transform Infrared spectroscopy (FT-IR), Near Infrared spectroscopy (NIR), 

Hyperspectral imaging (HSI), and Multispectral imaging (MSI) as alternative approaches 

for the assessment of quality on a variety of meat products (Panagou et al., 2014; Porep et 

al., 2015; Alamprese et al., 2016; Xiong et al., 2015). MSI analysis is a combination of 

spectroscopy (visible and NIR region) to computer vision and it has been recommended 

for the rapid assessment of meat quality (Pu et al., 2015; Ropodi et al., 2018; Fengou et al., 

2019). Specifically, for poultry products qualitative models have been developed for the 

classification of intact chicken breast fillets based on three quality grades via hyperspectral 

analysis (Yang et., 2018). Quantitative and/or qualitative models in the visible and near-

infrared region (400–1700 nm) have been successfully employed for the assessment of the 

bacterial population on chicken meat (TVCs and Pseudomonas spp.) during spoilage (Feng 

and Sun, 2013a, b; Ye et al., 2016). In addition, multispectral imaging was suggested for 

its potential to identify adulteration of minced beef with chicken meat (Kamruzzaman et 

al., 2016), fecal contaminants in a poultry line (Yang et al., 2005) and tumors on the surface 

of chicken breasts (Nakariyakul & Casasent, 2009). Moreover, the potential of at-line 

application of multispectral imaging in a poultry processing industry was investigated, as 

well as its efficacy to determine the time from slaughter in four different poultry products 

(Spyrelli et al., 2020).   
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Regarding the use of FT-IR in food science, there is evidence of its efficiency on the 

qualitative and quantitative evaluation of meat products (Argyri et al., 2010; Argyri et al., 

2013; Ropodi et al., 2018). This vibrational method was proposed by Alexandrakis et al. 

(2012) as an effective method for the discrimination of intact chicken breast muscle during 

spoilage. Additionally, FT-IR detected accurately the level of spoilage bacteria on the 

surface of chicken meat (Ellis et al., 2002). Likewise, this spectroscopic method is 

documented as promising, real- time method for the evaluation of freshness on stored 

chicken breast fillets (Vansconcelos et al., 2014). Recently, a workflow has been reported 

for the recognition of chicken meat among seven raw types of food via FTIR approach 

despite of variations among batches and storage conditions (temperature, duration, 

packaging, spoilage levels) (Tsakanikas et al., 2020).  

For the accurate and rapid assessment of quality in food matrices and specifically in 

meat, many researchers employ quantitative and qualitative machine learning algorithms 

in tandem with spectroscopic methods (Berrueta et al., 2007; Jiménez-Carvelo et al., 2019). 

Common tools involved in the development of predictive models for spoilage or 

adulteration assessment in meat are Artificial Neural Networks (ANNs), Partial Least 

Squares Regression (PLS- R), Partial Least Squares Discriminant Analysis (PLS-DA), 

Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), Random Forests 

(RF) and k-Nearest Neighbors (kNN) (Kamruzzaman et al., 2016; Falkovskaya and 

Gowen, 2020). Nowadays, there are available websites (e.g., sorfML, Metaboanalyst) or 

softwares (The Unscrambler, R, MatLab, Python) which allow the user to develop, validate 

and compare simultaneously the above-mentioned algorithms in order to develop the best 

model describing food spoilage (Ropodi et al., 2016; Jiménez-Carvelo et al., 2019; Fengou 

et al., 2020; Tsakanikas et al., 2020). For instance, sorfML is an online platform that 

provides the flexibility to apply different supervised machine learning algorithms 

simultaneously, while there is also feasibility for the comparison of different sensors 

performance (Estelles-Lopez et al., 2019; Manthou et al., 2020).  

Furthermore, another modeling approach that has recently drawn the attention of data 

scientists is the construction of ensemble learning methods. Ensemble methods medley 

multiple well-known algorithms, by creating smaller subsets into the data, training different 

classifiers with these partitions and combining their outputs, while they have demonstrated 
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improved performance compared to the outcome from their single base learners (Polikar, 

2006). Until now, the implementation of these techniques has been investigated in many 

scientific fields as face and emotion recognition, text classification, medical diagnosis and 

financial forecasting (Pintelas & Livieris 2020). In the last decades, boosting, bagging, 

random forest (Jimenez-Carvelo et al., 2019) and random subset-based strategy (Rokach, 

2010) have been employed for the development of reliable classification models in foods 

such as beef fillets (Mohareb et al., 2016), minced meat, green olives, beer and oil 

(Kucheryavskiy, 2018). 

The aim of this research was the development of individual machine learning 

classification models and ensemble models coupled to MSI and FT-IR spectral data for the 

evaluation of chicken breast fillets quality. The models were developed with data obtained 

from storage experiments of chicken breast fillets at isothermal conditions and validated 

on two different dynamic temperature profiles simulating temperature alterations during 

transportation in winter and summer season. 

4.2 Materials and Methods 

4.2.1 Experimental design 

Chicken breast fillets (ca. 245- 280 g per fillet) were obtained from a Greek poultry 

industry and transferred immediately to the laboratory under controlled temperature (1.77 

± 2.70 oC). Samples were enclosed in plastic packages (length: 25cm, width: 25 cm, 

thickness: 90 μm, permeability of ca. 25, 90, 6 cm³ m-2day-1bar-1(1 bar= 10⁵Pa) at 20°C 

and 50% RH for CO2, O2 and N2, respectively) and stored aerobically at eight isothermal 

conditions (0, 5, 10, 15, 20, 25, 30, and 35 oC). Additionally, samples were stored at two 

dynamic temperature conditions simulating transportation in the winter and summer 

(summer scenario:12 h at 5 oC, 8 h at 10 oC and 4 h at 15 oC; winter scenario: 12 h at 0 oC, 

8 h at 5 oC and 4 h at 10 oC). Samples were placed in high precision (±0.5 oC) incubation 

chambers (MIR-153, Sanyo Electric Co., Osaka, Japan) where temperature was recorded 

every 20 min by means of data loggers (CoxTracer, Belmont, N.C.). At pre- determined 

intervals, samples were subjected to microbiological analysis and spectral data acquisition 

by means of MSI and FT-IR. Two independent experiments were undertaken for each 

storage condition with duplicate samples analyzed per sampling point for isothermal 
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storage conditions, whereas in the case of dynamic temperature profiles chicken samples 

were analyzed in triplicate.  

Microbiological and sensory data were initially used for the determination of two 

quality classes, namely fresh and spoiled. Further on, the spectral data from MSI and FT-

IR were correlated to the two quality classes and models were developed for the qualitative 

assessment of spoilage (fresh and spoiled) of chicken breast fillets.  

4.2.2 Microbiological analysis 

Four slices of 5 cm2 (total surface: 20 cm2, maximum thickness: 2 mm) from the 

surface of chicken breast fillets were removed aseptically, using a sterile stainless steel 

cork borer (diameter: 2.5 cm), scalpel and forceps, diluted to 100 ml of sterile quarter 

strength Ringer’s solution (Lab M Limited, Lancashire, United Kingdom) and 

homogenized in a Stomacher device (Lab Blender 400, Seward Medical, United Kingdom) 

for 120 s at room temperature. The indigenous microbiota on the surface of samples was 

determined using serial decimal dilutions in the same medium and 0.1 ml was spread on 

Tryptic glucose yeast agar (Plate Count Agar, Biolife, Milan, Italy) for the enumeration of 

Total Viable Counts (TVCs) incubated at 25 oC for 72 h. TVCs counts were logarithmically 

transformed and expressed as log CFU/cm2. Results are presented as average values (± 

standard deviation) of the 4 samples analyzed at each sampling point. Further on, the 

primary model of Baranyi and Roberts (1994) was fitted to the growth data of TVCs to 

determine the kinetic parameters of microbial growth, namely maximum specific growth 

rate (μmax) and lag phase duration (λ) using Microsoft® Excel Add-in curve-fitting program 

DMFit, Version 3.5 available at www.combase.cc. 

4.2.3 Sensory analysis 

In parallel to sampling, samples were placed in sterile petri dishes and were exhibited 

at room temperature and artificial light for sensory evaluation. Panel of 14 individuals 

evaluated samples (n= 120) as fresh or spoiled based on odor with a 3point hedonic scale 

1- 3, namely: 1=fresh, 2= acceptable, 3= spoiled (Lytou et al., 2016). Sensory evaluation 

results of odor were correlated with TVCs in order to define the number of TVCs 

corresponding to spoiled samples (i.e., sensory scores above 2). Based on this TVCs value, 

http://www.combase.cc/
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spectral data were coupled to sensory results (class 1: fresh; class 2: spoiled) for the 

development of classification models assessing spoilage in chicken breast fillets. 

4.2.4 Spectra acquisition  

MSI spectra were captured using a Videometer-Lab instrument (Videometer A/S, 

Herlev, Denmark) which frames surface reflectance of samples from 18 different 

wavelengths (405-970 nm), namely 405, 435, 450, 470, 505, 525, 570, 590, 630, 645, 660, 

700, 850, 870, 890, 910, 940, and 970 nm. The organology of this sensor and the image 

acquisition process are described in detail in previous publications (Dissing et al., 2013, 

Fengou et al., 2019). The result of the measurement is a data cube comprised of spatial and 

spectral data for each sample of size m×n×18 (where m×n is the image size in pixels) 

(Tsakanikas et al., 2015). Furthermore, a segmentation process is required for the isolation 

of the Region of interest (ROI) on the samples surface. For each image, the mean 

reflectance spectrum was calculated by taking into account the average value and the 

standard deviation of the intensity of pixels within the ROI at each wavelength. This 

process is accomplished by Canonical Discriminant Analysis (CDA) and it is implemented 

by Videometer-Lab version 2.12.39 software (Videometer A/S, Herlev, Denmark).  

FT-IR measurements were performed using a ZnSe 45 HATR (Horizontal 

Attenuated Total Reflectance) crystal (PIKE Technologies, Madison, Wisconsin, United 

States) and a FT-IR-6200 JASCO spectrometer (Jasco Corp., Tokyo, Japan). The 

measurement crystal shows a refractive index of 2.4 and a depth of penetration of 2.0 μm 

at 1000 cm-1. Spectra were obtained in the wavenumber range of 4000 to 400 cm-1 using 

Spectra Manager Code of Federal Regulations (CFR) software version 2 (Jasco Corp., 

Tokyo, Japan), by accumulating 100 scans with a resolution of 4 cm-1 and a total integration 

time of 2 min. 

4.2.5 Data processing 

4.2.5.1 Data pre- processing for MSI and FT-IR analysis 

MSI spectral data (n=368) were comprised of 18 mean values and the respective 18 

standard deviations of the intensity in pixels. Prior to analysis, the data set was modified 

by Standard Normal Variance (SNV) transformation for the limitation of collinear and 
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“noisy” data areas (Bi et al., 2016). The data set from the storage experiments at isothermal 

conditions (n=368) was used in model calibration, where 222 (60.3%) and 146 (39.7%) of 

the samples were defined as fresh (Class 1) and spoiled (Class 2), respectively. Model 

optimization was undertaken with k- validation process (k-fold validation, k=5).  The 

developed models were validated using independent data sets from dynamic temperature 

conditions simulating transportation scenarios in the winter and summer period (n=71; 

Class 1: 38 samples (52.5%); Class 2: 33 samples 46.5 %). 

Pre-treatment of FT-IR spectral data (n= 829) by Savinsky- Golay (second 

polynomial order, 1st derivative, 9-point window) was considered necessary for the 

reduction of baseline shift and noise (Alamprese et al., 2016). Furthermore, wavelengths 

in the range of 900-2000 cm-1 were employed in the analysis as suggested by previous 

researchers for meat (Ropodi et al., 2018, Fengou et al., 2020). Model’s development 

(calibration and k-cross validation: k- fold, k=5) was conducted by data set from isothermal 

conditions of storage (n=360), where 219 (60.8 %) were fresh, and 141 (39.2 %) spoiled. 

Data set from dynamic temperature profiles (n=67) was utilized for validation, with fresh 

samples being 37 (55.2 %) and spoiled being 30 (44.8 %). 

4.2.5.2 Machine learning algorithms and models performance evaluation  

The level of spoilage on the surface of chicken breast fillets was assessed by eight 

algorithms, namely: a) Partial Least Squares-Discriminant Analysis (PLS-DA) (Barker & 

Rayens, 2003; Indahl et al., 2007) via Unscrambler© ver. 9.7 software (CAMO Software 

AS, Oslo, Norway); b) Linear Discriminant Analysis (LDA) (Kim et al., 2011); c) Linear 

Support Vector Machines (LSVM) (Cortes & Vapnik, 1995); d) Quadratic Support Vector 

Machine, (QSVM) (Osuna et al., 1997); e) k-Nearest Neighbor classification (fine-KNN) 

(Cover & Hart, 1967); g) decision tree-simple (Loh, 2011); f) subspace (Ho, 1998); h) 

rusboosted (Seiffert et al., 2008; Hu et al., 2014) via MATLAB 2012a software (The 

MathWorks, Inc., Natick, Massachusetts, USA). The last two algorithms are a combination 

of multiple classifiers in order to achieve high prediction accuracy (Arafat et al., 2019). 

Further information concerning the parameters and the corresponding function of each 

model is presented in Appendix I (Tables 4A and 4B). 
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Model performance was evaluated by the following indices: overall accuracy, 

overall error, sensitivity, specificity and precision for model k-cross validation and 

prediction (Table 4.1) (Sokolova & Lapalme, 2009; Arafat et al., 2019). 

Table 4.1: Performance indices for the assessment of model’s performance (Sokolova & Lapalme, 

2009; Arafat et al., 2019) 

Performance index Equation 

Overall accuracy (%) 𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝 + 𝑡𝑛
 

Overall error (%) 𝑓𝑛 + 𝑓𝑝

𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝 + 𝑡𝑛
 

Sensitivity (%) 𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

Specificity (%) 𝑡𝑛

𝑓𝑝 + 𝑡𝑛
 

Precision (%) 𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

n: number of samples; tp: positive samples classified correctly; tn: negative samples classified correctly; fn: 

negative samples classified as positive; fp: positive samples classified as negative; 

4.3 Results 

4.3.1 Microbiological analysis 

The loads of TVCs (log CFU/cm2) of stored chicken breast fillet samples at 0-15 oC 

and 20-35 oC are illustrated in Figures 4.1 and 4.2, respectively. Additionally, the 

microbiological results from the dynamic temperature profiles simulating two scenarios 

during transportation are provided in Figures 4.3 and 4.4. The initial TVCs in chicken 

samples stored at isothermal conditions ranged from 3.13 (± 0.30) to 3.24 (± 0.31) log 

CFU/cm2 (Figure 4.1-4.2), while samples from dynamic temperature profiles showed 

values of 4.41 ± 0.27 log CFU/cm2 (summer scenario) and 3.89 ± 0.12 log CFU/cm2 (winter 

scenario). As demonstrated in Figures 4.1 and 4.2, TVCs were influenced by temperature 

during storage, hence deterioration and eventually spoilage was evident (off-odors, slime 

production) at different time points. For instance, TVCs approached 7.0 log CFU/cm2 at 

15°C in 120 h (7.06 ± 0.16 log CFU/cm2), at 10°C in 192 h (6.92 ± 0.27 log CFU/cm2) and 

at 5 oC in 264 h (6.85 ± 0.11 log CFU/cm2). Similarly, TVCs ranged above 7.0 log CFU/cm2 

at 20°C in 72 h (7.0 ± 0.16 log CFU/cm2), at 25°C in 56 h (7.49 ± 1.01 log CFU/cm2), at 

30 oC in 36 h (7.36 ± 1.18 log CFU/cm2) and at 35 oC in 28 h (6.61 ± 0.49 log CFU/cm2). 

It needs to be noted that the final TVCs value at 0 oC was 6.24 ± 0.63 log CFU/cm2 in 288 
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h and this finding could be attributed to the non-permeable film used by the poultry 

company as packaging material. Regarding the samples stored at the two different dynamic 

profiles (Figures 4.3 and 4.4), it was noticed that microbial loads reached 7.0 log CFUcm2 

in 144 h (6.90 ± 0.24 log CFU/cm2) for summer transportation and in 168 h (6.95 ± 0.17 

log CFU/cm2) for winter transportation. 

 

Figure 4.1: Mean (± SD, n=4) TVCs (log CFU/cm2) in chicken breast samples during storage at 

15 (blue line with cycles), 10 (orange line with squares), 5 (grey line with triangles) and 0 oC 

(yellow line with stars).  

 

Figure 4.2: Mean (± SD, n=4) TVCs (log CFU/cm2) in chicken breast samples during storage at 

20 (blue line with cycles), 25 (orange line with squares), 30 (grey line with triangles) and 35 oC 

(yellow line with stars).  
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Figure 4.3: Mean (± SD, n=3) TVCs (log CFU/cm2) in chicken breast samples and recorded 

temperature (oC) during storage at 1st dynamic temperature profile (summer scenario of 

transportation:12 h at 5 oC, 8 h at 10 oC and 4 h at 15 oC). Blue line with cycles corresponds to 

TVCs loads and orange line to temperatures alterations.   

 

Figure 4.4: Mean (± SD, n=3) TVCs (log CFU/cm2) in chicken breast samples recorded 

temperature (oC) during storage at 2nd dynamic temperature profile (winter scenario of 

transportation:12 h at 0 oC, 8 h at 5 oC and 4 h at 10 oC). Blue line with cycles corresponds to TVCs 

loads and orange line to temperatures alterations.   

The average values of lag phase duration, specific growth rate (μmax), initial (N0) 

and maximum (Nmax) number of TVCs estimated by the Baranyi and Roberts model (1994) 

are presented in Table 4.2. Lag phase values were determined in all cases and were 

decreased with increasing storage temperature, with maximum and minimum values of 

92.6 and 4.7 h at 0 and 35 oC, respectively. On the contrary, the estimated μmax parameter 

was increased with increasing storage temperature from 0.0382 h-1 (0 oC) to 1.5865 h-1(30 
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oC), whereas above 35 oC this parameter decreased to 1.329 h-1. The model of Baranyi and 

Roberts was fitted to the experimental data satisfactorily as can be inferred by the standard 

error of fit (se(fit)) and the coefficient of determination (R2) values (Table 4.2). 

Table 4.2: Estimated kinetic parameters (lag phase, μmax, yo, ymax) and performance indices 

(standard error of fit: se(fit); R2) by the implementation of Baranyi and Roberts primary growth 

model of TVC in chicken breast samples stored at eight isothermal conditions (0, 5, 10, 15, 20, 25, 

30 and 35 oC). 

Temperature 

(oC) 

lag (h) μmax (h-1) N0 (log 

CFU/cm2) 

Nmax (log 

CFU/cm2) 

se(fit) R2 

0 92.6±30.59 0.038±0.005 2.7±0.54 5.5±0.73 0.433-0.492 0.826-0.879 

5 52.8±4.92 0.057±0.013 3.0±0.29 6.6±0.47 0.426-0.551 0.875-0.937 

10 22.7±13.97 0.090±0.005 3.1±032 6.8±0.22 0.279-0.506 0.894-0.964 

15 10.2±1.76 0.214±0.096 2.9±0.15 6.8±0.18 0.224-0.545 0.879-0.982 

20 8.8±3.29 0.370±0.155 3.3±0.31 6.8±0.27 0.188-0.568 0.873-0.985 

25 6.5±2.37 0.296±0.136 3.3±0.42 7.0±0.03 0.400-0.729 0.900-0.943 

30 5.8±3.89 1.587±0.301 3.1±0.35 6.3±0.08 0.307-0.544 0.900-0.954 

35 4.7±3.27 1.329±0.314 3.3±0.68 6.6±0.26 0.321-0.483 0.928-0.964 

4.3.2 Sensory evaluation and shelf-life determination 

Sensory results demonstrated that 61.7% of the samples were evaluated as spoiled 

with average scores above 2 corresponding to TVCs value of 6.2 ± 0.44 log CFU/cm2. The 

scores of the judges did not differ significantly (p< 0.05). Based on this outcome, two 

quality classes were developed for chicken breast fillets, namely fresh (TVCs < 6.2 log 

CFU/cm2) and spoiled (TVCs ≥ 6.2 log CFU/cm2) and the spectral data acquired by MSI 

and FT-IR were associated with these quality classes. SL values followed a similar trend 

with lag phase and they were decreased with increasing storage temperature. More detailed 

information of the acceptability limit for each temperature is provided in Figures 4.5 and 

4.6 where sensory results and TVC loads are shown during storage. More specifically, 

based on the odor of chicken meat samples spoilage was evident in 240 h at 0 oC (5.9 log 

CFU/cm2), 120 h at 5 oC (6.0 log CFU/cm2), 96 h at 10 oC (6.4 log CFU/cm2) and 48 h at 

15 oC (6.7 log CFU/cm2), 48 h at 20 oC (6.7 log CFU/cm2), 32 h at 25 oC (log CFU/cm2), 

22 h at 30 oC, and 6 h at 35 oC (5.7 log CFU/cm2). 
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Figure 4.5: Sensory assessment scores (1-3) of odor (orange rhomb) and TVCs population (log 

CFU/cm2; blue line with cycles) in chicken samples stored at 0, 5, 10 and 15 oC.  

 

Figure 4.6: Sensory assessment scores of odor (orange rhomb) and TVCs population (log 

CFU/cm2; blue line with cycles) in chicken samples stored at 20, 25, 30 and 35 oC.  
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4.3.3 Spectra from sensors  

Representative spectra of FT-IR and MSI corresponding to fresh (0 h at 0 oC) and 

spoiled (278 h at 5 oC) chicken breast fillet samples are depicted in Figure 4.7. Regarding 

FT-IR (Figure 4.7A), the absorption bands showing variations between fresh and spoiled 

samples were located in the areas of 1,000.87-1,150 cm-1 and 1,476.24-1,692.2 cm-1. 

Specifically, absorption bands at 1,541.81 and 1,629.55 cm-1 were attributed to the 

metabolic products (amide I and II) associated with spoilage microorganisms 

(Alexandrakis et al., 2012). For MSI spectra (Figure 4.7B), reflectance between fresh and 

spoiled samples differed at 590, 630, 645, 660, 700, 850, 870, 890, 910 and 940 nm, where 

the region of 570 to 700 nm is related to myoglobin in meat color as described elsewhere 

(Spyrelli et al., 2020). 

 

Figure 4.7: Representative spectra of FT-IR (A) and MSI implementation (B) on fresh (0 h at 0 oC, 

blue line) and spoiled (278 h at 5 oC, orange line) chicken breast fillets.  

4.3.4 Machine learning for MSI data  

The performance of the developed classification models is presented in Table 4.3.  

The overall accuracy showed higher values during CV (62-82.3%) than prediction (49.3-

64.8%) and the same trend was observed for the other metrics. The high percentages of 

specificity in parallel to sensitivity indicated that there is an overestimation of fresh meat 

samples in all models applied. Subspace ensemble predicted more accurately the quality 

class of the samples, with overall accuracy in prediction of 64.8%. These values indicated 

that this model outperformed all the other. Moreover, specificity and sensitivity indexes 
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for subspace model exhibited satisfactory percentages (specificity: 69.7 %, sensitivity: 69.7 

%), unlike all other models where there was an imbalance between the values of these two 

indexes. Precision was another performance metric showing the highest value (69.7 %) in 

subspace classification. Other models with acceptable performance where overall accuracy 

was higher than 50 %, were rusboosted (Overall accuracy: 59.2 %) and LDA (Overall 

accuracy: 56.3%). The confusion matrices of the three aforementioned models are 

presented in Table 4.4.  

Table 4.3: Performance indexes (Overall accuracy, Overall error, Precision, Specificity, 

Sensitivity) for each supervised classification model derived from MSI data. Provided indexes for 

internal validation (cross validation: 5-fold validation) and prediction modeling process 

Model Modeling 

process 

Overall 

Accuracy 

Overall 

Error 

Precision Specificity Sensitivity 

LDA CV 62.0 38.0 68.8 53.4 67.6 

Prediction 56.3 43.7 59.5 54.5 57.9 

LSVM CV 76.1 23.9 76.4 58.9 87.4 

Prediction 49.3 50.7 15.8 87.9 60.0 

QSVM CV 77.2 22.8 79.2 66.4 84.2 

Prediction 50.7 49.3 15.8 90.9 66.7 

FineKNN CV 64.4 35.6 70.8 56.2 69.8 

Prediction 53.5 46.5 57.9 48.5 56.4 

Subspace CV 77.2 22.8 77.0 59.6 88.7 

Prediction 64.8 35.2 60.5 69.7 69.7 

Simple_tree CV 65.5 34.5 67.0 37.0 84.2 

Prediction 53.5 46.5 63.2 42.4 55.8 

rusBoosted CV 69.0 31.0 73.7 58.9 75.7 

Prediction 59.2 40.8 62.2 57.6 60.5 
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PLS-DA CV 82.3 17.7 82.6 53.4 87.3 

Prediction 52.1 47.9 75 52.9 15.8 

CV: Cross Validation (k-fold, k=5) 

Table 4.4: Confusion matrix of Subspace, rustBoosted and LDA models development and 

evaluation for MSI data.  

Model Stage O/P Fresh Spoiled Total number 

Subspace CV Fresh 197 25 368 

Spoiled 59 87 

Prediction Fresh 23 15 71 

Spoiled 10 23 

rusBoosted CV Fresh 168 54 368 

Spoiled 60 86 

Prediction Fresh 23 15 71 

Spoiled 14 19 

LDA CV Fresh 150 72 368 

Spoiled 68 78 

Prediction Fresh 22 16 71 

Spoiled 15 18 

 

4.3.5 Machine learning for FT-IR data 

Classification models using FT-IR spectral data identified the quality class of chicken 

breast fillet samples, with overall accuracy of prediction ranged from 52.2% to 67.6 % 

according to the model employed (Table 5.5). Similar to MSI results, all performance 

metrics were degraded from CV to prediction procedure. Even though the overall accuracy 

was considered acceptable, spoiled samples were significantly misclassified as fresh in all 

models, with specificity values ranging from 10% to 36.7% in the prediction of models. 

PLS-DA model demonstrated the best combination of performance indexes, with 67.6% 

overall accuracy of prediction. Furthermore, the model identified accurately (100 %) fresh 

samples during prediction, precision reached 66.18 % while spoiled samples were 

underestimated with specificity being only 36.7 %. Among the other classification models, 
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FineKNN and QSVM presented acceptable values of overall accuracy of prediction with 

62.7 % and 61.2 %, respectively. Prediction and sensitivity for these two models indicated 

percentages greater than 60 %, although specificity was 36.7 and 30 %, respectively (Table 

4.6).  

Table 4.5: Performance indexes (Overall accuracy, Overall error, Precision, Specificity, 

Sensitivity) for each supervised classification model derived from FT-IR data. Provided indexes 

for internal validation (cross validation: 5-fold validation) and prediction modeling process. 

Models Modeling 

process 

Overall 

Accuracy 

Overall 

Error 

Precision Specificity Sensitivity 

LDA CV 62.5 37.5 70.8 58.2 65.3 

Prediction 58.2 41.8 75.7 36.7 59.6 

QSVM CV 78.6 21.4 82.0 71.6 83.1 

Prediction 61.2 38.8 86.5 30.0 60.4 

Simple tree CV 71.4 28.6 78.2 68.1 73.5 

Prediction 56.7 43.3 94.6 10.0 56.5 

rusBoosted 

trees 

CV 73.6 26.4 79.2 68.8 76.7 

Prediction 59.7 40.3 86.5 26.7 59.3 

FineKNN CV 65.8 34.2 72.4 58.2 70.8 

Prediction 62.7 37.3 83.8 36.7 62.0 

LSVM CV 78.3 21.7 77.6 59.6 90.4 

Prediction 52.2 47.8 78.4 20.0 54.7 

Subspace CV 74.4 24.4 79.8 69.5 79.1 

Prediction 56.7 43.3 86.5 20.0 57.1 



74 

 

 

Table 4.6: Confusion matrix of PLS- DA, FineKNN and QSVM models development and 

evaluation for FT-IR data.  

Model Stage O/P Fresh Spoiled Total 

number 

PLS-DA CV Fresh 203 16 360 

Spoiled 87 54 

Prediction Fresh 37 0 67 

Spoiled 19 11 

FineKNN CV Fresh 155 64 360 

Spoiled 59 82 

Prediction Fresh 31 6 67 

Spoiled 19 11 

QSVM CV Fresh 182 37 360 

Spoiled 40 101 

Prediction Fresh 32 5 67 

Spoiled 21 9 

4.4 Discussion 

The microbiological results confirmed the critical role of storage temperature in 

chicken breast fillet meat and the evolution of TVCs (Alexandrakis et al., 2012; Doulgeraki 

et al., 2012; Rouger et al., 2017). Low temperatures significantly inhibited chicken’s 

spoilage and in parallel extended the shelf life (Raab et al., 2008), with samples stored at 0 

oC maintaining TVCs below 6 log CFU/cm2. On the contrary, samples stored at high 

temperatures demonstrated rapid growth of TVCs and deterioration of the organoleptic 

characteristics (odor). These findings were in line with Baranyi and Roberts (1994) primary 

model outcome, where lag phase was prolonged while μmax parameter was decreased in 

samples stored at low temperatures (Table 4.2), similarly to literature (Gospavic et al., 

2008; Lytou et al., 2016). The initial microbial load in all batches (isothermal and dynamic 

PLS-DA CV 71.4 28.6 70 58.2 92.7 

Prediction 67.6 28.4 66.1 36.7 100 
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temperature profiles) was in compliance with the existing pool of studies (Rouger et al., 

2017; Silva et al., 2008; EFSA, 2016), while the final loads of TVCs approached 7 log 

CFU/cm2 at the end of spoilage (above 8-9 log CFU/cm2) (Nychas et al., 2008). This 

observation could be linked to the usage of non-permeable film as packaging. This type of 

packaging film did not allow gases diffusion and hence the produced CO2 from 

microbiota’s metabolic reactions acted as modified atmosphere packaging, influencing 

TVC behavior and sensory results (Koutsoumanis et al., 2008; Liang et al., 2012; Holl et 

al., 2016).  

The end of shelf- life (score >2) in samples was established when TVCs reached 6.2 

log CFU/cm2 via sensory outcomes, unlike published studies (Al-Nehlawi, Saldo, Vega & 

Guri, 2013) due to systematic or random errors during sensory evaluation by the untrained 

panel (Papadopoulou et al., 2011). The alterations on the behavior of the microbiota in 

chicken samples due to packaging conditions could mislead panels judgment and 

subsequently it could affect shelf-life’s estimation (Silva et al., 2018). Moreover, 

differences in microbiota’s growth were evident on samples stored at the two dynamic 

temperature profiles with TVCs in samples stored at summer scenario approaching 7 log 

CFU/cm2 a day earlier than in stored samples at winter scenario. This attempt to assimilate 

temperature during transportation illustrated ones more the impact and the contribution of 

temperatures alterations to meat quality and safety (Gospavic et al., 2008; Nychas et al., 

2008; Lytou et al., 2016). 

The performance of MSI models was affected by the ensemble subspace classification 

model with overall correct classification accuracy of 64.8 %. The catalytic role of the 

ensemble approach can be exemplified by comparing the overall accuracy of this model to 

LDA model, where a decrease over 9 % was observed (Polikar, 2006; Sun & Zang, 2007). 

This outcome verified that ensemble combinations of conventional machine learning 

methods could improve model’s classification performance (Jimenez- Carvelo et al., 

2019). For instance, the application of subspace model demonstrated the beneficial role of 

adding k- nearest neighbors on LDA models and selecting the appropriate number of 

nearest neighbors in the classifier, as well as the smaller possible number of learners in the 

ensemble (for this study: k=5, Number of Learners=30) (Kim et al., 2011). Moreover, the 
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subspace model could classify both fresh and spoiled meat samples with the same 

percentage (69.7 %), while the LDA model misplaced spoiled samples as fresh with the 

higher percentage of specificity being at 54.5 %. It is worth noting that it is preferable to 

classify correctly not only the fresh samples but also the spoiled ones (Sokolova & 

Lapalme, 2009), especially when it comes to food industries where a recall of a product 

due to spoilage could result in loss of millions and increase food waste (Nychas et al., 2 

016; FAO, 2021).  

Unlike MSI data, the combination of algorithms did not seem to ameliorate FT-IR 

classification models, where PLS-DA exhibited the most satisfactory overall accuracy 

(67.6 %), followed by FineKNN (62.7%) and QSVM (61.2%). Nevertheless, this outcome 

confirmed that PLS-DA is a widely and common applied algorithm for classification, 

especially in food quality and authenticity which can provide accurate prediction of quality 

(Jimenez- Carvelo et al., 2019). Despite of the highest accuracy and sensitivity in FT-IR 

models, specificity percentage was not acceptable as its values rated only at 30 %, pointing 

out the inefficacy of the trained model to detect chicken spoiled samples. Even though this 

spectroscopic method is proved accurate for the estimation of spoilage in chicken (Ellis et 

al., 2002; Alexandrakis et al., 2012) and the correct classification of other meat products 

as beef fillets and minced meat (Ropodi et al., 2018; Fengou et al., 2019), the variability 

between and within batches based on animal strain, alterations of nutrition (Amorim et al., 

2016) or slaughtering and distributing, seemed to influence models’ performances. 

The developed models for both spectroscopic methods indicated a tendency of 

classifying spoiled samples as fresh at all stages of model development and prediction. 

This finding could be attributed to the fact that spoiled samples used for model calibration 

had lower microbiota on their surface compared to spoiled samples for prediction, due to 

their different temperatures profile (Gospavic et al., 2008; Ropodi et al., 2018). These 

temperature alterations in tandem with packaging conditions could have an impact on the 

metabolic footprint of samples which could differ from those defined as spoiled during 

model’s development (Papadopoulou et al., 2011). However, it was considered more 

appropriate to validate model’s performance with samples stored and distributed at realistic 

scenarios (Lytou et al., 2016; Lianou et al., 2018). Lastly, it has to be highlighted once 
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more that the utilization of different batches and microbial quality as prediction data set 

could be responsible for misclassified samples, due to the significant variability among 

samples (Ropodi et al., 2018).  
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Chapter 5: Microbiological quality assessment of chicken thigh 

fillets using spectroscopic sensors and multivariate data 

analysis 
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Abstract  

Fourier transform infrared spectroscopy (FT-IR) and multispectral imaging (MSI) 

were evaluated for the prediction of the microbiological quality of chicken thigh fillets via 

regression and classification models.  

In brief, chicken thigh fillets (n = 402) were subjected to spoilage experiments at eight 

isothermal and two dynamic temperature profiles. Samples were analyzed 

microbiologically (total viable counts (TVCs) and Pseudomonas spp.), while 

simultaneously MSI and FT-IR spectra were acquired. The organoleptic quality of the 

samples was also evaluated by a sensory panel, establishing a TVC spoilage threshold at 

6.99 log CFU/cm2. Partial least squares regression (PLS-R) models were employed in the 

assessment of TVCs and Pseudomonas spp. counts on chicken’s surface. Furthermore, 

classification models (linear discriminant analysis (LDA), quadratic discriminant analysis 

(QDA), support vector machines (SVMs), and quadratic support vector machines 

(QSVMs)) were developed to discriminate the samples in two quality classes (fresh vs. 

spoiled). PLS-R models developed on MSI data predicted TVCs and Pseudomonas spp. 

counts satisfactorily, with root mean squared error (RMSE) values of 0.987 and 1.215 log 

CFU/cm2, respectively. SVM model coupled to MSI data exhibited the highest 

performance with an overall accuracy of 94.4%, while in the case of FT-IR, improved 

classification was obtained with the QDA model (overall accuracy 71.4%). These results 

confirm the efficacy of MSI and FT-IR as rapid methods to assess the quality in poultry 

products. 
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5.1 Introduction  

Food waste amounts to 14% of the worlds’ food consumption (FAO, 2022), while 

meat and specifically poultry production is forecasted to rise at 137 million tones (FAO, 

2022). In addition, consumer’s awareness and demand for high quality and safety meat and 

poultry has been continuously increased. For this purpose, non-invasive spectroscopic 

sensors have been used in the evaluation of the quality and freshness of meat products 

(Tsakanikas et al., 2020) through the implementation of process analytical technology 

(PAT) (van den Berg et al., 2013; Cullen et al., 2014). The underlying principle of PAT is 

to combine spectral data acquired through real-time (in-, on-, at-line) non-destructive 

analytical techniques with multivariate data analysis for the development of models 

assessing food quality. These models, along with their datasets, could be uploaded in the 

cloud, updated regularly with new data in order to be consultative to the food industry 

(Nychas et al., 2016). 

In recent years, multispectral imaging (MSI) and Fourier transform infrared (FT-IR) 

spectroscopy have been investigated as alternative methods for the evaluation of a variety 

of meat products (Panagou et al., 2014; Xiong et al., 2015; Alamprese et al., 2016). The 

former method is a merge of UV and NIR with computer vision, and it has been proposed 

as an ecological approach for rapid quality evaluation of meat and poultry (Dissing et al., 

2013; Pu et al., 2015; Kutsanedzie et al., 2019). Until now, spectral data in the visible and 

near-infrared region (400–1700 nm) have been employed in the development of 

quantitative or qualitative models for the determination of the bacterial population (TVCs 

and Pseudomonas spp.) on chicken meat during spoilage (Feng & Sun, 2013a, 2013b; Ye 

et al., 2016). In the same context, MSI analysis has been proved a solution to the 

identification of adulteration/food fraud of minced beef with chicken meat (Kamruzzaman 

et al., 2016), as well as for the detection of food fraud in minced pork adulterated with 

chicken (Fengou et al., 2021a). Moreover, fecal contaminants in poultry line (Yang et al., 

2015) and the presence of tumors on the surface of chicken breasts (Nakariyakul & 

Casasent, 2009) have been accurately detected via MSI analysis. This innovative method 

was successfully employed in the at-line estimation of the time from slaughter in four 

different poultry products (Spyrelli et al., 2020). 
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Likewise, the potential of FT-IR for the qualitative and quantitative assessment of the 

microbiological quality of meat products has been explored by other researchers (Ellis et 

al., 2002; Alexandrakis et al., 2012; Argyri et al., 2013; Grewal et al., 2015; Candŏgan et 

al., 2021). Especially for poultry, FT-IR was recommended as an effective approach for 

the differentiation of intact chicken breast muscle during spoilage (Alexandrakis et al., 

2012). Additionally, the level of spoilage bacteria on the surface of chicken meat was 

successfully estimated via FT-IR spectroscopy (Ellis et al., 2002). Further investigation of 

this promising method for real-time evaluation of the freshness of stored chicken breast 

fillets was undertaken by Vansconcelos et al. (2014). FT-IR analysis was also proposed as 

an efficient approach for the categorization of chicken meat among seven raw types of 

food, irrespective of variations among batches and storage conditions (temperature, storage 

duration, packaging, spoilage levels) (Tsakanikas et al., 2020). 

Spectral data acquired by nondestructive methods such as MSI and FT-IR have been 

analyzed by a variety of unsupervised and supervised machine learning algorithms for the 

rapid quality assessment in food matrices including meat (Berrueta et al., 2007; Jiménez-

Carvelo et al., 2019; Candŏgan et al., 2021). Partial least squares regression (PLS-R), linear 

discriminant analysis (LDA), and quadratic discriminant analysis (QDA) have been 

reported as reliable tools for the development of predictive models for spoilage or 

adulteration assessment in meat (Friedman et al., 2009; Ropodi et al., 2015; Alamprese et 

al., 2016; Kumar & Karne, 2017). Moreover, deep learning methodologies such as artificial 

neural networks (ANNs) and support vector machines (SVMs) (Luts et al., 2010) have been 

employed, validated, and compared through available websites (e.g., sorfML, 

Metaboanalyst) or softwares (R, MatLab, Python), in an attempt to provide accurate 

quantitative and qualitative models for food spoilage assessment (Chen et al., 2011; Ropodi 

et al., 2016; Estelles-Lopez et al., 2017; Jaafreh et al., 2019; Jiménez-Carvelo et al., 2019; 

Fengou et al., 2020). 

The aim of the present work was to develop and evaluate machine learning regression 

(PLS-R) and classification models (LDA, QDA, SVMs, QSVMs) based on MSI and FT-

IR spectral data for the evaluation of the microbiological quality of chicken thigh fillets. 

More specifically, PLS-R models were developed for the prediction of the microbiota of 
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TVCs and Pseudomonas spp. on the surface of chicken thigh, whereas LDA, QDA, SVMs, 

and QSVMs models were employed for the classification of samples in two quality classes 

(fresh or spoiled) based on the outcome of sensory analysis. The challenging task in this 

study was not confined in model development, batch variation and different storage 

temperatures, but it also considered external validation using two different dynamic 

temperature profiles simulating temperature scenarios during transportation and storage in 

retail outlets. 

5.2 Materials and Methods 

5.2.1 Experimental design 

Three hundred and thirty (330) chicken thigh fillets (ca. 90–110 g/fillet) enclosed in 

plastic packages (dimensions = 25 cm (width), 90 μm (thickness), permeability ca. 25, 90, 

and 6 cm3 m−2day−1bar−1 at 20 °C and 50% RH for CO2, O2, and N2, respectively) were 

obtained from a poultry industry in Greece and stored aerobically at eight isothermal 

conditions (0, 5, 10, 15, 20, 25, 30, and 35 °C). Two independent experiments were 

undertaken at all isothermal conditions using 4 different batches of chicken meat. 

Moreover, 72 samples were stored at two dynamic temperature profiles (profile 1 = 12 h at 

5 °C, 8 h at 10 °C, and 4 h at 15 °C; profile 2 = 12 h at 0 °C, 8 h at 5 °C, and 4 h at 10 °C), 

simulating temperature scenarios that can be observed during transportation and storage in 

retail outlets (Vaikousi et al., 2009). At pre-determined time intervals, packages were 

subjected to microbiological analyses for the enumeration of total viable counts (TVCs) 

and Pseudomonas spp., in parallel with MSI and FT-IR spectral data acquisition. At each 

sampling point, duplicate packages per isothermal storage condition and triplicate 

packages from each dynamic temperature profile were subjected to the abovementioned 

analyses. In addition, chicken samples were subjected to sensory evaluation by a 14-

member sensory panel to categorize the samples in two quality classes, namely fresh and 

spoiled as detailed below. Microbiological counts and sensory scores were correlated with 

spectral data in order to develop quantitative and qualitative models assessing chicken 

thigh’s microbial loads (TVCs, Pseudomonas spp.) as well as their quality class (fresh-

spoiled). 
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5.2.2 Microbiological Analysis and Sensory Evaluation 

A total surface of ca. 20 cm2 (four slices of ca. 5 cm2 each with a maximum thickness 

of 2 mm) from chicken thigh fillet was removed aseptically, by means of a sterile stainless 

steel cork borer (2.5 cm in diameter), scalpel and forceps, added in 100 ml of sterile quarter 

strength Ringer’s solution (Lab M Limited, Lancashire, UK) and homogenized in a 

Stomacher device (Lab Blender 400, Seward Medical, UK) for 120 s at room temperature 

(Hutchison et al., 2005). The microbial load on the surface of chicken was enumerated 

using serial decimal dilutions in the same Ringer’s solution and 0.1 ml of the appropriate 

dilution was spread on the following growth media: (a) Tryptic glucose yeast agar (Plate 

Count Agar, Biolife, Milan, Italy) for the determination of total viable counts (TVCs) 

incubated at 25 °C for 72 h; (b) Pseudomonas agar base (LAB108 supplemented with 

selective supplement Cetrimide Fucidin Cephaloridine, Modified C.F.C. X108, LABM) 

for the determination of presumptive Pseudomonas spp. incubated at 25 °C for 48 h. The 

results were logarithmically transformed and expressed as log CFU/cm2. 

In parallel, sensory evaluation was performed by a 14 member in-house trained 

sensory panel. For this purpose, samples (n = 103) were placed in sterile petri dishes and 

scored according to their odor using a 3-point hedonic scale as follows: 1 = fresh, 2 = 

acceptable, 3 = spoiled (Lytou et al., 2016). Samples with scores < 2 were characterized as 

fresh (Class 1) whereas samples with scores ≥ 2 as spoiled (Class 2). Finally, the sensory 

outcome was correlated with spectral data in order to assess the quality class of the samples 

directly from the acquired MSI and FT-IR spectra. 

5.2.3 Spectra Acquisition 

Multi-spectral images (MSI) were captured using a Videometer-Lab instrument 

(Videometer A/S, Herlev, Denmark) that acquires images in 18 different non-uniformly 

distributed wavelengths from UV (405 nm) to short wave NIR (970 nm), namely, 405, 435, 

450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 850, 870, 890, 910, 940, and 970 nm. 

Detailed information about this spectroscopic sensor is provided elsewhere (Carstensen et 

al., 2003). Each sample corresponded to spatial and spectral data of size m × n × 18 (where 

m×n is the image size in pixels) (Tsakanikas et al., 2015). Furthermore, canonical 

discriminant analysis (CDA) was employed as a supervised transformation building 
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method to divide the images into regions of interest (ROI) using the Videometer-Lab 

version 2.12.39 software (Videometer A/S, Herlev, Denmark). The final outcome of this 

segmentation process for each image was a dataset of spectral data including the average 

value and the standard deviation of the intensity of the pixels within the ROI at each 

wavelength. 

FT-IR data were obtained using an FT-IR-6200 JASCO spectrometer (Jasco Corp., 

Tokyo, Japan) and a ZnSe 45 HATR (horizontal attenuated total reflectance) crystal (PIKE 

Technologies, Madison, Wisconsin, United States) with a refractive index of 2.4 and a 

depth of penetration of 2.0 μm at 1000 cm−1. Spectra measurements were performed using 

Spectra Manager Code of Federal Regulations (CFR) software version 2 (Jasco Corp., 

Tokyo, Japan) in the wavenumber range of 4000–400 cm−1, by accumulating 100 scans 

with a resolution of 4 cm−1 and a total integration time of 2 min. 

5.2.4 Data Pre-Processing and Analysis 

MSI spectral data were pre-processed by baseline offset treatment (Rinnan et al., 

2009; Engel et al., 2013) for the development of PLS-R models in order to reduce random 

or systematic variations and simultaneously improve image resolution (Qin et al., 2013). 

Likewise, for the development of the classification models, MSI data were subjected to 

standard normal variate (SNV) transformation prior to analysis (Tsakanikas et al., 2016). 

Model training was undertaken with the dataset obtained from the storage experiments at 

isothermal conditions (n = 330), where 142 (43.1%) and 188 (56.9%) of the samples were 

defined as fresh (Class 1) and spoiled (Class 2), respectively. Model optimization was 

based on leave-one-out full-cross validation (LOOCV) process for PLS-R models and k-

fold validation (k= 5) for the classification models. Moreover, the efficacy of the developed 

models to assess the quality of chicken samples was evaluated by external validation using 

independent datasets from the two dynamic temperature scenarios (n = 72; Class 1 = 36 

samples, 50 %; Class 2 = 36 samples, 50%). 

 FT-IR spectral data were modified by Savitzky-Golay first derivative (second 

polynomial order, 11-point window) for the development of PLS-R models, while for 

classification models’ spectral data pre-treatment was based on the same model with a 9-

point window in order to reduce baseline shift and noise (Alamprese et al., 2016). Spectral 
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data in the range of 1000 to 2000 cm−1 were included in the analysis, since these regions 

are documented as relevant to meat spoilage (Fengou et al., 2020). FT-IR models were also 

validated with data sets from dynamic temperature profiles (n = 63), including 30 (47.6 %) 

fresh and 33 (52.4 %) spoiled samples. The procedure of model training and validation is 

graphically presented in Figure 5.1. 

 

Figure 5.1: Flowchart describing quantitative and qualitative model development and validation. 

 PLS-R models for the estimation of TVCs and Pseudomonas spp. counts on chicken 

thighs surface were developed and validated by the software Unscrambler © ver. 9.7 

(CAMO Software AS, Oslo, Norway). Moreover, linear discriminant analysis (LDA) (Kim 

et al., 2011), quadratic discriminant analysis (QDA) (Kumar & Karne, 2017), support 

vector machines (SVMs), and quadratic support vector machines (QSVMs) (Osuna et al., 

1997) models were employed for the classification of samples according to their spoilage 

level using MATLAB 2012a software (The MathWorks, Inc., Natick, MA, USA). The 

performance of the developed models was evaluated via the following metrics and indexes: 

root mean squared error (RMSE), correlation coefficient (r), overall accuracy, sensitivity, 

and specificity (Sokolova & Lapalme, 2009; Márquez et al., 2016). 
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5.3 Results and Discussion 

5.3.1 Microbiological Analysis and Sensory Evaluation 

The population dynamics of TVCs and Pseudomonas spp. on the surface of chicken 

thigh fillets stored at isothermal conditions (0, 5, 10, 15, 20, 25, 30, and 35 °C) are 

presented in Figure 5.2. The initial population of TVCs (Figure 5.2A, B) and 

Pseudomonas spp. (Figure 5.2C, D) was 4.02 (±0.38) and 3.75 (±0.11) log CFU/cm2, 

respectively, confirming previous literature findings (Alexandrakis et al., 2012; Doulgeraki 

et al., 2012; Rouger et al., 2017). As expected, storage temperature significantly influenced 

microbial growth resulting in sample deterioration and spoilage. For poultry, TVCs values 

exceeding 7.0 log CFU/cm2 have been reported by other researchers to signify the end of 

shelf-life due to spoilage (Dominguez & Schaffner, 2007; Galarz et al., 2016; Rouger et 

al., 2017). More specifically, in this study TVCs reached values above 7.0 log CFU/cm2 at 

15 °C in 30 h (7.2 ± 0.15 log CFU/cm2), at 10 °C in 72 h (7.24 ± 0.39 log CFU/cm2), at 5 

°C in 144 h (7.62 ± 0.63 log CFU/cm2) and at 0 °C in 240 h (7.17 ± 0.42 log CFU/cm2). 

Pseudomonas spp. counts were similar to TVCs population and spoilage was evident at 15 

°C in 48 h (7.3 ± 0.33 log CFU/cm2), at 10 °C in 72 h (7.06 ± 0.48 log CFU/cm2), at 5 °C 

in 120 h (7.22 ± 0.18 log CFU/cm2), and at 0 °C in 216 h (6.75 ± 0.23 log CFU/cm2). 

Furthermore, samples appearance and odor rapidly deteriorated at high storage 

temperatures and TVCs reached 7.0 log CFU/cm2 at 20 °C in 32 h (7.36 ± 0.39 log 

CFU/cm2), at 25 °C in 24 h (7.78 ± 0.18 log CFU/cm2), at 30 °C in 24 h (7.95 ± 0.40 log 

CFU/cm2), and at 35 °C in 12 h (6.8 ± 0.46 log CFU/cm2). Similarly, Pseudomonas spp. 

approached 7.0 log CFU/cm2 at 20 °C in 32 h (6.97 ± 0.39 log CFU/cm2), at 25 °C in 24 h 

(6.95 ± 0.36 log CFU/cm2), at 30 °C in 24 h (6.89 ± 0.68 log CFU/cm2), and at 35 °C in 24 

h (6.69 ± 0.60 log CFU/cm2). 
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Figure 5.2: Changes in the population (log CFU/cm2) of total viable counts (TVCs) (A, B) and 

Pseudomonas spp. (C, D) in chicken thigh samples during storage at different isothermal conditions 

(A, C: 0, 5, 10 and 15 °C); B, D: 20, 25, 30, and 35 °C). Data points are average values of four 

replicates of samples ± standard deviation. 

Moreover, the microbiological results from the two dynamic temperature profiles are 

shown in Figure 5.3. The initial TVCs and Pseudomonas spp. counts were 3.82 ± 0.21 log 

CFU/cm2 and 2.51 ± 0.28 log CFU/cm2, respectively (first dynamic temperature profile, 

Figure 5.3A), and 4.13 ± 0.40 log CFU/cm2 and 2.87 ± 0.65 log CFU/cm2, respectively 

(second dynamic temperature profile, Figure 5.3B). Stored samples at these dynamic 

profiles were considered spoiled in 96 h (TVC = 6.96 ± 0.25 log CFU/cm2, Pseudomonas 

spp. = 6.19 ± 0.29 log CFU/cm2) for the first dynamic profile and in 120 h (TVC = 7.08 ± 

0.01 log CFU/cm2, Pseudomonas spp. = 7.05 ± 0.03 log CFU/cm2) for the second dynamic 

profile. This one-day delay of spoilage could be attributed to the different metabolic 

footprint of chicken samples due to temperature alterations affecting thus microbial growth 

(Gospavic et al., 2008; Raab et al., 2008). Statistical analysis for the microbiological results 

(one-way ANOVA via MATLAB 2012a software (The MathWorks, Inc., Natick, MA, 

USA)) is available in Appendix I (Table 5A and Table 5B). 
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Figure 5.3: Changes in the population (log CFU/cm2) of total viable counts (TVCs) (solid line) 

and Pseudomonas spp. (dashed line) in chicken thigh samples stored under periodically changing 

temperature conditions. (A) Profile 1 = 12 h at 5 °C, 8 h at 10 °C, and 4 h at 15 °C; (B) Profile 2 = 

12 h at 0 °C, 8 h at 5 °C, and 4 h at 10 °C. Data points are mean values of triplicate samples ± 

standard deviation. 

 More detailed information about chicken thigh fillets spoilage was derived by 

sensory evaluation, where 56.9% of the samples were scored above 2 and considered 

spoiled. Samples stored at 0 °C were considered acceptable until 240 h of storage, while 

samples stored at 30 and 35 °C were evaluated as spoiled after 6 and 12 h, respectively. In 

addition, deterioration of odor due to spoilage was evident in 96 h at 5 °C, 48 h at 10 °C, 

and 24 h at 15, 20, and 25 °C. The correlation of sensory scores to samples temperature 

and TVCs populations is provided at Table 5.1. TVCs values above 6.99 log CFU/cm2 

corresponded to samples rated with an average score greater than 2, similarly to other 

studies where spoilage threshold was established at 7.0 log CFU/cm2 for poultry 

(Dominguez & Schaffner, 2007). Based on this criterion, samples were assigned in two 
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quality classes, namely fresh (score < 2) or spoiled (score ≥ 2), and were further employed 

in the development of classification models. 

Table 5.1: Sensory scores and TVCs counts for chicken thigh samples corresponding to the sensory 

rejection time at each storage temperature. 

Temperature (˚C) Storage Time (h) Odor TVCs (log CFU/cm2) 

0 240 2.5±0.5 6.99 

5 96 2.3±0.6 7.08 

10 48 2.3±0.5 6.90 

15 24 2.1±0.7 7.46 

20 24 2.5±0.6 7.40 

25 24 2.9±0.8 8.22 

30 6 2.1±0.7 5.1 

35 12 2.2±0.7 6.84 

TVCs average (log CFU/cm2) 6.99 ± 0.89   

5.3.2 Correlation of Microbiological Data to Spectral Information 

 PLS-R model parameters (slope and offset) and performance metrics (r, RMSE), for 

the estimation of the population of TVCs and Pseudomonas spp. using MSI spectral data, 

are presented in Table 5.2, for model calibration, full cross validation, and external 

validation (prediction). For TVCs, the calculated values of RMSE and r during model 

calibration and cross validation were 0.730 and 0.779 log CFU/cm2, as well as 0.861 and 

0.840, respectively, whereas the respective values for external validation were 0.987 log 

CFU/cm2 and 0.895, respectively. The performance of the PLS-R model was also 

graphically illustrated by the comparison of the observed vs. predicted TVCs (Figure 

5.4A). Predicted values were mostly located within the area of ±1.0 log CFU/cm2, which 

is considered microbiologically acceptable, while an overestimation for low counts (below 

4.0 log CFU/cm2) was evident. Regarding PLS-R model assessing Pseudomonas spp. 

counts via MSI data, RMSE and r values were 0.828 log CFU/cm2 and 0.853, respectively, 
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for calibration, while for full cross validation they were 0.886 log CFU/cm2 and 0.830, 

respectively. For external validation (prediction) of Pseudomonas spp. counts, RMSE and 

r values were estimated at 1.215 log CFU/cm2 and 0.904 respectively. Nevertheless, the 

prediction of Pseudomonas spp. counts demonstrated deviations (overestimation) from the 

± 1.0 log CFU/cm2 area, especially for samples with Pseudomonas spp. loads lower than 

4.0 log CFU/cm2 (Figure 5.4B). 

Table 5.2: Performance metrics of the developed PLS-R models estimating TVCs and 

Pseudomonas spp. counts of chicken thigh samples via MSI spectral data analysis. 

TVCs n LVs slope offset r RMSE 

Calibration 

Full Cross Validation 

Prediction 

330 10 0.741 1.684 0.861 0.730 

330 10 0.726 1.787 0.840 0.779 

72  0.774 2.023 0.895 0.987 

Pseudomonas spp. n LVs slope offset r RMSE 

Calibration 

Full Cross Validation 

Prediction 

330 10 0.727 1.615 0.853 0.828 

330 10 0.711 1.714 0.830 0.886 

72  0.702 2.441 0.904 1.215 

n: Number of samples, LVs: Latent variables, r: Correlation coefficient, RMSE: Root mean squared 

error. 

 

Figure 5.4: Predicted versus observed TVCs (A) and Pseudomonas spp. (B) counts by the PLS-R 

models, based on MSI data for FCV (open symbols) and prediction (solid symbols). Solid line 

represents the line of equity (y = x) and dashed lines indicate ± 1.0 log unit area. 
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 The important wavelengths contributing to the prediction of the selected microbial 

groups were obtained according to PLS-R beta coefficients (B), derived by the 

Unscrambler software and Marten’s Uncertainty test (Figure 5.5). The wavelengths 630, 

645, 660, 700, and 850 nm were identified as significant (b coefficient greater than 0.2) for 

determining TVCs counts on the surface of chicken thigh. The significant contribution of 

the wavelength range 630–700 nm for the determination of meat and poultry spoilage has 

been reported in previous studies, and could be linked to myoglobin, metmyoglobin, 

deoxymyoglobin or oxymyoglobin (Pu et al., 2015; Spyrelli et al., 2020). According to the 

B regression coefficients of the PLS-R models, the quantitative equations for the estimation 

of TVCs and Pseudomonas spp. counts via MSI application could be described as follows: 

YTVCs= 5.983 + 0.303 × Xmean,405nm + 0.158 × Xmean,450nm − 0.532 × Xmean,470nm + 0.292 × Xmean,525nm − 

0.853 × Xmean,630nm + 0.695 × Xmean,645nm + 0.767× Xmean,660nm − 0.670 × Xmean,700nm − 0.460 × Χmean,850nm + 

0.145 × Xmean,890nm + 0.309 × Xmean,910nm + 0.352 × Xmean,940nm − 0.255 × Xmean,970nm − 0.377× XSD,435nm + 

0.426 × XSD,470nm + 0.308 × XSD,505nm+ 0.244× XSD,525nm − 0.607× XSD,590nm + 0.160× XSD,645nm + 0.171 × 

XSD,660nm − 0.212 × XSD,850nm − 0.132× XSD,870nm  

(5.1) 

YPseudomonas spp. counts = 5.416 + 0.204 × Xmean,405nm + 0.308 × Xmean,450nm − 0.745 × Xmean,470nm + 0.326 × 

Xmean,525nm − 1.020 × Xmean,630nm + 0.802 × Xmean,645nm + 0.885× Xmean,660nm − 0.766 × Xmean,700nm − 0.500 × 

Χmean,850nm + 0.332 × Xmean,910nm + 0.422 × Xmean,940nm − 0.344 × Xmean,970nm − 0.602× XSD,435nm + 0.501 × 

XSD,470nm + 0.367 × XSD,505nm+ 0.272× XSD,525nm − 0.679× XSD,590nm + 0.244× XSD,645nm + 0.222 × XSD,660nm 

− 0.321 × XSD,850nm − 0.204× XSD,870nm - 0.133× XSD,890nm + 0.159 × XSD,910nm + 0.177 × XSD,970nm 

(5.2) 

 In the above equations, the response variable (Y) can be approximated by a linear 

combination of the values of the predictors (X) through coefficients called regression or B 

-coefficients. Specifically, Y is the estimated value for TVCs and Pseudomonas spp., 

respectively, whereas Xmean and XSD are the mean intensity and the standard deviation of 

the pixels at the respective wavelength during MSI acquisition, respectively. 
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Figure 5.5: Beta (B) coefficient values of the PLS-R model developed on MSI spectral data for 

chicken thigh fillets. Shaded bars indicate important variables (mean intensity and standard 

deviation of pixels from each wavelength). 

 Likewise, model performance for the estimation of TVCs and Pseudomonas spp. 

counts via FT-IR spectral data analysis is presented in Table 5.3. For the TVCs prediction 

model, RMSE and r values for calibration and full cross validation were 0.734 log 

CFU/cm2 and 0.856, as well as 0.899 log CFU/cm2 and 0.781, respectively, while for 

external validation they were 1.251 log CFU/cm2 and 0.583, respectively. Similarly, for 

the prediction of Pseudomonas spp. counts via FT-IR analysis, RMSE and r values were 

0.838 log CFU/cm2 and 0.849 for calibration, 1.037 log CFU/cm2 and 0.762 for full cross 

validation, and 1.589 log CFU/cm2 and 0.514 for external validation, respectively. The 

performance of the PLS-R models was also graphically verified by the comparison of the 

observed versus predicted counts of TVCs and Pseudomonas spp. (Figure 5.6), 

demonstrating an overestimation in the fail-safe zone for samples with TVCs values lower 

than 4.0 log CFU/cm2 (Figure 5.6A). In contrast, according to Figure 5.6B, Pseudomonas 

spp. predicted counts deviated from the acceptable limit of ± 1.0 log CFU/cm2, presenting 

both overestimated (for counts < 4.0 log CFU/cm2) and underestimated (for counts > 7.0 

log CFU/cm2) values. In addition, the influence of each wavenumber in the development 

of the PLS-R models via FT-IR spectroscopy is highlighted by the beta coefficients (Figure 

5.7), as well as by the representative spectra acquisition for fresh (0 h at 0 °C) and spoiled 

(366 h at 0 °C) samples (Figure 5.8). Four main regions demonstrated high impact on 
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model development, namely: region A (1,720–1,790 cm−1); region B (1,630–1,690 cm−1); 

region C (1,500–1,550 cm−1) and region D (1,300–1,100 cm−1). It is well established that 

these absorption regions are related to the proteolytic activity of microbiota and the 

formation of biofilms, and more specifically of Pseudomonas spp. during spoilage of 

chicken breast (Ellis et al., 2002; Alexandrakis et al., 2012; Grewal et al., 2015; 

Wickramasinghe et al., 2020). 

Table 5.3: Performance metrics of the developed PLS-R models estimating TVCs and 

Pseudomonas spp. counts of chicken thigh samples via FT-IR spectral data analysis. 

TVCs n LVs Slope Offset r RMSE 

Calibration 

Full Cross Validation 

Prediction 

328 10 0.732 1.747 0.856 0.734 

328 10 0.678 2.115 0.781 0.899 

63  0.367 4.192 0.583 1.251 

Pseudomonas spp. n LVs slope offset r RMSE 

Calibration 

Full Cross Validation 

Prediction 

328 10 0.719 1.669 0.849 0.838 

328 10 0.660 2.033 0.762 1.037 

63  0.282 4.152 0.514 1.589 

n: Number of samples, LVs: Latent variables, r: Correlation coefficient, RMSE: Root mean squared 

error. 

 

Figure 5.6: Predicted versus observed TVCs (A) and Pseudomonas spp. counts (B) by the PLS-R 

models, based on FT-IR data for FCV (open symbols) and prediction (solid symbols). Solid line 

represents the line of equity (y = x) and dashed lines indicate ± 1.0 log unit area. 
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Figure 5.7: Typical FT-IR spectra in the range of 1000–2000 cm−1 collected from chicken thigh 

fillet stored at 0 °C for 0 h (fresh = blue line) and after 366 h (spoiled = orange line). 

 

 

Figure 5.8: Beta (B) coefficients for PLS-R model developed on FT-IR spectral data for chicken 

thigh fillets.  

5.3.3. Classification Models for the Assessment of Spoilage 

 The performance of the selected models to classify the samples in the respective 

quality classes (fresh or spoiled) through MSI spectral data is demonstrated by the 

confusion matrix (Table 5.4) for LDA, QDA, SVM, and QSVM. For the LDA model, 219 

out of 330 samples and 49 out of 72 samples were correctly classified in both quality classes 

during model development (FCV) and prediction, respectively, providing overall accuracy 
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of 66.4% and 68.1%. During FCV process, sensitivity and specificity were 59.4% and 

73.3%, respectively, whereas for model prediction the calculated sensitivity and specificity 

were 76.0% and 63.8%, respectively. For QDA model, 214 out of 330 samples (overall 

accuracy 64.8%) and 50 out of 72 samples (overall accuracy 69.4%) were classified in the 

correct class for model FCV and prediction, respectively. Moreover, sensitivity and 

specificity were estimated at 57.6% and 72.8%, respectively, for model FCV and at 73.3% 

and 66.7%, respectively, for the model prediction. It is notable that improved results were 

obtained by the application of SVM model where 301 out of 330 samples (overall accuracy 

91.2%) and 68 out of 72 samples (overall accuracy 94.4%) were correctly classified in the 

respective quality class during model development (FCV) and prediction, respectively. In 

addition, for SVM model sensitivity and specificity, percentages exhibited their highest 

values at 94.4% during external validation. Likewise, for QSVM implementation, 287 from 

330 samples and 66 from 72 samples were efficiently identified during model development 

and prediction, with an overall accuracy of 87.0% and 91.7%, respectively. For this model, 

sensitivity and specificity percentages were calculated at 83.7% and 89.6% for model FCV, 

while for external validation the estimated values were 94.1% and 89.5%, respectively. 

Table 5.4: Confusion matrix and performance indexes of the developed classification models 

(LDA, QDA, SVM, QSVM) regarding sensory quality discrimination of chicken thigh samples 

based on MSI spectral data. 

Model Procedure O/P Fresh Spoiled Overall 
Sensitivity 

(%) 
Specificity (%) 

LDA 

FCV 

Fresh 98 67 

330 

59.4 73.3 

Spoiled 44 121 73.3 59.4 

Overall accuracy (%) 66.4  

Prediction 

Fresh 19 6 

72 

76.0 63.8 

Spoiled 17 30 63.8 76.0 

Overall accuracy (%) 68.1  

QDA Procedure O/P Fresh Spoiled Overall 
Sensitivity 

(%) 
Specificity (%) 
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FCV 

Fresh 99 73 

330 

57.6 72.8 

Spoiled 43 115 72.8 57.6 

Overall accuracy (%) 64.8  

Prediction 

Fresh 22 8 

72 

73.3 66.7 

Spoiled 14 28 66.7 73.3 

Overall accuracy (%) 69.4  

SVM 

Procedure O/P Fresh Spoiled Overall 
Sensitivity 

(%) 
Specificity (%) 

FCV 

Fresh 130 17 

330 

88.4 93.4 

Spoiled 12 171 93.4 88.4 

Overall accuracy (%) 91.2   

Prediction 

Fresh 34 2 

72 

94.4 94.4 

Spoiled 2 34 94.4 94.4 

Overall accuracy (%) 94.4  

QSVM 

Procedure O/P Fresh Spoiled Overall 
Sensitivity 

(%) 
Specificity (%) 

FCV 

Fresh 123 24 

330 

83.7 89.6 

Spoiled 19 164 89.6 83.7 

Overall accuracy (%) 87.0  

Prediction 

Fresh 32 2 

72 

94.1 89.5 

Spoiled 4 34 89.5 94.1 

Overall accuracy (%) 91.7  
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 Regarding FT-IR classification models (Table 5.5), the LDA model classified 

correctly 240 out of 328 samples and 44 out of 63 samples during model FCV and external 

validation, respectively, with overall accuracy reaching 73.2% and 69.8%, respectively. 

Sensitivity and specificity percentages were 64.1% and 84.7% for model development, 

whereas for external validation these performance metrics were 70.4% and 69.4%, 

respectively. For QDA method, 216 out of 328 samples and 45 out of 63 samples were 

classified at their proper quality group during FCV and external validation, respectively. 

QDA model enhanced performance against the remaining three models was underlined by 

its ability to classify fresh samples from an independent validation data set with sensitivity 

and specificity values of 70.0% and 72.7%, respectively. For QSVM model, 284 out of 328 

samples were correctly classified during model development (overall accuracy 86.6%, 

sensitivity 82.4%, specificity 90.0%), whereas only 38 from 63 samples were located in 

their correct class during model prediction (overall accuracy 60.3%, sensitivity 55.8%, 

specificity 70%). Finally, for SVM model 287 out of 328 samples were accurately 

classified during model FCV (overall accuracy 87.5%, sensitivity 90.7%, specificity 

85.1%), whereas during model prediction 44 out of 63 samples were classified correctly in 

their respective quality class (overall accuracy 69.8%, sensitivity 63.4%, specificity 

81.8%). 

Table 5.5: Confusion matrix and performance indexes of the developed classification models 

(LDA, QDA, SVM, QSVM) regarding sensory quality discrimination of chicken thigh samples 

based on FT-IR spectral data. 

Model Procedure O/P Fresh Spoiled Overall 
Sensitivity 

(%) 

Specificity 

(%) 

LDA 

FCV 

Fresh 118 66 328 64.1 84.7 

Spoiled 22 122  84.7 64.1 

Overall accuracy (%) 73.2  

Prediction 

Fresh 19 8 63 70.4 69.4 

Spoiled 11 25  69.4 70.4 

Overall accuracy (%) 69.8  
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QDA 

Procedure O/P Fresh Spoiled Overall 
Sensitivity 

(%) 

Specificity 

(%) 

FCV 

Fresh 118 87 328 57.6 79.7 

Spoiled 25 98  79.7 57.6 

Overall accuracy (%) 65.9  

Prediction 

Fresh 21 9 63 70.0 72.7 

Spoiled 9 24  72.7 70 

Overall accuracy (%) 71.4  

SVM 

Procedure O/P Fresh Spoiled Overall 
Sensitivity 

(%) 

Specificity 

(%) 

FCV 

Fresh 127 13 328 90.7 85.1 

Spoiled 28 160  85.1 90.7 

Overall accuracy (%) 87.5  

Prediction 

Fresh 26 15 63 63.4 81.8 

Spoiled 4 18  81.8 63.4 

Overall accuracy (%) 69.8  

QSVM 

Procedure O/P Fresh Spoiled Overall 
Sensitivity 

(%) 

Specificity 

(%) 

FCV 

Fresh 122 26 328 82.4 90.0 

Spoiled 18 162  90 82.4 

Overall accuracy (%) 86.6  

Prediction 

Fresh 24 19 63 55.8 70.0 

Spoiled 6 14  70.0 55.8 

Overall accuracy (%) 60.3  
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 It needs to be noted that MSI-SVM and FT-IR-QDA combinations could not only 

efficiently classify samples in their correct quality class, with overall accuracy of 94.4% 

and 71.4%, respectively, but, simultaneously, the misclassified samples were equally 

distributed in the safe and in the dangerous side, with specificity reaching 94.4% and 

72.7%, respectively. Another interesting finding from MSI-SVM model was the low 

difference in the overall accuracy percentages (91.2% vs. 94.4%) observed between model 

FCV and prediction, indicating robust model performance. Furthermore, the same trend 

was observed for sensitivity and specificity (94.0% in both cases). Previous researchers 

reported that SVMs could result in the development of robust regression and classification 

models for poultry products (Kumar & Karne, 2017; Fengou et al., 2021a). SVM and 

QSVM models were more suitable for MSI spectral data, with SVM linear classifiers 

presenting the best separation of data’s hyperplane (Kumar & Karne, 2017). In contrast, 

probability parametric LDA and QDA models which assume that each class could be 

described as a multivariate normal distribution (Friedman et al., 2009; Kumar & Karne, 

2017), exhibited better discrimination of classes for FT-IR data. This is in good agreement 

with other studies, where LDA was proposed as a supervised multivariate classification 

method in FT-IR spectroscopic analysis of meat samples (Candŏgan et al., 2021). Even 

though data matrices from MSI and especially FT-IR presented high dimensionality, there 

was no evident class imbalance according to the prediction performance of all developed 

models (Tables 5.4 and 5.5). 
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Chapter 6: Assessment of chicken marinated souvlaki 

microbial spoilage and quality though spectroscopic and 

biomimetic sensors and data fusion 

 
 

 

 

 

 

 

 

 

 

 

 

Abstract  

 Fourier Transform Infrared spectroscopy (FT-IR), Multispectral Imaging (MSI) and 

electronic nose (E-nose) have been implemented individually and in combination, in an 
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attempt to investigate and hence identify the complexity of spoilage phenomenon in 

poultry. For this purpose, chicken marinated souvlaki samples were subjected to storage 

experiments (isothermal conditions: 0, 5 and 10 oC; dynamic temperature condition: 12 h 

at 0 oC, 8 h at 5 oC and 4 h at 10 oC) under aerobic conditions. At pre-determined intervals 

samples were microbiologically analyzed for the enumeration of Total Viable Counts 

(TVCs) and Pseudomonas spp., while in parallel FT-IR, MSI and E-nose measurements 

were acquired. The microbiological results of Pseudomonas spp. were fitted to predictive 

growth models (two-step and one-step modeling) in order to investigate the impact of 

temperature on the population dynamics of Pseudomonas spp. on this marinated product. 

Quantitative models of Partial Least Squares- Regression (PLS-R) and Support Vector 

Machines-Regression (SVM-R) (for each sensor separately and in combination) were 

developed and validated for the estimation of TVCs on chicken marinated souvlaki. 

Furthermore, classification models of Linear Discriminant Analysis (LDA), Linear- 

Support Vector Machines (LSVM) and Cubic Support Vector Machines (CSVM), 

classifying samples in 2 (fresh or spoiled) and 3 (fresh, semi- fresh and spoiled) quality 

classes were optimized and evaluated. Model performance was assessed with data obtained 

by six different analysts and three different batches of marinated souvlaki. The results from 

the predictive growth models demonstrated that both modeling approaches could predict 

accurately the growth behavior of Pseudomonas spp. (RMSE< 0.341 log CFU/g). 

Concerning the estimation of TVCs via PLS-R model, the most efficient prediction was 

obtained with MSI spectral data (RMSE: 0.998 log CFU/g) as well as with combined data 

from FT-IR/MSI (RMSE: 0.983 log CFU/g). From the developed SVM models, those 

derived from MSI and FT-IR/MSI data accurately estimated TVCs with RMSE values of 

0.973 and 0.999 log CFU/g, respectively. For the 3-classes models, MSI data coupled to 

LSVM model as well as combined MSI/E-nose data analyzed by LDA model exhibited 

overall accuracy percentages below 60 %. On the contrary, for the 2-classes models, 

combined data from FT-IR/MSI instruments analyzed by CSVM algorithm provided 

overall accuracy of 87.5 %, followed by MSI spectral data analyzed by LSVM with overall 

accuracy of 80 %. The abovementioned findings highlighted the efficacy of those non-

invasive rapid methods individually and in combination for the assessment of spoilage on 

chicken marinated products regardless of the impact of the analyst, season or batch. 
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6.1 Introduction  

 Spectroscopic methods as Fourier Transform Infrared spectroscopy (FT-IR) and 

Multispectral Imaging (MSI) have been investigated in tandem with regression and 

classification algorithms for their effectiveness in quality assessment of meat and poultry 

(Berrueta et al., 2007; Kamruzzaman et al., 2016; Candŏgan et al., 2021). FT-IR vibrational 

spectroscopy has been recommended as an efficient solution for the discrimination of intact 

chicken breast muscle during spoilage via Partial Least Squares- Discriminant analysis 

(PLS-DA) and Outer Product Analysis (OPA) (Alexandrakis et al., 2012). PLS-R coupled 

to FT-IR successfully detected the microbial loads of chicken breast (Ellis et al., 2002; 

Vanconcelos et al., 2014). Furthermore, FT-IR analysis was proved an appropriate tool for 

the identification of chicken meat among other raw types of food by PLS-R and Support 

Vector Machines (SVMs) classification based on FT-IR data (Tsakanikas et al., 2020). 

Regarding MSI analysis, it has been proposed as a reliable method in tandem with PLS-R 

model development for the estimation of microbial groups associated with spoilage of 

chicken meat (Feng & Sun, 2013a, b; Ye et al., 2016). Likewise, MSI analysis and PLS-R 

implementation predicted accurately the time from slaughter in four poultry products 

(Spyrelli et al., 2020). Nevertheless, this non-destructive method has been suggested as an 

alternative for the detection of food fraud in minced pork adulterated with chicken (Fengou 

et al., 2021a). Both MSI and FTIR analysis have been investigated for their ability to 

feasibly predict TVCs and Pseudomonas spp. on the surface of stored chicken thigh fillets 

while they could accurately classify chicken samples in 2 quality classes (Spyrelli et al., 

2021). 

 Another important indicator related to microbiological spoilage in food is the volatile 

profile associated with the metabolic activity of the microbiota (Ghasemi-Varnamkhasti et 

al., 2009). The electronic nose (E-nose) is a biomimetic technology describing the olfactory 

system of humans and it comprises an array of electronic chemical sensors recording odors 

via volatiles (Ghasemi-Varnamkhasti et al., 2009; Shi et al., 2019; Song et al., 2013). The 

main advantage of this method over spectroscopic methods is the low number of derived 

results which are more convenient for multivariate data analysis due to the reduced noise 

in the data set (Loutfi et., 2015; Di Rosa et al. et al., 2017). This environmentally friendly 

approach has been examined for its efficacy to assess quality and microbial spoilage in red 
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meat and poultry using a variety of regression and discrimination models (Ghasemi-

Varnamkhasti et al., 2010; Kutsanedzie at al., 2019; Wojnowski et al, 2019). E-nose and 

PLS-R implementation has been proposed for the estimation of chicken fat (Rajamäki et 

al., 2006; Song et al., 2013). Moreover, E-nose has been successfully employed in 

combination with SVM-R model for the prediction of TVCs on chilled pork (Wang et al., 

2012) and on the indigenous microbiota of beef fillets (Papadopoulou et al., 2013). Apart 

from the development of SVM models, E-nose signals have been used in the development 

of back propagation neural networks (BPNN) predicting TVCs on chicken (Timsorn et al., 

2016), as well as in the implementation of a variety of machine learning models for the 

determination of microbial groups in minced meat (Estelez-Lopez et al., 2017). In addition, 

E-nose data analyzed with LDA and BP-ANN models were evaluated for their potential to 

detect pork freshness via the volatile colorific fingerprint obtained during spoilage of pork 

samples (Li et al., 2014).  

 However, each of these rapid and non-invasive methods has its own advantages, 

weaknesses and limitations concerning the monitoring and controlling procedures of 

quality and safety in the meat industry (Di Rosa et al. et al., 2017). Taking into 

consideration the complexity of the food matrix during meat spoilage in terms of physical, 

biological and chemical properties, a combination of sensor features could capture more 

effectively both internal (metabolites, chemical compounds) and external (color, smell, 

texture, tenderness) alterations and thus identify more accurately quality defects in food 

(Huang et al., 2014; Kutsanedzie at al., 2019). In this context, data fusion from different 

sensors has been recently investigated for its synergistic role to the improvement of model 

classification and/or prediction potential (Borràs et al., 2015). For meat products, low and 

mid fusion has been employed as two different data merge techniques for the development 

of models predicting quality, freshness, microbial loads (Huang et al., 2014; Liu et al., 

2014) and adulteration (Alamprese et al., 2013). Classification models generated with E-

nose, Computer vision (CV) and artificial tactile (AT) data demonstrated accurate 

predictions of pork and chicken freshness (Weng et al., 2020). The ensemble of spectral, 

texture and color features via a classification model of k-mean-BFF was proven efficient 

for the quality assessment in chicken meat (Suxia, 2018), whereas the combination of E-

Nose (colorimetric sensors array) and hyperspectral imaging successfully estimated 
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chicken meat quality and freshness (Khulal et al., 2017). In addition, data fusion of two 

spectral methods namely V-NIR and SWIR was suggested as feasible solution for the 

tracing of foreign materials (FMs) on the surface of chicken breast fillets (Chung & Yoon, 

2021).  

 The aim of this study was the development of quantitative and qualitative models 

rapidly assessing spoilage on chicken marinated souvlaki via MSI, FT-IR and E-nose 

measurements both individually and in combination (mid-fusion). PLS-R and SVM-R 

models were developed for the determination of TVCs on chicken marinated souvlaki. 

Further on, LDA, LSVM and CSVM classification models were developed on sensors data 

(both individually and in combination) for the detection of three and two quality classes, 

respectively. Model performance assessment with data from independent batches and 

analysts confirmed the efficacy of nondestructive techniques and their feasibility to be 

performed even by untrained personnel 

6.2 Materials and Methods 

6.2.1 Experimental design  

Chicken marinated souvlaki (n= 209, ca 48.89 ± 1.3 g) samples were transferred from 

a Greek poultry industry to the laboratory (within 24 h from slaughter and marinade 

process), placed in styrofoam trays (two portions per tray) and wrapped with cling film. 

After packaging, samples were stored aerobically at three isothermal conditions, namely 0, 

5, and 10 oC (two independent experiments) and one dynamic temperature profile (12 h at 

0 oC, 8 h at 5 oC and 4 h at 10 oC) in high precision (± 0.5 oC) incubation chambers (MIR-

153, Sanyo Electric Co., Osaka, Japan), where temperature was monitored every 20 min 

by data loggers (CoxTracer, Belmont, N.C.). At predetermined intervals, samples were 

analyzed microbiologically (enumeration of TVCs and Pseudomonas spp.) while 

simultaneously FT-IR, MSI and E-nose data were acquired. At each sampling point, 

duplicate samples stored at the same isothermal condition (n= 2×2) and triplicate samples 

stored at the dynamic temperature profile (n= 3) were subjected to the above-mentioned 

analyses. The microbiological results were expressed as log CFU/g and were used for the 

development of primary and secondary predictive models (two-step and one-step 

modelling approach) for Pseudomonas spp. Further on, quantitative and qualitative models 
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assessing microbial spoilage and quality on chicken marinated souvlaki were developed 

and validated. PLS-R and SVM-R models were employed for the estimation of TVCs for 

each sensor separately. Moreover, mid-level fusion (pre- processing of data via Principal 

Component Analysis, PCA and afterwards employment of PLS-R) was performed for the 

evaluation of the combined use of MSI, FT-IR and e-nose sensors for TVCs assessment. 

In the same context, classification models of Linear Discriminant Analysis (LDA), Linear 

Support Vector Machines (LSMV) and Cubic Support Vector Machines (CSVM) were 

evaluated for their efficacy to identify 3 and 2 spoilage classes via MSI, FT-IR and E-nose 

data (in combination and separately). 

Validation storage experiments at aerobic isothermal conditions (0, 4, 5, 8 and 10 oC) 

were undertaken by different analysts (n= 6) with three different chicken marinated 

souvlaki batches. MSI, FT-IR and E-nose measurements were collected and correlated to 

the respective TVCs results. Quantitative and qualitative developed models were fitted to 

the obtained experimental data in order to evaluate their performance.    

 

6.2.2 Microbiological analysis 

A portion of 25 g of chicken marinated souvlaki (chicken thigh fillet, sodium 

chloride, sodium acetate, sodium citrate, enzyme tenderizer and ascorbic acid) was 

transferred aseptically to a stomacher bag containing 225 ml of sterile quarter strength 

Ringer’s solution (Lab M Limited, Lancashire, UK) and was homogenized by a Stomacher 

device (Lab Blender 400, Seward Medical, UK) for 60 s. From this 1:10 sample solution, 

serial decimal dilutions were prepared using the same diluent and 0.1 ml of the appropriate 

dilution was spread to the following media: a) Tryptic glucose yeast agar (Plate Count 

Agar, Biolife, Milan, Italy) for the enumeration of total viable counts (TVCs) incubated at 

25oC for 72 h; and b) Pseudomonas agar base (LAB108 supplemented with selective 

supplement Cetrimide Fucidin Cephaloridine, Modified C.F.C. X108, LABM) for the 

determination of the presumptive Pseudomonas spp. counts incubated at 25oC for 48 h.  
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6.2.3 Predictive growth models for TVCs and Pseudomonas spp. in chicken marinated 

samples 

6.2.3.1 Two-step modeling approach 

The primary model of Baranyi and Roberts (1994) was was fitted to the observed 

TVCs and Pseudomonas spp. counts at each storage temperature in order to determine the 

kinetic parameters of microbial growth, namely the maximum specific growth rate (μmax), 

the lag phase duration (λ), and the maximum population density (yend) via Microsoft® 

Excel Add-in curve-fitting program DMFit, Version 3.5 (Institute of Food Research, 

Norwich, UK). Afterwards, the influence of storage temperature on Pseudomonas spp. μmax 

parameter was investigated by fitting Ratkowsky growth-temperature secondary model 

(Ratkowsky, 1983) to the experimental data (Equation 6.1)  

                                               √𝜇𝑚𝑎𝑥= b (T- Tmin)      (6.1) 

Where, b is a regression coefficient that depends on environmental factors and Tmin is the 

theoretical minimum temperature for microbial growth. 

6.2.3.2 One-step modeling approach 

One- step modeling (Huang et al., 2016) was also employed for the determination 

of the primary and secondary model parameters for Pseudomonas spp. on chicken 

marinated souvlaki. Huang full growth primary model (Huang, 2013) (equations 6.2- 6.4) 

and the secondary Ratkowsky growth-temperature model (Ratkowsky, 1983) were fitted 

to the obtained Pseudomonas spp. counts (equation 6.1). The two models were 

simultaneously applied to the experimental data via IPMP-Global Fit software (USDA 

Agricultural Research Service, Eastern, Regional Research Center, Wyndmoor, PA). 

Y(𝒕) = 𝒀𝟎 + 𝒀𝒎𝒂𝒙 − 𝒍𝒏 [𝒆𝒀𝟎 + (𝒆𝒀𝒎𝒂𝒙 − 𝒆𝒀𝟎) 𝒆−𝝁𝒎𝒂𝒙 B(𝒕)] (6.2) 

B(t)= t + 
𝟏

𝟒
 ln

𝟏+𝒆−𝟒(𝒕−𝝀)

𝟏+𝒆𝟒𝝀  (6.3) 

λ= 
𝒆𝑨

𝝁𝒎𝒂𝒙𝒎   (6.4) 

where: Υ(t) is the base-10 logarithms (log10) of the real time microbial counts (log CFU/g) 

at the respective storage time t (h), yo is the initial base-10 logarithms (log10) of the 

microbial counts (log CFU/g), ymax is the final base-10 logarithms (log10) of the microbial 
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counts (log CFU/g), μmax is the specific growth rate of the microbial group (h-1), b, A and 

m are regression coefficients, λ is the lag phase (h) and B(t) is the transition function.  

External validation for both modeling approaches was undertaken with an 

experimental dataset of Pseudomonas spp. counts (n=33, different batch) from a spoilage 

experiment on chicken marinated souvlaki at a dynamic temperature profile (12 h at 0 oC, 

8 h at 5 oC and 4 h at 10 oC). Model performance evaluation was performed using the bias 

factor (Bf) and accuracy factor (Af) indices (Ross, 1996).  

6.2.4 Sensors 

6.2.4.1 Spectral acquisition 

Chicken marinated souvlaki samples were subjected to MSI analysis using the 

Videometer- Lab instrument (Videometer A/S, Herlev, Denmark) which captures surface 

reflectance of samples from 18 monochromatic wavelengths (405-970 nm), namely 405, 

435, 450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 850, 870, 890, 910, 940, and 970 

nm. The description of this sensor as well as the process of image acquisition are 

thoroughly discussed in previous studies (Dissing et al., 2013). The final outcome of this 

acquisition is a data cube containing spatial and spectral data for each sample of size 

m×n×18 (where m×n is the image size in pixels) (Tsakanikas et al., 2015). Prior to data 

analysis, an extra step is needed where the Region of interest (ROI) on the samples surface 

is separated from the surrounding area containing non useful information. For each image, 

the mean reflectance spectrum was estimated by the calculation of the average value and 

the standard deviation of the intensity of pixels within the ROI at each wavelength. For this 

purpose, Canonical Discriminant Analysis (CDA) was applied to each sample and for each 

wavelength individually through Videometer-Lab version 2.12.39 software (Videometer 

A/S, Herlev, Denmark). 

FT-IR analysis was implemented using a ZnSe 45 HATR (Horizontal Attenuated 

Total Reflectance) crystal (PIKE Technologies, Madison, Wisconsin, United States) and 

an FT-IR-6200 JASCO spectrometer (Jasco Corp., Tokyo, Japan). The ATR crystal shows 

a refractive index of 2.4 and a depth of penetration of 2.0 μm at 1000 cm-1. Spectra were 

obtained in the wavenumber range of 4000 to 400 cm-1 using Spectra Manager Code of 
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Federal Regulations (CFR) software version 2 (Jasco Corp., Tokyo, Japan), by 

accumulating 100 scans with a resolution of 4 cm-1 and a total integration time of 2 min. 

6.2.4.2 Electronic nose (E-nose) 

The Alpha M.O.S a-FOX sensor array system 3000 (Alpha M.O.S, Toulouse, 

France) with 12 metal oxide sensors was used in this study. The system consists of a 

sampling apparatus, an array of sensors, an air generator equipment (F-DGSi, Evri, France) 

and software (Alpha Soft V12.46) for data recording. The sensor array contains 12 metal 

oxide sensors divided into T, P and LY types, namely: LY2/LG, LY2/G, LY2/AA, 

LY2/GH, LY2/gGTL, LY2/gGT, T30/1, P10/1, P10/2, P 40/1, T 70/2 and PA/2 (Lin et al., 

2013). Prior to injection, 2 g of sample (2.013 ± 0.002 g) were placed in a 2.5 ml vial, 

sealed with aluminum caps and heated at 50 oC for 20 min in a thermoblock 2t static 

headspace sampler (Teknokroma Analitica S.A., Barcelona, Spain). A volume of 500 μl 

from the generated headspace was injected to the e-nose with the injection rate being 500 

μl/s. Method parameters were defined as follows: a) acquisition duration: 120 s; b) 

acquisition period: 1 s; c) acquisition time: 800 s; and d) gas flow (air): 150 ml/min. The 

signal response of each array was expressed in the form of relative resistance changes 

(Delta R/Ro). 

6.2.5 Data processing 

MSI spectral data were consisted of 18 mean values and the respective 18 standard 

deviations of the intensity in pixels for each observation/measurement. Spectral data were 

preprocessed by Standard Normal Variance (SNV) transformation to remove collinear and 

“noisy” data (Bi et al., 2016). The same transformation was applied to e-nose data which 

contained the relative resistance for each sensor. For FT-IR spectral data, the Savinsky- 

Golay second derivative transformation (second order polynomial, 2nd derivative, 9-point 

window) was applied on spectra at wavelengths in the range of 900 to 2000 cm-1 for the 

reduction of baseline shift and noise (Alamprese et al., 2016). 

Both qualitative and quantitative models were calibrated and optimized (k- fold cross 

validation, k= 10) with data from the storage experiments at 0, 5, 10 oC and the dynamic 

temperature profile (n= 169), while model external validation was performed by 

independent data (n= 40, 3 batches, 6 analysts) from storage experiments at aerobic 
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isothermal (0, 4, 5, 8, 10 oC) conditions. For the development of classification models based 

on 3 quality classes, discrimination was based on TVC values as follows: a) fresh (class 1: 

22.48%): TVCs<6.0 log CFU/g; b) semi-fresh (class 2: 18.93%): 6.0≤TVC<7.0 log CFU/g; 

and c) spoiled (class 3: 58.58%): TVC≥7.0 log CFU/g. For the 2 quality class classification 

models, samples were defined as fresh (class 1: 42.01%) and spoiled (class 2: 57.99%) 

when TVCs were below or above 7.0 log CFU/g, respectively. The developed classification 

models were evaluated for their performance with data from independent experiments, 

namely: a) for the 3 class-model (n=40; Class 1: 14 samples (35%); Class 2: 8 samples 

(20%); Class 3: 18 (45 %)), and b) for the 2 class-model (n=40; Class 1: 22 samples (55 

%); Class 2: 18 samples (45 %)). 

6.2.6 Model development and performance assessment  

For the development of PLS-R models for each sensor individually and in 

combination was performed using the Unscrambler© ver. 9.7 software (CAMO Software 

AS, Oslo, Norway). For the single sensor models, the acquired sensor data were correlated 

to TVCs via the development of PLS-R models. Principal Component Analysis (PCA) was 

applied to sensors data separately and the derived PCA scores were merged for the 

development of 2-sensors and 3-sensors PLS-R models (Márquez et al., 2016). Similarly, 

Support Vector Machines-Regression (SVM-R) was employed for the estimation of TVCs, 

via MATLAB 2012a software (The MathWorks, Inc., Natick, Massachusetts, USA), where 

single sensor as well as 2-sensor and 3-sensor models were performed and validated. The 

performance of the developed PLS-R and SVM-R models was evaluated using the 

correlation coefficient (r) and Root Mean Squared Error (RMSE: log CFU/g) indices. 

Furthermore, classification models of LDA, LSVM and CSVM were developed via 

MATLAB 2012a software and assessed for their accuracy using the following performance 

metrics: overall accuracy (%), sensitivity (%) and precision (%) (Sokolova & Lapalme, 

2009). 

6.3 Results 

6.3.1 Microbiological results 

The population dynamics of TVCs and Pseudomonas spp. during aerobic storage at 

isothermal conditions and the dynamic temperature profile are presented in Figures 6.1 
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and 6.2, respectively. The initial TVCs and Pseudomonas spp. counts in chicken marinated 

samples stored at isothermal conditions were enumerated at 5.37 (± 0.26) and 5.01 (± 0.01) 

log CFU/g, respectively, whereas these microbial groups reached 5.26 (±0.06) and 4.43 

(±0.10) log CFU/g in samples from the dynamic temperature profile. Storage temperature 

had a great impact on TVCs and Pseudomonas spp. behavior in samples, with chickens’ 

spoilage occurring at different time points. Specifically, TVCs reached the threshold of 

spoilage (7.0 log CFU/g) (Galarz et al., 2016) at 0°C in 216 h (7.41 ± 0.74 log CFU/g), at 

5°C in 72 h (7.07 ± 0.73 log CFU/g) and at 10 oC in 42 h (7.01 ± 0.6 log CFU/g). The 

population of TVCs in samples maintained at the dynamic temperature profile followed 

similar growth behavior with the samples stored at 5 oC, as their counts reached 6.89 

(±0.42) log CFU/g in 96 h. Likewise, Pseudomonas spp. counts which are associated to the 

production of slime and off-odors when they reach 7.0 log CFU/g in meat products 

(Gospavic et al., 2008; Rouger et al., 2017), reached this limit at 0°C in 216 h (7.06 ± 1.04 

log CFU/g), at 5°C in 96 h (6.86 ± 0.76 log CFU/g), at 10 oC in 48 h (7.61 ± 0.38 log 

CFU/g) and at the dynamic temperature profile in 120 h (6.46 ± 0.81 log CFU/g). 
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Figure 6.1: Mean (± SD, n=4) TVCs (A) and Pseudomonas spp. counts (B) in chicken marinated 

souvlaki samples during storage at 10 (triangle symbol), 5 (square symbol) and 0 (cycle symbol) 
oC.  

 

Figure 6.2: Mean (± SD, n=3) TVCs (square symbol) and Pseudomonas spp. counts (triangle 

symbol) in chicken marinated souvlaki samples and recorded temperature (oC) (solid line) during 

storage at the dynamic temperature profile (12 h at 0 oC, 8 h at 5 oC and 4 h at 10 oC).  
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6.3.2 Predictive growth models for TVCs and Pseudomonas spp. 

6.3.2.1 Two-step modeling: Primary growth models for TVCs and Pseudomonas spp. and 

secondary model growth-temperature for Pseudomonas spp. 

The influence of temperature on the microbiota of chicken marinated souvlaki was 

further investigated and the growth kinetic parameters (μmax, h
-1; λ: lag phase, h, ymax (log 

CFU/g) of TVCs and Pseudomonas spp. are presented in Table 6.1. The estimated lag 

phase of TVCs and Pseudomonas spp. was prolonged as storage temperature decreased, 

with the maximum value obtained for samples stored at 0 oC (TVCs: 80.09±14.95 h and 

Pseudomonas spp.: 93.49±10.67 h). Reversibly, μmax parameter reached its lowest value 

for TVCs and Pseudomonas spp. for samples stored at 0 oC (TVCs: 0.035±0.002 h-1, 

Pseudomonas spp.: 0.048±0.011 h-1) and the highest one for samples stored at 10 oC 

(TVCs: 0.123±0.028 h-1, Pseudomonas spp.: 0.310±0.343 h-1). The kinetic parameters for 

TVCs and Pseudomonas spp. obtained in this work are in agreement with previous studies 

on stored chicken products (Gospavic et al., 2008; Lytou et al., 2016). Moreover, 

Pseudomonas spp. growth followed similar behavior as TVCs population, demonstrating 

once more Pseudomonas spp. dominant role in poultry’s spoilage under aerobic conditions 

(Bruckner et al., 2013; Raab et al., 2018). Further on, the Ratkowsky model was fitted to 

the abovementioned μmax values of Pseudomonas spp. and the respective parameters of b 

and Tmin values were calculated at 0.013 and -16.44 oC, respectively. For this secondary 

model fitting, the value of RMSE was 0.054 log CFU/g and the coefficient of determination 

(R2) was 0.811. 

Table 6.1: Baranyi and Roberts (1994) model parameters (lag phase: λ, h; maximum specific 

growth: μmax, h-1; maximum number of counts: ymax, log CFU/g) and performance metrics (standard 

error of fitting: se(fit); coefficient of determination: R2) obtained from DMFIT fitting to TVCs and 

Pseudomonas spp. counts in stored chicken marinated souvlaki. 

Microbial 

group 

Temperature 

(oC) 

λ, lag phase (h) μmax (h-1) ymax (log 

CFU/g) 

se(fit) (Minimum- 

maximum) 

R2 

(Minimum- 

maximum) 

TVC 0 80.09±14.95 0.035±0.002 8.96±0.39 0.187-0.410 0.888-0.978 

5 38.26±1.28 0.090±0.022 9.49±0.23 0.218-0.350 0.953-0.980 
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6.3.2.2 One step modeling approach 

The estimated kinetic parameters of Huang full growth model (equations 6.2- 6.4) 

and Ratkowsky growth-temperature model (equation 6.1) via the IPMP-Global Fit 

software (USDA Agricultural Research Service, Eastern, Regional Research Center, 

Wyndmoor, PA) are available in Table 6.2, while the calculated μmax and lag phase 

parameters of Pseudomonas spp. are provided in Table 6.3. RMSE value for this one-step 

approach was 0.341 log CFU/g while the degrees of freedom were 28. Specifically, 

Pseudomonas spp.μmax parameter via one step modeling presented its maximum value at 

10 oC (0.138 h-1) and the minimum value at 0 oC (0.038 h-1). Pseudomonas spp. lag phase 

was extended for the samples at 0 oC (84.4 h) while for samples at 10 oC lag phase 

decreased to 13.81 h. These values are in compliance with the existing literature for stored 

chicken products (Dominquez & Shaffner, 2007). Concerning b coefficient and Tmin (or a 

and To for one step modeling) of Ratkowsky model, their values were established at 

0.02±0.01 oC and -11±5.67 oC.  

 

Table 6.2: Kinetic parameters estimated and statistics by Huang full growth primary model and the 

Ratkowsky growth model for temperatures. 

Parameters Value Std-

Error 

t-value p-value 

a 0.02 0.01 2.39 2.40E-02 

T0 -11.00 5.67 -1.94 6.21E-02 

A -0.15 4.33 -0.03 9.73E-01 

m 1.40 1.47 0.95 3.49E-01 

y0, T0.0 4.87 0.50 9.83 1.40E-10 

y0, T5.0 4.95 0.49 10.04 8.89E-11 

y0, T10.0 4.86 0.76 6.37 6.73E-07 

ymax 9.24 0.36 25.88 4.29E-21 

     

 

 

10 8.49±6.63 0.123±0.028 9.48±0.07 0.217-0.440 0.941-0.980 

Pseudomonas 

spp. 

0 93.49±10.67 0.048±0.011 8.80±0.44 0.351-0.626 0.844-0.950 

5 27.99±23.40 0.079±0.042 9.70±0.19 0.333-0.491 0.920-0.968 

10 26.39±12.45 0.310±0.343 9.10±0.29 0.385-0.590 0.864-0.952 
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Table 6.3: Lag phase (λ) and μmax values estimated by Huang full growth primary model for 

Pseudomonas spp. growth on chicken marinated souvlaki at 0, 5 and 10 oC. 

Storage temperature 

(oC) 
μmax 

(h-1) 
λ (h) 

0 0.038 84.4 
5 0.080 29.6 

10 0.138 13.8 
 

6.3.2.3 Model’s external validation  

Pseudomonas spp. observations from the dynamic temperature profile were fitted 

to the Baranyi and Roberts (1994) dynamic growth model, where yo, ymax and ho were 

defined based on the results of the two-step and the one step modeling process separately. 

For the two-step model evaluation, the initial and the final Pseudomonas spp. counts were 

4.92 ± 0.16 log CFU/g and 9.19 ± 0.49 log CFU/g, respectively, while the ho parameter 

(μmax × lag phase) was calculated at 3.12. For the one-step modeling validation, yo and ymax 

were established at the same values as of two-step modeling whereas ho was defined at 

3.75. The predictive versus the observed Pseudomonas spp. counts for the dynamic 

temperature profile are provided in Figure 6.3 for the two modeling procedures. According 

to Figure 6.3, none of the two models seemed to over or under estimate Pseudomonas spp. 

counts, within the ± 10 % limit area, during storage at this dynamic temperature profile. 

The efficacy of the two models is demonstrated by the RMSE of prediction (Table 6.4) 

that reached values below the microbial criterion of ± 1.0 log CFU/g (Two step approach: 

0.702 log CFU/g, One step approach: 0.653 log CFU/g). In addition, the calculated value 

of the bias factors (Bf) was within the range of 0.96-1.1 for both models indicating 

satisfactory prediction (Lianou et al., 2020) of Pseudomonas spp. counts, where only 7.8 

% and 8.8 % of predictions through the two and the one step model being inaccurate (Table 

6.4). 
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Figure 6.3: Observed Pseudomonas spp. counts (cycles) at chicken marinated souvlaki samples 

stored aerobically at a dynamic temperature profile. Solid line corresponds to the predictive model, 

dashed lines correspond to the ± 10 % limit area and solid blue line corresponds to temperature 

alterations during storage.  

 

Table 6.4: Performance metrics (Root Mean Squared Error, RMSE; Bias factor, Bf; Accuracy 

factor, Af) of the evaluation of the two-step and one-step model predicting Pseudomonas spp. 

growth in stored chicken marinated souvlaki. 

Model 
Performance metrics 

RMSE (log CFU/g) Bf Af 

Two-step 

model 
0.702 0.959 1.088 

One-step 

model 
0.653 0.967 1.078 
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6.3.3 Spectra and E-nose signals 

E-nose signal response (intensity) per sensor is shown in Figure 6.4A for a fresh (0h) 

and a spoiled (240h) sample of chicken marinated souvlaki stored at 5°C. Differences in 

the intensity between fresh and spoiled samples also occurred in Figure 6.4B for the six 

sensors, namely: PA/2, T30/1, P10/1, P10/2, P40/1 and T70/2. The first sensor is linked 

with changes in ethanol, ammonia and organic amines (Lin et al., 2013) which are due to 

Pseudomonas spp. proteolytic activity during meat spoilage (Nychas et al., 2008). P40/1 

sensor is related to the presence of fluorine (Wang et al., 2012; Xu et al., 2014). The 

remaining sensors T30/1, P10/1, P10/2, T70/2 could be associated with organic solvents, 

hydrocarbons, methane and aromatic compounds, respectively (Xu et al., 2014) and 

subsequently to Pseudomonas spp. biofilm formation during meat spoilage (Wang et al., 

2012; Wickramasinghe et al., 2019).  

 

Figure 6.4: Signal (intensity) from E-nose analysis for fresh (blue line: 0 h) and spoiled (orange 

line: 240 h at 5oC) chicken marinated souvlaki sample (A); Signal from each sensor array during 

spoiled samples (240 h at 5oC) acquisition (B). 

 

FT-IR and MSI spectra for fresh (0 h at 0 oC) and spoiled (240 h at 5 oC) chicken 

marinated souvlaki are represented in Figure 6.5. Regarding MSI spectra (Figure 6.5B), 

reflectance (mean intensity in pixels) between fresh and spoiled samples differed at 660, 

700, 850, 870, 890, 910 and 940 nm, where the region of 660 to 700 nm is related to 

myoglobin in meat color as described elsewhere (Spyrelli et al., 2020). From FT-IR results 

(Figure 6.5A), the absorption bands showing variations between fresh and spoiled samples 
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were located in the areas of 1,000.87-1,150 cm-1 and 1,476.24-1,692.2 cm-1. Specifically, 

absorption bands at 1,541.81 and 1,629.55 cm-1 were attributed to the metabolic products 

(amide I and II) associated with spoilage microorganisms as Pseudomonas spp. and their 

metabolic activity on the surface of meat during spoilage (Böcker et al., 2007; Alexandrakis 

et al., 2012).  

 

Figure 6.5: Reflectance from MSI spectra (405– 970 nm) (A) and absorbance from FT-IR spectra 

(1,000- 2,000 cm-1) (B) for fresh (blue line: 0h) and spoiled (orange line: 240h) chicken marinated 

souvlaki at 5 oC. 

 

6.3.4 Regression Models assessing microbial loads in chicken marinated souvlaki 

6.3.4.1 PLS-R models 

PLS-R model parameters (slope, offset) and their performance metrics (r, RMSE) 

are presented in Table 6.5 for model optimization (full cross-validation) and evaluation 

(prediction) for each sensor separately and in combination. MSI models exhibited the 

highest performance during prediction with RMSE value of 0.998 log CFU/g which was 

within the acceptable microbial prediction zone of ± 1.0 log CFU/g. Likewise, FT-IR 

model showed RMSE of prediction values of 1.025 log CFU/g. On the contrary, E-nose 

model poorly predicted TVCs with a RMSE of prediction value being 1.921 log CFU/g. 

These findings confirmed the suitability of MSI and FT-IR sensors for the quantitative 

assessment of TVCs in poultry products. Nevertheless, these non-invasive methods in 
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tandem with PLS-R models have been proposed as rapid and efficient tools for the 

detection of spoilage/freshness in meat and poultry (Kamruzzaman et al., 2013; Fengou et 

al., 2019; Rahman et al., 2018). Regarding E-nose model, its performance was not in full 

agreement with other studies where this sensor combined with PLS-R model successfully 

predicted the microbial population on chicken stored in modified atmospheres (Rajamäki 

et al., 2006) and the quality changes due to chicken fat oxidation (Song et al., 2013). This 

discrepancy could be attributed to the marination treatment performed in this study and the 

of organic acids such as ascorbic acid, sodium acetate and chloride in the headspace 

injected to the instrument. 

Table 6.5: PLS-R model parameters (slope, offset) and performance metrics (correlation 

coefficient, r; Root Mean Squared Error, RMSE) for the estimation of TVCs in chicken marinated 

souvlaki samples via MSI, FT-IR, E-nose analyses. 

 

From the combined 2 sensor models, the combination of FT-IR/MSI outperformed 

all the others (RMSE: 0.983 log CFU/g), followed by MSI/E-nose sensor. This outcome 

confirmed that HSI and/or MSI sensor data inclusion could improve E-nose prediction for 

meat freshness assessment (Khulal et al., 2017; Weng et al., 2020). These methods 

Sensor Process Observations Slope Offset Correlation 

coefficient, r 

Root Mean 

Squared Error, 

RMSE (log 

CFU/g) 

MSI FCV 169 0.776 1.698 0.868 0.815  
Prediction 40 0.511 3.419 0.803 0.998 

FT-IR FCV 169 0.62 2.87 0.746 1.099  
Prediction 40 0.374 4.902 0.497 1.627 

E-nose FCV 169 0.576 3.232 0.757 1.12  
Prediction 40 0.044 6.145 0.245 1.921 

MSI/FT-

IR 

FCV 169 0.687 2.363 0.818 0.941 

 
Prediction 40 0.592 2.689 0.783 0.983 

FT-IR/E-

nose 

FCV 169 0.598 3.055 0.758 1.131 

 
Prediction 40 0.171 6.245 0.222 1.757 

MSI/E-

nose 

FCV 169 0.596 3.061 0.75 1.149 

 
Prediction 40 0.503 3.498 0.727 1.373 

3-sensors FCV 169 0.596 3.056 0.751 1.148  
Prediction 40 0.474 3.821 0.722 1.367 
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combined with NIR have been reported as a reliable and alternative approach for the 

estimation of Total Volatile Basic Nitrogen (TVB-N) in pork (Huang et al., 2014). The 

combined 3 sensors model demonstrated a RMSE value of 1.367 during prediction while 

for E-nose/FT-IR model this value was 1.757 log CFU/g. Additionally, correlation 

coefficient (r) values ranged from 0.722 to 0.803, except E-nose that presented very low 

value for this performance index (r= 0.245). The predicted versus observed TVCs for the 

most efficient models, namely MSI and FT-IR/MSI, as well as for the combined 3 sensor 

model are illustrated in Figure 6.6. According to Figure 6.6A and 6.6B, MSI and FT-

IR/MSI models could estimate TVCs within the acceptable area of ± 1 log CFU/g, while 

underestimation of TVCs was evident for samples exceeding 8 log CFU/g for the combined 

3 sensor model (Figure 6.6C). 

 

Figure 6.6: Predicted versus observed TVCs resulted from PLS-R model development based on 

data from: MSI (A), FT-IR/MSI (B) and combination of the 3 sensors (C). Solid symbols 

correspond to FCV process and open symbols to prediction process. Solid line represents the line 

of equity (y=x) while dashed lines indicate the limit area of ± 1.0 log CFU/g.  

The beta coefficients for the PLS-R models via MSI, FT-IR/MSI and the combined 

3 sensors are provided in the linear equations 6.6-6.8. Likewise, the contribution of each 

sensor to the estimation of TVCs via FT-IR/MSI model is presented in equation 6.7, where 

the scores of the first 6 PCs from MSI data and PC1 scores from FT-IR, obtaining values 

between 0.0991 to 14.800, were considered as significant based of Martens Uncertainty 

test. On the other hand, for the combined 3 sensor model (equation 6.8), b coefficients 

corresponding to PC4 scores from FT-IR data PCA analysis and to PC1, PC3 and PC4 

scores from E-nose data PCA analysis, demonstrated significant contribution to models’ 

development and prediction performance. 
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YTVCs/MSI= 13.984 + 9.529 × Xmean,405nm – 6.481 × Xmean,505nm + 13.632 × Xmean,570nm – 6.533 

× Xmean,630nm + 5.323 × Xmean,645nm + 9.131 × Xmean,660nm – 8.421 × Xmean,700nm – 4.695 × 

Xmean,850nm + 4.261 × Χmean,890nm – 6.315× XSD,405nm – 4.904 × XSD,435nm + 9.588 × XSD,470nm+ 

5.172× XSD,505nm + 3.452 × XSD,525nm – 8.106 × XSD,570nm – 3.473 × XSD,850nm + 4.979 × 

XSD,940nm                                                                                                                                                                                          (6.6)  

YTVCs/FT-IR/MSI= 7.374 – 1.606 × XPC1/MSI – 3.963 × XPC2/MSI + 2.914 × XPC3/MSI + 2.794 × 

XPC4/MSI + 7.930 × XPC5/MSI + 14.800 × XPC6/MSI – 0.091 × XPC1/FT-IR                                          (6.7) 

YTVCs/3 sensors= 7.548 – 0.274 × XPC4/FT-IR + 2.068 × XPC1/E-nose – 6.201 × XPC3/E-nose + 2.198 

× XPC4/E-nose                                                                                                                                                                                     (6.8) 

6.3.4.2 SVM-R models 

The values of RMSE of prediction for the developed SVM-R models assessing 

TVCs in chicken marinated souvlaki samples, calculated by k-cross validation (k-CV, 

k=10), are presented in Table 6.6. From single sensor models, MSI achieved the most 

efficient assessment of TVCs with a RMSE value of cross-validation and prediction of 

0.832 and 0.973 log CFU/g, respectively. Similarly, the combination of PCA scores derived 

from FT-IR and MSI data demonstrated an acceptable linear SVM-R model with RMSE 

value of prediction close to 1.0 log CFU/g. On the contrary, E-nose/FT-IR and MSI/E-nose 

models showed RMSE values of prediction over 1.5 log CFU/g and therefore they were 

considered not acceptable. The same outcome was observed for the 3-sensors model where 

RMSE of prediction was 1.938 log CFU/g. E-nose and FT-IR individual models failed to 

accurately predict TVCs providing RMSE values exceeding 1.921 log CFU/g. Even though 

E-nose analysis provides the lowest data size among the other two spectroscopic methods 

(Kutsanedzie et al., 2019), it seemed that microbial spoilage could be described more 

thoroughly by the other two techniques.  In general, the obtained results indicated that 

SVM-R models performed similarly to PLS-R models, with the exception of FT-IR model, 

where the SVM-regression approach presented higher RMSE values through k-CV and 

prediction.  

 

 

Table 6.6: SVM-R model performance (RMSE of cross-validation and prediction) from MSI, FT-

IR and E-nose sensors (individual and combined).  
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Sensor 

E-nose FT-IR MSI 

Step k-CV Prediction k-CV Prediction k-CV Prediction 

RMSE (log 

CFU/g) 

1.311 1.921 1.846 3.583 0.832 0.973 

 
E-nose/FT-IR FT-IR/MSI MSI/E-nose 

Step k-CV Prediction k-CV Prediction k-CV Prediction 

RMSE (log 

CFU/g) 

1.06 1.579 0.953 0.999 1.134 1.658 

 
3- sensors 

Step k-CV Prediction 

RMSE (log 

CFU/g) 

1.022 1.938 

 

The correlation between predicted and observed TVCs derived from SVM-R 

models developed on MSI and FT-IR/MSI data is demonstrated in Figures 6.7 and 6.8, 

respectively. In the case of MSI, model optimization (Figure 6.7A) did not show 

differences between observed and predicted TVCs, whereas there was clear overestimation 

for TVCs between 4 to 6 log CFU/g during prediction (Figure 6.7B). In addition, for both 

MSI and FT-IR/MSI models, an underestimation of the predicted TVCs occurred for 

samples with TVCs load of 8 log CFU/g (Figure 6.7B and 6.8B). In addition, the SVM-

regression beta coefficients for MSI and FTI-IR/MSI models are documented in Figures 

6.9 and 6.10, respectively. Similar to PLS-R model via MSI implementation, the beta 

coefficients corresponding to the reflectance from 570-700 nm indicated their important 

contribution in the prediction of spoilage in chicken samples. Regarding FT-IR/MSI model, 

the scores from PC1, PC2, PC5 and PC6 from MSI analysis had a greater impact on TVCs 

prediction, while the scores from PC1 from FT-IR data analysis seemed to influence 

models’ performance. 
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Figure 6.7: Predicted versus observed TVCs resulted from SVM-R model of MSI data for k-CV 

process (A) and prediction (B). Solid line represents the line of equity (y=x). 

 

Figure 6.8: Predicted versus observed TVCs resulted from SVM-R model of FT-IR/MSI data for 

k-CV process (A) and prediction (B). Solid line represents the line of equity (y=x). 
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Figure 6.9: Beta (B) coefficients of the SVM-R model developed on MSI spectral data (mean 

intensity of pixels per wavelength) for chicken marinated souvlaki. 

 

 

 

 

Figure 6.10: Beta (B) coefficients of the SVM-R model developed on FT-IR/MSI data (PCA 

scores) for chicken marinated souvlaki. 

 

In an attempt to improve SVM-R model performance and find the appropriate 

kernel function, Bayesian optimization process was employed and the resulted parameter 

and function combination (with the minimum MSE) is provided in Table 6.7. It is worth 

noticed that linear kernel function reached the minimum MSE values, where in another 

research SVM Gaussian kernel function (RBF) combined to PLS-R and E-nose were 

suggested as feasible rapid methods for the estimation of pork’s microbiota (Wang et al., 
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2012). Likewise, SVM (RBF) regression model coupled to E-nose could successfully 

predict the spoilage microorganisms in beef meat (Papadopoulou et al., 2013).  

Table 6.7: SVM-R optimized parameters and kernel function combinations (for each sensor model) 

indicating the minimum MSE.  
 

Box of constraction, 

c 

epsilon, 

e 

Kernel function 

FT-IR 2.5095 0.00566 Linear 

MSI 1.2616 0.0023 Linear 

E-nose 0.0976 0.3806 Linear 

FT-IR/MSI 16.322 0.2407 Linear 

E-nose/FT-

IR 

0.0157 0.0342 Linear 

MSI/E-

nose 

216.512 0.0031 Linear 

3-sensors 0.0289 0.0315 Linear 

 

6.3.5 Classification models assessing spoilage in chicken marinated souvlaki 

The overall accuracy (%) of prediction for the 3-class classification models was less 

than 60 % (Figure 6.11). From the use of single sensors, the LSVM model developed on 

MSI spectral data reached an overall accuracy of 52.5 %. The same LSVM algorithm 

developed on FT-IR/MSI data demonstrated more accurate classification performance 

compared to LDA and CSVM models (overall accuracy: 52.5%). The superiority of LSVM 

model coupled to MSI data has been reported in similar studies for quality assessment in 

meat (Wang et al., 2012; Papadopoulou et al., 2013; Fengou et al., 2021a) and specifically 

in chicken thigh fillets (Spyrelli et al., 2021). Another combination that exhibited overall 

accuracy close to 60 % was LDA coupled to MSI/E-nose data (overall accuracy, 55.0 %), 

which was the most accurate classification model containing E-nose data. This improved 

performance among the other combinations of 2-sensor models highlighted the positive 

synergetic role of MSI and E-nose signals to the generation of models assessing meat 

quality (Kutsanedzie at al., 2019; Weng et al., 2020). The inclusion of E-nose data to FT-

IR and to FT-IR/MSI data could not improve the discrimination potential among the 

different classes.  
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Figure 6.11: Heatmap presenting the performance (overall accuracy %) of LDA, LSVM and 

CSVM models developed on each sensor separately and in combination for the classification of 

chicken marinated samples in 3 quality classes.  

 

The performance (confusion matrix) of the 3 most accurate models (MSI and 

LSVM, FT-IR/MSI and LSVM, MSI/E-nose and LDA) classifying chicken samples in 3 

quality classes, as well as the performance metrics of sensitivity (%) and precision (%) per 

class are demonstrated in Table 6.8. For the MSI model, 123 out of 169 samples and 21 

out of 40 samples were correctly classified in the 3 quality classes during model 

development (k-CV) and prediction, respectively. LSVM model developed on MSI data 

provided sensitivity for class 1, 2 and 3 of 69.23%, 28.13% and 88.78 %, respectively, 

during training (using k-CV), whereas for model prediction the respective sensitivity was 

28.57%, 12.50% and 88.89%. For the same model, precision ranged from 40.91 to 87.00 

% and from 10.00 to 80 % during model development (using k-CV) and prediction, 

respectively, with the lowest percentages obtained for class 2 (semi-fresh). For the 

combined FT-IR/MSI model, 130 out of 169 samples and 21 out of 40 samples were 

classified correctly during model development (using k-CV) and prediction, respectively. 

Per class sensitivity varied from 31.25 to 92.93 % and from 21.43 to 88.89 % during model 

development and prediction, respectively, while the corresponding precision was estimated 

between 55.56 to 84.40 % and 13.33 to 84.21 % for model development and prediction, 

respectively. For the combined MSI/E-nose model, 127 out of 169 samples and 22 out of 

40 samples were correctly classified during model training and prediction, respectively. 
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Sensitivity and precision percentages were calculated in the range of 42.33-87.85% and 

50-84.68% during model development, respectively, whereas for prediction these 

performance indexes gradually decreased at 12.50-78.95% and 11.11-85.71%, 

respectively. It is worth noticing that sensitivity for class 3 (spoiled samples) demonstrated 

the highest percentages for both model development and prediction in all model 

combinations. The majority of class 1 (fresh) samples were misclassified as class 2 (semi-

fresh) in most cases while models could not identify correctly class 2 (sensitivity ranged 

from 12.50 to 25.00 %) mainly because of the low number of observations corresponding 

to this class in the training data. 

Table 6.8: Confusion matrix and performance metrics of the developed models (LDA, LSVM, 

CSVM) for the classification of samples in 3 quality classes, via MSI, FT-IR/MSI and MSI/E-nose 

data. 

Sensor Model Step Confusion Matrix  Performance metrics 

MSI LSVM k-CV o/p Class 1 Class 2 Class 3 Sensitivity 

(%) 

Precision 

(%) 

Class 1 27 9 3 69.23 57.45 

Class 2 13 9 10 28.13 40.91 

Class 3 7 4 87 88.78 87.00 

Prediction o/p Class 1 Class 2 Class 3 Sensitivity 

(%) 

Precision 

(%) 

Class 1 4 8 2 28.57 40.00 

Class 2 5 1 2 12.50 10.00 

Class 3 1 1 16 88.89 80.00 

FT-IR/MSI Model Step Confusion Matrix  Performance metrics 

CSVM k-CV o/p Class 1 Class 2 Class 3 Sensitivity 

(%) 

Precision 

(%) 

Class 1 28 5 5 73.68 66.67 

Class 2 10 10 12 31.25 55.56 

Class 3 4 3 92 92.93 84.40 

Prediction o/p Class 1 Class 2 Class 3 Sensitivity 

(%) 

Precision 

(%) 

Class 1 3 11 0 21.43 50.00 

Class 2 3 2 3 25.00 13.33 

Class 3 0 2 16 88.89 84.21 

MSI/E-nose Model Step Confusion Matrix  Performance metrics 

CSVM k-CV o/p Class 1 Class 2 Class 3 Sensitivity 

(%) 

Precision 

(%) 

Class 1 22 7 7 61.11 61.11 

Class 2 5 11 10 42.31 50.00 
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In order to improve the performance of the models, it was considered necessary to 

employ a two-class scheme (fresh vs. spoiled) by combining the samples of class 1 and 2 

together and thus increase the number of training cases in class 1. The performance of the 

2-class models in terms of overall accuracy was improved compared to the 3-class models 

as illustrated in Figure 6.12. For spectroscopic sensor models (MSI, FT-IR, FT-IR/MSI) 

the overall accuracy of prediction exceeded 60 % in most cases, with the highest 

percentages obtained for FT-IR/MSI (LDA: 85%, LSVM: 82.5%, CSVM: 87.5%), 

followed by MSI and SVM models (LSVM: 80 % and QSVM: 77.5%).  The combination 

of SVM models with the above-mentioned spectroscopic techniques as well as the use of 

LDA with FT-IR data has been recommended in recent studies as an effective approach for 

the quality assessment of meat freshness (Candŏgan et al., 2021). The high overall accuracy 

of all FT-IR/MSI models confirmed that the combination of these nondestructive 

techniques could assess more effectively the quality of meat (Huang et al., 2014). 

Overall accuracy performance was improved for the 2-class FT-IR models 

compared to the 3-class FT-IR models, however their performance was below 60 % which 

cannot be considered satisfactory. Improved overall accuracy was observed for E-nose 

models but it could not exceed 39.4%. Moreover, the performance of MSI/E-nose models 

could not be improved by the exclusion of the third (semi-fresh) class, where the highest 

percentage of overall accuracy was calculated at 48.48 % for the LDA model. In contrast, 

the CSVM model developed on the combined FT-IR and E-nose data identified the correct 

class of the samples satisfactorily with overall accuracy of 63.63 %. Concerning the 3 

sensor models, the use of CSVM exhibited the most accurate discrimination between 

samples with overall accuracy of 72.73%.  

 

Class 3 9 4 94 87.85 84.68 

Prediction o/p Class 1 Class 2 Class 3 Sensitivity 

(%) 

Precision 

(%) 

Class 1 6 4 3 46.15 85.71 

Class 2 1 1 6 12.50 11.11 

Class 3 0 4 15 78.95 62.50 
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Figure 6.12: Heatmap presenting the performance (overall accuracy %) of LDA, LSVM and 

CSVM models developed on each sensor separately and in combination for the classification of 

chicken marinated samples in 2 quality classes.  

 

The improved performance of the MSI (combined with LSVM and CSVM models) 

is demonstrated in the confusion matrix (Table 6.9) where the per class sensitivity (%) and 

precision (%) is presented. For the MSI and LSVM model, 149 out of 169 samples and 32 

out of 40 samples were accurately classified in their respective class during model 

development and prediction, respectively. Sensitivity and precision for class 1 (fresh 

samples) reached 90.14 % and 83.12 % for model development, respectively, while for 

model prediction the respective percentages were 83.12 % and 85.0 %. The CSVM model 

developed on MSI data classified 127 out of 169 samples and 31 out of 40 samples in their 

correct class for model development and prediction, respectively. For this model, 

sensitivity for class 1 (fresh) was calculated at 74.65% and 88.89% for cross validation and 

prediction, respectively, whereas precision ranged from 68.83 to 72.41%. In both MSI 

models, sensitivity for class 2 (spoiled) was approximately the same as for class 1 during 

cross validation, with the exception of the prediction of the CSVM model where one 

spoiled sample was misclassified as fresh. 
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Table 6.9: Confusion matrix and performance metrics of the developed models (LSVM, CSVM) 

for the classification of samples in 2 quality classes via MSI data. 

 

*Class 1: fresh 
**Class 2: spoiled 

 

For the 2-sensors and 3-sensors models, the respective confusion matrix and the 

performance indexes of sensitivity and precision are represented in Table 6.10. For the 

LDA model developed on combined FT-IR/MSI data, 141 out of 169 samples and 34 out 

of 40 samples were correctly classified during model cross validation and prediction, 

respectively. The calculated sensitivity for class 1 and precision were amounted to 80 % 

and 86.36 % for model cross validation and prediction, respectively. The LSVM model 

identified correctly 143 out of 169 samples and 33 out of 40 samples during cross validation 

and prediction, respectively. Moreover, the LSVM model developed on FT-IR/MSI data 

provided sensitivity for class 1 and precision of 87.14 % and 78.20 % for cross validation, 

respectively and 77.27 % and 89.47% for prediction, respectively. For CSVM model, 135 

out of 169 samples and 35 out of 40 samples were classified in their correct class during 

cross validation and prediction, respectively. Sensitivity for class 1 and precision was 77.14 

% and 75 % for model cross validation, respectively and 90% and 86.95% for model 

prediction, respectively. For the 3 sensors model, 154 out of 169 samples and 29 out of 40 

samples were properly classified during cross validation and prediction, respectively. 

Sensitivity for class 1 reached 90.77% and 88.23 % for cross validation and prediction, 

Sensor Model Step Confusion Matrix Performance metrics 

MSI LSVM k-CV o/p Class 1* Class 2** Sensitivit

y (%) 

Precision 

(%) 

Class 1 64 7 90.14 83.12 

Class 2 13 85 86.75 

Prediction o/p Class 1 Class 2 Sensitivit

y (%) 

Precision 

(%) 

Class 1 17 5 77.27 85 

Class 2 3 15 83.33 

Model Step Confusion Matrix Performance metrics 

CSVM k-CV o/p Class 1 Class 2 Sensitivit

y (%) 

Precision 

(%) 

Class 1 53 18 74.65 68.83 

Class 2 24 74 75.51 

Prediction o/p Class 1 Class 2 Sensitivit

y (%) 

Precision 

(%) 

Class 1 21 1 95.45 72.41 

Class 2 8 10 55.55 
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while the respective values for precision were 86.76% and 68.18%. Sensitivity values for 

class 2 were in most cases similar to sensitivity values for class 1, exceeding 80% with the 

exception of the 3 sensors model where the sensitivity for class 2 was calculated at 66.67%. 

This outcome indicated the potential of the developed models to accurately identify and 

categorize both fresh (class 1) and spoiled (class 2) samples.  

 

Table 6.10: Confusion matrix and performance metrics of the developed models (LSVM, CSVM) 

for the classification of samples in 2 quality classes via FT-IR/MSI and 3-sensors data. 

Sensor Model Step Confusion Matrix Performance metrics 

FT-

IR/MSI 

LDA 

k-CV 

o/p Class 1 Class 2 
Sensitivity 

(%) 

Precision 

(%) 

Class 1 56 14 80 
80 

Class 2 14 85 85.86 

Prediction 

o/p Class 1 Class 2 
Sensitivity 

(%) 

Precision 

(%) 

Class 1 19 3 86.36 
86.36 

Class 2 3 15 83.33 

Model Step Confusion Matrix Performance metrics 

LSVM 

k-CV 

o/p Class 1 Class 2 
Sensitivity 

(%) 

Precision 

(%) 

Class 1 61 9 87.14 
78.20 

Class 2 17 82 82.83 

Prediction 

o/p Class 1 Class 2 
Sensitivity 

(%) 

Precision 

(%) 

Class 1 17 5 77.27 
89.47 

Class 2 2 16 88.89 

Model Step Confusion Matrix Performance metrics 

CSVM 

k-CV 

o/p Class 1 Class 2 
Sensitivity 

(%) 

Precision 

(%) 

Class 1 54 16 77.14 
75 

Class 2 18 81 81.82 

Prediction 

o/p Class 1 Class 2 
Sensitivity 

(%) 

Precision 

(%) 

Class 1 20 2 90 
86.95 

Class 2 3 15 83.33 

3 

sensors 

Model Step Confusion Matrix Performance metrics 

CSVM 

 o/p Class 1 Class 2 
Sensitivity 

(%) 

Precision 

(%) 

k-CV Class 1 59 6 90.77 86.76 

  Class 2 9 95 91.34 
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Prediction o/p Class 1 Class 2 
Sensitivity 

(%) 

Precision 

(%) 

 Class 1 15 2 88.23 
68.18 

 Class 2 7 14 66.67 
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Chapter 7: Quality and safety assessment of marinated chicken 

souvlaki 
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Abstract 

Campylobacteriosis is the most frequent reported zoonosis transmitted to humans 

through the food chain. Campylobacter spp. have been isolated from poultry meat as well 

as from marinated poultry products. Under this scope, the objective of this research was 

the investigation of Campylobacter spp. behavior after inoculation of six Campylobacter 

strains in chicken souvlaki under different storage temperatures. Moreover, the microbial 

growth of the indigenous microbiota of the inoculated and non-inoculated chicken 

marinated souvlaki was examined. In brief, chicken marinated souvlaki samples were 

inoculated by a multiple-strain inoculum (6 strains of C. coli and C. jejuni) and stored 

aerobically at three different isothermal conditions (0, 5 and 10 oC) and a dynamic 

temperature profile (12 h at 0 oC, 8 h at 5 oC and 4 h at 10 oC). At regular time intervals, 

inoculated and non-inoculated samples were microbiologically analyzed for the 

enumeration of Total Viable Counts (TVCs), Pseudomonas spp., anaerobic bacteria and 

Campylobacter spp. count. TVCs and Pseudomonas spp. counts were fitted to a one-step 

predictive model for chicken marinated souvlaki (inoculated and non-inoculated) and the 

obtained models were validated with the available independent data from the dynamic 

temperature profile storage experiment. Furthermore, survival models determining 

Campylobacter spp. counts during storage at isothermal conditions were developed and 

assessed. Molecular analysis via Random amplified polymorphic DNA PCR (RAPD-PCR) 

was conducted with isolates from three time points during the experiments. The developed 

models for the spoilage microbiota (TVCs and Pseudomonas spp.) in inoculated and non-

inoculated samples demonstrated RMSE values lower than 1 log CFU/g (below 0.941 log 

CFU/g), while Bf and Af indices were considered acceptable (Bf: 0.90- 1.05, Af: 1.100). 

Campylobacter spp. could survive despite the low storage temperature presenting a decline 

of 1.5 log CFU/g from the initial population. From the developed survival models, the 

highest accuracy was achieved for the modified Weibull model at 5 oC storage with RSME, 

and R2 values of 0.112 log CFU/g, and 0.909 respectively. Molecular analysis showed that 

both Campylobacter coli and jejuni strains could survive during low storage temperatures, 

with the exception of 5 oC where only Campylobacter coli was detectable in the samples.  
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7.1 Introduction  

Since 2005, campylobacteriosis has been reported as the most commonly reported 

zoonosis (over 70 % of documented pathogens infections) in the EU and all around the 

world (World Health Organization, 2013; EFSA/ECDC, 2019). This severe disease is 

manifested in the majority of cases as gastroenteritis with acute non-inflammatory or 

grossly bloody diarrhea (i.e., dysentery), fever and abdominal pain or cramps lasting for 

one week or more, whereas in some cases there are evident symptoms such as bacteremia, 

Guillain-Barré syndrome, reactive arthritis, miscarriages and depression (Gharst et al., 

2013; Bolton & Robertson, 2016). Campylobacter spp. are transmitted through the food 

chain and affects humans mainly through food and water consumption (Codex 

Alimentarius Commission, 2011; Dogan et al., 2019). The highest detection of 

Campylobacter in foods was reported on fresh meat from broilers which was also linked 

to strong evidence outbreaks of campylobacteriosis (EFSA/ECDC, 2019). In this context, 

in 2011 the Codex Alimentarius Commission and EU as well published guidelines for the 

control of Campylobacter spp. in chicken meat implemented at one or more steps in the 

farm to table chain (Codex Alimentarius Commission, 2011; EFSA Panel on Biological 

Hazards (BIOHAZ), 2011). Moreover, a supplementary regulation of the EU 2073/2005 

regulation for the microbial criteria in food was considered appropriate and thus in the 

amended EU 2017/1495 regulation the limit of detection of Campylobacter spp. in raw 

poultry slaughters was limited to 1,000 CFU/g (EU, 2017).   

Campylobacter spp. is a Gram-negative, microaerophilic, spiral shaped rod inhabiting 

in high populations the gastrointestinal tract of predominantly birds (chicken and turkey). 

This bacterium could be also found in red meat products (bovine, sheep, cattle and pigs) 

and it can survive in the water and even sand (Lanzl et al., 2020). Poultry meat could be 

contaminated with this pathogen from the caeca via the water supply system, inadequate 

hygiene practices, contaminated surfaces in the slaughter house and/or the chilling 

procedure after evisceration (Demirok et al., 2012; Seliwiorstow et al., 2016; Rouger et al., 

2017, McCarthy et al., 2019). Additionally, humans could be infected by Campylobacter 

spp. due to the consumption of contaminated raw or undercooked chicken products (Silva 

et al., 2011; Skarp et al., 2015; Huang et al., 2019; Andritsos et al., 2020). Until now, two 

species of Campylobacter, C. jejuni and C. coli have been reported in approximately 90 % 
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of campylobacteriosis cases in humans (Solow et al., 2003; Gharst et al., 2013; Repérant 

et al., 2016). Likewise, these two species have been isolated most frequently from broiler 

meat during prevalence surveys in the last decade (Torralbo et al., 2015; Stella et al., 2017; 

EFSA/ECDC, 2019; Andritsos et al., 2020; Lytou et al., 2020). 

For the reduction and elimination of Campylobacter spp. in raw or stored chicken meat 

several studies have been undertaken to investigate the effect of temperature on the growth 

and/or survival of Campylobacter strains (Blankenship & Craven, 1982; Hazeleger et al., 

1998; Duffy & Dukes, 2006). Specifically, the potential of Campylobacter spp. to survive 

in poultry for long periods at chilling temperatures (4°C) has been reported (Silva et al., 

2011). Furthermore, certain Campylobacter strains could remain viable even at low 

concentration in chicken matrix after the exposure and maintenance at freezing 

temperatures (below -20 oC) (Lee at al., 1998; Zhao et al., 2003; Yun et al., 2016; Lanzl et 

al., 2020). Several survival/inactivation models (log-linear models, Weibull and modified 

Weibull) of Campylobacter have been developed to describe the reduction of this pathogen 

via chilling process in chicken products (Ritz et al., 2006; González et al., 2009; Membré 

et al., 2013; Duqué et al., 2019). Nevertheless, the influence of marination and o chemical 

decontaminants (mainly acids) combined with refrigeration storage temperatures has been 

also evaluated for the reduction of Campylobacter spp. in chicken, where this pathogen 

was characterized as acid tolerant (Chaveerach et al., 2003; Björkroth, 2005; Meredith et 

al., 2013; Lytou et al., 2020).  

The aim of this work was firstly to investigate the behavior of Campylobacter strains, 

isolated previously from chicken marinated samples (during a survey in the Greek poultry 

market), after inoculation on chicken samples marinated with functional acid marinade 

(commercial product) and storage at three chilling conditions. Survival models of 

Campylobacter spp. were developed at each storage temperature and validated via 

independent data obtained through a dynamic temperature profile experiment. In parallel, 

the growth of the indigenous spoilage microbiota (TVCs and Pseudomonas spp.) was 

monitored during storage of the inoculated and non-inoculated samples and a one-step 

predictive growth model was developed and externally validated for each microbial group 

individually. Further on, RAPD-PCR was performed to isolates obtained at the beginning, 
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middle and final time points of storage in order to elucidate the impact of temperature and 

marinade on the initial inoculum.  

7.2 Materials and Methods 

7.2.1 Inoculum preparation 

Five Campylobacter spp. strains obtained during a previous survey in chicken 

marinated souvlaki (Lytou et al., 2020) were used for the inoculum formulation as follows: 

9D (C. coli, pH: 5.6), 7L (C. coli, pH: 5.5), 6Z (C. coli, pH: 6.4), 1H (C. coli, pH: 5.8) and 

6A (C. jejuni, pH: 5.9). Moreover, one Campylobacter strain from the collection of the 

Laboratory of Microbiology and Biotechnology of Foods (LMBF) of the Agricultural 

University of Athens (AUA) was used as inoculum in the present study, namely B-450 

(Campylobacter jejuni subsp. jejuni, ATCC 29428). The acid tolerance of the above-

mentioned strains has been reported by Lytou et al. (2020). The strains were revived from 

a stock culture (-20 oC), cultured in 10 ml Bolton Broth (Campylobacter Enrichment Broth, 

NCM0094A, Neogen Culture Media, UK) with lysed horse blood (Lysed horse blood, 

HB036, TCS Biosciences Lted) and incubated for 48 hours at 41.5 ± 0.5 oC in anaerobic 

conditions (Microbiology Anaerocult C: for the generation of an oxygen- depleted and CO2 

– enriched atmosphere in an anaerobic jar, 1.32383.0001, Millipore, USA). A volume of 

10 μl of each revived culture was transferred to 10 ml of sterilized Bolton Broth and 

incubated in anaerobic conditions for 48 h at 41.5 ± 0.5 oC. The obtained cultures were 

transferred in separate sterile falcons and the bacterial cells were separated from the broth 

medium by centrifugation (5,000 g for 10 min at 4oC) and washed twice with 10 ml sterile 

Bolton Broth. The derived pellets were resuspended in the same Bolton Broth volume (10 

ml). Further on, equal volumes of each bacterial suspension were mixed in a sterile Duran 

bottle resulting in a composite Campylobacter spp. inoculum of 7.99-8.27 log CFU/ml as 

assessed by plate counting. The composite inoculum was further diluted with the same 

diluent to achieve a final inoculum of 103 CFU/ml that was used for all experiments. 

7.2.2 Sample preparation and storage  

Chicken marinated souvlaki (chicken thigh fillet, sodium chloride, sodium acetate, 

sodium citrate, enzyme tenderizer and ascorbic acid) with pH values from 6.2 to 6.5 was 

transferred to the laboratory within 30 min under refrigeration. Samples were weighted 
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(20.41 ± 0.13 g) and placed aseptically in styrofoam dishes (two portions per dish). Each 

sample was inoculated with 100 μl of the strain mixture by dispersing it with a pipette and 

spreading it with a sterile spatula over the surface of chicken. Further on, samples were 

maintained at 4 oC for 30 min to ensure inoculum attachment and afterwards the same 

procedure was repeated on the other side of the sample. The styrofoam dishes containing 

the inoculated samples were wrapped with cling film (household food wrap) and stored at 

three different isothermal conditions (0, 5 and 10 oC) in high precision incubators (MIR-

153, Sanyo Electric Co., Osaka, Japan). After inoculation, control (non-inoculated) 

samples were also stored at the same conditions, in order to compare the growth behavior 

of the indigenous microbiota of untreated chicken marinated souvlaki with the inoculated 

samples, and simultaneously detect the presence of Campylobacter spp. in this poultry 

product. Two independent experiments were undertaken with duplicate samples analyzed 

in each experiment (n=4), whereas the same experimental procedure was performed with 

samples stored at a dynamic temperature profile (12 h at 0 oC, 8 h at 5 oC and 4 h at 10 oC) 

in order to investigate the influence of temperature changes on the indigenous microbiota 

as well as on the dynamics of Campylobacter spp. strains. 

7.2.3 Microbiological analysis 

Each sample (20 g) was subjected to microbiological analysis for the enumeration of 

the indigenous microbiota and the inoculated pathogen counts at the beginning of storage 

as well as at pre-determined time intervals. For this reason, the 20 g sample was added 

aseptically in 180 ml of sterile Bolton Broth (Campylobacter Enrichment Broth, 

NCM0094A, Neogen Culture Media, UK) in a stomacher bag (Seward Medical, London, 

UK) and homogenized in a stomacher device (Lab Blender 400, Seward Medical, London, 

UK) for 60 s at room temperature. For the enumeration of TVCs, Pseudomonas spp., 

anaerobic bacteria and Campylobacter spp., serial decimal dilutions were performed in the 

same diluent and spread on the following media: a) Plate Count Agar (Tryptic Glucose 

Yeast Agar PCA, Ref.4021452, Biolife, Italiana S.r.l, Milano, Italy) for the estimation of 

TVCs after incubation at 25 οC for 72 h; b) Pseudomonas Agar Base (LAB108, LABM., 

U.K.) supplemented with Cetrimide-Fusidin-Cephaloridine (Modified C.F.CX108, 

LABM, UK) for the estimation of the presumptive Pseudomonas spp. after incubation at 

25 οC for 48 h; c) Columbia Blood Agar (Campylobacter Selective Agar CBA, LAB001, 
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UK) with 5% lysed horse blood for the estimation of the anaerobic bacteria after 

inoculation at 41.5 οC for 48 h under anaerobic conditions; d) Columbia Blood Agar 

(Campylobacter Selective Agar CBA, LAB112, UK) with 5% lysed horse blood 

supplemented with  Skirrow medium (Skirrow supplement, LABM 214, UK), for the 

estimation of  Campylobacter spp. after inoculation at 41.5 οC for 48 h under anaerobic 

conditions; e) Campylobacter Blood Free Selective Medium (Modified CCDA, LAB112, 

UK)  supplemented with Ceroperazone/Amphotericin (Ref.X112, LAB M, UK), for the 

estimation of Campylobacter spp. after inoculation at 41.5 οC for 48 h under anaerobic 

conditions. After incubation, counts were logarithmically transformed and expressed as log 

CFU/g.  

7.2.4 Predictive models  

7.2.4.1 Growth predictive models for TVCs and Pseudomonas spp.  

One-step modeling (Huang et al., 2016) was applied to TVCs and Pseudomonas 

spp. counts from the isothermal conditions of storage for the determination of the primary 

and secondary kinetic parameters for TVCs and Pseudomonas spp. on inoculated and non-

inoculated chicken marinated souvlaki. The Huang full growth primary model (Huang, 

2013) (equations 7.1-7.3) and the secondary Ratkowsky sub-optimal growth-temperature 

model (Ratkowsky, 1983) (equation 7.4) were fitted to TVCs and Pseudomonas spp. counts 

using IPMP-Global Fit software (USDA Agricultural Research Service, Eastern, Regional 

Research Center, Wyndmoor, PA). 

Y(𝒕) = 𝒀𝟎 + 𝒀𝒎𝒂𝒙 − 𝒍𝒏 [𝒆𝒀𝟎 + (𝒆𝒀𝒎𝒂𝒙 − 𝒆𝒀𝟎) 𝒆−𝝁𝒎𝒂𝒙 B(𝒕)] (7.1) 

B(t)= t + 
𝟏

𝟒
 ln

𝟏+𝒆−𝟒(𝒕−𝝀)

𝟏+𝒆𝟒𝝀
 (7.2) 

λ= 
𝒆𝑨

𝝁𝒎𝒂𝒙𝒎   (7.3) 

where: Υ(t) is the base-10 logarithms (log10) of the real time microbial counts (log CFU/g) 

at the respective storage time t (h), yo is the initial base-10 logarithms (log10) of the 

microbial counts (log CFU/g), ymax is the final base-10 logarithms (log10) of the microbial 

counts (log CFU/g), μmax is the specific growth rate of the microbial group (h-1), b, A and 

m are regression coefficients, λ is the lag phase (h) and B(t) is the transition function.  
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√𝜇𝑚𝑎𝑥= b (T-Tmin)  (7.4) (Ratkowsky, 1983) 

 

Model performance of the model developed under isothermal conditions was 

validated against observed growth of Pseudomonas spp. (n=33, different batch) under a 

dynamic temperature profile (12 h at 0 oC, 8 h at 5 oC and 4 h at 10 oC) using the differential 

equations of the Baranyi and Roberts model (Baranyi & Roberts, 1994) that were 

numerically integrated in Microsoft® Excel. The accuracy of the prediction was estimated 

by the RMSE value, the bias factor (Bf) and the accuracy factor (Af) (Ross, 1996). 

 

7.2.4.2 Survival/ Inactivation models for Campylobacter spp.  

The influence of the chilling storage temperatures on the kinetic behavior of 

Campylobacter spp. on chicken marinated souvlaki was assessed via survival/inactivation 

models developed by GInaFiT Version 1.6 add-in software for Excel Microsoft® 

(available at https://cit.kuleuven.be/biotec/software/GinaFit, KULeuven, Belgium). This 

free software has been implemented in a variety of experimental data for the development 

of linear and non-linear survival/inactivation curves of spoilage and pathogenic bacteria 

(Geeraerd et al., 2005.) In this study, the Weibull model (equation 7.5) (Mafart et al., 2002) 

and the modified Weibull model (equation 7.6) (Albert & Mafart, 2005) were employed to 

determine the kinetic parameters of Campylobacter spp. at 0, 5, and 10 oC.  

 
𝛮

𝛮0
 = 10−(

𝑡

𝛿
)𝑝

  (7.5) 

 

N= (N0- Nres) ×10−(
𝑡

𝛿
)𝑝

+ Nres  (7.6) 

 

 

where, N is the number of surviving bacterial after a certain time of refrigerated storage  

(log CFU/g), N0 is the initial bacterial populations (log CFU/g), t is the duration of the 

treatment (in this case the storage time in hours), δ is the scale factor denoting the time for 

the first decimal reduction (h), p is the shape factor of the curve (dimensionless) (p > 1 

indicates convex curves whereas p < 1 denotes concave curves) and Nref is the residual 

bacterial populations (log CFU/g) (Mafart et al., 2002, Albert & Mafart, 2005).  

https://cit.kuleuven.be/biotec/software/GinaFit
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7.2.5 Molecular analysis  

Campylobacter spp. colonies were isolated from Skirrow and mCCDA agar plates 

for chicken marinated souvlaki samples at the beginning (0 h), middle (0 oC: 120 h, 5 oC: 

96 h, 10 oC: 72 h) and final (0 oC: 312 h, 5 oC: 240 h, 10 oC: 216h, dynamic temperature 

profile: 312h) time of storage. The isolates (44) were verified for their purity via 

confirmation tests, namely (a) by streaking on Columbia Blood agar and incubated 

aerobically at 41.5 oC for 48 h, (b) by streaking on Columbia Blood agar and incubated 

micro-aerobically at 25 oC for 48 h, (c) by oxidase test, and (d) by microscopic observation, 

according to ISO 10272-1:2006. Pure colonies from the initial composite inoculum were 

also isolated in order to compare their profile to the obtained profiles from storage 

experiments and hence elucidate the survival of each strain according to the storage 

temperature. The isolates were maintained at -20 oC in 1.5 mL Bolton broth with 20% 

glycerol and 2 % horse blood.  

DNA extraction was performed using the total genomic DNA extraction protocol for 

bacteria (Doulgeraki et al., 2011), while the extracted DNA was qualitatively and 

quantitatively evaluated by nanophotometer (Implen, Germany) measurements at 

wavelengths of 260, 280, and 230 nm. Random amplified polymorphic DNA (RAPD)- 

PCR analysis was performed with a M13 primer (5′-GAGGGTGGCGGTTCT-3′) 

(Hanjilouka et al., 2014; Tzamourani et al., 2021). Volume of 50 μl from PCR 

amplifications were consisted based on Lytou et al. (2021) publication: PCR-buffer (10 × 

PCR buffer B with 1.5 mM MgCl2, Kapa Biosystems, Wilmington, MA, USA), additional 

0.2 mM MgCl2, 0.8 mM dNTPs, 4 μM primer M13, 1 U Taq DNA polymerase (Kapa 

Biosystems, USA), DNA (100 ng) and sterile distilled water. PCR reaction was conducted 

as described elsewhere (Lytou et al., 2021). Briefly, an initial denaturation step at 95 oC 

for 3 min, 3 cycles of denaturation at 95 oC for 3 min, primer annealing at 35 oC for 5 min 

and primer elongation 72 oC for 5 min, followed by 32 cycles of denaturation at 95 oC for 

1 min, primer annealing at 55 oC for 2 min and primer elongation 72 oC for 3 min, and a 

final elongation step at 72 oC for 7 min (Lytou et al., 2021). Aliquots of PCR products were 

separated via electrophoresis on a 1.5% agarose gel in 1 × TAE (40 mM Tris–acetate, 1 

mM EDTA, pH 8.2) buffer at 100 V for 75 min. Gels were stained with ethidium bromide 

and visualized under UV light in a Bio-Rad GelDoc 2000 system (Bio-Rad Laboratories 
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Inc., Hercules, CA, USA) using the analysis software Quantity-One (Bio-Rad, Hercules, 

CA, USA). The resulted gel images were analyzed using the Jaccard/Dice coefficient and 

the unweighted pair group method with arithmetic mean (UPGMA) cluster analysis, via 

the BioNumerics software version 6.1 (Applied Maths, Sint-Martens-Latem, Belgium). 

7.3 Results and Discussion 

7.3.1 Microbiological results 

The microbiological results for each microbial group (TVCs, Pseudomonas spp., 

anaerobic microorganisms on Columbia Agar, Campylobacter spp. on mCCDA and 

Skirrow agar) during the storage of the inoculated chicken marinated souvlaki are 

presented in Figure 7.1. Chilling temperatures influenced the population of the indigenous 

spoilage microbiota, with 0 oC demonstrating the highest inhibitory effect on chickens’ 

spoilage. Moreover, TVCs and Pseudomonas spp. followed similar growth pattern at all 

storage temperatures indicating that Pseudomonas spp. was the dominant spoilage 

microorganism responsible for chicken meat deterioration under aerobic conditions 

(Gospavic et al., 2008; Belak et al., 2011; Bruckner et al., 2013; Remenant et al., 2015). 

The initial TVCs and Pseudomonas spp. counts were 5.36 ± 0.59 and 4.46 ± 0.12 log 

CFU/g, respectively, for the isothermal storage conditions, as well as 6.96 ± 0.07 and 6.28 

± 0.13 log CFU/g, respectively, for the dynamic temperature profile. At 0 oC (Figure 7.1A), 

these two microbial groups reached the spoilage threshold of marinated poultry (7.0 log 

CFU/g) (Gospavic et al., 2008; Lytou et al., 2018) after 168 h (7.13 ± 0.30 log CFU/g) and 

192 h (7.0 ± 0.43 log CFU/g), respectively. On the contrary, the anaerobic populations on 

Columbia agar presented a slight increase from 3.87 ± 0.15 log CFU/g to 4.21 ± 0.36 log 

CFU/g. Campylobacter spp. results obtained from Skirrow agar and mCCDA did not differ 

as both media are selective for the enumeration of this pathogen (ISO 10272-1:2006). 

Specifically, for Skirrow agar the initial and final counts were documented at 3.45 ± 0.16 

log CFU/g and 2.57 ± 0.28 log CFU/g respectively. For mCCDA, the initial population of 

Campylobacter spp. was estimated at 3.20 ± 0.20 log CFU/g and the final population at 

2.63 ± 0.63 log CFU/g after 312 h of storage. 
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Figure 7.1: Microbial counts of TVCs (cycles), Pseudomonas spp. (diamonds), anaerobic bacteria 

on Columbia blood agar (squares), Campylobacter spp. on mCCDA (solid line with triangles) and 

on Skirrow (dashed line with triangles) in inoculated chicken marinated souvlaki stored at 0 oC (A), 

5 oC (B), 10 oC (C) and a dynamic temperature profile (D).  

For samples stored at 5 oC (Figure 7.1B), TVCs and Pseudomonas spp. counts 

exhibited values above the spoilage threshold of 7.0 log CFU/g in 96 h (7.21 ± 0.81 log 

CFU/g) and 120 h (7.33 ± 0.22 log CFU/g) of storage respectively, while anaerobic counts 

on Columbia blood agar were at 5.53 ± 0.66 log CFU/g after 240 h. Furthermore, 

Campylobacter spp. counts on Skirrow and mCCDA media at the end of storage at 5 oC 

(240 h) were estimated at 2.34 ± 0.20 and 2.70 ± 0.04 log CFU/g. Regarding samples stored 

at 10 oC, TVCs and Pseudomonas spp. counts exceeded the spoilage threshold of 7.0 log 

CFU/g after 48 h (7.12 ± 0.90 log CFU/g) and 72 h (8.36 ± 0.57 log CFU/g) of storage. 

Columbia blood agar counts reached values greater than 7.0 log CFU/g only in the case of 

isothermal storage (7.47 ± 0.25 log CFU/g), while Campylobacter spp. counts at the end 

of storage (192 h) were 2.98 ± 0.07 log CFU/g in Skirrow agar and 3.01 ± 0.22 log CFU/g 

in mCCDA. For the dynamic temperature profile, TVCs and Pseudomonas spp. counts 

were recorded at 7.01 ± 0.1 log CFU/g and at 7.5 ± 0.89 log CFU/g in 24 h, respectively. 

At the end of the dynamic temperature profile experiment (312 h), counts on Columbia 

blood agar were 5.81 ± 0.07 log CFU/g, while Campylobacter spp. counts were estimated 

at 2.27 ± 0.16 log CFU/g in Skirrow agar and 2.12 ± 0.27 log CFU/g in mCCDA. The 
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survival of Campylobacter spp. at freezing and chilling temperatures as well as its acid 

tolerance on marinated matrices and modified broths has been well documented in the 

literature (Fletcer et al., 1983; Chaveerach et al., 2003; Zhao et al., 2003; Ritz et al., 2006; 

Lanzl et al., 2020; Lytou et al., 2020). 

In addition, microbiological analysis was performed to non- inoculated samples and 

the obtained results are provided in Figure 7.2. For the isothermal conditions of storage, 

TVCs, Pseudomonas spp. counts and anaerobic populations on Columbia blood agar 

showed similar growth behavior with the ones observed in inoculated samples, with their 

initial counts being 5.06 ± 0.28, 4.99 ± 0.26 and 4.67 ± 0.33 log CFU/g, respectively. In 

the case of the dynamic temperature profile, TVCs, Pseudomonas spp. counts and 

anaerobic counts on Columbia blood agar were 5.63 ± 0.14, 5.09 ± 0.03 and 3.74 ± 0.34 

log CFU/g respectively. TVCs and Pseudomonas spp. loads in control (non- inoculated) 

samples presented a similar growth pattern as in the inoculated samples and reached the 

spoilage threshold of 7.0 log CFU/g one day later compared with the inoculated samples. 

Specifically, TVCs and Pseudomonas spp. counts exceeded 7.0 log CFU/g in 216 h at 0 oC 

(TVCs:7.66 ± 0.63 log CFU/g, Pseudomonas spp. counts: 7.29 ± 0.79 log CFU/g), in 96 h 

at 5 oC (TVCs: 7.22 ± 0.88 log CFU/g, Pseudomonas spp. counts: 6.49 ± 0.48 log CFU/g) 

and in 72 h at 10 oC (TVCs: 7.52 ± 0.29 log CFU/g, Pseudomonas spp. counts: 6.03 ± 0.28 

log CFU/g). For the dynamic temperature profile, spoilage was evident after 24 h of storage 

with TVCs values of 7.03 ± 0.15 log CFU/g. For the samples stored at 0 oC, the anaerobic 

counts on Columbia blood agar were estimated at 6.80 ± 0.65 log CFU/g in 312 h, while at 

5 oC were 7.29 ± 0.55 log CFU/g in 144 h. Finally, at 10°C and in the dynamic temperature 

profile, counts on Columbia blood agar were 7.02 ± 0.78 log CFU/g (in 120 h) and 6.02 ± 

0.31 log CFU/g (in 312 h). 
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Figure 7.2: Microbial counts of TVCs (cycles), Pseudomonas spp. (diamonds) and anaerobic 

bacteria on Columbia blood agar (squares) in non-inoculated chicken marinated souvlaki stored at 

0 oC (A), 5 oC (B), 10 oC (C) and a dynamic temperature profile (D).  

7.3.2 Growth models for the determination of TVCs and Pseudomonas spp. in chicken 

marinated souvlaki 

The parameters for the primary full growth model of Huang full growth model 

(Huang, 2016) and the secondary Ratkowsky sub-optimal growth-temperature model 

(Ratkowsky, 1983) estimated by IPMP Global Fit software to TVCs and Pseudomonas spp. 

counts from inoculated and non-inoculated chicken marinated souvlaki samples are shown 

in Tables 7.1 and 7.2. TVCs could be associated with the determination of the shelf life of 

poultry products stored aerobically (Dominquez & Shaffner, 2011; Galarz et al., 2016; 

Lytou et al., 2016) whereas Pseudomonas spp. has been identified as the dominant 

microbial group responsible for the aerobic spoilage of white muscle food such as poultry 

and fish (Koutsoumanis et al., 2000; Bruckner et al., 2013; Raab et al., 2018). The 

secondary Ratkowsky model parameters a and T0 of inoculated and non- inoculated 

samples for TVCs prediction demonstrated similar values that ranged from 0.010 to 0.013 

and from -15 to -16 oC. The same outcome was occurred for Pseudomonas spp. where the 

estimated values of a and T0 parameters were 0.012 and -16.80 oC for the inoculated 

samples, and 0.013 and -20.50 oC for the non- inoculated ones. The negative temperature 

could be associated to the psychotropic behavior of the indigenous chicken’s microbiota 
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and more specifically to Pseudomonas spp. growth behavior (Huang et al., 2011). It has to 

be underlined that similar model parameters for TVCs and Pseudomonas spp. growth on 

muscle foods (red meat, poultry, fish) have been reported in other studies via squared root 

models (Koutsoumanis et al., 2006; Zang et al., 2011; Lytou et al., 2016) and demonstrated 

high variability due to differences in the experimental design, the food matrix as well as 

variability among batches.  

Table 7.1: Parameters and statistics by Huang full growth primary model and the Ratkowsky 

secondary model for TVCs in chicken marinated souvlaki samples. 

Samples 
Inoculated chicken marinated 

souvlaki 

Non- Inoculated chicken marinated 

souvlaki 

Parameters Valuea Std-

Error 
p-value Value 

Std-

Error 
p-value 

a 0.013 0.004 3.02E-04 0.010 0.002 8.49E-05 

T0 -15.000 4.740 1.96E-03 -16.00 4.66 7.94E-04 

A -1.740 3.750 6.43E-01 -0.69 2.90 8.13E-01 

m 1.930 1.220 1.17E-01 1.61 0.99 1.05E-01 

y0, T0.0 5.540 0.249 3.41E-45 4.98 0.25 7.87E-41 

y0, T5.0 5.370 0.295 8.73E-37 5.16 0.28 5.79E-37 

y0, T10.0 5.490 0.375 7.94E-29 4.95 0.39 6.05E-24 

ymax 9.860 0.211 1.39E-80 9.75 0.22 3.18E-78 
 aΜean value (n=4) 

Table 7.2: Parameters and statistics by Huang full growth primary model and the Ratkowsky 

secondary model for Pseudomonas spp. in chicken marinated souvlaki samples. 

Samples 
Inoculated chicken marinated 

souvlaki 

Non- Inoculated chicken marinated 

souvlaki 

Parameters Valuea Std-

Error 
p-value Value 

Std-

Error 
p-value 

a 0.012 0.003 2.85E-04 0.013 0.01 1.53E-03 

T0 -16.80 5.33 2.05E-03 -20.50 7.22 5.22E-03 

A -1.62 3.41 6.35E-01 0.95 2.65 7.20E-01 

m 1.99 1.18 9.55E-02 1.06 0.93 2.56E-01 

y0, T0.0 5.03 0.25 3.96E-41 4.86 0.28 3.96E-35 

y0, T5.0 4.41 0.29 1.16E-29 4.71 0.25 1.32E-38 

y0, T10.0 4.66 0.38 2.05E-23 4.74 0.32 8.07E-29 

ymax 9.44 0.21 9.44E-80 9.44 0.27 1.54E-65 
aΜean value (n=4) 

 

Based on the abovementioned parameters and equations 3 and 4, μmax and lag phase 

(h) were calculated and their values at each storage temperature are provided in Table 7.3. 
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As expected, the values of μmax for TVCs and Pseudomonas spp. in both inoculated and 

non-inoculated samples increased with increasing storage temperature. Specifically, the 

minimum μmax values for TVCs were observed at 0°C in both inoculated and non-

inoculated samples (0.039 and 0.042 h-1). For Pseudomonas spp., μmax values increased 

similarly to TVCs μmax highlighting once more that Pseudomonas spp. was the dominant 

spoilage microorganism during storage in inoculated and non-inoculated chicken samples. 

Reversibly, the lag phase duration (λ) for the two microbial groups decreased with 

increasing storage temperature. As expected, the lowest λ values were observed in 

inoculated (13.05 h for TVCs and 13.99 h for Pseudomonas spp.) and non-inoculated 

samples (17.40 h for TVCs and 26.72 h for Pseudomonas spp.) stored at 10 oC. Finally, the 

calculated RMSE values were lower than 0.7 log CFU/g in all cases.  

Table 7.3: Lag- phase and μmax values estimated by the Huang full growth primary model for TVCs 

and Pseudomonas spp. growth on chicken marinated souvlaki stored at 0, 5 and 10 oC. 

Samples Inoculated chicken marinated souvlaki Non-inoculated chicken marinated souvlaki 

Microbial 

group 

TVCs Pseudomonas spp. TVCs Pseudomonas spp. 

T oC μmax (h-

1) 

lag 

phase 

(h) 

μmax (h-1) lag phase 

(h) 

μmax 

(h-1) 

lag phase 

(h) 

μmax (h-1) lag phase (h) 

0 0.039 93.74 0.046 89.75 0.042 83.10 0.044 56.98 

5 0.069 30.88 0.078 31.82 0.072 34.62 0.068 37.59 

10 0.107 13.05 0.117 13.99 0.111 17.40 0.097 26.72 

RMSE (log 

CFU/g) 

0.57 0.54 0.44 0.68 

 

The μmax and lag phase duration values for TVCs of aerobically stored chicken at 

isothermal conditions (4-20 oC) have been reported by previous researchers using the 

Baranyi and Roberts primary growth model (Lytou et al., 2016) and the modified Gompertz 

equation (Galarz et al., 2016). Furthermore, Dominquez and Schaffner (2007) reported that 

Pseudomonas spp. μmax parameter on chicken stored at 0, 5, 10, 15, 20, and 25 oC was 

0.03592 h-1, 0.069077 h-1, 0.113287 h-1, 0.326736 h-1, 0.41953 h-1 and 0.40111 h-1, 

respectively, which are in good agreement with the values obtained in this work. Similar 

Pseudomonas spp. growth kinetic parameters at different storage temperatures were 

reported using the Baranyi and Roberts model, where the lag phase duration was 12.3 h, 
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6.2 h and 4 h for poultry stored at 10, 15, and 20 oC, respectively (Gospavic et al., 2008). 

Moreover, the estimated μmax and lag phase duration values for Pseudomonas spp. did not 

differ from the respective parameters obtained by the modified Gompertz equation (Galarz 

et al., 2016; Raab et al., 2018).  

For the prediction of TVCs and Pseudomonas spp. growth at the dynamic 

temperature profile for both inoculated and non-inoculated samples, the initial and final 

load (yo and ymax), the parameters a and T0, as well as the parameter ho for the Baranyi and 

Roberts dynamic model, estimated as μmax × lag phase (Lianou et al., 2020), were defined 

as follows: a) For TVCs in inoculated samples: yo= 5.34 log CFU/g, ymax= 9.86 log CFU/g, 

ho= 2.37, a= 0.013, and T0= -15.00 oC; b) For TVCs in non-inoculated samples: yo=5.03 

log CFU/g, ymax= 9.75 log CFU/g, ho= 2.63, a= 0.010, and T0= -16.00 oC; c) For 

Pseudomonas spp. counts in inoculated samples: yo=4.70 log CFU/g, ymax= 9.44 log 

CFU/g, ho= 2.78, a= 0.012, and T0= -16.80 oC; d) For Pseudomonas spp. counts in non-

inoculated samples: yo=4.77, ymax=9.44, ho=2.54, a= 0.102, and T0= -20.50 oC. The growth 

profiles of TVCs and Pseudomonas spp. under the dynamic temperature scenario are 

presented in Figure 7.3. It is characteristic that an under-estimation of both TVCs and 

Pseudomonas spp. counts was observed within the first 24 hours of storage. This could be 

attributed to the variability among the different batches used in this work (different initial 

microbial load), as well as to the different metabolic profile products of the microbiota 

caused by temperature shifts (Papadopoulou et al., 2011).  

Furthermore, for TVCs model of inoculated samples, RMSE, Bf and Af indices 

reached the values of 0.941 log CFU/g, 0.983 and 1.111 respectively. For the case of non-

inoculated samples and TVCs predictive model, RMSE, Bf and Af yielded 0.858 log 

CFU/g, 0.986 and 1.101, respectively. Based on the values of the Af index, the average 

difference between predictions and observations were ca. 10 %. Model validation for 

Pseudomonas spp. on inoculated samples presented RMSE value of 0.778 log CFU/g, 

while Bf and Af performance metrics were 0.995 and 1.100, respectively. Likewise, model 

validation for Pseudomonas spp. on non-inoculated samples, presented RMSE, Bf and Af 

values of 0.839 log CFU/g, 1.018 and 1.100, respectively. In all cases, the performance 

metrics were considered acceptable and hence models’ performances were evaluated as 
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good due to the low RMSE values (lower than 1 log CFU/g), the Bf values which were in 

the range 0.90- 1.05 (Mellefont et al., 2013) (within the fail- dangerous zone) and the Af 

values indicating that the difference of predicted to observed values was within ± 11 %.  

 

Figure 7.3: Comparison between observed (points) and predicted (lines) growth of TVCs and 

Pseudomonas spp.  on inoculated (A, C) and non-inoculated (B, D) chicken marinated souvlaki 

samples stored aerobically under periodically changing temperature profile. Dashed lines 

correspond to the ± 10 % relative error zone. 

7.3.3 Survival models of Campylobacter spp. in chicken marinated souvlaki 

The calculated parameters for the inactivation Weibull and modified Weibull models 

for Campylobacter spp. in chicken marinated souvlaki during storage at isothermal 

conditions are presented in Table 7.4. As expected, the lowest storage temperature (0 oC) 

presented the highest value for delta parameter (404.73 h) which is the time needed for the 

first decimal reduction of the pathogen, whereas at 10 oC the lowest value for delta 

parameter was observed (59.52 h). In previous studies, different values of p and delta 

parameters for the Weibull model have been reported in order to describe the survival of 

Campylobacter spp. under chilling temperatures in chicken products (Ritz et al., 2006; 

González et al., 2009). The Weibull model was fitted adequately to the experimental data 
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as inferred by the values of RMSE (0.112- 0.215 log CFU/g), R2 (> 0.824) and R2 adjusted 

(> 0.788).  

Table 7.4: Parameters and statistics for Weibull and modified Weibull inactivation models of 

Campylobacter spp. in stored chicken marinated souvlaki samples at isothermal conditions (0, 5 

and 10 oC). 

Storage temperature 

(oC) 

Parameters Estimated 

Parameter 

value 

Standard 

Error 

RMSE 

(log CFU/g) 

R2 R2 adjusted 

0 Delta (h) 404.73 58.39 0.122 0.824 0.788 

p 1.14 0.41 

log10(N0) 

(CFU/g) 

3.46 0.09 

5 Delta (h) 250.12 29.67 0.112 0.909 0.886 

p 0.96 0.27 

log10(N0) 

(CFU/g) 

3.45 0.10 

10 Log10(Nres) 

(CFU/g) 

2.87 0.05 0.215 0.890 0.825 

Delta (h) 59.52 13.53 

p 2.15 1.51 

Log10(N0) 

(CFU/g) 

3.45 0.10 

 

The fitted inactivation models at each storage temperature condition are also 

graphically illustrated in Figure 7.4. It needs to be noted that the population of the pathogen 

was reduced by ca. 1.0 log CFU/g throughout storage. This finding is in good agreement 

with other studies reporting pathogen reduction varied from 0.51 to 1.57 log CFU/g in 

chicken during chilling and frozen storage (Bhaduri & Cottrell, 2004; Huang et al., 2012). 

https://www.sciencedirect.com/science/article/pii/S0168160509005054?casa_token=e0Bauxm68SUAAAAA:uf5g8sqS4x8pDcOTowCt2P6pLlgej0_LOjxgte_yzwG2OlzaFnIAFe8yOa57etlZd89s1AGUORI#bib4
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Figure 7.4: Survival curves of Campylobacter spp.  in chicken marinated souvlaki during storage 

stored at 0 oC (A), 5 oC (B) and 10 oC (C). Data points are mean (± standard error) of two 

independent experiments with two replications each (n =4). 

7.3.4 Molecular analysis results 

The results from RAPD-PCR products via electrophoresis are presented in Figure 

7.5A, whereas the relative abundance for the six Campylobacter strains, namely C. jejuni 

(R450 and 6A) and C. coli (9D, 7L, 6Z, and 1H), assembling the composite inoculum for 

selected time points at the three storage temperatures is shown in Figure 7.5B. At the 

beginning of storage experiments (0 h), all the inoculated Campylobacter strains were 

recovered, with C. coli 1H and 7L representing 45.45 % and 18.18 % of the relative 

abundance, respectively. After 120 h of storage at 0 oC, C. coli 6Z could not be recovered, 

whereas the relative abundances of C. coli 9D and C. jejuni 6A were 28.57 %. On the other 

hand, C. coli 6Z was recovered at the end of storage (312 h) at 0 oC and dominated all the 

other strains (7L, 1H, 6A), while C. jejuni R450 and C. coli 9D could not be detected. 

Regarding storage at 5 oC, four strains (1H, R450, 9D and 6Z) were recovered after 96 h, 

with C. coli 6Z presenting the highest abundance (40%). At the end of storage at 5 °C, the 
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strains C. coli 7L, 6Z and 9D strains were recovered in the same abundance (20 %), 

whereas 40 % of the isolates presented similar profile to C. coli 1H. After storage for 72 h 

at 10 oC, C. coli 6Z was the only strain that could not be detected while the presence of the 

remaining 5 strains was equal amounting to 20 %. At the end of storage (216 h) at 10 °C, 

three (9D, R450, 6Z) out of six strains could be recovered, with C. coli 9D presenting the 

highest abundance (50 %) followed by C. jejuni R450 (33.33%). The abovementioned 

findings demonstrated that both C. jejuni and C. coli could survive under the chilling 

temperatures until the end of storage, with the exception of 5oC where C. coli strains were 

only detectable at the end of storage (240 h). This observation is in line with previous 

studies reporting that C. coli is more frequently isolated from poultry industries where 

temperatures are with the range of 4-7 oC (Membré et al., 2013). 

 

Figure 7.5: A) RAPD-PCR profiles of the 6 Campylobacter strains (R450, 6A, 9D, 7L, 6Z and 

1H) assembling the composite inoculum for the experiments; B) Relative abundance (%) of the 6 

Campylobacter strains in the isolates from different time points during storage at 0, 5, and 10 oC.  
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Chapter 8: Conclusions and Future Perspectives 
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In the present thesis, non- destructive spectroscopic and biomimetic sensors (MSI, 

FTIR, E-nose) were implemented at- line or off- line in raw and stored (under isothermal 

conditions and dynamic temperature profiles) chicken products, namely chicken breast 

fillet, chicken thigh fillet, chicken marinated souvlaki (using two types of marinade) and 

chicken burger. Machine learning methods (PLS-R, SVM-R, LDA, QDA, SVM 

classification), ensemble methods and data fusion were employed for the development and 

validation of quantitative and qualitative models estimating the microbial load on the 

product’s surface, the time from slaughter and their spoilage level.  

The findings from the performance of MSI and FT-IR methods in different food 

matrices (chapters 2, 3, 4, 5, 6) illustrated that each sensor and developed model was 

muscle specific and not only food specific. According to chapter 2, the food matrix (muscle 

type, spices and marinade) had a great impact on the prediction of the “time from slaughter” 

parameter. Specifically, chicken thigh fillet and chicken burger models with MSI data 

predicted more accurately the “time from slaughter parameter” mainly due to their 

composition. 

In chapters 2, 3 and 4, MSI and FT-IR sensors were employed for the assessment of 

quality in chicken breast fillets. Chicken breast spoilage was detected by MSI analysis and 

PLS-R model; however, the performance metrics during the external validation were not 

satisfactory (RMSE values above ± 1 log CFU/cm2). RMSE values decreased when 

nonlinear machine learning models (nnet) with MSI data were developed for the estimation 

of TVCs (chapter 3). In contrast, FT-IR coupled with PLS-R models provided more 

accurate predictions of TVCs. This outcome is in good agreement with other reports where 

the successful determination of microbial loads in chicken meat by FT-IR was attributed 

to the absorbance in the area 1,550- 1,650 cm-1 corresponding to the proteolytic activity of 

the microbiota during meat spoilage. Further on, in chapter 4, classification models were 

investigated for their efficacy to assess spoilage levels on the surface of chicken breast 

samples, whereas additional measurements were acquired via these sensors from four 

different batches stored at isothermal and dynamic conditions and coupled to 

microbiological and sensory analysis data. Linear, nonlinear and ensemble models were 

employed for the classification of the samples in quality classes. Results showed that MSI 
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analysis combined with an ensemble model classified stored chicken breast fillets in their 

correct class by 64.8 %. The low performance of MSI analysis could be explained due to 

the low concentration of myoglobin in this muscle. FT-IR data analysis with PLS-DA 

model exhibited higher overall accuracy (69.7 %) compared to the other developed models 

and therefore this method could be proposed as an alternative for the assessment of quality 

in chicken breast fillets. It is worth noting that the overall accuracy percentages in all cases 

did not exceed 70 % due to the variability of the samples used in external validation, which 

came from different seasons of the year and stored at dynamic temperature conditions 

(different metabolic activity of the microbiota). In order to further ameliorate model 

performance, data from dynamic temperature conditions could be used during model 

optimization, while MSI and FT-IR features could be fused for the development of 

qualitative models for chicken breast fillets. 

In chapter 5, the potential of MSI analysis for quality assessment in chicken thigh 

fillets was further confirmed. Similar to chapter 2, MSI data in tandem with PLS-R models 

could satisfactorily estimate TVCs and Pseudomonas spp. on the surface of chicken thigh. 

Likewise, MSI and FT-IR spectral data analyzed by SVMs and QDA models, respectively, 

could successfully classify stored samples in their proper sensory classes (fresh vs. 

spoiled), whereas the combination of MSI and SVMs excelled with overall prediction 

accuracy of 94.4%. These encouraging results are in line with other studies where MSI data 

combined with SVM provided robust models for quality assessment in meat, while FT-IR 

spectral data analyzed by LDA efficiently discriminated stored meat during spoilage. 

Further optimization of the developed models should be based on batches from different 

seasons of the year or storage conditions in order to enhance the database concerning 

spoilage phenomena in chicken thigh. 

In chapter 6, MSI, FT-IR and E-nose were evaluated for their potential to assess the 

quality of marinated chicken souvlaki via data fusion using a variety of linear/nonlinear 

quantitative and qualitative models. In accordance with the previous chapters, the 

importance of choosing the appropriate machine learning model depending on the sensors’ 

features, as well as the synergetic effect of data fusion from different sensors was 

highlighted. For the assessment of TVCs via PLS-R models, MSI data provided the most 
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accurate predictions followed by FT-IR/MSI model and the combined three sensors model. 

Likewise, SVM-R models developed on MSI and FT-IR/MSI data exhibited the most 

satisfactory determination of TVCs. The classification models for the categorization of 

stored chicken marinated souvlaki into three classes (fresh, semi-fresh, spoiled) did not 

provide acceptable results (low overall accuracy), with MSI-LSVM model and MSI/E-

nose-CSVM model showing the highest values of overall accuracy compared to the other 

models. The exclusion of the semi-fresh class seemed to improve classification 

performance with MSI-LSVM, FT-IR/MSI- LSVM and FT-IR/MSI-LDA models for two 

quality classes presenting good overall accuracy, sensitivity and precision. The 

performance of the models was further confirmed by external validation using data from 

independent meat batches and different analysts. Even though quantitative and qualitative 

models developed on E-nose data could not classified accurately the samples at their 

correct quality class, the fused model of MSI/E-nose provided improved performance 

metrics. E-nose weakness could be attributed to the existence of organic acids in the 

marinade that could influence MOS signals. Overall, MSI data and the fusion of FT-IR and 

MSI data were proved effective for the assessment of the microbiological quality in chicken 

marinated souvlaki regardless of product batch, storage conditions or analyst.      

Concerning the safety in poultry (chapter 7), chilling temperatures (0, 5, and 10 °C) 

inhibited as expected Campylobacter spp. growth in marinated chicken souvlaki; however, 

the population of the pathogen declined by only 1.5 log CFU/g. The developed Weibull 

survival models could be efficiently fitted to Campylobacter spp. counts with the model 

developed with data from the 5 oC storage condition providing the lowest RMSE value 

(0.112 log CFU/g). Regarding TVCs and Pseudomonas spp. on the inoculated samples, 

their population dynamics were not affected by the presence of Campylobacter spp. 

inoculum, as inferred by the comparison of μmax and lag phase values in inoculated and 

non-inoculated samples. Molecular analysis revealed that both C. coli and C. jejuni were 

present during chicken marinated souvlaki storage at chilling temperatures, with the 

exception of 5 oC where only C. coli strains could be recovered from the samples at the 

end of storage. These findings illustrated the ability of Campylobacter spp. to survive 

during refrigerated storage of poultry meat and even its presence in low populations (2.0 

log CFU/g) could be extremely hazardous to humans due to cross-contamination. 
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The overall findings of this thesis for the assessment of the quality of poultry products 

by the implementation of rapid and non-destructive analytical methods such as MSI and 

FT-IR are encouraging. These two environmentally friendly methods could efficiently 

detect the microbiological quality and hence spoilage in a variety of poultry products stored 

at different storage temperatures, seasons of the year and packaging conditions. The 

validation of the developed models with different meat batches, seasons of slaughter, 

storage conditions and analysts illustrated their potential to assess successfully spoilage in 

these products. 

 Further on, the developed predictive models from this research could be validated 

with data collected from poultry product oriented by different producers. Moreover, the 

proposed models (developed off- line at the laboratory) in tandem with FT-IR and MSI 

techniques could be performed for the assessment of quality on-line or at-line on an 

industrial scale similarly to the successful implementation of MSI analysis described in 

Chapter 2. Nevertheless, the continuous update of data from these techniques (different 

storage temperatures, packaging conditions, season of slaughter, producers or suppliers) 

and model optimization could result in the development of reliable models predicting 

spoilage in poultry meat and hence contribute in the reduction of food waste.  
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Appendix I 
Supplementary material for Chapter 3 

Table 3A: Kinetic parameters of the primary growth model of Baranyi and Roberts (1994) for 

TVC and Pseudomonas spp. 
  

lag (h) μmax (h-1) yo 

(log CFU/cm2) 

ymax 

(log CFU/cm2) 

se(fit) R2 

 
TVC 92.6 0.0382 2.7 5.5 0.433- 0.492 0.826- 0.879 

0 oC Pseudomonas 

spp. 

72.2 0.0356 2.1 5.2 0.497- 0.514 0.826- 0.877 

 
TVC 52.8 0.0570 3.0 6.6 0.429- 0.551 0.875- 0.937 

5 oC Pseudomonas 

spp. 

17.5 0.0610 2.0 6.1 0.304- 0.522 0.866- 0.944 

 
TVC 22.7 0.0903 3.1 6.8 0.279- 0.506 0.894- 0.964 

10 oC Pseudomonas 

spp. 

Ν/Α 0.0991 2.3 6.4 0.242- 0.489 0.899- 0.979 

 
TVC 10.2 0.2141 2.9 6.8 0.224- 0.545 0.879- 0.982 

15 oC Pseudomonas 

spp. 

8.8 0.2410 1.9 6.7 0.282- 0.442 0.941- 0.978 

Ν/Α: not available; yo: initial microbial load in sample (log CFU/cm2); ymax: maximum 

microbial load in sample (log CFU/cm2); se(fit): standard error of fit; 

 

 

Figure 3A: Composition (%) of gases (O2: blue line, CO2: red line) in packaged chicken breast 

fillet samples during storage at 0, 5, 10, and 15 oC. 
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Supplementary material for Chapter 4 

Table 4A: Parameters for each machine learning algorithm developed for MSI and FT-IR 

sensors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linear Support Vector Machines (LSVM); Quadratic Support Vector Machine, (QSVM); k-Nearest Neighbor 

classification (fineKNN); c: cost of constraints violation; s:scale parameter of the hypothesized (zero-mean) Laplace 

distribution estimated by maximum likelihood; NumN: number of Neighbors; NSMethod: Neighbors spliting method; 

NumL: number of learners; Lrate: learning rate; Nspilts: number of splits; MaxCat: maximum categories; SplitsCr: split 

criterion. 

Table 4B: Functions performed for each machine learning algorithm developed for MSI and FT-

IR sensors. 

Algorithm/Ensemble Function (m.file) 

LDA fitcdiscr 

LSVM fitcsvm (linear) 

QSVM fitcsvm (polynomial order:2) 

FineKNN fitcknn 

Subspace fitensemble/Subspace with Discriminant 

SimpleTree fitctree 

rustBoosted 
fitensemble/RUSBoost with Decision Tree 

learners 

 

 

 Parameters MSI FT-IR 

LSVM c 1 1 
 s 2.6225 16.4061 

QSVM c 1 1 
 s 2.5673 17.3814 

FineKNN NumN 1 1 

 Distance 

metric 
euclidean euclidean 

 Distance 

Weight 
equal equal 

 NSMethod kdtree exhaustive 
 Bucketsize 50 [] 

Subspace NumL 30 30 
 Lrate 0.1 1 

SimpleTree Nsplits 4 4 
 MaxCat 10 9 
 SplitsCr gdi gdi 

rustBoosted NumL 30 30 
 Nsplits 20 20 
 Lrate 0.1 0.1 
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Figure 4A: Representative Baranyi and Roberts models for the prediction of TVCs at eight 

different storage conditions (0- 35 oC) in chicken breast fillets via the implementation of DMFIT 

application.   
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Supplementary material for Chapter 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Table 5A: One way ANOVA for the TVCs of chicken thigh fillet samples at each isothermal 

storage temperature and dynamic temperature scenarios. 

  

Temperature 

(oC) 
Source SS df MS F p-value 

15 

Columns 0.652 3 0.21743 0.09 0.9672 

Error 100.915 40 2.52289   

Total 11.568 43    

10 

Columns 0.5359 3 0.17862 0.08 0.9691 

Error 95.0444 44 2.1601   

Total 95.5803 47    

5 

Columns 0.475 3 0.15833 0.08 0.9713 

Error 96.6625 48 2.0138   

Total 97.1375 51    

0 

Columns 0.4734 3 0.15782 0.1 0.9588 

Error 99.3133 64 1.55177   

Total 99.7867 67    

20 

Columns 0.208 3 0.6923 0.02 0.9957 

Error 129.93 40 3.24826   

Total 130.138 43    

25 

Columns 0.043 3 0.01431 0 0.9996 

Error 118.588 36 3.2941   

Total 118.631 39    

30 

Columns 0.0816 3 0.0272 0.01 0.9986 

Error 98.911 36 2.74753   

Total 98.9926 39    

35 

Columns 0.833 3 0.27767 0.1 0.957 

Error 85.1931 32 2.66228   

Total 86.0261 35    

Dynamic 1 

Columns 0.0029 2 0.00143 0 0.9993 

Error 63.5467 30 2.11822   

Total 63.5495 32    

Dynamic 2 

Columns 0.0703 2 0.03515 0.01 0.9871 

Error 81.139 30 2.70463   

Total 81.2093 32    

Dynamic 1 

and 2 

Columns 3.385 5 0.67696 0.28 0.9219 

Error 144.686 60 2.41143   

Total 148.07 65    
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Table 5B: One way ANOVA for Pseudomonas spp. counts of chicken thigh fillet samples at each 

isothermal storage temperature and dynamic temperature scenarios.  

Temperature 

(oC) 
Source SS df MS F p-value 

15 

Columns 0.216 3 0.07205 0.02 0.9948 

Error 118.162 40 2.95404   

Total 118.378 43    

10 

Columns 0.107 3 0.03552 0.01 0.9982 

Error 130.044 44 2.9554   

Total 130.15 47    

5 

Columns 0.736 3 0.24524 0.1 0.9569 

Error 103.108 44 2.34336   

Total 103.844 47    

0 

Columns 2.069 3 0.68962 0.4 0.7545 

Error 110.749 64 1.73045   

Total 112.818 67    

20 

Columns 0.756 3 0.25205 0.06 0.9808 

Error 169.741 40 4.24353   

Total 170.497 43    

25 

Columns 1.068 3 0.35598 0.09 0.9643 

Error 140.257 36 3.89602   

Total 141.325 39    

30 

Columns 3.4919 3 1.16398 0.44 0.7251 

Error 95.0259 36 2.63961   

Total 98.5179 39    

35 

Columns 0.8236 3 0.27453 0.14 0.9353 

Error 62.7508 32 1.96096   

Total 63.5744 35    

Dynamic 1 

Columns 0.0427 2 0.02133 0.01 0.9908 

Error 68.9284 30 2.29761   

Total 68.971 32    

Dynamic 2 

Columns 0.0775 2 0.03877 0.01 0.9873 

Error 91.2975 30 3.04325   

Total 91.3751 32    

Dynamic 1 

and 2 

Columns 0.901 5 0.1802 0.07 0.9967 

Error 160.226 60 2.67043   

Total 161.127 61    
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Supplementary material for Chapter 6 

 

Figure 6A: Representative Baranyi and Roberts models for the prediction of TVCs at three 

different storage conditions (0, 5 and 10 oC) in marinated chicken souvlaki via the implementation 

of DMFIT application. 

 

Figure 6B: Representative Baranyi and Roberts models for the prediction of Pseudomonas spp. at 

three different storage conditions (0, 5 and 10 oC) in marinated chicken souvlaki via the 

implementation of DMFIT application. 
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Figure 6C: Pseudomonas spp. predictive models (lines) and the corresponding observations 

(symbols) for marinated chicken souvlaki stored at 0 oC (blue, square), 5 oC (orange, diamond) and 

10 oC (green, triangle). 
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Supplementary material for Chapter 7 

 

Figure 7A: TVCs (A) and Pseudomonas spp. (B) predictive models (lines) and the corresponding 

observations (symbols) for inoculated marinated chicken souvlaki stored at 0 oC (blue, square), 5 
oC (red, diamond) and 10 oC (green, triangle).  

 

 

Figure 7B: TVCs (A) and Pseudomonas spp. (B) predictive models (lines) and the corresponding 

observations (symbols) for non-inoculated marinated chicken souvlaki stored at 0 oC (blue, square), 

5 oC (red, diamond) and 10 oC (green, triangle).  
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