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Abstract

Non-invasive rapid methods have been introduced over the years in the assessment
of food quality and they have been well established in the food industry in the context of
technological evolution as consumers’ demands for high quality and safety foods
constantly increases. In the present thesis, rapid spectroscopic and biomimetic sensors have
been investigated for their potential to accurately assess quality in different poultry
products (chicken breast and thigh fillets, chicken marinated souvlaki and chicken burger).
Multispectral Imaging (MSI), Fourier Transform Infrared spectroscopy (FT-IR) and
electronic nose (E-nose) were employed (individually and in combination) in tandem with
multivariate data analysis for the assessment of the microbiological quality and the spoilage
level in chicken samples, as well as in the determination of the “time from slaughter”. For
this purpose, different batches of chicken samples were subjected to storage experiments
including both isothermal and dynamic temperature conditions and analyzed
microbiologically to determine the population dynamics of the indigenous microbiota. In
parallel, spectroscopic data were acquired through MSI and FT-IR instrumental analysis,
whereas the volatile fingerprint of samples during storage was recorded by means of an E-
nose. Regression and classification (linear and nonlinear) models assessing poultry meat
quality were developed and validated with data from independent experiments (different
batch/season of slaughter, dynamic temperature conditions of storage or different analysts).
Moreover, ensemble methods and data fusion were performed to the existing data in an
attempt to enhance the predictive performance of the developed models. Furthermore, the
safety of poultry meat with special focus on Campylobacter spp. presence and survival in
stored marinated chicken at refrigeration temperatures was explored via predictive

modeling and molecular analysis.

In chapter 2, MSI analysis was implemented on an industrial scale in chicken

products for the assessment of their quality. For this purpose, chicken breast fillets, thigh



fillets, marinated souvlaki and burger were analyzed microbiologically for the enumeration
of TVCs and Pseudomonas spp., while MSI spectral data were acquired at the same time
points as for microbiological analysis. Partial Least Squares Regression (PLS-R) models
were developed based on MSI data for the determination of the “time from slaughter”
parameter for each product type. Results showed that PLS-R models could predict
accurately the time from slaughter in all products with the chicken thigh model providing
the lowest RMSE value (0.160), followed by the chicken burger model (RMSE= 0.285).

In chapter 3, FT-IR and MSI spectroscopic methods were evaluated for their
efficacy to assess spoilage on the surface of chicken breast fillets in tandem with
multivariate data analysis. Briefly, stored samples of chicken breast fillets at isothermal
conditions (0, 5, 10, 15 °C) were analyzed microbiologically for the enumeration of TVCs
and Pseudomonas spp. and also by FT-IR and MSI sensors. Multivariate data analysis was
performed via two software platforms (a commercial software and a publicly available
developed platform) by applying several machine learning models for the estimation of
TVCs and Pseudomonas spp. population of the surface of the samples. The performance
of the obtained models was assessed by intra batch and independent batch testing. PLS-R
models from the commercial software predicted TVCs with RMSE values of 1.359 and
1.029 log CFU/cm? for MSI and FT-IR analysis, respectively. Moreover, RMSE values for
Pseudomonas spp. model were 1.574 log CFU/cm? for MSI data and 1.078 log CFU/cm?
for FT-IR data. From the implementation of the in-house sorfML platform, ANN models
developed with MSI data provided the lowest RMSE values (0.717 log CFU/cm?) for intra-
batch testing, while least-angle regression (lars) models developed with FT-IR data
demonstrated RSME values of 0.904 and 0.851 log CFU/cm? in intra-batch and

independent batch testing, respectively.

In chapter 4, FT-IR and MSI spectral data were employed in combination with
machine learning classification models for the evaluation of spoilage in chicken breast
fillets. In this context, chicken breast samples were subjected to storage experiments using
eight isothermal (0, 5, 10, 15, 20, 25, 30, 35 °C) and two dynamic temperature profiles for
up to 480 h. At pre-determined intervals, samples were analyzed microbiologically for the

enumeration of TVCs, while in parallel MSI and FT-IR instrumental analysis was



performed. In addition, sensory analysis was undertaken by 14- member untrained panel
for the assessment of fresh and spoiled samples. Based on the outcome of sensory analysis
(threshold of spoilage: TVCs = 6.2 log CFU/cm?), samples were divided in two quality
classes, namely fresh and spoiled. Eight machine learning models (single-based and
ensemble) were developed with MSI and FT-IR spectral data for the detection of spoilage,
whereas their performance was validated by an independent data set from the two dynamic
temperature profiles. MSI analysis and subspace ensemble provided the highest overall
accuracy (64.8 %), while this combination demonstrated also acceptable values of
specificity and sensitivity (69.7 %). On the contrary, FT-IR spectral data presented slightly
better performance with Partial Least Squares-Discriminant Analysis (PLS-DA), as the

samples were classified correctly with an overall accuracy of 67.6 %.

In chapter 5, FT-IR and MSI rapid techniques were employed for the assessment
of the microbiological quality in chicken thigh fillets via qualitative and quantitative
machine learning models. For this purpose, chicken thigh fillets were stored at eight
isothermal (0, 5, 10, 15, 20, 25, 30, 35 °C) and two dynamic temperature profiles and
analyzed microbiologically for the determination of TVCs and Pseudomonas spp., whereas
MSI and FT-IR spectral data were acquired at the same time points. Samples were also
evaluated by a sensory panel which established a TVC spoilage threshold at 6.99 log
CFU/cm?. PLS-R models were implemented for the estimation of TVCs and Pseudomonas
spp. counts on chicken’s surface. Moreover, classification models (LDA, QDA, SVMs,
QSVMs) were developed for the discrimination of samples in two quality classes (fresh vs.
spoiled). PLS-R models coupled to MSI data predicted TVCs and Pseudomonas spp.
counts satisfactorily, with RMSE values of 0.987 and 1.215 log CFU/cm?, respectively.
SVM model developed with MSI data exhibited the highest performance with an overall
accuracy of 94.4%, while in the case of FT-IR, acceptable classification was obtained with
the QDA model (overall accuracy 71.4%).

In chapter 6, FT-IR, MSI and E-nose have been explored individually and in
combination via data fusion for their efficacy in the evaluation of quality in marinated
chicken souvlaki. In brief, chicken marinated souvlaki samples were subjected to storage

experiments at both isothermal and dynamic temperature conditions. During storage,



microbiological analyses were performed for the determination of the population dynamics
of TVCs and Pseudomonas spp. in parallel with FT-IR, MSI and E-nose analyses. PLS-R
and SVM-R models were developed and validated for the estimation of TVCs on chicken
marinated souvlaki. Furthermore, three classification models (LDA, LSVM and QSVM)
were investigated for the classification of stored samples in 2 and 3 quality classes (fresh
vs spoiled; fresh, semi-fresh and spoiled). The developed models were externally validated
with data obtained by six different analysts and three different batches of marinated
souvlaki. The PLS-R models developed on MSI and FT-IR/MSI spectral data provided the
best predictions of TVCs, with RMSE values of 0.998 and 0.983 log CFU/g, respectively.
Moreover, for SVM models developed on MSI and FT-IR/MSI data, the population of
TVCs was efficiently predicted with RMSE being 0.973 and 0.999 log CFU/qg,
respectively. For the classification models with 3 quality classes, the overall accuracy was
calculated below 60 % in all cases. On the contrary, for the 2-class models, FT-IR/MSI
spectral data analyzed by CSVM model exhibited overall accuracy of 87.5 %, followed by
MSI data analyzed by LSVM model providing overall accuracy of 80 %. Finally, middle
level data fusion of FT-IR to MSI was proven as a promising alternative for the assessment

of quality in this poultry product.

In chapter 7, the survival of Campylobacter spp. was investigated after inoculation
of six strains (four Campylobacter coli strains and two Campylobacter jejuni strains) in
chicken marinated souvlaki. Moreover, the microbial growth of the indigenous microbiota
of the inoculated and non-inoculated chicken marinated souvlaki was examined. Inoculated
and non-inoculated chicken marinated souvlaki samples were stored at three different
isothermal conditions (0, 5, and 10 °C) and a dynamic temperature profile. At
predetermined intervals, inoculated and non-inoculated samples were microbiologically
analyzed for the enumeration of TVCs, Pseudomonas spp., anaerobic bacteria and
Campylobacter spp. A one-step modelling approach was employed for chicken marinated
souvlaki (inoculated and non-inoculated) for the determination of the kinetic parameters of
growth for TVCs and Pseudomonas spp. Model validation was performed with an
independent dataset derived from a dynamic temperature profile storage experiment.
Further on, survival models predicting Campylobacter spp. counts during low storage

temperatures were developed and assessed. Molecular analysis via Random amplified

v



polymorphic DNA PCR (RAPD-PCR) was conducted with isolates obtained from three
time points during the experiments. The developed models for TVCs and Pseudomonas
spp. in inoculated and non-inoculated samples exhibited RMSE values lower than 0.941
log CFU/g. Campylobacter spp. survived despite the barrier of the low storage temperature
where a decline of 1.5 log CFU/g was observed. From the survival models, the highest
accuracy was provided by the Weibull model at 5 °C with RSME values of 0.112 log
CFU/g. Molecular results confirmed that both C. coli and C. jejuni strains could survive
during low temperature storage experiments with the exception of 5 °C, where only C. coli

could be retrieved.
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Eg@appoyn ocOyypovev tayé@v avoldoemv Kol avantuln poviélov ektipnong g arroioong
VOO0 Kol ENEEEPYAOUEVOV KPEATOG TTOVAEPIKAY

Tunuo. Emoriunc Tpopiuwv kor Aiatpopns tov AvBpwmov
Epyootnpio Mixpofioloyiog kou Broteyvoloyiag Tpopiuwv

Iepiinyn

H paydaio adénom g texvoA0Yiag Kot 1) 0aiTnon TOV KOTOVIAMTOV Y10, TOIOTIKE
KOl 0CQOAT TPOPILO £YEL 0ONYNOEL TA TEAELTOIO YPOVIOL GTNV OVATTLEN Kol EPOPUOYN
TAYEDV GUYYPOVOV OVOALTIKOV HEBOd®V OV £XOVV MG GTOYXO TNG £YKOLPT| OVIYVELGT TNG
vrofdaduiong ™G mowwTNTOG OTa TPOPIUO. ZTNV TOPOLGH JaTpPn pHeAethOnke 1
AMOTEAECUATIKOTNTO TOV TOYEWOV, UM EMEUPOATIKOV TEXVIKOV NG  (QOGULOTOGKOTING
vrépubpov pe petacynuatiopd Fourier (FT-IR), tng moAveoaopatikhc ansikoviong (MSI)
Kot TG NAEKTPovIKng uotng (E-nose) oty ektiunon ¢ modtag e dipopa TpoiovTa
KOTOTOVAOV. O1 TEXVIKES AVTEG EPAPUOGTIKOV GE GLVTNPNUEVA detypaTa amd EIAETO 6THog
KOTOMOLAOV, OLETO UTOVTL KOTOMOLAOVL, HOPLVOPICUEVO KOTOTOLAO KOl  UTLPTEKL
KOTOTOVAOV, Kol GE GLVOVAGHO e TOAVUETAPANTH avalvon dedouévav (multivariate data
analysis) ovamtoydnkov kot emkvpOONKOY HOVTEAX EKTIUNONG TOL  LIKPOPLoKoD
TANBvcpov, TG ToOTNTAS KAOMS Kot ToL YpOVOL amd TV 6Poyn ot v Ady® delypaTa.
[Tocotud Kot TOTIKA (YPOUUIKE Kot 1N YPOUUIKA) LOVTEAL avorTuxOnKoy LeTd amd
GLGYETION TOV WKPOPLOAOYIKAOV, OPYOVOANTTIK®V Kol TOV 0£00UEVOV TOL TPONABaY amd
toug acOntpec. H emkdhpwon tov ev AOY® povtéAmv, Tpaypatomronke pe dedopuévo mov
cVAAEYINKaV amd  aveEdptnto TEPAUATO GLVTNPNONG TPOIOVIOV KOTOTOLAOVL GE
evoldipecses Bepokpactlokég GLVONKESG 1) 6€ SVVALIKE XPOVO- BEPLOKPOCIOKA TPOPIA, OOV
N mEP10d0G CPAYNG, N TaPTida KOOGS Kot 0 avarlvtig diépepav. [Tépa and v avdmtuén Kot
EMKVPWOOT HEUOVOUEVOV HOVIEA®V avd awcOntpa depeuvnOnke emiong kot 1 emidoon
HOVTEA®V 7oL gite cuvovalov OlapOPETIKOVS aAyopiduovg exkpdOnong (evomoinonm,
ensemble), eite Bacilovtav otn cvyydOVELOT TV dEGOUEVOV 0T SLOPOPETIKOVG OGO THPES
(ovyydvevon dedopévav, data fusion) yio ™ avamtvén evog eviaiov povtédov TpoOPAEYNS
¢ modttog. EmmAéov, ektd¢ amd v eKTiUNoN TG TOOTNTOS GTO TPOTOVTO KOTOTOLAOL
€EETAOTNKE KOl 1] GLUTEPLPOPA TOL Taboydvov pikpoopyavicpod Campylobacter spp. oe

delypato popvaptopévov covPAdKL KOTOTOVAOL TOL GLVTNPNONKE VO YOEN.
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Ewdwotepa, o010 KeEQPAAO0 2, 1 HEOHOOOC TNG MOAVQUGUOTIKNG OMEKOVIONG
(Multispectral imaging, MSI) gpappootnke o€ Blopunyavikég €yKoTOoTAOEL, TAPGAANAO LE
TN YPOUU| TOPUy®mYNS o€ Téooepa €idn omd mPoidvta KOTOTOLAOL: @AETO oTHBOg
KOTOMOVAOVL, OWAETO MUTOVTL KOTOTOVLAOVL, HOPWVOPIOUEVO GOVPAGKL KOTOTOLAOL KOl
UTIPTEKL KOTOTOVAOV. Aglypoto omd OloPOPETIKEG TAPTIOES TOPAYWYNS avoAVONKaY
UIKPOPLOAOYIKA EVD TOPAAANAL EANEONCOV POGLOTOCKOTIKA 0EO0UEVA LLE TN XPNION TOV
EYKOTECTNUEVOL OV TAPOY®YN  OpPYAvoyv  TOAVQOCUOTIKNG — amelkovions. Ta
UIKPOPBLOAOYIKA OTOTEAEGLOTO GUGYETIGTIKOV LLE TO, OVTIGTOLY{ O PACUATOGKOTIKE dEdOUEVAL
Yoo TV avamtuén LovTEAOL KTipmong Tov ypovov and v ceayn (time to slaughter) péow
™G YPOUMKNG TaAVOpOUnong pe tn pébodo pepikdv edayiotov tetpaydvov (Partial-least
Squares Regression, PLS-R). H enidoon tov aventuyuévov HoviéAmv Tov VYN og OAeg
TIC KaTnyopieg TpoidvImV, Le To LOVTEALQ EKTIUNONG TOV YPOVOL OO TN GPOAYT] Y10 TO PLAETO
UTOVTL KOTOTOVAOL KOl TO UMPTEKL KOTOTOLAOL Vo Tapovcstdlovy v kpotepn pila
péoov tetpaymvikod opdAipatog (Root Mean Squared Error, RMSE) kotd v emikbpwon,

pe tyun ton pe 0,160 ko 0,285 avtictoiyme.

210 kKe@GAao 3, eetdotnke 1 anoterecpatikdmra TV peBodwv FT-IR ka1 MSI
YL TV avATTLEN HOVTEA®V EKTIUMONG TG HKPOPLaknG AALOI®MON G 6TV EMPAVELDL PIAETOV
and otbog kotomoviov. e 10 okomd avtd, Otiypata cvovinpnOnkav oce T€0GEPIS
oobeppokpactokéc cvvOnkeg (0, 5, 10, 15 °C) kot avd TAKTG YPOVIKA Ol0GTHLOTO
aVOADOVTOV Yol TNV €KTIUNGCN 1oL HKPoPlodoyikod Tovg @optiov (OAkr] Mecoeiin
Xlwpida, OMX «or Pseudomonas spp.), evd mapdAAnio ota idio ypovikd omueio
emoebnoav edopata FT-IR kou MSI. And 1o omoteAéopoto TV aVOAIGEDV OVTOV
avarTOYONKay HOVTELD (YPOUUIKG KoL U1 YPOUUIKE) Yo TV eKTiUnon tov TAnfucpon g
OMX kot tov Paktnpiov Pseudomonas spp. pe T xpnom evog EUTOPIKOL AOYICUIKOD
TPOYPAUIUOTOS OVOAVONG OEOUEVOV KOOMG EMIONG KOl PE TN ¥PNOY KOG OOIKTVOKNG
mhateopuog encEepyaciog dedopévoy. H emucopmon twv poviéAwv mpoypotomomdnke pe
ToV  OWy®Popd  TOV  QACUATOCKOTMIKOV — dgdopéveov  oe  avoroyio  70/30
(avamtuén/emikdpwon), evod emmAéov mpaypotomomOnke Kot €EMTEPIKN EMKLPWOOT)
(mpoPAreyn) pe Sroeopetikn moptido SeypdToV KoTtOTOLVAOL. Kotd v £pappoyn tov
EUTOPIKOV TPOYPAUUATOS VAALOTG dedOUEVDV, 1 ekTipnoT g OMX pécm tov povtélov

PLS-R mapovciace Tiuy RMSE katé v mpépreyn ion pe 1,359 xon 1,029 log CFU/cm?,

VII



v o dgdopéva g MSI ko e FT-IR avdAivong avtiotoiywe. o v extipunon tov
Boktnpiov tov yévoug Pseudomonas péom tmv eacpatookonik®y dedouévmv tg MSI, n
Ty RMSE ¢ mpopreymc tav ion pe 1,574 log CFU/cm?, evéy péom e avéivong FT-IR
1 avtiotorym Ty RMSE vroloyiotnke o 1,078 log CFU/cm?. X 61t apopd 6To. ovTéla
OV TPOEKLYAV HECH TNG dadIkTLAKNG TAaTOppac SOrfML, to povtédo mov mapovcioce
™ pkpdtepn twy RMSE wotd v mpéPreyn (0,717 log CFU/cm?) ftov avtd mov
avortoynke pe ™ ypnomn texvNTOV vevpovikov oktowv (Artificial Neural Networks,
ANN) péom TV dedopUEVOV TG TOAVQOCUATIKNG ameikoviong (MSI) kot thv emkbpwon pe
detypata amd v idw mwaptida. Avibétwg, to povtého least-angle regression (lars)
TPOGOPUOGTNKE KOADTEPH GTO PACHATOCKOTIKA dedopéva amd v aviivon FT-IR )
gueaviovtog Tipéc RMSE iosg pe 0,904 kar 0,851 log CFU/cm? kotd thv emicdpmon e

delypata amd v 1010 Kot S1POPETIKT TAPTION AVTIGTOIYWC.

210 keQPaAaL0 4, epappootnkav ot toeieg pébodot FT-IR kaw MSI og tepiocdtepa
delypato kot moptideg PUAETOV amd oTHH0G KOTOTOLAOV Yio TNV OVATTLEY TOLOTIKMV
HOVTEA®V EKTIUNONG TG aAloimong Tev detypudtov. Opota pe Ty TEPARATIKY] dtadikacio
oV KePoAaiov 3, detypota @UAETOL 0md 6THOOC KOTOTOLAOL GLVINPNONKOV GE OYTM
1oofeplokpacilokég cuvOnKes ocvvipnong Kot 000 duvapukd Ypovo-0epLoKpacLaKE
wpopik. Kata 1t Oswypotodnyio, to  delypota  ovoidoviav  UKpoPloAoyiKd,
eooupatookomiké (FT-IR xor MSI) evd mapdAinio mpoypoatonomdnke opyovoAnTTikn
a&loldynon tov detypdtov amd opdoa 14 atdopwv yia v extipnon tov fabpod aAroiwong
ToUG (Ppéoko kot aAAolwpEVO). Me BAon o AmOTEAEGULATO TOV OPYOVOANTTIKOD EAEYYXOV
opiotnke T0 Opl0 KPOPLOAOYIKNG oAloimong Kot Ttoo delypato yopiotnkay ce 000
Katnyopieg motottog (Ppéoko kol aAlolwpévo). Ev cvveyeio, oktd pOVTEAD PMYOVIKNG
pdonong (nepovopévo Kot GuvOLOGHOT TOVG) avamTOyOnKav Yoo kaBe KoTnyopia
(QOGLOTOCKOTIKNG HeBOO0V Kot eMKVPOONKAV He OEdOUEVA OO aVEEAPTNTO TEIPALOTOL
cuvtnpnong oe dvvapkd Bepuoxpaciokd Tpoeid. O cLVOLAGUOS TNG TOAVPAGLATIKNG
anewkoéviong (MSI) pe to evomomuévo poviélo subspace mopovcioce To HEYOUADTEPO
T0GOGTO GLVOAKNG akpifetag (64,8 %). AVTIoTOlY®OC, ATOJEKT NTOV KOl 1 EMIOOCT KOTA
TNV €QOPUOYN TOL HOVTELOL TNG SKPITIKNG avdAvong pe ™ péBodo pepikdv eroyictmv
tetpayovov (Partial Least Squares- Discriminant Analysis, PLS-DA) ota dedouéva amod

eacpatookonio FT-IR, émov to m0c0oto TG cuvolikng akpifeloc aviAbe o 67,6 %.

VIl



210 KEQPAAOL0 5, IAETO ad UTOVTL KOTOTOVAOL AVOADONKE [l OO TELPOLLOTIKN
Sdkacio pe To Ke@aiata 3 kot 4, 01060 To Pacpatookonikd dedopéva FT-1IR ko MSI
alomombnkay yi TV avArTLEN TOCOTIKOV KOl TOLOTIKOV HOVIEA®V EKTIUNONG TNG
LUIKPOPLOKNG TOWOTNTOG GTNV EMPAVELD TOV PIAETOL A PTOVTL KOTOTOLVAO. Emiong, onmg
KOl 010 KeEQAAO0 4, KOTd TN OEYUATOANYIO TPAYUATOTOMONKE KOl OPYOVOANTTIKY|
aE10A0YNOT TOV OEYUAT®V KOTE GLVTIPNON, TO WTOTEAEGLOTO TG OTolag Kafopioav mg
opto ppopPraxic arloiwong 6To cuykekpipévo Tpoidv v Tiun 6,99 log CFU/cm? yio v
OMX. PLS-R povtéla epaplocTNKOV GTO QOGUOTOCKOTIKA dE00UEVO amd TIG TEYVIKES FT-
IR ko MSI yio tov T060T1K6 Tpocdiopicpd g OMX kat tov Baktnpiov Pseudomonas spp.
Emnpooheta, ovamtoybnkoav mootikd povtéda (Linear Discriminant Analysis, LDA,;
Quadratic Discriminant Analysis, QDA,; Support Vector Machines, SVM; Quadratic
Support Vector Machines, QSVM) yia tov dtoyopiopd tov detypdtov o€ 600 Kotnyopieg
nodmrog (ppéoko kot oALOI®WEVO) pe Pdon to OplOo TOL TPOGIOPIGTNKE amd TNV
opyavoAnmtikny a&loAdynon tov derypdtov. H ektipnon tov tinbuopot g OMX kot tov
Baktnpidv Tov yévoug Pseudomonas péowm g teyvikng MSI kat tov povtéhov PLS-R frav
wavomomtiky, pe Téc RMSE xatd v emkvpoon 0,987 kar 1,215 log CFU/cm?
avtiotoiyws. H epappoyn tov povréhov SVM ota @acpatockomikd 6ed0UEva TG TEXVIKNG
MSI mapovoiace v KaAOTEPN EMIOOON LE TOGOGTO GLVOAIKNG OKPiPElng KATATAENS TOV
derypdrtov otig 600 Katnyopieg modtntag mov aviAbe og 94,4%. Ikavomomtiky Kpibnke
emiong n xpnomn tov povtéhov QDA ota pacpotookomikd dedopéva e texvikng FT-IR, pe
TOGOGTO GLVOAKNG aKPiPelag Katd TV TaSvOUNoT TOV JEIYUATOV G KAAGES TOOTNTOG

ico pe 71,4%.

210 KEPALOO 6, EKTOG OO TNV EPOPLOYN TOV PACUATOCKOTIKOV nefddwv FT-IR
kot MSI, e€etdotnke kol 1 amotelecpatikOTNTO TG NAEKTPOVIKNIG potng (E-nose) otnv
EKTIUNON NG TOOTNTOAG OELYLATOV 0O LoPVAPIGHEVO GOVPAGKL KOTOTOVAO. 100 TOV GKOTO
avto, T detypoata cuvinpnnkav ce tpia 1600eproKpacIOKE Kol 6 £vo. SUVOUIKE YPOVO-
Beppokpactakd Tpoeik You&ng. Ava ToKTA XPOVIKE SLUGTAIATA, TO. GLVTNPNUEVE OEtypaTal
avoAbovTOV HKpoPlodoyikd yw v amopibunon g OMX «kar tov Poktnpiov
Pseudomonas spp., evd mapdAinio eAqedncav eacpotockomikd dedopéva (FT-IR ot
MSI) kot TovTOYpOVA TPOYUOTOTOMONKE KOTOYPOPT] TOV TTNTIKOD OTOTUTMOUOTOS TMV

detyndtov péom tng nAektpovikng uotng (E-nose). Movtéha PLS-R and SVM-R
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avartoyOnkav Kol emkvpodnkov yi tov mpocsdopopd e OMX ota papwvapiopéva
detypota, yioo kabe Opyovo Eexympiotd Kabdg kot cvuvovaotikd. EmmAéov, diepeuvionke n
duvaTOHTNTO TOEVOUNONG TOV JELYUATOV GE TPELS (PPESKO, AmodeKTd, AALOIOUEVO) 1 dVO
(ppéoKo, AALOIOUEVO) KOTNYOPIES TOLOTNTOGC, LE TNV EPOPLOYN TOOTIK®V Hoviélmy (LDA,
LSVM, CSVM) mov avoartdydnkov gite pe ta 0edopéva Tov KABe opydvov Eexmwplotd eite
ocuvdvaoTikd. H emkdpwon OAmv tov poviéAwv mpayuatomomonke pe dedopéva omd
ave&apTNTO TEPAUATA GUVINPNONG TOV OEIYUAT®OV KOTOTOLAOV OO TPELS SLOPOPETIKES
TapTideg Tov eMEONcaY amd S1aPopeTikd avorlvTn (€61 avalvTtég GLUVOAKA). e OTL apopd
ota povtéda PLS-R yuo v extipnon g OMX, n xp1on QOGUATOGKOTIKOV dEOOUEVMV
a6 v texvikn MSI tapovcioce v kodvtepn emidoon pe i) RMSE katd v mpofieyn
ion pe 0,998 log CFU/g, evd 0 6uvdvacpdc dedouévmv omd 600 QAGHOTOCKOTIKES HeBdd0Vg
FT-IR/MSI mapovciooce eniong kahn enidoon pe tiwy RMSE xatd v mpdPreyn ion pe
0,983 log CFU/g. Opoimg, ta poviéda SVM mov avamtoydnkav pe T QuCHAUTOGKOTIKA
dedopéva ¢ molvpacuatikng oamewkoviong (MSI) kot tov cvvdvacuod FT-IR/MSI
TAPoOLGiocaV IKovOToNTIKY enidoon pe Tinég RMSE katd v mpdPreyn ioec pe 0,973 kot
0,999 log CFU/g, oavtotoiywg. Katd v emkdpmon TOV TOWTIKOV HOVIEA®V
KATNYOPLOmoinong TV SEIYUATOV G€ TPEIS KAACELS, 1| CLVOAKT akpifela NTov pikpdTepn
amod 60 %, v oiec 11 e€eTaldpeveg TEPMTAOGELS. AVTIOETMG, Yo To LOVTEAD TV VO
KAdoewv, T0 povtého CSVM mov avoantoydnke pe to dedopévo mov mponAbav amd to
ouvovacpo tov teyvikdv FT-IR/MSI gupdvice 10606td cUVOMKNG aKkpifelag Kotdtaéng
TV delypdtov otig dvo KAdoewg 87,5 %, evad 1 avartuén tov poviéhov LSVM pe ta
dedopéva g teyvikng MSI napovsioce 1060010 TASIVOUNOTG TOV SEIYUATOV GTI COOTN
tovg kKAGom 80 % 010 6T1Ad10 T TPOPAEYNS. H cuvovacTikn yp1on TV QocUATOCKOTIKMV
dedopévov tav pebddwv FT-IR kot MSI anodeiydnke g pio amoteAeGUATIKN EVOALUKTIKY

AboM Yo TNV EKTIUNOM TNG TOOTNTOS GTO GLYKEKPLUEVO TPOIOV.

210 Ke@ahowo 7, perembOnke m ac@aieln evOG EMEEEPYUGUEVOL TPOTOVTOC
KOTOTOVAOV OYETIKA pe Tov Taboydvo pukpoopyavioud tov yévovg Campylobacter mov
cuvavtdtol cuyvd 610 KoTOTOLVAO. 'l ToV oKomd avTo, delypato omd PAPVOAPIGUEVO
covPAdktL kotomovAo gufoidotnkoy pe €61 otehéyn Campylobacter (téooepa otedéyn C.
coli xou 6vo otedéyn C. jejuni) ko pekemOnke M ovumEPLPOPA TOV &V AOY®

UIKPOOPYOVIGHOV KaBdg Kot g avtdybovog HkpoyAwpidoag Tov mpoidvtog KoTd TNV
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cuvtnpnon tov oe Beppokpacieg YoEng (tpeic 10obeppokpaciakéc cuvOnkeg kol pio
ovvopkd  petofaridpevn  Ogpuokpoctokn  ocvovOnkm). IHapdAinia, peietOnke n
CLUTEPLPOPE TG OAAOLOYOVOL HIKpOYA®PIdag oe pn euportacuéva pe 10 maboydvo
Bakmpio detypata Tov idov Tpoidvtog. [lpmtoyevn Kot devtepoyevi LOVTELD TG OENGNG
¢ OMX kat Tov Baktnpiov Pseudomonas spp. o€ oyéon pe v Bepuokpocio cuvTipnoNg
avamtoyOnkay kot emkupOdnkay yio ta evoeBoiucuéva kot pn oetypata. EmumAéov,
npwtoyevn povtéla entPimong tov Campylobacter spp. avartoyOnkav pe to dedopéva and
ta Tpiae 1ooBepuokpaciakd mpoeik cvvtipnong. Télog, M emPivon TV oTEAEXDV TOV
nafoyovov PBaktmpiov oe kbbe Beppokpaciokn cuvOnkn TpaypaTorTomOnke pe ™ xpnon
™¢ popakng pebodov Random amplified polymorphic DNA PCR (RAPD-PCR) og
OTTOLLOVMGELS TTOL TPOYUOTOTOWONKAV GTO 0pyIKO, EVOLAUESO Kol TEAMKO GTAS10 KATd TN
duwgpkel ocovtnpnong tov deiypdtov. Ta mpwtoyev) poviéda yloo TV EKTIUNGN NG
KWNTIKNG ovpmeptpopds s OMX kot tov Baktnpiov Pseudomonas spp. spgdvicay tipég
RMSE pikpotepeg and 0,941 log CFU/g yia ta evopBaipopéva kot un deiypoto. And ta
povtélo emPioong tov oteleydv Campylobacter spp., to povtého Weibull mov
avamtOyOnke pe to dedopéva amod T Beppokpacio 5 °C Tapovoiace KovoToNTIKY €Tid0O0T),
pe iy RMSE {on pe 0,112 log CFU/g. Téhog, Ta amoTeAEGLATO TOV LOPLOUKDV OVIADGEDV
éoetgav ott ta €ion C. coli xou C. jejuni emPiocav xkotd v YHEN TOL LOPVOPIGUEVOD
KOTOTOLAOV, pe povadikn eEaipeon t Beppokpacia 5 °C, 6mov povo 1o €idog C. coli rav

avveLGIUO.

Emotpoviki) weproyn: Mikpofroroyia Tpogipwmv

AEEEIC-KAEWOA: TTPOIOVTO TTOVAEPIK®V, PUCUATOGKOTIKES HEBodOL avaAvong, HikpoPlokn
aAAloiwon, Propuntikol oaoOntpec, moALVUETOPANTY] OvAALGT OedOUEVODV, ACEAAELD

TOVAEPIKDV
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Chapter 1: Introduction



In the last decades, the continuous evolution and implementation of technologies in
time-temperature indicators (TTIs), smart sensors (package level freshness visibility),
smart labels (QR codes) and integrated software systems have enriched consumers’
knowledge and awareness in food quality and safety (Sanz-Valero et al., 2016;
Bouzembrak et al., 2019; Li & Messer, 2019; Dey et al., 2021; Kumar et al., 2021).
Consumers’ demands for high quality and safety in food with nutritional and healthy
benefits have been increased. Moreover, the recall and withdrawing of food products due
to poor quality aspects or to foodborne pathogens have forced the authorities and the
producers to establish the guidelines for the quality and safety assessment of foods through
the farm to table chain (EC regulation 852/2004, EC regulation 2073/2005). In order to
meet consumer’s demand which has been constantly evolving and expanding as quality
food standards rise, the industries have invested in the development and continuous
improvement of techniques assessing foods quality and shelf- life (Chen, 2015; Verdouw
et al., 2016). Furthermore, real-time monitoring of temperature and other important factors
influencing foods quality and safety at the retail’s points and consumer fridges have been

employed for the avoidance of food recalls and food loss and waste (Kouma & Liu, 2011).

1.1 Quality and Safety in foods

According to FAOQ, the food loss index was worldly estimated at 13.80 % until 2016,
including post-harvest losses (FAO, 2019), indicating that both food loss and waste should
be reduced by half in 2030 globally (UNEP, 2021; FAO, 2022). Quantitative and
qualitative food loss and waste are a result of industries inability to properly estimate foods
deterioration from intrinsic and extrinsic factors during production, packaging, storage and
distribution, as well as of retailers, food services and consumers unawareness concerning
the optimum conditions of storage and cooking. Food rejection is strongly linked with
spoilage which is defined as the process of physical, chemical and sensory (off-flavours,
off-odours, appearance, texture) changes in a food product that characterize it unacceptable
from the consumers point of view (Koutsoumanis, 2009; Mac¢ et al., 2013; Lianou et al.,
2016). More than 25% of global food waste at post-harvest or post slaughter processes is
attributed to the microbial activity in the food matrix. Nevertheless, microbiological

spoilage in foods has been described by many researches as the most responsible cause of



deterioration in food quality during storage (Gram et al., 2002; lulietto et al., 2015;

Remenant et al., 2015; Koutsoumanis et al., 2021).

1.1.1 Quality and Safety in poultry

Poultry meat is popular among consumers as it contains high percentages of protein,
vitamins, minerals and essential polyunsaturated fatty acids (PUFAS), especially the omega
(n)-3 fatty acids (Lin et al., 2011). Moreover, it has an affordable price and it is
recommended to populations which exclude beef or pork meat for religious reasons (FAQ,
2022). Taking into account these benefits, as well as the fact that the poultry sector is fast
growing and the most flexible of all livestock sectors, it is forecasted that poultry
production will expand by 1.8 Mt annually by 2025 (Souza et al., 2018; FAO, 2022).
However, due to its nutritional content and intrinsic factors (pH, water activity, initial
microbiota and redox potential) poultry products are susceptible to microbial spoilage and
pathogens survival or growth (Baston & Barna, 2010; Dawson et al., 2013; lulietto et al.,
2015). The sensorial attributes that signify poultry’s spoilage are the presence of slime on
some parts or on all the surface of chicken, the development of off-odours (slight
sulphurous or ammoniacal, rancid, acid, putrid), the deterioration in colour (light cream
and grey or greening) and loss in muscles elasticity (no return) (Baston & Barna, 2010;
Baston et al., 2010; Dawson et al., 2013; Chmiel, M. and Stowinski, 2018). During
microbial spoilage and more specifically during the proteolytic activity of the indigenous
microbiota on chicken, the off odours from the produced volatile molecules of sulphure-
and ammonia-based compounds are traceable (Nychas & Tassou, 1997; Nychas et al.,
2008; Alexandrakis et al., 2012). Extended presence of slime on the surface of chicken is
related to Pseudomonas spp. biofilm formation on chilled meat (Wickramasinghe et al.,
2019, 2020).

1.1.2 Spoilage microorganisms in poultry

The indigenous microbial groups associated with spoilage in poultry products are
Pseudomonas spp. (Pseudomonas fragi, Pseudomonas lundensis, and Pseudomonas
fluorescens), Enterobacteriaceae (Hafnia spp., Serratia spp., Rahnella spp.), Enterococcus
spp., Lactobacillus spp., Brochothrix thermosphacta and Shewanella spp. (Gram et al.,
2002; Lee et al., 2017; Lindblad, 2007; Sade et al., 2013). These microorganisms can be



transmitted to the sterile chicken carcasses during slaughtering process from contaminated
areas in the slaughterhouse (i.e., air, water bath, low hygiene in employees, equipment,
surfaces, chilling) (Tompkin, 1994; Geornaras et al., 1999; Rouger et al., 2017). Each one
from the abovementioned microorganisms could grow and dominate over the other
depending on the conditions of storage and packaging in chicken products (Smolander et
al., 2004; Doulgeraki et al., 2012; Holl et al., 2016). Storage of chicken meat in low
temperatures at aerobic conditions favors the growth of Pseudomonas spp. which is
reported in the literature as the main spoilage microorganism during raw or processed
poultry meat (marinated) storage in aerobic conditions (Liang et al., 2012; Morales et al.,
2016). Moreover, a detailed description of Pseudomonas spp. growth behavior at chill
temperatures (1-10 °C) and aerobic conditions of storage in poultry is presented by EFSA
panel on Biological Hazards (EFSA Panel on Biological Hazards (BIOHAZ), 2016). On
the contrary, modified atmosphere packaging (vacuum, N2/CO,, O./CO,) favored the
dominance of anaerobic and facultative anaerobic microorganisms such as LAB and
Brochothrix thermosphacta during spoilage in poultry products (Bjorkroth, 2005;
Balamatsia et al., 2007; Patsias et al., 2008; Franqueza & Barreto, 2011; Silva et al., 2018).

1.1.3 Pathogen microorganisms in poultry

Regarding safety in chicken and the presence of pathogenic microorganisms causing
severe diseases, the most commonly isolated foodborne pathogens from chicken products
are Campylobacter spp. and Salmonella spp. (EFSA/ECDC, 2021). The former
microorganism has been reported as the cause of campylobacteriosis which has been the
most frequent disease with food etiology since 2005 around the globe (Gharst et al., 2013;
WHO, 2013; Repérant et al., 2016). Campylobacter spp. has been isolated from poultry
plants and poultry products as this pathogen can survive under low temperature storage and
acid conditions (Bjorkroth, 2005; Silva et al., 2011; Yun et al., 2016; Lanzl et al., 2020).
For this reason, a modification of the EU 2073/2005 regulation was necessary for the
detection of Campylobacter spp. in poultry meat after slaughter procedure (via ISO 10272-
2) and the upper limit concerning the safety of the inspected meat was defined at 1,000
CFU/g. Likewise, Salmonella spp. has been transmitted through chicken meat consumption
to humans and 91,857 incidences of salmonellosis have been reported in the EU in 2018
(EFSA/ECDC, 2019). Therefore, in the EU 2073/2005 regulation on the microbiological
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criteria of foodstuffs, the guidelines regarding this pathogen have been established in order
to diminish salmonellosis originated from chicken meat consumption (EN/ISO 6579).
Nevertheless, CAC/GL 78-2011 provides the guidelines for the control of both pathogens
in chicken meat from primary production to consumption (CAC, 2011).

1.2 Process Analytical Technologies (PAT)

Poultry’s vulnerability to spoilage, consumers’ demand for qualitative food and the
vast economic losses for the food industry due to food loss and waste necessitated for the
adaptation of alternative methods assessing in real-time the spoilage in poultry meat. In the
last decade, PAT concept has been implemented in the pharmaceutical as well as in the
food industry (on-, in- and at- line) as an efficient suggestion for the evaluation of quality
and freshness in meat (van den Berg et al., 2013; Cullen et al., 2014). Rapid analytical
techniques (as smart sensors) could be associated with microbiological, chemical,
molecular and sensory data via multivariate data analysis for the development of predictive
models (food matrix specific models) assessing products’ quality. Afterwards, these rapid
analytical techniques could be embodied in the production line and continuously updated
with data sets for the detection of spoilage during meat processing, packaging or/and
storage (Nychas et al., 2016). The implementation of PAT could be beneficial for all
stakeholders in the food chain. From the producers’ point of view, this approach could
facilitate the release time of a product, permit on-site inspections, allow continuous
assurance of product quality and shelf-life avoiding recalls or complains from costumers.
Similarly, retailers could check their supplier easily and rapidly and monitor in real- time
the quality in stored food products (Gomes & Leta, 2012; Dey et al., 2021). Concerning
the consumers, they could be alerted if the quality of a product deteriorates during
refrigerated storage and thus, minimize or prevent food waste (Kamble et al., 2019).

1.2.1 Noninvasive methods applied in Food Science

In recent years, a variety of sensors have been developed, applied and evaluated for
their potential to rapidly assess freshness in meat and poultry products. In order to be
considered as an alternative for PAT application, a sensor should assess rapidly and
efficiently the critical control parameter of interest without destruction of the product (van
den Berg et al., 2013). Spectroscopic methods (FT-IR, NIR and RAMAN), hyperspectral



(HSI) or multispectral imaging (MSI) and biomimetic sensors (electronic nose, E-nose;
electronic tongue, E-tongue) have been proposed (individually or in combination) as
reliable, non-invasive methods for the evaluation of quality in meat and poultry products
(Ghasemi-Varnamkhasti, 2010; Argyri et al., 2013; Pu et al., 2015; Ye et al., 2016;
Falkovskaya & Gowen, 2020). In addition, these techniques are environmentally friendly,
cost-effective and easy to be implemented by non-skilled personnel compared to the
conventional, time consuming and expensive microbiological, chemical and molecular
methods of analysis (Nychas et al., 2016; Khulal et al., 2017).

1.2.2 Multispectral Imaging (MSI)

Multispectral imaging combines spectroscopy (in the visual and near-infrared region,
NIR) with computer vision for the acquisition of spectral and spatial data providing
information on the metabolites on the surface of the examined food. This analysis combines
fast image acquisition and processing methods and it has lower cost compared to
hyperspectral imaging. Moreover, MSI does not require sample pre-treatment, it is simple
to apply and hence it is appropriate for online monitoring during food production
(Kutsanedzie at al., 2019). This novel technique has been employed in the evaluation of
quality and the identification of defects, contaminants or adulteration in a variety of poultry
products. Specifically, MSI has been applied in the range of 400 to 1700 nm (visual and
NIR region) for the development and validation of quantitative or qualitative models
predicting the bacterial populations of Total Viable Counts (TVCs) and Pseudomonas spp.
on chicken meat during spoilage (Feng & Sun, 2013a, 2013b; Ye etal., 2016). Furthermore,
this nondestructive technique could successfully identify fecal contaminants in poultry line
and the presence of tumors on the surface of chicken breast (Yang et al., 2006; Nakariyakul
& Casasent, 2009). MSI analysis could also efficiently detect the adulteration/food fraud
of minced beef with chicken meat as well as food fraud in minced pork adulterated with

chicken (Kamruzzaman et al., 2021; Fengou et al., 2021).

1.2.3 Fourier Transformed Infrared Spectroscopy (FT-IR)
Fourier Transform Infrared spectroscopy is a vibrational spectroscopy analysis
adapted from the relationship of the interactions of infrared radiation (IR) to matter, where

Fourier transformation is performed via an interferometer by multiplexing the wavelengths



in one measurement. When IR radiation passes through sample surface and the crystal,
each specific vibrational mode absorbs IR at its characteristic frequency, so that each
molecule will have its own distinct peak combination providing a unique molecular
fingerprint of the sample (Gromski et al., 2015; Candogan et al., 2021). In the literature,
FT-IR sensors emitting mostly in the mid-infrared (MIR) region (400-4000 cm™*) have been
proposed as nondestructive methods assessing spoilage in meat and poultry (Ellis et al.,
2002; Argyri et al., 2013; Ropodi et al., 2018; Alamprese et al., 2016; Candogan et al.,
2021). Briefly, this spectroscopic method has been recommended as an effective method
for the differentiation of intact chicken breast muscle during spoilage by Alexandrakis et
al. (2012). Likewise, in other studies the time of storage as well as the spoilage microbiota
was assessed via FT-IR models in chicken breast fillets stored under aerobic conditions
(Ellis et al., 2002; Sahar & Dufour, 2014; Vasconcelos et al., 2014; Rahman et al., 2018).
An attempt to discriminate beef from chicken samples and beef-chicken mixtures at
different percentages with FT-IR measurements was undertaken successfully by
Keshavarzi et al. (2020), whereas in a recent work successful clustering of chicken meat
from other raw food matrices stored at different temperature and packaging conditions was
reported (Tsakanikas et al., 2020). Furthermore, FT-IR spectroscopy has been satisfactorily
employed for the detection of adulteration in beef with chicken and/or turkey meat and
reversibly (Alamprese et al., 2013; Alamprese et al., 2016; Deniz et al., 2018). In addition,
this rapid technique could efficiently classify fresh from frozen/thawed chicken meat
according to Grunert et al. (2016). Regarding safety in chicken meat, FT-IR models
exhibited good prediction of Salmonella spp. as well as of the indigenous spoilage
microorganisms in inoculated and non-inoculated chicken liver samples (Dourou et al.,
2021). The potential of FT-IR in tandem with multivariate analysis to separate frozen
chicken salami samples inoculated with L. monocytogenes, E. coli. P. ludensis and S.
Enteritidis as well as spiked with P. ludensis, S. Enteritidis and untreated ones has been
discussed by Grewal et al. (2015).

1.2.4 Electronic nose (E-nose)
The electronic nose (E-nose) is a biomimetic sensor imitating the olfactory system
of humans. An E-nose instrument consists of an array of electronic chemical sensors with

cross-sensitivity, partial specificity and an appropriate pattern recognition system, capable
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for the identification of simple or complex odor via volatiles (Ghasemi-Varnamkhasti et
al., 2010; Loutfi et., 2015; Di Rosa et al. et al., 2017). Until now, mostly metal-oxide
sensors (n-type and p-type semiconductors) as SnO2, ZnO, Fe.O3, WO3, CuO, NiO and
CoO have been employed for the recognition of H2, CH4, CO, C2Hs or H,S, Oz, NO> and
Cl> gases, respectively in food matrices (Baldwin et al., 2011; Lin et al., 2014; Haddi et al.,
2015; Handa & Singh, 2018). Different combinations of these metal-oxide sensors have
been assembled in sensing systems and tested for their accuracy in the recognition of
quality in meat and poultry products (Balasubramanian et al., 2004; Ghasemi-
Varnamkhasti et al., 2009; Wang et al., 2012; Papadopoulou et al., 2013; Estellez-Lopez
etal., 2017; Shi etal., 2017). E-nose implementation has been suggested for the estimation
of chicken fat (Rajamaki et al., 2006; Song et al., 2013). In another application, E-nose
could accurately determine the level of TVCs on stored chicken (Timsorn et al., 2016).
Moreover, the effect of the season of the year on different batches of chicken and beef meat
were efficiently discriminated whereas the sensory attributes corresponding to these
batches were predicted via E-nose data acquisition (Tian et al., 2014). Recently, E-nose in
tandem with dispersive liquid-liquid microextraction—gas chromatography—mass
spectrometry (DLLME-GC-MS) has been evaluated for the determination of the biogenic

amine index in fresh chicken breast muscles (Wojnowski et al., 2019).

1.3 Machine Learning

An important and challenging decision in the development of predictive models with
data originating from sensors is the selection of the most appropriate machine learning
algorithm. Unsupervised pattern recognition techniques should be firstly applied to the data
set of interest in order to comprehend the relationship between observations and the trend
in the data subspace (Brereton & Loyd, 2014; Gromski et al., 2015). Supervised machine
learning methods could be implemented in a data set containing independent and their
corresponding dependent variables for the development of quantitative or qualitative
models assessing a continuous (Regression models) or a categorical (Classification
models) output (target) variable. The application of the abovementioned techniques in food
science for the rapid estimation of quality in meat and poultry have been discussed by many

researchers and a plethora of pertinent websites (e.g., sorfML, Metaboanalyst) or software



(R, MatLab, Python, The Unscrambler) have been developed for this purpose (Ropodi et
al., 2016; Kumar & Karne, 2017; Candogan et al., 2021).

1.3.1 Unsupervised machine learning methods for pattern recognition

Principal component analysis (PCA) and cluster analysis (CA) are two unsupervised
methods capable of pattern recognition among data which are frequently employed in
exploratory data analysis (Beruetta et al., 2007). PCA aims at the reduction of data
dimensionality by transforming the original variables into new uncorrelated variables
called Principal Components (PCs), containing linear combinations of the original data.
The PCs graphically define (as vectors) the new subspace where its orthogonal axes
represent the directions of greatest variance in the data. In general, the PCs contributing
mostly to the visualization of the new subspace with percentages more than 95 % are the
ones describing successfully the original data set. The new observation values located in
this subspace are called PC scores. The obtained PCA scores could be further utilized as
input variables to other more complex classification or prediction models through data
fusion (Di Rosa et al., 2017). Concerning Cluster analysis, observations are grouped in a
hierarchical dendrogram based on the distance (Euclidean, Manhattan or other) between

them and an agglomerative distance model (Ropodi et al., 2016).

1.3.2 Supervised machine learning methods

Partial Least Squares-Regression (PLS-R) is a supervised predictive model widely
employed in food science and chemistry for the development and validation of quantitative
models. Through this analysis, a matrix of independent (X) variables (instruments/sensors
data) is linearly correlated to a dependent numerical variable. Similar to PCA, PLS-R also
represents geometrically the data set in a new sub-space (reduction of dimensionality) via
linear combinations of the original variables. This method can be applied to collinear data
with many X-variables (Wold et al., 2001). Optimized and validated PLS-R models using
spectral or E-nose features have been proposed for the determination of microbial
populations (spoilage or pathogens), chemical compounds as well as different
batches/seasons in red meat and poultry (Kamruzzaman et al., 2013; Fengou et al., 2019;
Rahman et al., 2018).



Support Vector Machines-Regression (SVM-R) is a merging of Support Vector
Machines classification approach to linear or non-lincar models, where the model’s
response is a continuous variable. SVM-R separates the data set in a hyperplane defined
by linear or nonlinear kernels (functions) by optimizing the maximum margin within them
(Cortes & Vapnik, 1995). This approach is efficient with high dimensionally inputs and
nonlinear relationships; however high computational time and difficulty in the final SVM
outcome could occur due to the nature of programming (quadratic programming and
nonlinear equation sets) (Balabin & Lomakina, 2011). SVM-R models coupled with data
sets derived from rapid sensors have been recommended for the estimation of meat
microbiota as well as for the enumeration of pathogens and the discrimination of different
raw food matrices (Wang et al., 2012; Papadopoulou et al., 2013; Estelez-Lopez et al.,
2017; Fengou et al., 2020; Tsakanikas et al., 2020; Dourou et al., 2021). SVMs are also
frequently used as a classification algorithm for the separation of samples in classes. The
appropriate choice of kernel function (linear, LSVM; polynomial SVMs of degree d as
quadratic or cubic, QSVM, CSVM,; radial basis function, RBF) is a challenging task when
a SVMs model is developed and optimized (Luts et al., 2010). SVMs have been employed
to spectral data for the assessment of quality and authenticity in meat products providing
robust models (Ropodi et al., 2016; Jaafreh et al., 2019; Jiménez-Carvelo 2019; Fengou et
al., 2021a, 2021b; Tsakanikas et al., 2020).

Regarding classification models, Linear Discriminant Analysis (LDA) arranges the
samples in sub-groups via a linear function of variables (canonical variables, CV)
determined by the maximum distance between groups and the minimum distance of
samples within each group. Likewise, in Quadratic discriminant analysis (QDA) the same
rationale is followed with the exception that the relationship between X and Y variables is
described by a quadratic function. Both discriminant methods assume a multivariate
normal distribution in each sub-group while in QDA the covariance for each group differs.
One disadvantage in these classification methods is that overfitting could be evident if the
variables present high collinearly. Moreover, LDA could not be capable to separate
samples if non-Gaussian distribution is observed on groups (Grouven et al., 1996; Kim et
al., 2011; Kumar & Karne, 2017). Over the years, LDA has been undertaken with spectral

data derived from stored meat for quality assessment and adulteration detection
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(Balasubramanian et al., 2004, 2005; Chen et al., 2011; Restaino et al., 2011; Alamprese
et al., 2013; Arredondo et al., 2014; Ropodi et al., 2015).

Artificial Neural Networks (ANNSs) are deep learning algorithms simulating the
human neural system and they have been implemented for the development of regression
and classification models. ANNs contain a network of interconnected nodes divided in
three main layers, namely the input layer, the hidden layer and the output layer.
Independent variables are inserted in the input layer which is mainly used for the
summation of the input variables. The signals proceed to the next layer (hidden) where a
transfer function (linear, sigmoidal) processes the signal/variable and transfers it to the
following layer. The output layer of an ANN results in the calculation of the dependent
variable which could be continuous or categorical (Jain et al., 1996; Marini, 2009). This
analysis has been applied in tandem with signals from biomimetic sensors as well as with
spectroscopic data for the assessment of meat quality exhibiting successful performance
(Balasubramanian et al., 2009; Ghasemi-Varnamkhasti et al., 2009; Chen et al., 2014; Li
etal., 2014; Timsorn et al., 2016).

1.3.3 Ensemble approach

In the last decades, ensemble learning methods have gained popularity among the
single machine learning models as the collaboration of multiple algorithms can
significantly enhance the performance of a model. Ensemble methods employ multiple
well-known algorithms, by creating smaller subsets of the initial data set, training different
classifiers with these partitions and combining their outputs. They have demonstrated
improved performance compared to the outcome from their single base learners (Polikar,
2006). The efficiency of these techniques has been investigated in many scientific fields
such as face and emotion recognition, text classification, medical diagnosis and financial
forecasting (Pintelas & Livieris 2020). Furthermore, boosting, bagging (Panov & Dzeroski,
2007; Seiffert et al., 2008), random forest (Jimenez-Carvelo et al., 2019) and random
subset-based strategy (Sun & Zang, 2006; Rokach, 2010) have been employed for the
development of reliable classification models in foods such as beef fillets (Mohareb et al.,

2016), minced meat, green olives, beer and oil (Kucheryavskiy, 2018).
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1.3.4 Data Fusion

Another state-of-the-art data manipulation technique that can be employed to
enhance model performance is data fusion. In data fusion, signals/features from different
sensors are conjoined (low- level fusion, mid- level fusion and high-level fusion) in order
to describe more accurately phenomena with high complexity. For low-level fusion,
features from different sensors are combined and machine learning model is fitted to the
revised data set. In mid-level fusion, features of each sensor are modified via an
unsupervised method (PCA or HCA) and the outcome of this analysis is utilized for the
performance of a supervised regression or classification model. In high-level fusion, a
machine learning technique is implemented to each sensor features individually and the
results are embodied in a new data set in which a machine learning method is performed
(Borras et al., 2015; Di Rosa et al. et al., 2017). Data fusion has been familiar to human
neural system which combines multiple senses and signals for the assessment of food safety
and suitability for consumption for centuries. Taking into account the nature of food matrix
(physical, biological and chemical properties) and the multiple processes occurring through
meat spoilage, a combination of sensor features could frame both internal (metabolites,
chemical compounds) and external (color, smell, texture, tenderness) alterations and thus
could identify more accurately quality defects and contaminants in food (Huang et al.,
2014; Kutsanedzie at al., 2019; Weng et al., 2020; Chung & Yoon, 2021).

1.3.5 Multivariate data analysis applied to poultry products

Exploratory and supervised data analysis via the above-mentioned models and their
combinations or fusion have been employed for the assessment of meat quality and
specifically of poultry products. In Table 1.1 a summary of the existing literature is
provided for poultry products, with main focus on spectroscopic and biomimetic sensors
coupled with exploratory methods (PCA, HCA), regression (PLS-R, SVM-R) and
linear/nonlinear classification models (SVM, PLS-DA, OPA, DA, LDA, DFA, SIMCA,
ANNs and BPNN). It is worth mentioning that recent studies have been relied mostly on
the combination of different machine learning approaches in an attempt to develop the
optimum model for quality evaluation in poultry (Khulal et al., 2017; Tsakanikas et al.,
2020; Weng et al., 2020).
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Table 1.1: Spectroscopic and biomimetic sensors implementation in tandem with machine learning methods for the assessment of quality and
adulteration in poultry products.

Sensor Product Purpose Data analysis Reference
method
HSI Chicken breast fillets Determination of TVCs PLS-R Feng & Sun, 2013a
HSI Chicken breast fillets Determination of Pseudomonas spp. counts PLS-R Feng & Sun, 2013b
HSI Chicken breast fillets Determination of TVCs via TBFI PLS-R Yeetal., 2016
HSI Beef adulterated with Determination of adulteration with chicken % PLS-R Kamruzzaman et al.,
chicken 2016
MSI Pork adulterated with Classification of samples based on the % SVM Fengou et al., 2021a
chicken adulteration with chicken classification
(RBF kernel
function)
MSI Chicken breast, thigh, Determination of time from slaughter PLS-R Spyrelli et al., 2020
marinated souvlaki and
burger
FT-IR and Chicken breast fillets Detection of spoilage PCA, PLS-DA, Alexandrakis et al.,
NIR OPA 2012
FT-IR Chicken breast fillets a) Determination of TVCs, Pseudomonas spp., PLS-R, PLS-DA  Sahar & Dufour, 2014
Enterobacteriaceae and Brochothrix
thermosphacta; b) Discrimination of samples
based on the day of storage
FT-IR Chicken breast fillets Determination of TVCs PLS-R Ellis et al., 2002
FT-IR Chicken breast fillets TVC, lactic acid bacteria (LAB), Pseudomonas PCA, DA, PLS- Vasconcelos et al.,
spp.,Brochothrix thermosphacta, R 2014
Enterobacteriaceae counts and pH
FT-IR Chicken breast fillets Determination of total plate count (TPC), PCA, PLS-R Rahman et al., 2018
Entetobacteriaceae count, pH, CTn (Color
transmittance number) color analysis, TVBN,
(total volatile basic nitrogen) contents, and shear
force
FT-IR Beef fillets, chicken thigh  Discrimination between beef and chicken meat and PCA, PLS-R, Keshavarzi et al.,
fillets, mixed samples of quantification of chicken in beef meat mixture ANNSs 2020

chicken and beef
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FT-IR Chicken marinated breast Classification of seven different types of food PCA, PLS-R, Tsakanikas et al.,
SVM 2020
classification
UV-vis, NIR Beef and turkey minced Detection of minced beef adulteration with turkey PCA, PLS-R, Alamprese et al., 2013
and MIR meat mixtures meat LDA, low
fusion for a
PLS-R model
combined with
UV-vis, NIR
and FT-IR data
FT-NIR Beef bottom round minced Identification and quantification of turkey meat PCA, PLS-R, Alamprese et al., 2016
meat and turkey breast adulteration in fresh, frozen-thawed and cooked PLS-DA
minced meat mixtures minced beef
FT-IR Beef, chicken, and turkey Differentiation of beef mixtures adulterated with PCA, HCA Deniz et al., 2018
minced meat mixtures chicken or turkey meat
FT-IR Fresh and frozen/thawed Differentiation of fresh and frozen/thawed chicken HCA, ANNs Grunert et al., 2016
chicken classification
FT-IR Spiked chicken salami Detection of Salmonella enteritidis, Pseudomonas PCA, SIMCA, Grewal et al., 2015
with 4 specific ludensis, Listeria monocytogenes and Escherichia  PLS-DA, PLS-R
microorganisms coli for pathogens
levels
FT-IR Inoculated and no Estimation of total viable count, Pseudomonas SVM-R Dourou et al., 2021
inoculated chicken liver spp., B. thermosphacta, LAB, Enterobacteriaceae,
and Salmonella on chicken liver
E-nose Modified atmosphere Determination of the microbiota, sensory attributes PCA, PLS-R Rajamaki et al., 2006
packaged poultry meat and dimethyl sulphide and hydrogen sulphide
concentrations (GC and HS-GC/MS results)
E-nose Sliced chicken breast Estimation of TVCs on chicken meat PCA, BPNN Timsorn et al., 2016
E-nose Chicken meat Discrimination of chicken seasonings based on PCA, DFA, CA, Tian et al., 2014
sensory attributes and quantitative estimation of PLS-R
sensory characteristics
E-nose Chicken breast Estimation of the Biogenic Amines Index of BPNN Wojnowski et al.,
Poultry 2019
E-nose, CV, Chicken breast Evaluation of freshness in chicken Mid- fusion: Weng et al., 2020
AT sensory PCA, SVM
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(RBF)
classification for
storage time,
PCA and PLS-R

for TVB-N
Olfactory/E- Chicken breast fillets Determination of TVB-N with multiple level data Multiple level Khulal et al., 2017
Nose system fusion data fusion:
based on PCA in each
Colorimetric sensor and in
sensors, HIS TVB-N values
and after BP-
ANN for TVB-
N estimation

15



1.4 Objectives

In the present thesis, the main objective was the development and validation of
predictive models assessing poultry’s quality with independent data obtained by non-
destructive spectroscopic and biomimetic sensors (MSI, FTIR, E-nose), at- line or off- line
in raw and stored (isothermal conditions and dynamic temperature profile) chicken
products. Different batches of many seasons of the year were used through the

experimental procedure in an attempt to include many different scenarios in this project.

In this context, in Chapter 2, MSI was explored as an alternative for the assessment
of the quality in four poultry products on an industrial scale. In brief, chicken breast fillets,
thigh fillets, marinated souvlaki and burger were analyzed microbiologically for the
enumeration of TVCs and Pseudomonas spp. while MSI measurements were acquired at-
line. Partial Least Squares Regression (PLS-R) models were developed based on MSI data

for the prediction of “time from slaughter” parameter for each product type.

The efficacy of FT-IR and MSI in tandem with multivariate data analysis for the
assessment of spoilage on the surface of chicken fillets was investigated in Chapters 3, 4

and 5, as follows:

In Chapter 3, two independent storage experiments of chicken breast fillets were
executed at 0, 5, 10, and 15 °C until 480 h. At pre-determined intervals, samples were
subjected to microbiological analysis for the enumeration of TVCs and Pseudomonas spp.
and in parallel FT-IR and MSI spectral data were obtained from sensors. Two software
platforms (a commercial and a publicly available developed platform) were employed for
the development of nine linear and no linear models for the determination of the TVCs and
Pseudomonas spp. counts on the surface of the samples. Models’ prediction skills were

assessed by intra batch and independent batch testing.

In Chapter 4, chicken breast samples were stored for up to 480 h at eight isothermal
conditions (0, 5, 10, 15, 20, 25, 30, and 35 °C) and two dynamic temperature profiles
(winter and summer transportation scenarios). Microbiological analysis for the
enumeration of TVCs was undertaken at certain intervals, whereas MSI and FT-IR analyses
were conducted. Samples were subjected to sensory analysis by 14 individuals for the
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evaluation of fresh and spoiled samples. Eight machine learning models (single-based and
ensemble) were investigated for their classification skills with their performance being

validated by an independent data set from the dynamic temperature profiles.

In Chapter 5, spoilage experiments were performed to chicken thigh fillets at eight
isothermal and two dynamic temperature profiles. Samples were analyzed
microbiologically (TVCs and Pseudomonas spp.), sensory analysis was undertaken by a
panel, while simultaneously MSI and FT-IR spectra were acquired. PLS-R models were
implemented for the estimation of TVCs and Pseudomonas spp. counts on chicken’s
surface. Four classification models (LDA, QDA, LSVM, QSVM) were employed for the
discrimination of fresh from spoiled samples.

In Chapter 6, FT-IR, MSI and E-nose have been examined (individually and
combined) as a potential for the quality assessment in chicken product via data fusion.
Chicken marinated souvlaki samples were subjected to storage experiments (0, 5, 10 °C
and a dynamic temperature profile: 12 h at 0 °C, 8 hat 5 °C and 4 h at 10 °C) at aerobic
conditions. Samples were microbiologically analyzed for the enumeration of TVCs and
Pseudomonas spp. while in parallel, FT-IR, MSI and E-nose data were acquired.
Quantitative linear and no linear (PLS-R, SVM-R) models (for each sensor and combined)
were developed and validated for the determination of TVCs on chicken marinated
souvlaki. In addition, three classification models (LDA, LSVM, CVM) were optimized and
evaluated for the separation of samples in 2 (fresh or spoiled) and 3 (fresh, semi- fresh and
spoiled) quality classes for each case of sensor individually and in combination. Model
performance was assessed with data obtained by six different analysts and three different

batches.

Further on, taking into account the safety in poultry products and the increased reports
for Campylobacter spp. in poultry, in Chapter 7, Campylobacter spp. behavior (six
different Campylobacter strains, belonging to the genera C. jejuni and C.coli) in inoculated
chicken marinated souvlaki under different storage temperatures was investigated via
survival models, as well as the indigenous microbiota’s growth behavior of the inoculated

and non-inoculated chicken marinated souvlaki.
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Chapter 2: Implementation of Multispectral Imaging (MSI) for
Microbiological Quality Assessment of Poultry Products

Published as:
Spyrelli, E.D., Doulgeraki, A.l., Argyri, A.A., Tassou, C.C., Panagou, E.Z., Nychas, G.J.E.
2020. Implementation of Multispectral Imaging (MSI) for Microbiological Quality

Assessment of Poultry Products. Microorganisms, 8, 552.
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Abstract

The objective of this research was to investigate on an industrial scale the potential of
multispectral imaging (MSI) in the assessment of the quality of different poultry products.
Samples of chicken breast fillets, thigh fillets, marinated souvlaki and burger were
subjected to MSI analysis during production together with microbiological analysis for the
enumeration of Total Viable Counts (TVCs) and Pseudomonas spp. Partial Least Squares
Regression (PLS-R) models were developed based on the spectral data acquired to predict
the “time from slaughter” parameter for each product type. Results showed that PLS-R
models could predict effectively the time from slaughter in all products, while the food
matrix and variations within and between batches were identified as significant factors
affecting the performance of the models. The chicken thigh model showed the lowest
RMSE value (0.160) and an acceptable correlation coefficient (r = 0.859), followed by the
chicken burger model where RMSE and r values were 0.285 and 0.778, respectively.
Additionally, for the chicken breast fillet model the calculated r and RMSE values were
0.886 and 0.383 respectively, whereas for chicken marinated souvlaki, the respective
values were 0.934 and 0.348. Further improvement of the provided models is

recommended in order to develop efficient models estimating time from slaughter.
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2.1 Introduction

In the last decade, meat consumption has rapidly increased while demand for high-
quality meat is expected to continue augmenting as the world population rises. Chicken
meat products account for 37% of global meat production due to their low-fat content,
affordable price and exclusion of beef and/or pork meat for religious purposes (FAO,
2022). However, raw poultry products are susceptible to deterioration (short shelf life) and
to unpleasant organoleptic attributes during spoilage (Baston & Barna, 2010; Dawson et
al., 2013). These facts in tandem with consumers’ demand for fresh meat has led to the
development of alternative approaches, such as Process Analytical Technology (PAT), that
are considered efficient in predicting quality and freshness in meat products during
production (Kamruzzaman et al., 2015; Nychas et al., 2016).

PAT is a promising approach for the assessment of products’ quality and it is currently
implemented not only in the pharmaceutical industry (Chen et al., 2011) but also in the
food industry (van den Berg et al., 2013; Cullen et al., 2014). The main concept of PAT is
the combination of multivariate data derived through real-time (in-, on-, at- line) analytical
methods to multivariate data analysis for continuous feedback and information build-up
(Grassi et al., 2018). As analytical techniques of PAT are considered among others
spectroscopic methods such as vibrational spectroscopy (FT-IR, NIR, Raman) (Cai et al.,
2011; Teenaet al., 2013; Alamprese et al., 2016), hyperspectral and multispectral imaging
(Qin et al., 2013; Liu et al., 2014; Xiong et al., 2015) and biomimetic sensors (e-nose, e-
tongue) (Ghasemi-Varnamkhasti et al., 2010; Huffman et al., 2017). Moreover, this
innovative approach coupled to microbiological analysis, quality factors and machine
learning tools, can permit the understanding of the process, the identification of Critical
Control Points (CCPs) and finally the application of a knowledge base to control the
process (Vasconcelos et al., 2014; Estelles-Lopez et al., 2017; Tsakanikas et al., 2018).

According to PAT approach, a potential analysis and sensor have to be able to estimate
successfully and rapidly the critical control parameter of interest without the destruction of
the product (van den Berg et al., 2013). These requirements are fulfilled in the case of
multispectral imaging (Feng et al., 2018) that combines an optical technique (visible and
NIR region) to computer vision in an attempt to obtain spectral and spatial data for the

metabolites on the surface of the examined sample. The main advantage over hyperspectral
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analysis is the fast image acquisition and the usage of simple algorithms for image
processing (ROI region) and decision-making (Qin et al., 2013; Tsakanikas et al., 2016).

In recent years, many researchers have recommended this nondestructive method and
several machine learning algorithms for the rapid assessment of meat quality (Panagou et
al. 2014; Pu et al., 2015; Nychas et al., 2016). Specifically, for poultry products qualitative
models were constructed for the classification of intact chicken breast fillets based on three
quality grades using hyperspectral analysis (Yang et al., 2018). Quantitative and/or
qualitative models in the region of visible and near-infrared (400-1700 nm), were able to
detect the bacterial population (TVCs, Pseudomonas spp. and Enterobacteriaceae) during
spoilage of chicken meat (Feng & Sun, 2013a, 2013b; Feng et al., 2013; Ye et al., 2016).
Other studies involving multispectral imaging were associated with the adulteration of
minced beef with chicken meat (Kamruzzaman et al., 2016), the presence of fecal
contaminants in a poultry line (Yang et al., 2005; Cho et al., 2006), defects (Park et al.,
2006; Yang et al., 2006; Chao et al., 2007) and tumors on the surface of chicken breasts
(Barni et al., 1997; Nakariyakul & Casasent, 2009).

So far there are limited studies on the implementation of spectroscopic methods during
processing at meat industries (Dixit et al., 2017) and the majority is focused on the
determination of fat and fatty acids in pork and chicken breast fillets with near-infrared
sensors (i Furnols & Gispert, 2009; De Marchi et al., 2012; Serensen et al., 2012; Prieto et
al., 2017). Hence, the aim of this research was to investigate the potential of multispectral
imaging, applied in a poultry processing industry, to determine the time from slaughter of
four different poultry products and develop PLS-R models assessing the time from

slaughter directly from spectral data.
2.2 Materials and Methods

2.2.1 Experimental design

Multispectral Imaging (MSI) was performed at-line in a Greek poultry industry on
four different poultry products: a) chicken breast fillets (n = 104, batches = 5), b) chicken
thigh fillets (n = 97, batches =5), ¢) chicken burger (n = 131, batches = 3), and d) marinated
chicken souvlaki (n = 144, batches = 4). At regular intervals, samples from each batch were
analyzed microbiologically for the enumeration of Total Viable Counts (TVCs) and
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Pseudomonas spp. in parallel with MSI spectral data acquisition. In addition, samples from
each product were stored at 4 °C for 216 h (9 days), since this time period is defined by the
industry as the shelf-life of the product. In parallel to the spectral acquisition, the
microbiological analysis was performed simultaneously with the other batches.

Sample origins were extensive farming facilities where animals (Gallus domesticus: Ross
strain) were fed from the company with a customized diet. Feeding consisted of grain,
wheat, maize, soya bean oil and meat and premix for broilers (vitamin and mineral
supplement). Chickens were slaughtered after 3 months of age and production was
conducted according to the regulations of the EU 823/2004, 824/2004, 834/2004 and
543/2008.

2.2.2 Microbiological analysis

From each sample, 10 g were added aseptically to 90 ml of sterile quarter strength
Ringer’s solution (Lab M Limited, Lancashire, United Kingdom) in a stomacher bag
(Seward Medical, London, UK) and homogenized in a stomacher device (Lab Blender 400,
Seward Medical, London, UK) for 60 s at room temperature. For the enumeration of Total
Viable Counts (TVC) and the dominant spoilage microorganism Pseudomonas spp., serial
decimal dilutions were prepared in the same diluent and spread on the following media: a)
tryptic glucose yeast agar (Plate Count Agar, Biolife, Milan, Italy) for TVCs incubated at
25 °C for 72 h, and b) Pseudomonas Agar Base with selective supplement cephalothin-
fucidin-cetrimide (LabM Limited, Lancashire, UK) for Pseudomonas spp., incubated at 25
°C for 48 h. After incubation, colonies were enumerated and microbial counts were
logarithmically transformed (log CFU/qg). Poultry samples with TVC counts exceeding 7.0
log CFU/g were considered spoiled as reported elsewhere (Raab et al., 2008; Souza et al.,
2018; Baltic et al., 2019).

2.2.3 Spectra Acquisition

MSI analysis was performed using a Videometer-Lab instrument (Videometer A/S,
Videometer, 2019, Herlev, Denmark) which was installed in close proximity to the
production line (at-line measurement) with the possibility of sample conditioning (Porep
et al., 2015). Videometer-Lab captures surface reflectance of samples in 18 different
wavelengths (405-970 nm), namely: 405, 435, 450, 470, 505, 525, 570, 590, 630, 645, 660,
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700, 850, 870, 890, 910, 940 and 970 nm. Surface reflectance is recorded by a standard
monochrome charged coupled device chip (CCD). The object of interest is placed at the
center of an Ulbricht sphere, which has a matte white coating inside and light-emitting
diodes (LEDs) with narrow-band spectral radiation positioned side by side at spheres rim.
The purpose of the coating is to ensure a diffused and spatially homogenous reflectance of
the sample. During instrument performance, the diodes are turned on successively leading
to a monochrome image with 32-bit floating-point accuracy for each wavelength. The final
outcome of MSI analysis is a data cube of spatial and spectral data for each sample of size
m x n X 18 (where m x n is the image size in pixels) (Dissing et al., 2013; Tsakanikas et
al., 2015).

A critical point before MSI application is the assurance that the range of LEDs
intensity is stable while phenomena such as shadows and object’s disfiguration are avoided
(Daugaard et al., 2010; Panagou et al., 2014). Therefore, a light set up procedure in which
the acquisition captured at zero time of the experiment (auto light) is recalled and light-
emitting diodes (LEDSs) intensities are stabilized. Subsequently, geometric and radiometric
calibration is undertaken in the Region of Interest (ROI) area with the aim of prototype
target.

In order to exclude non-informative areas such as Petri dish surface, fat, connective
tissue etc., a pre-process step is required. The segmentation of ROI on the sample from no
relevant areas and the implementation of Canonical Discriminant Analysis (CDA) areas is
conducted via Videometer-Lab version 2.12.39 (Videometer A/S, Herlev, Denmark). Also
known as Fisher (Fisher’s discriminant analysis), CDA separates pixels to different classes,
based on ROI, through the following Equation 2.1 (Duda et al., 2000; Carstensen et al.,
2003):

R () = & Zs2 2.1

aTYya

where Xs is the distribution between classes and Xy is the distribution within a class.

2.2.4 Data Pre-Processing and Model Development
For the development of models estimating the time from slaughter, Partial Least
Squares Regression (PLS-R) (Wold et al., 2001; Xiaobo et al., 2010) was chosen, where
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spectral data were the independent variables (n = 36) and time from slaughter (ts) was the
dependent variable. Time from slaughter is considered as the time elapsed from slaughter
until the MSI measurement. For each poultry model, a two-stage model development
approach was followed: (a) calibration and full cross-validation (using leave one out cross-
validation) for model optimization and (b) external validation with samples from different
batches. More specifically, for chicken breast fillets, calibration was performed using a
dataset from three independent batches (n= 82) and external validation was undertaken
with two other batches (n = 22). Similarly, the PLS-R model for chicken thigh fillets was
constructed using a training dataset from three batches (n = 67), whereas two other batches
(n = 30) were used to assess the prediction performance of the model. Concerning the
chicken burger, two batches (n = 87) were used in model training and one batch (n = 44)
in prediction. Finally, for marinated chicken souvlaki, the dataset consisted of two batches
(n =91) for training and two different batches (n = 43) for external validation.

Prior to analysis, spectral data for each type of poultry product were pre-processed
by different transformation techniques in an attempt to reduce random or systematic
variations (Brereton & Lloyd, 2014; Tsakanikas et al., 2016). Reducing the total volume
of data results in effective multispectral imaging systems and image acquisition with
relatively low spatial resolutions in a few important wavelengths (Qin et al., 2013).
Standard Normal Variate transformation (SNV) Equation 2.2 was applied in the case of
chicken thigh and burger in order to avoid collinear and “noisy” data areas (Bi et al., 2016).
In contrast, spectral data from chicken breast and marinated souvlaki were pre-processed
with baseline offset treatment (Rinnan et al., 2009; Engel et al., 2013) Equation 2.3.
Regarding time from slaughter (y variable), a logarithmic transformation was considered
necessary due to large differences in the intensities of the raw data (Berrueta et al., 2007).
Data pre-treatment, model development and validation were implemented using the
Unscrambler© v.9.7 software (CAMO Software AS, Oslo, Norway).

S; — mean(S)
stdev(S)

SNV =

2.2

where S refers to pixel-wise spectra, Si is the “old” information contained in a specific
wavelength and Si*NV is the “new-transformed” information contained in a specific

wavelength (Tsakanikas et al., 2016).
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S(x) = x — min (x) 2.3

where S denotes pixel-wise spectra for one sample, X is information contained at a specific
wavelength, and min(x) is the minimum variable in the x dataset.

2.3 Results

2.3.1 Microbiological Analysis

The range of the microbial population of TVC and Pseudomonas spp. for the
different batches of poultry products and storage time is illustrated in Figure 2.1.
Additionally, the spread of TVCs for fresh and spoiled samples is provided for each product
case. More specifically, for chicken breast fillets, the initial number of TVCs and
Pseudomonas spp. was 5.2 (+0.6) and 4.9 (£0.82) log CFU/g respectively, whereas in
spoiled samples the respective values were 8.4 (+£0.46) and 8.3 (£0.47) log CFU/g.
Additionally, for chicken thigh fillets, samples were considered fresh with TVCs and
Pseudomonas spp. counts at 5 (£0.83) and 4.5 (+0.98) log CFU/g. Spoiled chicken thigh
samples had TVCs and Pseudomonas spp. values at 7.9 (£0.50) and 7.8 (+0.49) log CFU/g,
respectively.

For chicken burger samples, TVCs and Pseudomonas spp. counts in fresh samples
were 5.5 (£0.36) and 4.8 (+0.75) log CFU/g, respectively, while in spoiled samples the
respective counts were 10.7 (£1.9) and 7.8 (£0.25) log CFU/g. Finally, marinated chicken
souvlaki fresh samples had TVCs and Pseudomonas spp. counts at 4.6 (£0.50) and 3.6
(£0.71) log CFU/g, respectively. In contrast, TVCs and Pseudomonas spp. values for
spoiled samples were 7.9 (£0.95) and 7.5 (+1.00) log CFU/g, respectively.

Results from storage experiments at 4 °C showed that chicken breast fillets were
determined as spoiled beyond 168 h of storage (TVCs > 7 log CFU/g) with TVCs value at
7.76 log CFU/g and Pseudomonas spp. counts at 7.6 log CFU/g. For chicken thigh fillets,
samples were characterized as fresh until 120 h when TVCs and Pseudomonas spp. counts
were 7.5 log CFU/g and 7.5 log CFU/qg, respectively. TVCs and Pseudomonas spp. counts
were 8.8 log CFU/g and 7.7 log CFU/g in spoiled chicken burger samples (storage time
216 h). Moreover, chicken marinated souvlaki was defined as spoiled after 168 h of storage

in which TVCs were 7.3 log CFU/g and Pseudomonas spp. counts were 6.8 log CFU/g.
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Figure 2.1: Boxplots for microbial counts (log CFU/g) of TVCs (1: blue,2: red) and Pseudomonas
spp. (3: green,4: orange) in fresh (1: blue,3: green) and spoiled (2: red,4: orange) samples of each
product.
2.3.2 Spectral Measurements

For the development of PLS-R models, each wavelength contributed differently to
each category of poultry product, despite the fact that all these products have the same
basic ingredient (i.e., poultry meat). This is demonstrated in Figure 2.2 where differences
could be observed in the spectra among different product types during storage at 4 °C,
based mostly on their nutrition composition difference (Cozzolino et al., 2004;
Kamruzzaman et al., 2013).

The same figure (Figure 2.2) confirms also the ability of this spectroscopic method
to detect and/or separate spoiled from fresh samples for each of the four products. For
instance, in the case of chicken breast, wavelengths with variations in reflectance for fresh
and spoiled samples were located in the areas of 470-570 nm and 590-970 nm,

respectively. Wavelength range from 660 to 970 nm seemed to affect the estimation of
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spoilage for chicken thigh. Similarly, for marinated chicken souvlaki reflectance

measurements at wavelengths above 570 nm deviated between fresh and spoiled samples,

whereas for the chicken burger wavelengths of 850-970 nm were noticed as different.
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Figure 2.2: Spectra from MSI analysis (405-970 nm) for each poultry product at 24 h (blue line)

and 216 h (red line) of storage at 4 °C.

2.3.3. PLS-R Model Performance

PLS-R models assessing the time from slaughter showed satisfactory performance

for each category of poultry product as inferred both graphically (Figure 2.3) and
computationally based on performance indices such as slope, offset, correlation coefficient

(r) and root mean squared error (RMSE) (Table 2.1).

For chicken breast fillets, time from slaughter was estimated quite accurately despite
the variations between batches, with r and RMSE values for the prediction dataset of 0.886

and 0.383, respectively. Differences between batches and ingredients (spices, herbs and
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sauce) used in marinated chicken souvlaki did not affect the prediction performance of the
PLS-R model, with r and RMSE values of 0.934 and 0.348, respectively. Even though
chicken thigh muscle has a more complex texture, with a higher percentage of fat and
connective fat tissue (Lin et al., 2011; Amorim et al., 2016), no differences were observed
between batches and subsequently, external validation was performed satisfactorily with r
and RMSE values of 0.859 and 0.160, respectively. Similarly, the presence of vegetables
(peppers, onions and herbs) and spices in the homogeneous mixture of chicken burgers was
not an obstacle for the external validation, where r and RMSE values were 0.778 and 0.285,
respectively. The above-mentioned RMSE values of prediction indicate satisfactory
accuracy of the models used to assess the observed data (Sant’ Ana et al., 2012; Feng et al.,
2013).
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Figure 2.3: Comparison of observed (open symbols) and predicted (solid symbols) values of time
from slaughter (log ts) after the development of the PLS-R model. Solid line depicts the line of
equity (y = x) and dashed lines are + 1.6 log ts (i.e., 48 h after slaughter).
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Table 2.1: Performance indices (slope, offset, r and RMSE) for PLS-R model development and
validation for each poultry product.

Poultry Product Stage of N, of Slope Offset  r (Correlation RMSE
Modelling Samples Coefficient)

Chicken Breast  Calibration 82 0.933 0.138 0.966 0.076

FCV! 82 0.916 0.173 0.953 0.091

Prediction 22 1.150 0.055 0.886 0.383

Chicken Thigh Calibration 67 0.953 0.097 0.976 0.065

FCV 67 0.933 0.136 0.957 0.088

Prediction 30 0.854 0.243 0.859 0.160

Chicken Burger  Calibration 87 0.982 0.035 0.991 0.033

FCV 87 0.968 0.063 0.987 0.040

Prediction 44 0.513 1.172 0.778 0.285

Chicken Calibration 91 0.962 0.073 0.981 0.067

Marinated FCV 91 0.954 0.092 0.964 0.093

Souvlaki Prediction 43 1.183 0.650 0.934 0.348

1ECV: Full cross-validation.

The important wavelengths (mean values and standard deviations) reflecting the
characteristics of spectral data for each poultry product were obtained based on the beta
regression coefficients (Figures 2.4-2.7).
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Figure 2.4: Spectral data (mean and standard deviation) influence (b coefficients) on PLS-R model
construction for chicken breast samples. Dashed bars represent data that influenced more the model
(1,19: 405 nm; 2, 20: 435 nm; 3, 21: 450 nm; 4, 22: 470 nm; 5, 23: 505 nm; 6, 24: 525 nm; 7, 25:
570 nm; 8, 26: 590 nm; 9, 27: 630 nm; 10, 28: 645 nm; 11, 29: 660 nm; 12, 30: 700 nm; 13, 31:
850 nm; 14, 32: 870 nm; 15, 33: 890 nm; 16, 34: 910 nm; 17, 35: 940 nm and 18, 36: 970 nm).
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Figure 2.5: Spectral data (mean and standard deviation) influence (b coefficients) to PLS-R model
construction for chicken thigh samples. Dashed bars represent data that influenced more the model
(1, 19: 405 nm; 2, 20: 435 nm; 3, 21: 450 nm; 4, 22: 470 nm; 5, 23: 505 nm; 6, 24: 525 nm; 7, 25:
570 nm; 8, 26: 590 nm; 9, 27: 630 nm; 10, 28: 645 nm; 11, 29: 660 nm; 12, 30: 700 nm; 13, 31:
850 nm; 14, 32: 870 nm; 15, 33: 890 nm; 16, 34: 910 nm; 17, 35: 940 nm and 18, 36: 970 nm).
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Figure 2.6: Spectral data (mean and standard deviation) influence (b coefficients) to PLS-R model
construction for chicken burger samples. Dashed bars represent data that influenced more the model
(1, 19: 405 nm; 2, 20: 435 nm; 3, 21: 450 nm; 4, 22: 470 nm; 5, 23: 505 nm; 6, 24: 525 nm; 7, 25:
570 nm; 8, 26: 590 nm; 9, 27: 630 nm; 10, 28: 645 nm; 11, 29: 660 nm; 12, 30: 700 nm; 13, 31:
850 nm; 14, 32: 870 nm; 15, 33: 890 nm; 16, 34: 910 nm; 17, 35: 940 nm and 18, 36: 970 nm).
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Figure 2.7: Spectral data (mean and standard deviation) influence (b coefficients) to PLS-R model
construction for chicken marinated souvlaki samples. Dashed bars represent data that influenced
more the model (1, 19: 405 nm; 2, 20: 435 nm; 3, 21: 450 nm; 4, 22: 470 nm; 5, 23: 505 nm; 6, 24:
525 nm; 7, 25: 570 nm; 8, 26: 590 nm; 9, 27: 630 nm; 10, 28: 645 nm; 11, 29: 660 nm; 12, 30: 700
nm; 13, 31: 850 nm; 14, 32: 870 nm; 15, 33: 890 nm; 16, 34: 910 nm; 17, 35: 940 nm and 18, 36:
970 nm).

Based on these beta regression coefficients, equations were constructed for the
assessment of time from slaughter for each product (equations 2.4-2.7).

Yis,chicken breast = 2.016 + 0.063 Xmean,405 nm + 0.033 Xmean,435 nm — 0.042 Xmean,450 nm — 0.134
Xmean,470 nm — 0.057 Xmean,505 nm + 0.103 Xmean,570 nm + 0.015 Xmean,630 nm + 0.027 Xmean,645 nm —
0.081 Xmean,700 nm + 0.012 Xmean,870 nm + 0.023 Xmean,910 nm + 0.040 Xmean,940 nm + 0.039 Xmean, 970
nm — 0.022 Xsp,450 nm — 3.505 XsD,470 nm — 2.462 XsD,505 nm — 0.023 XsD,525 nm

(2.1)

Yts,chicken thigh = _1287 + 1823 Xmean/405 nm + 1596 Xmean/ 435 nm — 2277 Xmean, 470 nm — 1835
Xmean,SOS nm + 0774 Xmean,645 nm+ 0901 Xmean, 660 nm + 1407 Xmean, 700 nm — 0888 Xmean, 910 nm — (22)
0.754 Xsp, 660 nm — 1.135 Xsp, 700 nm

Yis,chicken burger = 3.042 + 5.092 Xmean,405 nm — 2.948 Xmean,435 nm — 1.332 Xmean 450 nm— 2.205
Xmean,525 nm + 10.153 Xmean,570 nm — 15.754 Xmean,590 nm+ 1.397 Xmean,630 nm + 4.716 Xmean,645 nm +
1.982 Xmean,660 nm — 4.230 Xmean,700 nm + 2.344 Xmean,850 nm — 2.989 Xmean,890 nm + 2.237 Xmean910  (2.3)
nm- 3.283 XsD,405 nm +2.382 Xsp,505 nm + 2.161 Xsp,525 nm + 2.304 Xsp,570 nm — 1.799 Xsb,590 nm —
1.402 Xsp,660 nm — 1.874 Xsp,700 nm +1.558 Xsp,850 nm+1.112 Xsp,870 nm —2.188 Xsp,970 nm

Y's,chicken marinated souviaki = 3.071 — 0.205 Xmean,405 nm + 0.180 Xmean,435 nm + 0.255 Xmean,450 nm —
0.442 Xmean,630 nm + 0.189 Xmean,645 nm + 0.223 Xmean,660 nm — 0.168 Xmean,700 nm — 0.122 Xmean,850
am+ 0.119 Xmean,870 nm + 0.196 Xmean,940 nm — 0.150 Xsp,435 nm — 0.185 XsD,450 nm + 0.232 Xsb,505
nm + 0.184 Xs,525 nm— 0.319 Xs,590 nn + 0.091 Xs0,645 nm + 0.131 Xs0,870 nm — 0.165 Xspotonm—  (24)
9.849 Xsp,940 nm
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2.4. Discussion

Microbiological analysis demonstrated variations between batches for each category
of poultry product even though the examined samples were obtained by the same farming
conditions, slaughter process and production. For chicken breast and thigh samples,
differences occurred at the initial microbial load (TVCs and Pseudomonas spp.) based
mostly on animal strain and fat content (Amorim et al., 2016). Furthermore, in the case of
processed poultry products, the presence of additional ingredients such as vegetables and
herbs seemed to influence the initial and final load of microorganisms.

MSI acquisition showed variations in reflectance at many wavelengths between the
four poultry products due to their differences in the food matrix (chicken breast and chicken
thigh) and the supplementary ingredients used in the production process of different
chicken products (i.e., burger and marinated souvlaki). Moreover, spectra figures for fresh
and spoiled samples (Figure 2.2) provided by MSI application indicated reflectance
differences at several wavelengths, which are firmly linked to biochemical alterations and
metabolic compounds produced by the spoilage microbiota on the surface of meat and
poultry products. More specifically, reflectance at 570-700 nm is related to respiratory
pigments such as myoglobin (570 nm), oxymyoglobin (590 nm) and metmyoglobin (630
nm) (Cozzolino & Murray, 2004; Panagou et al., 2014; Pu et al., 2015). In the NIR region,
absorption bands at 910 nm are linked to denaturation of proteins (Kamruzzaman et al.,
2013; Ropodi et al., 2018) while at 750 and 970 nm, O-H second overtones are related to
the moisture content in the samples (Xiaobo et al., 2010; Feng & Sun, 2013a; Dixit et al.,
2017). In addition, absorption bands observed in the NIR region (928 and 940 nm) are
correlated to the presence of fatty acids and fat within the sample matrix (Alomar et al.,
2003; Kamruzzaman et al., 2013; Liu et al., 2014).

PLS-R models predicted satisfactorily the time from slaughter for each poultry product
(Table 2.1) where the chicken thigh model showed the lowest value of RMSE followed by
the chicken burger model. RMSE and r values of prediction were in the range of 0.160-
0.348 and 0.778-0.943 respectively, for all PLS-R models. Model performance was
gradually deteriorated from the calibration to the prediction stage. As illustrated in Figure

2.3, batches used in external validation differed from the calibration dataset in all products
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and especially in the case of the chicken breast. These findings indicate the importance of
performing validation with independent datasets (distinct batches) and to include as much
variability as possible in the developed model (Boulesteix et al., 2006; Ropodi et al., 2016;
Ropodi et al., 2018). Additionally, the developed model addressed for at-line
implementation must be validated by an independent dataset in order to construct an
accurate and robust model (Wold et al., 2001; Pu et al., 2015). Despite this variation in
batches, both calibration and prediction datasets in Figure 2.3 are situated within the limit
area of =1.6 log ts resulting in acceptable PLS-R models. For chicken marinated souvlaki
and burger models, variations between batches and higher RMSE values could be
explained due to different types of ingredients such as spices, chopped vegetables and

marinade employed in the production process.

Beta regression coefficients revealed the influence of each wavelength on the
assessment of time from slaughter for each poultry product. According to Figures 2.4-2.7,
wavelengths with high positive or negative values have an important contribution to the
model and convey useful information. The comparison of these findings with the raw
spectra shown in Figure 2.2 confirms the significant role of reflectance bands in the range
570-700 nm and 700-970 nm for the development of PLS-R models (Park et al., 2002;
Dixitetal., 2017). As mentioned above, absorption bands at NIR region of 910 nm seemed
to be associated with proteins, which are in abundance in chicken meat, especially in
chicken breast (Lin et al., 2011). The influence of muscle pigments and water content on
the classification of chicken breast fillets was also highlighted by Yang et al. (2018) where

samples were successfully classified in different quality grades (Yang et al., 2018).
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Chapter 3: Spoilage assessment of chicken breast fillets by
means of Fourier Transform Infrared spectroscopy (FT-IR)
and Multispectral Image analysis (MSI)
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Abstract

The aim of this study was the evaluation of Fourier transform infrared spectroscopy
(FT-IR) and multispectral image analysis (MSI) as efficient spectroscopic methods in
tandem with multivariate data analysis and machine learning for the assessment of spoilage

on the surface of chicken breast fillets.

For this purpose, two independent storage experiments of chicken breast fillets
(n=215) were conducted at 0, 5, 10, and 15 °C for up to 480 h. During storage, samples
were analyzed microbiologically for the enumeration of Total Viable Counts (TVCs) and
Pseudomonas spp. In addition, FT-IR and MSI spectral data were collected at the same
time intervals as for microbiological analyses. Multivariate data analysis was performed
using two software platforms (a commercial and a publicly available developed platform)
comprising several machine learning algorithms for the estimation of the TVCs and
Pseudomonas spp. population of the surface of the samples. The performance of the
developed models was evaluated by intra batch and independent batch testing. PLS-R
models from the commercial software predicted TVCs with Root mean squared error of
prediction (RMSE) values of 1.359 and 1.029 log CFU/cm? for MSI and FT-IR analysis,
respectively. Moreover, RMSE values for Pseudomonas spp. model were 1.574 log
CFU/cm? for MSI data and 1.078 log CFU/cm? for FT-IR data. From the implementation
of the in-house sorfML platform, artificial neural networks (ANNs) and least-angle
regression (lars) were the most accurate models with the best performance in terms of
RMSE values. ANN models developed on MSI data demonstrated the lowest RMSE values
(0.717 log CFU/cm?) for intra-batch testing, while lars outperformed ANNs on independent
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batch testing with RSME of 1.252 log CFU/cm?. Furthermore, lars models excelled with
the FT-IR data with RSME of 0.904 and 0.851 log CFU/cm? in intra-batch and independent
batch testing, respectively. These findings suggested that FT-IR analysis is more efficient
than MSI to predict the microbiological quality on the surface of chicken breast fillets.

3.1 Introduction

According to the Food and Agriculture Organization (FAO, 2019) around 14 % of the
world's food is lost after harvest and before reaching the retail level, including on-farm
activities, storage and transportation. A key to the reduction of food loss and waste is to
improve the efficiency of the food system by monitoring each production stage carefully
(FAO, 2019). At the same time, consumers’ awareness and demand for high quality and
safe food has been continuously arising, especially in the case of meat products. Poultry
meat and more specifically chicken breast is one of the most preferable products due to its
high protein content and low price (FAO, 2022). However, its susceptibility to spoilage
(Dawson et al., 2013; Rouger, et al., 2017; Silva et al. 2018) necessitates the rapid quality
assessment during production, transportation or retailing in order to avoid further food

waste.

An alternative approach for rapid quality assessment, feasible by technology and
science evolution, is the implementation of spectroscopic methods such as vibrational
spectroscopy (FT-IR, NIR, Raman) (Argyri et al., 2013; Alamprese, Amigo, Casiraghi &
Engelsen, 2016; Grassi & Alamprese, 2018), hyperspectral and multispectral imaging (Liu
etal., 2014; Qin et al., 2013) and biomimetic sensors (e-nose, e-tongue) (Loutfi et al., 2015;
Wojnowski et al.,, 2017). These nondestructive methods can be combined with
microbiological, sensory and multivariate data analysis for the development of models
evaluating meat quality. In addition, the developed models accompanied by their datasets
could be uploaded and maintained in cloud data repositories, updated constantly with new
data in order to be consultative to food industries (Nychas et al., 2016; Tsakanikas et al.,
2020).

36



In the last decade, the performance of instruments based on light emission interaction
with the surface according to its chemical and physical properties (Hyper and Multispectral
Imaging) or vibrational spectroscopy (FT-IR) has been investigated in the evaluation of
quality characteristics of various food commodities (Prieto et al., 2009; Xiong et al., 2015).
Both spectroscopic methods have been proven promising and effective for the development
of predictive models assessing the quality and microbiological load in many meat products
(Pu et al., 2015). Specifically, for poultry products qualitative models have been
constructed and evaluated for the classification of intact chicken breast fillets based on
hyperspectral analysis (Yang et al., 2018). Moreover, qualitative as well as quantitative
models developed on spectral data (400-1100 nm) could determine bacterial counts during
spoilage of chicken meat (Feng & Sun, 2013a; Feng et al., 2013). Likewise, Alexandrakis
et al. (2012) proposed FT-IR as effective method for the discrimination of intact chicken
breast muscle during spoilage. The potential of FT-IR to accurately detect spoilage bacteria

on the surface of chicken meat has been also confirmed by Ellis et al. (2002).

An important and challenging decision in the development of predictive models with
spectral data is the performance of the optimum machine learning algorithm resulting in
efficient models that describe more accurately the dynamics of microorganisms during
spoilage. Until now, many algorithms have been employed in the rapid assessment of meat
quality through several software applications (Chen et al., 2011; Kamruzzaman et al.,
2015). SorfML is a publicly available Web platform that has the flexibility to provide rapid
screening of experimental data by allowing the development and validation of a variety of
linear and non-linear algorithms (Estelles-Lopez et al., 2017; Manthou et al., 2020). This
leverage allows user to investigate data’s tendency, exclude models with poor performance
and compare the most accurate ones. Additionally, it enables the comparison of different
sensors’ performance in order to facilitate the selection of the most reliable analysis/sensor

for food quality assessment.

The aim of this research was (i) to develop models derived from different analytical
instruments (FT-IR and MSI) assessing the microbiological quality of chicken breast fillets
during storage at isothermal conditions, (ii) to assess the performance of different machine

learning algorithms and analytical platforms, based on a commercial software and a
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publicly available Web platform, to monitor the population dynamics of spoilage
microorganisms during storage, and (iii) to infer on the potential and limitations of each

analytical tool.

3.2 Materials and Methods

3.2.1 Experimental design

Chicken breast fillets (ca. 245-280 g per fillet) were obtained from a Greek poultry
industry and transported under refrigeration immediately to the laboratory. The samples
were supplied by the industry in plastic packages (width: 25 cm, thickness: 90 um,
permeability of ca. 25, 90, 6 cm? m2day *bar? at 20 °C and 50 % RH for CO2, O and Nz,
respectively) and stored aerobically at four isothermal conditions (0, 5, 10, 15 °C) for up
to 480 h depending on storage temperature. At regular time intervals, spectral data (FT-IR
and MSI) were collected from the surface of chicken meat samples and correlated with
microbiological data. Two independent experiments were undertaken with two different
chicken meat batches and duplicate samples were analyzed from each sampling point and
storage temperature. Storage of samples was terminated at 480 h at 0 °C while for the
highest storage temperature (15 °C) the duration of the experiments was 168 h. All samples
originated from Ross strains broilers with the same feeding, farming and slaughtering
conditions. Feeding was customized by the company and comprised of grain, wheat, maize,
soya bean oil and meat and premix for broilers (vitamin and mineral supplement). Chickens
were slaughtered after 3 months of age and all stages of production were in compliance
with EU regulations (823/2004, 824/2004, 834/2004 and 543/2008).

3.2.2 Microbiological analysis

A slice of 20 cm? (maximum thickness 2 mm) from the surface of chicken breast
fillet was removed aseptically using a sterile stainless steel cork borer (2.5 cm in diameter),
scalpel and forceps, added to 100 ml of sterile quarter strength Ringer’s solution (Lab M
Limited, Lancashire, United Kingdom) and homogenized in a Stomacher device (Lab
Blender 400, Seward Medical, United Kingdom) for 120 s at room temperature. Serial
decimal dilutions were prepared in the same medium and 1.0 or 0.1 ml of the appropriate
dilutions were spread or poured on the following media: a) Tryptic glucose yeast agar

(Plate Count Agar, Biolife, Milan, Italy) for the enumeration of Total Viable Counts
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(TVCs) incubated at 25 °C for 72 h; b) Pseudomonas Agar Base with selective supplement
cephalothin-fucidin-cetrimide (LabM Limited, Lancashire, United Kingdom) for the
enumeration of Pseudomonas spp. after incubation at 25 °C for 48 h. After incubation,
typical colonies for each microbial group were enumerated and colony counts were
logarithmically transformed and expressed as log CFU/cm?. Further on, the primary model
of Baranyi and Roberts (1994) was fitted to the growth data of TVCs and Pseudomonas
spp. to determine the kinetic parameters of microbial growth (maximum specific growth

rate and lag phase duration).

3.2.3 Gas composition

Prior to microbiological analysis, the gas composition in the headspace of the
packages was analyzed using a Dansensor CheckMate 9900 gas analyzer (PBI-Dansensor
AJ/S, Ringsted, Denmark) to monitor the changes in the concentration (%) of O, and CO>

during storage.
3.2.4 Spectra acquisition

3.2.4.1 Multispectral imaging

MSI spectra were captivated via Videometer-Lab instrument (Videometer A/S,
Herlev, Denmark) which frames surface reflectance of samples from 18 different
monochromatic wavelengths (405-970 nm), namely: 405, 435, 450, 470, 505, 525, 570,
590, 630, 645, 660, 700, 850, 870, 890, 910, 940 and 970 nm. The organology of this sensor
and the image acquisition is thoroughly described in previous publications (Dissing et al.,
2013; Fengou et al., 2019). The result of the measurement is a data cube comprised of
spatial and spectral data for each sample of size mxnx18 (where mxn is the image size in
pixels) (Tsakanikas et al., 2015). Furthermore, a segmentation process is required for the
selection of the Region of interest (ROI) on the samples surface. This process is
accomplished by Canonical Discriminant Analysis (CDA) and it is implemented by

Videometer-Lab version 2.12.39 software (Videometer A/S, Herlev, Denmark).

3.2.4.2 FT-IR spectroscopy
FT-IR measurements were performed using a ZnSe 45 HATR (Horizontal

Attenuated Total Reflectance) crystal (PIKE Technologies, Madison, Wisconsin, United
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States), and a FT-IR-6200 JASCO spectrometer (Jasco Corp., Tokyo, Japan). The
measurement crystal shows a refractive index of 2.4 and a depth of penetration of 2.0 um
at 1000 cm™. Spectra were obtained at the wavenumber range of 4000 to 400 cm™ using
Spectra Manager Code of Federal Regulations (CFR) software version 2 (Jasco Corp.,
Tokyo, Japan), by accumulating 100 scans with a resolution of 4 cm™ and a total integration

time of 2 min.

3.2.5 Data analysis

3.2.5.1 PLS-R unscrambler

For the development of PLS-R models assessing TVCs and Pseudomonas spp.
counts the statistical software The Unscrambler © ver.9.7 (CAMO Software AS, Oslo,
Norway) was used. Prior to analysis, MSI data were pretreated by Standard Normal Variate
(SNV) transformation for the exclusion of collinear and “noisy” data (Bi et al., 2016).
Likewise, FT-IR spectral data were subjected to Savinsky- Golay pre-treatment (second
polynomial order, 1st derivative, 9-point window) (independent variables = 829) to
minimize baseline shifts and noise (Rinnan et al.,, 2009; Alamprese et al., 2016).
Additionally, wavenumbers in the range of 900-2000 cm™ were utilized for the analysis as
suggested by other researchers (Argyri et al., 2013; Ropodi et al., 2018). Calibration and
full cross validation (leave-one-out cross validation) were conducted using one batch (n =
115) and prediction was implemented by the second batch (n = 99). Independent variables
for PLS-R models were the spectral data acquired by MSI and FT-IR and TVCs and
Pseudomonas spp. counts were considered as dependent variables.

3.2.5.2 Using SorfML for model development and validation

An alternative approach was investigated by the implementation of the sorfML
software (www.sorfml.com), in which nine algorithms were considered for the prediction
of TVCs counts, namely Partial-least squares (pls) (Geladi & Kowalski, 1986); Support
vector machine with linear kernel (svmLinear) (Cortes & Vapnik, 1995); Support vector
machine with radial basis function kernel (svmRadial); Random forests (rf) (Breiman,
2001); K-nearest neighbours (knn) (Cover and Hart, 1967); Principal component
regression (pcr) (Jolliffe, 1982); Least-angle regression (lars) (Loubes & Massart, 2004);
Ridge regression (ridge) (Hoerl & Kennard, 1970); Artificial neural networks (nnet) (Jain

40



et al., 1996). Spectral data were mean-centered and standardized prior to analysis. This
modification allows every variable equal opportunity to influence the final statistical model
(Verboven et al., 2012). FT-IR spectral data set was constricted from 800 to 4000 cm™.

Another point of attention in the sorfML software analysis was the splitting
procedure of the data sets, which consisted of two phases (Figure 3.1). In the first one, the
dataset (one batch) was separated randomly into training and testing sets with a 70%-30%
split. Each machine learning algorithm was applied to the training set using repeated k-fold
cross validation (k = 10, repeats = 3) and grid search to obtain best performing models with
the optimal parameters. After model development, prediction was undertaken by the test
set to assess overall performance which is firmly depended on the random training/test split
undertaken. In order to provide an appropriate and unbiased outcome, Monte Carlo cross
validation was implemented (k = 100) for a number of times with different training and
test splits, and giving an average of the performance of all iterations (Xu and Liang, 2001).
In the second phase, one batch was trained with k-fold cross validation (k = 10, repeats =
3) and the best model was validated on the other batch (B1 on B2: B1 as training set and
B2 as testing one; B2 on B1: B2 as training set and B1 as testing one).
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Figure 3.1: Flowchart describing model’s development and validation though The Unscrambler
and sorfML via data processing stage.




3.2.6 Model performance indices

The assessment of model performance was based on the calculation of the root mean
squared error (RMSE) (Sant’Ana et al., 2012; Feng et al., 2013), mean absolute error
(MAE) (Sang et al., 2008), coefficient of determination (R?) (Asuero et al., 2006) and
accuracy index. Unlike classification models, accuracy in the case of quantitative models
could be defined as TVC predictions within 1 log CFU/cm? off the actual (observed) values
(Estelles-Lopez et al., 2017). Supplementary to these metrics, r (correlation coefficient)
was computationally calculated via the Unscrambler software. Even though the above-
mentioned performance metrics were calculated, models’ accuracy on prediction was

assessed based on RMSE values.

3.3 Results

3.3.1 Microbiological analysis

The microbial population of TVCs and Pseudomonas spp. on the surface of chicken
breast fillets for each storage condition is presented in Figure 3.2. The initial load of TVCs
was 3.3 and 2.9 log CFU/cm? in B1 and B2, respectively. Likewise, Pseudomonas spp. was
enumerated at the beginning of storage at 2.0 and 2.1 log CFU/cm? for B1 and B2,
respectively. Storage temperature seemed to significantly influence the growth of
chicken’s microbiota as inferred by the respective kinetic parameters for TVCs and
Pseudomonas spp. as derived by the primary growth model of Baranyi and Roberts (1994)
(Appendix I, Table 3A). Specifically, the lag phase duration and pumax of Pseudomonas spp.
of chicken samples stored at 0 °C were 72.2 h and 0.036 h™, respectively. On the contrary,
samples stored at 15 °C exhibited pmax and lag phase duration of Pseudomonas spp. at 0.241

h"tand 8.8 h, respectively.

TVCs and Pseudomonas spp. counts in B1 and B2 presented variations during
storage at 0 and 5 °C but always within the range of + 1 log unit. At the end of storage,
TVCs and Pseudomonas spp. counts on samples from B1 were 6.2 and 5.7 log CFU/cm?,
respectively. Similarly, for B2 samples the level of final TVCs and Pseudomonas spp.
counts was 6.3 and 5.5 log CFU/cm?, respectively. For B1 at 5 °C the number of TVCs and
Pseudomonas spp. after a period of 360 h was 6.8 and 6.6 log CFU/cm?, respectively, while
for B2 at the same storage conditions, TVCs and Pseudomonas spp. counts were 7.6 and
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6.2 log CFU/cm?, respectively. This difference in microbial counts was expected as
samples of B1 and B2 were collected with an interval of 4 months (winter- spring) to take
into account seasonal variation. It is also worth noting that in all storage conditions, the
final number of TVCs ranged between 6.2-7.6 log CFU/cm?, unlike other studies reporting
spoilage level of poultry meat at 7.0-8.0 log CFU/cm? (Rouger et al., 2017). The lower
TVCs values during spoilage of poultry meat observed in this work could be attributed to
the non-permeable film used by the poultry company as packaging material. Indeed, the
percentage of CO: inside the packages at the end of storage was 14.3 % and 47.5 % for
samples stored at 0° C and 15° C, respectively (Appendix I, Figure 3A).
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Figure 3.2: Microbial counts of TVCs (batch 1: blue line), Pseudomonas spp. (batch 1: orange
line), TVCs (batch 2: grey line) and) and Pseudomonas spp. (batch 2: yellow line) on the surface
of chicken breast fillet samples stored at 0, 5, 10 and 15 °C.
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3.3.2 Spectral measurements

Typical MSI and FT-IR spectra of fresh (0 h corresponding to 3.3 log CFU/cm?) and
spoiled (456 h corresponding to 5.9 log CFU/cm?) chicken breast fillet samples are
illustrated in Figures 3.3, 3.4, respectively. The comparison of reflectance in MSI spectra
between fresh and spoiled samples confirmed the role of myoglobin in meat color
assessment (570 to 700 nm). Concerning FT-IR spectra, the contribution of the absorption
bands in the range of 1,400-1,800 cm™ for the prediction of the microbial counts on the
surface of samples is highlighted in Figure 3.4. The absorbance in this region is mainly
related to the metabolic fingerprint of samples which is derived from the metabolic activity

of microorganisms during spoilage procedure (Alexandrakis et al., 2012).
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Figure 3.3: Spectrum of fresh (blue line, storage time: 0 h) and spoiled (red line, storage time:
456 h) chicken breast fillet samples stored at 0 °C from MSI spectra (wavelengths: 405- 970 nm).
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Figure 3.4: Spectrum of fresh (blue line, storage time: 0 h) and spoiled (red line, storage time:
456 h) chicken breast fillet samples stored at 0 °C from FT-IR measurements (wavelengths:
1,000- 2,000 cm').
3.3.3 Models assessing microbial population via MSI analysis

Performance metrics (r, RMSE, MAE, accuracy) as well as linear parameters (slope,
offset) are provided in Table 3.1 for PLS-R model calibration, cross-validation and
prediction, estimating the level of TVCs and Pseudomonas spp. on the surface of chicken
breast fillets via MSI analysis. More specifically, RMSE and r values ranged between
0.752- 1.359 log CFU/cm? and 0.604- 0.876, respectively for the estimation of TVCs
counts when B1 was used as training set and B2 as testing set. Similar performance was
observed for PLS-R model assessing Pseudomonas spp. counts. In this case, the values of
r increased from 0.665- 0.905, while RMSE exhibited values in the range of 0.724 to 1.574
log CFU/cm?. Additionally, a graphical approach of these linear models is represented in
Figure 3.5 where predicted vs observed TVCs and Pseudomonas spp. counts are
illustrated. Beta coefficients of the models are provided in order to comprehend the
contribution of specific wavelengths to model development. As demonstrated in Figure
3.6, six of the 36 spectral variables were important in model optimization as their beta
coefficients significantly differed from those of the other wavelengths. Wavelengths
influencing PLS-R model were 630, 645 and 660 nm. Likewise, high values of b
coefficients noticed at 850, 890 and 940 nm.

Table 3.1: MSI model performance parameters (slope, offset, Latent variables LVs,) and metrics
(r, RMSE, MAE, Accuracy %).

TVCs N LVs slope offset Correlation RMSE MAE %
coefficient r (log Accuracy
CFU/cm?)
Calibration 1152 9 0.768 1.177 0.876 0.752
FCV 1152 9 0719 1.428 0.807 0.931
Prediction 100P 0.534 3.139 0.604 1.359 1.042 59
Pseudomonas
spp.
Calibration  115* 10 0.818 0.817 0.904 0.724
FCV 1152 10 0.766  1.035 0.843 0.920
Prediction 100P 0.597 2.930 0.664 1.574 1.276 51

a data set from batch 1; P data set from batch 2; LVs: Latent variables; FCV: Full-cross validation
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Figure 3.6: b coefficients of PLS-R model for MSI analysis per monochromatic wavelength from
405 to 970 nm. Dashed bars represent data per wavelength that influenced more model’s
performance.

Results for MSI spectral data after the implementation of 9 algorithms via sorfML
platform consisting of internal testing on B1 and B2, averaged over 100 iterations (Monte
Carlo cross validation) are shown in Figure 3.7. RMSE values ranged from 0.717 to 1.387
log CFU/cm?, MAE from 0.554 to 1.158, R?from -12.064 to 0.725 and accuracy from 43.5
% to 84.1 %. The highest performance was achieved with nnet with RMSE value of 0.717
log CFU/cm? on B1 and 0.752 log CFU/cm? on B2 . Additionally, other machine learning
algorithms such as ridge, lars, pcr, pls and svmLinear performed equally well with RMSE

values below 0.78 log CFU/cm?.
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Figure 3.7: Performance metrics (Accuracy, MAE, RMSE, R?) of MSI models with intra-batch
validation.

Following the same approach, results for batch-on-batch are provided in Figure
3.8. A less satisfactory performance can be observed compared to intra-batch testing, with
RMSE values ranging from 1.252 to 1.995 log CFU/cm?, MAE from 0.993 to 1.710, R?
from -23.368 to 0.246 and accuracy from 27 to 56 %. More specifically, the models
developed on B1, predicted TVC population from B2 with around 0.3 higher performance
on RMSE values. In contrast to intra- batch case, the highest performance was
accomplished by lars with RMSE of 1.252 log CFU/cm?. Model’s optimization with B1
exhibited low values of RMSE (1.251 versus 1.544 log CFU/cm? for lars model). However,
in the case of B2 as a calibration data set, R? values presented improved values, especially
when lars, pls and ridge algorithms were applied.
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Figure 3.8: Performance metrics (Accuracy, MAE, RMSE, R?) of MSI models with batch-on-batch
validation. Model B1 on B2 was developed via batch 1 and tested via batch 2. The reversed
procedure was followed for B2 on B1.

3.3.4 Models assessing microbial population via FT- IR analysis

The findings of models predicting TVCs and Pseudomonas spp. counts with FT-IR
measurements are shown in Figure 3.9- 3.12. Performance metrics for PLS-R models are
also provided in Table 3.2 for calibration, cross- validation and prediction procedures
where B1 was used for model development and B2 for testing. For the estimation of TVCs
on chicken breast, RMSE and r demonstrated values 0.739- 1.029 log CFU/cm? and 0.679-
0.882, respectively. PLS-R model for Pseudomonas spp. via FT-IR exhibited r values of
0.739-0.916 and RMSE values were from 0.683 to 1.077 log CFU/cm?. The influence of
each spectral variable is illustrated in Figure 3.10 in terms of beta coefficients of the PLS-
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R models per wavenumber. The main region between 1,004 to 1,222 cm™ contained
interesting information and therefore had great impact on model development. Absorption
bands of 1,230-1,403 cm™ were considered as important for the prediction of TVCs and
Pseudomonas spp. Beta coefficients of 1,432- 1,498 cm™ as well as 1,549- 1,584 cm™ and
1,658- 1,704 cm™* had impact on model construction.

Table 3.2: FT-IR model performance parameters (slope, offset, Latent variables LVs,) and metrics
(r, RMSE, MAE, Accuracy %).

TVCs N LVs slope offset Correlation RMSE MAE % Accuracy
coefficient r  (log CFU/cm?)

Calibration 1158 5 0.777  1.128 0.882 0.739

FCV 1158 5 0.654  1.805 0.778 0.989
Prediction 99° 0.493  2.883 0.679 1.029 0.861 65

Pseudomonas

spp.
Calibration 115* 5 0.839 0.723 0.916 0.683

FCV 115¢ 5 0.669  1.528 0.749 1.155
Prediction 99° 0.682 1.767 0.739 1.077 0.894 65

a data set from batch 1; P data set from batch 2; LVs: Latent variables; FCV: Full-cross validation
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Figure 3.9: Predicted versus observed TVCs and Pseudomonas spp. counts after FT-IR models
validation. Blue line depictures the line of equity (y = X) and red lines indicate + 1 log unit area.
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The results for intra batch training for FT-IR data are summarized as a heatmap in
Figure 3.11 containing also the performance metrics for the 9 algorithms. RMSE values
ranged from 0.857 to 1.536 log CFU/cm?, MAE from 0.669 to 1.164, R? from -3.129 to
0.546, and accuracy from 50.0 to 75.9 %. As Figure 3.11 indicates, prediction on B2 was
more accurate than B1 based on RMSE values. Nnet exhibited acceptable performance on
B1 with 1.047 log CFU/cm? for RMSE, while lars and svmLinear algorithms performed
better with RMSE being at 0.904 and 0.954 log CFU/cm?, respectively for B2.
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Figure 3.11: Performance metrics (Accuracy, MAE, RMSE, R?) of FT-IR models with intra-batch
validation.

Likewise, batch-on-batch prediction metrics are represented in Figure 3.12. In
comparison to MSI models, FT-IR models predicted TVCs counts satisfactory when B1
was used as training set. RMSE values ranged from 0.851 to 3.924 log CFU/cm? while
training model on B1 and validating on B2 outperformed the second model around
significantly with 55% lower RMSE. More specifically, nnet accomplished the lowest
RMSE (0.851 log CFU/cm?) and MAE (0.67 log CFU/cm?) over the other algorithms as

well as models trained on B2 and validated on B1.

51



nnet

lars

svmLinear

per

pls

ridge

svmRadial

knn

if

B1onB2 B2 on B1

Figure 3.12: Performance metrics (Accuracy, MAE, RMSE, R?) of FT-IR models with batch-on-
batch validation. Model B1 on B2 was developed via batch 1 and tested via batch 2. The reversed
procedure was followed for B2 on B1.

3.4 Discussion

The initial population of TVCs and Pseudomonas spp. was 3.1 (£ 0.29) and 2.1 (=
0.15) log CFU/cm?, respectively, which is considered low compared to published data
where the respective counts for TVCs and Pseudomonas spp. were above 5.0 and 3.5 log
CFU/cm?, respectively (EFSA, 2016; Rouger et al, 2017). As presented in Figure 3.2, the
final population of microbiota was considerably low in the case of samples stored at 0 °C
in comparison to the threshold of spoilage of other meats (ca. 7.0-8.0 log CFU/cm?)
(Nychas et al., 2008). Unlike literature (Rouger et al., 2017), Pseudomonas spp. counts
were enumerated at the final sampling point at 0 °C below 7 log CFU/cm? (Al-Nehlawiet
al., 2013), due to the fact that packaging film did not permit diffusion of gases. Therefore,
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the produced CO; from microbiota’s metabolic reactions acted as modified atmosphere
packaging (Koutsoumanis et al., 2008, Liang et al., 2012, Holl et al., 2016). The differences
between and within batches could be attributed to animals’ variations (Marcato et al.,
2006), alterations of nutrition (Sakomura et al., 2015) as well as by the time of the year
(winter-summer), slaughtering and distributing to retail points (Nychas et al., 2008; Collins
et al.,, 2015). It is worth noting that the 2 analyzed chicken breast fillet samples per
sampling point could not be from the same chicken as they were randomly selected.

For MSI spectral data, model performance metrics predicted RMSE from 0.739 to
1.536 log CFU/cm?. For the prediction of TVCs and Pseudomonas spp. counts with PLS-
R models, RMSE was 1.359 and 1.574 log CFU/cm?, respectively. It needs to be noted that
all developed models presented the tendency of overestimating the predicted counts. The
increased RMSE values could be further improved (reduced) by applying alternative
algorithms and sample splitting. Indeed, the assessment of TVCs counts by sorfML
platform showed satisfactory results, especially in the case of intra-batch validation and
nnet algorithm. In this model, RMSE presented the lowest value (0.717 log CFU/cm?)
while for ridge model RMSE was 0.769 log CFU/cm?. On the contrary, for batch-on-batch
validation, three algorithms were considered acceptable for the evaluation of TVCs, with
lars model having RMSE of 1.252 log CFU/cm? followed by pls and ringle models
with1.319 and 1.262 log CFU/cm?, respectively.

FT-IR models showed satisfactory prediction of counts, with performance metrics
achieving better values than MSI. For PLS-R models, TVCs and Pseudomonas spp. counts
were predicted with RMSE being 1.029 and 1.078 log CFU/cm?, respectively. For intra
batch testing, nnet algorithm for B1 and lars for B2 were considered effective for the
evaluation of TVCs, with lars having lower RMSE (0.905 log CFU/cm?) than nnet (1.047
log CFU/cm?). In contrast, in batch-on-batch validation, RMSE value for nnet (B1 on B2:
0.912 log CFU/cm?) were higher than lars where RMSE had the lowest value (0.851 log
CFU/cm?).

The differentiation of model performance for the 2-sensor analysis highlights the
important role of splitting process, data set selection and algorithm during model’s

optimization. One significant factor for accurate prediction is inter-batch variability.
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Moreover, MSI results on intra-batch performance and its low RMSE suggested that this
analysis could be applicable for internal validation or quality control in the production line.
The latter option has been confirmed via experiments performed in the production line of
chicken products at industrial level (Spyrelli et al., 2020). Furthermore, the fundamental
role of training and testing data set definition is demonstrated by FT-IR lars model during
B1 on B2 validation, which significantly outperformed batch-on-batch performance of
MSI (RMSE: 0.851 vs 1.251 log CFU/cm?). Additionally, several models of FT-IR were

able to attain respectable prediction on different data sets.

Another step affecting model’s performance is the selection of the appropriate cross-
validation procedure. Leave-one out cross validation (LOOCV) implemented for PLS-R
models is a variant of k-fold cross-validation which removes only one sample at a time
from the training set and considers it as a test set. Subsequently, for this case k is equal to
the number of objects. This method may be useful for small database size presenting the
problem of the inability to divide the data set into fairly sized subsets for training and test
sets. However, this cross-validation approach can lead to overfit when the sample size is
not large enough, and thus, results in high prediction error (Beruetta et al., 2007). In
contrast, k-fold validation separates training data into k random groups, trains the model
on k-1 groups and evaluates it on the remaining group. This is iterated for each unique
group, and for repeated k-fold cross validation, the whole process is repeated for the
specified times. Overlapping within training and testing data set was avoided (k=100) with
Monte Carlo cross validation by repeating the process outlined above for a number of times
with different training and test splits and by averaging the performance of all iterations (Xu
& Liang, 2001). Regarding machine learning algorithms implemented for intra- and batch
on batch models, artificial neural network (nnet) and least-angle regression (lars) exhibited
better performance metrics overall than other models. The former algorithm is considered
as a suitable for spectral data sets due to its high tolerance to noisy data. On the other hand,
the accuracy of lars might be explained by its ability in dealing with correlated predictors
which are abundant in the existing datasets. Moreover, overfitting could be eliminated by
reducing predictors range, while simultaneously this reduction could lead to an

increasement of the generalising ability of the models (Hesterberg et al., 2008).
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The influence of certain wavelengths to MSI model development was documented via
b coefficient values for PLS-R models (Figure 3.6). Reflectance intensity at 570-700 nm
is related to the presence of respiratory pigments such as myoglobin (570 nm),
oxymyoglobin (590 nm) and metmyoglobin (630 nm) (Panagou et al., 2014; Pu et al.,
2015). Fatty acids and fat within the food matrix were mainly responsible for the intensity
at 928 and 940 nm while reflectance at 910 nm is evidence of protein denaturation
(Kamruzzaman et al.,2015; Ropodi et al., 2018). Proteins and proteolysis products are in
abundance in chicken meat, especially in chicken breast (Lin et al., 2011) and hence
absorption band at 910 nm is considered as one of the most significant wavelengths for
quality assessment on chicken breast fillets. Moreover, O-H second overtones observed at
750 and 970 nm are related to the moisture content in the raw samples (Dixit et al., 2017;
Xiaobo et al., 2010). The influence of muscle pigments and water content on the
classification of chicken breast fillets was also highlighted by Yang et al. (2018), where
samples were successfully classified in different quality grades.

The b coefficients of PLS-R models (Figure 3.10) for FT-IR spectral data revealed the
important contribution of certain wavelengths in model development. Absorption bands at
1,011, 1,032 and 1,111-1,143 cm™ were related to polyglycines, polysaccharides (C-O
stretch) and amines (NH2 rock/twist), respectively (Bocker et al., 2007). Specifically, the
absorption at 1032 cm™ which corresponds to polysaccharides, could be associated to
biofilm formation by Pseudomonas spp. on stored chilled meat (Liu et al., 2015;
Wickramasinghe et al., 2019; Wickramasinghe et al., 2020). Additionally, high absorption
occurred in the regions of 1,222-1,230 cm™, 1,284-1,289 cm™ and 1,345-1,352 cm™ which
are linked to the presence of lipids, nucleic acids (asym PO2-stretch), amines from free
amino acids and amide I11 (Argyri et al., 2014). The critical role of amides and free amines
for the prediction of spoilage in meat is presented via high b coefficients at 1,369-1,426
cm™ and 1,464-1,567 cm™ (Bocker et al., 2007). These outcomes are in compliance to the
existing literature where absorption bands of 1,650, 1,550 and 1,400- 1,200 cm™ are linked
to amide I, 11 and 111 and subsequently to the proteolytic activity of Pseudomonas spp. on
meat (Nychas & Tassou, 1997; Ellis et al., 2002). Especially for chicken breast analysis
via FTIR and NIR spectroscopy, the estimation of spoilage in intact chicken breast muscle

was influenced by the absorption bands at 1,080, 1,550 and 1,640 cm™ and the increased
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content in free amino acids and peptides as a result of proteolysis during storage
maintenance (Alexandrakis et al., 2012). In another study the estimation of microbial
spoilage was attempted at 600-1,110 cm™* where the findings indicated the region of 1,000
1,060 cmt corresponding to protein functional group, such as R-CO-NH2, R-NH,,R-CO-
NH-R and R-NH-R as the most significant (Lin et al., 2004).

56



Chapter 4: Implementation of spectroscopic sensors and
multivariate data analysis for the assessment of quality on
chicken breast fillets
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Abstract
Multivariate data analysis and pattern recognition methods coupled with

nondestructive spectroscopic techniques have manifested their potential as powerful
techniques assessing food quality. In this context, Multispectral Imaging (MSI) and Fourier
Transform Infrared Spectroscopy (FT-IR) were employed together with machine learning
techniques for the construction of qualitative models evaluating spoilage of chicken breast
meat. For this purpose, chicken breast samples (n= 427) were subjected to spoilage
experiments for up to 480 h at isothermal conditions (0, 5, 10, 15, 20, 25, 30, and 35 °C)
and dynamic temperature profiles (winter and summer transportation scenarios). The
samples were analyzed microbiologically for the determination of Total Viable Counts
(TVCs), while in parallel MSI and FT-IR measurements were performed. Moreover,
sensory analysis was undertaken by a 14- member untrained sensory panel for the
evaluation of fresh and spoiled samples. Based on the sensory results the threshold TVCs
value corresponding to the shelf-life of the samples was 6.2 log CFU/cm?. According to
this limit, samples were separated in two classes (fresh and spoiled) that were further
correlated to MSI and FT-IR spectra for the development of classification models. Eight
machine learning models (single-based and ensemble) were investigated for their efficacy
to identify spoilage whereas their performance was validated by an independent data set
from the two dynamic temperature profiles. MSI analysis and subspace ensemble exhibited
the highest overall accuracy of prediction (64.8 %), while this combination demonstrated
also acceptable values of specificity and sensitivity (69.7 %). On the contrary, FT-IR
features presented better performance with Partial Least Squares- Discriminant Analysis
(PLS-DA), as the samples were classified correctly with an overall accuracy of 67.6 %.
However, in all cases of algorithms developed on FT-IR data, the misclassification rate of
spoiled samples as fresh was 36.7%. These results suggest that spectroscopic methods and
the developed models could be beneficial for the rapid assessment of quality in the poultry

industry and simultaneously result in significant reduction in food waste.
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4.1 Introduction

The continuous technology evolution and consumers expectation for food of high
quality and safety resulted in the development of smart spectroscopic sensors assessing
quality and freshness in foods and in particular in meat products (Tsakanikas et al., 2020).
Nevertheless, in the last decade food waste increased (FAO, 2021) and the significant
economic losses for the meat industry dictated the necessity for alternative rapid methods
to assess microbial quality and freshness (Lytou et al., 2016), especially for poultry
products (raw or processed) due to their short shelf life. Unlike the conventional methods
(e.g., microbiological, chemical, sensory, molecular analysis) which are time consuming
and destructive, these smart devices are non- invasive, easily established and applied at-,
in- or on-line while they enhance productivity in the meat industry (Serensen et al., 2012;
Dixit et al., 2017; Prieto et al., 2017).

In recent years, many researchers have proposed spectroscopic methods such as
Fourier-Transform Infrared spectroscopy (FT-IR), Near Infrared spectroscopy (NIR),
Hyperspectral imaging (HSI), and Multispectral imaging (MSI) as alternative approaches
for the assessment of quality on a variety of meat products (Panagou et al., 2014; Porep et
al., 2015; Alamprese et al., 2016; Xiong et al., 2015). MSI analysis is a combination of
spectroscopy (visible and NIR region) to computer vision and it has been recommended
for the rapid assessment of meat quality (Pu et al., 2015; Ropodi et al., 2018; Fengou et al.,
2019). Specifically, for poultry products qualitative models have been developed for the
classification of intact chicken breast fillets based on three quality grades via hyperspectral
analysis (Yang et., 2018). Quantitative and/or qualitative models in the visible and near-
infrared region (400-1700 nm) have been successfully employed for the assessment of the
bacterial population on chicken meat (TVCs and Pseudomonas spp.) during spoilage (Feng
and Sun, 2013a, b; Ye et al., 2016). In addition, multispectral imaging was suggested for
its potential to identify adulteration of minced beef with chicken meat (Kamruzzaman et
al., 2016), fecal contaminants in a poultry line (Yang et al., 2005) and tumors on the surface
of chicken breasts (Nakariyakul & Casasent, 2009). Moreover, the potential of at-line
application of multispectral imaging in a poultry processing industry was investigated, as
well as its efficacy to determine the time from slaughter in four different poultry products
(Spyrelli et al., 2020).

59



Regarding the use of FT-IR in food science, there is evidence of its efficiency on the
qualitative and quantitative evaluation of meat products (Argyri et al., 2010; Argyri et al.,
2013; Ropodi et al., 2018). This vibrational method was proposed by Alexandrakis et al.
(2012) as an effective method for the discrimination of intact chicken breast muscle during
spoilage. Additionally, FT-IR detected accurately the level of spoilage bacteria on the
surface of chicken meat (Ellis et al., 2002). Likewise, this spectroscopic method is
documented as promising, real- time method for the evaluation of freshness on stored
chicken breast fillets (Vansconcelos et al., 2014). Recently, a workflow has been reported
for the recognition of chicken meat among seven raw types of food via FTIR approach
despite of variations among batches and storage conditions (temperature, duration,
packaging, spoilage levels) (Tsakanikas et al., 2020).

For the accurate and rapid assessment of quality in food matrices and specifically in
meat, many researchers employ quantitative and qualitative machine learning algorithms
in tandem with spectroscopic methods (Berrueta et al., 2007; Jiménez-Carvelo et al., 2019).
Common tools involved in the development of predictive models for spoilage or
adulteration assessment in meat are Artificial Neural Networks (ANNS), Partial Least
Squares Regression (PLS- R), Partial Least Squares Discriminant Analysis (PLS-DA),
Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), Random Forests
(RF) and k-Nearest Neighbors (kNN) (Kamruzzaman et al., 2016; Falkovskaya and
Gowen, 2020). Nowadays, there are available websites (e.g., sorfML, Metaboanalyst) or
softwares (The Unscrambler, R, MatLab, Python) which allow the user to develop, validate
and compare simultaneously the above-mentioned algorithms in order to develop the best
model describing food spoilage (Ropodi et al., 2016; Jiménez-Carvelo et al., 2019; Fengou
et al., 2020; Tsakanikas et al., 2020). For instance, sorfML is an online platform that
provides the flexibility to apply different supervised machine learning algorithms
simultaneously, while there is also feasibility for the comparison of different sensors
performance (Estelles-Lopez et al., 2019; Manthou et al., 2020).

Furthermore, another modeling approach that has recently drawn the attention of data
scientists is the construction of ensemble learning methods. Ensemble methods medley
multiple well-known algorithms, by creating smaller subsets into the data, training different

classifiers with these partitions and combining their outputs, while they have demonstrated
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improved performance compared to the outcome from their single base learners (Polikar,
2006). Until now, the implementation of these techniques has been investigated in many
scientific fields as face and emotion recognition, text classification, medical diagnosis and
financial forecasting (Pintelas & Livieris 2020). In the last decades, boosting, bagging,
random forest (Jimenez-Carvelo et al., 2019) and random subset-based strategy (Rokach,
2010) have been employed for the development of reliable classification models in foods
such as beef fillets (Mohareb et al., 2016), minced meat, green olives, beer and olil
(Kucheryavskiy, 2018).

The aim of this research was the development of individual machine learning
classification models and ensemble models coupled to MSI and FT-IR spectral data for the
evaluation of chicken breast fillets quality. The models were developed with data obtained
from storage experiments of chicken breast fillets at isothermal conditions and validated
on two different dynamic temperature profiles simulating temperature alterations during

transportation in winter and summer season.

4.2 Materials and Methods

4.2.1 Experimental design

Chicken breast fillets (ca. 245- 280 g per fillet) were obtained from a Greek poultry
industry and transferred immediately to the laboratory under controlled temperature (1.77
+ 2.70 °C). Samples were enclosed in plastic packages (length: 25cm, width: 25 cm,
thickness: 90 pm, permeability of ca. 25, 90, 6 cm® m2day*bar’(1 bar= 105Pa) at 20°C
and 50% RH for CO., O2 and N, respectively) and stored aerobically at eight isothermal
conditions (0, 5, 10, 15, 20, 25, 30, and 35 °C). Additionally, samples were stored at two
dynamic temperature conditions simulating transportation in the winter and summer
(summer scenario:12 h at 5°C, 8 h at 10°C and 4 h at 15 °C; winter scenario: 12 h at 0°C,
8 hat5°C and 4 h at 10 °C). Samples were placed in high precision (+0.5 °C) incubation
chambers (MIR-153, Sanyo Electric Co., Osaka, Japan) where temperature was recorded
every 20 min by means of data loggers (CoxTracer, Belmont, N.C.). At pre- determined
intervals, samples were subjected to microbiological analysis and spectral data acquisition
by means of MSI and FT-IR. Two independent experiments were undertaken for each

storage condition with duplicate samples analyzed per sampling point for isothermal
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storage conditions, whereas in the case of dynamic temperature profiles chicken samples
were analyzed in triplicate.

Microbiological and sensory data were initially used for the determination of two
quality classes, namely fresh and spoiled. Further on, the spectral data from MSI and FT-
IR were correlated to the two quality classes and models were developed for the qualitative

assessment of spoilage (fresh and spoiled) of chicken breast fillets.

4.2.2 Microbiological analysis

Four slices of 5 cm? (total surface: 20 cm?, maximum thickness: 2 mm) from the
surface of chicken breast fillets were removed aseptically, using a sterile stainless steel
cork borer (diameter: 2.5 cm), scalpel and forceps, diluted to 100 ml of sterile quarter
strength Ringer’s solution (Lab M Limited, Lancashire, United Kingdom) and
homogenized in a Stomacher device (Lab Blender 400, Seward Medical, United Kingdom)
for 120 s at room temperature. The indigenous microbiota on the surface of samples was
determined using serial decimal dilutions in the same medium and 0.1 ml was spread on
Tryptic glucose yeast agar (Plate Count Agar, Biolife, Milan, Italy) for the enumeration of
Total Viable Counts (TVCs) incubated at 25 °C for 72 h. TVCs counts were logarithmically
transformed and expressed as log CFU/cm?. Results are presented as average values (£
standard deviation) of the 4 samples analyzed at each sampling point. Further on, the
primary model of Baranyi and Roberts (1994) was fitted to the growth data of TVCs to
determine the kinetic parameters of microbial growth, namely maximum specific growth
rate (umax) and lag phase duration () using Microsoft® Excel Add-in curve-fitting program

DMFit, Version 3.5 available at www.combase.cc.

4.2.3 Sensory analysis

In parallel to sampling, samples were placed in sterile petri dishes and were exhibited
at room temperature and artificial light for sensory evaluation. Panel of 14 individuals
evaluated samples (n= 120) as fresh or spoiled based on odor with a 3point hedonic scale
1- 3, namely: 1=fresh, 2= acceptable, 3= spoiled (Lytou et al., 2016). Sensory evaluation
results of odor were correlated with TVCs in order to define the number of TVCs

corresponding to spoiled samples (i.e., sensory scores above 2). Based on this TVCs value,
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spectral data were coupled to sensory results (class 1: fresh; class 2: spoiled) for the

development of classification models assessing spoilage in chicken breast fillets.

4.2.4 Spectra acquisition

MSI spectra were captured using a Videometer-Lab instrument (Videometer A/S,
Herlev, Denmark) which frames surface reflectance of samples from 18 different
wavelengths (405-970 nm), namely 405, 435, 450, 470, 505, 525, 570, 590, 630, 645, 660,
700, 850, 870, 890, 910, 940, and 970 nm. The organology of this sensor and the image
acquisition process are described in detail in previous publications (Dissing et al., 2013,
Fengou et al., 2019). The result of the measurement is a data cube comprised of spatial and
spectral data for each sample of size mxnx18 (where mxn is the image size in pixels)
(Tsakanikas et al., 2015). Furthermore, a segmentation process is required for the isolation
of the Region of interest (ROI) on the samples surface. For each image, the mean
reflectance spectrum was calculated by taking into account the average value and the
standard deviation of the intensity of pixels within the ROI at each wavelength. This
process is accomplished by Canonical Discriminant Analysis (CDA) and it is implemented
by Videometer-Lab version 2.12.39 software (Videometer A/S, Herlev, Denmark).

FT-IR measurements were performed using a ZnSe 45 HATR (Horizontal
Attenuated Total Reflectance) crystal (PIKE Technologies, Madison, Wisconsin, United
States) and a FT-IR-6200 JASCO spectrometer (Jasco Corp., Tokyo, Japan). The
measurement crystal shows a refractive index of 2.4 and a depth of penetration of 2.0 um
at 1000 cm™. Spectra were obtained in the wavenumber range of 4000 to 400 cm™ using
Spectra Manager Code of Federal Regulations (CFR) software version 2 (Jasco Corp.,
Tokyo, Japan), by accumulating 100 scans with a resolution of 4 cm™ and a total integration

time of 2 min.

4.2.5 Data processing

4.2.5.1 Data pre- processing for MSI and FT-IR analysis

MSI spectral data (n=368) were comprised of 18 mean values and the respective 18
standard deviations of the intensity in pixels. Prior to analysis, the data set was modified
by Standard Normal Variance (SNV) transformation for the limitation of collinear and
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“noisy” data areas (Bi et al., 2016). The data set from the storage experiments at isothermal
conditions (n=368) was used in model calibration, where 222 (60.3%) and 146 (39.7%) of
the samples were defined as fresh (Class 1) and spoiled (Class 2), respectively. Model
optimization was undertaken with k- validation process (k-fold validation, k=5). The
developed models were validated using independent data sets from dynamic temperature
conditions simulating transportation scenarios in the winter and summer period (n=71;
Class 1: 38 samples (52.5%); Class 2: 33 samples 46.5 %).

Pre-treatment of FT-IR spectral data (n= 829) by Savinsky- Golay (second
polynomial order, 1st derivative, 9-point window) was considered necessary for the
reduction of baseline shift and noise (Alamprese et al., 2016). Furthermore, wavelengths
in the range of 900-2000 cm™ were employed in the analysis as suggested by previous
researchers for meat (Ropodi et al., 2018, Fengou et al., 2020). Model’s development
(calibration and k-cross validation: k- fold, k=5) was conducted by data set from isothermal
conditions of storage (n=360), where 219 (60.8 %) were fresh, and 141 (39.2 %) spoiled.
Data set from dynamic temperature profiles (n=67) was utilized for validation, with fresh
samples being 37 (55.2 %) and spoiled being 30 (44.8 %).

4.2.5.2 Machine learning algorithms and models performance evaluation

The level of spoilage on the surface of chicken breast fillets was assessed by eight
algorithms, namely: a) Partial Least Squares-Discriminant Analysis (PLS-DA) (Barker &
Rayens, 2003; Indahl et al., 2007) via Unscrambler© ver. 9.7 software (CAMO Software
AS, Oslo, Norway); b) Linear Discriminant Analysis (LDA) (Kim et al., 2011); c) Linear
Support Vector Machines (LSVM) (Cortes & Vapnik, 1995); d) Quadratic Support Vector
Machine, (QSVM) (Osuna et al., 1997); e) k-Nearest Neighbor classification (fine-KNN)
(Cover & Hart, 1967); g) decision tree-simple (Loh, 2011); f) subspace (Ho, 1998); h)
rusboosted (Seiffert et al., 2008; Hu et al., 2014) via MATLAB 2012a software (The
MathWorks, Inc., Natick, Massachusetts, USA). The last two algorithms are a combination
of multiple classifiers in order to achieve high prediction accuracy (Arafat et al., 2019).
Further information concerning the parameters and the corresponding function of each

model is presented in Appendix | (Tables 4A and 4B).
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Model performance was evaluated by the following indices: overall accuracy,
overall error, sensitivity, specificity and precision for model k-cross validation and
prediction (Table 4.1) (Sokolova & Lapalme, 2009; Arafat et al., 2019).

Table 4.1: Performance indices for the assessment of model’s performance (Sokolova & Lapalme,
2009; Arafat et al., 2019)

Performance index Equation
Overall accuracy (%) tptitn
tp+fn+fp+tn
Overall error (%) fn+fp
tp+fn+fp+tn
Sensitivity (%) tp
tp+ fn
Specificity (%) tn
fr+tn
Precision (%) tp
tp+fp

n: number of samples; tp: positive samples classified correctly; tn: negative samples classified correctly; fn:
negative samples classified as positive; fp: positive samples classified as negative;

4.3 Results

4.3.1 Microbiological analysis

The loads of TVCs (log CFU/cm?) of stored chicken breast fillet samples at 0-15 °C
and 20-35 °C are illustrated in Figures 4.1 and 4.2, respectively. Additionally, the
microbiological results from the dynamic temperature profiles simulating two scenarios
during transportation are provided in Figures 4.3 and 4.4. The initial TVCs in chicken
samples stored at isothermal conditions ranged from 3.13 (+ 0.30) to 3.24 (+ 0.31) log
CFU/cm? (Figure 4.1-4.2), while samples from dynamic temperature profiles showed
values of 4.41 £ 0.27 log CFU/cm? (summer scenario) and 3.89 + 0.12 log CFU/cm? (winter
scenario). As demonstrated in Figures 4.1 and 4.2, TVCs were influenced by temperature
during storage, hence deterioration and eventually spoilage was evident (off-odors, slime
production) at different time points. For instance, TVCs approached 7.0 log CFU/cm? at
15°C in 120 h (7.06 = 0.16 log CFU/cm?), at 10°C in 192 h (6.92 + 0.27 log CFU/cm?) and
at5°Cin264h (6.85+0.11 log CFU/cm?). Similarly, TVCs ranged above 7.0 log CFU/cm?
at 20°C in 72 h (7.0 + 0.16 log CFU/cm?), at 25°C in 56 h (7.49 + 1.01 log CFU/cm?), at
30°C in 36 h (7.36 + 1.18 log CFU/cm?) and at 35 °C in 28 h (6.61 + 0.49 log CFU/cm?).
It needs to be noted that the final TVCs value at 0 °C was 6.24 + 0.63 log CFU/cm? in 288
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h and this finding could be attributed to the non-permeable film used by the poultry
company as packaging material. Regarding the samples stored at the two different dynamic
profiles (Figures 4.3 and 4.4), it was noticed that microbial loads reached 7.0 log CFUcm?
in 144 h (6.90 + 0.24 log CFU/cm?) for summer transportation and in 168 h (6.95 + 0.17

log CFU/cm?) for winter transportation.

Total Viable Counts (log CFU/cm?)
Y
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Storage time (h)

Figure 4.1: Mean (+ SD, n=4) TVCs (log CFU/cm?) in chicken breast samples during storage at
15 (blue line with cycles), 10 (orange line with squares), 5 (grey line with triangles) and 0 °C
(yellow line with stars).
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Figure 4.2: Mean (+ SD, n=4) TVCs (log CFU/cm?) in chicken breast samples during storage at
20 (blue line with cycles), 25 (orange line with squares), 30 (grey line with triangles) and 35 °C
(yellow line with stars).
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Figure 4.3: Mean (£ SD, n=3) TVCs (log CFU/cm?) in chicken breast samples and recorded
temperature (°C) during storage at 1% dynamic temperature profile (summer scenario of
transportation:12 h at 5°C, 8 h at 10°C and 4 h at 15 °C). Blue line with cycles corresponds to
TVCs loads and orange line to temperatures alterations.
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Figure 4.4: Mean (= SD, n=3) TVCs (log CFU/cm?) in chicken breast samples recorded
temperature (°C) during storage at 2™ dynamic temperature profile (winter scenario of
transportation:12 h at 0°C, 8 h at 5°C and 4 h at 10 °C). Blue line with cycles corresponds to TVCs
loads and orange line to temperatures alterations.

The average values of lag phase duration, specific growth rate (umax), initial (No)
and maximum (Nmax) number of TVCs estimated by the Baranyi and Roberts model (1994)
are presented in Table 4.2. Lag phase values were determined in all cases and were
decreased with increasing storage temperature, with maximum and minimum values of
92.6 and 4.7 h at 0 and 35 °C, respectively. On the contrary, the estimated umax parameter
was increased with increasing storage temperature from 0.0382 h (0 °C) to 1.5865 h™(30
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°C), whereas above 35 °C this parameter decreased to 1.329 h. The model of Baranyi and
Roberts was fitted to the experimental data satisfactorily as can be inferred by the standard
error of fit (se(fit)) and the coefficient of determination (R?) values (Table 4.2).

Table 4.2: Estimated kinetic parameters (lag phase, pmax, Yo, Ymax) and performance indices
(standard error of fit: se(fit); R?) by the implementation of Baranyi and Roberts primary growth

model of TVC in chicken breast samples stored at eight isothermal conditions (0, 5, 10, 15, 20, 25,
30 and 35 °C).

Temperature  lag (h) tmax (h™) No (log Nmax (log se(fit) R?
(°C) CFU/cm?) CFU/cm?)
0 92.6+30.59 0.038+0.005 2.7+0.54 5.5+0.73 0.433-0.492 0.826-0.879
5 52.8+4.92 0.057+0.013  3.0+0.29 6.6+0.47 0.426-0.551 0.875-0.937
10 22.7£13.97 0.090+0.005  3.1+032 6.8+0.22 0.279-0.506 0.894-0.964
15 10.2+1.76  0.214+0.096  2.9+0.15 6.8+0.18 0.224-0.545 0.879-0.982
20 8.8+3.29  0.370+0.155 3.3+0.31 6.8+0.27 0.188-0.568 0.873-0.985
25 6.5+2.37 0.296+0.136 3.3+0.42 7.0+£0.03 0.400-0.729 0.900-0.943
30 5.843.89  1.587+0.301 3.1+0.35 6.3+0.08 0.307-0.544 0.900-0.954
35 4.7£3.27  1.329+0.314 3.3+£0.68 6.6+0.26 0.321-0.483 0.928-0.964

4.3.2 Sensory evaluation and shelf-life determination

Sensory results demonstrated that 61.7% of the samples were evaluated as spoiled
with average scores above 2 corresponding to TVCs value of 6.2 + 0.44 log CFU/cm?. The
scores of the judges did not differ significantly (p< 0.05). Based on this outcome, two
quality classes were developed for chicken breast fillets, namely fresh (TVCs < 6.2 log
CFU/cm?) and spoiled (TVCs > 6.2 log CFU/cm?) and the spectral data acquired by MSI
and FT-IR were associated with these quality classes. SL values followed a similar trend
with lag phase and they were decreased with increasing storage temperature. More detailed
information of the acceptability limit for each temperature is provided in Figures 4.5 and
4.6 where sensory results and TVC loads are shown during storage. More specifically,
based on the odor of chicken meat samples spoilage was evident in 240 h at 0 °C (5.9 log
CFU/cm?), 120 h at 5 °C (6.0 log CFU/cm?), 96 h at 10 °C (6.4 log CFU/cm?) and 48 h at
15 °C (6.7 log CFU/cm?), 48 h at 20 °C (6.7 log CFU/cm?), 32 h at 25 °C (log CFU/cm?),
22 hat30°C, and 6 h at 35 °C (5.7 log CFU/cm?).
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Figure 4.5: Sensory assessment scores (1-3) of odor (orange rhomb) and TVCs population (log
CFU/cm?; blue line with cycles) in chicken samples stored at 0, 5, 10 and 15 °C.
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Figure 4.6: Sensory assessment scores of odor (orange rhomb) and TVCs population (log
CFU/cm? blue line with cycles) in chicken samples stored at 20, 25, 30 and 35 °C.
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4.3.3 Spectra from sensors

Representative spectra of FT-IR and MSI corresponding to fresh (0 h at 0 °C) and
spoiled (278 h at 5 °C) chicken breast fillet samples are depicted in Figure 4.7. Regarding
FT-IR (Figure 4.7A), the absorption bands showing variations between fresh and spoiled
samples were located in the areas of 1,000.87-1,150 cm™ and 1,476.24-1,692.2 cm™.
Specifically, absorption bands at 1,541.81 and 1,629.55 cm™ were attributed to the
metabolic products (amide | and Il) associated with spoilage microorganisms
(Alexandrakis et al., 2012). For MSI spectra (Figure 4.7B), reflectance between fresh and
spoiled samples differed at 590, 630, 645, 660, 700, 850, 870, 890, 910 and 940 nm, where

the region of 570 to 700 nm is related to myoglobin in meat color as described elsewhere

(Spyrelli et al., 2020).
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Figure 4.7: Representative spectra of FT-IR (A) and MSI implementation (B) on fresh (0 h at 0 °C,
blue line) and spoiled (278 h at 5 °C, orange line) chicken breast fillets.

4.3.4 Machine learning for MSI data

The performance of the developed classification models is presented in Table 4.3.
The overall accuracy showed higher values during CV (62-82.3%) than prediction (49.3-
64.8%) and the same trend was observed for the other metrics. The high percentages of
specificity in parallel to sensitivity indicated that there is an overestimation of fresh meat
samples in all models applied. Subspace ensemble predicted more accurately the quality
class of the samples, with overall accuracy in prediction of 64.8%. These values indicated

that this model outperformed all the other. Moreover, specificity and sensitivity indexes
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for subspace model exhibited satisfactory percentages (specificity: 69.7 %, sensitivity: 69.7
%), unlike all other models where there was an imbalance between the values of these two
indexes. Precision was another performance metric showing the highest value (69.7 %) in
subspace classification. Other models with acceptable performance where overall accuracy
was higher than 50 %, were rusboosted (Overall accuracy: 59.2 %) and LDA (Overall
accuracy: 56.3%). The confusion matrices of the three aforementioned models are
presented in Table 4.4.

Table 4.3: Performance indexes (Overall accuracy, Overall error, Precision, Specificity,

Sensitivity) for each supervised classification model derived from MSI data. Provided indexes for
internal validation (cross validation: 5-fold validation) and prediction modeling process

Model Modeling Overall Overall Precision Specificity Sensitivity
process Accuracy Error

LDA Ccv 62.0 38.0 68.8 53.4 67.6
Prediction 56.3 43.7 59.5 54.5 57.9
LSVM Ccv 76.1 23.9 76.4 58.9 87.4
Prediction 49.3 50.7 15.8 87.9 60.0
QSVM Ccv 77.2 22.8 79.2 66.4 84.2
Prediction 50.7 49.3 15.8 90.9 66.7
FineKNN Ccv 64.4 35.6 70.8 56.2 69.8
Prediction 53.5 46.5 57.9 48.5 56.4
Subspace Ccv 77.2 22.8 77.0 59.6 88.7
Prediction 64.8 35.2 60.5 69.7 69.7
Simple_tree Ccv 65.5 34.5 67.0 37.0 84.2
Prediction 535 46.5 63.2 42.4 55.8
rusBoosted Ccv 69.0 31.0 73.7 58.9 75.7
Prediction 59.2 40.8 62.2 57.6 60.5

71



PLS-DA Ccv 82.3 17.7 82.6 53.4 87.3

Prediction 52.1 47.9 75 52.9 15.8

CV: Cross Validation (k-fold, k=5)

Table 4.4: Confusion matrix of Subspace, rustBoosted and LDA models development and
evaluation for MSI data.

Model Stage o/P Fresh  Spoiled Total number

Subspace Ccv Fresh 197 25 368
Spoiled 59 87

Prediction  Fresh 23 15 71
Spoiled 10 23

rusBoosted Ccv Fresh 168 54 368
Spoiled 60 86

Prediction  Fresh 23 15 71
Spoiled 14 19

LDA CVv Fresh 150 72 368
Spoiled 68 78

Prediction  Fresh 22 16 71
Spoiled 15 18

4.3.5 Machine learning for FT-IR data

Classification models using FT-IR spectral data identified the quality class of chicken
breast fillet samples, with overall accuracy of prediction ranged from 52.2% to 67.6 %
according to the model employed (Table 5.5). Similar to MSI results, all performance
metrics were degraded from CV to prediction procedure. Even though the overall accuracy
was considered acceptable, spoiled samples were significantly misclassified as fresh in all
models, with specificity values ranging from 10% to 36.7% in the prediction of models.
PLS-DA model demonstrated the best combination of performance indexes, with 67.6%
overall accuracy of prediction. Furthermore, the model identified accurately (100 %) fresh
samples during prediction, precision reached 66.18 % while spoiled samples were

underestimated with specificity being only 36.7 %. Among the other classification models,
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FineKNN and QSVM presented acceptable values of overall accuracy of prediction with

62.7 % and 61.2 %, respectively. Prediction and sensitivity for these two models indicated

percentages greater than 60 %, although specificity was 36.7 and 30 %, respectively (Table

4.6).

Table 4.5: Performance indexes (Overall accuracy, Overall error, Precision, Specificity,
Sensitivity) for each supervised classification model derived from FT-IR data. Provided indexes

for internal validation (cross validation: 5-fold validation) and prediction modeling process.

Models Modeling Overall Overall Precision Specificity Sensitivity
process Accuracy Error

LDA CVv 62.5 37.5 70.8 58.2 65.3
Prediction 58.2 41.8 75.7 36.7 59.6
QSVM CVv 78.6 21.4 82.0 71.6 83.1
Prediction 61.2 38.8 86.5 30.0 60.4
Simple tree Ccv 71.4 28.6 78.2 68.1 73.5
Prediction 56.7 43.3 94.6 10.0 56.5
rusBoosted CVv 73.6 26.4 79.2 68.8 76.7
frees Prediction 59.7 403 86.5 26.7 59.3
FineKNN CVv 65.8 34.2 72.4 58.2 70.8
Prediction 62.7 37.3 83.8 36.7 62.0
LSVM Cv 78.3 21.7 77.6 59.6 90.4
Prediction 52.2 47.8 78.4 20.0 54.7
Subspace Ccv 74.4 24.4 79.8 69.5 79.1
Prediction 56.7 43.3 86.5 20.0 57.1
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PLS-DA CcVv 71.4 28.6 70 58.2 92.7

Prediction 67.6 28.4 66.1 36.7 100

Table 4.6: Confusion matrix of PLS- DA, FineKNN and QSVM models development and
evaluation for FT-IR data.

Model Stage O/P Fresh  Spoiled Total

number

PLS-DA Cv Fresh 203 16 360
Spoiled 87 54

Prediction  Fresh 37 0 67
Spoiled 19 11

FineKNN Ccv Fresh 155 64 360
Spoiled 59 82

Prediction  Fresh 31 6 67
Spoiled 19 11

QSVM Ccv Fresh 182 37 360
Spoiled 40 101

Prediction  Fresh 32 5 67
Spoiled 21 9

4.4 Discussion

The microbiological results confirmed the critical role of storage temperature in
chicken breast fillet meat and the evolution of TVCs (Alexandrakis et al., 2012; Doulgeraki
et al., 2012; Rouger et al., 2017). Low temperatures significantly inhibited chicken’s
spoilage and in parallel extended the shelf life (Raab et al., 2008), with samples stored at 0
°C maintaining TVCs below 6 log CFU/cm?2. On the contrary, samples stored at high
temperatures demonstrated rapid growth of TVCs and deterioration of the organoleptic
characteristics (odor). These findings were in line with Baranyi and Roberts (1994) primary
model outcome, where lag phase was prolonged while pmax parameter was decreased in
samples stored at low temperatures (Table 4.2), similarly to literature (Gospavic et al.,

2008; Lytou et al., 2016). The initial microbial load in all batches (isothermal and dynamic
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temperature profiles) was in compliance with the existing pool of studies (Rouger et al.,
2017; Silva et al., 2008; EFSA, 2016), while the final loads of TVCs approached 7 log
CFU/cm? at the end of spoilage (above 8-9 log CFU/cm?) (Nychas et al., 2008). This
observation could be linked to the usage of non-permeable film as packaging. This type of
packaging film did not allow gases diffusion and hence the produced CO, from
microbiota’s metabolic reactions acted as modified atmosphere packaging, influencing
TVC behavior and sensory results (Koutsoumanis et al., 2008; Liang et al., 2012; Holl et
al., 2016).

The end of shelf- life (score >2) in samples was established when TVCs reached 6.2
log CFU/cm? via sensory outcomes, unlike published studies (Al-Nehlawi, Saldo, Vega &
Guri, 2013) due to systematic or random errors during sensory evaluation by the untrained
panel (Papadopoulou et al., 2011). The alterations on the behavior of the microbiota in
chicken samples due to packaging conditions could mislead panels judgment and
subsequently it could affect shelf-life’s estimation (Silva et al., 2018). Moreover,
differences in microbiota’s growth were evident on samples stored at the two dynamic
temperature profiles with TVCs in samples stored at summer scenario approaching 7 log
CFU/cm? a day earlier than in stored samples at winter scenario. This attempt to assimilate
temperature during transportation illustrated ones more the impact and the contribution of
temperatures alterations to meat quality and safety (Gospavic et al., 2008; Nychas et al.,
2008; Lytou et al., 2016).

The performance of MSI models was affected by the ensemble subspace classification
model with overall correct classification accuracy of 64.8 %. The catalytic role of the
ensemble approach can be exemplified by comparing the overall accuracy of this model to
LDA model, where a decrease over 9 % was observed (Polikar, 2006; Sun & Zang, 2007).
This outcome verified that ensemble combinations of conventional machine learning
methods could improve model’s classification performance (Jimenez- Carvelo et al.,
2019). For instance, the application of subspace model demonstrated the beneficial role of
adding k- nearest neighbors on LDA models and selecting the appropriate number of
nearest neighbors in the classifier, as well as the smaller possible number of learners in the

ensemble (for this study: k=5, Number of Learners=30) (Kim et al., 2011). Moreover, the

75



subspace model could classify both fresh and spoiled meat samples with the same
percentage (69.7 %), while the LDA model misplaced spoiled samples as fresh with the
higher percentage of specificity being at 54.5 %. It is worth noting that it is preferable to
classify correctly not only the fresh samples but also the spoiled ones (Sokolova &
Lapalme, 2009), especially when it comes to food industries where a recall of a product
due to spoilage could result in loss of millions and increase food waste (Nychas et al., 2
016; FAO, 2021).

Unlike MSI data, the combination of algorithms did not seem to ameliorate FT-IR
classification models, where PLS-DA exhibited the most satisfactory overall accuracy
(67.6 %), followed by FineKNN (62.7%) and QSVM (61.2%). Nevertheless, this outcome
confirmed that PLS-DA is a widely and common applied algorithm for classification,
especially in food quality and authenticity which can provide accurate prediction of quality
(Jimenez- Carvelo et al., 2019). Despite of the highest accuracy and sensitivity in FT-IR
models, specificity percentage was not acceptable as its values rated only at 30 %, pointing
out the inefficacy of the trained model to detect chicken spoiled samples. Even though this
spectroscopic method is proved accurate for the estimation of spoilage in chicken (Ellis et
al., 2002; Alexandrakis et al., 2012) and the correct classification of other meat products
as beef fillets and minced meat (Ropodi et al., 2018; Fengou et al., 2019), the variability
between and within batches based on animal strain, alterations of nutrition (Amorim et al.,

2016) or slaughtering and distributing, seemed to influence models’ performances.

The developed models for both spectroscopic methods indicated a tendency of
classifying spoiled samples as fresh at all stages of model development and prediction.
This finding could be attributed to the fact that spoiled samples used for model calibration
had lower microbiota on their surface compared to spoiled samples for prediction, due to
their different temperatures profile (Gospavic et al., 2008; Ropodi et al., 2018). These
temperature alterations in tandem with packaging conditions could have an impact on the
metabolic footprint of samples which could differ from those defined as spoiled during
model’s development (Papadopoulou et al., 2011). However, it was considered more
appropriate to validate model’s performance with samples stored and distributed at realistic

scenarios (Lytou et al., 2016; Lianou et al., 2018). Lastly, it has to be highlighted once

76



more that the utilization of different batches and microbial quality as prediction data set
could be responsible for misclassified samples, due to the significant variability among

samples (Ropodi et al., 2018).
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Chapter 5: Microbiological quality assessment of chicken thigh
fillets using spectroscopic sensors and multivariate data
analysis

Published as:
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Microbiological Quality Assessment of Chicken Thigh Fillets Using Spectroscopic
Sensors and Multivariate Data Analysis. Foods, 10(11), 2723.
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Abstract
Fourier transform infrared spectroscopy (FT-IR) and multispectral imaging (MSI)
were evaluated for the prediction of the microbiological quality of chicken thigh fillets via

regression and classification models.

In brief, chicken thigh fillets (n = 402) were subjected to spoilage experiments at eight
isothermal and two dynamic temperature profiles. Samples were analyzed
microbiologically (total viable counts (TVCs) and Pseudomonas spp.), while
simultaneously MSI and FT-IR spectra were acquired. The organoleptic quality of the
samples was also evaluated by a sensory panel, establishing a TVC spoilage threshold at
6.99 log CFU/cm?. Partial least squares regression (PLS-R) models were employed in the
assessment of TVCs and Pseudomonas spp. counts on chicken’s surface. Furthermore,
classification models (linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), support vector machines (SVMs), and quadratic support vector machines
(QSVMs)) were developed to discriminate the samples in two quality classes (fresh vs.
spoiled). PLS-R models developed on MSI data predicted TVCs and Pseudomonas spp.
counts satisfactorily, with root mean squared error (RMSE) values of 0.987 and 1.215 log
CFU/cm?, respectively. SVM model coupled to MSI data exhibited the highest
performance with an overall accuracy of 94.4%, while in the case of FT-IR, improved
classification was obtained with the QDA model (overall accuracy 71.4%). These results
confirm the efficacy of MSI and FT-IR as rapid methods to assess the quality in poultry

products.
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5.1 Introduction

Food waste amounts to 14% of the worlds’ food consumption (FAO, 2022), while
meat and specifically poultry production is forecasted to rise at 137 million tones (FAO,
2022). In addition, consumer’s awareness and demand for high quality and safety meat and
poultry has been continuously increased. For this purpose, non-invasive spectroscopic
sensors have been used in the evaluation of the quality and freshness of meat products
(Tsakanikas et al., 2020) through the implementation of process analytical technology
(PAT) (van den Berg et al., 2013; Cullen et al., 2014). The underlying principle of PAT is
to combine spectral data acquired through real-time (in-, on-, at-line) non-destructive
analytical techniques with multivariate data analysis for the development of models
assessing food quality. These models, along with their datasets, could be uploaded in the
cloud, updated regularly with new data in order to be consultative to the food industry
(Nychas et al., 2016).

In recent years, multispectral imaging (MSI) and Fourier transform infrared (FT-IR)
spectroscopy have been investigated as alternative methods for the evaluation of a variety
of meat products (Panagou et al., 2014; Xiong et al., 2015; Alamprese et al., 2016). The
former method is a merge of UV and NIR with computer vision, and it has been proposed
as an ecological approach for rapid quality evaluation of meat and poultry (Dissing et al.,
2013; Pu et al., 2015; Kutsanedzie et al., 2019). Until now, spectral data in the visible and
near-infrared region (400-1700 nm) have been employed in the development of
quantitative or qualitative models for the determination of the bacterial population (TVCs
and Pseudomonas spp.) on chicken meat during spoilage (Feng & Sun, 2013a, 2013b; Ye
et al., 2016). In the same context, MSI analysis has been proved a solution to the
identification of adulteration/food fraud of minced beef with chicken meat (Kamruzzaman
et al., 2016), as well as for the detection of food fraud in minced pork adulterated with
chicken (Fengou et al., 2021a). Moreover, fecal contaminants in poultry line (Yang et al.,
2015) and the presence of tumors on the surface of chicken breasts (Nakariyakul &
Casasent, 2009) have been accurately detected via MSI analysis. This innovative method
was successfully employed in the at-line estimation of the time from slaughter in four

different poultry products (Spyrelli et al., 2020).
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Likewise, the potential of FT-IR for the qualitative and quantitative assessment of the
microbiological quality of meat products has been explored by other researchers (Ellis et
al., 2002; Alexandrakis et al., 2012; Argyri et al., 2013; Grewal et al., 2015; Candogan et
al., 2021). Especially for poultry, FT-IR was recommended as an effective approach for
the differentiation of intact chicken breast muscle during spoilage (Alexandrakis et al.,
2012). Additionally, the level of spoilage bacteria on the surface of chicken meat was
successfully estimated via FT-IR spectroscopy (Ellis et al., 2002). Further investigation of
this promising method for real-time evaluation of the freshness of stored chicken breast
fillets was undertaken by Vansconcelos et al. (2014). FT-IR analysis was also proposed as
an efficient approach for the categorization of chicken meat among seven raw types of
food, irrespective of variations among batches and storage conditions (temperature, storage
duration, packaging, spoilage levels) (Tsakanikas et al., 2020).

Spectral data acquired by nondestructive methods such as MSI and FT-IR have been
analyzed by a variety of unsupervised and supervised machine learning algorithms for the
rapid quality assessment in food matrices including meat (Berrueta et al., 2007; Jiménez-
Carveloetal., 2019; Candogan et al., 2021). Partial least squares regression (PLS-R), linear
discriminant analysis (LDA), and quadratic discriminant analysis (QDA) have been
reported as reliable tools for the development of predictive models for spoilage or
adulteration assessment in meat (Friedman et al., 2009; Ropodi et al., 2015; Alamprese et
al., 2016; Kumar & Karne, 2017). Moreover, deep learning methodologies such as artificial
neural networks (ANNSs) and support vector machines (SVMs) (Luts et al., 2010) have been
employed, validated, and compared through available websites (e.g., sorfML,
Metaboanalyst) or softwares (R, MatLab, Python), in an attempt to provide accurate
quantitative and qualitative models for food spoilage assessment (Chen et al., 2011; Ropodi
et al., 2016; Estelles-Lopez et al., 2017; Jaafreh et al., 2019; Jiménez-Carvelo et al., 2019;
Fengou et al., 2020).

The aim of the present work was to develop and evaluate machine learning regression
(PLS-R) and classification models (LDA, QDA, SVMs, QSVMs) based on MSI and FT-
IR spectral data for the evaluation of the microbiological quality of chicken thigh fillets.

More specifically, PLS-R models were developed for the prediction of the microbiota of

81



TVCs and Pseudomonas spp. on the surface of chicken thigh, whereas LDA, QDA, SVMs,
and QSVMs models were employed for the classification of samples in two quality classes
(fresh or spoiled) based on the outcome of sensory analysis. The challenging task in this
study was not confined in model development, batch variation and different storage
temperatures, but it also considered external validation using two different dynamic
temperature profiles simulating temperature scenarios during transportation and storage in

retail outlets.

5.2 Materials and Methods

5.2.1 Experimental design

Three hundred and thirty (330) chicken thigh fillets (ca. 90-110 g/fillet) enclosed in
plastic packages (dimensions = 25 cm (width), 90 um (thickness), permeability ca. 25, 90,
and 6 cm® m2day tbar* at 20 °C and 50% RH for CO,, O, and N, respectively) were
obtained from a poultry industry in Greece and stored aerobically at eight isothermal
conditions (0, 5, 10, 15, 20, 25, 30, and 35 °C). Two independent experiments were
undertaken at all isothermal conditions using 4 different batches of chicken meat.
Moreover, 72 samples were stored at two dynamic temperature profiles (profile 1 =12 h at
5°C,8hat10°C,and4 hat 15 °C; profile2=12h at 0 °C, 8 hat 5 °C, and 4 h at 10 °C),
simulating temperature scenarios that can be observed during transportation and storage in
retail outlets (Vaikousi et al., 2009). At pre-determined time intervals, packages were
subjected to microbiological analyses for the enumeration of total viable counts (TVCs)
and Pseudomonas spp., in parallel with MSI and FT-IR spectral data acquisition. At each
sampling point, duplicate packages per isothermal storage condition and triplicate
packages from each dynamic temperature profile were subjected to the abovementioned
analyses. In addition, chicken samples were subjected to sensory evaluation by a 14-
member sensory panel to categorize the samples in two quality classes, namely fresh and
spoiled as detailed below. Microbiological counts and sensory scores were correlated with
spectral data in order to develop quantitative and qualitative models assessing chicken
thigh’s microbial loads (TVCs, Pseudomonas spp.) as well as their quality class (fresh-
spoiled).
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5.2.2 Microbiological Analysis and Sensory Evaluation

A total surface of ca. 20 cm? (four slices of ca. 5 cm? each with a maximum thickness
of 2 mm) from chicken thigh fillet was removed aseptically, by means of a sterile stainless
steel cork borer (2.5 cm in diameter), scalpel and forceps, added in 100 ml of sterile quarter
strength Ringer’s solution (Lab M Limited, Lancashire, UK) and homogenized in a
Stomacher device (Lab Blender 400, Seward Medical, UK) for 120 s at room temperature
(Hutchison et al., 2005). The microbial load on the surface of chicken was enumerated
using serial decimal dilutions in the same Ringer’s solution and 0.1 ml of the appropriate
dilution was spread on the following growth media: (a) Tryptic glucose yeast agar (Plate
Count Agar, Biolife, Milan, Italy) for the determination of total viable counts (TVCs)
incubated at 25 °C for 72 h; (b) Pseudomonas agar base (LAB108 supplemented with
selective supplement Cetrimide Fucidin Cephaloridine, Modified C.F.C. X108, LABM)
for the determination of presumptive Pseudomonas spp. incubated at 25 °C for 48 h. The

results were logarithmically transformed and expressed as log CFU/cm?.

In parallel, sensory evaluation was performed by a 14 member in-house trained
sensory panel. For this purpose, samples (n = 103) were placed in sterile petri dishes and
scored according to their odor using a 3-point hedonic scale as follows: 1 = fresh, 2 =
acceptable, 3 = spoiled (Lytou et al., 2016). Samples with scores < 2 were characterized as
fresh (Class 1) whereas samples with scores > 2 as spoiled (Class 2). Finally, the sensory
outcome was correlated with spectral data in order to assess the quality class of the samples

directly from the acquired MSI and FT-IR spectra.

5.2.3 Spectra Acquisition

Multi-spectral images (MSI) were captured using a Videometer-Lab instrument
(Videometer A/S, Herlev, Denmark) that acquires images in 18 different non-uniformly
distributed wavelengths from UV (405 nm) to short wave NIR (970 nm), namely, 405, 435,
450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 850, 870, 890, 910, 940, and 970 nm.
Detailed information about this spectroscopic sensor is provided elsewhere (Carstensen et
al., 2003). Each sample corresponded to spatial and spectral data of size m x n x 18 (where
mxn is the image size in pixels) (Tsakanikas et al., 2015). Furthermore, canonical

discriminant analysis (CDA) was employed as a supervised transformation building
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method to divide the images into regions of interest (ROI) using the Videometer-Lab
version 2.12.39 software (Videometer A/S, Herlev, Denmark). The final outcome of this
segmentation process for each image was a dataset of spectral data including the average
value and the standard deviation of the intensity of the pixels within the ROI at each

wavelength.

FT-IR data were obtained using an FT-IR-6200 JASCO spectrometer (Jasco Corp.,
Tokyo, Japan) and a ZnSe 45 HATR (horizontal attenuated total reflectance) crystal (PIKE
Technologies, Madison, Wisconsin, United States) with a refractive index of 2.4 and a
depth of penetration of 2.0 pm at 1000 cm . Spectra measurements were performed using
Spectra Manager Code of Federal Regulations (CFR) software version 2 (Jasco Corp.,
Tokyo, Japan) in the wavenumber range of 4000-400 cm™, by accumulating 100 scans

with a resolution of 4 cm™ and a total integration time of 2 min.

5.2.4 Data Pre-Processing and Analysis

MSI spectral data were pre-processed by baseline offset treatment (Rinnan et al.,
2009; Engel et al., 2013) for the development of PLS-R models in order to reduce random
or systematic variations and simultaneously improve image resolution (Qin et al., 2013).
Likewise, for the development of the classification models, MSI data were subjected to
standard normal variate (SNV) transformation prior to analysis (Tsakanikas et al., 2016).
Model training was undertaken with the dataset obtained from the storage experiments at
isothermal conditions (n = 330), where 142 (43.1%) and 188 (56.9%) of the samples were
defined as fresh (Class 1) and spoiled (Class 2), respectively. Model optimization was
based on leave-one-out full-cross validation (LOOCV) process for PLS-R models and k-
fold validation (k= 5) for the classification models. Moreover, the efficacy of the developed
models to assess the quality of chicken samples was evaluated by external validation using
independent datasets from the two dynamic temperature scenarios (n = 72; Class 1 = 36

samples, 50 %; Class 2 = 36 samples, 50%).

FT-IR spectral data were modified by Savitzky-Golay first derivative (second
polynomial order, 11-point window) for the development of PLS-R models, while for
classification models’ spectral data pre-treatment was based on the same model with a 9-

point window in order to reduce baseline shift and noise (Alamprese et al., 2016). Spectral
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data in the range of 1000 to 2000 cm™* were included in the analysis, since these regions
are documented as relevant to meat spoilage (Fengou et al., 2020). FT-IR models were also
validated with data sets from dynamic temperature profiles (n = 63), including 30 (47.6 %)
fresh and 33 (52.4 %) spoiled samples. The procedure of model training and validation is

graphically presented in Figure 5.1.

Storage experiments
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Figure 5.1: Flowchart describing quantitative and qualitative model development and validation.

PLS-R models for the estimation of TVCs and Pseudomonas spp. counts on chicken
thighs surface were developed and validated by the software Unscrambler © ver. 9.7
(CAMO Software AS, Oslo, Norway). Moreover, linear discriminant analysis (LDA) (Kim
et al., 2011), quadratic discriminant analysis (QDA) (Kumar & Karne, 2017), support
vector machines (SVMs), and quadratic support vector machines (QSVMs) (Osuna et al.,
1997) models were employed for the classification of samples according to their spoilage
level using MATLAB 2012a software (The MathWorks, Inc., Natick, MA, USA). The
performance of the developed models was evaluated via the following metrics and indexes:
root mean squared error (RMSE), correlation coefficient (r), overall accuracy, sensitivity,

and specificity (Sokolova & Lapalme, 2009; Marquez et al., 2016).
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5.3 Results and Discussion

5.3.1 Microbiological Analysis and Sensory Evaluation

The population dynamics of TVCs and Pseudomonas spp. on the surface of chicken
thigh fillets stored at isothermal conditions (0, 5, 10, 15, 20, 25, 30, and 35 °C) are
presented in Figure 5.2. The initial population of TVCs (Figure 5.2A, B) and
Pseudomonas spp. (Figure 5.2C, D) was 4.02 (£0.38) and 3.75 (£0.11) log CFU/cm?,
respectively, confirming previous literature findings (Alexandrakis et al., 2012; Doulgeraki
etal., 2012; Rouger et al., 2017). As expected, storage temperature significantly influenced
microbial growth resulting in sample deterioration and spoilage. For poultry, TVCs values
exceeding 7.0 log CFU/cm? have been reported by other researchers to signify the end of
shelf-life due to spoilage (Dominguez & Schaffner, 2007; Galarz et al., 2016; Rouger et
al., 2017). More specifically, in this study TVCs reached values above 7.0 log CFU/cm? at
15°C in 30 h (7.2 £ 0.15 log CFU/cm?), at 10 °C in 72 h (7.24 + 0.39 log CFU/cm?), at 5
°C in 144 h (7.62 £ 0.63 log CFU/cm?) and at 0 °C in 240 h (7.17 + 0.42 log CFU/cm?).
Pseudomonas spp. counts were similar to TVCs population and spoilage was evident at 15
°C in 48 h (7.3 £ 0.33 log CFU/cm?), at 10 °C in 72 h (7.06 + 0.48 log CFU/cm?), at 5 °C
in 120 h (7.22 £ 0.18 log CFU/cm?), and at 0 °C in 216 h (6.75 £ 0.23 log CFU/cm?).
Furthermore, samples appearance and odor rapidly deteriorated at high storage
temperatures and TVCs reached 7.0 log CFU/cm? at 20 °C in 32 h (7.36 + 0.39 log
CFU/cm?), at 25 °C in 24 h (7.78 + 0.18 log CFU/cm?), at 30 °C in 24 h (7.95 £ 0.40 log
CFU/cm?), and at 35 °C in 12 h (6.8 £ 0.46 log CFU/cm?). Similarly, Pseudomonas spp.
approached 7.0 log CFU/cm? at 20 °C in 32 h (6.97 + 0.39 log CFU/cm?), at 25 °C in 24 h
(6.95 £ 0.36 log CFU/cm?), at 30 °C in 24 h (6.89 + 0.68 log CFU/cm?), and at 35 °C in 24
h (6.69 + 0.60 log CFU/cm?).
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Figure 5.2: Changes in the population (log CFU/cm?) of total viable counts (TVCs) (A, B) and
Pseudomonas spp. (C, D) in chicken thigh samples during storage at different isothermal conditions
(A, C: 0, 5,10 and 15 °C); B, D: 20, 25, 30, and 35 °C). Data points are average values of four
replicates of samples + standard deviation.

Moreover, the microbiological results from the two dynamic temperature profiles are
shown in Figure 5.3. The initial TVCs and Pseudomonas spp. counts were 3.82 £ 0.21 log
CFU/cm? and 2.51 + 0.28 log CFU/cm?, respectively (first dynamic temperature profile,
Figure 5.3A), and 4.13 + 0.40 log CFU/cm? and 2.87 + 0.65 log CFU/cm?, respectively
(second dynamic temperature profile, Figure 5.3B). Stored samples at these dynamic
profiles were considered spoiled in 96 h (TVC = 6.96 + 0.25 log CFU/cm?, Pseudomonas
spp. = 6.19 £ 0.29 log CFU/cm?) for the first dynamic profile and in 120 h (TVC = 7.08 +
0.01 log CFU/cm?, Pseudomonas spp. = 7.05 £ 0.03 log CFU/cm?) for the second dynamic
profile. This one-day delay of spoilage could be attributed to the different metabolic
footprint of chicken samples due to temperature alterations affecting thus microbial growth
(Gospavic et al., 2008; Raab et al., 2008). Statistical analysis for the microbiological results
(one-way ANOVA via MATLAB 2012a software (The MathWorks, Inc., Natick, MA,
USA)) is available in Appendix I (Table 5A and Table 5B).
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Figure 5.3: Changes in the population (log CFU/cm?) of total viable counts (TVCs) (solid line)
and Pseudomonas spp. (dashed line) in chicken thigh samples stored under periodically changing
temperature conditions. (A) Profile 1 =12 hat 5 °C, 8 h at 10 °C, and 4 h at 15 °C; (B) Profile 2 =
12hat0°C,8hat5°C, and 4 h at 10 °C. Data points are mean values of triplicate samples +
standard deviation.

More detailed information about chicken thigh fillets spoilage was derived by
sensory evaluation, where 56.9% of the samples were scored above 2 and considered
spoiled. Samples stored at 0 °C were considered acceptable until 240 h of storage, while
samples stored at 30 and 35 °C were evaluated as spoiled after 6 and 12 h, respectively. In
addition, deterioration of odor due to spoilage was evident in 96 h at 5 °C, 48 h at 10 °C,
and 24 h at 15, 20, and 25 °C. The correlation of sensory scores to samples temperature
and TVCs populations is provided at Table 5.1. TVCs values above 6.99 log CFU/cm?
corresponded to samples rated with an average score greater than 2, similarly to other
studies where spoilage threshold was established at 7.0 log CFU/cm? for poultry

(Dominguez & Schaffner, 2007). Based on this criterion, samples were assigned in two
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quality classes, namely fresh (score < 2) or spoiled (score > 2), and were further employed

in the development of classification models.

Table 5.1: Sensory scores and TVCs counts for chicken thigh samples corresponding to the sensory
rejection time at each storage temperature.

Temperature (°C) Storage Time (h) Odor  TVCs (log CFU/cm?)
0 240 2.5+0.5 6.99
5 96 2.3+0.6 7.08
10 48 2.3+0.5 6.90
15 24 2.1+0.7 7.46
20 24 2.5+0.6 7.40
25 24 2.9+0.8 8.22
30 6 2.1+0.7 5.1
35 12 2.2+0.7 6.84

TVCs average (log CFU/cm?) 6.99 + 0.89

5.3.2 Correlation of Microbiological Data to Spectral Information

PLS-R model parameters (slope and offset) and performance metrics (r, RMSE), for
the estimation of the population of TVCs and Pseudomonas spp. using MSI spectral data,
are presented in Table 5.2, for model calibration, full cross validation, and external
validation (prediction). For TVCs, the calculated values of RMSE and r during model
calibration and cross validation were 0.730 and 0.779 log CFU/cm?, as well as 0.861 and
0.840, respectively, whereas the respective values for external validation were 0.987 log
CFU/cm? and 0.895, respectively. The performance of the PLS-R model was also
graphically illustrated by the comparison of the observed vs. predicted TVCs (Figure
5.4A). Predicted values were mostly located within the area of £1.0 log CFU/cm?, which
is considered microbiologically acceptable, while an overestimation for low counts (below
4.0 log CFU/cm?) was evident. Regarding PLS-R model assessing Pseudomonas spp.
counts via MSI data, RMSE and r values were 0.828 log CFU/cm? and 0.853, respectively,
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for calibration, while for full cross validation they were 0.886 log CFU/cm? and 0.830,
respectively. For external validation (prediction) of Pseudomonas spp. counts, RMSE and
r values were estimated at 1.215 log CFU/cm? and 0.904 respectively. Nevertheless, the
prediction of Pseudomonas spp. counts demonstrated deviations (overestimation) from the
+ 1.0 log CFU/cm? area, especially for samples with Pseudomonas spp. loads lower than
4.0 log CFU/cm? (Figure 5.4B).

Table 5.2: Performance metrics of the developed PLS-R models estimating TVCs and
Pseudomonas spp. counts of chicken thigh samples via MSI spectral data analysis.

TVCs n LVs slope offset r RMSE
Calibration 330 10 0.741 1.684 0.861 0.730

Full Cross Validation 330 10 0.726 1.787 0.840 0.779
Prediction 72 0.774 2.023 0.895 0.987
Pseudomonas spp. n LVs slope offset r RMSE
Calibration 330 10 0.727 1.615 0.853 0.828

Full Cross Validation 330 10 0.711 1.714 0.830 0.886
Prediction 72 0.702 2441 0.904 1.215

n: Number of samples, LVs: Latent variables, r: Correlation coefficient, RMSE: Root mean squared
error.
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Figure 5.4: Predicted versus observed TVCs (A) and Pseudomonas spp. (B) counts by the PLS-R
models, based on MSI data for FCV (open symbols) and prediction (solid symbols). Solid line
represents the line of equity (y = x) and dashed lines indicate + 1.0 log unit area.
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The important wavelengths contributing to the prediction of the selected microbial
groups were obtained according to PLS-R beta coefficients (B), derived by the
Unscrambler software and Marten’s Uncertainty test (Figure 5.5). The wavelengths 630,
645, 660, 700, and 850 nm were identified as significant (b coefficient greater than 0.2) for
determining TVCs counts on the surface of chicken thigh. The significant contribution of
the wavelength range 630-700 nm for the determination of meat and poultry spoilage has
been reported in previous studies, and could be linked to myoglobin, metmyoglobin,
deoxymyoglobin or oxymyoglobin (Pu et al., 2015; Spyrelli et al., 2020). According to the
B regression coefficients of the PLS-R models, the quantitative equations for the estimation

of TVCs and Pseudomonas spp. counts via MSI application could be described as follows:

Yr1ves= 5.983 + 0.303 X Xmean405nm + 0.158 X Xmean,as0nm — 0.532 X Xmeana7onm + 0.292 X Xmean,525nm —
0.853 X Xmean,630nm + 0.695 X Ximean,645nm + 0.767% Xmean,660nm — 0.670 X Xmean,700nm — 0.460 X Xmean,850nm +
0.145 % Xmean,g9onm + 0.309 X Xmean910nm + 0.352 X Ximean,940nm — 0.255 X Xmean,970nm — 0.377x Xsp435n0m +(5.1)
0.426 x Xsp,47onm+ 0.308 x Xsp 505nm+ 0.244% Xsp 525nm — 0.607% Xsp,590nm + 0.160% Xsp g45nm + 0.171 %
Xsp,660nm — 0.212 x Xsp gsonm — 0.132% Xsp 870nm

Y Pseudomonas spp. counts = 5.416 + 0.204 X Xmean,405nm + 0.308 X Xmean.asonm — 0.745 X Xmean47onm + 0.326 X
Xmean,525nm — 1.020 X Xmean,630nm + 0.802 X Xmean,645nm + 0.885% Xmean,660nm — 0.766 X Xmean,700nm — 0.500 X
Xmean,50nm + 0.332 X Xmean,910nm + 0.422 X Xmean,940nm — 0.344 X Xmean,970nm — 0.602% Xsp 435nm + 0.501 x(5.2)
Xsp,470nm+0.367 % Xsp 505nm+ 0.272% Xsp 525nm — 0.679% Xsp,590nm + 0.244% Xsp 6asnm + 0.222 x Xsp 660nm
—0.321 x Xsp,850nm — 0.204x Xsp,870nm - 0.133% Xsp goonm + 0.159 x Xsp,910nm + 0.177 % Xsp,970nm

In the above equations, the response variable (Y) can be approximated by a linear
combination of the values of the predictors (X) through coefficients called regression or B
-coefficients. Specifically, Y is the estimated value for TVCs and Pseudomonas spp.,
respectively, whereas Xmean and Xsp are the mean intensity and the standard deviation of

the pixels at the respective wavelength during MSI acquisition, respectively.
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Figure 5.5: Beta (B) coefficient values of the PLS-R model developed on MSI spectral data for
chicken thigh fillets. Shaded bars indicate important variables (mean intensity and standard
deviation of pixels from each wavelength).

Likewise, model performance for the estimation of TVCs and Pseudomonas spp.
counts via FT-IR spectral data analysis is presented in Table 5.3. For the TVCs prediction
model, RMSE and r values for calibration and full cross validation were 0.734 log
CFU/cm? and 0.856, as well as 0.899 log CFU/cm? and 0.781, respectively, while for
external validation they were 1.251 log CFU/cm? and 0.583, respectively. Similarly, for
the prediction of Pseudomonas spp. counts via FT-IR analysis, RMSE and r values were
0.838 log CFU/cm? and 0.849 for calibration, 1.037 log CFU/cm? and 0.762 for full cross
validation, and 1.589 log CFU/cm? and 0.514 for external validation, respectively. The
performance of the PLS-R models was also graphically verified by the comparison of the
observed versus predicted counts of TVCs and Pseudomonas spp. (Figure 5.6),
demonstrating an overestimation in the fail-safe zone for samples with TVCs values lower
than 4.0 log CFU/cm? (Figure 5.6A). In contrast, according to Figure 5.6B, Pseudomonas
spp. predicted counts deviated from the acceptable limit of + 1.0 log CFU/cm?, presenting
both overestimated (for counts < 4.0 log CFU/cm?) and underestimated (for counts > 7.0
log CFU/cm?) values. In addition, the influence of each wavenumber in the development
of the PLS-R models via FT-IR spectroscopy is highlighted by the beta coefficients (Figure
5.7), as well as by the representative spectra acquisition for fresh (0 h at 0 °C) and spoiled

(366 h at 0 °C) samples (Figure 5.8). Four main regions demonstrated high impact on
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model development, namely: region A (1,720-1,790 cm™?); region B (1,630-1,690 cm™);
region C (1,500-1,550 cm™?) and region D (1,300-1,100 cm™2). It is well established that

these absorption regions are related to the proteolytic activity of microbiota and the

formation of biofilms, and more specifically of Pseudomonas spp. during spoilage of
chicken breast (Ellis et al., 2002; Alexandrakis et al., 2012; Grewal et al., 2015;

Wickramasinghe et al., 2020).

Table 5.3: Performance metrics of the developed PLS-R models estimating TVCs and
Pseudomonas spp. counts of chicken thigh samples via FT-IR spectral data analysis.

TVCs n LVs Slope Offset r RMSE
Calibration 328 10 0.732 1.747 0.856 0.734

Full Cross Validation 328 10 0.678 2.115 0.781 0.899
Prediction 63 0.367 4.192 0.583 1.251
Pseudomonas spp. n LVs slope offset r RMSE
Calibration 328 10 0.719 1.669 0.849 0.838

Full Cross Validation 328 10 0.660 2.033 0.762 1.037
Prediction 63 0.282 4.152 0.514 1.589

n: Number of samples, LVs: Latent variables, r: Correlation coefficient, RMSE: Root mean squared

error.

«w o O

wn

Predicted TVCs (log CFU/cm?)
N o =

(9% ]

3 4 5 6 7

8

9

o
o
v
g
= a0
S E
=0
S -
g
S [
20
A e
)
[P pp—
k3
e
O
=
(=9
A)
10

Observed TVCs (log CFU/cm?)

(=]

— o W ks L N 1 0 O

1

2
Observed Pseudomonas spp.
(log CFU/cm?)

3

B)

4 56 78 910

Figure 5.6: Predicted versus observed TVCs (A) and Pseudomonas spp. counts (B) by the PLS-R
models, based on FT-IR data for FCV (open symbols) and prediction (solid symbols). Solid line
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Figure 5.8: Beta (B) coefficients for PLS-R model developed on FT-IR spectral data for chicken
thigh fillets.
5.3.3. Classification Models for the Assessment of Spoilage

The performance of the selected models to classify the samples in the respective
quality classes (fresh or spoiled) through MSI spectral data is demonstrated by the
confusion matrix (Table 5.4) for LDA, QDA, SVM, and QSVM. For the LDA model, 219
out of 330 samples and 49 out of 72 samples were correctly classified in both quality classes

during model development (FCV) and prediction, respectively, providing overall accuracy
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of 66.4% and 68.1%. During FCV process, sensitivity and specificity were 59.4% and
73.3%, respectively, whereas for model prediction the calculated sensitivity and specificity
were 76.0% and 63.8%, respectively. For QDA model, 214 out of 330 samples (overall
accuracy 64.8%) and 50 out of 72 samples (overall accuracy 69.4%) were classified in the
correct class for model FCV and prediction, respectively. Moreover, sensitivity and
specificity were estimated at 57.6% and 72.8%, respectively, for model FCV and at 73.3%
and 66.7%, respectively, for the model prediction. It is notable that improved results were
obtained by the application of SVM model where 301 out of 330 samples (overall accuracy
91.2%) and 68 out of 72 samples (overall accuracy 94.4%) were correctly classified in the
respective quality class during model development (FCV) and prediction, respectively. In
addition, for SVM model sensitivity and specificity, percentages exhibited their highest
values at 94.4% during external validation. Likewise, for QSVM implementation, 287 from
330 samples and 66 from 72 samples were efficiently identified during model development
and prediction, with an overall accuracy of 87.0% and 91.7%, respectively. For this model,
sensitivity and specificity percentages were calculated at 83.7% and 89.6% for model FCV,
while for external validation the estimated values were 94.1% and 89.5%, respectively.

Table 5.4: Confusion matrix and performance indexes of the developed classification models

(LDA, QDA, SVM, QSVM) regarding sensory quality discrimination of chicken thigh samples
based on MSI spectral data.

. Sensitivity o
Model Procedure O/P Fresh  Spoiled Overall %) Specificity (%)
(o]
Fresh 98 67 59.4 73.3
330
FCV Spoiled 44 121 73.3 59.4
Overall accuracy (%) 66.4
LDA
Fresh 19 6 76.0 63.8
72
Prediction Spoiled 17 30 63.8 76.0
Overall accuracy (%) 68.1
] Sensitivity o
QDA Procedure O/P Fresh  Spoiled Overall %) Specificity (%)
(o]
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Fresh 99 73 57.6 72.8

330
FCV Spoiled 43 115 72.8 57.6
Overall accuracy (%) 64.8
Fresh 22 8 73.3 66.7
72
Prediction Spoiled 14 28 66.7 73.3
Overall accuracy (%) 69.4
) Sensitivity o
Procedure O/P Fresh  Spoiled Overall %) Specificity (%)
(0]
Fresh 130 17 88.4 93.4
330
FCV Spoiled 12 171 93.4 88.4
SVM
Overall accuracy (%) 91.2
Fresh 34 2 94.4 94.4
72
Prediction Spoiled 2 34 94.4 94.4
Overall accuracy (%) 94.4
) Sensitivity o
Procedure  O/P Fresh  Spoiled Overall (%) Specificity (%)
(0]
Fresh 123 24 83.7 89.6
330
FCV Spoiled 19 164 89.6 83.7
QSVM
Overall accuracy (%) 87.0
Fresh 32 2 924.1 89.5
72
Prediction Spoiled 4 34 89.5 94.1

Overall accuracy (%) 91.7




Regarding FT-IR classification models (Table 5.5), the LDA model classified
correctly 240 out of 328 samples and 44 out of 63 samples during model FCV and external
validation, respectively, with overall accuracy reaching 73.2% and 69.8%, respectively.
Sensitivity and specificity percentages were 64.1% and 84.7% for model development,
whereas for external validation these performance metrics were 70.4% and 69.4%,
respectively. For QDA method, 216 out of 328 samples and 45 out of 63 samples were
classified at their proper quality group during FCV and external validation, respectively.
QDA model enhanced performance against the remaining three models was underlined by
its ability to classify fresh samples from an independent validation data set with sensitivity
and specificity values of 70.0% and 72.7%, respectively. For QSVM model, 284 out of 328
samples were correctly classified during model development (overall accuracy 86.6%,
sensitivity 82.4%, specificity 90.0%), whereas only 38 from 63 samples were located in
their correct class during model prediction (overall accuracy 60.3%, sensitivity 55.8%,
specificity 70%). Finally, for SVM model 287 out of 328 samples were accurately
classified during model FCV (overall accuracy 87.5%, sensitivity 90.7%, specificity
85.1%), whereas during model prediction 44 out of 63 samples were classified correctly in
their respective quality class (overall accuracy 69.8%, sensitivity 63.4%, specificity
81.8%).

Table 5.5: Confusion matrix and performance indexes of the developed classification models

(LDA, QDA, SVM, QSVM) regarding sensory quality discrimination of chicken thigh samples
based on FT-IR spectral data.

) Sensitivity Specificity
Model Procedure o/P Fresh Spoiled Overall

(%) (%)
Fresh 118 66 328 64.1 84.7
FCV Spoiled 22 122 84.7 64.1

Overall accuracy (%) 73.2

LDA

Fresh 19 8 63 70.4 69.4
Prediction  Spoiled 11 25 69.4 70.4

Overall accuracy (%) 69.8
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Procedure o/P Fresh Spoiled Overall

Sensitivity Specificity

(%) (%)
Fresh 118 87 328 57.6 79.7
FCV Spoiled 25 98 79.7 57.6
QDA
Overall accuracy (%) 65.9
Fresh 21 9 63 70.0 72.7
Prediction  Spoiled 9 24 72.7 70
Overall accuracy (%) 714
) Sensitivity Specificity
Procedure Oo/P Fresh Spoiled Overall
(%) (%)
Fresh 127 13 328 90.7 85.1
FCV Spoiled 28 160 85.1 90.7
SVM
Overall accuracy (%) 87.5
Fresh 26 15 63 63.4 81.8
Prediction  Spoiled 4 18 81.8 63.4
Overall accuracy (%) 69.8
) Sensitivity Specificity
Procedure o/P Fresh Spoiled Overall
(%) (%)
Fresh 122 26 328 82.4 90.0
FCV Spoiled 18 162 90 82.4
QSVM
Overall accuracy (%) 86.6
Fresh 24 19 63 55.8 70.0
Prediction  Spoiled 6 14 70.0 55.8
Overall accuracy (%) 60.3
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It needs to be noted that MSI-SVM and FT-IR-QDA combinations could not only
efficiently classify samples in their correct quality class, with overall accuracy of 94.4%
and 71.4%, respectively, but, simultaneously, the misclassified samples were equally
distributed in the safe and in the dangerous side, with specificity reaching 94.4% and
72.7%, respectively. Another interesting finding from MSI-SVM model was the low
difference in the overall accuracy percentages (91.2% vs. 94.4%) observed between model
FCV and prediction, indicating robust model performance. Furthermore, the same trend
was observed for sensitivity and specificity (94.0% in both cases). Previous researchers
reported that SVMs could result in the development of robust regression and classification
models for poultry products (Kumar & Karne, 2017; Fengou et al., 2021a). SVM and
QSVM models were more suitable for MSI spectral data, with SVM linear classifiers
presenting the best separation of data’s hyperplane (Kumar & Karne, 2017). In contrast,
probability parametric LDA and QDA models which assume that each class could be
described as a multivariate normal distribution (Friedman et al., 2009; Kumar & Karne,
2017), exhibited better discrimination of classes for FT-IR data. This is in good agreement
with other studies, where LDA was proposed as a supervised multivariate classification
method in FT-IR spectroscopic analysis of meat samples (Candogan et al., 2021). Even
though data matrices from MSI and especially FT-IR presented high dimensionality, there
was no evident class imbalance according to the prediction performance of all developed
models (Tables 5.4 and 5.5).
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Chapter 6: Assessment of chicken marinated souvlaki
microbial spoilage and quality though spectroscopic and
biomimetic sensors and data fusion

Abstract
Fourier Transform Infrared spectroscopy (FT-IR), Multispectral Imaging (MSI) and

electronic nose (E-nose) have been implemented individually and in combination, in an
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attempt to investigate and hence identify the complexity of spoilage phenomenon in
poultry. For this purpose, chicken marinated souvlaki samples were subjected to storage
experiments (isothermal conditions: 0, 5 and 10 °C; dynamic temperature condition: 12 h
at 0°C, 8 hat 5°C and 4 h at 10 °C) under aerobic conditions. At pre-determined intervals
samples were microbiologically analyzed for the enumeration of Total Viable Counts
(TVCs) and Pseudomonas spp., while in parallel FT-IR, MSI and E-nose measurements
were acquired. The microbiological results of Pseudomonas spp. were fitted to predictive
growth models (two-step and one-step modeling) in order to investigate the impact of
temperature on the population dynamics of Pseudomonas spp. on this marinated product.
Quantitative models of Partial Least Squares- Regression (PLS-R) and Support Vector
Machines-Regression (SVM-R) (for each sensor separately and in combination) were
developed and validated for the estimation of TVCs on chicken marinated souvlaki.
Furthermore, classification models of Linear Discriminant Analysis (LDA), Linear-
Support Vector Machines (LSVM) and Cubic Support Vector Machines (CSVM),
classifying samples in 2 (fresh or spoiled) and 3 (fresh, semi- fresh and spoiled) quality
classes were optimized and evaluated. Model performance was assessed with data obtained
by six different analysts and three different batches of marinated souvlaki. The results from
the predictive growth models demonstrated that both modeling approaches could predict
accurately the growth behavior of Pseudomonas spp. (RMSE< 0.341 log CFU/Q).
Concerning the estimation of TVCs via PLS-R model, the most efficient prediction was
obtained with MSI spectral data (RMSE: 0.998 log CFU/g) as well as with combined data
from FT-IR/MSI (RMSE: 0.983 log CFU/g). From the developed SVM models, those
derived from MSI and FT-IR/MSI data accurately estimated TVCs with RMSE values of
0.973 and 0.999 log CFU/qg, respectively. For the 3-classes models, MSI data coupled to
LSVM model as well as combined MSI/E-nose data analyzed by LDA model exhibited
overall accuracy percentages below 60 %. On the contrary, for the 2-classes models,
combined data from FT-IR/MSI instruments analyzed by CSVM algorithm provided
overall accuracy of 87.5 %, followed by MSI spectral data analyzed by LSVM with overall
accuracy of 80 %. The abovementioned findings highlighted the efficacy of those non-
invasive rapid methods individually and in combination for the assessment of spoilage on

chicken marinated products regardless of the impact of the analyst, season or batch.
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6.1 Introduction

Spectroscopic methods as Fourier Transform Infrared spectroscopy (FT-IR) and
Multispectral Imaging (MSI) have been investigated in tandem with regression and
classification algorithms for their effectiveness in quality assessment of meat and poultry
(Berrueta et al., 2007; Kamruzzaman et al., 2016; Candogan et al., 2021). FT-IR vibrational
spectroscopy has been recommended as an efficient solution for the discrimination of intact
chicken breast muscle during spoilage via Partial Least Squares- Discriminant analysis
(PLS-DA) and Outer Product Analysis (OPA) (Alexandrakis et al., 2012). PLS-R coupled
to FT-IR successfully detected the microbial loads of chicken breast (Ellis et al., 2002;
Vanconcelos et al., 2014). Furthermore, FT-IR analysis was proved an appropriate tool for
the identification of chicken meat among other raw types of food by PLS-R and Support
Vector Machines (SVMs) classification based on FT-IR data (Tsakanikas et al., 2020).
Regarding MSI analysis, it has been proposed as a reliable method in tandem with PLS-R
model development for the estimation of microbial groups associated with spoilage of
chicken meat (Feng & Sun, 2013a, b; Ye et al., 2016). Likewise, MSI analysis and PLS-R
implementation predicted accurately the time from slaughter in four poultry products
(Spyrelli et al., 2020). Nevertheless, this non-destructive method has been suggested as an
alternative for the detection of food fraud in minced pork adulterated with chicken (Fengou
et al., 2021a). Both MSI and FTIR analysis have been investigated for their ability to
feasibly predict TVCs and Pseudomonas spp. on the surface of stored chicken thigh fillets
while they could accurately classify chicken samples in 2 quality classes (Spyrelli et al.,
2021).

Another important indicator related to microbiological spoilage in food is the volatile
profile associated with the metabolic activity of the microbiota (Ghasemi-Varnamkhasti et
al., 2009). The electronic nose (E-nose) is a biomimetic technology describing the olfactory
system of humans and it comprises an array of electronic chemical sensors recording odors
via volatiles (Ghasemi-Varnamkhasti et al., 2009; Shi et al., 2019; Song et al., 2013). The
main advantage of this method over spectroscopic methods is the low number of derived
results which are more convenient for multivariate data analysis due to the reduced noise
in the data set (Loutfi et., 2015; Di Rosa et al. et al., 2017). This environmentally friendly

approach has been examined for its efficacy to assess quality and microbial spoilage in red
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meat and poultry using a variety of regression and discrimination models (Ghasemi-
Varnamkhasti et al., 2010; Kutsanedzie at al., 2019; Wojnowski et al, 2019). E-nose and
PLS-R implementation has been proposed for the estimation of chicken fat (Rajaméki et
al., 2006; Song et al., 2013). Moreover, E-nose has been successfully employed in
combination with SVM-R model for the prediction of TVCs on chilled pork (Wang et al.,
2012) and on the indigenous microbiota of beef fillets (Papadopoulou et al., 2013). Apart
from the development of SVM models, E-nose signals have been used in the development
of back propagation neural networks (BPNN) predicting TVCs on chicken (Timsorn et al.,
2016), as well as in the implementation of a variety of machine learning models for the
determination of microbial groups in minced meat (Estelez-Lopez et al., 2017). In addition,
E-nose data analyzed with LDA and BP-ANN models were evaluated for their potential to
detect pork freshness via the volatile colorific fingerprint obtained during spoilage of pork
samples (Li et al., 2014).

However, each of these rapid and non-invasive methods has its own advantages,
weaknesses and limitations concerning the monitoring and controlling procedures of
quality and safety in the meat industry (Di Rosa et al. et al., 2017). Taking into
consideration the complexity of the food matrix during meat spoilage in terms of physical,
biological and chemical properties, a combination of sensor features could capture more
effectively both internal (metabolites, chemical compounds) and external (color, smell,
texture, tenderness) alterations and thus identify more accurately quality defects in food
(Huang et al., 2014; Kutsanedzie at al., 2019). In this context, data fusion from different
sensors has been recently investigated for its synergistic role to the improvement of model
classification and/or prediction potential (Borras et al., 2015). For meat products, low and
mid fusion has been employed as two different data merge techniques for the development
of models predicting quality, freshness, microbial loads (Huang et al., 2014; Liu et al.,
2014) and adulteration (Alamprese et al., 2013). Classification models generated with E-
nose, Computer vision (CV) and artificial tactile (AT) data demonstrated accurate
predictions of pork and chicken freshness (Weng et al., 2020). The ensemble of spectral,
texture and color features via a classification model of k-mean-BFF was proven efficient
for the quality assessment in chicken meat (Suxia, 2018), whereas the combination of E-

Nose (colorimetric sensors array) and hyperspectral imaging successfully estimated
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chicken meat quality and freshness (Khulal et al., 2017). In addition, data fusion of two
spectral methods namely V-NIR and SWIR was suggested as feasible solution for the
tracing of foreign materials (FMs) on the surface of chicken breast fillets (Chung & Yoon,
2021).

The aim of this study was the development of quantitative and qualitative models
rapidly assessing spoilage on chicken marinated souvlaki via MSI, FT-IR and E-nose
measurements both individually and in combination (mid-fusion). PLS-R and SVM-R
models were developed for the determination of TVCs on chicken marinated souvlaki.
Further on, LDA, LSVM and CSVM classification models were developed on sensors data
(both individually and in combination) for the detection of three and two quality classes,
respectively. Model performance assessment with data from independent batches and
analysts confirmed the efficacy of nondestructive techniques and their feasibility to be

performed even by untrained personnel

6.2 Materials and Methods

6.2.1 Experimental design

Chicken marinated souvlaki (n= 209, ca 48.89 + 1.3 g) samples were transferred from
a Greek poultry industry to the laboratory (within 24 h from slaughter and marinade
process), placed in styrofoam trays (two portions per tray) and wrapped with cling film.
After packaging, samples were stored aerobically at three isothermal conditions, namely 0,
5, and 10 °C (two independent experiments) and one dynamic temperature profile (12 h at
0°C,8hat5°Cand 4 hat 10 °C) in high precision (+ 0.5 °C) incubation chambers (MIR-
153, Sanyo Electric Co., Osaka, Japan), where temperature was monitored every 20 min
by data loggers (CoxTracer, Belmont, N.C.). At predetermined intervals, samples were
analyzed microbiologically (enumeration of TVCs and Pseudomonas spp.) while
simultaneously FT-IR, MSI and E-nose data were acquired. At each sampling point,
duplicate samples stored at the same isothermal condition (n= 2x2) and triplicate samples
stored at the dynamic temperature profile (n= 3) were subjected to the above-mentioned
analyses. The microbiological results were expressed as log CFU/g and were used for the
development of primary and secondary predictive models (two-step and one-step

modelling approach) for Pseudomonas spp. Further on, quantitative and qualitative models
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assessing microbial spoilage and quality on chicken marinated souvlaki were developed
and validated. PLS-R and SVM-R models were employed for the estimation of TVCs for
each sensor separately. Moreover, mid-level fusion (pre- processing of data via Principal
Component Analysis, PCA and afterwards employment of PLS-R) was performed for the
evaluation of the combined use of MSI, FT-IR and e-nose sensors for TVCs assessment.
In the same context, classification models of Linear Discriminant Analysis (LDA), Linear
Support Vector Machines (LSMV) and Cubic Support Vector Machines (CSVM) were
evaluated for their efficacy to identify 3 and 2 spoilage classes via MSI, FT-IR and E-nose
data (in combination and separately).

Validation storage experiments at aerobic isothermal conditions (0, 4, 5, 8 and 10 °C)
were undertaken by different analysts (n= 6) with three different chicken marinated
souvlaki batches. MSI, FT-IR and E-nose measurements were collected and correlated to
the respective TVCs results. Quantitative and qualitative developed models were fitted to

the obtained experimental data in order to evaluate their performance.

6.2.2 Microbiological analysis

A portion of 25 g of chicken marinated souvlaki (chicken thigh fillet, sodium
chloride, sodium acetate, sodium citrate, enzyme tenderizer and ascorbic acid) was
transferred aseptically to a stomacher bag containing 225 ml of sterile quarter strength
Ringer’s solution (Lab M Limited, Lancashire, UK) and was homogenized by a Stomacher
device (Lab Blender 400, Seward Medical, UK) for 60 s. From this 1:10 sample solution,
serial decimal dilutions were prepared using the same diluent and 0.1 ml of the appropriate
dilution was spread to the following media: a) Tryptic glucose yeast agar (Plate Count
Agar, Biolife, Milan, Italy) for the enumeration of total viable counts (TVCs) incubated at
25°C for 72 h; and b) Pseudomonas agar base (LAB108 supplemented with selective
supplement Cetrimide Fucidin Cephaloridine, Modified C.F.C. X108, LABM) for the

determination of the presumptive Pseudomonas spp. counts incubated at 25°C for 48 h.
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6.2.3 Predictive growth models for TVCs and Pseudomonas spp. in chicken marinated
samples
6.2.3.1 Two-step modeling approach

The primary model of Baranyi and Roberts (1994) was was fitted to the observed
TVCs and Pseudomonas spp. counts at each storage temperature in order to determine the
kinetic parameters of microbial growth, namely the maximum specific growth rate (umax),
the lag phase duration (A), and the maximum population density (Yend) via Microsoft®
Excel Add-in curve-fitting program DMFit, Version 3.5 (Institute of Food Research,
Norwich, UK). Afterwards, the influence of storage temperature on Pseudomonas spp. pmax
parameter was investigated by fitting Ratkowsky growth-temperature secondary model
(Ratkowsky, 1983) to the experimental data (Equation 6.1)

Vlmax=b (T- Tmin) ~ (6.1)

Where, b is a regression coefficient that depends on environmental factors and Tmin is the

theoretical minimum temperature for microbial growth.

6.2.3.2 One-step modeling approach

One- step modeling (Huang et al., 2016) was also employed for the determination
of the primary and secondary model parameters for Pseudomonas spp. on chicken
marinated souvlaki. Huang full growth primary model (Huang, 2013) (equations 6.2- 6.4)
and the secondary Ratkowsky growth-temperature model (Ratkowsky, 1983) were fitted
to the obtained Pseudomonas spp. counts (equation 6.1). The two models were
simultaneously applied to the experimental data via IPMP-Global Fit software (USDA
Agricultural Research Service, Eastern, Regional Research Center, Wyndmoor, PA).

Y(t) = Yo + Ymax — In [eY0 + (eYmax — e¥0) e pmaxB(1)] (6.2)

14402

1 )
B(H)=t+1In""—— (6.3)

eA

= (6.4)

pumax™

where: Y(t) is the base-10 logarithms (logio) of the real time microbial counts (log CFU/Q)
at the respective storage time t (h), yo is the initial base-10 logarithms (logio) of the

microbial counts (log CFU/g), Ymax is the final base-10 logarithms (logio) of the microbial
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counts (log CFU/g), umax is the specific growth rate of the microbial group (h), b, A and
m are regression coefficients, A is the lag phase (h) and B(t) is the transition function.
External validation for both modeling approaches was undertaken with an
experimental dataset of Pseudomonas spp. counts (n=33, different batch) from a spoilage
experiment on chicken marinated souvlaki at a dynamic temperature profile (12 h at 0 °C,
8hat5°Cand4 hat 10 °C). Model performance evaluation was performed using the bias

factor (Bf) and accuracy factor (As) indices (Ross, 1996).

6.2.4 Sensors

6.2.4.1 Spectral acquisition

Chicken marinated souvlaki samples were subjected to MSI analysis using the
Videometer- Lab instrument (Videometer A/S, Herlev, Denmark) which captures surface
reflectance of samples from 18 monochromatic wavelengths (405-970 nm), namely 405,
435, 450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 850, 870, 890, 910, 940, and 970
nm. The description of this sensor as well as the process of image acquisition are
thoroughly discussed in previous studies (Dissing et al., 2013). The final outcome of this
acquisition is a data cube containing spatial and spectral data for each sample of size
mxnx18 (where mxn is the image size in pixels) (Tsakanikas et al., 2015). Prior to data
analysis, an extra step is needed where the Region of interest (ROI) on the samples surface
is separated from the surrounding area containing non useful information. For each image,
the mean reflectance spectrum was estimated by the calculation of the average value and
the standard deviation of the intensity of pixels within the ROI at each wavelength. For this
purpose, Canonical Discriminant Analysis (CDA) was applied to each sample and for each
wavelength individually through Videometer-Lab version 2.12.39 software (Videometer
A/S, Herlev, Denmark).

FT-IR analysis was implemented using a ZnSe 45 HATR (Horizontal Attenuated
Total Reflectance) crystal (PIKE Technologies, Madison, Wisconsin, United States) and
an FT-IR-6200 JASCO spectrometer (Jasco Corp., Tokyo, Japan). The ATR crystal shows
a refractive index of 2.4 and a depth of penetration of 2.0 um at 1000 cm™. Spectra were

obtained in the wavenumber range of 4000 to 400 cm™ using Spectra Manager Code of
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Federal Regulations (CFR) software version 2 (Jasco Corp., Tokyo, Japan), by

accumulating 100 scans with a resolution of 4 cm™ and a total integration time of 2 min.

6.2.4.2 Electronic nose (E-nose)

The Alpha M.O.S a-FOX sensor array system 3000 (Alpha M.O.S, Toulouse,
France) with 12 metal oxide sensors was used in this study. The system consists of a
sampling apparatus, an array of sensors, an air generator equipment (F-DGSi, Evri, France)
and software (Alpha Soft \V12.46) for data recording. The sensor array contains 12 metal
oxide sensors divided into T, P and LY types, namely: LY2/LG, LY2/G, LY2/AA,
LY2/GH, LY2/gGTL, LY2/gGT, T30/1, P10/1, P10/2, P 40/1, T 70/2 and PA/2 (Lin et al.,
2013). Prior to injection, 2 g of sample (2.013 + 0.002 g) were placed in a 2.5 ml vial,
sealed with aluminum caps and heated at 50 °C for 20 min in a thermoblock 2t static
headspace sampler (Teknokroma Analitica S.A., Barcelona, Spain). A volume of 500 pl
from the generated headspace was injected to the e-nose with the injection rate being 500
ul/s. Method parameters were defined as follows: a) acquisition duration: 120 s; b)
acquisition period: 1 s; c) acquisition time: 800 s; and d) gas flow (air): 150 ml/min. The
signal response of each array was expressed in the form of relative resistance changes
(Delta R/R0).

6.2.5 Data processing

MSI spectral data were consisted of 18 mean values and the respective 18 standard
deviations of the intensity in pixels for each observation/measurement. Spectral data were
preprocessed by Standard Normal Variance (SNV) transformation to remove collinear and
“noisy” data (Bi et al., 2016). The same transformation was applied to e-nose data which
contained the relative resistance for each sensor. For FT-IR spectral data, the Savinsky-
Golay second derivative transformation (second order polynomial, 2" derivative, 9-point
window) was applied on spectra at wavelengths in the range of 900 to 2000 cm™ for the
reduction of baseline shift and noise (Alamprese et al., 2016).
Both qualitative and quantitative models were calibrated and optimized (k- fold cross
validation, k= 10) with data from the storage experiments at 0, 5, 10 °C and the dynamic
temperature profile (n= 169), while model external validation was performed by

independent data (n= 40, 3 batches, 6 analysts) from storage experiments at aerobic
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isothermal (0, 4, 5, 8, 10 °C) conditions. For the development of classification models based
on 3 quality classes, discrimination was based on TVC values as follows: a) fresh (class 1:
22.48%): TVCs<6.0 log CFU/g; b) semi-fresh (class 2: 18.93%): 6.0<TVC<7.0 log CFU/g;
and c) spoiled (class 3: 58.58%): TVC>7.0 log CFU/g. For the 2 quality class classification
models, samples were defined as fresh (class 1: 42.01%) and spoiled (class 2: 57.99%)
when TVCs were below or above 7.0 log CFU/g, respectively. The developed classification
models were evaluated for their performance with data from independent experiments,
namely: a) for the 3 class-model (n=40; Class 1: 14 samples (35%); Class 2: 8 samples
(20%); Class 3: 18 (45 %)), and b) for the 2 class-model (n=40; Class 1: 22 samples (55
%); Class 2: 18 samples (45 %)).

6.2.6 Model development and performance assessment

For the development of PLS-R models for each sensor individually and in
combination was performed using the Unscrambler© ver. 9.7 software (CAMO Software
AS, Oslo, Norway). For the single sensor models, the acquired sensor data were correlated
to TVCs via the development of PLS-R models. Principal Component Analysis (PCA) was
applied to sensors data separately and the derived PCA scores were merged for the
development of 2-sensors and 3-sensors PLS-R models (Marquez et al., 2016). Similarly,
Support Vector Machines-Regression (SVM-R) was employed for the estimation of TVCs,
via MATLAB 2012a software (The MathWorks, Inc., Natick, Massachusetts, USA), where
single sensor as well as 2-sensor and 3-sensor models were performed and validated. The
performance of the developed PLS-R and SVM-R models was evaluated using the
correlation coefficient (r) and Root Mean Squared Error (RMSE: log CFU/g) indices.
Furthermore, classification models of LDA, LSVM and CSVM were developed via
MATLAB 2012a software and assessed for their accuracy using the following performance
metrics: overall accuracy (%), sensitivity (%) and precision (%) (Sokolova & Lapalme,
2009).

6.3 Results

6.3.1 Microbiological results
The population dynamics of TVCs and Pseudomonas spp. during aerobic storage at

isothermal conditions and the dynamic temperature profile are presented in Figures 6.1
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and 6.2, respectively. The initial TVCs and Pseudomonas spp. counts in chicken marinated
samples stored at isothermal conditions were enumerated at 5.37 (= 0.26) and 5.01 (£ 0.01)
log CFU/qg, respectively, whereas these microbial groups reached 5.26 (£0.06) and 4.43
(£0.10) log CFU/g in samples from the dynamic temperature profile. Storage temperature
had a great impact on TVCs and Pseudomonas spp. behavior in samples, with chickens’
spoilage occurring at different time points. Specifically, TVCs reached the threshold of
spoilage (7.0 log CFU/g) (Galarz et al., 2016) at 0°C in 216 h (7.41 + 0.74 log CFU/qg), at
5°C in 72 h (7.07 £ 0.73 log CFU/g) and at 10 °C in 42 h (7.01 + 0.6 log CFU/g). The
population of TVCs in samples maintained at the dynamic temperature profile followed
similar growth behavior with the samples stored at 5 °C, as their counts reached 6.89
(£0.42) log CFU/g in 96 h. Likewise, Pseudomonas spp. counts which are associated to the
production of slime and off-odors when they reach 7.0 log CFU/g in meat products
(Gospavic et al., 2008; Rouger et al., 2017), reached this limit at 0°C in 216 h (7.06 + 1.04
log CFU/g), at 5°C in 96 h (6.86 + 0.76 log CFU/g), at 10 °C in 48 h (7.61 £ 0.38 log
CFU/g) and at the dynamic temperature profile in 120 h (6.46 + 0.81 log CFU/g).
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Figure 6.1: Mean (+ SD, n=4) TVCs (A) and Pseudomonas spp. counts (B) in chicken marinated
souvlaki samples during storage at 10 (triangle symbol), 5 (square symbol) and 0 (cycle symbol)
°C.
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Figure 6.2: Mean (= SD, n=3) TVCs (square symbol) and Pseudomonas spp. counts (triangle

symbol) in chicken marinated souvlaki samples and recorded temperature (°C) (solid line) during
storage at the dynamic temperature profile (12 hat 0°C, 8 hat 5°C and 4 h at 10 °C).
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6.3.2 Predictive growth models for TVCs and Pseudomonas spp.

6.3.2.1 Two-step modeling: Primary growth models for TVCs and Pseudomonas spp. and
secondary model growth-temperature for Pseudomonas spp.

The influence of temperature on the microbiota of chicken marinated souvlaki was
further investigated and the growth kinetic parameters (max, h™'; A: lag phase, h, ymax (log
CFU/qg) of TVCs and Pseudomonas spp. are presented in Table 6.1. The estimated lag
phase of TVCs and Pseudomonas spp. was prolonged as storage temperature decreased,
with the maximum value obtained for samples stored at 0 °C (TVCs: 80.09+14.95 h and
Pseudomonas spp.: 93.49+£10.67 h). Reversibly, umax parameter reached its lowest value
for TVCs and Pseudomonas spp. for samples stored at 0 °C (TVCs: 0.035+0.002 h?,
Pseudomonas spp.: 0.048+0.011 h) and the highest one for samples stored at 10 °C
(TVCs: 0.123+0.028 h', Pseudomonas spp.: 0.310+0.343 ht). The kinetic parameters for
TVCs and Pseudomonas spp. obtained in this work are in agreement with previous studies
on stored chicken products (Gospavic et al., 2008; Lytou et al., 2016). Moreover,
Pseudomonas spp. growth followed similar behavior as TVCs population, demonstrating
once more Pseudomonas spp. dominant role in poultry’s spoilage under aerobic conditions
(Bruckner et al., 2013; Raab et al., 2018). Further on, the Ratkowsky model was fitted to
the abovementioned pmax values of Pseudomonas spp. and the respective parameters of b
and Tmin values were calculated at 0.013 and -16.44 °C, respectively. For this secondary
model fitting, the value of RMSE was 0.054 log CFU/g and the coefficient of determination
(R?) was 0.811.

Table 6.1: Baranyi and Roberts (1994) model parameters (lag phase: A, h; maximum specific
growth: pmax, h't; maximum number of counts: ymax, log CFU/g) and performance metrics (standard

error of fitting: se(fit); coefficient of determination: R?) obtained from DMFIT fitting to TVCs and
Pseudomonas spp. counts in stored chicken marinated souvlaki.

Microbial Temperature 2, lag phase (h) pmax (h?) ymax(log se(fit) (Minimum- R?
°C CFU/ maximum
group (C) 9 ximum) (Minimum-
maximum)
TVC 0 80.09+14.95 0.035+0.002  8.96+0.39 0.187-0.410 0.888-0.978
) 38.26+1.28 0.090+£0.022  9.49+0.23 0.218-0.350 0.953-0.980
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10 8.49+6.63 0.123+0.028  9.48+0.07 0.217-0.440 0.941-0.980

Pseudomonas 0 93.49+10.67 0.048+0.011  8.80+0.44 0.351-0.626 0.844-0.950
SPP- 5 27.99+£23.40 0.079+£0.042  9.70+0.19 0.333-0.491 0.920-0.968

10 26.39+12.45 0.310+£0.343  9.10+0.29 0.385-0.590 0.864-0.952

6.3.2.2 One step modeling approach

The estimated kinetic parameters of Huang full growth model (equations 6.2- 6.4)
and Ratkowsky growth-temperature model (equation 6.1) via the IPMP-Global Fit
software (USDA Agricultural Research Service, Eastern, Regional Research Center,
Wyndmoor, PA) are available in Table 6.2, while the calculated umax and lag phase
parameters of Pseudomonas spp. are provided in Table 6.3. RMSE value for this one-step
approach was 0.341 log CFU/g while the degrees of freedom were 28. Specifically,
Pseudomonas spp.pmax parameter via one step modeling presented its maximum value at
10 °C (0.138 h'!) and the minimum value at 0 °C (0.038 h'). Pseudomonas spp. lag phase
was extended for the samples at 0 °C (84.4 h) while for samples at 10 °C lag phase
decreased to 13.81 h. These values are in compliance with the existing literature for stored
chicken products (Dominquez & Shaffner, 2007). Concerning b coefficient and Tmin (0r a
and T, for one step modeling) of Ratkowsky model, their values were established at
0.02+0.01 °C and -11£5.67 °C.

Table 6.2: Kinetic parameters estimated and statistics by Huang full growth primary model and the
Ratkowsky growth model for temperatures.

Parameters Value Std-  t-value p-value
Error

a 0.02 0.01 2.39 2.40E-02

TO -11.00 5.67 -1.94 6.21E-02
A -0.15 4.33 -0.03 9.73E-01
m 1.40 1.47 0.95 3.49E-01
y0, T0.0 4.87 0.50 9.83 1.40E-10
y0, T5.0 4.95 0.49 10.04 8.89E-11
y0, T10.0 4.86 0.76 6.37 6.73E-07
ymax 9.24 0.36 25.88 4.29E-21
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Table 6.3: Lag phase (A) and pmax Values estimated by Huang full growth primary model for
Pseudomonas spp. growth on chicken marinated souvlaki at 0, 5 and 10 °C.

Storage temperature  pmax A (h)

(°C) (h)
0 0.038 844
5 0.080 296
10 0.138 138

6.3.2.3 Model’s external validation

Pseudomonas spp. observations from the dynamic temperature profile were fitted
to the Baranyi and Roberts (1994) dynamic growth model, where Yo, Ymax and ho were
defined based on the results of the two-step and the one step modeling process separately.
For the two-step model evaluation, the initial and the final Pseudomonas spp. counts were
4.92 + 0.16 log CFU/g and 9.19 £ 0.49 log CFU/g, respectively, while the ho parameter
(umax x lag phase) was calculated at 3.12. For the one-step modeling validation, yo and Ymax
were established at the same values as of two-step modeling whereas h, was defined at
3.75. The predictive versus the observed Pseudomonas spp. counts for the dynamic
temperature profile are provided in Figure 6.3 for the two modeling procedures. According
to Figure 6.3, none of the two models seemed to over or under estimate Pseudomonas spp.
counts, within the + 10 % limit area, during storage at this dynamic temperature profile.
The efficacy of the two models is demonstrated by the RMSE of prediction (Table 6.4)
that reached values below the microbial criterion of + 1.0 log CFU/g (Two step approach:
0.702 log CFU/g, One step approach: 0.653 log CFU/g). In addition, the calculated value
of the bias factors (Bf) was within the range of 0.96-1.1 for both models indicating
satisfactory prediction (Lianou et al., 2020) of Pseudomonas spp. counts, where only 7.8
% and 8.8 % of predictions through the two and the one step model being inaccurate (Table
6.4).
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Figure 6.3: Observed Pseudomonas spp. counts (cycles) at chicken marinated souvlaki samples
stored aerobically at a dynamic temperature profile. Solid line corresponds to the predictive model,
dashed lines correspond to the + 10 % limit area and solid blue line corresponds to temperature
alterations during storage.

Table 6.4: Performance metrics (Root Mean Squared Error, RMSE; Bias factor, By, Accuracy
factor, As) of the evaluation of the two-step and one-step model predicting Pseudomonas spp.
growth in stored chicken marinated souvlaki.

Performance metrics

Model RMSE (log CFU/g) Br A
Two-step 0.702 0.959 1.088
model
One-step 0.653 0.967 1.078
model
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6.3.3 Spectra and E-nose signals

E-nose signal response (intensity) per sensor is shown in Figure 6.4A for a fresh (0h)
and a spoiled (240h) sample of chicken marinated souvlaki stored at 5°C. Differences in
the intensity between fresh and spoiled samples also occurred in Figure 6.4B for the six
sensors, namely: PA/2, T30/1, P10/1, P10/2, P40/1 and T70/2. The first sensor is linked
with changes in ethanol, ammonia and organic amines (Lin et al., 2013) which are due to
Pseudomonas spp. proteolytic activity during meat spoilage (Nychas et al., 2008). P40/1
sensor is related to the presence of fluorine (Wang et al., 2012; Xu et al., 2014). The
remaining sensors T30/1, P10/1, P10/2, T70/2 could be associated with organic solvents,
hydrocarbons, methane and aromatic compounds, respectively (Xu et al., 2014) and
subsequently to Pseudomonas spp. biofilm formation during meat spoilage (Wang et al.,
2012; Wickramasinghe et al., 2019).
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Figure 6.4: Signal (intensity) from E-nose analysis for fresh (blue line: 0 h) and spoiled (orange
line: 240 h at 5°C) chicken marinated souvlaki sample (A); Signal from each sensor array during
spoiled samples (240 h at 5°C) acquisition (B).

FT-IR and MSI spectra for fresh (0 h at 0 °C) and spoiled (240 h at 5 °C) chicken
marinated souvlaki are represented in Figure 6.5. Regarding MSI spectra (Figure 6.5B),
reflectance (mean intensity in pixels) between fresh and spoiled samples differed at 660,
700, 850, 870, 890, 910 and 940 nm, where the region of 660 to 700 nm is related to
myoglobin in meat color as described elsewhere (Spyrelli et al., 2020). From FT-IR results

(Figure 6.5A), the absorption bands showing variations between fresh and spoiled samples
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were located in the areas of 1,000.87-1,150 cm™ and 1,476.24-1,692.2 cm. Specifically,
absorption bands at 1,541.81 and 1,629.55 cm™ were attributed to the metabolic products
(amide I and 1) associated with spoilage microorganisms as Pseudomonas spp. and their
metabolic activity on the surface of meat during spoilage (Bocker et al., 2007; Alexandrakis
etal., 2012).
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Figure 6.5: Reflectance from MSI spectra (405- 970 nm) (A) and absorbance from FT-IR spectra
(1,000- 2,000 cm™) (B) for fresh (blue line: Oh) and spoiled (orange line: 240h) chicken marinated
souvlaki at 5 °C.

6.3.4 Regression Models assessing microbial loads in chicken marinated souvlaki

6.3.4.1 PLS-R models

PLS-R model parameters (slope, offset) and their performance metrics (r, RMSE)
are presented in Table 6.5 for model optimization (full cross-validation) and evaluation
(prediction) for each sensor separately and in combination. MSI models exhibited the
highest performance during prediction with RMSE value of 0.998 log CFU/g which was
within the acceptable microbial prediction zone of + 1.0 log CFU/g. Likewise, FT-IR
model showed RMSE of prediction values of 1.025 log CFU/g. On the contrary, E-nose
model poorly predicted TVCs with a RMSE of prediction value being 1.921 log CFU/qg.
These findings confirmed the suitability of MSI and FT-IR sensors for the quantitative

assessment of TVCs in poultry products. Nevertheless, these non-invasive methods in
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tandem with PLS-R models have been proposed as rapid and efficient tools for the
detection of spoilage/freshness in meat and poultry (Kamruzzaman et al., 2013; Fengou et
al., 2019; Rahman et al., 2018). Regarding E-nose model, its performance was not in full
agreement with other studies where this sensor combined with PLS-R model successfully
predicted the microbial population on chicken stored in modified atmospheres (Rajaméki
et al., 2006) and the quality changes due to chicken fat oxidation (Song et al., 2013). This
discrepancy could be attributed to the marination treatment performed in this study and the
of organic acids such as ascorbic acid, sodium acetate and chloride in the headspace
injected to the instrument.

Table 6.5: PLS-R model parameters (slope, offset) and performance metrics (correlation
coefficient, r; Root Mean Squared Error, RMSE) for the estimation of TVCs in chicken marinated

souvlaki samples via MSI, FT-IR, E-nose analyses.

Sensor Process  Observations  Slope Offset Correlation Root Mean
coefficient, r Squared Error,
RMSE (log
CFU/g)
MSI FCV 169 0.776 1.698 0.868 0.815
Prediction 40 0.511 3.419 0.803 0.998
FT-IR FCV 169 0.62 2.87 0.746 1.099
Prediction 40 0.374 4.902 0.497 1.627
E-nose FCV 169 0.576 3.232 0.757 1.12
Prediction 40 0.044 6.145 0.245 1.921
MSI/FT- FCV 169 0.687 2.363 0.818 0.941
IR
Prediction 40 0.592 2.689 0.783 0.983
FT-IR/E- FCV 169 0.598 3.055 0.758 1.131
nose
Prediction 40 0.171 6.245 0.222 1.757
MSI/E- FCV 169 0.596 3.061 0.75 1.149
nose
Prediction 40 0.503 3.498 0.727 1.373
3-sensors FCV 169 0.596 3.056 0.751 1.148
Prediction 40 0.474 3.821 0.722 1.367

From the combined 2 sensor models, the combination of FT-IR/MSI outperformed

all the others (RMSE: 0.983 log CFU/qg), followed by MSI/E-nose sensor. This outcome
confirmed that HSI and/or MSI sensor data inclusion could improve E-nose prediction for

meat freshness assessment (Khulal et al., 2017; Weng et al., 2020). These methods
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combined with NIR have been reported as a reliable and alternative approach for the
estimation of Total Volatile Basic Nitrogen (TVB-N) in pork (Huang et al., 2014). The
combined 3 sensors model demonstrated a RMSE value of 1.367 during prediction while
for E-nose/FT-IR model this value was 1.757 log CFU/g. Additionally, correlation
coefficient (r) values ranged from 0.722 to 0.803, except E-nose that presented very low
value for this performance index (r= 0.245). The predicted versus observed TVCs for the
most efficient models, namely MSI and FT-IR/MSI, as well as for the combined 3 sensor
model are illustrated in Figure 6.6. According to Figure 6.6A and 6.6B, MSI and FT-
IR/MSI models could estimate TVCs within the acceptable area of = 1 log CFU/g, while
underestimation of TVCs was evident for samples exceeding 8 log CFU/g for the combined

3 sensor model (Figure 6.6C).
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Figure 6.6: Predicted versus observed TVCs resulted from PLS-R model development based on
data from: MSI (A), FT-IR/MSI (B) and combination of the 3 sensors (C). Solid symbols
correspond to FCV process and open symbols to prediction process. Solid line represents the line
of equity (y=x) while dashed lines indicate the limit area of + 1.0 log CFU/g.

The beta coefficients for the PLS-R models via MSI, FT-IR/MSI and the combined
3 sensors are provided in the linear equations 6.6-6.8. Likewise, the contribution of each
sensor to the estimation of TVCs via FT-IR/MSI model is presented in equation 6.7, where
the scores of the first 6 PCs from MSI data and PC1 scores from FT-IR, obtaining values
between 0.0991 to 14.800, were considered as significant based of Martens Uncertainty
test. On the other hand, for the combined 3 sensor model (equation 6.8), b coefficients
corresponding to PC4 scores from FT-IR data PCA analysis and to PC1, PC3 and PC4
scores from E-nose data PCA analysis, demonstrated significant contribution to models’
development and prediction performance.
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Y1vesmsi= 13.984 + 9.529 X Xmean,405nm — 6.481 X Xmean,505nm + 13.632 X Xmean,570nm — 6.533
X Xmean,630nm + 9.323 X Xmean64snm + 9.131 X Xmean,660nm — 8.421 X Xmean,700nm — 4.695 X
Xmean,850nm + 4.261 X Xmean,890nm — 6.315% Xsp 405nm—4.904 x Xsp 4350m + 9.588 * Xsp,470nm+
5.172x Xsps05nm + 3.452 X Xsps25nm — 8.106 X Xsps70nm — 3.473 < Xsp,gsonm + 4.979 %
XsD,940nm (6.6)

Y1vesFr-irmvsi= 7.374 — 1.606 % Xpcimsi — 3.963 x Xpcommst + 2.914 % Xpcamst + 2.794 %
Xecamsi +7.930 x Xpcsmst + 14.800 x Xpcemsi—0.091 x Xpc1/Fr-IR (6.7)

Y1vesa sensors= 7.548 — 0.274 x Xpcarr-IR + 2.068 X Xpc1/E-nose — 6.201 X Xpca/E-nose + 2.198
X XPC4/E-nose (6.8)
6.3.4.2 SVM-R models

The values of RMSE of prediction for the developed SVM-R models assessing
TVCs in chicken marinated souvlaki samples, calculated by k-cross validation (k-CV,
k=10), are presented in Table 6.6. From single sensor models, MSI achieved the most
efficient assessment of TVCs with a RMSE value of cross-validation and prediction of
0.832 and 0.973 log CFU/qg, respectively. Similarly, the combination of PCA scores derived
from FT-IR and MSI data demonstrated an acceptable linear SVM-R model with RMSE
value of prediction close to 1.0 log CFU/g. On the contrary, E-nose/FT-IR and MSI/E-nose
models showed RMSE values of prediction over 1.5 log CFU/g and therefore they were
considered not acceptable. The same outcome was observed for the 3-sensors model where
RMSE of prediction was 1.938 log CFU/g. E-nose and FT-IR individual models failed to
accurately predict TVCs providing RMSE values exceeding 1.921 log CFU/g. Even though
E-nose analysis provides the lowest data size among the other two spectroscopic methods
(Kutsanedzie et al., 2019), it seemed that microbial spoilage could be described more
thoroughly by the other two techniques. In general, the obtained results indicated that
SVM-R models performed similarly to PLS-R models, with the exception of FT-IR model,
where the SVM-regression approach presented higher RMSE values through k-CV and
prediction.

Table 6.6: SVM-R model performance (RMSE of cross-validation and prediction) from MSI, FT-
IR and E-nose sensors (individual and combined).
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Sensor

E-nose FT-IR MSI
Step k-CV Prediction k-CV Prediction k-CV Prediction
RMSE (log 1.311 1.921 1.846 3.583 0.832 0.973
CFU/g)
E-nose/FT-IR FT-IR/MSI MSI/E-nose
Step k-CV Prediction k-CV Prediction k-CV Prediction
RMSE (log 1.06 1.579 0.953 0.999 1.134 1.658
CFU/g)
3- sensors
Step k-CV Prediction
RMSE (log 1.022 1.938
CFU/g)

The correlation between predicted and observed TVCs derived from SVM-R
models developed on MSI and FT-IR/MSI data is demonstrated in Figures 6.7 and 6.8,
respectively. In the case of MSI, model optimization (Figure 6.7A) did not show
differences between observed and predicted TVCs, whereas there was clear overestimation
for TVCs between 4 to 6 log CFU/g during prediction (Figure 6.7B). In addition, for both
MSI and FT-IR/MSI models, an underestimation of the predicted TVCs occurred for
samples with TVCs load of 8 log CFU/g (Figure 6.7B and 6.8B). In addition, the SVM-
regression beta coefficients for MSI and FTI-IR/MSI models are documented in Figures
6.9 and 6.10, respectively. Similar to PLS-R model via MSI implementation, the beta
coefficients corresponding to the reflectance from 570-700 nm indicated their important
contribution in the prediction of spoilage in chicken samples. Regarding FT-IR/MSI model,
the scores from PC1, PC2, PC5 and PC6 from MSI analysis had a greater impact on TVCs
prediction, while the scores from PC1 from FT-IR data analysis seemed to influence

models’ performance.
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Figure 6.7: Predicted versus observed TVCs resulted from SVM-R model of MSI data for k-CV
process (A) and prediction (B). Solid line represents the line of equity (y=Xx).
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Figure 6.8: Predicted versus observed TVCs resulted from SVM-R model of FT-IR/MSI data for
k-CV process (A) and prediction (B). Solid line represents the line of equity (y=x).
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Figure 6.9: Beta (B) coefficients of the SVM-R model developed on MSI spectral data (mean
intensity of pixels per wavelength) for chicken marinated souvlaki.
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Figure 6.10: Beta (B) coefficients of the SVM-R model developed on FT-IR/MSI data (PCA
scores) for chicken marinated souvlaki.

In an

attempt to improve SVM-R model performance and find the appropriate

kernel function, Bayesian optimization process was employed and the resulted parameter

and function combination (with the minimum MSE) is provided in Table 6.7. It is worth

noticed that linear kernel function reached the minimum MSE values, where in another

research SVM Gaussian kernel function (RBF) combined to PLS-R and E-nose were

suggested as feasible rapid methods for the estimation of pork’s microbiota (Wang et al.,
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2012). Likewise, SVM (RBF) regression model coupled to E-nose could successfully

predict the spoilage microorganisms in beef meat (Papadopoulou et al., 2013).

Table 6.7: SVM-R optimized parameters and kernel function combinations (for each sensor model)
indicating the minimum MSE.

Box of constraction, epsilon, Kernel function
c e

FT-IR 2.5095 0.00566 Linear

MSI 1.2616 0.0023 Linear

E-nose 0.0976 0.3806 Linear

FT-IR/MSI 16.322 0.2407 Linear

E-nose/FT- 0.0157 0.0342 Linear

IR

MSI/E- 216.512 0.0031 Linear
nose

3-sensors 0.0289 0.0315 Linear

6.3.5 Classification models assessing spoilage in chicken marinated souvlaki

The overall accuracy (%) of prediction for the 3-class classification models was less
than 60 % (Figure 6.11). From the use of single sensors, the LSVM model developed on
MSI spectral data reached an overall accuracy of 52.5 %. The same LSVM algorithm
developed on FT-IR/MSI data demonstrated more accurate classification performance
compared to LDA and CSVM models (overall accuracy: 52.5%). The superiority of LSVM
model coupled to MSI data has been reported in similar studies for quality assessment in
meat (Wang et al., 2012; Papadopoulou et al., 2013; Fengou et al., 2021a) and specifically
in chicken thigh fillets (Spyrelli et al., 2021). Another combination that exhibited overall
accuracy close to 60 % was LDA coupled to MSI/E-nose data (overall accuracy, 55.0 %),
which was the most accurate classification model containing E-nose data. This improved
performance among the other combinations of 2-sensor models highlighted the positive
synergetic role of MSI and E-nose signals to the generation of models assessing meat
quality (Kutsanedzie at al., 2019; Weng et al., 2020). The inclusion of E-nose data to FT-
IR and to FT-IR/MSI data could not improve the discrimination potential among the

different classes.
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Figure 6.11: Heatmap presenting the performance (overall accuracy %) of LDA, LSVM and
CSVM models developed on each sensor separately and in combination for the classification of
chicken marinated samples in 3 quality classes.

The performance (confusion matrix) of the 3 most accurate models (MSI and
LSVM, FT-IR/MSI and LSVM, MSI/E-nose and LDA) classifying chicken samples in 3
quality classes, as well as the performance metrics of sensitivity (%) and precision (%) per
class are demonstrated in Table 6.8. For the MSI model, 123 out of 169 samples and 21
out of 40 samples were correctly classified in the 3 quality classes during model
development (k-CV) and prediction, respectively. LSVM model developed on MSI data
provided sensitivity for class 1, 2 and 3 of 69.23%, 28.13% and 88.78 %, respectively,
during training (using k-CV), whereas for model prediction the respective sensitivity was
28.57%, 12.50% and 88.89%. For the same model, precision ranged from 40.91 to 87.00
% and from 10.00 to 80 % during model development (using k-CV) and prediction,
respectively, with the lowest percentages obtained for class 2 (semi-fresh). For the
combined FT-IR/MSI model, 130 out of 169 samples and 21 out of 40 samples were
classified correctly during model development (using k-CV) and prediction, respectively.
Per class sensitivity varied from 31.25 to 92.93 % and from 21.43 to 88.89 % during model
development and prediction, respectively, while the corresponding precision was estimated
between 55.56 to 84.40 % and 13.33 to 84.21 % for model development and prediction,
respectively. For the combined MSI/E-nose model, 127 out of 169 samples and 22 out of

40 samples were correctly classified during model training and prediction, respectively.
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Sensitivity and precision percentages were calculated in the range of 42.33-87.85% and
50-84.68% during model development, respectively, whereas for prediction these
12.50-78.95% and 11.11-85.71%,
respectively. It is worth noticing that sensitivity for class 3 (spoiled samples) demonstrated

performance indexes gradually decreased at
the highest percentages for both model development and prediction in all model
combinations. The majority of class 1 (fresh) samples were misclassified as class 2 (semi-
fresh) in most cases while models could not identify correctly class 2 (sensitivity ranged
from 12.50 to 25.00 %) mainly because of the low number of observations corresponding
to this class in the training data.

Table 6.8: Confusion matrix and performance metrics of the developed models (LDA, LSVM,

CSVM) for the classification of samples in 3 quality classes, via MSI, FT-IR/MSI and MSI/E-nose
data.

Sensor Model Step Confusion Matrix Performance metrics
MSI LSVM k-CV o/p Class1 Class 2 Class3  Sensitivity Precision
(%) (%)
Class 1 27 9 3 69.23 57.45
Class 2 13 9 10 28.13 40.91
Class 3 7 4 87 88.78 87.00
Prediction o/p Class1 Class 2 Class 3  Sensitivity Precision
(%) (%)
Class 1 4 8 2 28.57 40.00
Class 2 5 1 2 12.50 10.00
Class 3 1 1 16 88.89 80.00
FT-IR/MSI Model Step Confusion Matrix Performance metrics
CSVM k-CV o/p Classl Class2  Class3  Sensitivity Precision
(%) (%)
Class 1 28 5 5 73.68 66.67
Class 2 10 10 12 31.25 55.56
Class 3 4 3 92 92.93 84.40
Prediction o/p Classl Class2  Class3  Sensitivity Precision
(%) (%)
Class 1 3 11 0 21.43 50.00
Class 2 3 2 3 25.00 13.33
Class 3 0 2 16 88.89 84.21
MSI/E-nose  Model Step Confusion Matrix Performance metrics
CSVM k-CV o/p Class1 Class 2 Class3  Sensitivity Precision
(%) (%)
Class 1 22 7 7 61.11 61.11
Class 2 5 11 10 42.31 50.00
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Class 3 9 4 94 87.85 84.68

Prediction o/p Classl Class2  Class3  Sensitivity Precision
(%) (%)
Class 1 6 4 3 46.15 85.71
Class 2 1 1 6 12.50 11.11
Class 3 0 4 15 78.95 62.50

In order to improve the performance of the models, it was considered necessary to
employ a two-class scheme (fresh vs. spoiled) by combining the samples of class 1 and 2
together and thus increase the number of training cases in class 1. The performance of the
2-class models in terms of overall accuracy was improved compared to the 3-class models
as illustrated in Figure 6.12. For spectroscopic sensor models (MSI, FT-IR, FT-IR/MSI)
the overall accuracy of prediction exceeded 60 % in most cases, with the highest
percentages obtained for FT-IR/MSI (LDA: 85%, LSVM: 82.5%, CSVM: 87.5%),
followed by MSI and SVM models (LSVM: 80 % and QSVM: 77.5%). The combination
of SVM models with the above-mentioned spectroscopic techniques as well as the use of
LDA with FT-IR data has been recommended in recent studies as an effective approach for
the quality assessment of meat freshness (Candogan et al., 2021). The high overall accuracy
of all FT-IR/MSI models confirmed that the combination of these nondestructive

techniques could assess more effectively the quality of meat (Huang et al., 2014).

Overall accuracy performance was improved for the 2-class FT-IR models
compared to the 3-class FT-IR models, however their performance was below 60 % which
cannot be considered satisfactory. Improved overall accuracy was observed for E-nose
models but it could not exceed 39.4%. Moreover, the performance of MSI/E-nose models
could not be improved by the exclusion of the third (semi-fresh) class, where the highest
percentage of overall accuracy was calculated at 48.48 % for the LDA model. In contrast,
the CSVM model developed on the combined FT-IR and E-nose data identified the correct
class of the samples satisfactorily with overall accuracy of 63.63 %. Concerning the 3
sensor models, the use of CSVM exhibited the most accurate discrimination between
samples with overall accuracy of 72.73%.
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Figure 6.12: Heatmap presenting the performance (overall accuracy %) of LDA, LSVM and
CSVM models developed on each sensor separately and in combination for the classification of
chicken marinated samples in 2 quality classes.

The improved performance of the MSI (combined with LSVM and CSVM models)
is demonstrated in the confusion matrix (Table 6.9) where the per class sensitivity (%) and
precision (%) is presented. For the MSI and LSVM model, 149 out of 169 samples and 32
out of 40 samples were accurately classified in their respective class during model
development and prediction, respectively. Sensitivity and precision for class 1 (fresh
samples) reached 90.14 % and 83.12 % for model development, respectively, while for
model prediction the respective percentages were 83.12 % and 85.0 %. The CSVM model
developed on MSI data classified 127 out of 169 samples and 31 out of 40 samples in their
correct class for model development and prediction, respectively. For this model,
sensitivity for class 1 (fresh) was calculated at 74.65% and 88.89% for cross validation and
prediction, respectively, whereas precision ranged from 68.83 to 72.41%. In both MSI
models, sensitivity for class 2 (spoiled) was approximately the same as for class 1 during
cross validation, with the exception of the prediction of the CSVM model where one

spoiled sample was misclassified as fresh.
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Table 6.9: Confusion matrix and performance metrics of the developed models (LSVM, CSVM)
for the classification of samples in 2 quality classes via MSI data.

Sensor  Model Step Confusion Matrix Performance metrics
MSI LSVM k-CV olp Class1® Class2™  Sensitivit  Precision
y (%) (%)
Class 1 64 7 90.14 83.12
Class 2 13 85 86.75
Prediction o/p Class 1 Class2  Sensitivit  Precision
y (%) (%)
Class 1 17 5 77.27 85
Class 2 3 15 83.33
Model Step Confusion Matrix Performance metrics
CSVM k-CV o/p Class 1 Class2  Sensitivit  Precision
y (%) (%)
Class 1 53 18 74.65 68.83
Class 2 24 74 75.51
Prediction o/p Class 1 Class2  Sensitivit  Precision
y (%) (%)
Class 1 21 1 95.45 7241
Class 2 8 10 55.55

*Class 1: fresh
*Class 2: spoiled

For the 2-sensors and 3-sensors models, the respective confusion matrix and the
performance indexes of sensitivity and precision are represented in Table 6.10. For the
LDA model developed on combined FT-IR/MSI data, 141 out of 169 samples and 34 out
of 40 samples were correctly classified during model cross validation and prediction,
respectively. The calculated sensitivity for class 1 and precision were amounted to 80 %
and 86.36 % for model cross validation and prediction, respectively. The LSVM model
identified correctly 143 out of 169 samples and 33 out of 40 samples during cross validation
and prediction, respectively. Moreover, the LSVM model developed on FT-IR/MSI data
provided sensitivity for class 1 and precision of 87.14 % and 78.20 % for cross validation,
respectively and 77.27 % and 89.47% for prediction, respectively. For CSVM model, 135
out of 169 samples and 35 out of 40 samples were classified in their correct class during
cross validation and prediction, respectively. Sensitivity for class 1 and precision was 77.14
% and 75 % for model cross validation, respectively and 90% and 86.95% for model
prediction, respectively. For the 3 sensors model, 154 out of 169 samples and 29 out of 40
samples were properly classified during cross validation and prediction, respectively.

Sensitivity for class 1 reached 90.77% and 88.23 % for cross validation and prediction,
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while the respective values for precision were 86.76% and 68.18%. Sensitivity values for

class 2 were in most cases similar to sensitivity values for class 1, exceeding 80% with the

exception of the 3 sensors model where the sensitivity for class 2 was calculated at 66.67%.

This outcome indicated the potential of the developed models to accurately identify and

categorize both fresh (class 1) and spoiled (class 2) samples.

Table 6.10: Confusion matrix and performance metrics of the developed models (LSVM, CSVM)
for the classification of samples in 2 quality classes via FT-IR/MSI and 3-sensors data.

Sensor  Model Step Confusion Matrix Performance metrics
Sensitivity ~ Precision
o/ Classl1 Class?2
ey P (%) (%)
Class 1 56 14 80 80
LDA Class 2 14 85 85.86
olp Class1  Class 2 Sensitivity ~ Precision
Prediction (%0) (%)
Class 1 19 3 86.36 86.36
Class 2 3 15 83.33 '
Model Step Confusion Matrix Performance metrics
Sensitivity ~ Precision
o/ Class1 Class?2
ey P (%) (%)
Class 1 61 9 87.14 78.20
FT- Class 2 17 82 82.83 '
LSVM S —
IR/MSI olp Class1  Class 2 Sensitivity ~ Precision
Prediction (*0) (%)
Class 1 17 5 77.27 89.47
Class 2 2 16 88.89 '
Model Step Confusion Matrix Performance metrics
Sensitivity ~ Precision
o/ Class1 Class 2
ey P (%) (%)
Class 1 54 16 77.14 75
Class 2 18 81 81.82
CSVM S —
olp Class1  Class 2 Sensitivity  Precision
Prediction (%) (%)
Class 1 20 2 90 86.95
Class 2 3 15 83.33 '
Model Step Confusion Matrix Performance metrics
3
Sensors olp Class1  Class 2 Sensitivity ~ Precision
CSVM 06) 06)
k-CV Class 1 59 6 90.77 86.76
Class 2 9 95 91.34
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Sensitivity ~ Precision

Prediction o/p Class1  Class 2 (%) (%)
Class 1 15 2 88.23
Class 2 7 14 66.67 i
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Chapter 7: Quality and safety assessment of marinated chicken
souvlaki
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Abstract
Campylobacteriosis is the most frequent reported zoonosis transmitted to humans

through the food chain. Campylobacter spp. have been isolated from poultry meat as well
as from marinated poultry products. Under this scope, the objective of this research was
the investigation of Campylobacter spp. behavior after inoculation of six Campylobacter
strains in chicken souvlaki under different storage temperatures. Moreover, the microbial
growth of the indigenous microbiota of the inoculated and non-inoculated chicken
marinated souvlaki was examined. In brief, chicken marinated souvlaki samples were
inoculated by a multiple-strain inoculum (6 strains of C. coli and C. jejuni) and stored
aerobically at three different isothermal conditions (0, 5 and 10 °C) and a dynamic
temperature profile (12 hat 0°C, 8 h at 5°C and 4 h at 10 °C). At regular time intervals,
inoculated and non-inoculated samples were microbiologically analyzed for the
enumeration of Total Viable Counts (TVCs), Pseudomonas spp., anaerobic bacteria and
Campylobacter spp. count. TVCs and Pseudomonas spp. counts were fitted to a one-step
predictive model for chicken marinated souvlaki (inoculated and non-inoculated) and the
obtained models were validated with the available independent data from the dynamic
temperature profile storage experiment. Furthermore, survival models determining
Campylobacter spp. counts during storage at isothermal conditions were developed and
assessed. Molecular analysis via Random amplified polymorphic DNA PCR (RAPD-PCR)
was conducted with isolates from three time points during the experiments. The developed
models for the spoilage microbiota (TVCs and Pseudomonas spp.) in inoculated and non-
inoculated samples demonstrated RMSE values lower than 1 log CFU/g (below 0.941 log
CFU/qg), while Bf and As indices were considered acceptable (Bf: 0.90- 1.05, Ar. 1.100).
Campylobacter spp. could survive despite the low storage temperature presenting a decline
of 1.5 log CFU/g from the initial population. From the developed survival models, the
highest accuracy was achieved for the modified Weibull model at 5 °C storage with RSME,
and R? values of 0.112 log CFU/g, and 0.909 respectively. Molecular analysis showed that
both Campylobacter coli and jejuni strains could survive during low storage temperatures,

with the exception of 5 °C where only Campylobacter coli was detectable in the samples.
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7.1 Introduction

Since 2005, campylobacteriosis has been reported as the most commonly reported
zoonosis (over 70 % of documented pathogens infections) in the EU and all around the
world (World Health Organization, 2013; EFSA/ECDC, 2019). This severe disease is
manifested in the majority of cases as gastroenteritis with acute non-inflammatory or
grossly bloody diarrhea (i.e., dysentery), fever and abdominal pain or cramps lasting for
one week or more, whereas in some cases there are evident symptoms such as bacteremia,
Guillain-Barré syndrome, reactive arthritis, miscarriages and depression (Gharst et al.,
2013; Bolton & Robertson, 2016). Campylobacter spp. are transmitted through the food
chain and affects humans mainly through food and water consumption (Codex
Alimentarius Commission, 2011; Dogan et al., 2019). The highest detection of
Campylobacter in foods was reported on fresh meat from broilers which was also linked
to strong evidence outbreaks of campylobacteriosis (EFSA/ECDC, 2019). In this context,
in 2011 the Codex Alimentarius Commission and EU as well published guidelines for the
control of Campylobacter spp. in chicken meat implemented at one or more steps in the
farm to table chain (Codex Alimentarius Commission, 2011; EFSA Panel on Biological
Hazards (BIOHAZ), 2011). Moreover, a supplementary regulation of the EU 2073/2005
regulation for the microbial criteria in food was considered appropriate and thus in the
amended EU 2017/1495 regulation the limit of detection of Campylobacter spp. in raw
poultry slaughters was limited to 1,000 CFU/g (EU, 2017).

Campylobacter spp. is a Gram-negative, microaerophilic, spiral shaped rod inhabiting
in high populations the gastrointestinal tract of predominantly birds (chicken and turkey).
This bacterium could be also found in red meat products (bovine, sheep, cattle and pigs)
and it can survive in the water and even sand (Lanzl et al., 2020). Poultry meat could be
contaminated with this pathogen from the caeca via the water supply system, inadequate
hygiene practices, contaminated surfaces in the slaughter house and/or the chilling
procedure after evisceration (Demirok et al., 2012; Seliwiorstow et al., 2016; Rouger et al.,
2017, McCarthy et al., 2019). Additionally, humans could be infected by Campylobacter
spp. due to the consumption of contaminated raw or undercooked chicken products (Silva
etal., 2011; Skarp et al., 2015; Huang et al., 2019; Andritsos et al., 2020). Until now, two

species of Campylobacter, C. jejuni and C. coli have been reported in approximately 90 %
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of campylobacteriosis cases in humans (Solow et al., 2003; Gharst et al., 2013; Repérant
et al., 2016). Likewise, these two species have been isolated most frequently from broiler
meat during prevalence surveys in the last decade (Torralbo et al., 2015; Stella et al., 2017;
EFSA/ECDC, 2019; Andritsos et al., 2020; Lytou et al., 2020).

For the reduction and elimination of Campylobacter spp. in raw or stored chicken meat
several studies have been undertaken to investigate the effect of temperature on the growth
and/or survival of Campylobacter strains (Blankenship & Craven, 1982; Hazeleger et al.,
1998; Duffy & Dukes, 2006). Specifically, the potential of Campylobacter spp. to survive
in poultry for long periods at chilling temperatures (4°C) has been reported (Silva et al.,
2011). Furthermore, certain Campylobacter strains could remain viable even at low
concentration in chicken matrix after the exposure and maintenance at freezing
temperatures (below -20 °C) (Lee at al., 1998; Zhao et al., 2003; Yun et al., 2016; Lanzl et
al., 2020). Several survival/inactivation models (log-linear models, Weibull and modified
Weibull) of Campylobacter have been developed to describe the reduction of this pathogen
via chilling process in chicken products (Ritz et al., 2006; Gonzalez et al., 2009; Membré
et al., 2013; Duqué et al., 2019). Nevertheless, the influence of marination and o chemical
decontaminants (mainly acids) combined with refrigeration storage temperatures has been
also evaluated for the reduction of Campylobacter spp. in chicken, where this pathogen
was characterized as acid tolerant (Chaveerach et al., 2003; Bjorkroth, 2005; Meredith et
al., 2013; Lytou et al., 2020).

The aim of this work was firstly to investigate the behavior of Campylobacter strains,
isolated previously from chicken marinated samples (during a survey in the Greek poultry
market), after inoculation on chicken samples marinated with functional acid marinade
(commercial product) and storage at three chilling conditions. Survival models of
Campylobacter spp. were developed at each storage temperature and validated via
independent data obtained through a dynamic temperature profile experiment. In parallel,
the growth of the indigenous spoilage microbiota (TVCs and Pseudomonas spp.) was
monitored during storage of the inoculated and non-inoculated samples and a one-step
predictive growth model was developed and externally validated for each microbial group

individually. Further on, RAPD-PCR was performed to isolates obtained at the beginning,
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middle and final time points of storage in order to elucidate the impact of temperature and

marinade on the initial inoculum.

7.2 Materials and Methods

7.2.1 Inoculum preparation

Five Campylobacter spp. strains obtained during a previous survey in chicken
marinated souvlaki (Lytou et al., 2020) were used for the inoculum formulation as follows:
9D (C. coli, pH: 5.6), 7L (C. coli, pH: 5.5), 6Z (C. coli, pH: 6.4), 1H (C. coli, pH: 5.8) and
6A (C. jejuni, pH: 5.9). Moreover, one Campylobacter strain from the collection of the
Laboratory of Microbiology and Biotechnology of Foods (LMBF) of the Agricultural
University of Athens (AUA) was used as inoculum in the present study, namely B-450
(Campylobacter jejuni subsp. jejuni, ATCC 29428). The acid tolerance of the above-
mentioned strains has been reported by Lytou et al. (2020). The strains were revived from
a stock culture (-20 °C), cultured in 10 ml Bolton Broth (Campylobacter Enrichment Broth,
NCMO0094A, Neogen Culture Media, UK) with lysed horse blood (Lysed horse blood,
HBO036, TCS Biosciences Lted) and incubated for 48 hours at 41.5 + 0.5 °C in anaerobic
conditions (Microbiology Anaerocult C: for the generation of an oxygen- depleted and CO-
— enriched atmosphere in an anaerobic jar, 1.32383.0001, Millipore, USA). A volume of
10 pl of each revived culture was transferred to 10 ml of sterilized Bolton Broth and
incubated in anaerobic conditions for 48 h at 41.5 + 0.5 °C. The obtained cultures were
transferred in separate sterile falcons and the bacterial cells were separated from the broth
medium by centrifugation (5,000 g for 10 min at 4°C) and washed twice with 10 ml sterile
Bolton Broth. The derived pellets were resuspended in the same Bolton Broth volume (10
ml). Further on, equal volumes of each bacterial suspension were mixed in a sterile Duran
bottle resulting in a composite Campylobacter spp. inoculum of 7.99-8.27 log CFU/ml as
assessed by plate counting. The composite inoculum was further diluted with the same

diluent to achieve a final inoculum of 10° CFU/ml that was used for all experiments.

7.2.2 Sample preparation and storage
Chicken marinated souvlaki (chicken thigh fillet, sodium chloride, sodium acetate,
sodium citrate, enzyme tenderizer and ascorbic acid) with pH values from 6.2 to 6.5 was

transferred to the laboratory within 30 min under refrigeration. Samples were weighted
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(20.41 £ 0.13 g) and placed aseptically in styrofoam dishes (two portions per dish). Each
sample was inoculated with 100 pl of the strain mixture by dispersing it with a pipette and
spreading it with a sterile spatula over the surface of chicken. Further on, samples were
maintained at 4 °C for 30 min to ensure inoculum attachment and afterwards the same
procedure was repeated on the other side of the sample. The styrofoam dishes containing
the inoculated samples were wrapped with cling film (household food wrap) and stored at
three different isothermal conditions (0, 5 and 10 °C) in high precision incubators (MIR-
153, Sanyo Electric Co., Osaka, Japan). After inoculation, control (non-inoculated)
samples were also stored at the same conditions, in order to compare the growth behavior
of the indigenous microbiota of untreated chicken marinated souvlaki with the inoculated
samples, and simultaneously detect the presence of Campylobacter spp. in this poultry
product. Two independent experiments were undertaken with duplicate samples analyzed
in each experiment (n=4), whereas the same experimental procedure was performed with
samples stored at a dynamic temperature profile (12 hat 0°C, 8 hat 5°C and 4 h at 10 °C)
in order to investigate the influence of temperature changes on the indigenous microbiota
as well as on the dynamics of Campylobacter spp. strains.

7.2.3 Microbiological analysis
Each sample (20 g) was subjected to microbiological analysis for the enumeration of

the indigenous microbiota and the inoculated pathogen counts at the beginning of storage
as well as at pre-determined time intervals. For this reason, the 20 g sample was added
aseptically in 180 ml of sterile Bolton Broth (Campylobacter Enrichment Broth,
NCMO0094A, Neogen Culture Media, UK) in a stomacher bag (Seward Medical, London,
UK) and homogenized in a stomacher device (Lab Blender 400, Seward Medical, London,
UK) for 60 s at room temperature. For the enumeration of TVCs, Pseudomonas spp.,
anaerobic bacteria and Campylobacter spp., serial decimal dilutions were performed in the
same diluent and spread on the following media: a) Plate Count Agar (Tryptic Glucose
Yeast Agar PCA, Ref.4021452, Biolife, Italiana S.r.l, Milano, Italy) for the estimation of
TVCs after incubation at 25 °C for 72 h; b) Pseudomonas Agar Base (LAB108, LABM.,
U.K.) supplemented with Cetrimide-Fusidin-Cephaloridine (Modified C.F.CX108,
LABM, UK) for the estimation of the presumptive Pseudomonas spp. after incubation at
25 °C for 48 h; c¢) Columbia Blood Agar (Campylobacter Selective Agar CBA, LAB001,
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UK) with 5% lysed horse blood for the estimation of the anaerobic bacteria after
inoculation at 41.5 °C for 48 h under anaerobic conditions; d) Columbia Blood Agar
(Campylobacter Selective Agar CBA, LAB112, UK) with 5% lysed horse blood
supplemented with Skirrow medium (Skirrow supplement, LABM 214, UK), for the
estimation of Campylobacter spp. after inoculation at 41.5 °C for 48 h under anaerobic
conditions; e) Campylobacter Blood Free Selective Medium (Modified CCDA, LAB112,
UK) supplemented with Ceroperazone/Amphotericin (Ref. X112, LAB M, UK), for the
estimation of Campylobacter spp. after inoculation at 41.5 °C for 48 h under anaerobic
conditions. After incubation, counts were logarithmically transformed and expressed as log
CFU/g.

7.2.4 Predictive models

7.2.4.1 Growth predictive models for TVCs and Pseudomonas spp.

One-step modeling (Huang et al., 2016) was applied to TVCs and Pseudomonas
spp. counts from the isothermal conditions of storage for the determination of the primary
and secondary kinetic parameters for TVCs and Pseudomonas spp. on inoculated and non-
inoculated chicken marinated souvlaki. The Huang full growth primary model (Huang,
2013) (equations 7.1-7.3) and the secondary Ratkowsky sub-optimal growth-temperature
model (Ratkowsky, 1983) (equation 7.4) were fitted to TVCs and Pseudomonas spp. counts
using IPMP-Global Fit software (USDA Agricultural Research Service, Eastern, Regional
Research Center, Wyndmoor, PA).

Y(t) = Yo + Ymax — In [eY0 + (eYmax — g¥0) g umax B(t)] (7.1)

14+e~ 41

1 )
B(H)=t+5 I (7.2)

eA

A=

(7.3)

umax™
where: Y (t) is the base-10 logarithms (log10) of the real time microbial counts (log CFU/Q)
at the respective storage time t (h), yo is the initial base-10 logarithms (logio) of the
microbial counts (log CFU/g), Ymax is the final base-10 logarithms (logio) of the microbial
counts (log CFU/g), umax is the specific growth rate of the microbial group (h), b, A and

m are regression coefficients, A is the lag phase (h) and B(t) is the transition function.
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VHmax=b (T-Tmin) (7.4) (Ratkowsky, 1983)

Model performance of the model developed under isothermal conditions was
validated against observed growth of Pseudomonas spp. (n=33, different batch) under a
dynamic temperature profile (12h at0°C, 8 hat5°C and 4 h at 10 °C) using the differential
equations of the Baranyi and Roberts model (Baranyi & Roberts, 1994) that were
numerically integrated in Microsoft® Excel. The accuracy of the prediction was estimated
by the RMSE value, the bias factor (Bf) and the accuracy factor (Ar) (Ross, 1996).

7.2.4.2 Survival/ Inactivation models for Campylobacter spp.

The influence of the chilling storage temperatures on the Kinetic behavior of
Campylobacter spp. on chicken marinated souvlaki was assessed via survival/inactivation
models developed by GlnaFiT Version 1.6 add-in software for Excel Microsoft®

(available at https://cit.kuleuven.be/biotec/software/GinaFit, KULeuven, Belgium). This

free software has been implemented in a variety of experimental data for the development
of linear and non-linear survival/inactivation curves of spoilage and pathogenic bacteria
(Geeraerd et al., 2005.) In this study, the Weibull model (equation 7.5) (Mafart et al., 2002)
and the modified Weibull model (equation 7.6) (Albert & Mafart, 2005) were employed to

determine the kinetic parameters of Campylobacter spp. at 0, 5, and 10 °C.
NG
o 107" (7.5)

_(ﬁ)l’
N= (NO' Nres) x10 ‘6 + Nres (76)

where, N is the number of surviving bacterial after a certain time of refrigerated storage
(log CFU/g), No is the initial bacterial populations (log CFU/qg), t is the duration of the
treatment (in this case the storage time in hours), § is the scale factor denoting the time for
the first decimal reduction (h), p is the shape factor of the curve (dimensionless) (p > 1
indicates convex curves whereas p < 1 denotes concave curves) and Nrer is the residual
bacterial populations (log CFU/g) (Mafart et al., 2002, Albert & Mafart, 2005).
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7.2.5 Molecular analysis

Campylobacter spp. colonies were isolated from Skirrow and mCCDA agar plates
for chicken marinated souvlaki samples at the beginning (0 h), middle (0 °C: 120 h, 5 °C:
96 h, 10 °C: 72 h) and final (0 °C: 312 h, 5 °C: 240 h, 10 °C: 216h, dynamic temperature
profile: 312h) time of storage. The isolates (44) were verified for their purity via
confirmation tests, namely (a) by streaking on Columbia Blood agar and incubated
aerobically at 41.5 °C for 48 h, (b) by streaking on Columbia Blood agar and incubated
micro-aerobically at 25 °C for 48 h, (c) by oxidase test, and (d) by microscopic observation,
according to ISO 10272-1:2006. Pure colonies from the initial composite inoculum were
also isolated in order to compare their profile to the obtained profiles from storage
experiments and hence elucidate the survival of each strain according to the storage
temperature. The isolates were maintained at -20 °C in 1.5 mL Bolton broth with 20%
glycerol and 2 % horse blood.

DNA extraction was performed using the total genomic DNA extraction protocol for
bacteria (Doulgeraki et al., 2011), while the extracted DNA was qualitatively and
quantitatively evaluated by nanophotometer (Implen, Germany) measurements at
wavelengths of 260, 280, and 230 nm. Random amplified polymorphic DNA (RAPD)-
PCR analysis was performed with a M13 primer (5-GAGGGTGGCGGTTCT-3)
(Hanjilouka et al., 2014; Tzamourani et al., 2021). Volume of 50 pl from PCR
amplifications were consisted based on Lytou et al. (2021) publication: PCR-buffer (10 x
PCR buffer B with 1.5 mM MgCl», Kapa Biosystems, Wilmington, MA, USA), additional
0.2 mM MgClz, 0.8 mM dNTPs, 4 uM primer M13, 1 U Taq DNA polymerase (Kapa
Biosystems, USA), DNA (100 ng) and sterile distilled water. PCR reaction was conducted
as described elsewhere (Lytou et al., 2021). Briefly, an initial denaturation step at 95 °C
for 3 min, 3 cycles of denaturation at 95 °C for 3 min, primer annealing at 35 °C for 5 min
and primer elongation 72 °C for 5 min, followed by 32 cycles of denaturation at 95 °C for
1 min, primer annealing at 55 °C for 2 min and primer elongation 72 °C for 3 min, and a
final elongation step at 72 °C for 7 min (Lytou et al., 2021). Aliquots of PCR products were
separated via electrophoresis on a 1.5% agarose gel in 1 x TAE (40 mM Tris—acetate, 1
mM EDTA, pH 8.2) buffer at 100 V for 75 min. Gels were stained with ethidium bromide
and visualized under UV light in a Bio-Rad GelDoc 2000 system (Bio-Rad Laboratories
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Inc., Hercules, CA, USA) using the analysis software Quantity-One (Bio-Rad, Hercules,
CA, USA). The resulted gel images were analyzed using the Jaccard/Dice coefficient and
the unweighted pair group method with arithmetic mean (UPGMA) cluster analysis, via
the BioNumerics software version 6.1 (Applied Maths, Sint-Martens-Latem, Belgium).

7.3 Results and Discussion

7.3.1 Microbiological results

The microbiological results for each microbial group (TVCs, Pseudomonas spp.,
anaerobic microorganisms on Columbia Agar, Campylobacter spp. on mCCDA and
Skirrow agar) during the storage of the inoculated chicken marinated souvlaki are
presented in Figure 7.1. Chilling temperatures influenced the population of the indigenous
spoilage microbiota, with 0 °C demonstrating the highest inhibitory effect on chickens’
spoilage. Moreover, TVCs and Pseudomonas spp. followed similar growth pattern at all
storage temperatures indicating that Pseudomonas spp. was the dominant spoilage
microorganism responsible for chicken meat deterioration under aerobic conditions
(Gospavic et al., 2008; Belak et al., 2011; Bruckner et al., 2013; Remenant et al., 2015).
The initial TVCs and Pseudomonas spp. counts were 5.36 = 0.59 and 4.46 + 0.12 log
CFUlq, respectively, for the isothermal storage conditions, as well as 6.96 + 0.07 and 6.28
+0.13 log CFU/g, respectively, for the dynamic temperature profile. At 0 °C (Figure 7.1A),
these two microbial groups reached the spoilage threshold of marinated poultry (7.0 log
CFU/qg) (Gospavic et al., 2008; Lytou et al., 2018) after 168 h (7.13 + 0.30 log CFU/qg) and
192 h (7.0 = 0.43 log CFU/qg), respectively. On the contrary, the anaerobic populations on
Columbia agar presented a slight increase from 3.87 + 0.15 log CFU/g to 4.21 + 0.36 log
CFU/g. Campylobacter spp. results obtained from Skirrow agar and mCCDA did not differ
as both media are selective for the enumeration of this pathogen (ISO 10272-1:2006).
Specifically, for Skirrow agar the initial and final counts were documented at 3.45 + 0.16
log CFU/g and 2.57 + 0.28 log CFU/g respectively. For mCCDA, the initial population of
Campylobacter spp. was estimated at 3.20 + 0.20 log CFU/g and the final population at
2.63 + 0.63 log CFU/qg after 312 h of storage.
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Figure 7.1: Microbial counts of TVCs (cycles), Pseudomonas spp. (diamonds), anaerobic bacteria
on Columbia blood agar (squares), Campylobacter spp. on mCCDA (solid line with triangles) and
on Skirrow (dashed line with triangles) in inoculated chicken marinated souvlaki stored at 0 °C (A),
5°C (B), 10 °C (C) and a dynamic temperature profile (D).

For samples stored at 5 °C (Figure 7.1B), TVCs and Pseudomonas spp. counts
exhibited values above the spoilage threshold of 7.0 log CFU/g in 96 h (7.21 + 0.81 log
CFU/g) and 120 h (7.33 + 0.22 log CFU/q) of storage respectively, while anaerobic counts
on Columbia blood agar were at 5.53 + 0.66 log CFU/g after 240 h. Furthermore,
Campylobacter spp. counts on Skirrow and mCCDA media at the end of storage at 5 °C
(240 h) were estimated at 2.34 +0.20 and 2.70 + 0.04 log CFU/g. Regarding samples stored
at 10 °C, TVCs and Pseudomonas spp. counts exceeded the spoilage threshold of 7.0 log
CFU/qg after 48 h (7.12 + 0.90 log CFU/g) and 72 h (8.36 + 0.57 log CFU/qg) of storage.
Columbia blood agar counts reached values greater than 7.0 log CFU/g only in the case of
isothermal storage (7.47 + 0.25 log CFU/g), while Campylobacter spp. counts at the end
of storage (192 h) were 2.98 + 0.07 log CFU/g in Skirrow agar and 3.01 + 0.22 log CFU/g
in mCCDA. For the dynamic temperature profile, TVCs and Pseudomonas spp. counts
were recorded at 7.01 £ 0.1 log CFU/g and at 7.5 + 0.89 log CFU/g in 24 h, respectively.
At the end of the dynamic temperature profile experiment (312 h), counts on Columbia
blood agar were 5.81 + 0.07 log CFU/g, while Campylobacter spp. counts were estimated
at 2.27 + 0.16 log CFU/g in Skirrow agar and 2.12 + 0.27 log CFU/g in mCCDA. The
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survival of Campylobacter spp. at freezing and chilling temperatures as well as its acid
tolerance on marinated matrices and modified broths has been well documented in the
literature (Fletcer et al., 1983; Chaveerach et al., 2003; Zhao et al., 2003; Ritz et al., 2006;
Lanzl et al., 2020; Lytou et al., 2020).

In addition, microbiological analysis was performed to non- inoculated samples and
the obtained results are provided in Figure 7.2. For the isothermal conditions of storage,
TVCs, Pseudomonas spp. counts and anaerobic populations on Columbia blood agar
showed similar growth behavior with the ones observed in inoculated samples, with their
initial counts being 5.06 + 0.28, 4.99 £ 0.26 and 4.67 + 0.33 log CFU/g, respectively. In
the case of the dynamic temperature profile, TVCs, Pseudomonas spp. counts and
anaerobic counts on Columbia blood agar were 5.63 + 0.14, 5.09 + 0.03 and 3.74 + 0.34
log CFU/g respectively. TVCs and Pseudomonas spp. loads in control (non- inoculated)
samples presented a similar growth pattern as in the inoculated samples and reached the
spoilage threshold of 7.0 log CFU/g one day later compared with the inoculated samples.
Specifically, TVCs and Pseudomonas spp. counts exceeded 7.0 log CFU/gin 216 hat 0 °C
(TVCs:7.66 + 0.63 log CFU/g, Pseudomonas spp. counts: 7.29 + 0.79 log CFU/g), in 96 h
at 5 °C (TVCs: 7.22 + 0.88 log CFU/g, Pseudomonas spp. counts: 6.49 + 0.48 log CFU/g)
and in 72 h at 10 °C (TVCs: 7.52 = 0.29 log CFU/g, Pseudomonas spp. counts: 6.03 = 0.28
log CFU/g). For the dynamic temperature profile, spoilage was evident after 24 h of storage
with TVCs values of 7.03 = 0.15 log CFU/g. For the samples stored at 0 °C, the anaerobic
counts on Columbia blood agar were estimated at 6.80 + 0.65 log CFU/g in 312 h, while at
5°C were 7.29 + 0.55 log CFU/g in 144 h. Finally, at 10°C and in the dynamic temperature
profile, counts on Columbia blood agar were 7.02 = 0.78 log CFU/g (in 120 h) and 6.02 +
0.31 log CFU/g (in 312 h).
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Figure 7.2: Microbial counts of TVCs (cycles), Pseudomonas spp. (diamonds) and anaerobic
bacteria on Columbia blood agar (squares) in non-inoculated chicken marinated souvlaki stored at
0°C (A), 5°C (B), 10 °C (C) and a dynamic temperature profile (D).

7.3.2 Growth models for the determination of TVCs and Pseudomonas spp. in chicken
marinated souvlaki

The parameters for the primary full growth model of Huang full growth model
(Huang, 2016) and the secondary Ratkowsky sub-optimal growth-temperature model
(Ratkowsky, 1983) estimated by IPMP Global Fit software to TVCs and Pseudomonas spp.
counts from inoculated and non-inoculated chicken marinated souvlaki samples are shown
in Tables 7.1 and 7.2. TVCs could be associated with the determination of the shelf life of
poultry products stored aerobically (Dominquez & Shaffner, 2011; Galarz et al., 2016;
Lytou et al.,, 2016) whereas Pseudomonas spp. has been identified as the dominant
microbial group responsible for the aerobic spoilage of white muscle food such as poultry
and fish (Koutsoumanis et al., 2000; Bruckner et al., 2013; Raab et al., 2018). The
secondary Ratkowsky model parameters a and To of inoculated and non- inoculated
samples for TVCs prediction demonstrated similar values that ranged from 0.010 to 0.013
and from -15 to -16 °C. The same outcome was occurred for Pseudomonas spp. where the
estimated values of a and Ty parameters were 0.012 and -16.80 °C for the inoculated
samples, and 0.013 and -20.50 °C for the non- inoculated ones. The negative temperature

could be associated to the psychotropic behavior of the indigenous chicken’s microbiota
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and more specifically to Pseudomonas spp. growth behavior (Huang et al., 2011). It has to
be underlined that similar model parameters for TVCs and Pseudomonas spp. growth on
muscle foods (red meat, poultry, fish) have been reported in other studies via squared root
models (Koutsoumanis et al., 2006; Zang et al., 2011; Lytou et al., 2016) and demonstrated
high variability due to differences in the experimental design, the food matrix as well as

variability among batches.

Table 7.1: Parameters and statistics by Huang full growth primary model and the Ratkowsky
secondary model for TVCs in chicken marinated souvlaki samples.

Inoculated chicken marinated Non- Inoculated chicken marinated

Samples souvlaki souvlaki

Parameters  Value? ES td- p-value  Value Std- p-value
rror Error

a 0.013 0.004  3.02E-04 0.010 0.002 8.49E-05
To -15.000 4740 1.96E-03 -16.00 4,66 7.94E-04
A -1.740 3.750 6.43E-01 -0.69 2.90 8.13E-01
m 1.930 1.220 1.17E-01 1.61 0.99 1.05E-01
yo, Too 5.540 0.249 3.41E-45 4,98 0.25 7.87E-41
Yo, T50 5.370 0.295 8.73E-37 5.16 0.28 5.79E-37
yo, T100 5.490 0.375  7.94E-29 4.95 0.39 6.05E-24
Ymax 9.860 0.211  1.39E-80 9.75 0.22 3.18E-78

aMean value (n=4)

Table 7.2: Parameters and statistics by Huang full growth primary model and the Ratkowsky
secondary model for Pseudomonas spp. in chicken marinated souvlaki samples.

Inoculated chicken marinated Non- Inoculated chicken marinated
Samples

souvlaki souvlaki
Parameters  Value? Std- p-value  Value Std- p-value
Error Error

a 0.012 0.003 2.85E-04 0.013 0.01 1.53E-03

To -16.80 5.33 2.05E-03 -20.50 7.22 5.22E-03

A -1.62 3.41 6.35E-01 0.95 2.65 7.20E-01

m 1.99 1.18 9.55E-02 1.06 0.93 2.56E-01
yo, Too 5.03 0.25 3.96E-41 4.86 0.28 3.96E-35
yo, T50 4.41 0.29 1.16E-29 4,71 0.25 1.32E-38
yo, T100 4.66 0.38 2.05E-23 4,74 0.32 8.07E-29
Ymax 9.44 0.21 9.44E-80 9.44 0.27 1.54E-65

aMean value (n=4)

Based on the abovementioned parameters and equations 3 and 4, pmax and lag phase

(h) were calculated and their values at each storage temperature are provided in Table 7.3.
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As expected, the values of pmax for TVCs and Pseudomonas spp. in both inoculated and
non-inoculated samples increased with increasing storage temperature. Specifically, the
minimum pmax values for TVCs were observed at 0°C in both inoculated and non-
inoculated samples (0.039 and 0.042 h1). For Pseudomonas spp., pmax Values increased
similarly to TVCs umax highlighting once more that Pseudomonas spp. was the dominant
spoilage microorganism during storage in inoculated and non-inoculated chicken samples.
Reversibly, the lag phase duration (A) for the two microbial groups decreased with
increasing storage temperature. As expected, the lowest A values were observed in
inoculated (13.05 h for TVCs and 13.99 h for Pseudomonas spp.) and non-inoculated
samples (17.40 h for TVCs and 26.72 h for Pseudomonas spp.) stored at 10 °C. Finally, the
calculated RMSE values were lower than 0.7 log CFU/g in all cases.

Table 7.3: Lag- phase and pmax vValues estimated by the Huang full growth primary model for TVCs
and Pseudomonas spp. growth on chicken marinated souvlaki stored at 0, 5 and 10 °C.

Samples Inoculated chicken marinated souvlaki Non-inoculated chicken marinated souvlaki
Microbial TVCs Pseudomonas spp. TVCs Pseudomonas spp.
group
T°C tmax (N lag umax (M) lagphase  pmax  lag phase  pmax (W) lag phase (h)
Y phase (h) () (h)
(h)
0 0.039 93.74 0.046 89.75 0.042 83.10 0.044 56.98
5 0.069 30.88 0.078 31.82 0.072 34.62 0.068 37.59
10 0.107 13.05 0.117 13.99 0.111 17.40 0.097 26.72
RMSE (log 0.57 0.54 0.44 0.68
CFU/g)

The umax and lag phase duration values for TVCs of aerobically stored chicken at
isothermal conditions (4-20 °C) have been reported by previous researchers using the
Baranyi and Roberts primary growth model (Lytou et al., 2016) and the modified Gompertz
equation (Galarz et al., 2016). Furthermore, Dominquez and Schaffner (2007) reported that
Pseudomonas spp. umax parameter on chicken stored at 0, 5, 10, 15, 20, and 25 °C was
0.03592 h, 0.069077 h?, 0.113287 h?, 0.326736 h*, 0.41953 h* and 0.40111 h?,
respectively, which are in good agreement with the values obtained in this work. Similar
Pseudomonas spp. growth kinetic parameters at different storage temperatures were

reported using the Baranyi and Roberts model, where the lag phase duration was 12.3 h,
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6.2 h and 4 h for poultry stored at 10, 15, and 20 °C, respectively (Gospavic et al., 2008).
Moreover, the estimated umax and lag phase duration values for Pseudomonas spp. did not
differ from the respective parameters obtained by the modified Gompertz equation (Galarz
etal., 2016; Raab et al., 2018).

For the prediction of TVCs and Pseudomonas spp. growth at the dynamic
temperature profile for both inoculated and non-inoculated samples, the initial and final
load (Yo and ymax), the parameters a and To, as well as the parameter h, for the Baranyi and
Roberts dynamic model, estimated as pmax x lag phase (Lianou et al., 2020), were defined
as follows: a) For TVCs in inoculated samples: yo=5.34 log CFU/g, ymax= 9.86 log CFU/qg,
ho=2.37, a= 0.013, and To= -15.00 °C; b) For TVCs in non-inoculated samples: y,=5.03
log CFU/g, ymax= 9.75 log CFU/g, ho= 2.63, a= 0.010, and To= -16.00 °C; c) For
Pseudomonas spp. counts in inoculated samples: yo=4.70 log CFU/g, ymax= 9.44 log
CFU/g, ho= 2.78, a= 0.012, and To=-16.80 °C; d) For Pseudomonas spp. counts in non-
inoculated samples: Yo=4.77, ymax=9.44, ho=2.54, a= 0.102, and To=-20.50 °C. The growth
profiles of TVCs and Pseudomonas spp. under the dynamic temperature scenario are
presented in Figure 7.3. It is characteristic that an under-estimation of both TVCs and
Pseudomonas spp. counts was observed within the first 24 hours of storage. This could be
attributed to the variability among the different batches used in this work (different initial
microbial load), as well as to the different metabolic profile products of the microbiota

caused by temperature shifts (Papadopoulou et al., 2011).

Furthermore, for TVCs model of inoculated samples, RMSE, Bfand As indices
reached the values of 0.941 log CFU/g, 0.983 and 1.111 respectively. For the case of non-
inoculated samples and TVCs predictive model, RMSE, Br and Ar yielded 0.858 log
CFU/g, 0.986 and 1.101, respectively. Based on the values of the Ar index, the average
difference between predictions and observations were ca. 10 %. Model validation for
Pseudomonas spp. on inoculated samples presented RMSE value of 0.778 log CFU/qg,
while Br and Ar performance metrics were 0.995 and 1.100, respectively. Likewise, model
validation for Pseudomonas spp. on non-inoculated samples, presented RMSE, Bf and At
values of 0.839 log CFU/g, 1.018 and 1.100, respectively. In all cases, the performance

metrics were considered acceptable and hence models’ performances were evaluated as
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Figure 7.3: Comparison between observed (points) and predicted (lines) growth of TVCs and
Pseudomonas spp. on inoculated (A, C) and non-inoculated (B, D) chicken marinated souvlaki
samples stored aerobically under periodically changing temperature profile. Dashed lines
correspond to the + 10 % relative error zone.

7.3.3 Survival models of Campylobacter spp. in chicken marinated souvlaki

The calculated parameters for the inactivation Weibull and modified Weibull models
for Campylobacter spp. in chicken marinated souvlaki during storage at isothermal
conditions are presented in Table 7.4. As expected, the lowest storage temperature (0 °C)
presented the highest value for delta parameter (404.73 h) which is the time needed for the
first decimal reduction of the pathogen, whereas at 10 °C the lowest value for delta
parameter was observed (59.52 h). In previous studies, different values of p and delta
parameters for the Weibull model have been reported in order to describe the survival of
Campylobacter spp. under chilling temperatures in chicken products (Ritz et al., 2006;
Gonzélez et al., 2009). The Weibull model was fitted adequately to the experimental data
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as inferred by the values of RMSE (0.112- 0.215 log CFU/g), R? (> 0.824) and R? adjusted

(> 0.788).

Table 7.4: Parameters and statistics for Weibull and modified Weibull inactivation models of
Campylobacter spp. in stored chicken marinated souvlaki samples at isothermal conditions (0, 5

and 10 °C).
Storage temperature Parameters Standard RMSE R? R2adjusted
(°C) Parameter Error (log CFU/g)
0 Delta (h) 58.39 0.122 0.824 0.788
P 0.41
|0g10(No) 0.09
(CFU/g)
5 Delta (h) 29.67 0.112 0.909 0.886
P 0.27
|0g10(No) 0.10
(CFU/g)
10 L0g10(Nres) 0.05 0.215 0.890 0.825
(CFU/g)
Delta (h) 13.53
p 151
LOglo(No) 0.10
(CFU/g)

The fitted inactivation models at each storage temperature condition are also

graphically illustrated in Figure 7.4. It needs to be noted that the population of the pathogen

was reduced by ca. 1.0 log CFU/g throughout storage. This finding is in good agreement

with other studies reporting pathogen reduction varied from 0.51 to 1.57 log CFU/g in

chicken during chilling and frozen storage (Bhaduri & Cottrell, 2004; Huang et al., 2012).

149


https://www.sciencedirect.com/science/article/pii/S0168160509005054?casa_token=e0Bauxm68SUAAAAA:uf5g8sqS4x8pDcOTowCt2P6pLlgej0_LOjxgte_yzwG2OlzaFnIAFe8yOa57etlZd89s1AGUORI#bib4

Campvilobacter spp. counts

(log CFU/g)

.
(=]

el
h

Lot
(=]

(]
h

(]
(=1

n

=}

0

4.0
o)
L o E 35 e
~— * & o g
! *— ¢ g3 ¢ T
= »
. a5 —2_ e
é oh *
= 2
= =20
s
g 1.5
A) C B)
1.0
24 48 72 96 120 144 168 192 216 240 264 288 312 0 24 48 72 96 120 144 168 192 216 240 264 288 312
Storage time (h) Storage time (h)
4.00
,E 3.50 * -
g 3.00 Ay RO S *
250250
B
$5200
T oen L
3 S 1.50
& 1.00
3 0.50 Q)
0.00

0 24 48 72 96 120 144 168 192 216 240 264 288 312
Storage tiune (h)

Figure 7.4: Survival curves of Campylobacter spp. in chicken marinated souvlaki during storage
stored at 0 °C (A), 5 °C (B) and 10 °C (C). Data points are mean (+ standard error) of two
independent experiments with two replications each (n =4).

7.3.4 Molecular analysis results

The results from RAPD-PCR products via electrophoresis are presented in Figure
7.5A, whereas the relative abundance for the six Campylobacter strains, namely C. jejuni
(R450 and 6A) and C. coli (9D, 7L, 6Z, and 1H), assembling the composite inoculum for
selected time points at the three storage temperatures is shown in Figure 7.5B. At the
beginning of storage experiments (0 h), all the inoculated Campylobacter strains were
recovered, with C. coli 1H and 7L representing 45.45 % and 18.18 % of the relative
abundance, respectively. After 120 h of storage at 0 °C, C. coli 6Z could not be recovered,
whereas the relative abundances of C. coli 9D and C. jejuni 6A were 28.57 %. On the other
hand, C. coli 6Z was recovered at the end of storage (312 h) at 0 °C and dominated all the
other strains (7L, 1H, 6A), while C. jejuni R450 and C. coli 9D could not be detected.
Regarding storage at 5 °C, four strains (1H, R450, 9D and 6Z) were recovered after 96 h,
with C. coli 6Z presenting the highest abundance (40%). At the end of storage at 5 °C, the
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strains C. coli 7L, 6Z and 9D strains were recovered in the same abundance (20 %),
whereas 40 % of the isolates presented similar profile to C. coli 1H. After storage for 72 h
at 10 °C, C. coli 6Z was the only strain that could not be detected while the presence of the
remaining 5 strains was equal amounting to 20 %. At the end of storage (216 h) at 10 °C,
three (9D, R450, 6Z) out of six strains could be recovered, with C. coli 9D presenting the
highest abundance (50 %) followed by C. jejuni R450 (33.33%). The abovementioned
findings demonstrated that both C. jejuni and C. coli could survive under the chilling
temperatures until the end of storage, with the exception of 5°C where C. coli strains were
only detectable at the end of storage (240 h). This observation is in line with previous
studies reporting that C. coli is more frequently isolated from poultry industries where

temperatures are with the range of 4-7 °C (Membr¢ et al., 2013).
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Figure 7.5: A) RAPD-PCR profiles of the 6 Campylobacter strains (R450, 6A, 9D, 7L, 6Z and
1H) assembling the composite inoculum for the experiments; B) Relative abundance (%) of the 6
Campylobacter strains in the isolates from different time points during storage at 0, 5, and 10 °C.
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Chapter 8: Conclusions and Future Perspectives
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In the present thesis, non- destructive spectroscopic and biomimetic sensors (MSI,
FTIR, E-nose) were implemented at- line or off- line in raw and stored (under isothermal
conditions and dynamic temperature profiles) chicken products, namely chicken breast
fillet, chicken thigh fillet, chicken marinated souvlaki (using two types of marinade) and
chicken burger. Machine learning methods (PLS-R, SVM-R, LDA, QDA, SVM
classification), ensemble methods and data fusion were employed for the development and
validation of quantitative and qualitative models estimating the microbial load on the
product’s surface, the time from slaughter and their spoilage level.

The findings from the performance of MSI and FT-IR methods in different food
matrices (chapters 2, 3, 4, 5, 6) illustrated that each sensor and developed model was
muscle specific and not only food specific. According to chapter 2, the food matrix (muscle
type, spices and marinade) had a great impact on the prediction of the “time from slaughter”
parameter. Specifically, chicken thigh fillet and chicken burger models with MSI data
predicted more accurately the “time from slaughter parameter” mainly due to their

composition.

In chapters 2, 3 and 4, MSI and FT-IR sensors were employed for the assessment of
quality in chicken breast fillets. Chicken breast spoilage was detected by MSI analysis and
PLS-R model; however, the performance metrics during the external validation were not
satisfactory (RMSE values above = 1 log CFU/cm?). RMSE values decreased when
nonlinear machine learning models (nnet) with MSI data were developed for the estimation
of TVCs (chapter 3). In contrast, FT-IR coupled with PLS-R models provided more
accurate predictions of TVCs. This outcome is in good agreement with other reports where
the successful determination of microbial loads in chicken meat by FT-IR was attributed
to the absorbance in the area 1,550- 1,650 cm™ corresponding to the proteolytic activity of
the microbiota during meat spoilage. Further on, in chapter 4, classification models were
investigated for their efficacy to assess spoilage levels on the surface of chicken breast
samples, whereas additional measurements were acquired via these sensors from four
different batches stored at isothermal and dynamic conditions and coupled to
microbiological and sensory analysis data. Linear, nonlinear and ensemble models were

employed for the classification of the samples in quality classes. Results showed that MSI
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analysis combined with an ensemble model classified stored chicken breast fillets in their
correct class by 64.8 %. The low performance of MSI analysis could be explained due to
the low concentration of myoglobin in this muscle. FT-IR data analysis with PLS-DA
model exhibited higher overall accuracy (69.7 %) compared to the other developed models
and therefore this method could be proposed as an alternative for the assessment of quality
in chicken breast fillets. It is worth noting that the overall accuracy percentages in all cases
did not exceed 70 % due to the variability of the samples used in external validation, which
came from different seasons of the year and stored at dynamic temperature conditions
(different metabolic activity of the microbiota). In order to further ameliorate model
performance, data from dynamic temperature conditions could be used during model
optimization, while MSI and FT-IR features could be fused for the development of

qualitative models for chicken breast fillets.

In chapter 5, the potential of MSI analysis for quality assessment in chicken thigh
fillets was further confirmed. Similar to chapter 2, MSI data in tandem with PLS-R models
could satisfactorily estimate TVCs and Pseudomonas spp. on the surface of chicken thigh.
Likewise, MSI and FT-IR spectral data analyzed by SVMs and QDA models, respectively,
could successfully classify stored samples in their proper sensory classes (fresh vs.
spoiled), whereas the combination of MSI and SVMs excelled with overall prediction
accuracy of 94.4%. These encouraging results are in line with other studies where MSI data
combined with SVM provided robust models for quality assessment in meat, while FT-IR
spectral data analyzed by LDA efficiently discriminated stored meat during spoilage.
Further optimization of the developed models should be based on batches from different
seasons of the year or storage conditions in order to enhance the database concerning

spoilage phenomena in chicken thigh.

In chapter 6, MSI, FT-IR and E-nose were evaluated for their potential to assess the
quality of marinated chicken souvlaki via data fusion using a variety of linear/nonlinear
guantitative and qualitative models. In accordance with the previous chapters, the
importance of choosing the appropriate machine learning model depending on the sensors’
features, as well as the synergetic effect of data fusion from different sensors was
highlighted. For the assessment of TVCs via PLS-R models, MSI data provided the most
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accurate predictions followed by FT-IR/MSI model and the combined three sensors model.
Likewise, SVM-R models developed on MSI and FT-IR/MSI data exhibited the most
satisfactory determination of TVCs. The classification models for the categorization of
stored chicken marinated souvlaki into three classes (fresh, semi-fresh, spoiled) did not
provide acceptable results (low overall accuracy), with MSI-LSVM model and MSI/E-
nose-CSVM model showing the highest values of overall accuracy compared to the other
models. The exclusion of the semi-fresh class seemed to improve classification
performance with MSI-LSVM, FT-IR/MSI- LSVM and FT-IR/MSI-LDA models for two
quality classes presenting good overall accuracy, sensitivity and precision. The
performance of the models was further confirmed by external validation using data from
independent meat batches and different analysts. Even though quantitative and qualitative
models developed on E-nose data could not classified accurately the samples at their
correct quality class, the fused model of MSI/E-nose provided improved performance
metrics. E-nose weakness could be attributed to the existence of organic acids in the
marinade that could influence MOS signals. Overall, MSI data and the fusion of FT-IR and
MSI data were proved effective for the assessment of the microbiological quality in chicken

marinated souvlaki regardless of product batch, storage conditions or analyst.

Concerning the safety in poultry (chapter 7), chilling temperatures (0, 5, and 10 °C)
inhibited as expected Campylobacter spp. growth in marinated chicken souvlaki; however,
the population of the pathogen declined by only 1.5 log CFU/g. The developed Weibull
survival models could be efficiently fitted to Campylobacter spp. counts with the model
developed with data from the 5 °C storage condition providing the lowest RMSE value
(0.112 log CFU/g). Regarding TVCs and Pseudomonas spp. on the inoculated samples,
their population dynamics were not affected by the presence of Campylobacter spp.
inoculum, as inferred by the comparison of pmax and lag phase values in inoculated and
non-inoculated samples. Molecular analysis revealed that both C. coli and C. jejuni were
present during chicken marinated souvlaki storage at chilling temperatures, with the
exception of 5 °C where only C. coli strains could be recovered from the samples at the
end of storage. These findings illustrated the ability of Campylobacter spp. to survive
during refrigerated storage of poultry meat and even its presence in low populations (2.0

log CFU/g) could be extremely hazardous to humans due to cross-contamination.
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The overall findings of this thesis for the assessment of the quality of poultry products
by the implementation of rapid and non-destructive analytical methods such as MSI and
FT-IR are encouraging. These two environmentally friendly methods could efficiently
detect the microbiological quality and hence spoilage in a variety of poultry products stored
at different storage temperatures, seasons of the year and packaging conditions. The
validation of the developed models with different meat batches, seasons of slaughter,
storage conditions and analysts illustrated their potential to assess successfully spoilage in

these products.

Further on, the developed predictive models from this research could be validated
with data collected from poultry product oriented by different producers. Moreover, the
proposed models (developed off- line at the laboratory) in tandem with FT-IR and MSI
techniques could be performed for the assessment of quality on-line or at-line on an
industrial scale similarly to the successful implementation of MSI analysis described in
Chapter 2. Nevertheless, the continuous update of data from these techniques (different
storage temperatures, packaging conditions, season of slaughter, producers or suppliers)
and model optimization could result in the development of reliable models predicting

spoilage in poultry meat and hence contribute in the reduction of food waste.

156



References

Al-Nehlawi, A., Saldo, J., Vega, L. F. and Guri, S., 2013. Effect of high carbon dioxide
atmosphere packaging and soluble gas stabilization pre-treatment on the shelf-life and
quality of chicken drumsticks. Meat Science, 94(1), 1-8.
https://doi.org/10.1016/j.meatsci.2012.12.008.

Alamprese, C., Casale, M., Sinelli, N., Lanteri, S. and Casiraghi, E. 2013. Detection of
minced beef adulteration with turkey meat by UV-vis, NIR and MIR spectroscopy. LWT-
Food Science and Technology, 53(1), 225-232. https://doi.org/10.1016/j.Iwt.2013.01.027

Alamprese, C., Amigo, J. M., Casiraghi, E. and Engelsen, S. B., 2016. Identification and
quantification of turkey meat adulteration in fresh, frozen-thawed and cooked minced beef
by FT-NIR spectroscopy and chemometrics. Meat Science, 121, 175-181.
https://doi.org/10.1016/j.meatsci.2016.06.018

Albert, 1. and Mafart, P., 2005. A modified Weibull model for bacterial inactivation.
International Journal of Food Microbiology, 100(1-3), 197-211.
doi:10.1016/j.ijfoodmicro.2004.10.016

Alexandrakis, D., Downey, G. and Scannell, A.G., 2012. Rapid non-destructive detection
of spoilage of intact chicken breast muscle using near-infrared and Fourier transform mid-
infrared spectroscopy and multivariate statistics. Food Bioprocess Technology 5 (1), 33—
65. https://doi.org/10.1007/s11947-009-0298-4.

Alomar, D., Gallo, C., Castaneda, M. and Fuchslocher, R., 2003. Chemical and
discriminant analysis of bovine meat by near infrared reflectance spectroscopy (NIRS).
Meat Science, 63(4), 441-450. https://doi.org/10.1016/S0309-1740(02)00101-8

Amorim, A., Rodrigues, S., Pereira, E., Valentim, R. and Teixeira, A., 2016. Effect of
caponisation on physicochemical and sensory characteristics of chickens. Animal, 10(6),
978-986. https://doi.org/10.1017/S1751731115002876

Andritsos, N.D., Tzimotoudis, N. and Mataragas, M., 2020. Estimating the performance of
four culture media used for enumeration and detection of Campylobacter species in chicken
meat. LWT, 118, 108808. https://doi.org/10.1016/j.Iwt.2019.108808

Arafat, M.Y., Hoque, S., Xu, S. and Farid, D.M., 2019. Machine learning for mining
imbalanced data. IAENG International Journal of Computer Science, 46(2), 332-348.

Argyri, A.A., Panagou, E.Z., Tarantilis, P.A., Polysiou, M. and Nychas, G.J., 2010. Rapid
qualitative and quantitative detection of beef fillets spoilage based on Fourier transform
infrared spectroscopy data and artificial neural networks. Sensors and Actuators B:
Chemical, 145(1), 146-154. https://doi.org/10.1016/j.snb.2009.11.052

Argyri, A.A., Jarvis, R.M., Wedge, D., Xu, Y., Panagou, E.Z. and Goodacre, R., G-J, E.,
2013. A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage.
Food Control. 29 (2), 461-470. https://doi.org/10.1016/j.foodcont.2012.05.040.

157


https://doi.org/10.1016/j.meatsci.2012.12.008
https://doi.org/10.1016/j.lwt.2013.01.027
https://doi.org/10.1007/s11947-009-0298-4
https://doi.org/10.1016/S0309-1740(02)00101-8
https://doi.org/10.1017/S1751731115002876
https://doi.org/10.1016/j.lwt.2019.108808
https://doi.org/10.1016/j.foodcont.2012.05.040

Argyri, A.A., Panagou, E.Z. and Nychas, G.-J.E., 2014. Monitoring microbial spoilage of
foods by vibrational spectroscopy (FTIR and Raman). In: Boziaris, 1.S. (Ed.), Novel Food
Preservation and Microbial Assessment Techniques. CRC Press, Boca Raton, 386-434.

Arredondo, T., Oiiate, E., Santander, R., Tomic, G., Silva, J.R., Sanchez, E. and Acevedo,
C.A., 2014. Application of neural networks and meta-learners to recognize beef from OTM
cattle by using volatile organic compounds. Food and Bioprocess Technology, 7(11), 3217-
3225. https://doi.org/10.1007/s11947-014-1289-7

Asuero, A.G., Sayago, A. and Gonzalez, A.G., 2006. The correlation coefficient: an
overview. Critical Reviews in  Analytical Chemistry. 36 (1), 41-59.
https://doi.org/10.1080/10408340500526766.

Balabin, R.M. and Lomakina, E.l., 2011. Support vector machine regression (LS-SVM)—
an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry
data? Physical Chemistry Chemical Physics, 13(24), 11710-11718. DOI:
10.1039/C1CP0O0051A

Balamatsia, C.C., Patsias, A., Kontominas, M.G. and Savvaidis, I.N., 2007. Possible role
of volatile amines as quality-indicating metabolites in modified atmosphere-packaged
chicken fillets: Correlation with microbiological and sensory attributes. Food Chemistry,
104(4), 1622-1628. https://doi.org/10.1016/].foodchem.2007.03.013

Balasubramanian, S., Panigrahi, S., Logue, C.M., Marchello, M., Doetkott, C., Gu, H.,
Sherwood, J. and Nolan, L., 2004. Spoilage identification of beef using an electronic nose
system. Transactions of the ASAE, 47(5), 1625.

Balasubramanian, S., Panigrahi, S., Logue, C.M., Marchello, M. and Sherwood, J.S., 2005.
Identification of salmonella-inoculated beef using a portable electronic nose system.
Journal of Rapid Methods & Automation in Microbiology, 13(2), 71-95.
https://doi.org/10.1111/j.1745-4581.2005.00011.x

Balasubramanian, S., Panigrahi, S., Logue, C.M., Gu, H. and Marchello, M., 2009. Neural
networks-integrated metal oxide-based artificial olfactory system for meat spoilage
identification. Journal of Food Engineering, 91(2), 91-98.
doi:10.1016/j.jfoodeng.2008.08.008

Baltic, T., Ciric, J., Lazic, 1.B., Pelic, D.L., Mitrovic, R., Djordjevic, V. and Parunovic, N.,
2019. Packaging as a tool to improve the shelf life of poultry meat. In IOP Conference
Series: Earth and Environmental Science (Vol. 333, No. 1, p. 012044). IOP Publishing.
doi:10.1088/1755-1315/333/1/012044

Baranyi, J. and Roberts, T.A. 1994. A dynamic approach to predicting bacterial growth in
food. International journal of food microbiology, 23(3-4), 277-294.
https://doi.org/10.1016/0168-1605(94)90157-0.

Barker, M. and Rayens, W. 2003. Partial least squares for discrimination. Journal of
Chemometrics: A Journal of the Chemometrics Society, 17(3), 166-173.
https://doi.org/10.1002/cem.785

158


https://doi.org/10.1007/s11947-014-1289-7
https://doi.org/10.1016/j.foodchem.2007.03.013
https://doi.org/10.1111/j.1745-4581.2005.00011.x
https://doi.org/10.1002/cem.785

Barni, M., Cappellini, V. and Mecocci, A., 1997. Colour-based detection of defects on
chicken meat. Image and Vision Computing, 15(7), 549-556.
https://doi.org/10.1016/S0262-8856(97)01138-4

Baston, O. and Barna, O., 2010. Raw chicken leg and breast sensory evaluation. Food
Science and Technology, 11(1), 25-30.
https://www.researchgate.net/publication/49613866

Baston, O., Barna, O. and Vasile, A., 2017. Freshness evaluation of chicken meat using
microbiota and biogenic amine index. Food and Environment Safety Journal, 9(2), 61-66.
http://fia-old.usv.ro/fiajournal/index.php/FENS/article/view/410

Beldk, A., Kovacs, M., Hermann, Z., Holczman, A., Marta, D., Stojakovic, S., Bajcsi, N.
and Maraz, A., 2011. Molecular analysis of poultry meat spoiling microbiota and
heterogeneity of their proteolytic and lipolytic enzyme activities. Acta Alimentaria,
40(Supplement-1), 3-22. DOI: 10.1556/AAIim.40.2011.Suppl.2

Berrueta, L.A., Alonso-Salces, R.M. and Héberger, K., 2007. Supervised pattern
recognition in food analysis. Journal of chromatography A, 1158(1-2), 196-214.
https://doi.org/10.1016/j.chroma.2007.05.024

Bhaduri, S. and Cottrell, B., 2004. Survival of cold-stressed Campylobacter jejuni on
ground chicken and chicken skin during frozen storage. Applied and Environmental
Microbiology, 70(12), 7103-7109. https://doi.org/10.1128/AEM.70.12.7103-7109.2004

Bjorkroth, J., 2005. Microbiological ecology of marinated meat products. Meat Science,
70(3), 477-480. doi:10.1016/j.meatsci.2004.07.018

Bi, Y., Yuan, K., Xiao, W., Wu, J., Shi, C., Xia, J., Chu, G., Zhang, G. and Zhou, G. 2016.
A local pre-processing method for near-infrared spectra, combined with spectral
segmentation and standard normal variate transformation. Analytica Chimica Acta, 909,
30-40. https://doi.org/10.1016/j.aca.2016.01.010.

Blankenship, L.C. and Craven, S.E., 1982. Campylobacter jejuni survival in chicken meat
as a function of temperature. Applied and Environmental Microbiology, 44(1), 88-92.
https://doi.org/10.1128/aem.44.1.88-92.1982

Bolton, D.J. and Robertson, L.J., 2016. Mental health disorders associated with foodborne
pathogens. Journal of Food Protection, 79(11), 2005-2017. https://doi.org/10.4315/0362-
028X.JFP-15-587

Borras, E., Ferré, J., Boqué, R., Mestres, M., Acefia, L. and Busto, O., 2015. Data fusion
methodologies for food and beverage authentication and quality assessment—A review.
Analytica Chimica Acta, 891, 1-14. https://doi.org/10.1016/j.aca.2015.04.042

Boulesteix, A.L. and Strimmer, K., 2007. Partial least squares: a versatile tool for the
analysis of high-dimensional genomic data. Briefings in bioinformatics, 8(1), 32-44.
https://doi.org/10.1093/bib/bbl016

Bouzembrak, Y., Kliiche, M., Gavai, A. and Marvin, H.J., 2019. Internet of Things in food
safety: Literature review and a bibliometric analysis. Trends in Food Science &
Technology, 94, 54-64. https://doi.org/10.1016/j.tifs.2019.11.002

159


https://doi.org/10.1016/S0262-8856(97)01138-4
https://www.researchgate.net/publication/49613866
https://doi.org/10.1016/j.chroma.2007.05.024
https://doi.org/10.1128/AEM.70.12.7103-7109.2004
https://doi.org/10.1016/j.aca.2016.01.010
https://doi.org/10.1128/aem.44.1.88-92.1982
https://doi.org/10.4315/0362-028X.JFP-15-587
https://doi.org/10.4315/0362-028X.JFP-15-587
https://doi.org/10.1016/j.aca.2015.04.042
https://doi.org/10.1093/bib/bbl016
https://doi.org/10.1016/j.tifs.2019.11.002

Bocker, U., Ofstad, R., Wu, Z., Bertram, H.C., Sockalingum, G.D., Manfait, M., Kohler,
A., 2007. Revealing covariance structures in Fourier transform infrared and Raman
microspectroscopy spectra: a study on pork muscle fiber tissue subjected to different
processing  parameters.  Applied  Spectroscopy. 61  (10), 1032-1039.
https://doi.org/10.1366/000370207782217707

Breiman, L., 2001. Random forrest. Machine Learning 45, 5-32.
https://doi.org/10.1023/A:1010933404324.

Brereton, R.G. and Lloyd G.R. 2014. Partial least squares discriminant analysis: taking the
magic away. Journal of Chemometrics. 28, 213-225. https://doi.org/10.1002/cem.2609

Bruckner, S., Albrecht, A., Petersen, B. and Kreyenschmidt, J., 2013. A predictive shelf
life model as a tool for the improvement of quality management in pork and poultry chains.
Food Control, 29(2), 451-460. https://doi.org/10.1016/j.foodcont.2012.05.048

Cai, J., Chen, Q., Wan, X. and Zhao, J., 2011. Determination of total volatile basic nitrogen
(TVB-N) content and Warner—Bratzler shear force (WBSF) in pork using Fourier
transform near infrared (FT-NIR) spectroscopy. Food Chemistry, 126(3), 1354-1360.
https://doi.org/10.1016/j.foodchem.2010.11.098

Candogan, K., Altuntas, E.G. and gci, N., 2021. Authentication and quality assessment of
meat products by fourier-transform infrared (FTIR) spectroscopy. Food Engineering
Reviews, 13(1), 66-91. https://doi.org/10.1007/s12393-020-09251-y

Carstensen, J.M. and Hansen, J.F. An Apparatus and a Method of Recording an Image of
an Object. Patent family EP1051660, Patent 17, 198, 15 November 2003

Chao, K., Yang, C.C., Chen, Y.R., Kim, M.S. and Chan, D.E., 2007. Hyperspectral-
multispectral line-scan imaging system for automated poultry carcass inspection
applications  for  food  safety.  Poultry  Science, 86(11), 2450-2460.
https://doi.org/10.3382/ps.2006-00467

Chaveerach, P., Ter Huurne, A.A.H.M., Lipman, L.J.A. and Van Knapen, F., 2003.
Survival and resuscitation of ten strains of Campylobacter jejuni and Campylobacter coli
under acid conditions. Applied and Environmental Microbiology, 69(1), 711-714.
https://doi.org/10.1128/AEM.69.1.711-714.2003

Chen, Q., Cai, J., Wan, X. and Zhao, J.,, 2011. Application of linear/non-linear
classification algorithms in discrimination of pork storage time using Fourier transform
near infrared (FT-NIR) spectroscopy. LWT-Food Science and Technology, 44(10), 2053-
2058. https://doi.org/10.1016/j.Iwt.2011.05.015

Chen, Q., Hui, Z., Zhao, J. and Ouyang, Q., 2014. Evaluation of chicken freshness using a
low-cost colorimetric sensor array with AdaBoost-OLDA classification algorithm. LWT-
Food Science and Technology, 57(2), 502-507.
http://dx.doi.org/10.1016/j.lwt.2014.02.031

Chen, R.Y., 2015. Autonomous tracing system for backward design in food supply chain.
Food Control, 51, 70-84. https://doi.org/10.1016/j.foodcont.2014.11.004

160


https://doi.org/10.1002/cem.2609
https://doi.org/10.1016/j.foodcont.2012.05.048
https://doi.org/10.1016/j.foodchem.2010.11.098
https://doi.org/10.1007/s12393-020-09251-y
https://doi.org/10.3382/ps.2006-00467
https://doi.org/10.1128/AEM.69.1.711-714.2003
https://doi.org/10.1016/j.lwt.2011.05.015
http://dx.doi.org/10.1016/j.lwt.2014.02.031
https://doi.org/10.1016/j.foodcont.2014.11.004

Chmiel, M. and Stowinski, M., 2018. Effect of storage in display cases on the sensory
quality of chicken breast meat (m. pectoralis). Brazilian Journal of Poultry Science, 20, 91-
98.https://doi.org/10.1590/1806-9061-2017-0628

Cho, B.K., Chen, Y.R. and Kim, M.S., 2007. Multispectral detection of organic residues
on poultry processing plant equipment based on hyperspectral reflectance imaging
technique. Computers and Electronics in  Agriculture, 57(2), 177-189.
https://doi.org/10.1016/j.compag.2007.03.008

Chung, S. and Yoon, S.C., 2021. Detection of Foreign Materials on Broiler Breast Meat
Using a Fusion of Visible Near-Infrared and Short-Wave Infrared Hyperspectral Imaging.
Applied Sciences, 11(24), 11987. https://doi.org/10.3390/app112411987

Codex Alimentarius Commission (CAC), 2011. Guidelines for the control of
Campylobacter and Salmonella in chicken meat. CAC/GL 78-2011. Food and Agriculture
Organization (FAO), Rome.

Collins, K.E., Kiepper, B.H., Ritz, C.W., McLendon, B.L., Wilson, J.L., 2014. Growth,
livability, feed consumption, and carcass composition of the Athens Canadian Random
Bred 1955 meat-type chicken versus the 2012 high-yielding Cobb 500 broiler. Poultry
Science. 93 (12), 2953-2962. https://doi.org/10.3382/ps.2014-04224.

Cortes, C. and Vapnik, V., 1995. Support-vector networks. Machine learning, 20(3), 273-
297. https://doi.org/10.1007/BF00994018

Cover, T. and Hart, P. 1967. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1), 21-27. DOI: 10.1109/T1T.1967.1053964

Cozzolino, D. and Murray, 1., 2004. Identification of animal meat muscles by visible and
near infrared reflectance spectroscopy. LWT-Food Science and Technology, 37(4), 447-
452, https://doi.org/10.1016/].Iwt.2003.10.013

Cullen, P.J., O’Donnell, C.P. and Fagan, C.C., 2014. Benefits and challenges of adopting
PAT for the food industry. In Process analytical technology for the food industry (1-5).
Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0311-5 1

Dalgaard, P. 1995. Modelling of microbial activity and prediction of shelf life for packed
fresh  fish. International Journal of Food Microbiology, 26(3), 305-317.
https://doi.org/10.1016/0168-1605(94)00136-T.

Daugaard, S.B., Adler-Nissen, J. and Carstensen, J.M., 2010. New vision technology for
multidimensional quality monitoring of continuous frying of meat. Food Control, 21(5),
626-632. https://doi.org/10.1016/j.foodcont.2009.09.007

Dawson, P.L., Chaves, B.D., Northcutt, J.K. and Han, 1.Y., 2013. Quality and shelf life of
fresh chicken breasts subjected to crust freezing with and without skin. Journal of Food
Quiality, 36(5), 361-368. https://doi.org/10.1111/jfq.12046

De Marchi, M., Riovanto, R., Penasa, M. and Cassandro, M., 2012. At-line prediction of
fatty acid profile in chicken breast using near infrared reflectance spectroscopy. Meat
science, 90(3), 653-657. https://doi.org/10.1016/j.meatsci.2011.10.009

161


https://doi.org/10.1590/1806-9061-2017-0628
https://doi.org/10.1016/j.compag.2007.03.008
https://doi.org/10.3390/app112411987
https://doi.org/10.3382/ps.2014-04224
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.lwt.2003.10.013
https://doi.org/10.1016/0168-1605(94)00136-T
https://doi.org/10.1016/j.foodcont.2009.09.007
https://doi.org/10.1111/jfq.12046
https://doi.org/10.1016/j.meatsci.2011.10.009

Demirok, E., Veluz, G., Stuyvenberg, W.V., Castaneda, M.P., Byrd, A. and Alvarado, C.Z.,
2013. Quality and safety of broiler meat in various chilling systems. Poultry Science, 92(4),
1117-1126. https://doi.org/10.3382/ps.2012-02493

Deniz, E., Giines Altuntas, E., Ayhan, B., igci, N., Ozel Demiralp, D. and Candogan, K.,
2018. Differentiation of beef mixtures adulterated with chicken or turkey meat using FTIR
spectroscopy. Journal of Food Processing and Preservation, 42(10), el3767.
https://doi.org/10.1111/jfpp.13767

Dey, S., Saha, S., Singh, A.K. and McDonald-Maier, K., 2021. FoodSQRBIock: Digitizing
food production and the supply chain with blockchain and QR code in the cloud.
Sustainability, 13(6), 3486. https://doi.org/10.3390/su13063486

Di Rosa, A.R., Leone, F., Cheli, F. and Chiofalo, V., 2017. Fusion of electronic nose,
electronic tongue and computer vision for animal source food authentication and quality
assessment-A  review. Journal of Food  Engineering, 210, 62-75.
https://doi.org/10.1016/j.jfoodeng.2017.04.024

Dissing, B.S., Papadopoulou, O.S., Tassou, C., Ersbell, B.K., Carstensen, J.M., Panagou,
E.Z. and Nychas, G.J. 2013. Using multispectral imaging for spoilage detection of pork
meat. Food Bioprocess Technology. 6, 2268-2279. https://doi.org/10.1007/s11947-012-
0886-6.

Dixit, Y., Casado-Gavalda, M.P., Cama-Moncunill, R., Cama-Moncunill, X., Markiewicz-
Keszycka, M., Cullen, P.J., & Sullivan, C. 2017. Developments and challenges in online
NIR spectroscopy for meat processing. Comprehensive Reviews in Food Science and Food
Safety, 16, 1172-1187. https://doi.org/10.1111/1541-4337.12295.

Dogan, O.B., Clarke, J., Mattos, F. and Wang, B., 2019. A quantitative microbial risk
assessment model of Campylobacter in broiler chickens: Evaluating processing
interventions. Food Control, 100, 97-110. https://doi.org/10.1016/j.foodcont.2019.01.003
Dominguez, S.A. and Schaffner, D.W., 2007. Development and validation of a
mathematical model to describe the growth of Pseudomonas spp. in raw poultry stored
under aerobic conditions. International Journal of Food Microbiology, 120(3), 287-295.
https://doi.org/10.1016/j.ijfoodmicro.2007.09.005

Doulgeraki, A.l., Paramithiotis, S. and Nychas, G.J.E., 2011. Characterization of the
Enterobacteriaceae community that developed during storage of minced beef under aerobic
or modified atmosphere packaging conditions. International journal of food microbiology,
145(1), 77-83. https://doi.org/10.1016/j.ijfoodmicro.2010.11.030

Doulgeraki, A.l., Ercolini, D., Villani, F. and Nychas, G.J.E., 2012. Spoilage microbiota
associated to the storage of raw meat in different conditions. International Journal of Food
Microbiology, 157(2), 130-141. https://doi.org/10.1016/j.ijfoodmicro.2012.05.020

Dourou, D., Grounta, A., Argyri, A.A., Froutis, G., Tsakanikas, P., Nychas, G.J.E.,
Doulgeraki, A.l., Chorianopoulos, N.G. and Tassou, C.C., 2021. Rapid microbial quality
assessment of chicken liver inoculated or not with Salmonella Using FTIR spectroscopy

162


https://doi.org/10.3382/ps.2012-02493
https://doi.org/10.1111/jfpp.13767
https://doi.org/10.3390/su13063486
https://doi.org/10.1016/j.jfoodeng.2017.04.024
https://doi.org/10.1111/1541-4337.12295
https://doi.org/10.1016/j.foodcont.2019.01.003
https://doi.org/10.1016/j.ijfoodmicro.2007.09.005
https://doi.org/10.1016/j.ijfoodmicro.2010.11.030
https://doi.org/10.1016/j.ijfoodmicro.2012.05.020

and machine learning. Frontiers in Microbiology, 3573.
https://doi.org/10.3389/fmich.2020.623788

Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; Wiley-Interscience:
New York, NY, USA, 2000; ISBN: 978-0-468 471-05669-0.

Duffy, L. and Dykes, G.A., 2006. Growth temperature of four Campylobacter jejuni strains
influences their subsequent survival in food and water. Letters in Applied Microbiology,
43(6), 596-601. https://doi.org/10.1111/].1472-765X.2006.02019.x

Duque, B., Haddad, N., Rossero, A., Membré, J.M. and Guillou, S., 2019. Influence of cell
history on the subsequent inactivation of Campylobacter jejuni during cold storage under
modified atmosphere. Food Microbiology, 84, 103263.
https://doi.org/10.1016/j.fm.2019.103263

EFSA Panel on Biological Hazards (BIOHAZ), 2011. Scientific Opinion on
Campylobacter in broiler meat production: control options and performance objectives
and/or targets at different stages of the food chain. EFSA Journal, 9(4):2105. [141 pp.].
doi:10.2903/j.efsa.2011.2105. Available online: www.efsa.europa.eu/efsajournal

EFSA Panel on Biological Hazards (BIOHAZ), 2016. Growth of spoilage bacteria during
storage and  transport of meat. EFSA  Journal,  14(6), e04523.
https://doi.org/10.2903/j.efsa.2016.4523

EFSA/ECDC, 2019. Scientific report on the European Union One Health 2018 Zoonoses
Report. EFSA J., 17, 5926. DOI: 10.2903/j.efsa.2019.5926

EFSA/ECDC, 2021. he European Union One Health 2020 Zoonoses Report. EFSAJournal
2021;19(12):6971, 324 pp. DOI: https://doi.org/10.2903/j.efsa.2021.6971

Ellis, D. 1., Broadhurst, D., Kell, D. B., Rowland, J. J. and Goodacre, R. 2002. Rapid and
quantitative detection of the microbial spoilage of meat by Fourier transform infrared
spectroscopy and machine learning. Applied and Environmental Microbiology, 68(6),
2822-2828. DOI: 10.1128/AEM.68.6.2822-2828.2002.

Engel, J., Gerretzen, J., Szymanska, E., Jansen, J.J., Downey, G., Blanchet, L. and
Buydens, L.M., 2013. Breaking with trends in pre-processing?. TrAC Trends in Analytical
Chemistry, 50, 96-106. https://doi.org/10.1016/j.trac.2013.04.015

Estelles-Lopez, L., Ropodi, A., Pavlidis, D., Fotopoulou, J., Gkousari, C., Peyrodie, A.,
Panagou, E.Z., Nychas, G.-J.E. and Mohareb, F., 2017. An automated ranking platform for
machine learning regression models for meat spoilage prediction using multispectral
imaging and metabolic profiling. Food Research International. 99, 206-215.
https://doi.org/10.1016/j.foodres.2017.05.013.

EU, 2017. Commission Regulation (EU) 2017/1495 of 23 August 2017 amending
Regulation (EC) No 2073/2005 as regards Campylobacter in broiler carcasses. Available
online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R1495
Falkovskaya, A. and Gowen, A., 2020. Literature review: spectral imaging applied to
poultry products. Poultry Science, 99(7), 3709-3722.
https://doi.org/10.1016/j.ps].2020.04.013

163


https://doi.org/10.3389/fmicb.2020.623788
https://doi.org/10.1111/j.1472-765X.2006.02019.x
https://doi.org/10.2903/j.efsa.2016.4523
https://doi.org/10.1016/j.trac.2013.04.015
https://doi.org/10.1016/j.foodres.2017.05.013
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R1495
https://doi.org/10.1016/j.psj.2020.04.013

FAOQO, 2019. The State of Food and Agriculture 2019. Moving Forward on Food Loss and
Waste Reduction. Licence: CC BY-NC-SA 3.0 IGO, Rome

FAO, 2022. Technical Platform on the Measurement and Reduction of Food Loss and
Waste. Available online: http://www.fao.org/platform-food-loss-waste/en/ (accessed on 12
February 2022).

FAO, 2022. Gateway to Poultry Production and Products. Available online:
http://www.fao.org/poultry-production-products/en/ (accessed on 12 February 2022).

Feng, Y. Z. and Sun, D. W. 2013a. Determination of total viable count (TVC) in chicken
breast fillets by near-infrared hyperspectral imaging and spectroscopic transforms. Talanta,
105, 244-249. https://doi.org/10.1016/j.talanta.2012.11.042

Feng, Y. Z. and Sun, D. W. 2013b. Near-infrared hyperspectral imaging in tandem with
partial least squares regression and genetic algorithm for non-destructive determination and
visualization of Pseudomonas loads in chicken fillets. Talanta, 109, 74-83.
https://doi.org/10.1016/j.talanta.2013.01.057

Feng, Y.Z., EIMasry, G., Sun, D.W., Scannell, A.G., Walsh, D. and Morcy, N., 2013. Near-
infrared hyperspectral imaging and partial least squares regression for rapid and reagentless
determination of Enterobacteriaceae on chicken fillets. Food Chemistry, 138(2-3), 1829-
1836. https://doi.org/10.1016/j.foodchem.2012.11.040

Feng, C.H., Makino, Y., Oshita, S. and Martin, J.F.G., 2018. Hyperspectral imaging and
multispectral imaging as the novel techniques for detecting defects in raw and processed
meat products: Current state-of-the-art research advances. Food Control, 84, 165-176.
https://doi.org/10.1016/j.foodcont.2017.07.013

Fengou, L.C., Spyrelli, E., Lianou, A., Tsakanikas, P., Panagou, E.Z. and Nychas, G.-J.E.,
2019. Estimation of minced pork microbiological spoilage through fourier transform
infrared and visible spectroscopy and multispectral vision technology. Foods 8 (7), 238.
https://doi.org/10.3390/foods8070238.

Fengou, L.C., Mporas, I., Spyrelli, E., Lianou, A. and Nychas, G.J., 2020. Estimation of
the microbiological quality of meat using rapid and non-invasive spectroscopic sensors.
IEEE Access, 8, pp.106614-106628. DOI: 10.1109/ACCESS.2020.3000690

Fengou, L.C., Tsakanikas, P. and Nychas, G.J.E., 2021a. Rapid detection of minced pork
and chicken adulteration in fresh, stored and cooked ground meat. Food Control, 125,
p.108002. https://doi.org/10.1016/j.foodcont.2021.108002

Fengou, L.C., Lianou, A., Tsakanikas, P., Mohareb, F. and Nychas, G.J.E., 2021b.
Detection of meat adulteration using spectroscopy-based sensors. Foods, 10(4), 861.
https://doi.org/10.3390/foods10040861

Fletcher, R.D., Albers, A.C., Chen, A.K. and Albertson Jr, J.N., 1983. Ascorbic acid
inhibition of Campylobacter jejuni growth. Applied and Environmental Microbiology,
45(3), 792-795. https://doi.org/10.1128/aem.45.3.792-795.1983

164


http://www.fao.org/poultry-production-products/en/
https://doi.org/10.1016/j.talanta.2013.01.057
https://doi.org/10.1016/j.foodchem.2012.11.040
https://doi.org/10.1016/j.foodcont.2017.07.013
https://doi.org/10.3390/foods8070238
https://doi.org/10.1016/j.foodcont.2021.108002
https://doi.org/10.1128/aem.45.3.792-795.1983

Fraqueza, M.J. and Barreto, A.S., 2011. Gas mixtures approach to improve turkey meat
shelf life under modified atmosphere packaging: The effect of carbon monoxide. Poultry
science, 90(9), 2076-2084. https://doi.org/10.3382/ps.2011-01366

Friedman, J.H., Hastie, T., Tibshirani, R., and Friedman, J.H., 2009. The elements of
statistical learning: data mining, inference, and prediction (Vol. 2, pp. 1-758). New York:
springer.

Galarz, L.A., Fonseca, G.G. and Prentice, C., 2016. Predicting bacterial growth in raw,
salted, and cooked chicken breast fillets during storage. Food Science and Technology
International, 22(6), 461-474. https://doi.org/10.1177/1082013215618519

Geeraerd, A.H., Valdramidis, V.P. and Van Impe, J.F., 2005. GInaFiT, a freeware tool to
assess non-log-linear microbial survivor curves. International Journal of Food
Microbiology, 102(1), 95-105. https://doi.org/10.1016/j.ijfoodmicro.2004.11.038

Geladi, P., 1986. Kowalski BR. Partial least-squares regression-a tutorial. Analytica
Chimica. Acta 185, 1-17. https://doi.org/10.1016/0003-2670(86)80028-9.

Geornaras, I., Kunene, N.F., von Holy, A. and Hastings, J.W., 1999. Amplified fragment
length polymorphism fingerprinting of Pseudomonas strains from a poultry processing
plant.  Applied and  Environmental Microbiology,  65(9),  3828-3833.
https://doi.org/10.1128/AEM.65.9.3828-3833.1999

Gharst, G., Oyarzabal, O.A. and Hussain, S.K., 2013. Review of current methodologies to
isolate and identify Campylobacter spp. from foods. Journal of Microbiological Methods,
95(1), 84-92. https://doi.org/10.1016/j.mimet.2013.07.014

Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Siadat, M. and Balasubramanian, S., 2009.
Meat quality assessment by electronic nose (machine olfaction technology). Sensors, 9(8),
6058-6083. https://doi.org/10.3390/s90806058

Ghasemi-Varnamkhasti, M., Mohtasebi, S.S. and Siadat, M., 2010. Biomimetic-based odor
and taste sensing systems to food quality and safety characterization: An overview on basic
principles and recent achievements. Journal of Food Engineering, 100(3), 377-387.
https://doi.org/10.1016/j.jfoodeng.2010.04.032

Gomes, J.F.S. and Leta, F.R., 2012. Applications of computer vision techniques in the
agriculture and food industry: a review. European Food Research and Technology, 235(6),
989-1000. https://doi.org/10.1007/s00217-012-1844-2

Gonzalez, M., Skandamis, P.N. and Hanninen, M.L., 2009. A modified Weibull model for
describing the survival of Campylobacter jejuni in minced chicken meat. International
Journal of Food Microbiology, 136(1), 52-58. doi:10.1016/j.ijfoodmicro.2009.09.022

Gospavic, R., Kreyenschmidt, J., Bruckner, S., Popov, V. and Haque, N. 2008.
Mathematical modelling for predicting the growth of Pseudomonas spp. in poultry under
variable temperature conditions. International Journal of Food Microbiology, 127(3), 290-
297. https://doi.org/10.1016/j.ijfoodmicro.2008.07.022

165


https://doi.org/10.3382/ps.2011-01366
https://doi.org/10.1177/1082013215618519
https://doi.org/10.1016/j.ijfoodmicro.2004.11.038
https://doi.org/10.1016/0003-2670(86)80028-9
https://doi.org/10.1128/AEM.65.9.3828-3833.1999
https://doi.org/10.1007/s00217-012-1844-2

Gram, L., Ravn, L., Rasch, M., Bruhn, J.B., Christensen, A.B. and Givskov, M., 2002.
Food spoilage—interactions between food spoilage bacteria. International Journal of Food
Microbiology, 78(1-2), 79-97. https://doi.org/10.1016/S0168-1605(02)00233-7

Grassi, S. and Alamprese, C., 2018. Advances in NIR spectroscopy applied to process
analytical technology in food industries. Current Opinion in Food Science, 22, 17-21.
https://doi.org/10.1016/j.cofs.2017.12.008

Grewal, M.K., Jaiswal, P. and Jha, S.N., 2015. Detection of poultry meat specific bacteria
using FTIR spectroscopy and chemometrics. Journal of Food Science and Technology,
52(6), 3859-3869. https://doi.org/10.1007/s13197-014-1457-9

Gromski, P.S., Muhamadali, H., Ellis, D.1., Xu, Y., Correa, E., Turner, M.L. and Goodacre,
R., 2015. A tutorial review: Metabolomics and partial least squares-discriminant analysis—
a marriage of convenience or a shotgun wedding. Analytica Chimica Acta, 879, 10-23.
https://doi.org/10.1016/j.aca.2015.02.012

Grouven, U., Bergel, F. and Schultz, A., 1996. Implementation of linear and quadratic
discriminant analysis incorporating costs of misclassification. Computer methods and
programs in biomedicine, 49(1), 55-60. https://doi.org/10.1016/0169-2607(95)01705-4

Grunert, T., Stephan, R., Ehling-Schulz, M. and Johler, S., 2016. Fourier transform infrared
spectroscopy enables rapid differentiation of fresh and frozen/thawed chicken. Food
Control, 60, 361-364. https://doi.org/10.1016/j.foodcont.2015.08.016

Hazeleger, W.C., Wouters, J.A., Rombouts, F.M. and Abee, T., 1998. Physiological
activity of Campylobacter jejuni far below the minimal growth temperature. Applied and
Environmental Microbiology, 64(10), 3917-3922.
https://doi.org/10.1128/AEM.64.10.3917-3922.1998

Hadjilouka, A., Andritsos, N.D., Paramithiotis, S., Mataragas, M. and Drosinos, E.H.,
2014. Listeria monocytogenes serotype prevalence and biodiversity in diverse food
products. Journal of Food Protection, 77(12), 2115-2120.
https://doi.org/10.4315/0362-028X.JFP-14-072

Hesterberg, T., Choi, N.H., Meier, L. and Fraley, C., 2008. Least angle and €1 penalized

regression: a review. Statistics Survey. 2, 61-93. https://doi.org/10.1214/08-ss035.

Ho, T. K. 1998. The random subspace method for constructing decision forests. IEEE
transactions on pattern analysis and machine intelligence, 20(8), 832-844. DOI:
10.1109/34.709601.

Hoerl, A.E. and Kennard, R.W., 1970. Ridge regression: biased estimation for
nonorthogonal problems. Technometrics 12 (2), 55-67.
https://doi.org/10.1080/00401706.1970.10488634.

Holl, L., Behr, J. and Vogel, R. F. 2016. Identification and growth dynamics of meat
spoilage microorganisms in modified atmosphere packaged poultry meat by MALDI-TOF
MS. Food Microbiology, 60, 84-91. https://doi.org/10.1016/].fm.2016.07.003.

166


https://doi.org/10.1128/AEM.64.10.3917-3922.1998
https://doi.org/10.4315/0362-028X.JFP-14-072
https://doi.org/10.1080/
https://doi.org/10.1016/j.fm.2016.07.003

Hu, F., Liu, X., Dai, J. and Yu, H. 2014. A novel algorithm for imbalance data classification
based on neighborhood hypergraph. The Scientific World Journal, 2014.
http://dx.doi.org/10.1155/2014/876875.

Huang, L., Hwang, C.A. and Phillips, J., 2011. Evaluating the Effect of Temperature on
Microbial Growth Rate—The Ratkowsky and a Bélehradek-Type Models. Journal of Food
Science, 76(8), M547-M557. DOI: 10.1111/j.1750-3841.2011.02345.x

Huang, J., Jiang, F., Hu, Y., Zhou, X., Gu, S. and Jiao, X.A., 2012. An inactivation kinetics
model for Campylobacter jejuni on chicken meat under low-temperature storage.
Foodborne Pathogens and Disease, 9(6), 513-516. DOI: 10.1089/fpd.2011.1070

Huang, L., 2013. Optimization of a new mathematical model for bacterial growth. Food
Control, 32(1), 283-288. http://dx.doi.org/10.1016/j.foodcont.2012.11.019

Huang, L., Zhao, J., Chen, Q. and Zhang, Y., 2014. Nondestructive measurement of total
volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy,
computer vision and electronic nose techniques. Food Chemistry, 145, 228-236.
https://doi.org/10.1016/j.foodchem.2013.06.073

Huang, L., 2016. Mathematical modeling and validation of growth of Salmonella
Enteritidis and background microorganisms in potato salad—One-step kinetic analysis and
model development. Food Control, 68, 69-76.
http://dx.doi.org/10.1016/j.foodcont.2016.03.039

Huang, J., Zang, X., Zhai, W., Guan, C., Lei, T. and Jiao, X., 2018. Campylobacter spp. in
chicken-slaughtering operations: A risk assessment of human campylobacteriosis in East
China. Food Control, 86, 249-256. https://doi.org/10.1016/j.foodcont.2017.11.026

Huffman, B., Mazrouei, R., Bevelheimer, J. and Shavezipur, M., 2017, August. Three-
Dimensional Biomimetic Biosensors for Food Safety Applications. In International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference (Vol. 58165, p. VO04T09A002). American Society of Mechanical Engineers.

https://doi.org/10.1115/DETC2017-67446

Hutchison, M.L., Walters, L.D., Avery, S.M., Reid, C.A., Wilson, D., Howell, M.,
Johnston, A.M. and Buncic, S., 2005. A comparison of wet-dry swabbing and excision
sampling methods for microbiological testing of bovine, porcine, and ovine carcasses at
red meat slaughterhouses. Journal of Food Protection, 68(10), 2155-2162.
https://doi.org/10.4315/0362-028X-68.10.2155

Jaafreh, S., Valler, O., Kreyenschmidt, J., Giinther, K. and Kaul, P., 2019. In vitro
discrimination and classification of Microbial Flora of Poultry using two dispersive Raman
spectrometers (microscope and Portable Fiber-Optic systems) in tandem with chemometric
analysis. Talanta, 202, 411-425. https://doi.org/10.1016/].talanta.2019.04.082

Jain, A.K., Mao, J. and Mohiuddin, K.M., 1996. Artificial neural networks: a tutorial.
Computer 29 (3), 31-44. https://doi.org/10.1109/2.485891.

167


http://dx.doi.org/10.1155/2014/876875
http://dx.doi.org/10.1016/j.foodcont.2012.11.019
https://doi.org/10.1016/j.foodchem.2013.06.073
http://dx.doi.org/10.1016/j.foodcont.2016.03.039
https://doi.org/10.1115/DETC2017-67446
https://doi.org/10.4315/0362-028X-68.10.2155
https://doi.org/10.1016/j.talanta.2019.04.082
https://doi.org/10.1109/2.485891

Jiménez-Carvelo, A. M., Gonzalez-Casado, A., Bagur-Gonzalez, M. G. and Cuadros-
Rodriguez, L. 2019. Alternative data mining/machine learning methods for the analytical
evaluation of food quality and authenticity—A review. Food Research International, 122,
25-39. https://doi.org/10.1016/j.foodres.2019.03.063

Jolliffe, 1.T., 1982. A note on the use of principal components in regression. J. Roy. Stat.
Soc.: Series C (Applied Statistics) 31 (3), 300-303.

i Furnols, M.F. and Gispert, M., 2009. Comparison of different devices for predicting the
lean meat percentage of pig carcasses. Meat Science, 83(3), 443-446.
https://doi.org/10.1016/j.meatsci.2009.06.018

Indahl, U. G., Martens, H. and Nes, T. 2007. From dummy regression to prior probabilities
in PLS-DA. Journal of Chemometrics: A Journal of the Chemometrics Society, 21(12),
529-536. https://doi.org/10.1002/cem.1061.

lulietto, M.F., Sechi, P., Borgogni, E. and Cenci-Goga, B.T., 2015. Meat spoilage: a critical
review of a neglected alteration due to ropy slime producing bacteria. Italian Journal of
Animal Science, 14(3), 4011. https://doi.org/10.4081/ijas.2015.4011

Kamble, S.S., Gunasekaran, A., Parekh, H. and Joshi, S., 2019. Modeling the internet of
things adoption barriers in food retail supply chains. Journal of Retailing and Consumer
Services, 48, 154-168. https://doi.org/10.1016/j.jretconser.2019.02.020

Kamruzzaman, M., Sun, D.W., EIMasry, G. and Allen, P., 2013. Fast detection and
visualization of minced lamb meat adulteration using NIR hyperspectral imaging and
multivariate image analysis. Talanta, 103, 130-136.
https://doi.org/10.1016/j.talanta.2012.10.020

Kamruzzaman, M., Makino, Y. and Oshita, S., 2015. Non-invasive analytical technology
for the detection of contamination, adulteration, and authenticity of meat, poultry, and fish:
A review. Analytica Chimica Acta, 853, 19-29. https://doi.org/10.1016/j.aca.2014.08.043

Kamruzzaman, M., Makino, Y. and Oshita, S. 2016. Rapid and non-destructive detection
of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging
and  machine learning. Journal of Food Engineering, 170, 8-15.
https://doi.org/10.1016/j.jfoodeng.2015.08.023

Keshavarzi, Z., Barzegari Banadkoki, S., Faizi, M., Zolghadri, Y. and Shirazi, F.H., 2020.
Comparison of transmission FTIR and ATR spectra for discrimination between beef and
chicken meat and quantification of chicken in beef meat mixture using ATR-FTIR
combined with chemometrics. Journal of Food Science and Technology, 57(4), 1430-1438.
https://doi.org/10.1007/s13197-019-04178-7

Khulal, U., Zhao, J., Hu, W. and Chen, Q., 2017. Intelligent evaluation of total volatile
basic nitrogen (TVB-N) content in chicken meat by an improved multiple level data fusion
model. Sensors and Actuators B: Chemical, 238, 337-345.
https://doi.org/10.1016/j.snb.2016.07.074

Kim, K.S., Choi, H.H., Moon, C.S. and Mun, C.W., 2011. Comparison of k-nearest
neighbor, quadratic discriminant and linear discriminant analysis in classification of

168


https://doi.org/10.1016/j.foodres.2019.03.063
https://doi.org/10.1016/j.meatsci.2009.06.018
https://doi.org/10.1002/cem.1061
https://doi.org/10.4081/ijas.2015.4011
https://doi.org/10.1016/j.jretconser.2019.02.020
https://doi.org/10.1016/j.talanta.2012.10.020
https://doi.org/10.1016/j.aca.2014.08.043
https://doi.org/10.1016/j.jfoodeng.2015.08.023
https://doi.org/10.1007/s13197-019-04178-7

electromyogram signals based on the wrist-motion directions. Current Applied Physics,
11(3), 740-745. https://doi.org/10.1016/j.cap.2010.11.051

Kouma, J.P. and Liu, L., 2011, October. Internet of food. In 2011 International Conference
on Internet of Things and 4th International Conference on Cyber, Physical and Social
Computing (pp. 713-716). IEEE. DOI: 10.1109/iThings/CPSCom.2011.120

Koutsoumanis, K.P., Taoukis, P.S., Drosinos, E.H. and Nychas, G.J.E., 2000. Applicability
of an Arrhenius model for the combined effect of temperature and CO2 packaging on the
spoilage microflora of fish. Applied and Environmental Microbiology, 66(8), 3528-3534.
https://doi.org/10.1128/AEM.66.8.3528-3534.2000

Koutsoumanis, K., Stamatiou, A., Skandamis, P. and Nychas, G.J., 2006. Development of
a microbial model for the combined effect of temperature and pH on spoilage of ground
meat, and validation of the model under dynamic temperature conditions. Applied and
Environmental Microbiology, 72(1), 124-134. https://doi.org/10.1128/AEM.72.1.124-
134.2006

Koutsoumanis, K. P., Stamatiou, A. P., Drosinos, E. H. and Nychas, G. J. 2008. Control of
spoilage microorganisms in minced pork by a self-developed modified atmosphere induced
by the respiratory activity of meat microflora. Food microbiology, 25(7), 915-921.
https://doi.org/10.1111/j.1472-765X.2004.01546.X.

Koutsoumanis, K., 2009. Modeling food spoilage in microbial risk assessment. Journal of
food protection, 72(2), 425-427. https://doi.org/10.4315/0362-028X-72.2.425

Koutsoumanis, K., Tsaloumi, S., Aspridou, Z., Tassou, C. and Gougouli, M., 2021.
Application of Quantitative Microbiological Risk Assessment (QMRA) to food spoilage:
Principles and methodology. Trends in Food Science & Technology, 114, 189-197.
https://doi.org/10.1016/j.tifs.2021.05.011

Kumar, Y. and Karne, S.C., 2017. Spectral analysis: A rapid tool for species detection in
meat products. Trends in Food Science & Technology, 62, 59-67.
http://dx.doi.org/10.1016/j.tifs.2017.02.008

Kumar, J., Akhila, K. and Gaikwad, K.K., 2021. Recent developments in intelligent
packaging systems for food processing industry: a review. Journal of Food Processing and
Technology, 12, 895.

Kucheryavskiy, S. 2018. Analysis of NIR spectroscopic data using decision trees and their
ensembles. Journal of Analysis and Testing, 2(3), 274-289.
https://doi.org/10.1007/s41664-018-0078-0

Kutsanedzie, F.Y., Guo, Z. and Chen, Q., 2019. Advances in nondestructive methods for
meat quality and safety monitoring. Food Reviews International, 35(6), 536-562.
https://doi.org/10.1080/87559129.2019.1584814

Lanzl, M.1., Zwietering, M.H., Hazeleger, W.C., Abee, T. and den Besten, H.M.W., 2020.
Variability in lag-duration of Campylobacter spp. during enrichment after cold and

169


https://doi.org/10.1016/j.cap.2010.11.051
https://doi.org/10.1128/AEM.66.8.3528-3534.2000
https://doi.org/10.1128/AEM.72.1.124-134.2006
https://doi.org/10.1128/AEM.72.1.124-134.2006
https://doi.org/10.4315/0362-028X-72.2.425
https://doi.org/10.1016/j.tifs.2021.05.011
http://dx.doi.org/10.1016/j.tifs.2017.02.008
https://doi.org/10.1080/87559129.2019.1584814

oxidative stress and its impact on growth kinetics and reliable detection. Food Research
International, 134, 109253. https://doi.org/10.1016/j.foodres.2020.109253

Lee, A., Smith, S.C. and Coloe, P.J., 1998. Survival and growth of Campylobacter jejuni
after artificial inoculation onto chicken skin as a function of temperature and packaging
conditions. Journal of Food Protection, 61(12), 1609-1614. https://doi.org/10.4315/0362-
028X-61.12.1609

Lee, H.S., Kwon, M., Heo, S., Kim, M.G. and Kim, G.B., 2017. Characterization of the
biodiversity of the spoilage microbiota in chicken meat using next generation sequencing
and culture dependent approach. Korean Journal for Food Science of Animal Resources,
37(4), 535. doi: 10.5851/kosfa.2017.37.4.535

Li, H., Chen, Q., Zhao, J. and Ouyang, Q., 2014. Non-destructive evaluation of pork
freshness using a portable electronic nose (E-nose) based on a colorimetric sensor array.
Analytical Methods, 6(16), 6271-6277. DOI: 10.1039/C4AY00014E

Li, T. and Messer, K.D., 2019. To scan or not to scan: the question of consumer behavior
and QR codes on food packages. Journal of Agricultural and Resource Economics,
44(1835-2019-1549), 311-327. DOI: 10.22004/ag.econ.287977

Liang, R., Yu, X., Wang, R., Luo, X., Mao, Y., Zhu, L. and Zhang, Y., 2012. Bacterial
diversity and spoilage-related microbiota associated with freshly prepared chicken
products under aerobic conditions at 4 C. Journal of Food Protection, 75(6), 1057-1062.

https://doi.org/10.4315/0362-028X.JFP-11-439

Lianou, A., Panagou, E.Z. and Nychas, G.J., 2016. Microbiological spoilage of foods and
beverages. In The stability and shelf life of food (pp. 3-42). Woodhead Publishing.
https://doi.org/10.1016/B978-0-08-100435-7.00001-0

Lianou, A., Moschonas, G., Nychas, G. J. E. and Panagou, E. Z. 2018. Growth of Listeria
monocytogenes in pasteurized vanilla cream pudding as affected by storage temperature
and the presence of cinnamon extract. Food Research International, 106, 1114-1122.
https://doi.org/10.1016/j.foodres.2017.11.027

Lianou, A., Raftopoulou, O., Spyrelli, E. and Nychas, G.J.E., 2021. Growth of Listeria
monocytogenes in Partially Cooked Battered Chicken Nuggets as a Function of Storage
Temperature. Foods, 10(3), 533. https://doi.org/10.3390/foods10030533

Lin, M., Al Holy, M., Mousavi Hesary, M., Al Qadiri, H., Cavinato, A.G. and Rasco, B.A.,
2004. Rapid and quantitative detection of the microbial spoilage in chicken meat by diffuse
reflectance spectroscopy (600-1100 nm). Letters in Applied Microbiology. 39 (2), 148—
155. https://doi.org/10.1111/j.1472-765X.2004.01546.x.

Lin, C.Y,, Lin, L.C. and Hsu, J.C., 2011. Effect of caponization on muscle composition,
shear value, ATP related compounds and taste appraisal in Taiwan country chicken
cockerels. Asian-Australasian Journal of Animal Sciences, 24(7), 1026-1030.
https://doi.org/10.5713/ajas.2011.10068

Lin, H.,, Yan, Y., Zhao, T., Peng, L., Zou, H., Li, J.,, Yang, X., Xiong, Y., Wang, M. and
Wu, H., 2013. Rapid discrimination of Apiaceae plants by electronic nose coupled with

170


https://doi.org/10.1016/B978-0-08-100435-7.00001-0
https://doi.org/10.1016/j.foodres.2017.11.027
https://doi.org/10.3390/foods10030533
https://doi.org/10.1111/j.1472-765X.2004.01546.x
https://doi.org/10.5713/ajas.2011.10068

multivariate statistical analyses. Journal of Pharmaceutical and Biomedical Analysis, 84,
1-4. https://doi.org/10.1016/j.jpba.2013.05.027

Lindblad, M., 2007. Microbiological sampling of swine carcasses: a comparison of data
obtained by swabbing with medical gauze and data collected routinely by excision at
Swedish abattoirs. International Journal of Food Microbiology, 118(2), 180-185.
https://doi.org/10.1016/j.ijfoodmicro.2007.07.009

Liu, D., Sun, D.W. and Zeng, X.A., 2014. Recent advances in wavelength selection
techniques for hyperspectral image processing in the food industry. Food and Bioprocess
Technology, 7(2), 307-323. https://doi.org/10.1007/s11947-013-1193-6

Liu, Y.J., Xie, J., Zhao, L.J., Qian, Y.F., Zhao, Y. and Liu, X., 2015. Biofilm formation
characteristics of Pseudomonas lundensis isolated from meat. Journal of Food Science. 80
(12), M2904-M2910. https://doi.org/10.1111/1750-3841.13142

Loh, W. Y. 2011. Classification and regression trees. Wiley interdisciplinary reviews: data
mining and knowledge discovery, 1(1), 14-23 https://doi.org/10.1002/widm.8

Loubes, J.M. and Massart, P., 2004. Discussion of" Least angle regression. Ann. Stat. 32
(2), 460-465. https://doi.org/10.1214/009053604000000067.

Loutfi, A., Coradeschi, S., Mani, G.K., Shankar, P. and Rayappan, J.B.B., 2015. Electronic
noses for food quality: A review. Journal of Food Engineering, 144, 103-111.
https://doi.org/10.1016/j.jfoodeng.2014.07.019

Luts, J., Ojeda, F., Van de Plas, R., De Moor, B., Van Huffel, S. and Suykens, J.A., 2010.
A tutorial on support vector machine-based methods for classification problems in
chemometrics. Analytica Chimica Acta, 665(2), 129-145. doi:10.1016/j.aca.2010.03.030

Lytou, A., Panagou, E. Z. and Nychas, G. J. E. 2016. Development of a predictive model
for the growth Kkinetics of aerobic microbial population on pomegranate marinated chicken
breast fillets under isothermal and dynamic temperature conditions. Food Microbiology,
55, 25-31. https://doi.org/10.1016/j.ijfoodmicro.2017.12.023

Lytou, A. E., Nychas, G. J. E. and Panagou, E. Z. 2018. Effect of pomegranate-based
marinades on the microbiological, chemical and sensory quality of chicken meat: A
metabolomics approach. International Journal of Food Microbiology, 267, 42-53.
https://doi.org/10.1016/j.ijfoodmicro.2017.12.023

Lytou, A.E., Renieri, C.T., Doulgeraki, A.l., Nychas, G.J.E. and Panagou, E.Z., 2020.
Assessment of the microbiological quality and safety of marinated chicken products from
Greek retail outlets. International Journal of Food Microbiology, 320, 108506.
https://doi.org/10.1016/j.ijfoodmicro.2019.108506

Lytou, A.E., Schoina, E., Liu, Y., Michalek, K., Stanley, M.S., Panagou, E.Z. and Nychas,
G.J.E., 2021. Quality and safety assessment of edible seaweeds Alaria esculenta and
Saccharina  latissima  cultivated in  Scotland. Foods, 10(9), 2210.
https://doi.org/10.3390/foods10092210

Macé, S., Joffraud, J.J., Cardinal, M., Malcheva, M., Cornet, J., Lalanne, V., Chevalier, F.,
Sérot, T., Pilet, M.F. and Dousset, X., 2013. Evaluation of the spoilage potential of bacteria

171


https://doi.org/10.1016/j.jpba.2013.05.027
https://doi.org/10.1016/j.ijfoodmicro.2007.07.009
https://doi.org/10.1007/s11947-013-1193-6
https://doi.org/10.1111/1750-3841.13142
https://doi.org/10.1002/widm.8
https://doi.org/10.1016/j.jfoodeng.2014.07.019
https://doi.org/10.1016/j.ijfoodmicro.2017.12.023
https://doi.org/10.1016/j.ijfoodmicro.2019.108506

isolated from spoiled raw salmon (Salmo salar) fillets stored under modified atmosphere
packaging. International journal of food microbiology, 160(3), 227-238.
https://doi.org/10.1016/j.ijfoodmicro.2012.10.013

Mafart, P., Couvert, O., Gaillard, S. and Leguérinel, 1., 2002. On calculating sterility in
thermal preservation methods: application of the Weibull frequency distribution model.
International ~ Journal of  Food Microbiology, 72 (1-2), 107-113.
https://doi.org/10.1016/S0168-1605(01)00624-9

Manthou, E., Lago, S.L., Dagres, E., Lianou, A., Tsakanikas, P., Panagou, E.Z.,
Anastasiadi, M., Mohareb, F. and Nychas, G.J.E., 2020. Application of spectroscopic and
multispectral imaging technologies on the assessment of ready-to-eat pineapple quality: A
performance evaluation study of machine learning models generated from two commercial
data analytics tools. Computers and Electronics in Agriculture, 175, 105529.
https://doi.org/10.1016/j.compag.2020.105529

Marcato, S.M., Sakomura, N.K., Kawauchi, .M., Barbosa, N.A.A., Freitas, E.C., 2006.
Growth of body parts of two broiler chicken strain. In: X1l European Poultry Conference,
10-14. https://doi.org/10.1590/S1516-635X2008000200007.

Marquez, C., Lopez, M.1., Ruisanchez, 1. and Callao, M.P., 2016. FT-Raman and NIR
spectroscopy data fusion strategy for multivariate qualitative analysis of food fraud.
Talanta, 161, 80-86. https://doi.org/10.1016/].talanta.2016.08.003

Marini, F., 2009. Artificial neural networks in foodstuff analyses: Trends and perspectives
A review. Analytica Chimica Acta, 635(2), 121-131. doi:10.1016/j.aca.2009.01.009

McCarthy, Z., Smith, B., Fazil, A., Ryan, S.D., Wu, J. and Munther, D., 2019. An
individual-carcass model for quantifying bacterial cross-contamination in an industrial
three-stage poultry scalding tank. Journal of Food Engineering, 262, 142-153.
https://doi.org/10.1016/j.jfoodeng.2019.05.013

Mellefont, L.A., McMeekin, T.A. and Ross, T., 2003. Performance evaluation of a model
describing the effects of temperature, water activity, pH and lactic acid concentration on
the growth of Escherichia coli. International journal of food microbiology, 82(1), 45-58.
https://doi.org/10.1016/S0168-1605(02)00253-2

Membré, J.M., Laroche, M. and Magras, C., 2013. Meta-analysis of Campylobacter spp.
survival data within a temperature range of 0 to 42° C. Journal of Food Protection, 76(10),
1726-1732. doi:10.4315/0362-028X.JFP-13-042

Meredith, H., Walsh, D., McDowell, D.A. and Bolton, D.J., 2013. An investigation of the
immediate and storage effects of chemical treatments on Campylobacter and sensory
characteristics of poultry meat. International Journal of Food Microbiology, 166(2), 309-
315. http://dx.doi.org/10.1016/j.ijffoodmicro.2013.07.005

Mohareb, F., Papadopoulou, O., Panagou, E., Nychas, G. J., and Bessant, C. 2016.
Ensemble-based support vector machine classifiers as an efficient tool for quality
assessment of beef fillets from electronic nose data. Analytical Methods, 8(18), 3711-3721.
DOI: 10.1039/c6ay00147e

172


https://doi.org/10.1016/j.ijfoodmicro.2012.10.013
https://doi.org/10.1016/S0168-1605(01)00624-9
https://doi.org/10.1016/j.compag.2020.105529
https://doi.org/10.1590/S1516-635X2008000200007
https://doi.org/10.1016/j.talanta.2016.08.003
https://doi.org/10.1016/j.jfoodeng.2019.05.013
https://doi.org/10.1016/S0168-1605(02)00253-2
http://dx.doi.org/10.1016/j.ijfoodmicro.2013.07.005

Morales, P.A., Aguirre, J.S., Troncoso, M.R. and Figueroa, G.O., 2016. Phenotypic and
genotypic characterization of Pseudomonas spp. present in spoiled poultry fillets sold in
retail settings. LWT, 73, 609-614. https://doi.org/10.1016/j.lwt.2016.06.064

Nakariyakul, S. and Casasent, D.P., 2009. Fast feature selection algorithm for poultry skin
tumor detection in hyperspectral data. Journal of Food Engineering, 94(3-4), 358-365.
https://doi.org/10.1016/j.jfoodeng.2009.04.001

Nychas, G.J. and Tassou, C.C., 1997. Spoilage processes and proteolysis in chicken as
detected by HPLC. Journal of the Science of Food and Agriculture, 74(2), 199-208.
https://doi.org/10.1002/(S1CI1)1097-0010(199706)74:2<199::AlID-JSFA790>3.0.CO;2-4

Nychas, G.-J.E., Skandamis, P.N., Tassou, C.C., Koutsoumanis, K.P., 2008. Meat spoilage

during distribution. Meat Sci. 78 (1-2), 77-89.
https://doi.org/10.1016/j.meatsci.2007.06.020.

Nychas, G.J.E.; Panagou, E.Z. and Mohareb, F., 2016. Novel approaches for food safety
management and communication. Current Opinion in Food Science, 12, 13-20.
https://doi.org/10.1016/j.cofs.2016.06.005

Osuna, E., Freund, R. and Girosi, F. (1997, September). An improved training algorithm
for support vector machines. In Neural networks for signal processing VII. Proceedings of
the 1997 IEEE signal processing society workshop (pp. 276-285). IEEE. DOI:
10.1109/NNSP.1997.622408

Panagou, E.Z., Papadopoulou, O., Carstensen, J.M. and Nychas, G.J.E. 2014. Potential of
multispectral imaging technology for rapid and non-destructive determination of the
microbiological quality of beef filets during aerobic storage. International Journal of Food
Microbiology, 174, 1-11. https://doi.org/10.1016/].ijfoodmicro.2013.12.026.

Panov, P. and Dzeroski, S., 2007, September. Combining bagging and random subspaces
to create better ensembles. In International Symposium on Intelligent Data Analysis (pp.
118-129). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74825-0 11

Papadopoulou, O., Panagou, E. Z., Tassou, C. C. and Nychas, G. J. 2011. Contribution of
Fourier transform infrared (FTIR) spectroscopy data on the quantitative determination of
minced pork meat spoilage. Food Research International, 44(10), 3264-3271.
https://doi.org/10.1016/j.foodres.2011.09.012

Papadopoulou, O.S., Panagou, E.Z., Mohareb, F.R. and Nychas, G.J.E., 2013. Sensory and
microbiological quality assessment of beef fillets using a portable electronic nose in
tandem with support vector machine analysis. Food Research International, 50(1), 241-
249. https://doi.org/10.1016/j.foodres.2012.10.020

Park, B., Lawrence, K.C., Windham, W.R., Chen, Y.R. and Chao, K., 2002. Discriminant
analysis of dual-wavelength spectral images for classifying poultry carcasses. Computers
and Electronics in Agriculture, 33(3), 219-231. https://doi.org/10.1016/S0168-
1699(02)00010-8

173


https://doi.org/10.1016/j.jfoodeng.2009.04.001
https://doi.org/10.1002/(SICI)1097-0010(199706)74:2%3c199::AID-JSFA790%3e3.0.CO;2-4
https://doi.org/10.1016/j.meatsci.2007.06.020
https://doi.org/10.1016/j.cofs.2016.06.005
https://doi.org/10.1016/j.ijfoodmicro.2013.12.026
https://doi.org/10.1007/978-3-540-74825-0_11
https://doi.org/10.1016/j.foodres.2011.09.012
https://doi.org/10.1016/j.foodres.2012.10.020
https://doi.org/10.1016/S0168-1699(02)00010-8
https://doi.org/10.1016/S0168-1699(02)00010-8

Park, B., Lawrence, K.C., Windham, W.R. and Smith, D.P., 2006. Performance of
hyperspectral imaging system for poultry surface fecal contaminant detection. Journal of
Food Engineering, 75(3), 340-348. https://doi.org/10.1016/j.jfoodeng.2005.03.060

Patsias, A., Badeka, A.V., Savvaidis, I.N. and Kontominas, M.G., 2008. Combined effect
of freeze chilling and MAP on quality parameters of raw chicken fillets. Food
Microbiology, 25(4), 575-581. https://doi.org/10.1016/j.fm.2008.02.008

Pintelas, P. and Livieris, I. E., 2020. Special issue on ensemble learning and applications.
Algorithms 2020, 13(6), 140; https://doi.org/10.3390/a13060140

Polikar, R., 2006. Ensemble based systems in decision making. IEEE Circuits and systems
magazine, 6(3), 21-45. DOI: 10.1109/MCAS.2006.1688199

Porep, J. U., Kammerer, D. R. and Carle, R. 2015. On-line application of near infrared
(NIR) spectroscopy in food production. Trends in Food Science & Technology, 46(2), 211-
230. https://doi.org/10.1016/j.tifs.2015.10.002

Prieto, N., Roehe, R., Lavin, P., Batten, G. and Andrés, S. 2009. Application of near
infrared reflectance spectroscopy to predict meat and meat products quality: A review.
Meat science, 83(2), 175-186. https://doi.org/10.1016/j.meatsci.2009.04.016.

Pu, H., Kamruzzaman, M. and Sun, D.W., 2015. Selection of feature wavelengths for
developing multispectral imaging systems for quality, safety and authenticity of muscle
foods-a  review. Trends in Food Science Technology, 45, 86-104.
https://doi.org/10.1016/j.tifs.2015.05.006.

Qin, J., Chao, K., Kim, M.S., Lu, R. and Burks, T.F., 2013. Hyperspectral and multispectral
imaging for evaluating food safety and quality. Journal of Food Engineering, 118(2), 157-
171. https://doi.org/10.1016/j.jfoodeng.2013.04.001

Raab, V., Bruckner, S., Beierle, E., Kampmann, Y., Petersen, B. and Kreyenschmidt, J.
2008. Generic model for the prediction of remaining shelf life in support of cold chain
management in pork and poultry supply chains. Journal on Chain and Network Science,
8(1), 59-73. https://doi.org/10.3920/JCNS2008.x089

Rahman, U., Sahar, A., Pasha, I., Rahman, S. and Ishaqg, A., 2018. Assessing the capability
of Fourier transform infrared spectroscopy in tandem with chemometric analysis for
predicting poultry meat spoilage. PeerJ. 6, €5376. DOI: 10.7717/peerj.5376

Rajamaiki, T., Alakomi, H.L., Ritvanen, T., Skyttd, E., Smolander, M. and Ahvenainen, R.,
2006. Application of an electronic nose for quality assessment of modified atmosphere
packaged poultry meat. Food Control, 17(1), 5-13.
https://doi.org/10.1016/j.foodcont.2004.08.002

Ratkowsky, D.A., Lowry, R.K., McMeekin, T.A., Stokes, A.N. and Chandler, R., 1983.
Model for bacterial culture growth rate throughout the entire biokinetic temperature range.
Journal of Bacteriology, 154(3), 1222-1226. https://doi.org/10.1128/jb.154.3.1222-
1226.1983

174


https://doi.org/10.1016/j.jfoodeng.2005.03.060
https://doi.org/10.1016/j.fm.2008.02.008
https://doi.org/10.3390/a13060140
https://doi.org/10.1016/j.tifs.2015.10.002
https://doi.org/10.1016/j.tifs.2015.05.006
https://doi.org/10.1016/j.jfoodeng.2013.04.001
https://doi.org/10.3920/JCNS2008.x089
https://doi.org/10.1016/j.foodcont.2004.08.002
https://doi.org/10.1128/jb.154.3.1222-1226.1983
https://doi.org/10.1128/jb.154.3.1222-1226.1983

Remenant, B., Jaffrés, E., Dousset, X., Pilet, M.F. and Zagorec, M., 2015. Bacterial spoilers
of food: behavior, fitness and functional properties. Food Microbiology, 45, 45-53.
http://dx.doi.org/10.1016/}.fm.2014.03.009

Reperant, E., Laisney, M.J., Nagard, B., Quesne, S., Rouxel, S., Le Gall, F., Chemaly, M.
and Denis, M., 2016. Influence of enrichment and isolation media on the detection of
Campylobacter spp. in naturally contaminated chicken samples. Journal of Microbiological
Methods, 128, 42-47. http://dx.doi.org/10.1016/].mimet.2016.06.028

Restaino, E., Fassio, A. and Cozzolino, D., 2011. Discrimination of meat patés according
to the animal species by means of near infrared spectroscopy and chemometrics
Discriminacion de muestras de paté de carne segln tipo de especie mediante el uso de la
espectroscopia en el infrarrojo cercano y la quimiometria. CyTA-Journal of Food, 9(3),
210-213. https://doi.org/10.1080/19476337.2010.512396

Rinnan, A., Van Den Berg, F. and Engelsen, S.B., 2009. Review of the most common pre-
processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry,
28(10), 1201-1222. https://doi.org/10.1016/j.trac.2009.07.007

Ritz, M., Nauta, M.J., Teunis, P.F.M., Van Leusden, F., Federighi, M. and Havelaar, A.H.,
2007. Modelling of Campylobacter survival in frozen chicken meat. Journal of Applied
Microbiology, 103(3), 594-600. d0i:10.1111/].1365-2672.2007.03284.x

Rokach, L. 2010. Ensemble-based classifiers. Artificial intelligence review, 33(1), 1-39.
https://doi.org/10.1007/s10462-009-9124-7

Ropodi, A.l., Pavlidis, D.E., Mohareb, F., Panagou, E.Z. and Nychas, G.J., 2015.
Multispectral image analysis approach to detect adulteration of beef and pork in raw meats.
Food Research International, 67, 12-18. http://dx.doi.org/10.1016/j.foodres.2014.10.032

Ropodi, A.l., Panagou, E.Z., Nychas, G.-J.E. 2016. Data mining derived from Food
analyses using non-invasive/non-destructive analytical techniques; Determination of Food
authenticity, quality & safety in tandem with Computer Science Disciplines. Trends in
Food Science & Technology. 50: 11-15. https://doi.org/10.1016/j.tifs.2016.01.011

Ropodi, A. I., Panagou, E. Z. and Nychas, G. J. E. 2018. Rapid detection of frozen-then-
thawed minced beef using multispectral imaging and Fourier transform infrared
spectroscopy. Meat science, 135, 142-147. https://doi.org/10.1016/].meatsci.2017.09.016

Ross, T., 1996. Indices for performance evaluation of predictive models in food
microbiology. Journal of Applied Bacteriology, 81(5), 501-508.
https://doi.org/10.1111/].1365-2672.1996.tb03539.x

Rouger, A., Tresse, O. and Zagorec, M., 2017. Bacterial contaminants of poultry meat:
sources, species, and dynamics. Microorganisms 5 (3), 50.
https://doi.org/10.3390/microorganisms5030050.

175


http://dx.doi.org/10.1016/j.fm.2014.03.009
http://dx.doi.org/10.1016/j.mimet.2016.06.028
https://doi.org/10.1080/19476337.2010.512396
https://doi.org/10.1016/j.trac.2009.07.007
https://doi.org/10.1007/s10462-009-9124-7
http://dx.doi.org/10.1016/j.foodres.2014.10.032
https://doi.org/10.1016/j.tifs.2016.01.011
https://doi.org/10.1016/j.meatsci.2017.09.016
https://doi.org/10.1111/j.1365-2672.1996.tb03539.x

Sade, E., Murros, A. and Bjorkroth, J., 2013. Predominant enterobacteria on modified-
atmosphere packaged meat and poultry. Food microbiology, 34(2), 252-258.
https://doi.org/10.1016/j.fm.2012.10.007

Sahar, A. and Dufour, E., 2014. Use of Fourier transform-infrared spectroscopy to predict
spoilage bacteria on aerobically stored chicken breast fillets. LWT-Food Science and
Technology, 56(2), 315-320. https://doi.org/10.1016/j.Iwt.2013.12.009

Sakomura, N.K., Silva, E.P., Dorigam, J.C., Gous, R.M., St-Pierre, N., 2015. Modeling

amino acid requirements of poultry. Journal of Applied Poultry Research. 24 (2), 267-282.

Sant’Ana, A.S., Franco, B.D. and Schaffner, D.W., 2012. Modeling the growth rate and
lag time of different strains of Salmonella enterica and Listeria monocytogenes in ready-
to-eat lettuce. Food Microbiology, 30(1), 267-273.
https://doi.org/10.1016/j.fm.2011.11.003

Sanz-Valero, J., Alvarez Sabucedo, L.M., Wanden-Berghe, C. and Santos Gago, J.M.,
2016. QR codes: Outlook for food science and nutrition. Critical reviews in food science
and nutrition, 56(6), 973-978. https://doi.org/10.1080/10408398.2012.742865

Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J. and Napolitano, A. (2008, December).
RUSBoost: Improving classification performance when training data is skewed. In 2008
19th international conference on pattern recognition (pp. 1-4). IEEE. DOI:
10.1109/ICPR.2008.4761297.

Seliwiorstow, T., Baré¢, J., Berkvens, D., Van Damme, 1., Uyttendaele, M. and De Zutter,
L., 2016. Identification of risk factors for Campylobacter contamination levels on broiler
carcasses during the slaughter process. International Journal of Food Microbiology, 226,
26-32. http://dx.doi.org/10.1016/j.ijfoodmicro.2016.03.010

Shi, H., Zhang, M. and Adhikari, B., 2018. Advances of electronic nose and its application
in fresh foods: A review. Critical Reviews in Food Science and Nutrition, 58(16), 2700-
2710. https://doi.org/10.1080/10408398.2017.1327419

Silva, J., Leite, D., Fernandes, M., Mena, C., Gibbs, P.A. and Teixeira, P., 2011.
Campylobacter spp. as a foodborne pathogen: a review. Frontiers in Microbiology, 2, 200.
DOI: 10.3389/fmich.2011.00200

Silva, F., Domingues, F.C. and Nerin, C., 2018. Trends in microbial control techniques for
poultry products. Critical Reviews in Food Science and Nutrition, 58(4), 591-609.
https://doi.org/10.1080/10408398.2016.1206845

Skarp, C.P.A., Hinninen, M.L. and Rautelin, H.L.K., 2016. Campylobacteriosis: the role of
poultry meat. Clinical Microbiology and Infection, 22(2), 103-109.
http://dx.doi.org/10.1016/j.cmi.2015.11.019

Smolander, M., Alakomi, H.L., Ritvanen, T., Vainionpad, J. and Ahvenainen, R., 2004.
Monitoring of the quality of modified atmosphere packaged broiler chicken cuts stored in

176


https://doi.org/10.1016/j.fm.2012.10.007
https://doi.org/10.1016/j.lwt.2013.12.009
https://doi.org/10.1016/j.fm.2011.11.003
https://doi.org/10.1080/10408398.2012.742865
http://dx.doi.org/10.1016/j.ijfoodmicro.2016.03.010
https://doi.org/10.1080/10408398.2017.1327419
https://doi.org/10.1080/10408398.2016.1206845
http://dx.doi.org/10.1016/j.cmi.2015.11.019

different temperature conditions. A. Time-temperature indicators as quality-indicating
tools. Food Control, 15(3), 217-229. https://doi.org/10.1016/S0956-7135(03)00061-6

Sokolova, M. and Lapalme, G. 2009. A systematic analysis of performance measures for
classification tasks. Information Processing & Management, 45(4), 427-437.
https://doi.org/10.1016/j.ipm.2009.03.002.

Solow, B.T., Cloak, O.M. and Fratamico, P.M., 2003. Effect of temperature on viability of
Campylobacter jejuni and Campylobacter coli on raw chicken or pork skin. Journal of Food
Protection, 66(11), 2023-2031. https://doi.org/10.4315/0362-028X-66.11.2023

Song, S., Yuan, L., Zhang, X., Hayat, K., Chen, H., Liu, F., Xiao, Z. and Niu, Y., 2013.
Rapid measuring and modelling flavour quality changes of oxidised chicken fat by
electronic nose profiles through the partial least squares regression analysis. Food
Chemistry, 141(4), 4278-4288. https://doi.org/10.1016/j.foodchem.2013.07.009

Serensen, K. M., Petersen, H. and Engelsen, S. B. 2012. An on-line near-infrared (NIR)
transmission method for determining depth profiles of fatty acid composition and iodine
value in porcine adipose fat tissue. Applied Spectroscopy, 66(2), 218-226.
https://doi.org/10.1366/11-06396

Souza, V.G., Pires, J.R., Vieira, E.T., Coelhoso, I.M., Duarte, M.P. and Fernando, A.L.,
2018. Shelf-life assessment of fresh poultry meat packaged in novel bionanocomposite of
chitosan/montmorillonite incorporated with ginger essential oil. Coatings, 8(5), 177.
doi:10.3390/coatings8050177

Spyrelli, E.D., Doulgeraki, A.l., Argyri, A.A., Tassou, C.C., Panagou, E.Z. and Nychas,
G.J.E. 2020. Implementation of Multispectral Imaging (MSI) for Microbiological Quality
Assessment of Poultry Products. Microorganisms, 8(4), 552.
https://doi.org/10.3390/microorganisms8040552.

Spyrelli, E.D., Papachristou, C., Nychas, G.J.E. and Panagou, E.Z., 2021. Microbiological
Quality Assessment of Chicken Thigh Fillets Using Spectroscopic Sensors and
Multivariate Data Analysis. Foods, 10(11), 2723. https://doi.org/10.3390/foods10112723

Su, W.H. and Sun, D.W., 2018. Multispectral imaging for plant food quality analysis and
visualization. Comprehensive Reviews in Food Science and Food Safety, 17(1), 220-2309.
https://doi.org/10.1111/1541-4337.12317

Sun, S. and Zhang, C. 2007. Subspace ensembles for classification. Physica A: Statistical
Mechanics and its Applications, 385(1), 199-207.
https://doi.org/10.1016/j.physa.2007.05.010

SuXia, X., Rui, W., JiuQing, W. and PeiYuan, G., 2018, June. Study on chicken quality
classification method based on K-means-RBF multi-source data fusion. In 2018 Chinese
Control And  Decision  Conference  (CCDC)  (pp.  405-410). IEEE.
DOI:10.1109/CCDC.2018.8407167

Teena, M., Manickavasagan, A., Mothershaw, A., El Hadi, S. and Jayas, D.S., 2013.
Potential of machine vision techniques for detecting fecal and microbial contamination of
food products: A review. Food and Bioprocess Technology, 6(7), 1621-1634.
https://doi.org/10.1007/s11947-013-1079-7

177


https://doi.org/10.1016/S0956-7135(03)00061-6
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.4315/0362-028X-66.11.2023
https://doi.org/10.1016/j.foodchem.2013.07.009
https://doi.org/10.3390/microorganisms8040552
https://doi.org/10.3390/foods10112723
https://doi.org/10.1111/1541-4337.12317
https://doi.org/10.1016/j.physa.2007.05.010
https://doi.org/10.1109/CCDC.2018.8407167
https://doi.org/10.1007/s11947-013-1079-7

Tian, H., Li, F., Qin, L., Yu, H. and Ma, X., 2014. Discrimination of chicken seasonings
and beef seasonings using electronic nose and sensory evaluation. Journal of Food Science,
79(11), S2346-S2353. https://doi.org/10.1111/1750-3841.12675

Timsorn, K., Thoopboochagorn, T., Lertwattanasakul, N. and Wongchoosuk, C., 2016.
Evaluation of bacterial population on chicken meats using a briefcase electronic nose.
Biosystems Engineering, 151, 116-125.
http://dx.doi.org/10.1016/j.biosystemseng.2016.09.005

Tompkin, R.B., 1994. HACCP in the meat and poultry industry. Food Control, 5(3), 153-
161. https://doi.org/10.1016/0956-7135(94)90075-2

Torralbo, A., Borge, C., Garcia-Bocanegra, 1., Méric, G., Perea, A. and Carbonero, A.,
2015. Higher resistance of Campylobacter coli compared to Campylobacter jejuni at
chicken slaughterhouse. Comparative immunology, microbiology and infectious diseases,
39, 47-52. http://dx.doi.org/10.1016/j.cimid.2015.02.003

Tsakanikas, P., Pavlidis, D. and Nychas, G.J. 2015. High throughput multispectral image
processing with applications in food science. PLoS ONE, 10, 0140122,
https://doi.org/10.1371/journal.pone.0140122.

Tsakanikas, P., Pavlidis, D., Panagou, E. and Nychas, G.J., 2016. Exploiting multispectral
imaging for non-invasive contamination assessment and mapping of meat samples.
Talanta, 161, 606-614. https://doi.org/10.1016/].talanta.2016.09.019

Tsakanikas, P., Fengou, L.C., Manthou, E., Lianou, A., Panagou, E.Z. and Nychas, G.J.E.,
2018. A unified spectra analysis workflow for the assessment of microbial contamination
of ready-to-eat green salads: Comparative study and application of non-invasive sensors.
Computers and Electronics in Agriculture, 155, 212-2109.
https://doi.org/10.1016/j.compag.2018.10.025

Tsakanikas, P., Karnavas, A., Panagou, E.Z. and Nychas, G.J. 2020. A machine learning
workflow for raw food spectroscopic classification in a future industry. Scientific Reports,
10(1), 1-11. https://doi.org/10.1038/s41598-020-68156-2

Tzamourani, A.P., Di Napoli, E., Paramithiotis, S., Economou-Petrovits, G., Panagiotidis,
S. and Panagou, E.Z., 2021. Microbiological and physicochemical characterisation of
green table olives of Halkidiki and Conservolea varieties processed by the Spanish method
on industrial scale. International Journal of Food Science & Technology, 56(8), 3845-3857.
https://doi.org/10.1111/ijfs.15000

UNEP, United Nations Environment Programme, 2021. Food Waste Index Report 2021.
Nairobi. Available online at: https://www.fao.org/platform-food-loss
waste/resources/detail/en/c/1378978/ (Accessed at 14/03/2022)

Vaikousi, H., Biliaderis, C.G. and Koutsoumanis, K.P., 2009. Applicability of a microbial
Time Temperature Indicator (TTI) for monitoring spoilage of modified atmosphere packed
minced meat. International Journal of Food Microbiology, 133(3), 272-278.
https://doi.org/10.1016/j.ijfoodmicro.2009.05.030

178


https://doi.org/10.1111/1750-3841.12675
https://doi.org/10.1016/0956-7135(94)90075-2
http://dx.doi.org/10.1016/j.cimid.2015.02.003
https://doi.org/10.1371/journal.pone.0140122
https://doi.org/10.1016/j.talanta.2016.09.019
https://doi.org/10.1016/j.compag.2018.10.025
https://doi.org/10.1038/s41598-020-68156-2
https://doi.org/10.1111/ijfs.15000
https://www.fao.org/platform-food-loss%20waste/resources/detail/en/c/1378978/
https://www.fao.org/platform-food-loss%20waste/resources/detail/en/c/1378978/
https://doi.org/10.1016/j.ijfoodmicro.2009.05.030

van den Berg, F., Lyndgaard, C.B., Serensen, K.M. and Engelsen, S.B., 2013. Process
analytical technology in the food industry. Trends in Food Science & Technology, 31(1),
27-35. https://doi.org/10.1016/].tifs.2012.04.007

Vasconcelos, H., Saraiva, C. and de Almeida, J. M. 2014. Evaluation of the spoilage of raw
chicken breast fillets using Fourier transform infrared spectroscopy in tandem with
chemometrics. Food and Bioprocess  Technology, 7(8), 2330-2341.
http://dx.doi.org/10.1016/j.lwt.2013.12.009

Verboven, S., Hubert, M., Goos, P., 2012. Robust preprocessing and model selection for

spectral data. Journal of Chemometrics. 26 (6), 282-289.
https://doi.org/10.1002/cem.2446.

Verdouw, C.N., Wolfert, J., Beulens, A.J.M. and Rialland, A., 2016. Virtualization of food
supply chains with the internet of things. Journal of Food Engineering, 176, 128-136.
http://dx.doi.org/10.1016/j.jfoodeng.2015.11.009

Wang, D., Wang, X., Liu, T. and Liu, Y., 2012. Prediction of total viable counts on chilled
pork using an electronic nose combined with support vector machine. Meat science, 90(2),
373-377. https://doi.org/10.1016/j.meatsci.2011.07.025

Weng, X., Luan, X., Kong, C., Chang, Z., Li, Y., Zhang, S., Al-Majeed, S. and Xiao, Y.,
2020. A comprehensive method for assessing meat freshness using fusing electronic nose,
computer vision, and artificial tactile technologies. Journal of Sensors, 2020.
https://doi.org/10.1155/2020/8838535

Wickramasinghe, N.N., Ravensdale, J.T., Coorey, R., Dykes, G.A. and Scott Chandry, P.
2019. In situ characterisation of biofilms formed by psychrotrophic meat spoilage
pseudomonads. Biofouling 35 (8), 840-855.
https://doi.org/10.1080/08927014.2019.1669021.

Wickramasinghe, N.N., Hlaing, M.M., Ravensdale, J.T., Coorey, R., Chandry, P.S. and
Dykes, G.A., 2020. Characterization of the biofilm matrix composition of psychrotrophic,
meat  spoilage  pseudomonads. Scientific  Reports. 10 (1), 1-16.
https://doi.org/10.1038/s41598-020-73612-0.

Wojnowski, W., Majchrzak, T., Dymerski, T., Ggbicki, J. and Namies$nik, J., 2017.
Electronic noses: Powerful tools in meat quality assessment. Meat Science, 131, 119-131.
https://doi.org/10.1016/j.meatsci.2017.04.240

Wojnowski, W., Kalinowska, K., Majchrzak, T., Ptotka-Wasylka, J. and Namiesnik, J.,
2019. Prediction of the biogenic amines index of poultry meat using an electronic nose.
Sensors, 19(7), 1580. https://doi.org/10.3390/s19071580

Wold, S., Sjostrom, M., Eriksson, L. 2001. PLS-regression: a basic tool of chemometrics.
Chemometrics and Intelligent Laboratory Systems. 58:109-130.
https://doi.org/10.1016/S0169-7439(01)00155-1

World Health Organization, 2013. The global view of campylobacteriosis: report of an
expert consultation, Utrecht, Netherlands, 9-11 July 2012.

179


https://doi.org/10.1016/j.tifs.2012.04.007
http://dx.doi.org/10.1016/j.lwt.2013.12.009
http://dx.doi.org/10.1016/j.jfoodeng.2015.11.009
https://doi.org/10.1016/j.meatsci.2011.07.025
https://doi.org/10.1155/2020/8838535
https://doi.org/10.1038/s41598-020-73612-0
https://doi.org/10.1016/j.meatsci.2017.04.240
https://doi.org/10.3390/s19071580
https://doi.org/10.1016/S0169-7439(01)00155-1

Xiaobo, Z., Jiewen, Z., Povey, M.J., Holmes, M. and Hanpin, M., 2010. Variables selection
methods in near-infrared spectroscopy. Analytica Chimica Acta, 667(1-2), 14-32.
https://doi.org/10.1016/j.aca.2010.03.048

Xiong, Z., Xie, A., Sun, D. W., Zeng, X. A. and Liu, D. 2015. Applications of hyperspectral
imaging in chicken meat safety and quality detection and evaluation: a review. Critical
Reviews in Food Science and Nutrition, 55(9), 1287-1301.
https://doi.org/10.1080/10408398.2013.834875

Xu, Q.S. and Liang, Y.Z., 2001. Monte Carlo cross validation. Chemometrics and
Intelligent Laboratory Systems. 56 (1), 1-11. https://doi.org/10.1002/cem.858.

Xu, G., Liao, C., Ren, X., Zhang, X., Zhang, X., Liu, S., Fu, X., Wu, H., Huang, L., Liu,
C. and Wang, X., 2014. Rapid assessment of quality of deer antler slices by using an
electronic nose coupled with chemometric analysis. Revista Brasileira de Farmacognosia,
24, 716-721. https://doi.org/10.1016/].bjp.2014.10.011

Yang, C. C., Chao, K., Chen, Y. R. and Early, H. L. 2005. Systemically diseased chicken
identification using multispectral images and region of interest analysis. Computers and
Electronics in Agriculture, 49(2), 255-271. https://doi.org/10.1016/j.compag.2005.05.002

Yang, C.C., Chao, K., Chen, Y.R., Kim, M.S. and Early, H.L., 2006. Simple multispectral
image analysis for systemically diseased chicken identification. Transactions of the
ASABE, 49(1), 245-257. doi:10.13031/2013.20223.

Yang, Y., Zhuang, H., Yoon, S.C., Wang, W., Jiang, H. and Jia, B. 2018. Rapid
classification of intact chicken breast fillets by predicting principal component score of
quality traits with visible/near-infrared spectroscopy. Food Chemistry, 244, 184-189.
https://doi.org/10.1016/j.foodchem.2017.09.148

Ye, X., lino, K. and Zhang, S., 2016. Monitoring of bacterial contamination on chicken
meat surface using a novel narrowband spectral index derived from hyperspectral imagery
data. Meat Science, 122, 25-31. https://doi.org/10.1016/j.meatsci.2016.07.015

Yun, J., Greiner, M., Hoéller, C., Messelhdusser, U., Rampp, A. and Klein, G., 2016.
Association between the ambient temperature and the occurrence of human Salmonella and
Campylobacter infections. Scientific Reports, 6(1), 1-7. DOI: 10.1038/srep28442

Zhang, Y., Mao, Y., Li, K., Dong, P., Liang, R. and Luo, X., 2011. Models of Pseudomonas
growth Kinetics and shelf life in chilled Longissimus dorsi muscles of beef. Asian-
Australasian Journal of Animal Sciences, 24(5), 713-722. doi: 10.5713/ajas.2011.10404

Zhao, T., Ezeike, G.O., Doyle, M.P., Hung, Y.C. and Howell, R.S., 2003. Reduction of

Campylobacter jejuni on poultry by low-temperature treatment. Journal of food protection,
66(4), 652-655. https://doi.org/10.4315/0362-028X-66.4.652

180


https://doi.org/10.1016/j.aca.2010.03.048
https://doi.org/10.1080/10408398.2013.834875
https://doi.org/10.1002/cem.858
https://doi.org/10.1016/j.bjp.2014.10.011
https://doi.org/10.1016/j.compag.2005.05.002
https://doi.org/10.1016/j.foodchem.2017.09.148

0°C

5°C

10°C

15°C

Appendix |

Supplementary material for Chapter 3

Table 3A: Kinetic parameters of the primary growth model of Baranyi and Roberts (1994) for
TVC and Pseudomonas spp.

lag (h) Wmax (h'l) Yo Ymax se(fit) R?
(log CFU/cm?)  (log CFU/cm?)
TVC 92.6 0.0382 2.7 5.5 0.433-0.492 0.826- 0.879
Pseudomonas  72.2 0.0356 2.1 5.2 0.497-0.514 0.826- 0.877
spp.
TVC 52.8 0.0570 3.0 6.6 0.429-0.551 0.875- 0.937
Pseudomonas  17.5 0.0610 2.0 6.1 0.304- 0.522 0.866- 0.944
spp.
TVC 22.7 0.0903 3.1 6.8 0.279- 0.506 0.894- 0.964
Pseudomonas N/A 0.0991 2.3 6.4 0.242-0.489 0.899- 0.979
spp.
TVC 10.2 0.2141 2.9 6.8 0.224- 0.545 0.879- 0.982
Pseudomonas 8.8 0.2410 1.9 6.7 0.282-0.442 0.941- 0.978
spp.
N/A: not available; yo: initial microbial load in sample (log CFU/cm?); ymax: maximum
microbial load in sample (log CFU/cm?); se(fit): standard error of fit;
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Figure 3A: Composition (%) of gases (O-: blue line, CO.: red line) in packaged chicken breast
fillet samples during storage at 0, 5, 10, and 15 °C.
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Table 4A: Parameters for each machine learning algorithm developed for MSI and FT-IR

Sensors.
Parameters MSI FT-IR
LSVM c 1 1
S 2.6225 16.4061
QSVM c 1 1
S 2.5673 17.3814
FineKNN NumN 1 1
Distance . .
metric euclidean | euclidean
Distance
Weight equal equal
NSMethod kdtree | exhaustive
Bucketsize 50 [
Subspace NumL 30 30
Lrate 0.1 1
SimpleTree Nsplits 4 4
MaxCat 10 9
SplitsCr gdi gdi
rustBoosted NumL 30 30
Nsplits 20 20
Lrate 0.1 0.1

Linear Support Vector Machines (LSVM); Quadratic Support Vector Machine, (QSVM); k-Nearest Neighbor
classification (fineKNN); c: cost of constraints violation; s:scale parameter of the hypothesized (zero-mean) Laplace
distribution estimated by maximum likelihood; NumN: number of Neighbors; NSMethod: Neighbors spliting method;
NumL: number of learners; Lrate: learning rate; Nspilts: number of splits; MaxCat: maximum categories; SplitsCr: split
criterion.

Table 4B: Functions performed for each machine learning algorithm developed for MSI and FT-
IR sensors.

Algorithm/Ensemble Function (m.file)
LDA fitcdiscr

LSVM fitcsvm (linear)

QSVM fitcsvm (polynomial order:2)
FineKNN fitcknn
Subspace fitensemble/Subspace with Discriminant
SimpleTree fitctree
fitensemble/RUSBoost with Decision Tree

rustBoosted learners
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Figure 4A: Representative Baranyi and Roberts models for the prediction of TVCs at eight
different storage conditions (0- 35 °C) in chicken breast fillets via the implementation of DMFIT

application.
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Supplementary material for Chapter 5

Teml()oeg; ture Source SS df MS F p-value
Columns  0.652 3 0.21743 0.09 0.9672
15 Error 100.915 40 2.52289
Total 11.568 43
Columns  0.5359 3 0.17862 0.08 0.9691
10 Error 95.0444 44 2.1601
Total 95.5803 47
Columns 0475 3 0.15833 0.08 0.9713
5 Error 96.6625 48 2.0138
Total 97.1375 51
Columns  0.4734 3 0.15782 0.1 0.9588
0 Error 99.3133 64 1.55177
Total 99.7867 67
Columns  0.208 3 0.6923 0.02 0.9957
20 Error 129.93 40 3.24826
Total 130.138 43
Columns  0.043 3 0.01431 0 0.9996
25 Error 118.588 36 3.2941
Total 118.631 39
Columns  0.0816 3 0.0272 0.01 0.9986
30 Error 98.911 36 2.74753
Total 98.9926 39
Columns  0.833 3 0.27767 0.1 0.957
35 Error 85.1931 32 2.66228
Total 86.0261 35
Columns  0.0029 2 0.00143 0 0.9993
Dynamic 1 Error 63.5467 30 2.11822
Total 63.5495 32
Columns  0.0703 2 0.03515 0.01 0.9871
Dynamic 2 Error 81.139 30 2.70463
Total 81.2093 32
. Columns  3.385 5 0.67696 0.28 0.9219
Dy::;“; b Bmor 144686 60 241143
Total 148.07 65

Table 5A: One way ANOVA for the TVCs of chicken thigh fillet samples at each isothermal
storage temperature and dynamic temperature scenarios.
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Table 5B: One way ANOVA for Pseudomonas spp. counts of chicken thigh fillet samples at each
isothermal storage temperature and dynamic temperature scenarios.

Temi‘g: ture Source SS df MS F p-value
Columns  0.216 3 0.07205  0.02 0.9948
15 Error  118.162 40 2.95404
Total 118.378 43
Columns  0.107 3 0.03552 0.01 0.9982
10 Error  130.044 44 2.9554
Total 130.15 47
Columns  0.736 3 0.24524 0.1 0.9569
5 Error  103.108 44 2.34336
Total 103.844 47
Columns  2.069 3 0.68962 0.4 0.7545
0 Error  110.749 64 1.73045
Total 112.818 67
Columns  0.756 3 0.25205  0.06 0.9808
20 Error  169.741 40 4.24353
Total 170.497 43
Columns  1.068 3 0.35598  0.09 0.9643
25 Error 140.257 36 3.89602
Total 141.325 39
Columns  3.4919 3 1.16398 0.44 0.7251
30 Error  95.0259 36 2.63961
Total  98.5179 39
Columns  0.8236 3 0.27453  0.14 0.9353
35 Error  62.7508 32 1.96096
Total  63.5744 35
Columns  0.0427 2 0.02133  0.01 0.9908
Dynamic 1 Error  68.9284 30 2.29761
Total 68.971 32
Columns  0.0775 2 0.03877 0.01 0.9873
Dynamic 2 Error  91.2975 30 3.04325
Total 91.3751 32
. Columns  0.901 5 0.1802 0.07 0.9967
Dy;‘r?énéc b Emor 160226 60 2.67043
Total 161.127 61
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Figure 6A: Representative Baranyi and Roberts models for the prediction of TVCs at three

different storage conditions (0, 5 and 10 °C) in marinated chicken souvlaki via the implementation
of DMFIT application.
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Figure 6B: Representative Baranyi and Roberts models for the prediction of Pseudomonas spp. at
three different storage conditions (0, 5 and 10 °C) in marinated chicken souvlaki via the
implementation of DMFIT application.
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Figure 6C: Pseudomonas spp. predictive models (lines) and the corresponding observations

(symbols) for marinated chicken souvlaki stored at 0 °C (blue, square), 5 °C (orange, diamond) and
10 °C (green, triangle).
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Figure 7A: TVCs (A) and Pseudomonas spp. (B) predictive models (lines) and the corresponding
observations (symbols) for inoculated marinated chicken souvlaki stored at 0 °C (blue, square), 5
°C (red, diamond) and 10 °C (green, triangle).
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Figure 7B: TVCs (A) and Pseudomonas spp. (B) predictive models (lines) and the corresponding
observations (symbols) for non-inoculated marinated chicken souvlaki stored at 0 °C (blue, square),
5 °C (red, diamond) and 10 °C (green, triangle).
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