

## AGRICULTURAL UNIVERSITY OF ATHENS DEPARTMENT OF BIOTECHNOLOGY GENETICS LABORATORY

## Ph.D. Thesis

Genome-Wide Association Studies (GWAS) in an effort to provide insights into the complex interplay of nuclear receptor transcriptional networks and their contribution to the maintenance of homeostasis

# Athanasios D. Mitsis

(Referred to as Thanasis Mitsis)

## Thesis Supervisor:

Dimitrios Vlachakis, Assistant Professor, Agricultural University of Athens

## Ph.D. Advising Committee:

Dimitrios Vlachakis, Assistant Professor, Agricultural University of Athens George P. Chrousos, Professor of Emeritus, National & Kapodistrian University of Athens Elias Eliopoulos, Professor, Agricultural University of Athens



**ATHENS 2022** 

## AGRICULTURAL UNIVERSITY OF ATHENS DEPARTMENT OF BIOTECHNOLOGY GENETICS LABORATORY

#### Ph.D. Thesis

Genome-Wide Association Studies (GWAS) in an effort to provide insights into the complex interplay of nuclear receptor transcriptional networks and their contribution to the maintenance of homeostasis

"Μελέτες συσχέτισης πλήρους γονιδιώματος (GWAS) με στόχο την εύρεση πληροφοριών για το σύστημα αλληλεπίδρασης των πυρηνικών υποδοχέων σε επίπεδο μεταγραφής και τη συμβολή του στη διατήρηση της ομοιόστασης"

## Athanasios D. Mitsis

Examination Committee: Dimitrios Vlachakis, Assistant Professor, Agricultural University of Athens (Supervisor) George P. Chrousos, Professor of Emeritus, National & Kapodistrian University of Athens Elias Eliopoulos, Professor, Agricultural University of Athens Christos Yapijakis, Associate Professor, National & Kapodistrian University of Athens Flora Bacopoulou, Associate Professor, National & Kapodistrian University of Athens Themis Exarchos, Assistant Professor, Ionian University George N Goulielmos, Professor, University of Crete Genome-Wide Association Studies (GWAS) in an effort to provide insights into the complex interplay of nuclear receptor transcriptional networks and their contribution to the maintenance of homeostasis

Department of Biotechnology Genetics Laboratory

# Abstract

Transcription factors are proteins that bind short distinct DNA sequences and regulate gene expression. These proteins play a major role in organism evolution and the emergence of phenotypic variation. Nuclear receptors (NRs)are a category of ligand-dependent transcription factors that participate in essential biological processes. The glucocorticoid receptor(GR)specifically, is a nuclear receptor that modulates the stress response system and therefore plays an integral role in homeostasis maintenance. Homeostasis, as a physiological mechanism, is essential in proper organism function. GR interacts with numerous epigenetics factors, enzymes and even other nuclear receptors. Genetic or structural alterations on such transcription factors may have severe consequences on numerous biological mechanisms.

This work investigates the available genomic and structural ata on nuclear receptors in an attempt to provide novel information regarding the interplay between NR transcriptional networks. The evolutionary history of nuclear receptors based on their ligand-binding domain(LBD) structural region and the pathological conditions emerging after alterations on these regions are also studied. Since the glucocorticoid receptor has a major role in homeostasis maintenance, a data-mining and semantics pipeline was applied in order to extract important information from associated SNPs found in the current literature. Lastly, the frequencies of single nucleotide polymorphisms found in the GR interactome were used to compare two different populations, in an effort to find homeostasis-related characteristics distinct for specific individuals.

Results showcase that the ligand-binding domain of nuclear receptors displays seven evolutionary conserved signaling motifs, including the 'LxxLL' or 'LLxxL' repeating amino-acid patterns. Phylogenetic analysis revealed four monophyletic branches and hinted at new evolutionary relations among NRs' LBD. Moreover, structural and functional comparisons on NRs' LBD structures and their associated ligands identified two distinct canonical forms, one steroid hormone receptor-like cluster and one thyroid hormone receptor-like cluster. It was also uncovered that the estrogen receptor alpha (ERa) was split into two distinct sub-clusters. Although these subclusters were very similar sequence-wise, one of them was structurally more similar to estrogen receptor beta(RMSD <2Å)than ERa. It is possible that this sub-cluster of ERa emerges due to aY537S mutation, which has been heavily associated with breast cancer.ThisY537Ssub-clusterismore similar to the estrogen receptor beta on a functional and structural level but still retains some of ERa's properties. The datamining and semantics approach focused on single nucleotide polymorphisms found in GR and its signaling regulators highlighted the importance of this receptor in homeostasis maintenance. SNPs in intronic regions were associated with severe pathological conditions, an effect possibly achieved via the action of non-coding RNAs that interfere with gene expression. The POLR1C gene was also found to be heavily present in GR signaling regulators' literature, implying that this receptor plays an important role in rRNA synthesis. Lastly, in order to evaluate how SNPs associated with the glucocorticoid receptor may influence phenotypic variation, a genetic comparison between the Japanese and Korean populations was conducted. The comparison once again highlighted that alteration in intronic regions may lead to pathological several conditions. Additionally, the single nucleotide polymorphismrs1043618 found in the HSP1A may be responsible for characteristics distinct to each population.

These results highlight the importance of nuclear receptors in numerousbiological mechanisms, including homeostasis.Additionally,uncoveredstructuralinformation maybeused for the development of novel drugs,whilenewgenetic information can helpimprove disease diagnosis.

#### Scientific Area: Human genetics

**Keywords**: transcription factors, nuclear receptors, glucocorticoid receptor, homeostasis, stress response, single nucleotide polymorphisms

Μελέτες συσχέτισης πλήρους γονιδιώματος (GWAS) με στόχο την εύρεση πληροφοριών για το σύστημα αλληλεπίδρασης των πυρηνικών υποδοχέων σε επίπεδο μεταγραφής και τη συμβολή του στη διατήρηση της ομοιόστασης

Τμήμα Βιοτεχνολογίας Εργαστήριο Γενετικής

# Περίληψη

Οι μεταγραφικοί παράγοντες αποτελούν πρωτεΐνες που δεσμεύουν συγκεκριμένες μικρές αλληλουχίες DNA και ρυθμίζουν τη γονιδιακή έκφραση. Αυτές οι πρωτεΐνες έχουν σημαντικό ρόλο στην εξέλιξη των οργανισμών και στην εμφάνιση της φαινοτυπικής ποικιλομορφίας. Οι πυρηνικοί υποδοχείς είναι μια κατηγορία μεταγραφικών παραγόντων που ρυθμίζονται από την πρόσδεση ενός συνδέτη και παίρνουν μέρος σε σημαντικές βιολογικές διεργασίες. Ο υποδοχέας των γλυκοκορτικοειδών (GR), συγκεκριμένα, είναι ένας πυρηνικός υποδοχέας που ρυθμίζει την απόκριση στο στρες και συνεπώς παίζει κύριο ρόλο στη διατήρηση της ομοιόστασης. Η ομοιόσταση, ως φυσιολογικός μηχανισμός, είναι απαραίτητη για τη σωστή λειτουργία ενός οργανισμού. Γενετικές ή δομικές αλλαγές σε τέτοιας φύσεως μεταγραφικούς παράγοντες μπορεί να έχουν δριμείς επιπτώσεις σε διάφορους βιολογικούς μηχανισμούς.

Η παρούσα εργασία ερευνά τα διαθέσιμα γενετικά και δομικά δεδομένα για τους πυρηνικούς υποδοχείς και προσπαθεί να προσφέρει καινούριες πληροφορίες που σχετίζονται με τα μεταγραφικά δίκτυα των πυρηνικών υποδοχέων και την αλληλεπίδρασή τους. Επίσης, μελετήθηκαν η εξελικτική ιστορία των πυρηνικών υποδοχέων με βάση τη δομική περιοχή δέσμευσης συνδέτη καθώς και οι παθολογικές καταστάσεις που εμφανίζονται μετά από τροποποιήσεις σε αυτές τις περιοχές. Καθώς ο υποδοχέας των γλυκοκορτικοειδών έχει σημαντικό ρόλο στη διατήρηση της ομοιόστασης, έγινε χρήση μεθόδων εξόρυξης δεδομένων και σημασιολογίας για τη λήψη σημαντικών πληροφοριών από συσχετιζόμενους μονονουκλεοτιδικούς πολυμορφισμούς που βρίσκονται στην υπάρχουσα βιβλιογραφία. Τέλος, οι συχνότητες μονονουκλεοτιδικών πολυμορφισμών που εντοπίζονται σε γονίδια που αλληλοεπιδρούν με τον υποδοχέα των γλυκοκορτικοειδών χρησιμοποιήθηκαν για τη σύγκριση δύο διαφορετικών πληθυσμών σε μια προσπάθεια εύρεσης γενετικών χαρακτηριστικών που σχετίζονται με την ομοιόσταση και εντοπίζονται σε συγκεκριμένα άτομα.

Τα αποτελέσματα παρουσιάζουν ότι η δομική περιοχή πρόσδεσης του συνδέτη των πυρηνικών υποδοχέων παρουσιάζει εφτά εξελικτικά διατηρημένες περιοχές σηματοδότησης, συμπεριλαμβανομένου του επαναλαμβανόμενου αμινοξικού μοτίβου"LxxLL"ή"LLxxL".Μια φυλογενετική ανάλυση παρουσίασε τέσσερις μονοφυλετικούς κλάδους και προτείνει μια νέα εξελικτική σχέση μεταξύ των περιοχών πρόσδεσης του συνδέτη των πυρηνικών υποδοχέων. Επιπροσθέτως, δομικές και λειτουργικές αναλύσεις στις περιοχές πρόσδεσης του συνδέτη των πυρηνικών υποδοχέων παρουσίασαν δύο διαφορετικές υποομάδες, μια που μοιάζει με τους υποδοχείς στεροειδών και μια που μοιάζει με τον υποδοχέα του θυρεοειδούς. Εκτός αυτού, ανακαλύφθηκε ότι ο υποδοχέα οιστρογόνων τύπου α χωρίζεται σε δύο ξεχωριστές υποομάδες. Παρότι οι υποομάδες αυτές είχαν πολλές ομοιότητες σε επίπεδο αλληλουχίας, η μια φαίνεται να μοιάζει δομικά περισσότερο με τον υποδοχέα των οιστρογόνων τύπου β παρά με τον τύπου α (RMSD <2Å).Πιθανόν η υποομάδα αυτή του υποδοχέα να εμφανίζεται λόγω της μετάλλαξης Y537Sπου έχει συσχετισθεί σε μεγάλο βαθμό με τον καρκίνο του μαστού. Αυτή η υποομάδα που δημιουργείται από την Y537S θυμίζει περισσότερο τον υποδοχέα οιστρογόνων τύπου β σε επίπεδο δομής και λειτουργίας αλλά διατηρεί ακόμα κάποια από τα χαρακτηριστικά του υποδοχέα τύπου α. Η προσέγγιση εξόρυξης δεδομένων και σημασιολογίας που εφαρμόστηκε στους μονονουκλεοτιδικούς πολυμορφισμούς που εμφανίζονται στον υποδοχέα των γλυκοκορτικοειδών και τους ρυθμιστές της σηματοδότησής του επεσήμανε το ρόλο του υποδοχέα στη διατήρηση της ομοιόστασης. Οι μονονουκλεοτιδικοί πολυμορφισμοί που εντοπίζονται σε εσωνικές περιοχές φέρεται να σχετίζονται με δριμείς παθολογικές καταστάσεις, μια ιδιότητα που μάλλον εκτελείται μέσω της δράσης μη κωδικών RNA που παρεμβάλλονται στη γονιδιακή έκφραση. Το γονίδιο POLR1C εντοπίστηκε αρκετές φορές στη βιβλιογραφία των ρυθμιστών της σηματοδότησης του υποδοχέα των γλυκοκορτικοειδών, προτείνοντας, κατά αυτόν τον τρόπο, ένα πιο σημαντικό ρόλο του υποδοχέα στη σύνθεση του rRNA. Τέλος, έλαβε χώρα μια γενετική σύγκριση μεταξύ του Γιαπωνέζικου και του Κορεάτικου πληθυσμού ώστε να διαλευκανθεί το πώς οι μονονουκλεοτιδικοί πολυμορφισμοί που σχετίζονται με τον υποδοχέα των γλυκοκορτικοειδών επηρεάζουν τη φαινοτυπική ποικιλομορφία. Η σύγκριση επισήμανε για άλλη μια φορά πώς αλλαγές σε ιντρονικές περιοχές οδηγούν σε δριμείς παθολογικές καταστάσεις. Επιπροσθέτως, ο πολυμορφισμόςrs1043618που εντοπίζεται στο γονίδιο HSP1A δύναται να ευθύνεται για χαρακτηριστικά ξεχωριστά για τον εκάστοτε πληθυσμό.

Τα αποτελέσματα αυτά επισημαίνουν τη σημαντικότητα των πυρηνικών υποδοχέων σε πολλούς βιολογικούς μηχανισμούς, συμπεριλαμβανομένης της ομοιόστασης. Επιπλέον, δομικές πληροφορίες που εντοπίστηκαν μπορούν να χρησιμοποιηθούν για την ανάπτυξη νέων φαρμάκων, ενώ γενετικές πληροφορίες που εντοπίστηκαν μπορούν να χρησιμοποιηθούν στη διάγνωση και πρόγνωση ασθενειών.

#### Επιστημονικό Πεδίο: Γενετική ανθρώπου

**Λέξεις κλειδιά**: μεταγραφικοί παράγοντες, πυρηνικοί υποδοχείς, υποδοχέας των γλυκοκορτικοειδών, ομοιόσταση, απόκριση στο στρες, μονονουκλεοτιδικοί πολυμορφισμοί

# Table of Contents

| Abstract                                                                       |
|--------------------------------------------------------------------------------|
| Περίληψη4                                                                      |
| Acknowledgments                                                                |
| Permissions                                                                    |
| List of Tables9                                                                |
| List of Figures                                                                |
| Introduction                                                                   |
| Stress and Homeostasis                                                         |
| The LC/NE, SAM and parasympathetic systems14                                   |
| The HPA axis14                                                                 |
| Nuclear receptors and stress16                                                 |
| Genetics, Epigenetics, and Stress21                                            |
| Metabolism and Stress                                                          |
| Stress and Reproduction22                                                      |
| Stress and Growth23                                                            |
| The Immune System and Stress23                                                 |
| Stress and Brain Function23                                                    |
| Stress and Neuropsychiatric Disorders24                                        |
| Stress and specific Chronic Diseases25                                         |
| The glucocorticoid receptor as the main mediator of the stress response system |
| Big Data as the basis of modern research28                                     |
| Personalized medicine29                                                        |
| Thesis Overview                                                                |
| The connection between evolution and transcription factors                     |
| Transcription factors evolution among life domains33                           |
| Transcription factors' co-operation34                                          |
| Coactivators, corepressors, and post-translational modifications               |
| Expression patterns in transcription factors                                   |
| Histone modifications and transcription factors                                |
| MicroRNAs and transcription factors                                            |
| Focusing on nuclear receptors' evolution37                                     |
| An in-depth view on nuclear receptors' LBD structure and evolution             |
| Methods of study                                                               |

| Results                                                                | 53  |
|------------------------------------------------------------------------|-----|
| Discussion                                                             | 67  |
| GR-related literature and GWAS Catalog data-mining and semantics study | 69  |
| Methods of study                                                       | 70  |
| Results                                                                | 72  |
| Discussion                                                             | 77  |
| Large population examination and extracting useful information         | 78  |
| Methods of study                                                       | 79  |
| Results                                                                | 90  |
| Discussion                                                             | 105 |
| Conclusions                                                            | 106 |
| References                                                             | 109 |
| Glossary and Acronyms                                                  | 123 |
| #                                                                      | 123 |
| Α                                                                      | 123 |
| В                                                                      | 123 |
| C                                                                      | 123 |
| D                                                                      | 123 |
| E                                                                      | 123 |
| F                                                                      | 123 |
| G                                                                      | 123 |
| н                                                                      | 123 |
| Ι                                                                      | 123 |
| J                                                                      | 124 |
| L                                                                      | 124 |
| М                                                                      | 124 |
| N                                                                      | 124 |
| Ρ                                                                      | 124 |
| R                                                                      | 124 |
| S                                                                      | 124 |
| т                                                                      | 124 |
| U                                                                      | 125 |
| V                                                                      | 125 |
| List of Publications                                                   | 126 |

# Acknowledgments

Looking back at my years spent at the Agricultural University of Athens, I realize how lucky I have been to walk along with great mentors, colleagues, family, and friends. I would like to take a few lines to acknowledge the people who helped me push through a difficult time in my life.

First, I would like to thank my main supervisor Dr. Dimitrios Vlachakis, who helped me throughout the entirety of my studies, taught me how to analyze, formulate, and disseminate scientific information, and encouraged me in pursuing my ambitions.

The remaining members of my supervising committee, Dr. George P Chrousos and Dr. Elias Eliopoulos, since not many candidates get to have scientists of their caliber supervising their work and receiving their advice.

I would also like to specifically mention Dr. Louis Papageorgiou, Dr. Stefanos Leptidis, and Eleni Papakonstantinou for showing me the ropes in scientific study. These individuals took a mentoring role while I was working on my Ph.D. This text would not exist without their help, and for that, I am grateful.

I would like to thank my fellow Ph.D. candidates Katerina Pierouli and Io Diakou. We worked together on numerous projects, we got stressed, we got tired, but we managed to succeed by excellent cooperation and what I would like to call friendship.

I would like to thank my family and friends for supporting me throughout the years. Especially my parents, who, through difficult financial situations and under severe circumstances, managed to always be there for me and help me overcome some of my life's biggest obstacles.

Lastly, I would like to thank you, dear reader, for going through this text. There is a lot of work put into it, and I hope it provides you with information you will find -in some way or another- useful in the future.

## Permissions

The current work was inspected with my permission by the examination committee and plagiarism software owned by the Agricultural University of Athens. Its validity and originality were confirmed.

Με την άδειά μου, η παρούσα εργασία ελέγχθηκε από την Εξεταστική Επιτροπή μέσα από λογισμικό ανίχνευσης λογοκλοπής που διαθέτει το ΓΠΑ και διασταυρώθηκε η εγκυρότητα και η πρωτοτυπία της

# List of Tables

| Table 1. A list of human nuclear receptors and their corresponding ligands 17                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2. Structures used during the current study                                                                                                                                                                                      |
| Table 3. A list featuring all steroid hormone receptors ligands that have been studied andtheir corresponding receptor                                                                                                                 |
| Table 4. Naturally occurring mutations found on nuclear receptors' ligand-binding domainsand their position on the multiple alignment conducted                                                                                        |
| Table 5. The mutation rate of each position on the nuclear receptor multiple alignment57                                                                                                                                               |
| Table 6 List displaying the main regulators of GR signaling along with the PMID of literaturesolidifying their role70                                                                                                                  |
| Table 7 A table displaying the keywords used to obtain information regarding the GR and itssignaling regulators, along with the publications linked with each keyword and thecumulative publication for each factor                    |
| Table 8 Filtering steps undertaken in the 3,5K Japanese dataset                                                                                                                                                                        |
| Table 9. List of autosomal genes with an essential role in glucocorticoid receptor function .80                                                                                                                                        |
| Table 10 A list of GR interactome SNPs that have an effect on human health according to theclinvar database.92                                                                                                                         |
| Table 11 A list featuring SNPs of interest, number of publications attributed to each SNP, which gene they are located in, plus diseases, chemicals, and variants that most commonly co-occur with mentioned SNPs in the same sentence |
| Table 12 A comparison of SNP frequencies among Korean and Japanese individuals                                                                                                                                                         |

# List of Figures

Figure 3. A schematic representation of glucocorticoid signaling resulting in GR homodimerization and transcription initiation (GR: glucocorticoid receptor; Hsp70: Heatshock protein70; Hsp40: Heat shock protein 40; BAG1: BAG family molecular chaperone regulator 1; Hop: Hsp70-Hsp90 organizing protein; p23: Prostaglandin E synthase 3 protein; FKBP51: FK506-binding protein 51 CORT: cortisol; FKBP52: FK506-binding protein 51; NPC: nuclear pore complex; GRE: Glucocorticoid response elements). Hsp70 binds the unfolded receptor in the cytosol, a process accelerated by Hsp40 binding, and leads to GR's folding. BAG-1 is a cofactor that may directly impair receptor folding, while it may also aid in the degradation of the unstable folded GR complex with Hsp70 and Hsp40. The interaction of GR The Hsp40/Hsp70-GR complex is then recruited by Hop, in an ATP-dependent manner, to interact with Hsp90. Hop, Hsp40, and Hsp70 are dislodged from the Hsp90-GR complex upon Hsp90 binding ATP, and subsequent interaction of the Hsp90-GR complex with FKBP51 and p23 give rise to a complex conformation with a high affinity for corticosteroids. Ligand binding leads to the replacement of FKBP51 by FKBP52, leading mainly to GR dimerization and nuclear translocation through the nuclear pore complex (NPC) with the help of importina. Finally, the GR homodimer binds to glucocorticoid response elements to promote gene 

Figure 6. A phylogenetic tree of NR LBDs. Four distinct monophyletic branches are observable: the steroid hormone receptor-like branch (colored green), the retinoid X-like

Figure 7. Conserved signaling motifs found on NR LBDs and conserved signaling motifs and interaction sites found on SHR LBDs A) Sequence alignment of all nuclear receptors' ligandbinding domains received from PDB. Parameters such as amino-acid quality and conservation are also present. The seven conserved signaling motifs are enclosed in yellow rectangles. B) Sequence alignment of steroid hormone receptors' ligand-binding domains with the conserved motifs found in all NRs being enclosed in yellow rectangles and the four interaction sites specific to SHRs being enclosed in red rectangles. Several amino-acid residues have also been highlighted to showcase distinct abilities. Specifically, yellowcolored residues are interaction points, blue-colored residues are prone to mutation, while green-colored residues are both interaction points and prone to mutation. The PDB ID of the representative sequences used for each SHR are 2AA2 for the mineralocorticoid receptor (MR), 5NFT for the glucocorticoid receptor (GR), 1SQN for the progesterone receptor (PR), 2OZ7 for the androgen receptor (AR), 1ERR for estrogen receptor alpha (ERa), 1U9E for estrogen receptor beta (ERb), and the 2Q1H for the ancestral corticoid receptor (AncCort). NR: Nuclear receptor; LBD: Ligand-Binding Domain; SHR: Steroid Hormone Receptor; PDB: 

and 1ZKY for ERa'; 3OLL, 4ZI1, and 1YY4 for ERb. A) A structural similarity matrix of root mean squared deviation (RMSD) showed that ER LBDs are split into two statistically significant clusters, with estrogen receptor alpha being further split into two subclusters, ERa and ERa'. B) An analysis of ER ligands' chemical structure through the use of a chemical structure similarity matrix based on Tanimoto coefficient values showcased that ERa' interacts with both ERa and ERb ligands. C) A sequence identity matrix based on nine representative sequences for ERa, ERa' and ERb. D) A sequence similarity matrix based on nine representative sequences for ERa, ERa' and ERb E) A structural similarity matrix of root mean squared deviation (RMSD) based on nine representative sequences for ERa, ERa' and ERb F) A multiple sequence alignment of the representative structures focusing on conserved signaling motif G, with known natural mutation points being colored yellow G) A ribbon presentation of estrogen receptors' representative structures superposed on each other, with ERa representatives being colored orange, ERa' representatives being colored blue, and ERb representatives being colored red H) A ribbon presentation of estrogen receptors' representative structures' AF-2 helix superposed on each other, with ERa representatives being colored orange,  $ER\alpha'$  representatives being colored blue, and ERb 

| Figure 12 The pipeline followed during the current extraction of information regarding the glucocorticoid receptor and its signaling regulators                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 13 Information extraction from dbSNP, LtVar, ClinVar, and GWAS Catalog72                                                                                                                                                                                                                                                                                                                                           |
| Figure 14 A WordCloud representation of the keywords found in GR literature73                                                                                                                                                                                                                                                                                                                                             |
| Figure 15 A WordCloud representation of diseases found in GR literature74                                                                                                                                                                                                                                                                                                                                                 |
| Figure 16 A WordCloud representation of genes associated with GR signaling regulators in literature75                                                                                                                                                                                                                                                                                                                     |
| Figure 17 A WordCloud representation of diseases studied in conjunction with GR signaling regulators                                                                                                                                                                                                                                                                                                                      |
| Figure 18 Potential GR actions that may influence RNA polymerase I function. GR may inhibit JNK2 function, and thus TIF-IA action. GR may also inhibit mTOR signaling and thus lead to TIF-IA activation (JNK2: c-Jun N-terminal kinase 2; mTOR: mammalian target of rapamycin ; TF-IA: TBP-associated factor RNA polymerase I subunit A; UBF: upstream binding factor; SL1: selective factor 1; POL I: RNA polymerase I) |
| Figure 19 The pipeline followed during the current population comparison79                                                                                                                                                                                                                                                                                                                                                |
| Figure 20 Information extraction from the dbSNP, LitVar, and ClinVar databases                                                                                                                                                                                                                                                                                                                                            |
| Figure 21 Ontology analysis of the 411 SNPs present in the ClinVar database based on LitVar-<br>received information                                                                                                                                                                                                                                                                                                      |

# Introduction

#### Stress and Homeostasis

All living organisms need to cope with a number of challenges during their lifespan. Consequently, living organisms are programmed to maintain an inner equilibrium, both physical and psychological, despite life challenges. This inner equilibrium is called homeostasis and is essential in proper organism function (1). The internal or external unforeseen stimuli that threaten homeostasis are called stress factors or stressors, while stress is a state of threatened or perceived as threatened homeostasis. In order to cope with stressors, organisms have developed a complex system that includes both physiological and behavioral responses. This system is called the stress response system and is partly located in the central nervous system (CNS) and peripheral organs (2). The central components of the stress system, located in the hypothalamus and brainstem, include a) parvocellular neurons that release corticotropin-releasing hormone (CRH), b) paraventricular nuclei (PVN) neurons that release arginine vasopressin (AVP), c) CRH neurons of the paragigantocellular and parabrachial nuclei of the medulla and locus coeruleus (LC) and d), norepinephrine (NE) cell groups in the pons and medulla, known as the LC/NE system. The stress system's peripheral components include a) the peripheral part of Hypothalamic-Pituitary-Adrenal (HPA) axis, b) components the of the parasympathetic system, and c) the efferent sympathetic adreno-medullary (SAM) system (Figure 1) (3). The HPA axis is considered to be the main facilitator of the stress response system (4).

In the central nervous system, stress activates neural paths that partake in functions related to stimulation, feeding and reproduction. In peripheral organs, stress partakes in the redistribution of energy. Therefore, under stress, oxygen and various nutrients are distributed to the CNS and peripheral organs that are part of the stress response system while there's also an increase in blood pressure, pulse, breathing, gluconeogenesis and lipolysis (5).

An organism's response to stressors is influenced by both genetic and environmental factors. If the aforementioned response is not sufficient, is too severe or lasts longer than normal, there is a negative impact on essential biological processes. Some of those processes include metabolism, development, reproduction, immune system pathways and various cognitive functions. This disequilibrium in an organism leads to wear and tear on both body and brain and is termed allostatic load or overload (6). The active state adapting to stressors is called allostasis and aims to retain or reinstate homeostasis. Allostasis is regulated by the immune system, the autonomous nervous system, metabolism and hormones that are produced during stress.

Stress can be either beneficial or toxic (6). Short-term stress, also known as acute stress, generally results in adaptive changes that help maintain homeostasis, while

chronic stress has been associated with pathological conditions. Therefore, the timely cessation of the stress response is important to prevent damage associated with prolonged response (7). Beneficial stress can act as a favorable factor that extends the adaptability of an organism. Toxic stress is defined by a prolonged or permanent pathological response to stressors with a high risk of disease. Early life stress can also change neural architecture, leading to a severe response to stressors and subsequent toxic stress (8). The molecular underpinnings of stress's physiological and pathological effects are mostly associated with LC/NE system and HPA axis function.

#### The LC/NE, SAM and parasympathetic systems

The LC/NE system is also known as the central noradrenergic system. The locus coeruleus is a cluster of norepinephrine-producing neurons that are located in the upper dorsolateral pontine tegmentum (9). These neurons are defined by extensively branched axons which project all through the neuraxis. They are the sole source of NE to the hippocampus, neocortex, cerebellum and most of the thalamus. The SAM system function, also known as the peripheral noradrenergic system, is largely controlled by the LC/NE system and includes the NE neurons of the sympathetic system and the adrenal medulla (10). Adrenal medulla stimulation by the LC/NE system leads to catecholamines secretion (CEs), specifically epinephrine (E) and norepinephrine (NE) (11). The sympathetic system is essential in the 'fight or flight' response to stress by secreting the aforementioned catecholamines, epinephrine (also known as adrenaline) and norepinephrine (also known as noradrenaline). The parasympathetic system assists or antagonizes sympathetic functions by withdrawing or increasing its activity respectively (2). Therefore, the sympathetic and parasympathetic system interact in order to regulate the "fight or flight" response. The co-ordination of the "fight or flight" response is an integral part of stress response, which, along with HPA axis function, has been the object the object of many studies.

#### The HPA axis

A perceived stressor induces a chain of events in the brain that signals the paraventricular nucleus of the hypothalamus. The hypothalamus secretes CRH and AVP into the hypophysial portal system, which end up at the anterior lobe of the pituitary gland. There, these hormones will stimulate pro-opiomelanocortin (POMC) cells, which in turn will release the adrenocorticotropic hormone, also known as corticotropin (ACTH). Finally, ACTH is released into the bloodstream and acts on the adrenal glands' cortex, triggering the production of corticosteroids, more specifically glucocorticoids (cortisol in humans and corticosterone in rats) (12, 13).

The CRH released into the hypophysial portal system is the main regulator of pituitary ACTH secretion. CRH can lead sufficiently to the secretion of ACTH on its own, while AVP influences ACTH secretion on a very low level. CRH and AVP act

synergistically and they appear to interact at a molecular level in the hypothalamus, triggering each other's secretion (13). In the absence of stress, both CRH and AVP are secreted into the hypophysial portal system in a circadian and pulsatile fashion (14). The amplitude of CRH and AVP pulses increases in the early morning hours, leading to the increase of both the altitude and frequency of ACTH and cortisol (CORT) secretory bursts in system circulation (13). Acute stress increases the amplitude and synchronicity of CRH and AVP pulses from the paraventricular nuclei into the hypophysial portal system. Depending on stress type, factors such as angiotensin II, cytokines and lipid mediators of inflammation may be secreted and affect the HPA axis, mostly enhancing its activity (13).

The pituitary gland secretes ACTH into system circulation, which in its turn targets the cortex of the gland. The aforementioned hormone is the main regulator of glucocorticoid and androgen gland secretion by the zonae fasciculata and reticularis, respectively. ACTH also has a role in aldosterone secretion by the zona glomerulosa. Apart from ACTH, various hormones and cytokines originating from the adrenal medulla or systemic circulation appear to partake in the regulation of cortisol secretion (13).

Glucocorticoids – as the final products of the HPA axis – play an important role in the stress response system. Glucocorticoids have the ability to inhibit HPA axis function in both a genomic and non-genomic manner through a negative feedback loop (15). This ability is mediated through the binding of glucocorticoids to their respective receptors, subsequently repressing corticotropin releasing hormone, type 1 CRH receptor and POMC genes (15). These hormones can also inhibit the LC/NE component of the stress response system, the beta-endorphin system, and stimulate the mesocorticolimbic dopaminergic system (16). Additionally, they have a major effect on the reproductive system since they can inhibit pituitary gonadotropins, growth hormone (GH), and (thyroid-stimulating hormone) TSH secretion (16).



Figure 1. A schematic representation of the stress response system. HPA axis: Arginine-vasopressin (AVP) and corticotropin-releasing hormone (CRH) are secreted by the paraventricular nucleus of the hypothalamus (PVN) and stimulate the secretion of adrenocorticotropic hormone (ACTH) from the anterior pituitary. ACTH, in turn, stimulates the release of glucocorticoids (GCs) from the adrenal cortex. Glucocorticoids can inhibit HPA axis function by suppressing CRH and ACTH release. LC/NE and SAM system: The locus coeruleus (LC) consists of norepinephrine (NE) producing neurons whose axons branch throughout the neuraxis and regulate the somatic adrenomedullary system (SAM), where adrenal medulla stimulation leads to catecholamines (CEs) secretion.

#### Nuclear receptors and stress

Glucocorticoids act by binding to two types of intracellular receptors, mainly the glucocorticoid receptor (GR) and, on a lesser note, the mineralocorticoid receptor (MR) (17). GR is almost exclusively activated by glucocorticoids, while MR can bind GCs and the mineralocorticoid aldosterone with similar high affinity (18). MR and GR expression is similar in the gastrointestinal system, where they showcase high expression and the endocrine, metabolic, reproductive and cardiovascular systems, where they exhibit moderate expression. MR displays a higher expression than GR in the CNS and skeletal system, whereas GR displays a higher expression than MR in the immune system (19). Regarding the brain, an essential component of the stress response system, MR, as a high-affinity receptor, is occupied at basal glucocorticoid secretion and during stress (20). These observations serve to show that the main mediator of glucocorticoid action is the glucocorticoid receptor.

Both mineralocorticoid receptors and glucocorticoid receptors are part of the steroid hormone receptors class and belong to the nuclear receptors (NRs) superfamily of proteins (21). NRs are some of the most biologically important transcription factors, and they regulate the expression of a wide variety of genes. These receptors' actions are regulated by binding to small molecules and ligands **(Table 1)** (22). A wide range of lipophilic ligands can bind nuclear receptors, such as the aforementioned steroids, plus retinoids, dietary lipids, and thyroid hormones (23). This superfamily contains over 500 protein members and is divided into four classes based on characteristics such as DNA binding motifs and specificity, ligand binding, and dimerization. Those classes are steroid receptors, which comprise class I, RXR heterodimers, which comprise class III and monomeric orphan receptors, which comprise class IV (24).

| Nuclear Receptor            | Gene Name | Ligands          |
|-----------------------------|-----------|------------------|
| Dosage-sensitive sex        | NROB1     | Orphan           |
| reversal, adrenal           |           |                  |
| hypoplasia critical region, |           |                  |
| on chromosome X, gene 1     |           |                  |
| (DAX1)                      |           |                  |
| Short heterodimeric         | NR0B2     | Orphan           |
| partner (SHP)               |           |                  |
| Thyroid hormone receptor    | NR1A1     | Thyroid hormones |
| alpha (THRa)                |           |                  |
| Thyroid hormone receptor    | NR1A2     | Thyroid hormones |
| beta (THRb)                 |           |                  |
| Retinoic acid receptor      | NR1B1     | Retinoic acids   |
| alpha (RARa)                |           |                  |
| Retinoic acid receptor      | NR1B2     | Retinoic acids   |
| beta (RARb)                 |           |                  |
| Retinoic acid receptor      | NR1B3     | Retinoic acids   |
| gamma (RARg)                |           |                  |
| Peroxisome proliferator-    | NR1C1     | Fatty acids      |
| activated receptor alpha    |           | Eicosanoids      |
| (PPARa)                     |           |                  |
| Peroxisome proliferator-    | NR1C2     | Fatty acids      |
| activated receptor          |           | Prostaglandins   |
| beta/delta (PPARb/d)        |           |                  |
| Peroxisome proliferator-    | NR1C3     | Fatty acids      |
| activated receptor gamma    |           | Prostaglandins   |
| (PPARg)                     |           | Eicosanoids      |
| Rev-Erb alpha (Rev-Erba)    | NR1D1     | Heme             |
| Rev-Erb beta (Rev-Erbb)     | NR1D2     | Heme             |
| RAR-related orphan          | NR1F1     | Sterols          |
| receptor alpha (RORa)       |           |                  |
| RAR-related orphan          | NR1F2     | Sterols          |

Table 1. A list of human nuclear receptors and their corresponding ligands

| receptor beta (RORb)        |        |                            |
|-----------------------------|--------|----------------------------|
| RAR-related orphan          | NR1F3  | Sterols                    |
| receptor gamma (RORg)       |        |                            |
| Liver X receptor beta       | NR1H2  | Oxysterols                 |
| (LXRb)                      |        |                            |
| Liver X receptor alpha      | NR1H3  | Oxysterols                 |
| (LXRa)                      |        |                            |
| Farnesoid X receptor (FXR)  | NR1H4  | Bile Acids                 |
| Farnesoid X receptor beta   | NR1H5P | Orphan                     |
| (FXRb)                      |        |                            |
| Vitamin D receptor (VDR)    | NR1I1  | Calcitriol (active form of |
|                             |        | vitamin D)                 |
| Pregnane X receptor (PXR)   | NR1I2  | Endobiotics and            |
|                             |        | xenobiotics                |
| Constitutive androstane     | NR1I3  | Xenobiotics                |
| receptor (CAR)              |        |                            |
| Hepatocyte nuclear factor   | NR2A1  | Fatty acids                |
| 4 alpha (HNF4a)             |        |                            |
| Hepatocyte nuclear factor   | NR2A2  | Fatty acids                |
| 4 gamma (HNF4g)             |        |                            |
| Retinoid X receptor alpha   | NR2B1  | 9-Cis retinoic acid        |
| (RXRa)                      |        |                            |
| Retinoid X receptor beta    | NR2B2  | 9-Cis retinoic acid        |
| (RXRb)                      |        |                            |
| Retinoid X receptor         | NR2B3  | 9-Cis retinoic acid        |
| gamma (RXRg)                | ND201  |                            |
| Testicular receptor 2 (TR2) | NR2C1  | Orphan                     |
| Testicular Receptor 4       | NR2C2  | Orpnan                     |
| (IR4)                       | ND2F1  | Orehon                     |
| receptor (TLX)              | INRZEI | Orphan                     |
|                             | ND2E2  | Ornhan                     |
| specific puckar recentor    | INRZES | Orphan                     |
|                             |        |                            |
| Chicken ovalbumin           | NB2F1  | Ornhan                     |
| unstream promoter-          |        | Orphan                     |
| transcription factor alpha  |        |                            |
| (COUP-TEa)                  |        |                            |
| Chicken ovalbumin           | NB2E2  | Orphan                     |
| upstream promoter-          |        |                            |
| transcription factor beta   |        |                            |
| (COUP-TFb)                  |        |                            |
| V-erbA-related protein 2    | NR2F6  | Orphan                     |
| (EAR2)                      |        |                            |
| Estrogen receptor alpha     | NR3A1  | Estrogens                  |
| (ERa)                       |        | -                          |

| Estrogen receptor beta<br>(ERb)             | NR3A2 | Estrogens                              |
|---------------------------------------------|-------|----------------------------------------|
| Estrogen-related receptor alpha (ERRa)      | NR3B1 | Orphan                                 |
| Estrogen-related receptor beta (ERRb)       | NR3B2 | Orphan                                 |
| Estrogen-related receptor gamma (ERRg)      | NR3B3 | Orphan                                 |
| Glucocorticoid receptor<br>(GR)             | NR3C1 | Glucocorticoids                        |
| Mineralocorticoid<br>receptor (MR)          | NR3C2 | Mineralocorticoids and glucocorticoids |
| Progesterone receptor<br>(PR)               | NR3C3 | Progesterone                           |
| Androgen receptor (AR)                      | NR3C4 | Androgens                              |
| Nerve growth Factor 1B<br>(NGF1B)           | NR4A1 | Orphan                                 |
| Nurr-related Factor 1<br>(NURR1)            | NR4A2 | Unsaturated fatty acids                |
| Neuron-derived orphan<br>Receptor 1 (NOR-1) | NR4A3 | Orphan                                 |
| Steroidogenic Factor 1<br>(SF1)             | NR5A1 | Phospholipids                          |
| Liver receptor Homolog-1<br>(LRH-1)         | NR5A2 | Phospholipids                          |
| Germ cell nuclear factor<br>(GCNF)          | NR6A1 | Orphan                                 |

Despite their differences in size and activating ligands, almost all NRs share a common modular structure (Figure 2). Specifically, the regions which make up a nuclear receptor are the N-terminal domain (NTD), the DNA-binding domain (DBD), the hinge region (HR), the ligand-binding domain (LBD) and a C-terminal domain (CTD). The N-terminal domain is highly variable among nuclear receptors and contains the ligand-independent activation function-1 (AF-1) region (25). The AF-1 region interacts with various coregulators in a promoter- and cell-specific manner to modulate receptor function. The N-terminal domain is also the target for several post-translational modifications that alter receptor action, like phosphorylation, SUMOylation and acetylation (26). The DNA-binding domain is the most conserved region among nuclear receptors' domains. DBD allows NRs to bind with high specificity a group of DNA sequences, called hormone-response elements. The DNAbinding domain consists of two zinc finger modules of distinct conformation. The zinc atom is bound to four cysteine residues. The zinc fingers fold towards each other to create a single globular structure containing two helices, which are located at the C-terminal end of the zinc fingers. These helices are oriented perpendicular to each other and form a hydrophobic core. Specifically, the first helix is located in the major groove of the DNA helix with several amino acids making base-specific contacts and lays the foundation for the sequence-specific recognition of the hexameric half-site of the hormone response elements. A loop of five amino acids, located between the first two cysteine residues in the second zinc finger, forms the core part of a homodimerization surface, with the helix at the end of the second zinc finger being responsible for several less non-specific interactions with the DNA backbone (27). The hinge region is a short and flexible region that connects the DBD and the LBD. HR displays the least sequence conservation among NRs and is a site for regulatory post-translational modifications. Additionally, this region may also contain a nuclear localization signal (26). The LBD is the second most conserved region in NRs and is responsible for binding lipophilic ligands and activating or repressing the transcriptional activities of a nuclear receptor. The LBD may be considered a molecular switch that interprets ligand structure and depicts that information as conformational changes that convert the receptor into a transcriptional activator or repressor (25). The LBD contains a common fold which has been described as a triple-helical sandwich and most often consists of twelve helices and one beta-sheet that is normally comprised of two short strands (28). The ligand-binding pocket of the receptor resides in the interior of the helical sandwich and is formed by a subset of the surrounding helices. The LBD also contains an activation function-2 (AF-2) which can recruit receptor cofactors. The structural interface for this function resides in a hydrophobic groove formed by several helices of the ligand-binding domain, including helix 12, with cofactors binding to the specific site through an LxxLL motif and via hydrophobic interactions (29). Helix-12 plays an important role in LBD function. In the absence of a ligand, helix-12 adopts a conformation that favors the interactions of the LBD with corepressor proteins, while ligand binding leads to conformational changes that expose interaction sites for coactivators, the recruitment of these coactivators and the subsequent initiation of the signal cascade that ends at target gene transcription (30). Both the DBD and the LBD contain dimerization interfaces and thus participate in receptor homodimerization and heterodimerization (25). The C-terminal domain resides at the extreme C-terminus of an NR while its high sequence variability has made the elucidation of its function difficult (25).



Figure 2. A schematic representation of the common nuclear receptor structure. NTD : N-terminal Domain; AF-1 : Activation function-1; DBD : DNA-binding Domain; HR : Hinge Region; LBD : Ligand-binding domain; AF-2: Activation function-2; CTD : C-terminal domain

Apart from GR and MR, several other NRs have also been associated with the stress response system. It is known that the stress response may interfere with reproductive physiology and associated behaviors (31). This association between the stress response system and reproduction is due to the ability of the HPA axis to inhibit the hypothalamic-pituitary-gonadal (HPG) axis and vice versa. The androgen receptor plays an important role in this systems interaction (32). Estrogen receptors also have been shown to influence stress response. Specifically, estrogen receptor alpha and estrogen receptor beta work in opposition through different neuron populations in or near the PVN to regulate neuroendocrine response. A prime

example is the ability of ERb to modulate the action of neuropeptide promoters such as the CRH one (33). Apart from steroid receptors, other nuclear receptors like PPARg seem to partake in the stress response system. Particularly, PPARg signaling is thought to mitigate brain activation of the HPA axis and sympathetic nervous system during acute stress response (34). In general, there exists a complex interplay between several nuclear receptors with mentioned interactions contribute to their ability to orchestrate numerous physiological processes, including the stress response system.

#### Genetics, Epigenetics, and Stress

Specific interactions between environmental factors and genetic variants may lead to an altered stress response, both in a physiological and a behavioral setting (35). Therefore, genetics play an important role in stress biology since variations in genes involved in the sympathetic system or in the HPA axis may influence susceptibility to stress and lead to neuropsychiatric disorders (36). Polymorphisms within genes coding for HPA axis proteins such as the type 1 CRH receptor (CRHR1) and GR seem to lead to individual differences in stress responsivity and influence the effects of environmental stress on brain structure (37). Such an example is the genetic variant rs12938031 found in the CRHR1, which has been implicated in promoting psychopathology in the context of stress (38). Specifically, a study by Bogdan et al. found that rs12938031 interacted with stress to alter reward learning, both in a behavioral and neural way and promote stress-induced deficits in reward learning (38). Regarding the glucocorticoid receptor, individuals carrying the 22/23EK or the 9-beta variant that have been exposed to childhood adversities seem to display an increased risk of developing depression later on in their lives (39). Additionally, polymorphisms found on the FKBP5 gene, a GR cofactor and thus a modulator of the stress response system, in conjunction with early life trauma seem to be associated with neuroticism (40).

Epigenetics, i.e., the study of mechanisms and molecules that have the ability to perpetuate alternative gene activity states within the context of the same DNA sequence, also has a major influence on stress biology research (41). Particularly, epigenetic mechanisms allow long-term phenotypic changes to arise from environmental influence (42). Several molecular mechanisms can act on an epigenetic level, including DNA methylation, histone modifications, non-coding RNA (ncRNA) regulation of gene expression [4] and even protein-protein interactions (43). DNA methylation, which mainly involves the methylation of cytosine found on the DNA, is one of the most studied epigenetic mechanisms. This methylation occurs mostly at cytosines, followed by guanine residues. Generally, the presence of methylated cytosine leads to the recruitment of repressor complexes that regulate gene transcription by reshaping chromatin and inhibiting transcription factors' access to gene promoters (44). A family of enzymes named DNA methyltransferases (DNMTs) are the main modulators of DNA methylation (45). Several stressors have been shown to influence the DNA methylation patterns of genes participating in the HPA axis. Specifically, rodents exposed to maternal deprivation or chronic social

defeat stress early on in life displayed reduced DNA methylation at the transcription enhancer region of the AVP gene and the promoter region of the CRH gene (46). This decrease in methylation led to an increased expression of AVP and CRH in the hypothalamus culminating in elevated corticosterone levels and HPA axis hyperactivity. This disruption of proper HPA axis function has been associated with various neuropsychiatric disorders (46).

#### Metabolism and Stress

The stress response system is characterized by the increased secretion of epinephrine by the adrenal medulla, which is the final product of the SAM system and glucocorticoids from the adrenal cortex, which is the final product of the HPA axis. These stimuli may reduce insulin sensitivity, while glucocorticoids, specifically, have been associated with metabolic disturbances (47). Particularly, physiological levels of GCs are a prerequisite for proper metabolic control, while excessive GCs have been associated with various pandemic metabolic diseases like type II diabetes and obesity (48). The above indicates that stress has a major role in metabolism. Some important participators in metabolic processes that seem to be heavily associated with stress are the cytochrome P450 enzymes (CYPs) (49). CYPs are membrane-bound hemoproteins that have an essential role in homeostasis, cellular metabolism, drug metabolism along with the detoxification of xenobiotics (50). Cytochrome P450 enzymes both partake in the production of glucocorticoids and are influenced by GR function. Glucocorticoids production takes place at the adrenal zona fasciculata. Specifically, CYP11A1 catalyzes the side-chain cleavage of cholesterol to produce pregnenolone. Pregnenolone is later converted to  $17\alpha$ hydroxyprogesterone (170HP) by 3-beta-hydroxysteroid dehydrogenase (HSD3B2) and CYP17A1 17 $\alpha$ -hydroxylase activity. Subsequently, CYP21A2 catalyzes the conversion of 170HP to 11-deoxycortisol, with the final step being the conversion of 11-deoxycortisol to cortisol by CYP11B1, which is located in the mitochondria of zona fasciculata cells (51). Additionally, the glucocorticoid receptor seems to interfere with CYPs' function. This interference may alter the pharmacokinetic attributes of several drugs that are catalyzed by the aforementioned enzymes (52). This interaction between CYPs and GR may explain how stress can alter an organism's drug response (53).

#### Stress and Reproduction

Both male and female reproductive systems are inhibited at all levels by several modulators of the stress response system. Specifically, CRH suppresses gonadotropin-releasing hormone (GnRH) neurons directly and indirectly by promoting  $\beta$ -endorphin secretion by the arcuate POMC neurons, Additionally, GCs exhibit inhibitory effects on GnRH neurons, pituitary gonadotrophs as well as directly on the gonads, while they simultaneously render target tissues resistant to sex steroids (54). These actions of stress modulators may lead to hypothalamic amenorrhea of stress, a condition observed in various disorders such as depression and eating disorders (55).

#### Stress and Growth

Growth is also severely influenced by the stress response system. During stress response onset or after acute glucocorticoids administration, there's a transient elevation of growth hormone (GH) plasma levels. On the other hand, prolonged HPA axis activity suppresses GH secretion and inhibits growth factors' effect on target tissue via GC signaling. This negative effect of the prolonged stress response has been implicated in conditions such as psychosocial dwarfism, where severe childhood growth arrest or delayed puberty is observed due to emotional deprivation or harassment (54).

#### The Immune System and Stress

The stress response system is one of nature's essential survival mechanisms, with short-term stress mobilizing distinct cell types in the bloodstream in order to prepare the immune system for challenges, like wounding or infection, that may be inflicted by stressors, such as a predator or a medical procedure (56). Specifically, the stress response system has an important role in inflammation, a necessary short-term response for eliminating pathogens and initiating the healing process. Acute stress increases pro-inflammatory cytokines blood levels. Chronic stress is also associated with higher levels of pro-inflammatory cytokines, but the health consequences may be different. Chronic stress may lead to chronic or systemic inflammation, which can increase the risk for chronic diseases. Additionally, chronic stress may activate latent viruses, with their frequent activation causing wear-and-tear on the immune system (57).

Glucocorticoids-both endogenous and pharmacological- as the final product of the HPA axis partake in several immune and inflammatory processes. Specifically, low levels of endogenous glucocorticoids stimulate the immune response system by upregulating immune system modulators such as cytokine receptors, pattern recognition receptors (PRRs) and complement factors, therefore allowing an organism to rapidly respond to danger signals. On the other hand, high levels of glucocorticoids suppress the aforementioned immune system modulators, thus preventing excessive or prolonged immune responses (58). This anti-inflammatory action of glucocorticoids has been the basis for the frequent use of synthetic glucocorticoids as anti-inflammatory drugs against inflammatory or autoimmune diseases such as Crohn's disease, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis (RA) and multiple sclerosis (MS) (59).

#### Stress and Brain Function

It has been briefly mentioned that the brain holds an important role in the stress response system. The neural circuity found in the brain dictates which stimuli are threatening and therefore stressful to an organism. The brain regulates physiological and psychological responses to stressful stimuli through its interaction with metabolic, immune, and cardiovascular systems (60). A brain's reaction to stimuli, though, differs among individuals. These differences emerge due to both epigenetic factors, such as an individual's life experiences along with genetic factors, such as an individual's genetic makeup (61). Thus, the brain may be considered the quintessential organ when it comes to how an individual will respond to stress.

On the other hand, stress itself can affect brain function. Chronic stress may lead to structural changes in the brain, such as alterations in neurogenesis, a decrease in neuron numbers, in addition to disruption in memory and cognitive functions (62). Additionally, elevated glucocorticoid levels have been associated with neurodegenerative processes and thus may have a potential role in neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD) (63). Regarding Alzheimer's specifically, it has been suggested that longterm exposure to stress or stress-related disorders promotes hallmarks of AD-like cognitive impairment, neuroinflammation processes, amyloid-beta accumulation, Tau hyperphosphorylation and excitotoxicity (64). Lastly, chronic stress may play a role in the emergence of mood disorders like depression, where high levels of glucocorticoids contribute to neuronal atrophy in specific brain areas resulting in a brain phenotype similar to that of depressed patients (65).

Additionally, stress has a direct effect on neuronal structure and brain architecture. The main brain regions influenced by stress are the hippocampus, the amygdala, and the prefrontal cortex (PFC) (66). The hippocampus participates in memory, navigation and cognition (67). Stress leads to numerous structural changes in the hippocampus, such as neuronal morphology alterations, suppression of neuronal proliferation, and overall hippocampal volume reduction. These changes lead to the impairment of memory tasks dependent on proper hippocampal function (68). The amygdala is a limbic system with a crucial role in stress response where it detects a stimulus perceived as stressful by the organism and initiates adaptive responses, while amygdala-dependent cognition is promoted in stressful conditions. Animal models showcase that prolonged stress increases several measures of amygdala structure in rodents, such as increased arborization and dendritic length in the basolateral complex of the amygdala (69, 70). On the contrary, human studies display conflicting results (71). Nevertheless, most studies do highlight a change in amygdala morphology (72). The prefrontal cortex is a brain region with a critical role in self-regulatory behaviors, working memory, and executive function (66). Prolonged stress exposure leads to impairment in cognitive functions regulated by the PFC, while animal models have shown that such exposure promotes loss of dendritic material (73).

#### Stress and Neuropsychiatric Disorders

It has been stated that abnormalities in HPA function have been associated with neuropsychiatric disorders such as unipolar and bipolar depression, post-traumatic stress disorder (PTSD) and schizophrenia (74). Major depressive disorder (MDD), specifically, is a highly heterogeneous disease characterized, among others, by depressed mood, anhedonia and anergia and may be considered a prime example of stress-related disease (75). HPA axis malfunction is present in many cases of MDD and is related to reduced feedback inhibition by glucocorticoids, resulting in axis hyperactivity with depressed patients showcasing elevated cortisol levels in plasma, saliva and urine (74, 76). These depressed patients display an increased HPA response to psychosocial stressors with deleterious effects on both cognition and physiology, while GR antagonists such as mifepristone showcase some efficacy in treating depressive symptoms (76).

#### Stress and specific Chronic Diseases

Chronic diseases place great health, societal, and financial burden globally. In the US specifically, most deaths are caused by distinct chronic diseases such as cancer, cardiovascular diseases, chronic obstructive pulmonary disease, and type 2 diabetes mellitus (77). As has been briefly mentioned above, stress has been associated with numerous chronic diseases and may play a pivotal part in the increasing prevalence of chronic diseases.

The relationship between stress and cancer has been the focus of numerous studies, though results seem conflicting. Glucocorticoids' effect on tumor progression appears to heavily rely on the cells targeted. In lymphocytic malignancies, dexamethasone, a synthetic glucocorticoid, is used to promote apoptotic cell death, while in epithelial cells tumors, GCs mostly display the opposite effect (78). Moreover, studies of GCs' effect on various stages of cancer paint an inconsistent picture. Glucocorticoids appear to suppress cancer metastasis. In vitro studies have shown that GCs suppress cell migration and invasion via downregulation of Ras homolog family member A (RhoA), matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), and interleukin-6 (IL-6), or induction of E-cadherin (79). In contrast, it has been speculated that changes on corticosteroids levels caused by chronic stress may play a role in carcinogenesis. High glucocorticoid levels potentially enhance murine double minute 2 (MDM2) activity through serum and glucocorticoid-regulated kinase 1 (SGK1) induction (80). MDM2 is a negative regulator which plays a pivotal role in p53 inhibition (80). P53 is a protein encoded by the TP53 gene, which is a crucial tumor suppressor gene. Specifically, p53 is a main regulator of genome stability controlling cell cycle and DNA repair, thus playing a major role in tumorigenesis prevention(81). Consequently, inhibition of p53 plays an essential role in tumorigenesis, a process which high glucocorticoids levels may promote.

Stress has been identified as an important risk factor for cardiovascular diseases' emergence and progress. Exposure to chronic stress has been associated with atherosclerosis and subclinical coronary heart disease, while stressful events may hinder recovery in patients who have survived a stroke or acute coronary syndrome (82). This effect of stress is mediated both by behavioral responses to stressful events, such as consumption of energy-dense comfort food, that is interlinked with obesity and biological responses, such as the increased SAM activity, which leads to

increased heart rate, diastolic and systolic blood pressure, plus alterations on myocardial contractility and vasodilation/vasoconstriction (83-85).

Serum cortisol levels and adrenal gland size have been heavily associated with the severity of chronic obstructive pulmonary disease, an observation which implies a role for HPA axis function and subsequently the stress response system, in disease pathology (86). COPD seems to influence HPA function and psychological distress is a major symptom of this disease, but the association between stress and COPD may be bilateral since it has been suggested distress itself may be a predictor for disease emergence in women (86-88).

Physiological stress response caused by chronic exposure to stressors is thought to increase type 2 diabetes mellitus (T2DM) risk (89). Moreover, several research studies have showcased that stressors such as family losses and workplace stress may play an important role in triggering the onset of T2DM (90). Stress mobilizes several processes which have been implicated in T2DM, such as glucose and lipids release into the circulation, inflammatory cytokine expression, along with blood pressure increase. Chronic stress can lead to glucose metabolism irregularities and neuroendocrine function dysregulation, plus low-grade chronic inflammation. These pathological traits emerging from chronic stress can have major effects on T2DM since they promote hepatic gluconeogenesis activation, downregulate lipid uptake and insulin-stimulated glucose transport thus potentially having a direct effect on insulin sensitivity (91).

# The glucocorticoid receptor as the main mediator of the stress response system

The glucocorticoid receptor is produced by a single gene called NR3C1, which is located on chromosome 5q31-32 in humans. This gene is subject to alternative splicing, a process that leads to functionally distinct GR subtypes. Human NR3C1 contains nine exons, with the predominant isoforms being hGRa and hGRb. hGRa and hGRb are identical through amino acid 727, but later deviate. hGR $\alpha$  displays 50 additional amino acids, while hGR<sup>β</sup> showcases 15 additional non-homologous amino acids. hGRa is the most well-studied isoform, with the less-studied hGRB exhibiting a dominant-negative effect on hGR $\alpha$  (92). The glucocorticoid receptor's mechanism of action is similar to that of other steroid receptors. In the absence of glucocorticoids, GR is located in the cytoplasm, where it is bound to several chaperone proteins that render it inactive (93). GR is first bound by heat shock protein 40 kDa (Hsp40), heat shock protein kDa (Hsp70) and the Hsp70-Hsp90 organizing protein (Hop), while at later stages is bound by heat shock protein 90 (Hsp90), FK506-binding proteins (FKBPs) and prostaglandin E synthase 3 (PTGES3/p23) (94). Specifically, after receptor translation, Hsp70 binds the unfolded receptor in the cytosol, a process accelerated by Hsp40 binding. This action facilitates GR's folding. A cofactor called BAG family molecular chaperone regulator 1 (BAG-1) may impair mentioned receptor folding, either directly or by aiding in the degradation of the unstable folded GR complex with Hsp70 and Hsp40 (95). The Hsp40/Hsp70-GR complex is then recruited by Hop, in an ATP-dependent manner, to interact with Hsp90. Hop, Hsp40, and Hsp70 are dislodged from the Hsp90-GR complex after another ATP- dependent event and subsequent interaction of the Hsp90-GR complex with cochaperones like FKBP51 and p23 give rise to a complex conformation with a high affinity for corticosteroids (15, 96). Ligand binding leads to conformational alterations in the LBD that change the proteins which make up the heterocomplex, a prime example being the replacement of FKBP51 by FKBP52, leading -mostly- to GR dimerization and nuclear translocation, where the receptor may act as a transcriptional regulator (15, 97, 98). GR nuclear import is a quick and active process that relies on the glucocorticoid receptor's association with Hsp90, FKBP52 and importin-a. The GR complex is transported into the nucleus by dynein along the cytoskeleton and through the nuclear pore complex (NPC) (98). Once in the nucleus, the activated GR can either enable or repress gene transcription **(Figure 3)**. Especially, transactivation can be achieved directly through GR homodimer binding

to a glucocorticoid response element (GRE) found in gene promoter regions, or indirectly, where GR acts as a monomer and co-operates with other transcription factors to induce transcription (99, 100). Transrepression can also be either direct via GR homodimer or -preferably- monomer binding to a negative glucocorticoid response element (nGRE); or indirect via GR monomer binding to a proinflammatory transcription factor, like (nuclear factor kappa B) NF-κB (99-101). It is important to highlight the glucocorticoid receptor's ability to rely on protein-protein interactions with other transcription regulators to exert a large part of its actions since transgenic mice carrying a mutant GR weakened in its ability to bind DNA but not to other proteins, are viable (48). GR remains bound to DNA for a specific time period which may be affected by the bound ligand. This influence may be due to differences in ligand-induced conformational changes (102). After ligand disengagement, GR dissociates from DNA and is either degraded by the proteasome or exported from the nucleus, which is an inactive process, most likely occurring through passive diffusion (98). This system enables the cell to rapidly respond to environmental changes and exercise its effects via the intricate networks established around GR activity.



Figure 3. A schematic representation of glucocorticoid signaling resulting in GR homodimerization and transcription initiation (GR: glucocorticoid receptor; Hsp70: Heat-shock protein70; Hsp40: Heat shock protein 40; BAG1: BAG family molecular chaperone regulator 1; Hop: Hsp70-Hsp90 organizing protein; p23: Prostaglandin E synthase 3 protein; FKBP51: FK506-binding protein 51 CORT: cortisol; FKBP52: FK506-binding protein 51; NPC: nuclear pore complex; GRE: Glucocorticoid response elements). Hsp70 binds the unfolded receptor in the cytosol, a process accelerated by Hsp40 binding, and leads to GR's folding. BAG-1 is a cofactor that may directly impair receptor folding, while it may also aid in the degradation of the unstable folded GR complex with Hsp70 and Hsp40. The interaction of GR The Hsp40/Hsp70-GR complex is then recruited by Hop, in an ATP-dependent manner, to interact with Hsp90. Hop, Hsp40, and Hsp70 are dislodged from the Hsp90-GR complex upon Hsp90 binding ATP, and subsequent interaction of the Hsp90-GR complex with FKBP51 and p23 give rise to a complex conformation with a high affinity for corticosteroids. Ligand binding leads to the replacement of FKBP51 by FKBP52, leading mainly to GR dimerization and nuclear translocation through the nuclear pore complex (NPC) with the help of importin-a. Finally, the GR homodimer binds to glucocorticoid response elements to promote gene transcription.

#### Big Data as the basis of modern research

Current genomics and post-genomics technologies have allowed for the gathering of raw data regarding biochemical and regulatory processes in living organisms. Moreover, the use of electronic health records (EHRs) has added even more data, such as an individual patient's diagnoses, prescriptions and lab test results (103). This accumulation of large datasets has set in motion the age of Big Data in medical and biological research. Big data refers to information assets defined by high volume, velocity and variety that demand specific technology for its proper storage, management, and analysis (104). Analyzing such data can provide new approaches for personalizing prognosis, diagnosis and therapeutics (105). One of the technological approaches used to analyze big data is through the use of artificial intelligence (AI) (106). Specifically, artificial intelligence could be used to analyze biological and medical big data and then interpret pathological results with an end goal of providing a highly accurate diagnosis (107). Furthermore, analysis of big data can build predictive models that allow an accurate disease risk and reoccurrence assessment and improve prognosis estimations (108). Regarding therapeutics, identification of factors driving a disease may provide novel pharmacological targets or help optimize the therapeutic approach to a patient based on their individual characteristics (104).

A provider of such large amounts of data is genome-wide association studies. Genome-wide association studies (GWAS) are well-powered systematic surveys that study the association between sites of common genome sequence variation and complex traits or diseases on a genome-wide scale (109). Since the first human genome was fully sequenced in 2003, almost 3700 GWAS have suggested thousands of genetic risk variants and their corresponding biological function (110). Specifically, GWAS have been used to find the association between diseases such as type 2 diabetes, heart disease, neuropsychiatric disorders, various types of cancer plus common single nucleotide polymorphisms (SNPs) (111, 112). Next-generation sequencing (NGS) technologies allow the application of GWAS on a large scale, which, in conjunction with their drastically decreasing costs, have led to the aforementioned accumulation of data (113).

#### Personalized medicine

The emergence of big data in health sciences has paved the way for a more personalized approach in diagnostics, prognostics and therapeutics, as has been briefly mentioned above. Personalized medicine considers each patient's distinct characteristics and individualizes the medical approach (114). Specifically, it is thought that an individual's molecular, physiological, behavioral and environmental exposure profile is responsible for the heterogeneity found in most diseases (115). The accumulation of data describing the aforementioned profile may help outline the completely distinct traits of an individual's pathologic condition and how such a condition emerges, progresses, and is addressed. The final goal of personalized medicine is to provide the right treatment to the right person at the right time (116).

#### **Thesis Overview**

This thesis investigates nuclear receptors networks in relation to their role in the stress response system and the maintenance of homeostasis. The first section of this

thesis makes use of a literature study of transcription factors and their role in organism evolution and epigenetic modifications. This section is expected to display why a study on nuclear receptors, one of the largest superfamilies of transcription factors, may provide information useful for both clinicians and researchers. The next section of the thesis involves the analysis of a large dataset consisting of NR LBD structure and their corresponding ligands. Particularly, phylogenetic analysis is conducted to elucidate the evolutionary history of nuclear receptors further. The dataset was composed of more than 400 entries received from the Protein Data Bank (117). The results extracted provide novel insights on nuclear receptors' ligandbinding domain function. The third section of this thesis focuses on the glucocorticoid receptor, arguably the main regulator of the stress response system and makes use of data mining and semantics techniques to uncover novel information 'hidden' in the scientific literature and GWAS databases, such as GWAS Catalog (118), regarding the receptor's role in biological function and pathological conditions. The last part of the thesis attempts to analyze a more distinct dataset, particularly 3500 whole-genome sequences of Japanese individuals. Specifically, the glucocorticoid receptor is used as the basis to assemble a set of genes that participate in the stress response system, the regulation of various nuclear receptors action, the epigenetic regulation of gene transcription and drug metabolism. This set was then used to conduct a whole-genome study on this dataset in order to identify attributes that are specific to these individuals and may influence the way homeostasis is maintained in such populations.

# The connection between evolution and transcription factors

Defining the mechanisms through which phenotypic variation is generated and its subsequent consequences are essential in providing novel information regarding the evolutionary history of life. Early on, geneticists considered genes as linearly arranged on chromosomes trait-causing elements (119). Later studies in developmental biology though, showcased several factors may influence gene function and thus gene action may be altered (120, 121). It is now accepted that a gene may express its encoded information in different ways, an ability that may have contributed in the emergence of phenotypic variation. Gene expression refers to the mechanisms through which the information encoded in a gene is used to generate a working gene product (122). Hence, gene expression allows organisms containing mainly- the same DNA to showcase different cell types and functions (123). Gene expression is subject to multi-level regulation as a crucial mechanism in an organism's life (124). These regulating levels consist of the transcriptional level, the post-translational level, the translational level, the post-translational level (125).

The above showcase that cell function and structure, although already known to be attributed to inherited genetic information, are also subject to influence by information not encoded in the DNA sequence. As stated briefly before, this information is called epigenetic information (123). Another definition for epigenetics includes both heritable alterations in gene expression and activity and stable, long- term alterations in the transcriptional potential of a cell that is not compulsorily heritable (126). As previously mentioned, there are multiple mechanisms associated with epigenetics that influence gene expression, such as DNA methylation, histone modifications (methylation, acetylation phosphorylation and ubiquitination) (127), chromatin remodeling, such as chromatin sliding (128), post- translation modifications (acetylation, amidation, glycosylation, methylation, phosphorylation) (129) and gene regulation led by various forms of regulatory RNA molecules, such as microRNAs (miRNAs) (Figure 4) (123, 130).



Figure 4. The various mechanisms of epigenetic modification. A) Histone modifications, such as methylation, acetylation phosphorylation, and ubiquitination B) Chromatin remodeling such as sliding

C) DNA methylation D) regulation by non-coding RNAs such as miRNAs E) Post-translational modifications such as acetylation, amidation, glycosylation, methylation, and phosphorylation.

Regulation of gene transcription is an essential component of gene activity in response to stimuli and tissue-specific gene expression (131). Transcription factors (TFs) are the main regulators of gene transcription and are defined as proteins with the ability to bind specific DNA sequences to control gene expression (132). Different life forms make use of different methods for the initiation and regulation of transcription. Prokaryotes use a distinct RNA polymerase, while eukaryotes showcase multiple RNA polymerases (133). Bacteria make use of two distinct mechanisms for transcription initiation, a promoter-centric mechanism, in which a transcription factor interacts with a promoter and changes mentioned promoter's ability to bind the RNA polymerase, along with an RNA-centric mechanism in which a transcription factor interacts with the RNA polymerase to alter its promoter preference (134). In eukaryotes, several transcription factors interact with their respective DNA motifs, also known as response elements (REs) and recruit transcriptional cofactors (CoFs) to remodel the chromatin environment. These TFs can also promote the construction of a pre-initiation complex (PIC), which consists of general transcription factors (GTFs) and RNA polymerase II (RNAIIP) (Figure 5) (135). Finally, the transcriptional mechanism used by archaea may be described as a simplified version of the eukaryotic transcriptional mechanism. Archaeal TFs recruit the RNA polymerase to their respective DNA domain. Archaea make use of a transcriptional machinery that features additional RNA polymerase subunits and basal transcription factors that regulate transcription initiation and elongation (136).



Figure 5. A schematic representation of a pre-initiation transcription complex in eukaryotes. RE: Response Element; TF: Transcription Factor; GTFs: General transcription factors; CoFs: Cofactors; RNAIIP: RNA-polymerase II; Prom: Promoter.

Transcription factors' activation is a complex process and may involve multiple intracellular signal transduction pathways, or direct regulation through binding of distinct molecules called ligands to a TF (137). Transcription factors regulate gene activity mostly through binding to distinct short DNA base pair patterns called motifs

or cis-regulatory elements (CREs) in downstream, intron, or upstream target gene regions. TFs also have the ability to interact with genomic locations that are distant from the primary DNA sequence (138). These locations are called gene regulatory regions (139). CREs contain promoters and DNA sequences called enhancers which participate in transcriptional activation and silencers which are DNA sequences that participate in transcriptional repression (140). The DNA-binding domain, which was mentioned as a structural region, is characteristic of all transcription factors. TFs display several structural motifs that recognize target DNA sequences like the homeodomain (HD), high mobility group box (HMG) and helix-turn-helix (HTH). These motifs can be used to classify transcription factors. TFs and DNA interaction is a guite complex process which is influenced by epigenetic modifications, cofactors' action, and the cooperative binding of other transcription factors (141). The above prove that gene regulation is a fundamental process in organism function. The emergence of various transcription factors throughout evolution and their respective effect on it may provide information regarding some of the most essential mechanisms driving life. This information can be further applied on nuclear receptors displaying their importance in biological function.

#### Transcription factors evolution among life domains

TF function is characterized by specific traits, the ability to identify and bind distinct short DNA sequences in regulatory regions and the ability to recruit or bind other proteins that also take part in transcriptional regulation (142). As a consequence, TFs' evolution is influenced by alterations in expression patterns, binding sites and binding partners (132). Additionally, since gene expression is somewhat inseparably linked with epigenetics, the evolution of epigenetics mechanisms is also associated with TFs' evolution (123). Lastly, events that are cornerstones of evolution are also part of transcription factors' evolution. Specifically, gene duplication and loss, the main drivers of the evolution of life, have an important role in TF evolution too. Specifically, duplication and deletion impact transcriptional regulatory networks by altering the number of TFs with distinct binding preferences (143-146). After the duplication of a TF gene, the resulting two copies are expected to be identical. The emerging TFs share the same sequences and consequently the same DNA-binding domain and thus bind the same target sequences. Possible consequent mutations in the DBD can lead a transcription factor copy to regulate a different target gene. Transcription factors display many differences on a lineage-specific level. The basal transcription machinery, although somewhat conserved in life, also exhibits diversification throughout evolution. The basal transcription machinery's subunit composition and size increase during evolution from 6 subunits in bacteria to 15 subunits in archaea. Moreover, eukaryotes, which are highly evolved, exhibit at least three different RNA polymerases (147). There are some apparent differences between eukaryotes and prokaryotes. Several DNA-binding domains are characteristic of some evolutionary lineages, like the ribbon-helix-helix domain, which is specific to bacteria and the Homeobox box, T-box, and C2H2-ZNfs domains, which are specific to eukaryotes (148). Furthermore, eukaryotic transcription factors are somewhat longer than other eukaryotic proteins with other functions, while the opposite is true for prokaryotes. The reason for such a phenomenon may be that eukaryotic TFs contain a number of long intrinsic disordered segments that are necessary in order to participate in the formation of a multi- protein transcription protein complex (149). Eukaryotes may also contain multiple repeats of the same DBD family in just one polypeptide chain. This ability may be a part of the mechanism eukaryotes use that increases the length and diversity of DNA binding recognition sequences while simultaneously using a limited number of DNA binding domain families (149).

Alterations in CREs have an impact on transcription factors' evolution and vice versa (150, 151). TFs can bind full promoter, enhancer, or silencer regions that feature multiple binding sites or a single DNA binding site. The factors which affect the emergence, disappearance and overall evolution of CREs include initial sequence distributions, which are biased towards the mutational neighborhood of strongly binding sequences, insertion and deletion mutational mechanisms, slippage processes, massive rearrangements of promoter regions and TF cooperation (152, 153). Insertion and deletion mutational mechanisms promote the slow emergence of binding sites out of a random sequence with the already sufficient genomic sequence from which sites can evolve and the potential co-operativity between adjacent TFs helping accelerate such a process (152). It should also be stated that since a TF's interaction with its corresponding binding site is crucial in gene regulation, a mutation on either of them may interfere with their interaction and lead to deregulated gene expression. It is then no surprise that TFs' and CREs' evolution are interweaved, since such an association allows gene expression to remain functional. The co-evolutionary associations underlying TFs and CREs are based on the principle that a mutation in one of them may be compensated by a corresponding mutation in its interacting partner during evolution (154).

#### Transcription factors' co-operation

Individual prokaryote transcription factors have the ability to recognize long DNA motifs that themselves have the ability to define the genes they may regulate. On the other hand, organisms that have larger genomes are characterized by transcription factors that recognize short DNA sequences that cannot define unique genomic positions. Multicellular organisms also require molecular mechanisms that are complex and able to execute combinational processes for their development. These complex organisms have overcome the aforementioned hurdles by developing co- operative recognition of DNA by multiple TFs during evolution. There are multiple mechanisms through which TFs can co-operate, with each mechanism dictating the specific details of the interaction. Some of these mechanisms include protein-protein interactions and indirect cooperation (155). The formation of functional dimers is a classic example of protein-protein interaction among TFs. Several eukaryotic TFs cannot bind DNA sequences as monomeric proteins and require physical interaction with an identical protein molecule or one within the same protein family to form functional dimers which have the ability to bind

targeted DNA sequences. It is thought that transcription factors used to function as monomers at first, a hypothesis supported by the fact that TFs can adequately bind target sequences as monomers in less complex organisms (156). Thus, it is suggested that some promoters which include symmetrical palindromic repeats of the DNA- recognition motif could have brought two or more copies of the same TF protein close. If coincidentally an interaction domain with only one interaction sequence emerged, then this would help establish the formation of the composite element on DNA since this complex would recognize a larger DNA motif (156). These evolutionary events could promote more relaxed evolutionary constraints on a transcription factor's DBD within a redundant duplicate gene and would allow the emergence of a still functional DNA- binding domain that binds with less affinity. If a duplicate gene diverts in such a way, it must from now on function as an obligate dimer. From then on, additional duplications and changes in specificity led to the emergence and diversification of the numerous TFs' dimerizing families (156). As has been already mentioned, TFs can also co-operate without direct protein-protein interaction. This TFs' function is achieved through a process known as indirect co-operativity or collaborative competition, where a cohort of TFs collectively competes with the same histone octamer in order to access the underlying DNA (157). Indirect co- operativity emerges from the close juxtaposition of binding sites for arbitrarily chosen transcription factors (158). Thus, collaborative competition may have an essential role in the evolution of gene regulatory modules since molecules that undergo combinatorial regulation can be assembled from randomly selected components and show no requirement for coevolution. Possible coevolution of the required partners may enhance co-operativity through the aforementioned protein-protein contacts or through bridging proteins and therefore increase the magnitude of combinational control (158).

#### Coactivators, corepressors, and post-translational modifications

Several coactivator and corepressor proteins that regulate TFs partake in multisubunit coregulator complexes and present enzymatic activities (159). Such complexes can regulate TF activity as a response to stimuli through posttranslational modifications (PTMs) (160). Modification enzymes interact directly with transcription factors and modify distinct residues of the TF protein and change subcellular localization, interaction with additional cofactors, stability, along with other transcriptional activities (161). Some of these post-translational modifications these enzymes carry out are acetylation, glycosylation, methylation and phosphorylation (160). It is quite possible that post-translational modifications of transcription factors, histones, or RNA polymerase II and its associated proteins at the pre-initiation complex participate in enhancer- core- promoter communication and possibly, in the combinatorial regulation of transcription activation (162). Therefore, it is not surprising that, in the past decade, research has identified connections between novel post-translational modification sites within TFs and the emergence and evolution of new features (142). A distinctive example is pregnancy evolution in mammals where amino-acid differentiation in the TF CCAAT/enhancer-binding protein beta (CEBPB) alter the way in which this TF
responds to cyclic AMP/protein kinase A (cAMP/PKA) signaling. Such differences in the amino-acid sequence alter the location of key phosphorylation sites and potentially change the response of CEBPB to phosphorylation from activation to repression (163).

#### Expression patterns in transcription factors

TFs in eukaryotes display functional differences among different species and paralogs, a characteristic that demonstrates their ability to evolve new functions (164). Eukaryotes showcase five groups of transcription factors with specific expression patterns that have emerged through periodic expansion in the transcription factors' repertoire. These groups are split into those that are only present in primates, those that are mostly found in mammals, or metazoan and those found in the majority of eukaryotes, including yeast (165). A mechanism that can promote such changes in TF function is tissue - specific gene expression. Tissue specificity allows the minimization of mutations' pleiotropic effects that possibly lead to the gain of novel regulatory links via transcription factor evolution. Additionally, tissue specificity limits the loss of function mutations' effects, which break regulatory links (164). Combining the study of the expansion that occurred in the TF repertoire with the study of tissue-specific mechanisms' evolution can help elucidate the association between TFs and tissue specificity. The previously mentioned expansion appears to have occurred unevenly for TFs containing different types of DBDs. Some DNA-binding domains showcase a rapid expansion through evolution, while others exhibit no significant expansion since their emergence. This expansion in TF orepertoire may have provided evolution with the tools needed to create or modify different expression patterns for transcriptional factors -including tissue-specific ones- by duplication and subsequent promoter divergence (165).

# Histone modifications and transcription factors

DNA wraps around histone octamers in human cells. The resulting complex is termed 'nucleosomal core particle' (166). Histone proteins exhibit tails, which feature residues that can be post- translationally modified and later influence transcription. Changes in histone modification patterns that characterize TF binding sites regulate the aforementioned influence on transcription. Moreover, TFs with evolutionary-related DNA binding domains are thought to sample putative binding sites whose environment displays similar histone modification patterns (167).

# MicroRNAs and transcription factors

MicroRNAs, also abbreviated as miRNAs or miRs, are small non-coding RNA molecules that can regulate gene expression (168). Both transcription factors and miRNAs have an essential role in gene regulatory network evolution (169). Gene expression appears to be regulated by transcription factors at the transcriptional

level and miRNAs at the post-transcriptional level, with both TFs and miRNAs being able to regulate each other. The interaction between TFs and miRNAs provides distinct constraints and functional alterations for the evolution of gene expression regulatory networks. It is not surprising then, that these two regulators display some form of coevolution (170). Specifically, coevolution appears in TF and miRNAs pairs that are associated through transcriptional activation signals but not in pairs that are associated through transcriptional repression signals. The above may be due to the fact that TFs that trigger miRNA expression may afterward act in tandem with the activated miRNAs, while TFs that repress the expression of specific miRNAs will not act with them and therefore be under their evolutionary influence (170).

# Focusing on nuclear receptors' evolution

Transcription factors' activation method has a tremendous effect on their evolution. Ligands in ligand-activated transcription factors, such as nuclear receptors, are expected to have an integral part in the evolution of these regulatory proteins. NR ligands are product intermediates of a wide variety of metabolic pathways.

Therefore, these ligands have been evolutionary set through genetic modulations on the components of particular metabolic pathways but not through single gene modifications. This evolutionary characteristic of ligands implies that nuclear receptors' evolution is heavily influenced by the ever-growing interaction among gene networks and not exclusively by a group of distinct genes (171). This specific characteristic of NR evolution makes its research a complex procedure. On the other hand, nuclear receptors are the only TFs that present a direct link between the metabolic environment and gene regulation, while may have additionally played an essential role in the diversification of animals as multicellular heterotrophs (172). Thus elucidating NR evolution, particularly the way ligands interact with their corresponding receptor, is the desired result since such information has implications not only on the proteins themselves but on their ligands and intricate physiological and metabolic mechanisms, including gene regulation.

# An in-depth view on nuclear receptors' LBD structure and evolution

Studies on the origin of nuclear receptors suggest that they did not show a high affinity for a specific ligand initially, with mentioned ability being acquired later through evolution. It is thought that the first nuclear receptor was able to bind different ligands with low affinity and selectivity (172). The existence of a single ancestral NR that can bind different ligands with distinct biological activities is in accordance with the selective NR modulators concept. Selective NR modulators refer to molecules that can selectively activate a nuclear receptor in a tissue or target-specific fashion. The aforementioned concept provides a theoretical foundation for the ability of several currently existing nuclear receptors to bind different ligands with different ligands with different selectivity (171). Therefore, studying the structure and sequence of the LBD domain throughout evolution in conjunction with their corresponding ligands can provide novel information regarding NR evolution and function.

# Methods of study

In order to collect information regarding NR LBD, a search was performed on the RSCB Protein Data Bank (PDB) database for amino-acid sequences that have been associated with the ligand-binding domain of nuclear receptors (117). Any sequence that responded to the query but did not feature a ligand-binding domain was removed from the dataset through the use of regular expression techniques and local alignments with reference sequences. Roughly 400 NR LBDs were protein sequences, and structures were collected from a variety of species (Table 2).

| Nuclear Receptor                  | PDB Structure                                   |
|-----------------------------------|-------------------------------------------------|
| Ancestral Corticoid Receptor      | 2Q1H, 2Q3Y, 4FNE, 4LTW                          |
| Glucocorticoid Receptor (NR3C1)   | 4CSJ, 1NHZ, 5NFT, 1M2Z, 3CLD, 3E7C, 4LSJ, 3BQD, |
|                                   | 5UC3, 4MDD, 4P6X, 3MNE, 3H52, 3MNO, 4P6W,       |
|                                   | 3MNP, 5UC1 (GRβ)                                |
| Ancestral Glucocorticoid Receptor | 3GN8, 5UFS, 4E2J, 3RY9                          |
| Progesterone Receptor (NR3C3)     | 3G8O, 1SQN, 1E3K, 1A28, 1SR7, 3KBA, 4OAR, 2W8Y  |
| Androgen Receptor (NR3C4)         | 3RLL, 5JJM, 2OZ7, 5T8E, 3L3X, 2Q7K, 5VO4, 3RLJ, |
|                                   | 40GH, 2Z4J, 1XOW, 1T5Z, 2AX6, 2HVC, 1I38, 4K7A, |
|                                   | 4QL8, 2AM9, 4OEA, 2AX9, 1I37, 1E3G, 1XJ7, 1GS4, |
|                                   | 5CJ6, 1T73, 5V8Q, 4OJB, 2AX8, 1Z95              |
| Estrogen Receptor alpha (NR3A1)   | 1PCG, 5T92, 5ACC, 5AAV, 5W9D, 1QKT, 5FQP,       |
|                                   | 1UOM, 5AAU, 2YAT, 6CHZ, 5AK2, 3UU7, 3Q97,       |
|                                   | 4MG8, 1ZKY, 4MG5, 3UUA, 5DXG, 6CBZ, 5T1Z,       |
|                                   | 4MG7, 2QZO, 2QA8,3D24, 3HM1, 1ERR, 3Q95,        |
|                                   | 3UUC, 4IU7, 2QA8, 2OCF, 2P15, 5DX3, 4Q50, 4ZN9, |
|                                   | 5HYR, 2BJ4, 5GS4, 2IOG, 5DXB, 1SJ0, 5DI7, 3HLV, |
|                                   | 2JFA, 4PP6, 4DMA, 2QXS, 4Q13, 1GWQ, 1ERE,       |
|                                   | 2IOK, 1G50, 2PJL, 3L03, 1L2I, 4PXM, 1GWR, 3ERD, |

Table 2. Structures used during the current study

|                                           | 1QKU, 3DT3, 1X7E, 1A52, 1XB7, 3OS8, 5TN9, 4XI3, 4N1Y                                               |  |  |  |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|
| Estrogen Receptor beta (NR3A2)            | 2FSZ, 1YY4, 1ZAF, 2NV7, 3OLL, 4ZI1, 1X76, 2YLY,<br>1U9E, 1QKM, 2GIU, 1NDE, 1L2J, 2I0G, 1QKN, 2J7X, |  |  |  |  |
| Ecdysone Receptor (EcR protein and        | 1G2N, 1R1K, 1R20, 2NXX, 4OZT, 1Z5X, 4OZR, 1HG4,                                                    |  |  |  |  |
| Ultraspiracle Protein) (NR1H1 and         | 2NXX                                                                                               |  |  |  |  |
| NR2B4)                                    |                                                                                                    |  |  |  |  |
| TLX receptor (NR2E1)                      | 4XAJ,4XAI                                                                                          |  |  |  |  |
| Steroidogenic factor 1 (NR5A1)            | 3F7D, 1YMT, 1YP0, 4QJR, 1ZDT, 1YOW,                                                                |  |  |  |  |
| Nur77 (NR4A1)                             | 4RZF, 1YJE, 2QW4, 4JGV, 4REF,4KZJ, 4RZG, 3V3E,                                                     |  |  |  |  |
|                                           | 4KZM,4RZE                                                                                          |  |  |  |  |
| Nurr1 (NR4A2)                             | 10VL,                                                                                              |  |  |  |  |
| Liver receptor homolog-1 (NR5A2)          | 40NI, 4RWV, 1YUC, 1P5K, 1ZDU, 5L11, 5SYZ, 4PLD,                                                    |  |  |  |  |
|                                           | 4DOS, 3PLZ, 1YOK, 3TX7, 4IS8                                                                       |  |  |  |  |
| Photoreceptor cell-specific nuclear       | 4LOG                                                                                               |  |  |  |  |
| receptor (NR2E3)                          |                                                                                                    |  |  |  |  |
| Hepatocyte nuclear factor 4 alpha         | 1M7W, 4B7W, 3FS1, 1PZL, 1LV2, 4IQR                                                                 |  |  |  |  |
| (NR2A1)                                   |                                                                                                    |  |  |  |  |
| Peroxisome proliferator-activated         | 1I7G, 4BCR, 2P54, 2NPA, 3G8I, 5AZT, 2REW, 1KKQ,                                                    |  |  |  |  |
| receptor alpha (NR1C1)                    | 3SP6, 2ZNN, 5HYK, 1K7L, 3ET1                                                                       |  |  |  |  |
| Peroxisome proliferator-activated         | 2Q59, 4PRG, 2PRG, 2ZVT, 3U9Q, 3CS8, 5GTN, 4O8F,                                                    |  |  |  |  |
| receptor gamma (NR1C3)                    | 30SI, 6ENQ, 214J, 3CWD, 4L96, 3R8A, 3ADS, 5JI0,                                                    |  |  |  |  |
|                                           | 1KNU, 1FM6, 3PBA, 3WJ4, 2Q59, 3B0Q, 3VN2,                                                          |  |  |  |  |
|                                           | 5Y2O, 1K74, 3LMP, 2VV1, 1RDT, 1ZEO, 4EM9, 2VSR,                                                    |  |  |  |  |
|                                           | 2VV4, 4R06, 5LSG, 3T03, 3S9S, 1WM0, 3ET0,                                                          |  |  |  |  |
|                                           | 20M9, 4R2U, 4R6S, 117I, 3PRG, 4OJ4, 1NYX, 3ET3,                                                    |  |  |  |  |
|                                           | 2HFP, 3BC5, 3DZU                                                                                   |  |  |  |  |
| Peroxisome proliferator-activated         | 2GWX, 1GWX, 3SP9, 2B50, 5U3Q, 2AWH, 2Q5G,                                                          |  |  |  |  |
| receptor beta/delta (NR1C2)               | 1YOS, 5U3T, 3TKM, 2J14, 2XYG, 2ZNP, 3ET2, 3GZ9                                                     |  |  |  |  |
| Retinoic acid receptor alpha (NR1B1)      | 3A9E, 5K13, 1DKF, 4DQM, 3KMR                                                                       |  |  |  |  |
| Retinoic acid receptor beta (NR1B2)       | 1XDK, 1XAP, 4JYG, 5UAN                                                                             |  |  |  |  |
| Fushi tarazu factor 1 (NR5A3)             | 2XHS                                                                                               |  |  |  |  |
| Rev-Erb beta (NR1D2)                      | 2V0V, 4N73, 2V7C, 3CQV                                                                             |  |  |  |  |
| Liver X-Receptor alpha (NR1H3)            | 2ACL, 3FC6, 1UHL, 3IPQ                                                                             |  |  |  |  |
| Liver X receptor beta (NR1H2)             | 3L0E, 4DK8, 1P8D, 1PQ6, 1UPV, 5HJP, 4RAK, 5I4V,                                                    |  |  |  |  |
|                                           | 5KYA, 4NQA, 4DK7                                                                                   |  |  |  |  |
| Vitamin D receptor (NR1I1)                | 3A2I, 3M7R, 3AZ1, 3B0T, 1S0Z, 1DB1, 5V39, 5GT4,                                                    |  |  |  |  |
|                                           | 3P8X, 4RUJ, 4FHH, 2HBH, 3A2J                                                                       |  |  |  |  |
| Farnesoid X receptor (NR1H4)              | 3GD2, 3P88, 4OIV, 3HC6, 3P89, 3BEJ, 3DCT, 3HC5,                                                    |  |  |  |  |
|                                           | 3L1B, 3FLI, 5WZX, 1OSH, 4QE6, 5IAW, 3RUT, 3FXV,                                                    |  |  |  |  |
|                                           | 10SV, 10T7, 5Q0L, 4WVD                                                                             |  |  |  |  |
| Thyroid hormone receptor alpha<br>(NR1A1) | 3UVV, 1NAV, 3JZB, 3HZF, 2H77, 2H79                                                                 |  |  |  |  |
| Thyroid hormone receptor beta             | 2J4A, 1Q4X, 4ZO1, 1R6G, 1NUO, 1NQ0, 2PIN,                                                          |  |  |  |  |
| (NR1A2)                                   | 1NQ1, 1BSX, 1N46, 1XZX, 1NQ2, 3IMY, 3JZC, 1NAX,                                                    |  |  |  |  |
|                                           | 3D57, 3GWS                                                                                         |  |  |  |  |

| Testicular receptor 4 (NR2C2)         | 3POU                                            |
|---------------------------------------|-------------------------------------------------|
| Retinoid X receptor in Biomphalaria   | 1XIU                                            |
| Glabrata                              |                                                 |
| Retinoid X receptor in Polyandrocarpa | 2Q60                                            |
| Misakiensis                           |                                                 |
| Retinoid X receptor gamma (NR2B3)     | 2GL8                                            |
| RAR-related orphan receptor alpha     | 4S15, 1N83                                      |
| (NR1F1)                               |                                                 |
| RAR-related orphan receptor beta      | 1NQ7, 1K4W, 1N4H,                               |
| (NR1F2)                               |                                                 |
| RAR-related orphan receptor gamma     | 5IXK, 3LOL, 5IZO, 5EJV, 5YP6, 4WPF, 4NIE, 5AYG, |
| (NR1F3)                               | 4S14, 4WLB, 5X8Q, 5UFO, 5APK, 5NTI, 6B30, 5C4O, |
|                                       | 5ETH, 5LWP, 5W4V, 6BR3, 3KYT, 5W4R, 6CVH,       |
|                                       | 5NTP, 5K38, 4NB6, 6BN6, 5M96, 5APH, 4ZRJ, 4YMQ  |

The MATLAB Bioinformatics Toolbox was used to perform a multiple sequence alignment, specifically through making use of the progressive multiple alignment method and a guide tree (173, 174). Pairwise distances were estimated after pairwise alignment with the Gonnet scoring matrix and counting the proportion of sites at which sequence pairs are different (175). The guide tree was computed through the neighbor-joining method and assuming equal variance and independence of evolutionary distance estimates. Visualization of consensus sequences was achieved through the use of the Jalview platform and based on several multiple sequence alignment results and parameters such as amino acids conservation and quality (176). A more in-depth alignment focusing on characteristic steroid hormone receptors was conducted using the Molecular Operating Environment (MOE) (177).

A comprehensive structural and functional analysis of NR LBDs was achieved by comparing different LBD structures by superposing the structures and calculating the root mean square deviation (RMSD). The structural superposition method, as made possible by the MATLAB Bioinformatics Toolbox, was used to compare the structures of the NR LBDs (178). Structural superposition computes and applies a linear transformation to superpose the coordinates first structure's atoms to the coordinates of the second structure's atoms. Single chains' alpha carbon atom coordinates for each structure are taken into account for computing the linear transformation. The structural similarity matrix is shown using MATLAB in five different colors (blue for a range of 0 to 1, light blue for a range of 1.1 to 2, light gray for a range of 2.1 to 3, orange for a range of 3.1 to 4.9 and red for values  $\geq$ 5).

MOE was used to gain a more thorough view of steroid hormone receptor structures (179-181). All steroid hormone receptors found in the original dataset and their corresponding ligands were studied. The receptor-ligand interactions were the main focus of this study section, where each PDB entry was examined for ligand interaction using the MOE ligand interaction function. This function helped display the LBD amino acids that interact with their corresponding ligands or co-activators.

Lastly, information from the NCBI conserved domain database was extracted and assigned to the MOE results.

The unweighted pair group method (UPGMA), as made possible by the MATLAB Bioinformatics Toolbox, along with a specific hybrid matrix of pairwise distances, was used to perform a specialized phylogenetic analysis (182-185). This specific matrix combines information from the distance matrix of the multiple sequence alignment and the RMSD matrix of the structural analysis. Element by element matrices proliferation is used to calculate mentioned combined matrix (186, 187). This method helps cluster proteins that are less similar on a sequence level but are more conserved on a structural level. Lastly, the resulting phylogenetic tree was visualized using the MEGA software, specifically the radiation option, with the final clusters being separated by different colors (188).

It is thought that studying chemical similarity may help predict chemical compounds' properties, cluster chemicals and, more importantly, be the basis for a thorough functional analysis. Similarity calculation between any two molecules can be accomplished by comparing their respective molecular fingerprints (189). Such fingerprints consist of a molecule's structural information that has been encoded as a series of bits. The Tanimoto coefficient is the most popular method of comparing chemical structures' similarity, with mentioned structures being represented by molecular fingerprints (190).

All ligands that have been co-crystallized with SHRs in the dataset being studied were extracted **(Table 3)**. Specifically, ninety-four ligands unique to steroid hormone receptors were collected and were compared in order to identify possible similarities. These ligands' structures were compared using the Tanimoto coefficient algorithm (191). The Tanimoto coefficient varies from 0, when the fingerprints have zero bits in common, to 1, when the fingerprints are identical. The results of this comparison were saved in a chemical-specific similarity matrix. The chemical-specific similarity matrix was visualized using MATLAB in 4 different colors (black for a coefficient that ranges from 0 to 0,59; purple for a coefficient that ranges from 0,6 to 0,69; light blue for a coefficient that ranges from 0,9 to 1)

Table 3. A list featuring all steroid hormone receptors ligands that have been studied and their corresponding receptor

| Ligand /Molecular Formula/                                                       | Order  | Receptor | Positions of Int    | PDB IDs                 |
|----------------------------------------------------------------------------------|--------|----------|---------------------|-------------------------|
| CID                                                                              | number |          |                     |                         |
| 8W8 C <sub>25</sub> H <sub>21</sub> F <sub>4</sub> N <sub>3</sub> O <sub>3</sub> | 1      | GR       | Asn564, Gln5        | 0, 5NFT                 |
| 24825740                                                                         |        |          | Gln642              |                         |
| 486 C <sub>29</sub> H <sub>35</sub> N O <sub>2</sub>                             | 2      | GR       | Leu563, Leu5        | 6, 1NHZ,5UC3,3H52,5UC1, |
| 55245                                                                            |        |          | Gln570, Arg6        | 1, (4LTW)               |
|                                                                                  |        |          | Gln642, Cys736      |                         |
|                                                                                  |        |          |                     |                         |
|                                                                                  |        | AncCor   | Gln39, Arg80, Cys20 | 5,                      |

|                                                                                           |    |           | Tyr208               |                        |
|-------------------------------------------------------------------------------------------|----|-----------|----------------------|------------------------|
| DEX C <sub>22</sub> H <sub>29</sub> F O <sub>5</sub>                                      | 3  | GR        | Leu563, Asn564,      | 1M2Z, 3NE, 3MNO, 3MNP, |
| 5743                                                                                      |    |           | Gln570, Arg611,      | 3GN8                   |
|                                                                                           |    |           | Phe623, Gln642,      |                        |
|                                                                                           |    |           | Met646, Cys736,      |                        |
|                                                                                           |    |           | Thr739               |                        |
|                                                                                           |    | AncCor    |                      |                        |
|                                                                                           |    |           | Leu29 Asn33 Gln39    |                        |
|                                                                                           |    |           | Δrg80 Leu111         |                        |
|                                                                                           |    |           | $C_{VS}205$ Thr208   |                        |
| NN7 Cas Has E Na Oa S                                                                     | 1  | GR        | Asn564 Gln570        | 4051                   |
| 16666286                                                                                  | 4  | GI        | Mot604 Lou608        | 4031                   |
| 10000380                                                                                  |    |           | $\frac{1}{2}$        |                        |
|                                                                                           |    |           | $\frac{1}{2}$        | 2010                   |
| $GW6$ $C_{27}$ $H_{29}$ $F_3$ $O_6$ S                                                     | 5  | GR        | ASI1564, Argo11,     | 3CLD                   |
| 9854489                                                                                   |    |           | Cys736               |                        |
|                                                                                           |    |           |                      |                        |
|                                                                                           | 6  | <u>CD</u> |                      | 2570                   |
| 866 $C_{23}$ H <sub>21</sub> Cl <sub>2</sub> F <sub>4</sub> N <sub>5</sub> O <sub>3</sub> | 6  | GR        | Ash564, Gin570,      | 3E/C                   |
| 25058139                                                                                  |    |           | Met604, Gin642,      |                        |
|                                                                                           |    |           | Cys/36               |                        |
| LSJ C <sub>25</sub> H <sub>25</sub> N O <sub>4</sub> S                                    | 7  | GR        | Met560, Asn564,      | 4LSJ                   |
| 72710581                                                                                  |    |           | Cys736, Thr739       |                        |
| 29M C <sub>28</sub> H <sub>32</sub> F N <sub>3</sub> O <sub>3</sub> S                     | 8  | GR        | Met560, Leu563,      | 4MDD                   |
| 86280440                                                                                  |    |           | Asn564, Cys736       |                        |
| HCY $C_{21} H_{30} O_5$                                                                   | 9  | GR        | Asn564, Gln570,      | 4P6X                   |
| 5754                                                                                      |    |           | Arg611, Thr739       |                        |
| DAY C <sub>30</sub> H <sub>36</sub> N <sub>2</sub> O <sub>4</sub>                         | 10 | GR        | Met560, Asn564,      | 3BQD                   |
| 3032474                                                                                   |    |           | Phe623, Gln642       |                        |
| MOF C <sub>27</sub> H <sub>30</sub> Cl <sub>2</sub> O <sub>6</sub>                        | 11 | GR        | Asn564, Gln570,      | 4P6W, 4E2J, 1SR7       |
| 441336                                                                                    |    |           | Arg611, Cys736       |                        |
|                                                                                           |    |           |                      |                        |
|                                                                                           |    | AncCor    | Asn33, Gln39, Arg80  |                        |
|                                                                                           |    |           |                      |                        |
|                                                                                           |    | PR        | Asn719, Cys891       |                        |
| 1TA C <sub>24</sub> H <sub>31</sub> F O <sub>6</sub>                                      | 12 | AncCor    | Leu29, Asn33, Gln39, | 5UFS                   |
| 6436                                                                                      |    |           | Thr208               |                        |
| 1CA C <sub>21</sub> H <sub>30</sub> O <sub>3</sub>                                        | 13 | AncCor    | Asn33, Gln39, Arg80, | 3RY9, 2Q3Y, 4FNE, 2ABI |
| 6166                                                                                      |    |           | Cys205, Thr208       |                        |
|                                                                                           |    |           |                      |                        |
|                                                                                           |    | MR        | Asn770, Gln776.      |                        |
|                                                                                           |    |           | Cys942, Thr945       |                        |
| AS4 C21 H28 O5                                                                            | 14 | AncCor    | Asn33, Gln39, Arg80, | 2Q1H. 2AA2             |
| 5839                                                                                      |    |           | Cvs205. Thr208       |                        |
|                                                                                           |    |           |                      |                        |
|                                                                                           |    | MR        | Asn770. Gln776       |                        |
|                                                                                           |    |           | Cvs942. Thr945       |                        |
| SNL Cad Haa Od S                                                                          | 15 | MR        | Asn770 Gln776        | 3VHU                   |
|                                                                                           | 1  |           |                      | 3110                   |

| 5833                                                                             |     |    | Arg817                        |                              |
|----------------------------------------------------------------------------------|-----|----|-------------------------------|------------------------------|
| WFF C <sub>18</sub> H <sub>11</sub> F <sub>2</sub> N O <sub>4</sub>              | 16  | MR | Asn770, Cys849,               | 3WFF                         |
| 72163477                                                                         |     |    | Thr945                        |                              |
| LD1 C <sub>18</sub> H <sub>13</sub> N <sub>5</sub> O <sub>2</sub> S              | 17  | MR | Leu769, Asn770,               | 3VHV                         |
| 54751696                                                                         |     |    | Met807, Ser811,               |                              |
| LD2 C <sub>18</sub> H <sub>15</sub> N <sub>5</sub> O <sub>2</sub> S              |     |    | Met845, Thr945                |                              |
| 54751697                                                                         |     |    | Ala844, Leu848                |                              |
| 30X C15 H15 F6 N3 O                                                              | 18  | PR | Leu715. Met756.               | 3G8O                         |
| 11326074                                                                         | _   |    | Arg766. Cvs891                |                              |
| NDR C20 H26 O2                                                                   | 19  | PR | Cvs891                        | 1SON                         |
| 6230                                                                             |     |    |                               |                              |
| B18 C10 H24 O2                                                                   | 20  | PR | Asn719 Gln725                 | 1F3K 1XOW 1F3G               |
| 261000                                                                           | 20  |    | Arg766 (vs891                 |                              |
| 201000                                                                           |     | AR | Aig/00, Cy3031                |                              |
|                                                                                  |     |    | $\Delta sn705$ $\Delta rg752$ |                              |
|                                                                                  |     |    | Thr877                        |                              |
|                                                                                  | 21  |    | Acp710 Clp72E                 | $(41 \pm 10)$ 1028           |
| $SIR C_{21} \Pi_{30} O_2$                                                        | 21  | РК | ASII/19, GIII/25,             | (41100), 1A28                |
|                                                                                  | 22  | DD | Arg700, Cys891                |                              |
| $V \cup V \cup C_{20} H_{22} \cup N_3 \cup C_2 S$                                | 22  | PR | Arg/66, Cys891,               | ЗКВА                         |
| 16661548                                                                         | 22  |    | Inr894                        | 4045                         |
| $2SO C_{30} H_{37} N O_4$                                                        | 23  | PR | GIN/25, Arg/66,               | 40AR                         |
| 130904                                                                           |     |    | Cys891, Thr894                |                              |
| $RLL  C_{23} H_{16} F_3 N_3 O_3$                                                 | 24  | AR | Leu704, Asn705,               | 3RLL                         |
| 51346204                                                                         |     |    | Trp741, Arg752                |                              |
| DHT $C_{19} H_{30} O_2$                                                          | 25  | AR | Asn705, Gln711,               | 5JJM(a+b), 3L3X, 2Z4J, 1T5Z, |
| 10635                                                                            |     |    | Glu793, Thr877                | 1I38, 4K7A, 4OEA, 1XJ7, 1T73 |
| CA4 $C_{24} H_{29} CI O_4$                                                       | 26  | AR | Asn705, Gln711                | 2027                         |
| 9880                                                                             |     |    |                               |                              |
| 77U C <sub>13</sub> H <sub>15</sub> Cl N <sub>2</sub> O                          | 27  | AR | Asn705, Gln711,               | 5T8E                         |
| 59370500                                                                         |     |    | Met745, Arg752,               |                              |
|                                                                                  |     |    | Thr877                        |                              |
| TES C <sub>19</sub> H <sub>28</sub> O <sub>2</sub>                               | 28  | AR | Asn705, Thr877                | 2Q7K, 2AM9                   |
| 6013                                                                             |     |    |                               |                              |
| 9FG C <sub>12</sub> H <sub>9</sub> F N <sub>2</sub> O                            | 29  | AR | Gln711, Met745                | 5VO4                         |
| 132471744                                                                        |     |    |                               |                              |
| RLJ C <sub>19</sub> H <sub>14</sub> F <sub>3</sub> N <sub>3</sub> O <sub>3</sub> | 30  | AR | Leu704, Asn705,               | 3RLJ                         |
| 11326715                                                                         |     |    | Gln711, Met745,               |                              |
|                                                                                  |     |    | Thr877, Met895                |                              |
| HFT C11 H11 F3 N2 O4                                                             | 31  | AR | Leu704. Asn705.               | 40GH. 2AX6                   |
| 91649                                                                            |     |    | Met895                        |                              |
| LGD C14 Ho Fo No O                                                               | 32  | AR | Asn705 Gln711                 | 2870                         |
| 11560224                                                                         | 52  |    | Δrg752                        | 2.1.00                       |
| MXD Co Has No O                                                                  | 32  | ΔR | Δsn705 Thr877                 | <u>4</u> K7A                 |
| 4201                                                                             |     |    |                               |                              |
|                                                                                  | 3/1 | ΔR | Δsn705 Mat7/15                | 4018                         |
| 71220/17                                                                         | J4  |    | $\Lambda_{rg}752$ Thr $277$   |                              |
| 11233411                                                                         |     |    | nig/32, 1110//                |                              |

| BHM C <sub>11</sub> H <sub>10</sub> Br F <sub>3</sub> N <sub>2</sub> O <sub>4</sub> | 35         | AR          | Leu704, Asn705, | 2AX9                    |
|-------------------------------------------------------------------------------------|------------|-------------|-----------------|-------------------------|
| 5287785                                                                             |            |             | Thr877          |                         |
| ZK5 C <sub>21</sub> H <sub>29</sub> F O <sub>5</sub>                                | 36         | AR          | Asn705, Gln711, | 1GS4                    |
| 31378                                                                               |            |             | Arg752          |                         |
|                                                                                     |            |             | (+++mutations   |                         |
|                                                                                     |            |             | His701, Ala877) |                         |
| 51Y C <sub>14</sub> H <sub>17</sub> Cl N <sub>2</sub> O                             | 37         | AR          | Asn704, Gln711, | 5CJ6                    |
| 71543393                                                                            |            |             | Met745, Arg752  |                         |
| 97A C <sub>14</sub> H <sub>13</sub> F <sub>3</sub> N <sub>2</sub> O <sub>2</sub>    | 38         | AR          | Asn704, Thr877  | 5V8Q                    |
| 59556974                                                                            |            |             |                 |                         |
| 198 C <sub>18</sub> H <sub>14</sub> F <sub>4</sub> N <sub>2</sub> O <sub>4</sub> S  | 39         | AR          | Leu704, Asn705, | 40JB, 1Z95              |
| 56069                                                                               |            |             | Gly708, Gln711, |                         |
|                                                                                     |            |             | Met742. Arg752. |                         |
|                                                                                     |            |             | Thr877          |                         |
| FHM C17 H14 F4 N2 O5                                                                | 40         | AR          | Leu704. Asn705  | 2AX8                    |
| 5288215                                                                             |            |             |                 |                         |
| 5200213                                                                             |            |             |                 |                         |
| EST Cas Had Oa                                                                      | <i>L</i> 1 | FRa         | Met343 Glu353   |                         |
| 5757                                                                                |            | LING        | Hic524          | (a+b)                   |
| 5757                                                                                |            |             | 1115524         |                         |
|                                                                                     |            | <b>FD</b> b |                 |                         |
|                                                                                     |            | ЕКО         |                 | 5G54, 5DXB, 1ERE, 1G50, |
|                                                                                     |            |             | HIS475          | 4PXM, 1GWR, 1QKU, 1A52, |
|                                                                                     |            |             |                 | 30LL                    |
| 77W C <sub>25</sub> H <sub>22</sub> F N O <sub>3</sub>                              | 42         | ERa         | -               | 5T92                    |
| 118166742                                                                           |            |             |                 |                         |
| KE9 $C_{25} H_{25} F_3 N_2 O_2$                                                     | 43         | ERa         | Leu346, Met421, | 5ACC                    |
| 86287635                                                                            |            |             | Val533          |                         |
| GW5 C <sub>25</sub> H <sub>22</sub> O <sub>2</sub>                                  | 44         | ERa         | -               | 5AAV(a+b)               |
| 5288494                                                                             |            |             |                 |                         |
| 9XY C <sub>25</sub> H <sub>27</sub> N O <sub>2</sub>                                | 45         | ERa         | Thr347, Asp351, | 5W9D                    |
| 10090750                                                                            |            |             | Val533          |                         |
| GQD C <sub>23</sub> H <sub>27</sub> N O <sub>3</sub>                                | 46         | ERa         | Met421, Val533, | 5FQP                    |
| 127034153                                                                           |            |             | Val534          |                         |
| PTI C28 H32 N2 O2                                                                   | 47         | ERa         | Asp351          | 1UOM                    |
| 448915                                                                              |            |             |                 |                         |
| F3D Cat Hac N4 Oa                                                                   | 48         | FRa         | Asp351 Glu353   | бсну бсн7               |
| 134519316                                                                           | 10         | LING        | Leu387 Δrg394   |                         |
| 134313310                                                                           |            |             | Cvc530          |                         |
|                                                                                     | 40         | EDo         |                 | EAALL                   |
| $\Delta B R = C_{20} \Pi_{19} C I N_2 O_2$                                          | 49         | ENd         | GIY521, Val555  | SAAU                    |
| 91936962                                                                            | 50         | <b>FD</b> - | CL 433          | 21/47                   |
| $EEU  C_{35} H_{41} N_3 O_{10}$                                                     | 50         | Ека         | Glu423          | 2141                    |
| 11614456                                                                            |            |             |                 |                         |
| 85Z C <sub>26</sub> H <sub>19</sub> F O <sub>5</sub>                                | 51         | ERa         | Phe404, Val534  | 5AK2                    |
| 91668558                                                                            |            |             |                 |                         |
| 20H C <sub>15</sub> H <sub>16</sub> O <sub>2</sub>                                  | 52         | ERa         | -               | 3UU7(a+b)               |
| 6623                                                                                |            |             |                 |                         |

| Q97 C <sub>24</sub> H <sub>24</sub> O <sub>3</sub><br>46205471                                | 53 | ERa | -                                            | 5T1Z               |
|-----------------------------------------------------------------------------------------------|----|-----|----------------------------------------------|--------------------|
| 27J C <sub>18</sub> H <sub>26</sub> O <sub>5</sub><br>2999413                                 | 54 | ERa | Glu353, His524                               | 4MG8               |
| 689 C <sub>18</sub> H <sub>24</sub> O <sub>3</sub><br>6857699                                 | 55 | ERa | Met421, His524                               | 1ZKY               |
| 27E C <sub>10</sub> Cl <sub>10</sub> O<br>299                                                 | 56 | ERa | Met343, Leu346,<br>Met421                    | 4MG5               |
| 0CZ C <sub>15</sub> H <sub>10</sub> F <sub>6</sub> O <sub>2</sub><br>73864                    | 57 | ERa | Glu353                                       | 3UUA(a+b)          |
| GEN C <sub>15</sub> H <sub>10</sub> O <sub>5</sub><br>5280961                                 | 58 | ERa | His524                                       | 2QA8(a+b), 1QKM    |
| J3Z C <sub>18</sub> H <sub>22</sub> O <sub>2</sub><br>5870                                    | 59 | ERa | Glu353, Gly521                               | 3HM1               |
| ESL C <sub>18</sub> H <sub>24</sub> O <sub>3</sub><br>5756                                    | 60 | ERa | Glu353, Met421,<br>His524                    | 3Q95(a+b)          |
| RAL C <sub>28</sub> H <sub>27</sub> N O <sub>4</sub> S<br>5035                                | 61 | ERa | Asp351, Glu353,<br>Lys362, Val533,<br>Glu542 | 1ERR, 2QXS, 2JFA_b |
| ZTW C <sub>14</sub> H <sub>10</sub> O <sub>2</sub> S<br>445920                                | 62 | ERa | -                                            | 1GWQ               |
| 0D1 C <sub>14</sub> H <sub>10</sub> Cl <sub>2</sub> O <sub>2</sub><br>84677                   | 63 | ERa | -                                            | 3UUC               |
| 1GM C <sub>16</sub> H <sub>13</sub> F <sub>3</sub> N <sub>2</sub> O <sub>2</sub><br>135566804 | 64 | ERa | Leu346                                       | 41U7               |
| OHT C <sub>26</sub> H <sub>29</sub> N O <sub>2</sub><br>449459                                | 65 | ERa | Asp351, Val533                               | 2BJ4, 4Q50, 2FSZ   |
| OBH C <sub>24</sub> H <sub>22</sub> O <sub>6</sub> S<br>51006494                              | 66 | ERa | Glu353, Gly521                               | 4ZN9               |
| IOG C <sub>33</sub> H <sub>39</sub> N <sub>3</sub> O <sub>3</sub><br>16750039                 | 67 | ERa | Asp351, Glu353,<br>Gly521, Cys530,<br>Lys531 | 210G               |
| E4D C <sub>27</sub> H <sub>29</sub> N O <sub>4</sub> S<br>448577                              | 68 | ERa | Asp351, Glu353,<br>Leu387, Cys530            | 1SJ0               |
| 5CQ C <sub>17</sub> H <sub>24</sub> O <sub>2</sub><br>50940842                                | 69 | ERa | Met343, His524                               | 5DI7               |
| J2Z C <sub>18</sub> H <sub>22</sub> O <sub>3</sub><br>115116                                  | 70 | ERa | Met421, Gly521                               | 3HLV               |
| STL C <sub>14</sub> H <sub>12</sub> O <sub>3</sub><br>445154                                  | 71 | ERa | Glu353, Arg394                               | 4PP6               |
| 0L8 C <sub>17</sub> H <sub>13</sub> Br O <sub>3</sub><br>11588238                             | 72 | ERa | Met343, His524,<br>Leu525                    | 4DMA               |
| IOK C <sub>26</sub> H <sub>26</sub> N <sub>2</sub> O <sub>2</sub><br>16750040                 | 73 | ERa | Met343                                       | 210K               |

| 047 C <sub>23</sub> H <sub>28</sub> N <sub>2</sub><br>16122612                                | 74 | ERa | Glu331                                       | 2PJL       |
|-----------------------------------------------------------------------------------------------|----|-----|----------------------------------------------|------------|
| 40H C <sub>18</sub> H <sub>24</sub> O <sub>4</sub><br>27125                                   | 75 | ERa | His524                                       | 3L03       |
| ETC C <sub>22</sub> H <sub>24</sub> O <sub>2</sub><br>446849                                  | 76 | ERa | Asp321, Trp360,<br>Lys362, Val364            | 1L2I, 1L2J |
|                                                                                               |    | ERb | Leu339                                       |            |
| DES C <sub>18</sub> H <sub>20</sub> O <sub>2</sub><br>448537                                  | 77 | ERa | -                                            | 3ERD       |
| 369 C <sub>23</sub> H <sub>18</sub> O <sub>4</sub><br>24892830                                | 78 | ERa | Glu353, Phe404,<br>His524                    | 3DT3       |
| 244 C <sub>16</sub> H <sub>11</sub> N O <sub>3</sub><br>656953                                | 79 | ERa | Glu353, His524                               | 1X7E       |
|                                                                                               | 80 | ERa |                                              |            |
| KN0 C <sub>21</sub> H <sub>15</sub> F <sub>3</sub> N <sub>2</sub> O <sub>2</sub><br>135430624 | 80 | ERa | Leu346, Glu353,<br>Leu387                    | 3OS8(a+c)  |
| 7EC C <sub>31</sub> H <sub>32</sub> Br N O <sub>6</sub> S                                     | 81 | ERa | Asp351, Glu353,<br>Gly521, Asn532,<br>Val533 | 5TN9       |
| 29S C <sub>30</sub> H <sub>34</sub> N <sub>2</sub> O <sub>3</sub><br>154257                   | 82 | ERa | Asp351, Glu353,<br>His524, Asn532<br>Val533  | 4XI3       |
| KN1 C <sub>17</sub> H <sub>13</sub> F <sub>3</sub> N <sub>2</sub> O <sub>2</sub><br>135461982 | 83 | ERa | -                                            | 2QZO       |
| EZT C <sub>27</sub> H <sub>29</sub> F <sub>3</sub> O <sub>2</sub><br>15485192                 | 84 | ERa | His524                                       | 2P15       |
| 27H C <sub>22</sub> H <sub>30</sub> O <sub>4</sub><br>354654                                  | 85 | ERa | Glu353                                       | 4MG7(a+b)  |
| 4NA C <sub>16</sub> H <sub>11</sub> Cl O <sub>2</sub><br>6102690                              | 85 | ERb | Glu305                                       | 1YY4       |
| 789 C <sub>15</sub> H <sub>9</sub> Br O <sub>3</sub><br>10286462                              | 86 | ERb | His475                                       | 1ZAF       |
| 555 C <sub>17</sub> H <sub>13</sub> N O <sub>2</sub><br>135440536                             | 87 | ERb | -                                            | 2NV7       |
| KB0 C <sub>22</sub> H <sub>18</sub> O <sub>2</sub><br>58027337                                | 88 | ERb | Glu305, His475                               | 4ZI1       |
| 697 C <sub>15</sub> H <sub>9</sub> N O <sub>3</sub><br>656952                                 | 89 | ERb | Glu305, His475                               | 1X76       |
| SU4 C <sub>18</sub> H <sub>21</sub> N O <sub>4</sub> S<br>53483961                            | 90 | ERb | -                                            | 2ΥLΥ       |
| 397 C <sub>14</sub> H <sub>10</sub> O <sub>3</sub><br>656936                                  | 91 | ERb | Glu305                                       | 1U9E       |
| FBR C <sub>17</sub> H <sub>19</sub> Br O <sub>2</sub><br>11987846                             | 92 | ERb | Glu305                                       | 2GIU       |
| MON C <sub>24</sub> H <sub>29</sub> Cl N <sub>6</sub> O S                                     | 93 | ERb | Met295, Asp303                               | 1NDE       |

| 9957008                                                        |    |     | Glu305,<br>Met479 | Leu476, |      |
|----------------------------------------------------------------|----|-----|-------------------|---------|------|
| IOG C <sub>18</sub> H <sub>18</sub> O <sub>3</sub><br>10286159 | 94 | ERb | -                 |         | 210G |

Additionally, a literature review was conducted to obtain all known mutations found in NR LBDs as of January 2019 **(Table 4)**. A study of the naturally occurring mutations on NR LBDs can highlight regions of possible evolutionary importance, while studying mutations residing on the motifs found by the aforementioned structural analysis may provide more concrete information about mentioned motifs' role in receptor function.

Table 4. Naturally occurring mutations found on nuclear receptors' ligand-binding domains and their position on the multiple alignment conducted

| Serial number | Receptor | Mutation       | Multiple  | PubMed ID of  |
|---------------|----------|----------------|-----------|---------------|
|               |          |                | sequence  | corresponding |
|               |          |                | alignment | mutations     |
|               |          |                | position  |               |
| 1             | GR       | L773P, 2bp del | 647       | 8316249       |
|               |          | CT, 2bp del TG |           | 23076843      |
|               |          |                |           | 19933394      |
| 2             | GR       | L753F          | 612       | 8316249       |
| 3             | GR       | I747M          | 602       | 12050230      |
| 4             | GR       | F737L          | 591       | 17635946      |
| 5             | GR       | V729I          | 583       | 7683692       |
| 6             | GR       | H726R          | 580       | 26031419      |
| 7             | GR       | R714Q          | 567       | 20335448      |
| 8             | GR       | G679S          | 522       | 11589680      |
| 9             | GR       | L672P          | 515       | 27120390      |
| 10            | GR       | D641V          | 484       | 1704018       |
| 11            | GR       | 612 1bp del    | 429       | 20861124      |
| 12            | GR       | 588 ins TTAC   | 405       | 27211791      |
| 13            | GR       | V575G          | 392       | 24483153      |
| 14            | GR       | V571A          | 388       | 11932321      |
| 15            | GR       | 1559N          | 376       | 8863343       |
| 16            | GR       | T556I          | 373       | 21362280      |
| 17            | GR       | Q501H          | 318       | 29444898      |
| 18            | AR       | F917L          | 648       | 22334387      |
| 19            | AR       | P914S          | 645       | 22334387      |
| 20            | AR       | L908F          | 624       | 22334387      |
| 21            | AR       | P905H/S        | 621       | 22334387      |
| 22            | AR       | P893S          | 609       | 22334387      |
| 23            | AR       | V890M          | 602       | 22334387      |
| 24            | AR       | S889 del (no   | 601       | 22334387      |
|               |          | immunreactiv.) |           |               |
| 25            | AR       | T878A          | 589       | 11906285      |

| 26 | AR | H875Y        | 587 | 22334387 |
|----|----|--------------|-----|----------|
| 27 | AR | 1870M        | 582 | 22334387 |
| 28 | AR | V867M/L      | 579 | 22334387 |
| 29 | AR | G821A        | 522 | 22334387 |
| 30 | AR | P818A        | 519 | 22334387 |
| 31 | AR | L813P        | 514 | 22334387 |
| 32 | AR | M808V/T/R    | 509 | 22334387 |
| 33 | AR | E804K        | 505 | 22334387 |
| 34 | AR | F795S        | 496 | 22334387 |
| 35 | AR | M788V        | 489 | 22334387 |
| 36 | AR | R787X        | 488 | 22334387 |
| 37 | AR | V786 2bp del | 487 | 22334387 |
| 38 | AR | C785Y        | 486 | 22334387 |
| 39 | AR | Y782D        | 483 | 22334387 |
| 40 | AR | M781I        | 482 | 22334387 |
| 41 | AR | R775H/C      | 475 | 22334387 |
| 42 | AR | E773G        | 473 | 22334387 |
| 43 | AR | L769M        | 444 | 22334387 |
| 44 | AR | P767S        | 442 | 22334387 |
| 45 | AR | A766T        | 441 | 22334387 |
| 46 | AR | F765L        | 440 | 22334387 |
| 47 | AR | Y764C        | 439 | 22334387 |
| 48 | AR | F755L/V      | 430 | 22334387 |
| 49 | AR | R753Q/X      | 428 | 22334387 |
| 50 | AR | W752R/X      | 427 | 22334387 |
| 51 | AR | M750V        | 425 | 22334387 |
| 52 | AR | M746T        | 421 | 22334387 |
| 53 | AR | G744E/V      | 419 | 22334387 |
| 54 | AR | M743I/V      | 418 | 22334387 |
| 55 | AR | W742C        | 417 | 22334387 |
| 56 | AR | Y740D        | 415 | 22334387 |
| 57 | AR | D733Y        | 408 | 22334387 |
| 58 | AR | G725D/S      | 400 | 22334387 |
| 59 | AR | P724S        | 399 | 22334387 |
| 60 | AR | W719X        | 394 | 22334387 |
| 61 | AR | L713F        | 388 | 22334387 |
| 62 | AR | R711T        | 386 | 22334387 |
| 63 | AR | N706S        | 381 | 22334387 |
| 64 | AR | S704C/G      | 378 | 22334387 |
| 65 | AR | L702H        | 377 | 22334387 |
| 66 | AR | L701M        | 376 | 22334387 |
| 67 | AR | N693 del     | 368 | 22334387 |
| 68 | AR | G689X        | 364 | 22334387 |
| 69 | AR | V685I        | 360 | 22334387 |
| 70 | AR | I681N        | 356 | 22334387 |
| 71 | AR | L678P        | 353 | 22334387 |

| 72  | ERa   | D538G         | 607     | 25838462 |
|-----|-------|---------------|---------|----------|
| 73  | ERa   | Y537N/C/S     | 602     | 26122181 |
| 74  | ERa   | L536P/R/Q     | 601     | 25838462 |
|     |       |               |         | 26122181 |
|     |       |               |         | 26183887 |
| 75  | ERa   | P535H         | 600     | 26122181 |
| 76  | ERa   | V534E         | 599     | 26122181 |
| 77  | ERa   | K531E         | 596     | 15583021 |
| 78  | ERa   | R503W         | 567     | 24398047 |
| 79  | ERa   | S463P         | 524     | 26122181 |
| 80  | ERa   | 432del-       | 493     | 15583021 |
|     |       | 437stop       |         |          |
| 81  | ERa   | M427I/L429M   | 488/490 | 15475371 |
| 82  | ERa   | G415V         | 471     | 15583021 |
| 83  | ERa   | 411fsh-       | 472     | 16713253 |
|     |       | 418stop       |         |          |
| 84  | ERa   | G400V         | 434     | 15583021 |
| 85  | ERa   | M396V         | 430     | 16713253 |
| 86  | ERa   | E380Q         | 414     | 26122181 |
| 87  | ERa   | E353V         | 387     | 16713253 |
| 88  | ERa   | 344insCyst    | 378     | 26183887 |
| 89  | ERa   | S309F 343     |         | 16713253 |
| 90  | ERa   | K303R 337     |         | 26183887 |
| 91  | PPARa | V227A         | 330     | 16288935 |
| 92  | PPARg | P467L         | 607     | 28208577 |
| 93  | PPARg | H449L         | 586     | 26756202 |
| 94  | PPARg | R397C         | 530     | 28208577 |
| 95  | PPARg | D396N         | 518     | 17766367 |
| 96  | PPARg | F360L         | 482     | 25004973 |
| 97  | PPARg | R357A/X       | 479     | 28208577 |
|     |       |               |         | 18713822 |
| 98  | PPARg | Y327X         | 423     | 6412238  |
| 99  | PPARg | K319X         | 414     | 10394368 |
| 100 | PPARg | 312fs-315stop | 407     | 18713822 |
| 101 | PPARg | L311X         | 406     | 23393388 |
| 102 | PPARg | V290M         | 385     | 28208577 |
| 103 | PPARg | Q286P         | 381     | 28208577 |
| 104 | PPARg | R280P         | 375     | 29622583 |
| 105 | RARa  | M413T         | 612     | 9694705  |
| 106 | RARa  | Q411X         | 610     | 1327285  |
| 107 | RARa  | R394W         | 589     | 9694705  |
| 108 | RARa  | M297L         | 475     | 9657734  |
| 109 | RARa  | L290V         | 442     | 9694705  |
| 110 | RARa  | R272Q         | 424     | 9657734  |
| 111 | RARb  | 1403S fs*15   | 609     | 24075189 |
| 112 | RARb  | R387S/C       | 589     | 24075189 |

| 113 | THRa | E403K/X       | 611             | 25670821         |
|-----|------|---------------|-----------------|------------------|
| 114 | THRa | P398R/S 606   |                 | 10022432         |
|     |      |               |                 | 25670821         |
| 115 | THRa | F397fs-406X   | F397fs-406X 605 |                  |
| 116 | THRa | C392X         | 597             | 27144938         |
| 117 | THRa | V390A         | 595             | 22507269         |
| 118 | THRa | M388I         | 593             | 22507269         |
| 119 | THRa | R384H         | 589             | 27144938         |
| 120 | THRa | A382fs-388X   | 587             | 27144938         |
| 121 | THRa | C380fs-387X   | 585             | 27144938         |
| 122 | THRa | M369V         | 573             | 22507269         |
| 123 | THRa | N359Y         | 563             | 26303090         |
| 124 | THRa | Y352C         | 554             | 22507269         |
| 125 | THRa | E350K         | 551             | 22507269         |
| 126 | THRa | K337R         | 538             | 22507269         |
| 127 | THRa | S305P         | 495             | 22507269         |
| 128 | THRa | K288E/H       | 390             | 22507269         |
| 129 | THRa | S271I         | 433             | 22507269         |
| 130 | THRa | A264V         | 426             | 22507269         |
| 131 | THRa | A263S         | 425             | 27144938         |
| 132 | THRa | E245V         | 407             | 22507269         |
| 133 | THRa | A225T/G 387   |                 | 22507269         |
| 134 | THRa | E213D 375     |                 | 22507269         |
| 135 | THRa | Q187X         | 349             | 22507269         |
| 136 | THRa | H184Q         | 346             | 22507269         |
| 137 | THRa | S183N         | 345             | 22507269         |
| 138 | THRb | E460K         | 614             | 25905294         |
| 139 | THRb | F459C/L       | 613             | 19268523         |
|     |      |               |                 | 20237409         |
| 140 | THRb | E457G         | 611             | 24722129         |
| 141 | THRb | L456S         | 610             | 22507269         |
| 142 | THRb | F455S         | 609             | 19299458         |
| 143 | THRb | L454fs-463,   | 608             | 17596672         |
|     |      | L454V         |                 | 8990194          |
| 144 | THRb | P453H/A/L/T/S | 607             | 2153155,         |
|     |      |               |                 | 8040303 <i>,</i> |
|     |      |               |                 | 19268523,        |
|     |      |               |                 | 18561095         |
| 145 | THRb | P452ins,      | 606             | 8040303          |
|     |      | P452R         |                 | 24722129         |
| 146 | THRb | F451S/I/L     | 605             | 27034829         |
| 147 | THRb | P447T         | 598             | 19268523         |
| 148 | THRb | C446R         | 597             | 22507269         |
| 149 | THRb | M442V/T       | 593             | 19378427         |
| 150 | THRb | L440P         | 591             | 19378427         |
| 151 | THRb | R438H/C/P     | 589             | 8040303          |

|     |      |             |     | 30027432 |
|-----|------|-------------|-----|----------|
| 152 | THRb | H435L/Q/Y/R | 586 | 11889175 |
|     |      |             |     | 11701737 |
| 153 | THRb | I431T/M     | 582 | 11889175 |
|     |      |             |     | 19268523 |
| 154 | THRb | R429Q/W     | 580 | 8040303  |
|     |      |             |     | 12006711 |
| 155 | THRb | D427G       | 577 | 22507269 |
| 156 | THRb | T426I       | 576 | 10660344 |
| 157 | THRb | F417L       | 567 | 22507269 |
| 158 | THRb | H412R       | 562 | 22507269 |
| 159 | THRb | K411E       | 561 | 22507269 |
| 160 | THRb | F403L       | 550 | 22507269 |
| 161 | THRb | A387P       | 534 | 27034829 |
| 162 | THRb | S380F       | 516 | 22507269 |
| 163 | THRb | M379T       | 515 | 22507269 |
| 164 | THRb | L373P       | 509 | 22507269 |
| 165 | THRb | S350L       | 486 | 24906004 |
| 166 | THRb | V349M       | 485 | 18363280 |
| 167 | THRb | V348E       | 484 | 8889584  |
| 168 | THRb | G347E/A     | 483 | 1661299  |
|     |      |             |     | 17827792 |
| 169 | THRb | L346F       | 482 | 19268523 |
| 170 | THRb | G345R/V/S   | 481 | 25905294 |
| 171 | THRb | G344E/A     | 478 | 19435825 |
|     |      |             |     | 21795843 |
| 172 | THRb | K342I       | 476 | 15886199 |
| 173 | THRb | L341P       | 475 | 19268523 |
| 174 | THRb | Q340H       | 474 | 23806029 |
| 175 | THRb | R338W/L     | 472 | 8514853  |
|     |      |             |     | 8040303  |
| 176 | THRb | Del337T     | 445 | 1653889  |
| 177 | THRb | A335P       | 443 | 19268523 |
| 178 | THRb | E333D       | 441 | 17177139 |
| 179 | THRb | G332R/E     | 440 | 8040303  |
| 180 | THRb | N331D       | 439 | 19268523 |
| 181 | THRb | L330S       | 438 | 10724359 |
| 182 | THRb | T329I       | 437 | 19820907 |
| 183 | THRb | T327A       | 435 | 19378427 |
| 184 | THRb | Y321C/H     | 429 | 11756220 |
|     |      |             |     | 8040303  |
| 185 | THRb | R320H/G     | 428 | 1314846  |
|     |      |             |     | 30027432 |
| 186 | THRb | A318D       | 426 | 11889175 |
| 187 | THRb | A317T/S     | 425 | 25738994 |
|     |      |             |     | 8889584  |

| 188 | THRb | R316H/C     | 424 | 8381821  |
|-----|------|-------------|-----|----------|
|     |      |             |     | 22319036 |
| 189 | THRb | M313T/V     | 421 | 19268523 |
|     |      |             |     | 30027432 |
| 190 | THRb | E299K       | 407 | 22507269 |
| 191 | THRb | K289M       | 397 | 22507269 |
| 192 | THRb | I280S       | 388 | 22319036 |
| 193 | THRb | A279E       | 387 | 19378427 |
| 194 | THRb | 1276L       | 384 | 21795843 |
| 195 | THRb | T273A       | 381 | 22507269 |
| 196 | THRb | A268G       | 376 | 19268523 |
| 197 | THRb | V264D       | 372 | 9092799  |
| 198 | THRb | Q252R       | 360 | 11756220 |
| 199 | THRb | I250T       | 358 | 19378427 |
| 200 | THRb | R243W       | 351 | 9141558  |
| 201 | THRb | Q235X       | 343 | 22507269 |
| 202 | THRb | A234T       | 342 | 26273722 |
| 203 | THRb | W219L       | 327 | 27034829 |
| 204 | LXRa | R415Q       | 580 | 27253448 |
| 205 | VDR  | V346M 533   |     | 24246681 |
| 206 | VDR  | E329K       | 505 | 24246681 |
| 207 | VDR  | G319V 495   |     | 19169476 |
| 208 | VDR  | Q317X       | 493 | 12468277 |
| 209 | VDR  | I314S       | 490 | 8961271  |
| 210 | VDR  | H305Q       | 481 | 24246681 |
| 211 | VDR  | Y295X       | 445 | 24246681 |
| 212 | VDR  | W286R       | 436 | 24246681 |
| 213 | VDR  | R274L/H     | 424 | 24246681 |
| 214 | VDR  | I268T       | 418 | 24246681 |
| 215 | VDR  | L263R       | 413 | 24246681 |
| 216 | VDR  | Q259P/E     | 409 | 19169476 |
|     |      |             |     | 24246681 |
| 217 | VDR  | F251C       | 401 | 24246681 |
| 218 | VDR  | K246(3bp    | 396 | 24246681 |
|     |      | deletion)   |     |          |
| 219 | VDR  | L227P       | 377 | 24246681 |
| 220 | VDR  | R158C       | 311 | 24246681 |
| 221 | VDR  | Q152X       | 305 | 24246681 |
| 222 | VDR  | T146I       | 299 | 24246681 |
| 223 | MR   | L979P       | 646 | 12788847 |
| 224 | MR   | E972G       | 624 | 16954160 |
| 225 | MR   | 1963fs994X  | 615 | 27725360 |
| 226 | MR   | A958fs1013X | 610 | 16954160 |
| 227 | MR   | L924P       | 571 | 11134129 |
| 228 | MR   | R861X       | 498 | 19344080 |
| 229 | MR   | S818L       | 429 | 16954160 |

| 230 | MR    | S815R      | 426 | 16972228 |
|-----|-------|------------|-----|----------|
| 231 | MR    | S810L      | 421 | 12538613 |
| 232 | MR    | S805P      | 416 | 16972228 |
| 233 | MR    | Q776R      | 387 | 12788847 |
| 234 | MR    | N770K      | 381 | 16972228 |
| 235 | MR    | L769P      | 380 | 16972228 |
| 236 | MR    | P759S      | 370 | 16972228 |
| 237 | HNF4A | M364R      | 612 | 17407387 |
| 238 | HNF4A | R303H      | 543 | 17407387 |
| 239 | HNF4A | E276Q      | 515 | 10389854 |
| 240 | HNF4A | D206Y      | 408 | 17407387 |
| 241 | SF-1  | L437Q      | 590 | 21078366 |
| 242 | SF-1  | D380Y      | 518 | 21078366 |
| 243 | SF-1  | V355M      | 493 | 21078366 |
| 244 | SF-1  | D293N      | 408 | 21078366 |
| 245 | SF-1  | W279X      | 394 | 21078366 |
| 246 | RORa  | R462Q      | 562 | 29656859 |
| 247 | RORa  | S409R      | 495 | 29656859 |
| 248 | RORa  | R340Pfs*17 | 397 | 29656859 |
| 249 | RORa  | Q315Lfs*51 | 373 | 29656859 |
| 250 | RORb  | Thr417del  | 580 | 27352968 |
| 251 | RORg  | Q441X      | 541 | 26160376 |
| 252 | RORg  | Q329X      | 389 | 26160376 |

# Results

The phylogenetic analysis sorted NR LBDs into four distinct monophyletic branches: the steroid hormone receptor-like cluster, the retinoid X-like and steroidogenic factor-like receptor cluster, the thyroid hormone-like receptors cluster, and the nerve growth factor-like/HNF4 receptor cluster (Figure 6). The steroid hormone receptor-like cluster features all known SHRs and is divided into various subclusters. Unsurprisingly, GR, MR, PR, and AR LBDs were found to be closely related to ERs. As expected, ERs were separated in ERa and ERb, with ERa being surprisingly split into two groups. A more in-depth structural analysis was conducted in order to investigate this anomaly, with the results being exhibited later on in the text. Additionally, the SRH- like branch of receptors displayed a close relationship with the second branch of the retinoid X-like and steroidogenic factor-like receptor cluster. This is the first time such a linkage has been observed. The second monophyletic branch consists of retinoid-x-receptors (RXRs), the liver receptor homolog-1 (LHR1), the steroidogenic factor 1 (SF1), and the ultraspiracle protein (USP) subunit of the ecdysone receptor. LHR1 and SF1 belong to the steroidogenic factor-like subfamily of NRs and play a critical role in steroidogenesis (192). RXRs and their corresponding homolog in drosophila USP mainly participate in NR heterodimerization (193). The third monophyletic branch, which features thyroid hormone-like receptors, includes thyroid hormone receptors (THRs), peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXRs), the vitamin D

receptor (VDR), retinoic acid receptors (RARs), the farnesoid X receptor (FXR), RARrelated orphan receptors (RORs), the Rev-Erb alpha receptor (RevErb), and the EcR subunit of the ecdysone receptor. It should be noted that previous research has shown that the EcR subunit of the ecdysone receptor is closely related to FXR, based on the similarities found in their DBDs (194). It appears that the EcR/USP heterodimer is the arthropod analog of the FXR/RXR heterodimer. This specific analysis also highlighted that each subunit of the heterodimer belongs to a different monophyletic branch. Lastly, the fourth monophyletic branch was related to the thyroid hormone-like receptors monophyletic branch and included the hepatocyte nuclear factor 4 alpha (HNF4a) and Nur77 receptors. It should be noted that several GR structures were pretty different from other NRs.



Figure 6. A phylogenetic tree of NR LBDs. Four distinct monophyletic branches are observable: the steroid hormone receptor-like branch (colored green), the retinoid X-like and steroidogenic factor-like receptor branch (colored red), the thyroid hormone-like receptors branch (colored blue), and the nerve growth factor-like/HNF4 receptor branch (colored yellow)

Seven signaling motifs were found during the study of the consensus sequences of NR LBDs (Figure 7A). A similar analysis aimed specifically at SHRs also showcased

some important information regarding NR function (Figure 7B). The first motif, termed motif A, occupies positions 378 to 385 in the sequence alignment and displays an LLxxL sequence. This sequence is an inverse NR-box (LxxLL). An NR-box, also known as an LxxLL-related motif, is a short motif found in multiple NR coactivators and allows direct interaction of coactivators with nuclear receptors (195). NR-boxes have been found on unique NRs, such as SHP (NROB2), and appear to influence other NRs' functions (196). An inverse NR-box also seems to participate in NR activation, although rarely (197). According to NCBI's conserved domains database (CDD) (198), this specific region seems to be of great importance to NRs and is a main ligand interaction site. This motif is also present in SHRs. The second motif, termed motif B, occupies positions 391 to 401, and a query in CDD showcased that this region is critical for coactivators' function in SHRs. A PDB structure like 1L2I for ERa displays that this region is important in interacting with proteins featuring an NR-box. This motif's impact is also supported by the effect a mutation in this region may have on coactivators' function, with a prime example being GR V575G (198). This mutation seems to be located in GR's AF-2 surface, whose role is the attraction of a coactivator featuring an NR-box. Such a mutation hinders the interaction between NR and the corresponding coactivator. The third motif, termed motif C and displaying a sequence of LxxDDQ, occupies alignment positions 404 to 413, and also seems to impact coactivator function. Particularly, along with an R residue present in alignment position 402 it forms a structure specific to steroid hormone receptors GR, AR, and PR. This motif was first described in a paper by Bledsoe et al., which showcased that this motif takes part in the creation of the glucocorticoid receptor's second charge clamp. This structure is vital for specificity for the third TIF2 NR-box motif and seems to influence ligand binding and selectivity (199). The residues responsible for the second charge clamp appear to be missing from the remaining SHRs (ERs and MRs). The fourth motif, termed motif D, occupies alignment positions 512 to 516, with the region covered being a part of the highly conserved C-terminal end of the eighth helix structure in SHRs. This region seems to have a significant role in ligand binding since mutations like GR's L672P and AR's L813P result in the complete absence of ligand binding (200, 201). Additionally, it has been shown that resulting mutant proteins are potentially prone to a higher degradation rate (201). The fifth motif, termed motif E, occupies alignment positions 546 to 550, and, just like motif A, is an inverse NR-box. The sixth motif, termed motif F, occupies alignment positions 568 to 575 and is an NR-box (LxxLL) found in all SHRs, with the ERa LxxLL occupying positions 568 to 572. The seventh motif, termed motif G, occupies alignment positions 601 to 613. Specifically, it contains an ERa LxxLL motif on alignment positions 601 to 609, a PPAR LxxLL motif on alignment positions 605 to 609, and an LLxxL ERa motif on alignment positions 609 to 611. The existence of an LxxLLLxxL motif, i.e. a succession of an NR-box and its inverse, on ERa is quite an interesting observation. A mutation on motif G in ERa may lead to various pathological conditions in humans, with ERa Y537S and its association with breast cancer being a prime example (202).



Figure 7. Conserved signaling motifs found on NR LBDs and conserved signaling motifs and interaction sites found on SHR LBDs A) Sequence alignment of all nuclear receptors' ligand-binding domains received from PDB. Parameters such as amino-acid quality and conservation are also present. The seven conserved signaling motifs are enclosed in yellow rectangles. B) Sequence alignment of steroid hormone receptors' ligand-binding domains with the conserved motifs found in all NRs being enclosed in yellow rectangles and the four interaction sites specific to SHRs being enclosed in red rectangles. Several amino-acid residues have also been highlighted to showcase distinct abilities. Specifically, yellow-colored residues are interaction points, blue-colored residues are prone to mutation, while green-colored residues are both interaction points and prone to mutation. The PDB ID of the representative sequences used for each SHR are 2AA2 for the mineralocorticoid receptor (MR), 5NFT for the glucocorticoid receptor (GR), 1SQN for the progesterone receptor (PR), 2OZ7 for the androgen receptor (AR), 1ERR for estrogen receptor alpha (ERa), 1U9E for estrogen receptor beta (ERb), and the 2Q1H for the ancestral corticoid receptor (AncCort). NR: Nuclear receptor; LBD: Ligand-Binding Domain; SHR: Steroid Hormone Receptor; PDB: Protein Databank

A study of the mutations that naturally emerge on NRs (Figure 8) along with the mutation rate of each specific alignment position (Table 5) provided several insights. Highly conserved regions showcased low to no mutations. This was expected since their evolutional conversation is a sign of their important role in protein function. Natural mutations on highly conserved regions may have deliberating effects and even prove to be lethal, thus resulting in no surviving phenotypes. The majority of mutations on steroid receptors that were examined led to hormone levels alteration, specifically the levels of the hormone that acts as a receptor ligand. Several times, though, phenotypes that would imply a specific mutation on the protein may not showcase the expected mutation on the protein product. Such phenotypes may emerge due to epigenetic alterations on NRs, mutations on NR cofactors, or mutations on non-coding regions that affect enhancer function (203).



Figure 8. A schematic representation of the mutation rates of various sites on nuclear receptors. Specific sites on the multiple sequence alignment that are prone to mutations are enclosed into colored rectangles, with each color representing a different frequency (blue: mutations on two different NRs; green: mutations on three different NRs; orange: mutations on four different NRs; red: on five different NRs); NRs: nuclear receptors

Table 5. The mutation rate of each position on the nuclear receptor multiple alignment

| Multiple sequence alignment position | Frequency<br>of<br>Mutations<br>(based on<br>alignment<br>position) | Receptor & Mutation | Pubmed ID<br>of publications<br>referencing the<br>corresponding mutation |
|--------------------------------------|---------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------|
| 624                                  | 3                                                                   | AR L908F            | 22334387                                                                  |
|                                      |                                                                     | MR E972G            | 16954160                                                                  |
|                                      |                                                                     | HNF4 M364R          | 17407387                                                                  |
| 612                                  | 2                                                                   | GR L753F            | 8316249                                                                   |
|                                      |                                                                     | RARa M413T          | 11050004                                                                  |
| 611                                  | 2                                                                   | THRa E403K/X        | 25670821                                                                  |

|     |   | THRb E457G          | 24722129           |
|-----|---|---------------------|--------------------|
| 610 | 3 | RARa Q411X          | 1327285            |
|     |   | THRb L456S          | 11756220           |
|     |   | MR A958fs1013X      | 16954160           |
| 609 | 3 | AR P839S            | 22334387           |
|     |   | RARb 1403 fs*15     | 24075189           |
|     |   | THRb F455S          | 19299458           |
| 607 | 3 | ERa D538G           | 25838462           |
|     |   | PPARg P467L         | 18713822           |
|     |   | THRb P453H/A/L/T/S  | 2153155, 8040303,  |
|     |   |                     | 19268523, 18561095 |
| 606 | 2 | THRb P452ins, P452R | 8040303, 24722129  |
|     |   | THRa P398R/S        | 10022432, 25670821 |
| 605 | 2 | THRa F397fs-406X    | 27144938           |
|     |   | THRb F451S/I/L      | 11756220, 24722129 |
| 602 | 3 | GR 1747M            | 12050230           |
|     |   | AR V890M            | 22334387           |
|     |   | ERa Y537N/C/S       | 25838462           |
| 601 | 2 | AR S889del          | 22334387           |
|     |   | ERa L536P/R/Q       | 25838462           |
|     |   |                     | 26183887           |
| 597 | 2 | THRa C392X          | 27144938           |
|     |   | THRb C446R          | 8175986            |
| 593 | 2 | THRa M388I          | 11756220           |
|     |   | THRb M442V/T        | 19378427           |
| 591 | 2 | GR F737L            | 17635946           |
|     |   | THRb L440P          | 19378427           |
| 589 | 5 | AR T878A            | 11906285           |
|     |   | RARa R394W          | 9694705            |
|     |   | RARb R387S/C        | 24075189           |
|     |   | THRa R384H          | 27144938           |
|     |   | THRb R438H/C/P      | 8040303, 30027432  |
| 587 | 2 | AR H875Y            | 22334387           |
|     |   | THRa A382fs388X     | 27144938           |
| 586 | 2 | PPARg H449L         | 26756202           |
|     |   | THRb H435L/Q/Y/R    | 11889175, 11701737 |
| 582 | 2 | AR 1870M            | 22334387           |
|     |   | THRb I431T/M        | 11889175, 19268523 |
| 580 | 5 | GR H726R            | 26031419           |
|     |   | THRb R429Q/W        | 8040303, 12006711  |
|     |   | LXRa R415Q          | 27253448           |
|     |   | RORb THR417del      | 27352968           |
| 567 | 3 | GR R714Q            | 20335448           |
|     |   | ERa R503W           | 24398047           |
|     |   | THRb F417L          | 11756220           |
| 562 | 2 | THRb H412R          | 22507269           |

|     |   | RORa R462Q         | 29656859          |
|-----|---|--------------------|-------------------|
| 522 | 2 | GR G679S           | 11589680          |
|     |   | AR G821A           | 22334387          |
| 518 | 2 | PPARg D396N        | 17766367          |
|     |   | SF-1 D380Y         | 21078366          |
| 515 | 3 | GR L672P           | 27120390          |
|     |   | THRb M379T         | 11889175          |
|     |   | HNF4 E276Q         | 10389854          |
| 509 | 2 | AR M808V/T/R       | 22334387          |
|     |   | THRb L373P         | 11889175          |
| 505 | 2 | AR E804K           | 22334387          |
|     |   | VDR E329K          | 24818002          |
| 495 | 3 | THRa S305P         | 11889175          |
|     |   | VDR G319V          | 19169476          |
|     |   | RORa S409R         | 29656859          |
| 493 | 3 | ERa 432del-437X    | 15583021          |
|     |   | VDR Q317X          | 12468277          |
|     |   | SF-1 V355M         | 21078366          |
| 490 | 2 | ERa M427I (+L429M) | 15475371          |
|     |   | VDR I314S          | 8961271           |
| 488 | 2 | AR R787X           | 22334387          |
|     |   | ERa M427I (+L429M) | 15475371          |
| 486 | 2 | AR C785Y           | 22334387          |
|     |   | THRb S530R         | 24217081          |
| 484 | 2 | GR D641V           | 1704018           |
|     |   | THRb V348E         | 8889584           |
| 483 | 2 | AR Y782D           | 22334387          |
|     |   | THRb G347E/A       | 1661299, 17827792 |
| 482 | 3 | AR M781I           | 22334387          |
|     |   | PPARg F360L        | 25004973          |
|     |   | THRb L346F         | 19268523          |
| 481 | 2 | THRb G345R/V/S     | 25905294          |
|     |   | VDR H305Q          | 24818002          |
| 475 | 3 | AR R775H           | 22334387          |
|     |   | RARa M297L         | 9657734           |
|     |   | THRb L341P         | 19268523          |
| 472 | 2 | ERa 411fs418X      | 16713253          |
|     |   | THRb R338W/L       | 8514853, 8040303  |
| 445 | 2 | THRb del337T       | 1653889           |
|     |   | VDR Y295X          | 24818002          |
| 442 | 2 | AR P767S           | 22334387          |
|     |   | RARa L290V         | 9694705           |
| 441 | 2 | AR A766T           | 22334387          |
|     |   | THRb E333D         | 17177139          |
| 440 | 2 | AR F765L           | 22334387          |
|     |   | THRb G332R/E       | 8040303           |

| 439 | 2 | AR Y764C        | 22334387           |
|-----|---|-----------------|--------------------|
|     |   | THRb N331D      | 19268523           |
| 430 | 2 | AR F755L/V      | 22334387           |
|     |   | ERa M396V       | 16713253           |
| 429 | 3 | GR 612 1bp del  | 20861124           |
|     |   | THRb Y321C/H    | 11756220, 8040303  |
|     |   | MR S818L        | 16954160           |
| 428 | 2 | THRb R320H/G    | 1314846, 30027432  |
|     |   | AR R753Q/X      | 22334387           |
| 426 | 3 | THRa A264V      | 16434963           |
|     |   | THRb A318D      | 11889175           |
|     |   | MR S815R        | 16972228           |
| 425 | 3 | AR M750V        | 22334387           |
|     |   | THRa A263S      | 27144938           |
|     |   | THRb A317T/S    | 25738994, 8889584  |
| 424 | 3 | RARa R272Q      | 9657734            |
|     |   | THRb R316H/C    | 8381821, 22319036  |
|     |   | VDR R274L/H     | 24818002           |
| 421 | 3 | AR M764T        | 22334387           |
|     |   | THRb M313T/V    | 19268523, 30027432 |
|     |   | MR S810L        | 10884226           |
| 418 | 2 | AR M743I/V      | 22334387           |
|     |   | VDR I268T       | 16059639           |
| 414 | 2 | ERα E380Q       | 25838462           |
|     |   | PPARg K319X     | 10394368           |
| 408 | 3 | AR D733Y        | 22334387           |
|     |   | HNF4 D206Y      | 17407387           |
|     |   | SF-1 D293N      | 21078366           |
| 407 | 3 | PPARg 312fs315X | 17011503           |
|     |   | THRa E245V      | 11889175           |
|     |   | THRb E299K      | 11756220           |
| 397 | 2 | THRb K289M      | 22507269           |
|     |   | RORa R340Pfs*17 | 29656859           |
| 394 | 2 | AR W719X        | 22334387           |
|     |   | SF-1 W279X      | 21078366           |
| 388 | 3 | GR V571A        | 11932321           |
|     |   | AR L713F        | 22334387           |
|     |   | THRb I280S      | 22319036           |
| 387 | 4 | ERa E353V       | 16713253           |
|     |   | THRa A225T/G    | 22507269           |
|     |   | THRb A279E      | 19378427           |
|     |   | MR Q776R        | 12788847           |
| 381 | 4 | AR N706S        | 22334387           |
|     |   | PPARg Q286P     | 10394368           |
|     |   | THRb T273A      | 11889175           |
|     |   | MR N770K        | 16972228           |

| 378 | 2 | AR    | S704C/G      | 22334387 |
|-----|---|-------|--------------|----------|
|     |   | ERa   | 344 ins Cyst | 25838462 |
| 377 | 2 | AR    | L702H        | 22334387 |
|     |   | VDR   | L227P        | 26422470 |
| 376 | 3 | GR    | 1559N        | 8863343  |
|     |   | AR    | L701M        | 22334387 |
|     |   | THRb  | A268G        | 19268523 |
| 375 | 2 | PPARg | R280P        | 29622583 |
|     |   | THRa  | E213D        | 11889175 |
| 373 | 2 | GR    | T556I        | 21362280 |
|     |   | RORa  | Q315Lfs*51   | 29656859 |
| 360 | 2 | AR    | V685I        | 21362280 |
|     |   | THRb  | Q252R        | 11756220 |
| 343 | 2 | ERa   | \$309F       | 16713253 |
|     |   | THRb  | Q235X        | 11889175 |

The above observations are also visible on the glucocorticoid receptor. No mutations were found on highly conserved regions, but some existing mutations did lead to debilitating effects on adrenocortical function. Specifically, several mutations on the GR LBD can cause Chrousos Syndrome, a genetic condition characterized by end-organ glucocorticoid insensitivity (204). Moreover, it is important to note that some mutations on GR LBD may have a dominant-negative effect, with mentioned mutations being more severe than other ones, since the effect normal protein function too.

Structure-wise, nuclear receptors are quite conserved. An in-depth analysis, though, highlighted two distinct canonical forms (Figure 9). The first one appears to be more frequent in steroid hormone-like receptors, while the second one is more common in thyroid hormone-like receptors. The analysis also showcased that a subcluster that featured receptors USP, SF1 and LRH1 exhibit distinct structural features in regard to the two main canonical forms. Focusing on the SHR-like LBD canonical form, it is clear that it includes highly conserved structural domains, though estrogen receptors appear to be quite different from the rest of SHRs. It is also intriguing that ERb, particularly, is more similar to the rest of SHRs than ERa. Regarding structure specifics, all SHRs contain exactly four beta-strands, while the number of a-helixes is not consistent among all SHR PDB entries studied. It appears that a steroid hormone receptor may feature eleven or twelve a-helixes. The second major canonical form of the THR-like receptors LBD is also highly conserved, with a small number of differences amongst receptors. These differences lead to the formation of distinct subclasses, the PPAR-like, the ROR/THR, the VDR-like and the HNF4/Nur77-like. Regarding the effect of structural differences on NR's LBD function, a structural study focusing on GRs highlighted NRs' ability to form different activation states. The emergence of these different activation states is based on the position of the helix containing the AF-2 surface (199). Several factors may influence the activation state, including the bound ligand and the existence or lack of NR cofactors. Nevertheless, outliers did exist in the dataset, with three glucocorticoid receptor LBD structures (PDB ID: 3H52, 4LSJ, and 4MDD) and three LBD structures which belong to the NR2E

subfamily of nuclear receptors (PDB ID: 4LOG, 4XAJ, and 4XAI) distancing themselves from all other nuclear receptor ligand-binding domains. The GR LBD structures include the antagonist form of the receptor, while the three structures belonging to the NR2E subfamily of nuclear receptors feature a specific structural change in which the 12<sup>th</sup> helix occupies the coactivator binding site. A more thorough analysis of the GR structures showcased that they describe a specific antagonist form of GR in which its twelfth helix is dislocated and receptor function is disrupted (178).



Figure 9. An in-depth structural analysis of nuclear receptors' ligand-binding domain. Structural similarity matrix of root mean squared deviation (RMSD) is displayed. The matrix separates NR LBDs into statistically significant clusters. The x and y-axis correspond to the structure order as described by the phylogenetic tree. Clusters colored blue indicate high structural similarity, while clusters colored red indicate low structural similarity. The yellow and green rectangle enclose the two major canonical forms. NR: Nuclear Receptor; LBD: Ligand-Binding Domain.

Nuclear receptors' ability to bind distinct ligands is, arguably, their more important functional characteristic (205). As mentioned -briefly- in the introductory chapter, NR ligands are small lipophilic, i.e., hydrophobic, molecules that bind their corresponding nuclear receptor's LBD hydrophobic pocket. Studying SHR ligands that were co-crystallized in the corresponding receptor's structure exhibit that the majority of ligands are also receptor-specific. The ability of MR to also bind

glucocorticoids has been already mentioned, but some other exceptions include mometasone furoate (MOF), which binds both GR and PR, plus R18, which binds both AR and PR. This is in accordance with the observation that receptors GR, MR, AR and PR are different from ERs and form their own subcluster in the phylogenetic tree. The PDB entry 1GS4 helps provide some interesting information regarding such similarities among SHRs (206). This specific entry describes an androgen receptor harboring mutations L701H and T877A. The T877A mutation causes the androgen receptor to bind specific anti-androgens but also progesterone and 17b-estradiol. Although this specific threonine seems to be unique to AR, based on SHR sequence alignment, the corresponding alignment position seems to have an important role in ligand interaction in all steroid receptors. Mutation L701H, on the other hand, causes AR to bind cortisol but severely impairs its ability to bind androgens. Based on SHR sequence alignment, this specific leucine is present in MR, PR, and AR, while the corresponding alignment position appears to be important for ligand interaction in GRs, ARs, PRs, and ERs (206).

Ligand analysis results showcased that there is a clear separation of ligands in three distinct clusters (Figure 10). Those clusters are the MR/GR/AR/PR ligands cluster, the ER ligands cluster, and the USP/SF1/LRH1 ligands cluster. Two observations emerge during this separation. Firstly, the USP/SF1/LRH1 ligands cluster displays several similarities with the ER ligands cluster. Secondly, focusing on the ER ligands cluster, it seems that ERa is split into two different subclusters. These observations reinforce the view that ERs are quite distinct from MRs, GRs, Ars and PRs.



Figure 10. An analysis of NR ligands' chemical structure through the use of a chemical structure similarity matrix based on Tanimoto coefficient values. The Tanimoto coefficient varies between 0 when the fingerprints have zero bits in common and 1 when the fingerprints are identical. The corresponding ligands appear to split into three statistically significant different clusters. The x and y axes correspond to the ligands order, which is based on the order of the co-crystallized structures in the phylogenetic tree. Blue-colored clusters display strong structural similarity, while black-colored clusters display zero structural similarity. NR: Nuclear receptors

All of the above led to the implication that ERs and specifically ERa, displayed peculiar attributes, both on a sequence and on a structural level. The structure data implied that there was not a concrete group of type alpha estrogen receptors, but mentioned receptors were separated into two distinct subclusters (Figure 11). This separation comes in contrast with the sequence analysis, which displayed high sequence similarity among type alpha estrogen receptors. A more in-depth look showcased that the first subcluster of ERa consisted of various mutant ERa entries and a small number of wild-type entries. Common mutations found in this subcluster were located on SHR alignment positions 381, 417, 530 and 536. The second subcluster was defined, mainly, by the Y537S mutation, with the ERa harboring mentioned mutant being referred to as ERa' from now on. The Y537S mutation is regularly found in breast cancer cells and has been implicated in resistance to a variety of endocrine therapies (207). This mutation is located in the helix harboring

the AF-2 surface of ERa' LBD and shifts the receptor equilibrium towards an agonist conformation regardless of the existence or not of a ligand. It is also important to note that ERa's structure seems to have a lot more in common with ERb (RMSD<2) than ERa, but on a sequence level ERa and ERa' display -as expected- minimal differences. This observation implies that the Y537S mutation leads to a conformational change that causes the receptor to attain a structure more similar to ERb. Specifically, Y537S leads to a 900 turn of the ERa helix containing the AF-2 surface. This new position of the helix is similar to ERb's AF-2 surface-containing helix position. This displacement seems to have an immense effect on receptor function, an expected outcome since the Y537S mutation is located in the highly important G motif as described by the sequence analysis conducted. Specifically, ligand analysis showcased that ERa' can interact with no specificity with all identified ER ligands, even ERb ligands. Several studies seem to agree with such findings (207, 208). Specifically, the study by Nettles et al., in which an ER $\alpha$ ' (PDB: 2P15) was crystallized, concluded that this receptor could interact with a wider array of pharmacophores than previously thought. In summary, the Y537S mutation forces a conformational change in ERa LBD that leads to the emergence of a receptor (ERa') with the ability to bind ERb ligands, thus resulting in pathological conditions.



Figure 11. An in-depth structural and functional analysis of estrogen receptors (ERs). The representative structures for sections C to H are EFQP, 3DT3, and 3OS8 for ERa; 5DI7, 2P15, and 1ZKY for ERa'; 3OLL, 4ZI1, and 1YY4 for ERb. A) A structural similarity matrix of root mean squared deviation (RMSD) showed that ER LBDs are split into two statistically significant clusters, with estrogen receptor

alpha being further split into two subclusters, ERa and ERa'. B) An analysis of ER ligands' chemical structure through the use of a chemical structure similarity matrix based on Tanimoto coefficient values showcased that ERa' interacts with both ERa and ERb ligands. C) A sequence identity matrix based on nine representative sequences for ERa, ERa' and ERb. D) A sequence similarity matrix based on nine representative sequences for ERa, ERa' and ERb E) A structural similarity matrix of root mean squared deviation (RMSD) based on nine representative sequences for ERa, ERa' and ERb E) A structural similarity matrix of root mean squared deviation (RMSD) based on nine representative sequences for ERa, ERa' and ERb F) A multiple sequence alignment of the representative structures focusing on conserved signaling motif G, with known natural mutation points being colored yellow G) A ribbon presentation of estrogen receptors' representatives being colored blue, and ERb representatives being colored red H) A ribbon presentation of estrogen receptors' representatives being colored orange, ERa' negresentatives being colored negresentatives being colored negresentatives being colore

# Discussion

Since protein structure appears to be more conserved than protein sequence (209), hybrid phylogenetic analyses have gained popularity as methods of studying protein evolution. The study conducted made use of such an approach and did indeed highlight the evolutionary importance of structure, where small sequence alterations led to great structural with an immense effect on function. The current phylogenetic analysis showcased that NRs are separated into four distinct monophyletic branches based on their ligand-binding domain, the SHR-like cluster of receptors, the THR-like cluster of receptors, the RXR-like/SF1-like cluster of receptors and nerve-growth factor / HNF4-like cluster of receptors. Additionally, the ligand-binding domain of estrogen receptors seems to have distinct features compared to other SHRs, while GR, MR, AR and PR LBDs showcase major similarities.

Studying NR LBD sequences and identifying potential motifs is of utmost importance since conservation may indicate an important role in ligand-binding. An early study by Wurtz et al. found that a conserved signature sequence is vital in stabilizing the core of a canonical LBD (210). The current analysis found seven conserved motifs. The regions highlighted by the Wurtz et al. study coincide with some of the proposed motifs of the current phylogenetic analysis. The additional motifs proposed are mainly found on SHRs and are of the NR-box inverse and NR-box variety. The existence of such motifs on SHRs may initially seem odd, though the ability of some SHRS like GR to create homodimers or heterodimers may provide more context to such an observation. Since NR-boxes and their inverse can bind to specific receptor regions to modulate their function, there's a possibility for them to have a role in the interaction between SHR LBDs in order to influence each other's transcriptional capabilities or create a homo- or hetero- dimer. These specific sequences display moderate conservation in the alignment featuring all NRs. Lastly, LBD length doesn't deviate a lot among nuclear receptors.

Focusing on SHR LBDs adds to the phylogenetic analysis observation that ERs are quite unique since sequence analysis also showcases that they display distinct amino-acid sequences. Steroid hormone receptors exhibit four interaction sites in their LBDs, where sites A and B are found on all nuclear receptors in the current analysis and sites C and D are -mainly- found on SHRs. Finding ligand interaction

points and the effect of known point mutations on these sites may elucidate the functional properties of these regions. It was found that all ligand interaction points were prone to mutations. Although peculiar, it should be noted that interaction points are not necessarily an integral part of LBD structure maintenance. Moreover, these sites are more associated with NR selectivity and mutations in such regions may spearhead NR evolution. Sequence alignment also seems to support this theory since the interaction sites exhibit low sequence conservation. Lastly, it should be noted that the highly studied and well conserved A and B NR interaction sites are connected by conserved motifs A, B, and C.

The comparative analysis of SHR co-crystallized ligands showed that ligands are separated into three clusters, the SF1/LRH1/USP ligand-specific cluster, the GR/MR/AR/PR ligand-specific cluster, and the ER ligand-specific cluster. The main observation of this analysis is that the SF1/LRH1/USP ligand-specific cluster and the ER-ligand specific cluster showcase more similarities between them than each one of them with the GR/MR/AR/PR ligand-specific cluster separately. More importantly, ERa seems to split into two different sub-clusters, ERa and ERa'. ERa' appears to interact with zero specificity with all ligands co-crystallized with ERs, ERb ligands included. This ability may emerge due to a conformation change induced by the Y537S mutation in ERa, with mentioned mutation being heavily associated with breast cancer.

All the above information can prove useful for several real-life applications. The conserved motifs and interaction sites are intriguing drug targets. Researchers may develop, through in-silico approaches, molecules that can interact with those regions and alter receptor function. Sequence analysis highlighted the existence of NR-box and inverse NR-box motifs implicating a possible role in NR interaction and receptor homo- or hetero-dimerization. Mutation analysis showed the effects various mutations have on NR function, especially those found on conserved motifs. Phylogenetic analysis provided novel information regarding NR LBD evolution. Last

but not least, the structural study of both SHR LBDs and their corresponding ligands implied that the pathological effects of the Y537S mutation on ERa might be due to the structural change mentioned mutation promotes. Since this mutation has been heavily associated with cancer, this study's results may prove useful for elucidating breast cancer pathology and differences observed in drug response.

# GR-related literature and GWAS Catalog data-mining and semantics study

Process and analysis of big data found in publicly available databases can help elucidate important information "hidden in plain sight". Data mining and semantics techniques can efficiently collect, annotate, and process such data (211). A wealth of information is hidden in literature databases like PubMed and curated collections of human genome-wide association studies like GWAS catalog (118, 212). A distinct pipeline was implemented to extract information regarding the glucocorticoid receptor and the regulators of its signaling from publicly available databases in an attempt to highlight understudied associations between mentioned molecular factors (Figure 12).



Figure 12 The pipeline followed during the current extraction of information regarding the glucocorticoid receptor and its signaling regulators

# Methods of study

The glucocorticoid receptor, along with the main regulators of GR signaling **(Table 6)**, were used as the basis for a literature search. Specifically, the genes coding for the aforementioned factors were used as keywords in the PubMed database to receive relevant publications **(Table 7)**. Duplicate publications were removed after using a filtering algorithm and SNPs associated with the dataset studied were extracted. SNP terms were pinpointed and, consequently, any single nucleotide polymorphism that displayed a reference SNP ID number and was present in the dbSNP was obtained (213). GWAS Catalog was also used to receive additional SNPs that showcased an experimentally validated association with GR and its signaling regulators which were also present in the dbSNP database. These single nucleotide polymorphisms were named SNPs of interest.

| Serial | Gene Name    | PMID     |
|--------|--------------|----------|
| Number |              |          |
| 1      | FKBP5        | 19560279 |
| 2      | FKBP4        | 32557257 |
| 3      | HSP90(AA1)   | 28224564 |
| 4      | PTGES3 (p23) | 24345775 |
| 5      | STIP1 (HOP)  | 32612187 |
| 6      | HSP70        | 32612187 |
| 7      | HSP40        | 30585227 |
| 8      | NR3C2        | 28686058 |
| 9      | BAG1         | 30585227 |

Table 6 List displaying the main regulators of GR signaling along with the PMID of literature solidifying their role \_\_\_\_\_

Table 7 A table displaying the keywords used to obtain information regarding the GR and its signaling regulators, along with the publications linked with each keyword and the cumulative publication for each factor

| Serial | Gene Names              | Literature | Total Literature |
|--------|-------------------------|------------|------------------|
| Number |                         |            |                  |
| 1      | Glucocorticoid Receptor | 14.335     | 15.458           |
|        | NR3C1                   | 1.123      |                  |
| 2      | FKBP5                   | 831        | 1.941            |
|        | FKBP51                  | 403        |                  |
|        | FKBP54                  | 5          |                  |
|        | p54                     | 702        |                  |
| 3      | FKBP4                   | 258        | 2.321            |
|        | FKBP52                  | 402        |                  |
|        | p52                     | 1.661      |                  |
| 4      | Heat Shock Protein 90   | 4.188      | 17.435           |

|    | HSP90                          | 12.886 |        |
|----|--------------------------------|--------|--------|
|    | HSP90AA1                       | 361    |        |
| 5  | PTGS3                          | 101    | 2.714  |
|    | Prostaglandin E Synthase 3     | 15     |        |
|    | p23                            | 2.598  |        |
| 6  | STIP1                          | 242    | 45.764 |
|    | НОР                            | 33.296 |        |
|    | STress-Induced                 | 87     |        |
|    | Phosphoprotein 1               | 6      |        |
|    | IEF-SSP-3521                   | 11.928 |        |
|    | p60                            | 205    |        |
|    | STI1                           |        |        |
| 7  | HSP70                          | 27.025 | 28.035 |
|    | HSPA4                          | 139    |        |
|    | APG-2                          | 30     |        |
|    | HS24/P52                       | 2      |        |
|    | HSPA4                          | 3      |        |
|    | HSP70RY                        | 6      |        |
|    | HSPH2                          | 3      |        |
|    | HSPA1A                         | 558    |        |
|    | HSPA1B                         | 269    |        |
| 8  | HSP40                          | 2.919  | 3.468  |
|    | DNAJB1                         | 300    |        |
|    | DnaJ Heat Shock Protein family |        |        |
|    | member B1                      | 5      |        |
|    | HSPF1                          | 3      |        |
|    | Hdj1                           | 86     |        |
|    | Sis1                           | 155    |        |
| 9  | NR3C2 – Nuclear Receptor       |        | 22.060 |
|    | subfamily 3 group C member 2   | 304    |        |
|    | MCR                            | 5.274  |        |
|    | MLR                            | 7.589  |        |
|    | MR – Mineralocorticoid         | 8.893  |        |
|    | Receptor                       |        |        |
| 10 | BAG1 cochaperone 1             | 747    | 1.839  |
|    | BAG-1                          | 1.078  |        |
|    | RAP46                          | 14     |        |

The resulting SNPs of interest were annotated with information received from the LitVar database (214), ClinVar database (215), dbSNP and GWAS Catalog (118) and later validated. More specifically, the LitVar database was used to identify the most co-occurred entities regarding disease, chemical agents and SNPs in text featuring the SNPs of interest, the ClinVar database to elucidate if SNPs of interest displayed an association with a human pathological condition, the GWAS Catalog database to uncover if SNPs of interest were associated with a specific trait and, finally, the dbSNP to find each SNP's of interest position in the genome and particularly the gene itself.
Semantics and term analyses took place in order to uncover information regarding disease ontologies, along with pinpointing the most common keywords and genomic grammar present in the literature studied (Figure 13). All results are presented in WordCloud representations.



Figure 13 Information extraction from dbSNP, LtVar, ClinVar, and GWAS Catalog

## Results

The methodology used resulted in 274 SNPs of interest, and the annotation process displayed an association with 247 diseases and 118 genes.

The SNPs present in the glucocorticoid receptor literature and GWAS Catalog were associated with several keywords (Figure 14). Most of these keywords can be separated in distinct groups, specifically groups featuring: a) terms such as HPA axis, stress and chronic stress, which highlights the receptor's role in the stress response system ; b) terms such as DNA methylation and epigenetics, which highlights the receptor's role in gene regulation c) terms such as inflammation and NF-kB, which highlight the receptor's role in immune modulation; d) terms such as fetal programming, which highlight the receptor's role in organism development e) other steroid hormone receptors, with terms such as mineralocorticoid receptor, progesterone receptor and androgen receptor; f) terms highlighting the receptor's role in metabolism with terms such as insulin resistance and obesity; g) terms highlighting GR's role in neuropsychiatric disorders with terms such as depression, ptsd and schizophrenia; h) terms such as hippocampus, prefrontal cortex and microgloia, highlighting the receptor's role in brain architecture and neuroplasticity; i) members of the glucocorticoid receptor interactome, with terms such as FKBP5 and sgk1 and j) GR agonists and antagonists, with terms such as dexamethasone, and aldosterone. Apoptosis, i.e., programmed cell death (216), ), is also present as a single word. Glucocorticoid signaling promotes, via the glucocorticoid receptor, pro-

apoptotic or anti-apoptotic processes depending on the cell type receiving the signal. A prime example is the effect GCs have on heart tissue, specifically endothelial cells and cardiomyocytes, with both cells displaying a critical role in the circulatory system. Specifically, glucocorticoids seem to have a pro-apoptotic effect on endothelial cells and an anti-apoptotic effect on cardiomyocytes (217). Additional terms are also present, including various pathological conditions like Alzheimer's disease, asthma, prostate cancer, COVID-19, and osteoporosis, each having a different association with GCs or GR. Alzheimer's disease is, as previously mentioned, a neurodegenerative disease where glucocorticoids may play an important role. The mainstay of asthma therapy is synthetic glucocorticoids which act via the GR receptor (218). As mentioned before, the role glucocorticoids and GR play in cancer is complex and prostate cancer is no exception. GCs have been used in prostate cancer to slow disease progression, offset therapy side-effects and reduce pain (219). Nevertheless, some malignancies take advantage of GR signaling in order to promote resistance to anti-androgen therapies (220). COVID-19 is a severe infectious disease of the respiratory system with symptoms varying from mild and flu-like to lethal acute respiratory distress syndrome (ARDS) (221, 222). One of the main characteristics of COVID-19 is an excessive inflammatory response which may lead to an out-of-control host response resulting in the damage of respiratory cells (223). Glucocorticoids administration has been proposed in managing COVID-19 due to their anti-inflammatory abilities (222). Exposure to glucocorticoids may lead to fracture and bone loss. Particularly, GC-induced osteoporosis is the most common form of secondary osteoporosis (224).



Figure 14 A WordCloud representation of the keywords found in GR literature

The SNPs found in GR literature and GWAS Catalog were studied in conjunction with various pathological conditions (Figure 15). The pathological conditions most studied in conjunction with GR biology are - as expected – neuropsychiatric disorders, such as depression and post-traumatic stress disorder (PTSD), plus metabolic disorders like diabetes mellitus and obesity. Pathologies such as systemic erythematosus

lupus, asthma and rheumatoid arthritis are also associated with GR study, which may be due to the fact that the administration of synthetic glucocorticoids is one of the main treatments for such disorders (225). Glucocorticoid research seems to also overlap with studies on cardiovascular diseases, such as hypertension, possibly due to the aforementioned influence of the stress response system on cardiovascular function. Somewhat unexpected though, is the immense study of various neoplasms or wounds and injuries in conjunction with GR. The role of glucocorticoids in cancer pathology and pathogenesis is, as mentioned, still under evaluation. Although the receptor is not considered an oncogene, glucocorticoid glucocorticoids administration has been shown to arrest growth and induce apoptosis in lymphoid tissue via receptor signaling in certain patients (226). The increasing interest in uncovering the mechanisms which regulate the glucocorticoids' effect on cancer may be the reason why a great part of GR literature focuses on the receptor's role in cancer. Wounds and injuries, on the other hand, are heavily associated with inflammation, since inflammation is the first step towards wound healing (227). The glucocorticoid receptor is known to have a major role in inflammation and thus make take part in the regulation of the healing process.



Figure 15 A WordCloud representation of diseases found in GR literature

SNPs found in GR signaling regulators were studied in conjunction with specific genes in literature and GWAS Catalog (Figure 16). Most of the resulting genes are regulators themselves (FKBP5, HSPA1L, STIP1). Additional genes included code for regulators of the HPA axis, such as CRHR1; immune system regulators, such as CFH and NFKB2; factors influencing brain architecture, such as BDNF-AS and NTRK2; factors that influence metabolism, such as APOE and FTO; and the mineralocorticoid receptor. Genetic locations responsible for non-coding RNAs were also observed.

These locations were loc112267956, loc101929309, Loc105378525, and miR4761. Non-coding RNAs are known to play a major role in gene regulation (228) and thus may influence gene expression of GR signaling regulators or assist in GR's action as a transcription factor (229). Highly prominent genes in the resulting dataset were also VEGFA and POLR1C. The VEGFA gene is responsible for the vascular endothelial growth factor (VEGF), which has an essential role in both physiological and pathological angiogenesis (230), while POLR1C codes for a subunit of RNA polymerases I and III (231). GCs are known to have an angiostatic effect and glucocorticoids treatment has been shown to influence VEGF mRNA levels (232). RNA polymerases I and III are mainly known to participate in ribosomal RNA transcription (231). Several studies from the 1980s had highlighted that glucocorticoids influence rRNA synthesis in animal models, though results were conflicting on whether GC administration led to an increase or decrease of rRNA synthesis (233, 234).



Figure 16 A WordCloud representation of genes associated with GR signaling regulators in literature

Lastly, SNPs found in GR signaling regulators have been studied for their role in several diseases (Figure 17). These diseases almost completely overlap with the diseases studied in GR literature. Several diseases are unique to SNPs found in GR signaling regulators, such as type 2 glycogen storage disease and non-alcoholic fatty liver disease. Type 2 glycogen storage disease, also known as Pompe disease, is a rare neuromuscular disease due to acid alfa-glucosidase (GAA) deficiency (235). ). This disease is quite heterogenous and is classified into three forms, infantile,

childhood/juvenile and adult (236). The infantile form displays the most severe clinical manifestations, particularly skeletal and cardiac myopathy, which, unless treated, leads to early death, while childhood/juvenile and adult phenotypes display progressive myopathy with next to zero risk of hypertrophic cardiomyopathy (235). Enzyme replacement therapy is the most common approach to this disease, though several patients develop infusion reactions. Corticosteroids and antihistamines are administered to such patients, which may explain the association present in GR signaling with Pompe disease in the literature (237). Non-alcoholic fatty liver disease is an umbrella term that encompasses from simple steatosis to more progressive steatosis with associated hepatitis, fibrosis, cirrhosis and, in more severe cases, hepatocellular carcinoma (238). This disease is considered the hepatic manifestation of metabolic disorders and obesity. Glucocorticoids play a crucial role in nonalcoholic fatty liver disease since they seem to drive both pathogenesis and pathology (239). Another intriguing observation is that neoplasms studies are more present in GR signaling regulators SNPs than in GR SNPs, implying that the glucocorticoid receptor may play a more complicated role in cancer via indirect regulation. Other disease-related studies which are unique to GR signaling regulators research include Parkinson's and epilepsy, highlighting the role of GR signaling in proper brain function and polycystic ovary syndrome (PCOS). The inclusion of PCOS may be due to the effect glucocorticoids have on the hypothalamic-pituitary-gonadal axis, whose products have a key role in this disease's pathophysiology (13).



### Discussion

Studying GR and GR signaling mediators' GWAS data and literature, cements the importance of the glucocorticoid receptor and the stress response system in numerous physiological and pathophysiological mechanisms, with additional research implicating a possible role in cancer. From immune response and metabolism to stress response and proper brain function, GR seems to mediate some of the most important biological pathways. The diseases associated with GR or its signaling regulators are, as expected, associated with abnormalities on the aforementioned pathways (Figure 15 and Figure 17). Moreover, the common use of synthetic glucocorticoids as anti-inflammatory drugs means that GR signaling is studied in conjunction with a wide variety of diseases. Some additional observations include the presence of non-coding RNAs such as loc112267956 and loc101929309 and the gene POLR1C in GR regulators' literature. These non-coding RNAs are produced by intronic regions of the FKBP5 gene. Although introns were thought to have no significant biological function, modern studies highlight their importance in various processes, from alternate splicing to gene regulation (240), with some research indicating that the miRNAs produced by introns may participate in negative self-regulation of gene expression (241). GCs' effect on the POLR1C, on the other hand, is quite intriguing, since although research on GR's influence on rRNA synthesis seems to stall in the 1980s, this gene is - in some way or another- heavily present in current GR signaling regulators literature. It is possible that heat shock proteins that play an essential role in both GR signaling and rRNA synthesis in response to heat shock may explain such an observation (242). Another possibility is that, since stress is thought to influence rRNA synthesis (243), the glucocorticoid receptor may in some way influence RNA polymerase I or III function. There is a possibility that RNA polymerase I is a downstream effector of GR signaling (244), since GR influences TBP-associated factor RNA polymerase I subunit A (TIF-IA). TIF-IA is a general transcription factor that connects other general transcription factors, such as the upstream binding factor (UBF) and selective factor 1 (SL1), with RNA polymerase 1 to initiate pre-ribosomal RNA transcription (245). Glucocorticoids are known to inhibit the c-Jun N-terminal kinase (JNK) pathway via GR signaling (246). JNK2 has the ability to induce the phosphorylation of TIF-IA (specifically on the threonine 200 residue), which in turn promotes RNA polymerase I function and rRNA synthesis (247). On the other hand, the glucocorticoid receptor is known to -mainlyinhibit mammalian target of rapamycin (mTOR) signaling (248). Inhibition of mTOR signaling is thought to inactivate TIF-IA and thus hinder RNA polymerase I function and rRNA synthesis (249, 250) (Figure 18). These two pathways appear to lead to opposite results, therefore further research is required to identify the exact way glucocorticoids seem to play an important role in RNA polymerase I function.



Figure 18 Potential GR actions that may influence RNA polymerase I function. GR may inhibit JNK2 function, and thus TIF-IA action. GR may also inhibit mTOR signaling and thus lead to TIF-IA activation (JNK2: c-Jun N-terminal kinase 2; mTOR: mammalian target of rapamycin ; TF-IA: TBP-associated factor RNA polymerase I subunit A; UBF: upstream binding factor; SL1: selective factor 1; POL I: RNA polymerase I)

# Large population examination and extracting useful information

Evolutionary biology attempts to discern the way in which natural selection and other factors, such as random drift and mutations drive evolution (251). Population genetics is a scientific field whose goal is the elucidation of a population's genetic composition and the forces that underlie and alter mentioned composition (252). Thus, population genetics and evolutionary biology have overlapping goals, especially regarding the forces that promote phenotypic variation and, on a larger scale, evolution. Consequently, population genetic studies can provide useful information regarding the evolution of complex traits. The rapid advancements in mass sequencing technology have allowed population geneticists to systematically characterize SNPs, therefore aiding in their study of a population's genetic composition (253). Associating such SNPs with the distinct phenotypic characteristics of a population can also help pinpoint how specific genetic variations influence complex mechanism functions. Population genetics studies on the stress response system and the peculiarities each population showcases in its function may provide some important information regarding the interplay of various genetic networks that underlie the maintenance of homeostasis. Focusing on SNPs found in the GR interactome can help provide insights into the complex interplay of nuclear receptors transcriptional networks and their contribution to the maintenance of homeostasis since the glucocorticoid receptor is known to interact with other nuclear receptors and has a major role in the maintenance of homeostasis. A detailed pipeline was implemented in order to extract information in a precise and efficient way from a dataset of Japanese individuals. The results produced were later used to compare Japanese and Korean populations (Figure 19).



Figure 19 The pipeline followed during the current population comparison

## Methods of study

The dataset used was a continuation of the 1KJPN project (254), specifically the 2017 update, which had reached a sample size of 3,554 (3,5K) Japanese individuals. The dataset received had already undergone a filtering procedure, with the SNPs used having 'passed' every filtering step **(Table 8)**. These SNPs were present on autosomes. Therefore factors that were located in sex chromosomes were not present. The identified single nucleotide polymorphisms included reference SNP ID number (rs ID) based on dbSNP if such rs ID existed (213). The genomic position of each SNP was based on the GRCh37/hg19 assembly.

Table 8 Filtering steps undertaken in the 3,5K Japanese dataset

| Catego   | ry        | Total SNVs | Matched SNVs | Description         |
|----------|-----------|------------|--------------|---------------------|
| Step     | 1 (Multi- | 50.099.977 | 165.439      | Multi-allelic SNVs  |
| allelic) |           |            |              | in 3.5KJPN but      |
|          |           |            |              | biallelic in 1KJPN  |
|          |           |            |              | and 2KJPN           |
| Step 2   |           | 49.934.538 | 1.373.119    | Depth filter (in a  |
|          |           |            |              | naive call, an      |
|          |           |            |              | alternative variant |
|          |           |            |              | is detected but     |

|        |            |            | disappears with<br>the sequence<br>depth filter, e.g.,<br>miscall with CNV,<br>somatic call, or<br>misalignment) |
|--------|------------|------------|------------------------------------------------------------------------------------------------------------------|
| Step 3 | 48.561.419 | 2.835.609  | Depth filter (more<br>than 10% of<br>individuals do not<br>fit into the reliable<br>sequence depth<br>range)     |
| Step 4 | 45.725.810 | 6.969.032  | SNVs in highly repetitive regions                                                                                |
| Step 5 | 38.756.778 | 1.267.757  | SNVs that are not<br>detected in other<br>alignment tools<br>and variant callers                                 |
| Step 6 | 37.489.021 | 421.306    | The SNVs's hardy<br>Weinberg<br>equilibrium is less<br>than or equal to<br>0.00001                               |
| Step 7 | 37.067.715 | 13.032.262 |                                                                                                                  |

A literature review was conducted and a comprehensive list that features 149 autosomal genes with an essential role in GR function or are prime examples of GR target genes, was composed **(Table 9)**. These genes contain, among others, nuclear receptors, molecular epigenetic regulators, GR cofactors and several enzymes. The genomic location of each gene was described based on the GRCh37/hg19 assembly.

Table 9. List of autosomal genes with an essential role in glucocorticoid receptor function

| NR3C1        | Glucocorticoid Receptor                                                                                                                                                 |                     | 5 NC_000005.9<br>(142657496143113322,<br>complement)                                                                                                 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Factor       | Influence                                                                                                                                                               | Pubmed ID           | Chromosome n Position                                                                                                                                |
| BAG1         | Interacts with hsp70, binds to hinge region, inhibits DNA binding and transactivation                                                                                   | 9603979<br>11101523 | 9 NC_000009.11<br>(3325246933264759,<br>complement)                                                                                                  |
| CDKs (1,2,5) | Different effects on GRE-containing<br>promoters, based on phosphorylation sites<br>(Serine 203 and Serine 226 decreased<br>activation, Serine 211 enhanced activation) | 19787703            | 10         NC_000010.10           (6253808962554610)           12         NC_000012.11           (5636055656366573)           7         NC 000007.13 |

|                     |                                                                                                 |          | (150750899150755052,                                  |
|---------------------|-------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------|
|                     |                                                                                                 |          | complement)                                           |
| ТАТ                 | GR is essential for TAT gene induction.                                                         | 11420718 | 16 NC_000016.9<br>(7160075471610998,                  |
|                     |                                                                                                 |          | complement)                                           |
| GSK-3b              | Leads to a conformation change in GR,                                                           | 19787703 | 3 NC_000003.11                                        |
|                     | attenuates GC signaling                                                                         |          | (119540800119813264,                                  |
|                     |                                                                                                 |          | complement)                                           |
| ERK2                | Decreases receptor activity                                                                     | 9199329  | 22 NC_000022.10<br>(2211394622221970,<br>complement)  |
| -20 / 144 5//44     |                                                                                                 | 45047652 |                                                       |
| p38 (MAPK11-<br>14) | Enhances GRE-related activity                                                                   | 15817653 | 22 NC_000022.10<br>(5070214250708779,<br>complement)  |
|                     |                                                                                                 |          | 22 NC_000022.10<br>(5069133150700248,<br>complement)  |
|                     |                                                                                                 |          | 6 NC_000006.11<br>(3609826136112301)                  |
|                     |                                                                                                 |          | 6 NC_000006.11<br>(3599541236079013)                  |
| MAPK8(JNK1)         | Decreases receptor activity                                                                     | 12351702 | 10 NC_000010.10<br>(4951468249647403)                 |
| Ubc9                | Sumoylation/Increases GR activity                                                               | 12144530 | 16 NC_000016.9<br>(13574201377019)                    |
| LCK                 | Unliganded GR is part of a TcR-linked<br>multiprotein complex containing Hsp90, LCK,<br>and FYN | 27169854 | 1 NC_000001.10<br>(3271684032751766)                  |
| FYN                 | Unliganded GR is part of a TcR-linked multiprotein complex containing Hsp90, LCK, and FYN       | 27169854 | 6 NC_000006.11<br>(111981535112194655,<br>complement) |
| SUMO1               | Sumoylation/Increased GR activity                                                               | 12144530 | 2 NC_000002.11<br>(203070903203103322,<br>complement) |
| CHIP(STUB1)         | Receptor downregulation and decreased transactivation                                           | 15761032 | 16 NC_000016.9<br>(730115732768)                      |
| Mdm2                | Takes part in GR degradation                                                                    | 12897156 | 12 NC_000012.11<br>(6920195269239324)                 |
| DNA-PKcs            | Phosphorylation of GR hinge region                                                              | 9038175  | 8 NC_000008.10<br>(4868566948872743,<br>complement)   |
| СЕВРВ               | GR potentiates the action of CEBPB, Along                                                       | 9817600  | 20 NC_000020.10                                       |
|                     | with p21 it can inhibit cdk2 action                                                             |          | (4880712048809227)                                    |

| HDAC2                  | Influences GC sensitivity (overexpression leads | 23953592  | 6 NC_000006.11                       |
|------------------------|-------------------------------------------------|-----------|--------------------------------------|
|                        | to increased sensitivity)                       |           | (114257320114292359,                 |
| SGK1                   | GR upregulates its specific gene                | 23953592  | 6 NC 000006 11                       |
| JUNI                   | en apregulates its specific gene                | 23333352  | (134490384134639196,                 |
|                        |                                                 |           | complement)                          |
| ZFP36                  | GR upegulates its specific gene                 | 23953592  | 19 NC_000019.9                       |
|                        |                                                 |           | (3989748739900052)                   |
| DUSP1                  | GR upegulates its specific gene                 | 23953592  | 5 NC_000005.9                        |
|                        |                                                 |           | (172195093172198203,                 |
| $\beta$ arrectio (1.2) | CB regulates their gaps symposium (8 prostin    | 22052502  |                                      |
| p-arrestin (1,2)       | $1 + \beta_{arrestin} 2$                        | 22322232  | 11 NC_000011.9<br>(74971166_75062875 |
|                        |                                                 |           | complement)                          |
|                        |                                                 |           |                                      |
|                        |                                                 |           | 17 NC_000017.10                      |
|                        |                                                 |           | (46137894624795)                     |
| BGLAP                  | GR downregulates its specific gene              | 23953592  | 1 NC_000001.10                       |
|                        |                                                 |           | (156211951156213123)                 |
| ТВР                    | GR's AF-1 domain binds TBP, overexpression of   | 16469772  | 6 NC_000006.11                       |
|                        | driven reporters                                |           | (1/08633841/0881958)                 |
| CBP                    | Coactivator Interacts with GR and p300 to       | 19818358  | 16 NC 000016.9                       |
| CDI                    | form docking platform for transcription factors | 19010350  | (37750553930121,                     |
|                        |                                                 |           | complement)                          |
| p300                   | Coactivator, Interacts with GR and CBP to form  | 19818358  | 22 NC_000022.10                      |
|                        | docking platform for transcription factors      |           | (4148861441576081)                   |
| Pcaf                   | Interacts with p300CBP and STAT3 to stimulate   | 27169854  | 3 NC_000003.11                       |
|                        | GR activity                                     | 10005400  | (2008152420195896)                   |
| NCOAs(1,2,3)           | Coactivators that assist DNA expression,        | 19805480  | 2 NC_000002.11                       |
|                        |                                                 |           | (2471491924995571)                   |
|                        |                                                 |           | 8 NC 000008.10                       |
|                        |                                                 |           | (7102199771316062,                   |
|                        |                                                 |           | complement)                          |
|                        |                                                 |           |                                      |
|                        |                                                 |           | 20 NC_000020.10                      |
|                        |                                                 | 274 000 4 | (4613060146285621)                   |
| SIVIADO                | SMAD6 suppresses GR function                    | 27169854  | 15 NC_000015.9                       |
| DAP3                   | Binds HSP90.increases transactivation activity  | 10903152  | 1 NC 000001.10                       |
|                        |                                                 |           | (155657693155708801)                 |
| DAXX                   | Suppresses GR expression                        | 12595526  | 6 NC_000006.11                       |
|                        |                                                 |           | (3328633533290793,                   |
|                        |                                                 |           | complement)                          |
| PP1 (PPP1CA,           | May reverse GR phosphorylation                  | 19818358  | 11 NC_000011.9                       |
| PPP1CB,                |                                                 |           | (6716565267169376,                   |

| PPP1CC)                              |                                                      |                                  | complement)                                                       |
|--------------------------------------|------------------------------------------------------|----------------------------------|-------------------------------------------------------------------|
|                                      |                                                      |                                  | 2 NC_000002.11<br>(2897461429025806)                              |
|                                      |                                                      |                                  | 12 NC_000012.11<br>(111157613111180783,<br>complement)            |
| PP2(PPP2CA,<br>PPP2CB)               | May reverse GR phosphorylation                       | 19818358                         | 5 NC_000005.9<br>(133532148133561950,<br>complement)              |
|                                      |                                                      |                                  | 8 NC_000008.10<br>(3064312630670352,<br>complement)               |
| MED1                                 | Enhances GR expression                               | 10508170                         | 17 NC_000017.10<br>(3756053837607527,<br>complement)              |
| HNRNPU                               | Overexpression of HNRPU leads to GR inactivation     | 9353307                          | 1 NC_000001.10<br>(245013602245027827,<br>complement)             |
| HSP90<br>(HSP90AA1,<br>HSP90AA2P)    | Essential chaperone for GR function                  | 28224564                         | 14 NC_000014.8<br>(102547075102606086,<br>complement)             |
|                                      |                                                      |                                  | 11 NC_000011.9<br>(2790971827912639,<br>complement)<br>pseudogene |
| HSP70 (HSPA1A,<br>HSPA1B,<br>HSPA1I) | Essential chaperone for GR function                  | 24949977                         | 6 NC_000006.11<br>(3178295231785719)                              |
|                                      |                                                      |                                  | 6 NC_000006.11<br>(3178996431798032)                              |
|                                      |                                                      |                                  | 6 NC_000006.11<br>(3177739631790093,<br>complement)               |
| HSP40<br>(DNAJA1,<br>DNAJA2,         | Increases the efficiency of the GR/chaperons complex | 24345775<br>24949977<br>20453930 | 9 NC_000009.11<br>(3302520933039905)                              |
| DNAJA3,<br>DNAJB1)                   |                                                      | 26245905                         | 16 NC_000016.9<br>(4698927447007625,<br>complement)               |

|                |                                               |          | 16 NC_000016.9                    |
|----------------|-----------------------------------------------|----------|-----------------------------------|
|                |                                               |          | (44758064506776)                  |
|                |                                               |          |                                   |
|                |                                               |          | (14625581 14640087                |
|                |                                               |          | complement)                       |
| НОР            | Increases the efficiency of the GR/chaperons  | 10764743 | 11 NC 000011.9                    |
| _              | complex                                       | 24949977 | (6395220663972020)                |
| p23            | Increases the efficiency of the GR/chaperons  | 24345775 | 12 NC_000012.11                   |
|                | complex                                       | 24949977 | (5705712557082138,                |
|                |                                               |          | complement)                       |
| MR             | Heterodimerization with GR and coordinates    | 11154266 | 4 NC_000004.11                    |
|                | transcription                                 |          | (148999915149365850,              |
|                |                                               |          | complement)                       |
| Cytochrome     | GR regulates the enzymes' expression          | 24451000 | 7 NC_000007.13                    |
| p450 enzymes   |                                               |          | (9935458399381811,                |
|                |                                               |          | complement)                       |
|                |                                               |          | 7 NC 00007 12                     |
| CTP2Co,        |                                               |          | / NC_000007.13                    |
| CVP2C3,        |                                               |          | (9924381399277030,<br>complement) |
|                |                                               |          | complementy                       |
|                |                                               |          | 10 NC 000010.10                   |
|                |                                               |          | (9679652996829255.                |
|                |                                               |          | complement)                       |
|                |                                               |          | , ,                               |
|                |                                               |          | 10 NC_000010.10                   |
|                |                                               |          | (9669835096749486)                |
|                |                                               |          |                                   |
|                |                                               |          | 10 NC_000010.10                   |
|                |                                               |          | (9652246396612671)                |
| P-glycoprotein | GR regulates its expression                   | 24451000 | 7 NC_000007.13                    |
|                |                                               |          | (8713317987342639,                |
|                |                                               |          | complement)                       |
| FKBP4(FKBP52)  | Regulates GR signaling, possibly positive     | 19818358 | 12 NC_000012.11                   |
|                | regulation                                    | 10010250 | (29041082914589)                  |
| FKBP2(FKBP21)  | regulation                                    | 19818328 | 6 NC_000006.11                    |
|                |                                               |          | (3334130233090300,<br>complement) |
| NRID1          | Negatively regulates the activity of GR       | 12773562 |                                   |
|                |                                               | 12113302 | (16333556, 16438224               |
|                |                                               |          | complement)                       |
| CLOCK          | Represses GR-induced transcriptional activity | 19818358 | 4 NC 000004.11                    |
|                | ,                                             |          | (5629406856413076,                |
|                |                                               |          | complement)                       |
| BMAL1          | Represses GR-induced transcriptional activity | 19818358 | 11 NC_000011.9                    |
|                |                                               |          | (1329932513408813)                |

| AP-1             | GR weakly interacts and inhibits AP-1             | 27169854 | 14 NC_000014.8                            |
|------------------|---------------------------------------------------|----------|-------------------------------------------|
| (specifically c- | dependent transcription. Specifically, GR binds   |          | (7574547775748937)                        |
| Fos)             | cFos/cJun via a sequence unique to cFos           |          |                                           |
| NF-κB            | GR interacts with NF-KB through the second        | 19818358 | 11 NC_000011.9                            |
|                  | zinc finger of the                                |          | (6542106765430443,                        |
|                  | ligand-binding domain and acts negatively on      |          | complement)                               |
|                  | the p65/RelA subunit of NFκB.                     |          |                                           |
| POU2F1           | GR interacts with POU2F1 in order to bind to      | 9891005  | 1 NC_000001.10                            |
|                  | distal nGRE                                       |          | (167190066167396582)                      |
| POU2F2           | GR interacts with POU2F2 in order to promote      | 10480874 | 19 NC_000019.9                            |
|                  | the binding of POU2F2 o specific sequences        |          | (4259026242636625,                        |
| 24               |                                                   | 44262750 | complement)                               |
| p21              | Along with CEBP, it can inhibit cdk2 action       | 11369759 | 6 NC_000006.11                            |
| C 12             |                                                   | 40540506 | (3664423736655116)                        |
| Smad3            | GR inhibits the transcriptional activation        | 10518526 | 15 NC_000015.9                            |
| C 14             |                                                   | 40540506 | (6/3580366/48/533)                        |
| Smad4            | GR inhibits the transcriptional activation        | 10518526 | 18 NC_000018.9                            |
| DemDDO           | function of Smad4 (only in vitro)                 | 12201045 | (4855658348611412                         |
| капвря           | CP activity                                       | 12361945 | 6 NC_000006.11                            |
|                  | GR activity                                       |          | (13021/3013/11/90,                        |
| CET              | Acts as ligand activated CP responsive            | 19006210 |                                           |
| JEI              | transcriptional roprossor                         | 19030210 | $9$ NC_000009.11<br>(121445024 121458675) |
|                  | GP through protoin protoin interaction            | 10622828 | (131443934131438073)                      |
| NIAIC            | interferes with NEATs ability to bind to specific | 10023828 | (77155772 77280323)                       |
|                  | DNA regions                                       |          | (7715577277265525)                        |
| BAFs             | Human analogs of the SWI/SNE complex              | 26278180 | 17 NC 000017 10                           |
| (BAE57, BAE60a,  | These complexes partake in glucocorticoid         | 202/0100 | (3878121438805658.                        |
| BAF250a.         | stimulated transcription by interacting with      |          | complement)                               |
| BAF250b)         | GR.                                               |          | ,                                         |
| ,                |                                                   |          | 12 NC 000012.11                           |
|                  |                                                   |          |                                           |
|                  |                                                   |          |                                           |
|                  |                                                   |          | 1 NC_000001.10                            |
|                  |                                                   |          | (2702252227108601)                        |
|                  |                                                   |          |                                           |
|                  |                                                   |          | 6 NC_000006.11                            |
|                  |                                                   |          | (157098980157531913)                      |
| p53              | GR has the ability to inhibit p53-depended        | 22773829 | 17 NC_000017.10                           |
|                  | functions                                         | 11080152 | (75717207590868,                          |
|                  |                                                   |          | complement)                               |
| PPP5             | Suppression of PP5 results to nuclear             | 11389770 | 19 NC_000019.9                            |
|                  | accumulation of GR                                |          | (4685025146896238)                        |
| STAT3            | Acts as transcriptional coactivator of the        | 9388192  | 17 NC_000017.10                           |
|                  | glucocorticoid receptor                           |          | (4046534240540586,                        |
|                  |                                                   |          | complement)                               |
| STAT5            | GR can act as transcriptional coactivator for     | 8878484  | 17 NC_000017.10                           |

| (STAT5A,         | Stat5 and enhance Stat5-dependent                       |           | (4043956540463961)                  |
|------------------|---------------------------------------------------------|-----------|-------------------------------------|
| STAT5B)          | transcription                                           |           | 17 NC 000017.10                     |
|                  |                                                         |           | 1/ NC_000017.10                     |
|                  |                                                         |           | (4033119540428478,                  |
| STATE            | Physically and functionally interacts with GP in        | 11150515  | 12 NC 000012 11                     |
| JIAIO            | T-lymphocytes                                           | 11150515  | (57/89187 57505196                  |
|                  |                                                         |           | (3748518737505150,                  |
| Thioredoxin(Trx) | Thioredoxin negatively modulates GR function            | 8958209   | 9 NC 000009 11                      |
|                  | moredoxin negatively modulates en fanction              | 0550205   | (113006092113018920.                |
|                  |                                                         |           | complement)                         |
| Mitochondrial    | Mitochondrial thioredoxin has a regulatory              | 19570036  | 22 NC 000022.10                     |
| Thioredoxin      | role in GR and NFkB signaling pathways.                 |           | (3686308336878072,                  |
| (Trx2)           | Specifically, Trx2 stimulates the TNF $\alpha$ -induced |           | complement)                         |
|                  | NFκB activation and DEX-induced GR                      |           |                                     |
|                  | activation of reporter genes                            |           |                                     |
| Thioredoxin      | Overexpression of TrxR1 increases GR activity           | 17382897  | 12 NC_000012.11                     |
| reductase 1      | in specific cells                                       |           | (104609537104744085)                |
| (TrxR1)          |                                                         |           |                                     |
| TRIM28           | TRIM28 enhances GR-regulated expression                 | 9742105   | 19 NC_000019.9                      |
|                  |                                                         |           | (5905582459062087)                  |
| NCOR1            | Represses the GR gene trough a GR-NCOR1-                | 23428870  | 17 NC_000017.10                     |
|                  | HDAC3 repression complex                                |           | (1593340816118874,                  |
|                  | Depresses the CD same through a CD NCOD1                | 22420070  | complement)                         |
| HDAC3            | Represses the GR gene through a GR-NCORI-               | 23428870  | 5 NC_00005.9                        |
|                  | HDACS repression complex                                |           | (141000445141010425,<br>complement) |
| NR2F2            | NR2E2 represses the GR-stimulated                       | 15265774  | 15 NC 000015 9                      |
|                  | transcriptional activity by tethering                   | 15205774  | (96869157 96883492)                 |
|                  | corepressors such as NCOR2 and NCOR1. GR                |           | (3000313730003.132)                 |
|                  | stimulates NR2F2 transactivating factors.               |           |                                     |
| NCOR2            | Partakes in NR2F2-dependent GR suppression              | 15265774  | 12 NC 000012.11                     |
|                  |                                                         |           | (124808957125052079,                |
|                  |                                                         |           | complement)                         |
| NFKBIA           | GR activates its specific gene to repress NFKB          | 11694573  | 14 NC_000014.8                      |
|                  | expression                                              |           | (3587071635873960,                  |
|                  |                                                         |           | complement)                         |
| EGFR             | GR modulates EGFR function                              | 31052457  | 7 NC_000007.13                      |
|                  |                                                         |           | (5508667855279262)                  |
| HMGB1            | GR modulates HMGB1 expression                           | 21737101  | 13 NC_000013.10                     |
|                  |                                                         |           | (3103287731191942,                  |
|                  |                                                         | 2045 6000 | complement)                         |
| KPS6KA5(MSK1)    | Liganded GR interacts with activated RPS6KA5            | 20456998  | 14 NC_00014.8                       |
|                  | resulting in redistribution of a part of the            |           | (9133508691526993,                  |
| Cacain kinasa 2  | Includer RPSRORAS POOL to the Cytoplasm                 | 22052502  |                                     |
|                  | It phosphorylates the Glucocorticold Receptor           | 23233222  | 20 INC_000020.10                    |
| (CSINKZAI,       |                                                         |           | (403330324402,                      |

| CSNK2A2,                   |                                                 |          | complement)          |
|----------------------------|-------------------------------------------------|----------|----------------------|
| CSNK2B)                    |                                                 |          |                      |
|                            |                                                 |          | 16 NC_000016.9       |
|                            |                                                 |          | (5819181158231782,   |
|                            |                                                 |          | complement)          |
|                            |                                                 |          |                      |
|                            |                                                 |          | 6 NC_000006.11       |
|                            | CD binds on its specific gaps and regulates its | 21040620 | (3163299531637844)   |
| INLRYS                     | expression                                      | 21940029 | (247579247247612410) |
| Mcl-1                      | GR directly binds on its gene and regulates     | 20156337 | 1 NC_000001.10       |
|                            | Mcl-1 expression                                |          | (150547027150552214, |
|                            |                                                 |          | complement)          |
| NOXA                       | GR directly binds on its gene and regulates     | 20156337 | 18 NC_000018.9       |
|                            | NOXA expression                                 |          | (5756715357571538)   |
| KLF13                      | GR binds on the KLF13 promoter to trigger its   | 25336632 | 15 NC_000015.9       |
| DIM                        | expression                                      | 25226622 | (31619083316/0102)   |
| BIN                        | Snows an intronic binding site for GR, that is  | 25336632 | 2 NC_000002.11       |
|                            | CD induces its transprintion                    | 22040740 | (111878491111926022) |
| FUXU3                      | GR induces its transcription                    | 22848740 | b NC_00006.11        |
|                            | DAK concentration with CD upon                  | 77000117 | (108881026109003972) |
| DAN                        | devamethasone treatment                         | 2/00044/ | 0 NC_000000.11       |
|                            |                                                 |          | (3334032333340072,   |
| Bcl-xI                     | Bcl-xl co-precipitates with GR upon             | 27888447 | 20 NC 000020 10      |
| Der XE                     | dexamethasone treatment                         | 27000447 | (30252261, 30311752) |
|                            |                                                 |          | complement)          |
| РІЗК                       | Physically interacts with GR, they then         | 19874421 | 5 NC 000005.9        |
| (p85 subunit<br>/PIK3R1-6) | regulate the tlr2 signaling cascade             |          | (6751158467597649)   |
| ,                          |                                                 |          | 19 NC 000019.9       |
|                            |                                                 |          | (1826398818281343    |
|                            |                                                 |          |                      |
|                            |                                                 |          | 1 NC_000001.10       |
|                            |                                                 |          | (4650581246642167,   |
|                            |                                                 |          | complement)          |
|                            |                                                 |          |                      |
|                            |                                                 |          | 3 NC_000003.11       |
|                            |                                                 |          | (130397778130465696, |
|                            |                                                 |          | complement)          |
|                            |                                                 |          | 17 NC 000017.10      |
|                            |                                                 |          | 17 NC_000017.10      |
|                            |                                                 |          | (0/022330009029,     |
|                            |                                                 |          | complement)          |
|                            |                                                 |          | 17 NC 00001710       |
|                            |                                                 |          | (87060558770994,     |

|            |                                                          |          | complement)              |
|------------|----------------------------------------------------------|----------|--------------------------|
| Annexin1   | GR induces its specific gene (ANXA1)                     | 16236742 | 9 NC_000009.11           |
|            |                                                          |          | (7576672175785309)       |
| TSLP       | GR negatively regulates TSLP's gene                      | 23222642 | 5 NC 000005.9            |
| -          | expression                                               |          | (110405778110413722)     |
| ST13       | ST13 promotes the functional maturation of               | 27169854 | 22 NC 000022 10          |
| 5115       |                                                          | 27105054 | (41220520 41252012       |
|            |                                                          |          | (4122033541233012,       |
|            | DDD anchors on the CD complex                            | 27160054 |                          |
| PPID       | PPID anchors on the GR complex                           | 27109654 | 4 NC_000004.11           |
|            |                                                          |          | (159050279159044552,     |
| 1050       |                                                          | 47405005 | complement)              |
| IKF8       | Its' gene is regulated by GR                             | 1/185395 | 16 NC_000016.9           |
|            |                                                          |          | (8593277485956212)       |
| LAD1       | Its' gene is regulated by GR                             | 17185395 | 1 NC_000001.10           |
|            |                                                          |          | (201349966201368669,     |
|            |                                                          |          | complement)              |
| IGFBP-1    | Its' gene is regulated by GR                             | 17185395 | 7 NC_000007.13           |
|            |                                                          |          | (4592795945933267)       |
| РКАс       | GR cross-couples with the catalytic subunit of           | 27169854 | 19 NC_000019.9           |
| (PRKACA    | РКА                                                      |          | (1420250014228559,       |
| PRKACB     |                                                          |          | complement)              |
| PRKACG)    |                                                          |          |                          |
|            |                                                          |          | 1 NC 000001.10           |
|            |                                                          |          | (8454374584704181)       |
|            |                                                          |          | (0.0.101101010101001001) |
|            |                                                          |          | 9 NC 00009 11            |
|            |                                                          |          | (71627426 71635600       |
|            |                                                          |          | (,102, 420, 1033000,     |
| TRIDE      | TRIPS creates a complex with GR which                    | 27160854 | 7 NC 00007 13            |
| TREO       | partakes in the recenter's transropression               | 27109854 | (100464050 100471076)    |
|            | partakes in the receptor's transfepression               |          | (100404930100471070)     |
| 14.2.2     | ability<br>Takes part in a complex which features CD and | 27100054 | 1 NC 000001 10           |
| 14-3-3     | Takes part in a complex which features GR and            | 27169854 | 1 NC_000001.10           |
| (14-3-30   | Rai-1                                                    |          | (2718963327190947)       |
| 14-3-3η    |                                                          |          |                          |
| 14-3-3(/0) |                                                          |          | 22 NC_000022.10          |
|            |                                                          |          | (3234047932353590)       |
|            |                                                          |          |                          |
|            |                                                          |          | 8 NC_000008.10           |
|            |                                                          |          | (101930804101965717,     |
|            |                                                          |          | complement)              |
| Raf-1      | Takes part in a complex which features GR and            | 27169854 | 3 NC_000003.11           |
|            | 14-3-3                                                   |          | (1262510012705700,       |
|            |                                                          |          | complement)              |
| PPARγ      | Interacts with GR                                        | 27169854 | 3 NC_000003.11           |
|            |                                                          |          | (1232934912475855)       |
| PPARα      | Interacts with GR, and they both act as                  | 27169854 | 22 NC 000022.10          |
|            | immunosuppressors                                        |          | (4654645846639653)       |

| LXR(α,β)                   | LXR has both synergistic and opposing effects<br>on GR                                                                               | 27169854 | 11 NC_000011.9<br>(4726985147290584)<br>19 NC_000019.9<br>(5087968050886285)                                         |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------|
| RARα & RXRα                | They both bind on GR and enhance its transcriptional activity                                                                        | 27169854 | 17         NC_000017.10           (3846542338513895)           9         NC_000009.11           (137218316137332431) |
| Progesterone<br>Receptor   | They possibly interact to repress IL-1β-driven COX-2 activation                                                                      | 27169854 | 11 NC_000011.9<br>(100900355101000544,<br>complement)                                                                |
| Estrogen<br>Receptor alpha | Its interaction with GR can have cooperative or antagonistic action on E2-regulated genes                                            | 27169854 | 6 NC_000006.11<br>(152011631152424409)                                                                               |
| Nur77                      | Through protein-protein interaction GR<br>antagonizes Nur77-depenent transcription on<br>the Nur77 response element of the pomc gene | 27169854 | 12 NC_000012.11<br>(5241661652453291)                                                                                |
| SOCS1                      | GR ad SOCS1 create an intracellular complex<br>and GCs increase the nuclear levels of SOCS1                                          | 18524780 | 16 NC_000016.9<br>(1134827411350039,<br>complement)                                                                  |
| Tbx21/T-bet                | GR interacts with Tbx21 and inhibits Tbx21's action                                                                                  | 27169854 | 17 NC_000017.10<br>(4581061045823485)                                                                                |
| FOXA3                      | FOXA3 mediates GR function in adipose tissue                                                                                         | 26957608 | 19 NC_000019.9<br>(4636751846377055)                                                                                 |
| PER2                       | GR regulates its function                                                                                                            | 19805059 | 2 NC_000002.11<br>(239152679239198678,<br>complement)                                                                |
| RSUME                      | Possibly interacts with GR and takes part in the receptor's sumoylation                                                              | 27169854 | 1 NC_000001.10<br>(9569971195712781)                                                                                 |
| SUMO4                      | SUMO4-induced GR sumoylation enhances GR DNA binding activity                                                                        | 27169854 | 6 NC_000006.11<br>(149721284149722182)                                                                               |
| Ubch7                      | It interacts with GR and its effects on the receptor depend on the cell culture studied                                              | 27169854 | 22 NC_000022.10<br>(2190373621978323)                                                                                |
| E6-AP                      | E6-AP regulates GR transactivation                                                                                                   | 27169854 | 15 NC_000015.9<br>(2558239425684190,<br>complement)                                                                  |

Each gene region was then located in the dataset based on their genetic locus and all relative SNPs were extracted. A sliding window algorithm was then used to retrieve the regions of interest with all the identified SNPs which have a reference SNP ID number and are present in the dbSNP database. All the extracted SNPs were later stored in a structured database and included relevant information extracted from the primary dataset, such as gene name, genetic position, and change and frequency of occurrence based on the sample.

The extracted SNPs were updated to the current GRCh38.p13 assembly and later annotated with relative information from the dbSNP database, clinVar database (255) and LitVar database (214) (Figure 20). By using a set of rules based on each database protocols, several types of information were extracted and included in the resulting database. Particularly, the clinVAR database was used to find possible associations with human health, the dbSNP database to find if the SNPs type, common changes and the allele frequency in different populations and the LitVar database to find the most co-occurred literature entries regarding diseases, chemicals and variants. Based on the results and the available information received through the aforementioned annotation process, an ontology analysis was performed and the SNPs were evaluated based on their availability in the ClinVar database and the corresponding information present in LitVar. This analysis was conducted in order to display a general picture of the most studied mechanisms that the GR interactome may play a part. Finally, summarizing all the information collected for each SNPs, a comparison with a dataset of 1465 Korean individuals was conducted in an attempt to identify characteristics specific to the Japanese population that are associated with the GR interactome. The comparison of these two populations was chosen due to their genetic similarities (256).



Figure 20 Information extraction from the dbSNP, LitVar, and ClinVar databases

#### Results

The genes checked amounted to 31600 SNPs with a known rs ID that were present in the dbSNP database. Out of the above, 411 SNPs were present in the ClinVar database and were chosen as possible SNPs of interest, while an ontology analysis based on the corresponding LitVar entries was conducted on these SNPs in an effort to paint a general picture of the GR interactome literature. Most studies regarding the GR interactome seem to focus on neuropsychiatric and metabolic disorders, including drug metabolism, plus various neoplasms (Figure 21). An interesting inclusion is also Zellweger Syndrome, a characteristic peroxisomal biogenesis disorder that emerges due to PEX genes mutations. These mutations lead to various metabolic abnormalities, with resulting symptoms being liver dysfunction,

neurological abnormalities such as developmental delay, adrenocortical dysfunction, in addition to vision and hearing impairment. GR is an important mediator of proper adrenocortical function and cortisone supplementation is often used as a therapeutic approach in severe cases of Zellweger syndrome (257). Metabolism and psychiatric disorders are apparent fields of study when it comes to glucocorticoid receptor function, but the extremely high prevalence of cancer research is a - somewhat- unexpected result. As it has been stated, the glucocorticoid receptor's role in cancer seems to be context-dependent (258) and thus the use of this receptor as a potential drug target or biomarker is a complex affair. Nonetheless, since cancer research has rapidly increased over the past decades (259), scientists have started focusing on more complex regulators of cancer such as GR, which may explain the high number of cancer studies regarding the GR interactome.



Figure 21 Ontology analysis of the 411 SNPs present in the ClinVar database based on LitVar-received information

Out of the 411 polymorphisms, 46 SNPs showcased a known association with human health according to the clinVAR database **(Table 10)**. The vast majority of these SNPs were associated with drug response and metabolic disorders, something not surprising since GR has an essential role in metabolism and cytochrome P450 function (260, 261). An interesting observation is that many drugs whose metabolism is influenced by the GR interactome are anti-depressants, which is in accordance with GR's role in neuropsychiatric disorders pathology and particularly depression (92). Lastly, an association with diseases such as chronic obstructive pulmonary disease and inflammatory bowel disease was present in the SNPs, which are characteristic inflammatory diseases, where glucocorticoids are used as potent anti-inflammatory medication (262).

Table 10 A list of GR interactome SNPs that have an effect on human health according to the clinvar database.

| Gene    | SNP         | Nucleotide | Ref    | Alt     | Association                       |
|---------|-------------|------------|--------|---------|-----------------------------------|
|         |             | change     | allele | allele  |                                   |
|         |             |            | freq   | freq    |                                   |
| HSPA1L  | rs2227956   | G>A        | 0,0858 | 0,9142  | Chronic Obstructive Pulmonary     |
|         |             |            |        |         | Disease                           |
| HSPA1L  | rs2227955   | T>G        | 0,9799 | 0,0201  | Inflammatory Bowel Disease        |
| HSPA1L  | rs34620296  | C>T        | 0,9983 | 0,0017  | Inflammatory Bowel Disease        |
| HSPA1L  | rs368138379 | C>T        | 0,9999 | 0,0001  | Inflammatory Bowel Disease        |
| HSPA1B  | rs6457452   | C>T        | 0,9378 | 0,0622  | Chronic Obstructive Pulmonary     |
|         |             |            |        |         | Disease                           |
| HSPA1A  | rs1043618   | G>C        | 0,8401 | 0,1599  | Chronic Obstructive Pulmonary     |
|         |             |            |        |         | Disease                           |
| CYP3A5  | rs4646450   | G>A        | 0,7399 | 0,2601  | Appendicular Lean Mass            |
|         |             |            |        |         | Relative to Body Height           |
| TP53    | rs201753350 | C>T        | 0,9938 | 0,0062  | Li-Fraumeni syndrome 1            |
| FKBP5   | rs4713916   | A>G        | 0,1999 | 0,8001  | Influences Efficacy of            |
|         |             |            |        |         | Antidepressants (Citalopram,      |
|         |             |            |        |         | Fluoxetine, Mirtazapine,          |
|         |             |            |        |         | Paroxetine, SSRIs, Venlafaxine)   |
| CYP2C9  | rs1057910   | A>C        | 0,9758 | 0,0242  | Influences Warfarin Metabolism    |
| CYP2C9  | rs7089580   | A>T        | 0,9900 | 0,0100  | Influences Warfarin Response      |
| CYP2C9  | rs4917639   | A>C        | 0,8526 | 0,1474  | Influences Warfarin Response      |
| CYP2C19 | rs4244285   | G>A        | 0,7056 | 0,2944  | Influences Clopidogrel Response   |
|         |             |            |        |         | (Efficacy, Toxicity/ADR);         |
|         |             |            |        |         | Influences Clomipramine           |
|         |             |            |        |         | Response (Efficacy); Influences   |
|         |             |            |        |         | Amitriptyline Response            |
|         |             |            |        |         | (Efficacy); Influences Citalopram |
|         |             |            |        |         | Response (Efficacy); Poor         |
|         |             |            |        |         | Metabolism of Mephenytoin;        |
|         |             |            |        |         | Poor Metabolism of Proguanil;     |
| 0.0045  | 776746      |            |        | 0 === 0 | Poor Metabolism of Clopidogrei    |
| СҮРЗАБ  | rs776746    | 1>C        | 0,2444 | 0,7556  | Influences Tacrolimus response    |
|         |             |            |        |         | based on Recipient Genotype       |
|         |             |            |        |         | (Dosage,                          |
|         |             |            |        |         | Vietabolism/PK);Influences        |
|         |             |            |        |         | Strollmus Response                |
|         |             |            |        |         | (Weldbollsm/PK);Innuences         |
|         |             |            |        |         | Cyclosporme Response (Dosage,     |
|         |             |            |        |         | Togralizzus Despense based on     |
|         |             |            |        |         | Deport Construct (Descare         |
|         |             |            |        |         | Notabolism (DK): Influences       |
|         |             |            |        |         | Togralimus                        |
|         |             |            |        |         | racrolimus Response               |

|         |             |     |        |        | (Efficacy);Influences Sirolimus |
|---------|-------------|-----|--------|--------|---------------------------------|
|         |             |     |        |        | Response (Dosage)               |
| CYP2C19 | rs72552267  | G>A | 0,9997 | 0,0003 | CYP2C19:No Function             |
| ABCB1   | rs1045642   | A>G | 0,4119 | 0,5881 | Influences Fentanyl Response    |
|         |             |     |        |        | (Efficacy); Influences          |
|         |             |     |        |        | Methadone Response (Dosage,     |
|         |             |     |        |        | Efficacy); Influences Morphine  |
|         |             |     |        |        | Response (Dosage, Efficacy);    |
|         |             |     |        |        | Influences Opiods Response      |
|         |             |     |        |        | (Dosage,Efficacy); Influences   |
|         |             |     |        |        | Oxycodone Response (Dosage,     |
|         |             |     |        |        | Efficacy);Influences Tramadol   |
|         |             |     |        |        | Response (Dosage, Efficacy);    |
|         |             |     |        |        | Influences Tramadol             |
|         |             |     |        |        | Response;Influences Nevirapine  |
|         |             |     |        |        | Response (Toxicity/ADR);        |
|         |             |     |        |        | Influences Digoxin Response     |
|         |             |     |        |        | (Toxicity/ADR); Influences      |
|         |             |     |        |        | Ondansetron Response            |
|         |             |     |        |        | (Efficacy);Influences           |
|         |             |     |        |        | Methotrexate Response           |
| 10004   |             |     | 0 7000 | 0.0707 | (Toxicity/ADR)                  |
| ABCB1   | rs3842      | 1>C | 0,7203 | 0,2797 | Influences Tramadol Response    |
| ABCB1   | rs1922242   | A>1 | 0,6649 | 0,3351 | Influences Tramadol Response    |
| ABCB1   | rs2235046   | T>C | 0,6052 | 0,3948 | Influences Tramadol Response    |
| ABCB1   | rs2235013   | C>T | 0,6167 | 0,3833 | Influences Tramadol Response    |
| ABCB1   | rs2235035   | G>A | 0,6813 | 0,3187 | Influences Tramadol Response    |
| ABCB1   | rs2235033   | A>G | 0,6294 | 0,3706 | Influences Tramadol Response    |
| ABCB1   | rs139611979 | C>T | 0,9992 | 0,0008 | Influences Tramadol Response    |
| ABCB1   | rs10276036  | C>T | 0,6184 | 0,3816 | Influences Tramadol Response    |
| ABCB1   | rs1922240   | T>C | 0,6840 | 0,3160 | Influences Tramadol Response    |
| ABCB1   | rs28381877  | A>G | 0,9999 | 0,0001 | Influences Tramadol Response    |
| ABCB1   | rs868755    | T>G | 0,4118 | 0,5882 | Influences Tramadol Response    |
| ABCB1   | rs13237132  | C>G | 0,6832 | 0,3168 | Influences Tramadol Response    |
| ABCB1   | rs1202170   | C>T | 0,3856 | 0,6144 | Influences Tramadol Response    |
| ABCB1   | rs1202168   | G>A | 0,3846 | 0,6154 | Influences Tramadol Response    |
| ABCB1   | rs1016793   | G>A | 0,5916 | 0,4084 | Influences Tramadol Response    |
| ABCB1   | rs2235018   | T>C | 0,7931 | 0,2069 | Influences Tramadol Response    |
| ABCB1   | rs28381827  | C>T | 0,8748 | 0,1252 | Influences Tramadol Response    |
| ABCB1   | rs1211152   | A>C | 0      | 1      | Influences Tramadol Response    |
| ABCB1   | rs373236080 | C>T | 0,9999 | 0,0001 | Influences Tramadol Response    |
| ABCB1   | rs2235074   | G>A | 0,9291 | 0,0709 | Influences Tramadol Response    |
| ABCB1   | rs2214102   | T>C | 0      | 1      | Influences Tramadol Response    |
| ABCB1   | rs3213619   | A>G | 0,9289 | 0,0711 | Influences Tramadol Response    |
| VDR     | rs2228570   | A>G | 0,3674 | 0,6326 | Influences Response to          |
|         |             |     |        |        | Peginterferon Alfa-2b and       |

|       |             |     |        |        | Ribavirin (Efficacy)          |
|-------|-------------|-----|--------|--------|-------------------------------|
| FKBP5 | rs1360780   | T>C | 0,2246 | 0,7754 | Major Depressive Disorder;    |
|       |             |     |        |        | Increased Recurrence of       |
|       |             |     |        |        | Depressive Episodes;          |
|       |             |     |        |        | Susceptibility to Major       |
|       |             |     |        |        | Depressive Disorder;          |
|       |             |     |        |        | Accelerated Response to       |
|       |             |     |        |        | Antidepressant Drug Treatment |
| SUMO4 | rs237025    | G>A | 0,3028 | 0,6972 | Type 1 Diabetes Mellitus      |
| PPARG | rs28936407  | G>A | 0,9999 | 0,0001 | Somatic Colon Cancer          |
| PPARG | rs1801282   | C>G | 0,9695 | 0,0305 | Type 2 Diabetes melitus       |
| TAT   | rs118203914 | G>A | 0,9999 | 0,0001 | Tyrosinemia Type 2            |
| PPARA | rs1800206   | C>G | 0,9999 | 0,0001 | Susceptibility to             |
|       |             |     |        |        | Hyperapobetalipoproteinemia   |
| SMAD4 | rs12456284  | A>G | 0,5757 | 0,4243 | Confers sensitivity to lung   |
|       |             |     |        |        | cancer                        |

The 46 SNPs above were then checked on the LitVar database in an attempt to gain more information regarding their role in GR signaling and homeostasis **(Table 11)**. Out of those ClinVar variations, four ABCB1 variations did not display a corresponding LitVar entry. Those variations are rs373236080, rs28381827, rs28381877 and rs139611979 with such a discrepancy possibly emerging because ClinVar also includes information beyond literature-described associations, like lab data (263). The SNPs which displayed both an entry in LitVar and an entry with a possible pathological association in ClinVar, were termed SNPs of interest. The results are in line with the ClinVar-obtained information. Some novel associations with various neoplasms seem to emerge, though those associations are mainly limited to ABCB1 SNPs and since that gene codes for the P-glycoprotein, which has an extensively studied role in cancer multidrug resistance (264), such results are expected.

Table 11 A list featuring SNPs of interest, number of publications attributed to each SNP, which gene they are located in, plus diseases, chemicals, and variants that most commonly co-occur with mentioned SNPs in the same sentence

| <b>S</b> / | SNPs      | Pub. | Located | Variants Co. | Diseases Co. | Chemicals Co.   |
|------------|-----------|------|---------|--------------|--------------|-----------------|
| Ν          |           |      | in Gene |              |              |                 |
| 1          | rs4713916 | 49   | FKBP5   | rs1360780    | -Depressive  | -hydrocortisone |
|            |           |      |         | rs3800373    | Disorder     | -Citalopram     |
|            |           |      |         | rs9470080    | -Major       | -Serotonin      |
|            |           |      |         | rs9296158    | Depressive   | -Ethanol        |
|            |           |      |         | rs41423247   | Disorder     | -C081489        |
|            |           |      |         | rs4713902    | -Wounds and  | -Steroids       |
|            |           |      |         | rs7997012    | Injuries     |                 |
|            |           |      |         | rs9394309    | -Abusive     |                 |
|            |           |      |         | rs6265       | Dwarfism     |                 |
|            |           |      |         |              | Syndrome     |                 |

|   |                |      |       |             | -Anxiety            |                                      |
|---|----------------|------|-------|-------------|---------------------|--------------------------------------|
|   |                |      |       |             | Disorders           |                                      |
|   |                |      |       |             |                     |                                      |
| 2 | rs1360780      | 271  | FKBP5 | rs3800373   | -Depressive         | -Hydrocortisone                      |
|   |                |      |       | rs9296158   | Disorder            | -Ethanol                             |
|   |                |      |       | rs9470080   | -Post Traumatic     | -Dexamethasone                       |
|   |                |      |       | rs4713916   | Stress Disorder     | -Tacrolimus                          |
|   |                |      |       | rs6265      | -Wounds and         |                                      |
|   |                |      |       |             | Injuries            |                                      |
|   |                |      |       |             | -Major              |                                      |
|   |                |      |       |             | Depressive          |                                      |
|   |                |      |       |             | Disorder            |                                      |
|   |                |      |       |             | -iviental Disorders |                                      |
| 3 | rs1045642      | 1984 | ABCB1 | rs1128503   | -Epilepsy           | -Clopidogrel                         |
|   |                |      |       | rs2032582   | -Breast             | -Tacrolimus                          |
|   |                |      |       | c.2677G>T,A | Neoplasms,          | -Cyclosporine                        |
|   |                |      |       | rs776746    | -Neoplasms          | -Digoxin                             |
|   |                |      |       | rs2231142   | -Drug-Related       | -Methotrexate                        |
|   |                |      |       | rs4244285   | Side Effects and    | -Peptide T amide                     |
|   |                |      |       | rs1801133   | Adverse             |                                      |
|   |                |      |       | rs717620    | Reactions           |                                      |
|   |                |      |       | rs4149056   | -Colorectal         |                                      |
| 4 | rc294 <b>2</b> | 26   |       | rc104E642   | Hypertension        | Efouironz                            |
| 4 | 155042         | 20   | ADCDI | rs27/527/   |                     | -Eldvillellz                         |
|   |                |      |       | rs776716    | Mollitus            | -Carbon                              |
|   |                |      |       | rs1128503   | -Lung Neonlasms     | -1 7 9 11-tetrahydroxy-3-methyl-     |
|   |                |      |       | rs10264272  | -Dyslipidemias      | 8.13-dioxo-5.6.8.13-                 |
|   |                |      |       | 1010201272  | -HIV Infections     | tetrahydrobenzo(a)tetracene-2-       |
|   |                |      |       |             |                     | carboxylic acid                      |
| 5 | rs1922242      | 8    | ABCB1 | rs1045642   | -Renal Cell         | -12-(4'-azido-2'-                    |
|   |                |      |       | rs1202184   | Carcinoma           | nitrophenoxy)dodecanoyl-coenzyme     |
|   |                |      |       | rs10808072  | -Depressive         | Α                                    |
|   |                |      |       | rs3213619   | Disorder            | -Oxygen                              |
|   |                |      |       | rs1128503   | -Anxiety            | -Thulium                             |
|   |                |      |       | rs2032582   | Disorders           |                                      |
|   |                |      |       | rs1202168   | -Seizures           |                                      |
| 6 | rs2235046      | 9    | ABCB1 | rs1128503   | -Renal              | -C554682                             |
|   |                |      |       | rs10276036  | Insufficiency       | -Apixaban                            |
|   |                |      |       | rs1202169   | -Zellweger          | -C065179                             |
|   |                |      |       | rs4148738   | Syndrome            | -Nitrogen                            |
|   |                |      |       | rs1045642   | -Lung Neoplasms     | -C503223                             |
|   |                |      |       |             | -N syndrome         | -Interleukin-2 Receptor beta Subunit |
|   |                |      |       |             | -Bilateral          | -Carbon                              |
|   |                |      |       |             | Multicystic Renal   |                                      |
|   |                |      |       | 1           | uyspiasia           |                                      |

| 8  | rs2235013<br>rs2235035 | 8  | ABCB1<br>ABCB1 | rs1045642<br>rs1128503<br>rs2235033<br>rs2032582<br>rs1202179<br>rs1695<br>rs10276036<br>rs2235046<br>rs9282564<br>rs1202169<br>rs1202169<br>rs2032582 | -Follicular Thyroid<br>Cancer<br>-Lung Neoplasms<br>-Proteinuria<br>-Ataxia<br>Telangiectasia<br>-Zellweger<br>Syndrome<br>-N syndrome<br>-Ataxia | -Cyclosporine<br>-Pentalysine<br>-Alanyl-alanyl-alanyl-alanine<br>-Methionylmethionine<br>-Seryl-seryl-seryl-arginine<br>-Leucylleucine<br>-Peptide T amide<br>-2'-deoxy-5-fluoro-3'-thiacytidine<br>-Carbon<br>-Interleukin-2 Receptor beta Subunit<br>-Alanyl-alanyl-alanyl-alanine<br>-Triglycerides |
|----|------------------------|----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                        |    |                | rs1045642<br>rs1138272<br>rs4520<br>rs1292798<br>rs4891<br>rs1027649<br>rs2235046                                                                      | Telangiectasia                                                                                                                                    | -Angoletin<br>-Seryl-seryl-seryl-arginine<br>-Peptide T amide                                                                                                                                                                                                                                           |
| 9  | rs2235033              | 6  | ABCB1          | rs1128503<br>rs1045642<br>rs2235013<br>rs2235046<br>rs4148738<br>rs4680<br>rs2273697<br>rs10276036<br>rs4437575                                        | -Zellweger<br>Syndrome                                                                                                                            | -Sulfur<br>-Carbon<br>-Interleukin-2 Receptor beta Subunit<br>-Daunorubicin<br>-Cyclosporine<br>-Daunorubicinol                                                                                                                                                                                         |
| 10 | rs10276036             | 15 | ABCB1          | rs1128503<br>rs2235046<br>rs1202169<br>rs1202167<br>rs1202168<br>rs4148738                                                                             | -Neutropenia<br>-Diabetes<br>Mellitus<br>-Hypertension<br>-Breast<br>Neoplasms<br>-Neoplasms                                                      | -C554682<br>-Doxorubicin<br>-Glycyl-glycyl-sarcosine<br>-Warfarin<br>-Serotonin<br>-Apixaban<br>-Irinotecan<br>-Superoxides<br>-Adenosine triphosphate<br>-Guanosine                                                                                                                                    |
| 11 | rs1922240              | 2  | ABCB1          | rs6591256<br>rs1338062<br>rs754814<br>rs7793196<br>rs7223183<br>rs11869640<br>rs4148732<br>rs7299040                                                   | -Pain<br>-N-Syndrome                                                                                                                              | -Morphine                                                                                                                                                                                                                                                                                               |

| Image: set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |            |    |       |             | 1                 |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|----|-------|-------------|-------------------|--------------------------------------|
| 12       rs868755       9       ABCB1       rs1282168<br>rs1202168<br>rs1202168<br>rs1202168       -Orug-Related<br>rs1202168<br>rs1202168       -Carbon         13       rs1237132       2       ABCB1       rs232502<br>rs2235048       -Colorectal<br>rs2235048       -Carbon         13       rs13237132       2       ABCB1       rs2448738<br>rs1202168       -Colorectal<br>rs2235048       -Colorectal<br>rs2235048       -Colorectal<br>rs2235048         14       rs1202170       1       ABCB1       rs1799971<br>rs208077       -Colorectal<br>rs223503       -Colorectal<br>rs223503       -Colorectal<br>rs223503         15       rs1202170       1       ABCB1       rs1799971<br>rs208077       -<br>rs208677       -<br>rs208677         16       rs1202168       11       ABCB1       rs1045642<br>rs1045642       -<br>rs1045280       -<br>rs208657         15       rs1202168       11       ABCB1       rs1045642<br>rs128206       -<br>rs2035013       -<br>rs1045280         16       rs1016793       2       ABCB1       rs696165<br>rs4148738<br>rs1020168       -<br>rs1027688       -<br>rs1027688       -<br>rs1027698         17       rs1016793       2       ABCB1       rs695165<br>rs4148738       -<br>rs10276163       -<br>rs10276163         16       rs1016793       2       ABCB1       rs695165<br>rs4128710<br>rs1027688       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |            |    |       | rs5993875   |                   |                                      |
| Image: statusImage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 | rs868755   | 9  | ABCB1 | rs1858923   | -Drug-Related     | -Carbon                              |
| Image: state s                       |    |            |    |       | rs1202168   | Side Effects and  | -Interleukin-2 Receptor beta Subunit |
| Image: state s                       |    |            |    |       | rs1045642   | Adverse           |                                      |
| Image: state s                       |    |            |    |       | rs10280623  | Reactions         |                                      |
| Image: state s                       |    |            |    |       | rs4148738   | - Zellweger       |                                      |
| 13       rs13237132       2       ABCB1       rs235023<br>rs235048       -       Ovarian<br>rs4148732<br>rs1238183<br>- Bradycardia<br>- Von Hippel-<br>rs238168       -       Ovarian<br>rs4048732         14       rs1202170       1       ABCB1       rs1727788<br>rs17878607<br>rs50872       -       Ovarian<br>rs10264990       -         14       rs1202170       1       ABCB1       rs179971<br>rs50872       -       -         15       rs1202170       1       ABCB1       rs1718971<br>rs50872       -       -         16       rs1202170       1       ABCB1       rs1718971<br>rs12820617       -       -         17       rs1202170       1       ABCB1       rs1718768       -       -         rs1202170       1       ABCB1       rs1718768       -       -         rs1202170       1       ABCB1       rs1045642       -       -         rs1202168       11       ABCB1       rs1045642       -       Colorectal<br>rs1202168       -         18       rs1202168       11       RS28675       Syndrome       -       -         rs1202168       11       RS6816       rs12027603       -       -       -         rs1202168       11       RS6916       rs2148738 <th></th> <th></th> <th></th> <th></th> <th>rs2032582</th> <th>Syndrome</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |            |    |       | rs2032582   | Syndrome          |                                      |
| Image: state s                       |    |            |    |       | rs7779562   | - Colorectal      |                                      |
| Image: constraint of the second sec                       |    |            |    |       | rs10808072  | Neoplasms         |                                      |
| 13rs132371322ABCB1rs223503<br>rs12334183<br>rs10264990<br>rs238416<br>rs11188148<br>rs1078077<br>rs50872- Ovarian<br>Neoplasms<br>- Pardycardia<br>-Von Hippel-<br>Lindau Disease<br>rs1223768<br>rs127070-14rs12021701ABCB1rs1799711<br>rs3786047<br>rs2235013<br>rs102657215rs120216811ABCB1rs1799711<br>rs2786047<br>rs1045642<br>rs1045642<br>rs1045642<br>rs104564215rs120216811ABCB1rs179674<br>rs2235013<br>rs1045642<br>rs1045642<br>rs104564216rs1102706811ABCB1rs1045642<br>rs1045280<br>rs1045280<br>rs104528015rs120216811ABCB1rs1045642<br>rs1045280<br>rs1045280<br>rs104528016rs10167932ABCB1rs6961665<br>rs61485710<br>rs102760816rs10167932ABCB1rs6951665<br>rs61485710<br>rs10471768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |            |    |       | rs2235048   |                   |                                      |
| Image: statusImage: statusstatusstatusstatusstatusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statusstatus-status-status-status-statu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13 | rs13237132 | 2  | ABCB1 | rs2235023   | - Ovarian         | -                                    |
| Image: state s                       |    |            |    |       | rs4148732   | Neoplasms         |                                      |
| Image: section of the section of th                       |    |            |    |       | rs12334183  | - Bradycardia     |                                      |
| Image: space s                       |    |            |    |       | rs10264990  | -Von Hippel-      |                                      |
| 14         rs1202170         1         ABCB1         rs1799971<br>rs2035033<br>rs3024971<br>rs2235033<br>rs3024971<br>rs3786047<br>rs2235013<br>rs1047569<br>rs1045642<br>rs1045642         -         -           15         rs1202168         11         ABCB1         rs10475642<br>rs1045642<br>rs1045642         -         Colorectal<br>rs2036657         -           15         rs1202168         11         ABCB1         rs1045642<br>rs1045642         -         Colorectal<br>rs103580<br>rs2036657         -           16         rs1020168         11         ABCB1         rs1045642<br>rs1028503<br>rs2032582         -         Colorectal<br>rs1028503         -           17         rs1202168         11         ABCB1         rs1028503<br>rs10276036<br>rs10276036<br>rs10276036<br>rs10276036<br>rs10276036<br>rs10276036<br>rs10276036<br>rs10276036<br>rs10276036<br>rs10276036<br>rs10276036<br>rs10276036<br>rs10276036<br>rs10277128<br>rs102167         -         Colorectal<br>rs10276036<br>rs10276036<br>rs10277128<br>rs1027128<br>rs1027128<br>rs1028511<br>rs1028511<br>rs1028511<br>rs1028511<br>rs10285511<br>rs10285511<br>rs10285511<br>rs10285511<br>rs10285511<br>rs10285511<br>rs10285511<br>rs10285511<br>rs10855510<br>rs10855511<br>rs10855510         -         -           16         rs1016793         2         ABCB1         rs6961665<br>rs10855710<br>rs10855710<br>rs116855710<br>rs11471758         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |            |    |       | rs238416    | Lindau Disease    |                                      |
| 14         rs1202170         1         ABCB1         rs1799971         -           14         rs1202170         1         ABCB1         rs1799971         -           rs2235033         rs3024971         -         -         -           rs2235013         rs3024971         -         -         -           rs2235013         rs3024971         -         -         -           rs2235013         rs1045642         -         -         -           rs1202168         11         ABCB1         rs1045642         -         -           rs1202168         11         ABCB1         rs1045642         -         Colorectal         -C554682           rs1045642         rs1045642         -         -         -         -           rs1202168         11         ABCB1         rs1045642         -         -         -           rs10276036         rs10276036         -         -         -         -         -           rs10276036         rs10276036         -         -         -         -         -           rs10276036         rs10276036         -         -         -         -         -           rs1016793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |            |    |       | rs12129768  |                   |                                      |
| Image: state                               |    |            |    |       | rs11188148  |                   |                                      |
| 14rs12021701ABCB1rs50872rs014rs12021701ABCB1rs1799971rs20303rs3024971rs3786047rs2235013rs3786047rs2235013rs167769rs1045642rs1045280rs104558015rs120216811ABCB1rs1045642rs1045642-rs2036657rs1045642rs1045803C060rectalrs2036657rs10232582C065179rs2032582rs1202169rs10232582rs1045645rs102696rs1202169-Neonatal-12-(4'-azido-2'-rs10276036rs10276036ars10276036rs1202167rs10167932ABCB1rs6961665rs1085710rs1027128rs1098911rs1085710rs114717588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |            |    |       | rs1678607   |                   |                                      |
| 14         rs1202170         1         ABCB1         rs1799971<br>rs235033<br>rs3024971<br>rs235013<br>rs167769<br>rs1045642<br>rs1045280<br>rs203657         -         -           15         rs1202168         11         ABCB1         rs1045642<br>rs1045280<br>rs2036657         -         Colorectal<br>Neoplasms<br>rs2032582         -           15         rs1202168         11         ABCB1         rs1045642<br>rs1045280<br>rs2032582         -         Colorectal<br>Neoplasms<br>rs2032582         -           16         rs1016793         2         ABCB1         rs6961665<br>rs1128570<br>rs10276036<br>rs112871         -         -           16         rs1016793         2         ABCB1         rs6961665<br>rs41277128<br>rs62578960<br>rs10985911<br>rs1202168         -         -         -           16         rs1016793         2         ABCB1         rs6961665<br>rs41277128<br>rs62578960<br>rs10985911<br>rs1202168         -         -         -           16         rs1016793         2         ABCB1         rs6961665<br>rs41277128<br>rs62578960<br>rs10985911<br>rs1202168         -         -         -           17         1         rs116855710<br>rs114717588         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |            |    |       | rs50872     |                   |                                      |
| <ul> <li>Image: Signed State Sta</li></ul> | 14 | rs1202170  | 1  | ABCB1 | rs1799971   | -                 | -                                    |
| <ul> <li>Image: second sec</li></ul> |    |            |    |       | rs2235033   |                   |                                      |
| 15         rs1202168         11         ABCB1         rs1045642<br>rs1045642         -Colorectal<br>rs1045642         -C554682           15         rs1202168         11         ABCB1         rs1045642         -Thulium           rs2036657         -         -Colorectal         -C554682           15         rs1202168         11         ABCB1         rs1045642         -Thulium           rs2036657         -         -Colorectal         -C554682           16         rs1202168         11         ABCB1         rs1045642         -Zellweger         -C065179           rs2032582         - Zellweger         -C065179         -Apixaban         -12-(4'-azido-2'-           rs1202169         -Neonatal         -12-(4'-azido-2'-         -           rs10276036         a         -         -Interleukin-2 Receptor beta Subunit           rs1202167         rs10276036         a         -           rs1016793         2         ABCB1         rs6961665         -Zellweger         -Carbon           rs203258         rs4148738         -Syndrome         -Carbon         -           rs502678960         rs414277128         Syndrome         -Interleukin-2 Receptor beta Subunit           rs5026789500         rs14277128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |            |    |       | rs3024971   |                   |                                      |
| 15         rs1202168         11         ABCB1         rs1045642<br>rs1045642         -Colorectal<br>rs1045642         -C554682           15         rs1202168         11         ABCB1         rs1045642         -Colorectal<br>rs1128503         -Colorectal<br>Neoplasms         -Thulium           15         rs1202168         11         ABCB1         rs102500         -Zellweger         -C065179           16         rs1018793         2         ABCB1         rs10276036         -Neonatal<br>rs1202167         -12-(4'-azido-2'-<br>nitrophenoxy)dodecanoyl-coenzyme<br>rs2032582         -Zellweger<br>rs2032504         -10-(4'-azido-2'-<br>nitrophenoxy)dodecanoyl-coenzyme<br>rs2032606           16         rs1016793         2         ABCB1         rs6961665<br>rs41277128<br>rs10285710<br>rs10985911         -Zellweger<br>rs10885710<br>rs114717568         -Carbon<br>-Carbon<br>-Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |            |    |       | rs3786047   |                   |                                      |
| Image: section of the section of th                       |    |            |    |       | rs2235013   |                   |                                      |
| Image: state s                       |    |            |    |       | rs167769    |                   |                                      |
| Image: section of the section of th                       |    |            |    |       | rs1045642   |                   |                                      |
| Image: second                               |    |            |    |       | rs1045280   |                   |                                      |
| 15       rs1202168       11       ABCB1       rs1045642       -       Colorectal       -C554682         Neoplasms       -       Tulium       -       -0065179       -Apixaban         rs1202169       -Neonatal       -12-(4'-azido-2'-       -Apixaban         rs10276036       a       -       -Interleukin-2 Receptor beta Subunit         rs1202167       rs1020167       -Zellweger       -Coorectal         rs1076036       a       -Apixaban       -12-(4'-azido-2'-         nitrophenoxy)dodecanoyl-coenzyme       A       -Interleukin-2 Receptor beta Subunit         rs10276036       a       -Corbon       -Oxygen         rs1020167       -       -Zellweger       -Carbon         rs1016793       2       ABCB1       rs6961665       -Zellweger       -Carbon         rs10276036       rs10985911       rs1020168       rs10985911       -Syndrome       -Interleukin-2 Receptor beta Subunit         rs1027608       rs10855710       rs116855710       rs114717568       -Syndrome       -Interleukin-2 Receptor beta Subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |            |    |       | rs2036657   |                   |                                      |
| <ul> <li>Image: Second Sec</li></ul> | 15 | rs1202168  | 11 | ABCB1 | rs1045642   | - Colorectal      | -C554682                             |
| Image: state in the state in                       |    |            |    |       | rs1128503   | Neoplasms         | -Thulium                             |
| <ul> <li>Image: Appendix of the symbol o</li></ul> |    |            |    |       | rs2032582   | - Zellweger       | -C065179                             |
| <ul> <li>rs102169<br/>rs2235046<br/>rs10276036<br/>rs4148738<br/>rs102167</li> <li>rs10276036<br/>rs4148738<br/>rs1202167</li> <li>rs1016793</li> <li>ABCB1</li> <li>rs6961665<br/>rs41277128<br/>rs41277128<br/>rs62578960<br/>rs10985911<br/>rs1022168<br/>rs116855710<br/>rs114717568</li> <li>-Neonatal<br/>Hyperbilirubinemi<br/>a</li> <li>-12-(4'-azido-2'-<br/>nitrophenoxy)dodecanoyl-coenzyme<br/>A</li> <li>-Interleukin-2 Receptor beta Subunit</li> <li>-Carbon</li> <li>-Oxygen</li> <li>-C503223</li> <li>-Terleukin-2 Receptor beta Subunit</li> <li>-Carbon</li> <li>-Interleukin-2 Receptor beta Subunit</li> <li>rs10276036</li> <li>-Terleukin-2 Receptor beta Subunit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |            |    |       | rs868755    | Svndrome          | -Apixaban                            |
| <ul> <li>rs1016793</li> <li>ABCB1</li> <li>rs6961665<br/>rs41277128<br/>rs10276036<br/>rs41277128<br/>rs102167</li> <li>rs1016793</li> <li>ABCB1</li> <li>rs6961665<br/>rs41277128<br/>rs62578960<br/>rs10985911<br/>rs1202168</li> <li>rs1016793</li> <li>ABCB1</li> <li>rs6961665<br/>rs41277128<br/>rs62578960<br/>rs10985911<br/>rs1202168</li> <li>rs1016793</li> <li>ABCB1</li> <li>rs6961665<br/>rs41277128<br/>rs62578960<br/>rs10985911<br/>rs1202168</li> <li>rs1016793</li> <li>ABCB1</li> <li>rs1016793</li> <li>ABCB1</li> <li>rs6961665<br/>rs41277128</li> <li>rs1016793</li> <li>ABCB1</li> <li>rs695165<br/>rs41277128</li> <li>rs1016793</li> <li>ABCB1</li> <li>rs6951655</li> <li>rs10855710<br/>rs114717568</li> <li>ABCB1</li> <li>rs1016793</li> <li>ABCB1</li> <li>rs1016793</li> <li>ABCB1</li> <li>rs114717568</li> <li>ABCB1</li> <li>rs102168</li> <li>rs114717568</li> <li>ABCB1</li> <li>rs102168</li> <li>rs114717568</li> <li>ABCB1</li> <li>rs104717568</li> <li>ABCB1</li> <li>rs104717568</li> <li>ABCB1</li> <li>rs104717568</li> <li>ABCB1</li> <li>rs104717568</li> <li>ABCB1</li> <li>rs114717568</li> </ul>                                                                                                                                                                                                                                                                                                                                  |    |            |    |       | rs1202169   | -Neonatal         | -12-(4'-azido-2'-                    |
| <ul> <li>Interleukin-2 Receptor beta Subunit<br/>-Carbon<br/>-Oxygen<br/>-C503223</li> <li>rs1016793</li> <li>ABCB1</li> <li>rs6961665<br/>rs41277128<br/>rs41277128<br/>rs62578960<br/>rs10985911<br/>rs1202168<br/>rs116855710<br/>rs114717568</li> <li>Interleukin-2 Receptor beta Subunit<br/>-Carbon<br/>-Carbon</li> <li>Interleukin-2 Receptor beta Subunit<br/>-Interleukin-2 Receptor beta Subunit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |            |    |       | rs2235046   | Hyperbilirubinemi | nitrophenoxy)dodecanoyl-coenzyme     |
| Image: Interlet in the second secon                       |    |            |    |       | rs10276036  | a                 | Α                                    |
| InterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterferenceInterference </th <th></th> <th></th> <th></th> <th></th> <th>rs4148738</th> <th>-</th> <th>-Interleukin-2 Receptor beta Subunit</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |            |    |       | rs4148738   | -                 | -Interleukin-2 Receptor beta Subunit |
| 16rs10167932ABCB1rs6961665<br>rs41277128<br>rs62578960<br>rs10985911<br>rs1202168<br>rs114717568-Zellweger<br>syndrome-Carbon<br>-Interleukin-2 Receptor beta Subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |            |    |       | rs1202167   |                   | -Carbon                              |
| 16rs10167932ABCB1rs6961665<br>rs41277128<br>rs62578960<br>rs10985911<br>rs1202168<br>rs116855710<br>rs114717568-Zellweger<br>syndrome-Carbon<br>-Interleukin-2 Receptor beta Subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |    |       | 101202107   |                   | -Oxygen                              |
| 16rs10167932ABCB1rs6961665<br>rs41277128<br>rs62578960<br>rs10985911<br>rs1202168<br>rs116855710<br>rs114717568-Zellweger<br>Syndrome-Carbon<br>-Interleukin-2 Receptor beta Subunit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |    |       |             |                   | -C503223                             |
| rs41277128<br>rs62578960<br>rs10985911<br>rs1202168<br>rs116855710<br>rs114717568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 | rs1016793  | 2  | ABCB1 | rs6961665   | -Zellweger        | -Carbon                              |
| rs62578960<br>rs10985911<br>rs1202168<br>rs116855710<br>rs114717568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -  |            |    |       | rs41277128  | Syndrome          | -Interleukin-2 Receptor beta Subunit |
| rs10985911<br>rs1202168<br>rs116855710<br>rs114717568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |            |    |       | rs62578960  |                   |                                      |
| rs1202168<br>rs116855710<br>rs114717568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |            |    |       | rs10985911  |                   |                                      |
| rs116855710<br>rs114717568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |            |    |       | rs1202168   |                   |                                      |
| rs114717568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |            |    |       | rs116855710 |                   |                                      |
| 13117/1/300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |            |    |       | rs114717562 |                   |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |            |    |       | rs11673270  |                   |                                      |

|    |           |    |        | rs11083571  |                  |                                    |
|----|-----------|----|--------|-------------|------------------|------------------------------------|
| 17 | rs2235018 | 1  | ABCB1  | rs34800935  | -                | -Carbon                            |
|    |           |    |        | rs7793933   |                  |                                    |
|    |           |    |        | rs2188526   |                  |                                    |
|    |           |    |        | rs1045642   |                  |                                    |
|    |           |    |        | rs6949448   |                  |                                    |
|    |           |    |        | rs1922244   |                  |                                    |
|    |           |    |        | rs2235048   |                  |                                    |
|    |           |    |        | rs4148738   |                  |                                    |
|    |           |    |        | rs7787082   |                  |                                    |
|    |           |    |        | rs12720464  |                  |                                    |
| 18 | rs1211152 | 3  | ABCB1  | rs1045642   | -                | _                                  |
|    | 191211192 | 5  | / DOD1 | rs10264990  |                  |                                    |
|    |           |    |        | rs1202184   |                  |                                    |
|    |           |    |        | rs17327624  |                  |                                    |
|    |           |    |        | rs6946119   |                  |                                    |
|    |           |    |        | 1303 10113  |                  |                                    |
| 19 | rs2235074 | 2  | ABCB1  | rs35979566  | -Mvelodysplastic | -Adenosine Triphosphate            |
|    |           | -  |        | rs2279342   | Syndromes        | -Nitrogen                          |
|    |           |    |        | rs1202169   | -,               |                                    |
|    |           |    |        | rs6591722   |                  |                                    |
|    |           |    |        | rs1010570   |                  |                                    |
|    |           |    |        | rs4244285   |                  |                                    |
|    |           |    |        | rs4148329   |                  |                                    |
|    |           |    |        | rs1042838   |                  |                                    |
|    |           |    |        | rs7801671   |                  |                                    |
| 20 | rs2214102 | 12 | ABCB1  | rs1045642   | -Breast          | -Decaglycine                       |
|    |           |    |        | rs1128503   | Neoplasms        | -Peptide T amide                   |
|    |           |    |        | rs2229109   | -Ataxia          | -His-His-His-His-His               |
|    |           |    |        | rs2032582   | Telangiectasia   | -Seryl-seryl-seryl-arginine        |
|    |           |    |        | rs3213619   |                  | -Leucylleucine                     |
|    |           |    |        | rs9282564   |                  | -Triamcinolone                     |
|    |           |    |        |             |                  | -Progestins                        |
|    |           |    |        |             |                  | -Diprotin A                        |
|    |           |    |        |             |                  | -Asparagyl-aspargyl-tryptophyl-    |
|    |           |    |        |             |                  | asparagyl-asparagine               |
|    |           |    |        |             |                  | -1,7,9,11-tetrahydroxy-3-methyl-   |
|    |           |    |        |             |                  | 8,13-dioxo-5,6,8,13-               |
|    |           |    |        |             |                  | tetrahydrobenzo(a)tetracene-2-     |
|    |           |    |        |             |                  | carboxylic acid                    |
| 21 | rs3213619 | 75 | ABCB1  | rs1045642   | -Colorectal      | -Tacrolimus                        |
|    |           |    |        | rs1128503   | Neoplasms        | -Paclitaxel                        |
|    |           |    |        | rs2032582   | -Hypertension    | -Docetaxel                         |
|    |           |    |        | c.2677G>T,A | -Drug-Related    | -C097613                           |
|    |           |    |        | rs776746    | Side Effects and | -Vasoactive intestinal constrictor |
|    |           |    |        |             | Adverse          | -Taxane                            |
|    |           |    |        |             | Reactions        | -Methotrexate-alpha-phenylalanine  |

|    |            |     |         |            | -Dyslipidemias   | -Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----|------------|-----|---------|------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |            |     |         |            | -Diabetes        | -Decaglycine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |            |     |         |            | Mellitus         | -Cyclosporine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |            |     |         |            |                  | <b>e;</b> e <b>: e : e:</b> e : <b>:</b> |
| 22 | rs4986893  | 276 | CYP2C19 | rs4244285  | -Drug-Related    | -Clopidogrel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |            |     |         | rs12248560 | Side Effects and | -Warfarin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |            |     |         | rs1057910  | Adverse          | -Simvastatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |            |     |         | rs1799853  | Reactions        | -Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |            |     |         | rs1045642  | -Hypertension    | -Tryptophyl-arginyl-tryptophyl-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |            |     |         |            | -Breast          | tryptophyl-tryptophyl-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |            |     |         |            | Neoplasms        | tryptophanamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |            |     |         |            | -Thrombosis      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |            |     |         |            | -Stroke          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 23 | rs4244285  | 475 | CYP2C19 | rs4986893  | -Drug-Related    | Clopidogrel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |            |     |         | rs12248560 | Side Effects and | Warfarin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |            |     |         | rs1057910  | Adverse          | Simvastatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |            |     |         | rs1799853  | Reactions        | Aspirin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |            |     |         | rs1045642  | -Blood Platelet  | Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |            |     |         |            | Disorders        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |            |     |         |            | -Breast          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |            |     |         |            | Neoplasms        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |            |     |         |            | -Hemorrhage      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |            |     |         |            | -Thrombosis      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 24 | rs72552267 | 31  | CYP2C19 | rs41291556 | -N syndrome      | -Clopidogrel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |            |     |         | rs28399504 | -Abnormal Reflex | -Warfarin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |            |     |         | rs4986893  | -Norrie Disease  | -Simvastatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |            |     |         | rs56337013 | -Drug-Related    | -Metformin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |            |     |         | rs4244285  | Side Effects and | -Tacrolimus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |            |     |         |            | Adverse          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |            |     |         |            | Reactions        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |            |     |         |            | -Acute Coronary  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |            |     |         |            | Syndrome         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 25 | rs1057910  | 512 | CYP2C9  | rs1799853  | -Drug-Related    | -Warfarin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |            |     |         | rs9923231  | Side Effects and | -Clopidogrel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |            |     |         | rs4244285  | Adverse          | -Simvastatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |            |     |         | rs2108622  | Reactions        | -Ciproxitan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |            |     |         | rs4986893  | -Hemorrhage      | -Phenytoin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |            |     |         |            | -Diabetes        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |            |     |         |            | Mellitus         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |            |     |         |            | -Neoplasms       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 26 |            | 4.2 | 0/0200  |            | -Hypertension    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 26 | rs7089580  | 12  |         | rs61162043 |                  | -vvartarin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |            |     |         | 159923231  | -inorrie Disease | -Amiodarone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |            |     |         | 151/99853  |                  | -Carcinoma-associatedAntigen 1/-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |            |     |         | 157900194  |                  | IA<br>Supthetic SND 1 protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |            |     |         | 15283/1686 |                  | -synthetic SNP-1 protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |            | 1   | 1       | 18283/1685 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|    |           |     |        | rs1057910  |                  |                                    |
|----|-----------|-----|--------|------------|------------------|------------------------------------|
| 27 | rs4917639 | 18  | CYP2C9 | rs1057910  | -Stroke          | -Warfarin                          |
|    |           |     |        | rs9923231  | -Zellweger       | -C065179                           |
|    |           |     |        | rs1799853  | Syndrome         | -Carvedilol                        |
|    |           |     |        | rs7294     | -Intracranial    | -S-imvastatin                      |
|    |           |     |        | rs10871454 | Hemorrhages      | -Acenocoumarol                     |
|    |           |     |        |            |                  | -Metoprolol                        |
|    |           |     |        |            |                  | -Pravastatin                       |
|    |           |     |        |            |                  | -Vitamin K1 oxide                  |
|    |           |     |        |            |                  | -Clopidogrel                       |
|    |           |     |        |            |                  | -Sodium                            |
| 28 | rs4646450 | 12  | CYP3A5 | rs15524    | -Cardiotoxicity  | -12-(4'-azido-2'-                  |
|    |           |     |        | rs776746   | -Urinary Bladder | nitrophenoxy)dodecanoyl-coenzyme   |
|    |           |     |        | rs4244285  | Neoplasms        | Α , , , , , , ,                    |
|    |           |     |        | rs1128503  | -Graft vs Host   | -Tacrolimus                        |
|    |           |     |        | rs1045642  | Disease          | -Aldrin                            |
|    |           |     |        |            |                  | -Lopinavir                         |
|    |           |     |        |            |                  | -Sch 601324                        |
|    |           |     |        |            |                  | -Alachlor                          |
|    |           |     |        |            |                  | -Cyanazine                         |
|    |           |     |        |            |                  | -Calcium                           |
|    |           |     |        |            |                  | -Poly(acrylamide-co-crotonic acid) |
|    |           |     |        |            |                  | -Dehydroepiandrosterone Sulfate    |
| 29 | rs776746  | 524 | CYP3A5 | rs1045642  | -Drug-Related    | -Tacrolimus                        |
|    |           |     |        | rs2740574  | Side Effects and | -Simvastatin                       |
|    |           |     |        | rs1128503  | Adverse          | -Cyclosporine                      |
|    |           |     |        | rs2032582  | Reactions        | -Clopidogrel                       |
|    |           |     |        | rs35599367 | -Hypertension    | -Warfarin                          |
|    |           |     |        |            | -Neoplasms       | -Sunitinib                         |
|    |           |     |        |            | -Diabetes        |                                    |
|    |           |     |        |            | Mellitus         |                                    |
|    |           |     |        |            | -Non-Small-Cell  |                                    |
|    |           |     |        |            | Lung Carcinoma   |                                    |
| 30 | rs1043618 | 59  | HSPA1A | rs2227956  | -Major           | -2-carboxyarabinitol 1-phosphate   |
|    |           |     |        | rs1061581  | Depressive       | Gastrofenzin                       |
|    |           |     |        | rs1008438  | Disorder         | Poly-aluminum-chloride-sulfate     |
|    |           |     |        | rs2075800  | -Alzheimer       | Nitroglycerin                      |
|    |           |     |        | rs2763979  | Disease          | Glycyl-threonine                   |
|    |           |     |        |            | -Depressive      | Oxytocin, Glu(4)-                  |
|    |           |     |        |            | Disorder         | Hydrogen                           |
|    |           |     |        |            | -Glaucoma        | Nitrogen                           |
|    |           |     |        |            | -Neoplasms       | Tyrosyl-lysine                     |
|    |           |     |        |            |                  | -Human LRRN2 protein               |
| 31 | rs6457452 | 11  | HSPA1B | rs2763979  | -Alopecia Areata | -15-hydroxy-5,8,11,13-             |
|    |           |     |        | rs1061581  | -Schizophrenia   | eicosatetraenoic acid              |
|    |           |     |        | rs17200983 | -Paranoid        | -3,4,5-trichloroguaiacol           |
|    |           |     |        | rs13118    | Schizophrenia    | Cholesterol                        |

|    |             |     |        | rs150142878      | -Anemia                   | -Methacholine Chloride         |
|----|-------------|-----|--------|------------------|---------------------------|--------------------------------|
|    |             |     |        | rs9267546        | -Malaria                  | -Triglycerides                 |
|    |             |     |        | rs11538264       |                           | -Prostaglandins                |
|    |             |     |        | rs9267547        |                           | -Uric Acid                     |
|    |             |     |        | rs4576240        |                           | -Aspirin                       |
|    |             |     |        |                  |                           | -Carbon                        |
| 32 | rs2227956   | 63  | HSPA1L | rs1061581        | -Stomach                  | -Peptide T amide               |
|    |             |     |        | rs1043618        | Neoplasms                 | -Methionylmethionine           |
|    |             |     |        | rs2075800        | -Male Infertility         | -Glycyl-threonine              |
|    |             |     |        | rs2763979        | -Neoplasms                | -Methionine                    |
|    |             |     |        | rs662            | -Ataxia                   | -1,10-phenanthroline-5,6-dione |
|    |             |     |        |                  | Telangiectasia            |                                |
|    |             |     |        |                  | -Diabetic Foot            |                                |
| 33 | rs2227955   | 2   | HSPA1L | rs2227956        | -Ataxia                   | -Alanine                       |
|    |             |     |        | rs2075800        | Telangiectasia            | -Glycine                       |
|    |             |     |        | rs35326839       |                           | -1,10-phenanthroline-5,6dione  |
|    |             |     |        | rs10117          |                           | -Peptide T amide               |
|    |             |     |        | rs116768554      |                           | -Glycyl-threonine              |
|    |             |     |        | rs14355          |                           | -Methionine                    |
|    |             |     |        | rs566393477      |                           | -Arginyl-glutamine             |
|    |             |     |        | rs1042881        |                           |                                |
|    |             |     |        | rs34620296       |                           |                                |
| 34 | rs34620296  | 2   | HSPA1L | rs139193421      | -Multiple                 | -1,10-phenanthroline-5,6-dione |
|    |             |     |        | p.K73S           | Hamartoma                 | -IS 23                         |
|    |             |     |        | rs2075799        | Syndrome                  | -Peptide T amide               |
|    |             |     |        | rs368138379      | -Crohn Disease            |                                |
|    |             |     |        | rs199780750      | -Proctitis                |                                |
|    |             |     |        | rs139868987      | -Colitis                  |                                |
|    |             |     |        | rs2227956        | -Gastritis                |                                |
|    |             |     |        | c.515_517del     |                           |                                |
| 25 | ****        | 1   |        | C.218A>G         | N 4. Jtipla               | 1 10 phonorthroling 5 C diago  |
| 35 | 18308138379 | 1   | HSPAIL | 18199780750      | -iviuitipie               | -1,10-phenanthronne-5,6-dione  |
|    |             |     |        | rs2075799        | Hamartoma                 | -Peptide Tamide                |
|    |             |     |        | 15110/08554      | Synurome<br>Crobb Disease |                                |
|    |             |     |        | 7                | -CIUIII Disease           |                                |
|    |             |     |        | /<br>rcE66202477 | Colitic                   |                                |
|    |             |     |        | rc25226820       | Contris                   |                                |
|    |             |     |        | rs2075800        |                           |                                |
|    |             |     |        | n 172del         |                           |                                |
|    |             |     |        | rs35347921       |                           |                                |
|    |             |     |        | rs9469057        |                           |                                |
| 36 | rs2279744   | 373 | MDM2   | rs1042522        | -Neoplasms                | Arginylarginine                |
|    |             |     |        | rs117039649      | -Lung Neoplasms           | Estrogens                      |
|    |             |     |        | rs1801270        | -Breast                   | Synthetic SNP-1 protein        |
|    |             |     |        | rs25487          | Neoplasms                 | Gastrofenzin                   |
|    |             |     |        | rs9344           | -Stomach                  | Nitrogen                       |

|    |             |     |       |             | Neoplasms             | Cisplatin                           |
|----|-------------|-----|-------|-------------|-----------------------|-------------------------------------|
|    |             |     |       |             | -Endometrial          |                                     |
| 27 |             | 747 |       |             | Neoplasms             | Vite estin D                        |
| 3/ | rs2228570   | /1/ | VDR   | rs1544410   | -Ovarian              | -Vitamin D                          |
|    |             |     |       | rs731230    | Acthmo                | -25-hydroxyvitamin D3-              |
|    |             |     |       | 15/9/5232   | Astrina               | Calaiura                            |
|    |             |     |       | rc7041      | -Dredst<br>Nooplasms  |                                     |
|    |             |     |       | 157041      | Neoplasms             | -Poly II<br>Dontido Tamido          |
|    |             |     |       |             | Multiplo              | -replice l'annue                    |
|    |             |     |       |             | Sclorosis             |                                     |
|    |             |     |       |             | 501010515             |                                     |
| 38 | rs201753350 | 18  | TP53  | rs28934576  | -                     | -AT 61                              |
|    |             |     |       | rs1042522   | Rhabdomyosarco        | -Arginyl-tryptophyl-arginine        |
|    |             |     |       | rs1800371   | ma                    | Nitrogen                            |
|    |             |     |       | rs1800370   | -Emanuel              | Histocompatibility Antigen H-2D     |
|    |             |     |       | rs730882025 | Syndrome              | Leucylleucine                       |
|    |             |     |       | rs28934578  | -Acute Myeloid        | -3-bromoacetoxyandrostan-17-one     |
|    |             |     |       | rs1800372   | Leukemia              | -2-(3,4-dimethoxyphenyl)-5-amino-2- |
|    |             |     |       | rs104886003 | -Neoplasms            | isopropylvaleronitrile              |
|    |             |     |       | rs105751999 | -Norrie Disease       | -chromozym TH                       |
|    |             |     |       | 1           |                       | -(arginine)9-cysteinyl-glutaminyl-  |
|    |             |     |       |             |                       | cysteinyl-arginyl-arginyl-lysyl-    |
|    |             |     |       |             |                       | asparagine                          |
| 20 |             | 247 |       |             | D'abataa              | -H 189                              |
| 39 | rs1800206   | 217 | PPARA | rs2016520   |                       | - Irigiycerides                     |
|    |             |     |       | 151801282   | Obasitu               | - Omega-3 Fally Acids               |
|    |             |     |       | 154253778   | -Obesity<br>Motobolic | -Fally Acius                        |
|    |             |     |       | rc12EE20    |                       | -Cholesteroi                        |
|    |             |     |       | rc190E102   | Type 2 Disbetor       | -Offsaturated Fatty Acids           |
|    |             |     |       | 131603192   | Mollitus              |                                     |
|    |             |     |       |             | -Atherosclerosis      |                                     |
| 40 | rs1801282   | 979 | PPARG | rs7903146   | -Diabetes             | -Alanyl-alanyl-alanyl-alanine       |
|    | 101001202   | 575 |       | rs5219      | Mellitus              | -N-nitroso-prolylalanine            |
|    |             |     |       | rs13266634  | -Obesity              | -Glucose                            |
|    |             |     |       | rs4402960   | -Type 2 Diabetes      | -Troglitazone                       |
|    |             |     |       | rs10811661  | Mellitus              | -Thiazolidinediones                 |
|    |             |     |       | rs1111875   | -Metabolic            | -Cholesterol                        |
|    |             |     |       | rs3856806   | Diseases              | -Triglycerides                      |
|    |             |     |       | rs864745    | -Neoplasms            | -Ethanol                            |
|    |             |     |       | rs7961581   | -Hypertension         | -Potassium                          |
|    |             |     |       |             | -Insulin              | -Fatty Acids                        |
|    |             |     |       |             | Resistance            |                                     |
|    |             |     |       |             | -Coronary Disease     |                                     |
|    |             |     |       |             | -Colorectal           |                                     |
|    |             |     |       |             | Neoplasms             |                                     |

|    |             |     |       |                                                                                              | -Polycystic Ovary<br>Syndrome                                                                                                                               |                                                                                                                                                           |
|----|-------------|-----|-------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41 | rs28936407  | 6   | PPARG | rs121909242<br>rs72551362<br>rs121909243<br>rs72551364<br>rs72551363<br>rs121909244          | -Neoplasms<br>-Colorectal<br>Neoplasms<br>-Lipodystrophy<br>-Lipid Metabolism<br>Disorders<br>-Migraine<br>Disorders                                        | -Urea<br>-Hydrogen<br>-Rosiglitazone<br>-Lecithin emulsion safflower oil                                                                                  |
| 42 | rs237025    | 132 | SUMO4 | rs2476601<br>rs577001<br>rs1805010<br>rs237024<br>rs1800872<br>rs2243250                     | -Diabetes<br>Mellitus<br>-Type 1 Diabetes<br>Mellitus<br>-Type 3 Axenfeld-<br>Rieger syndrome<br>-Type 2 Diabetes<br>Mellitus<br>-Diabetic<br>Nephropathies | -Methionine<br>-Valine-valine-saquinavir<br>Tacrolimus<br>-(Z)-2-amino-5-<br>chlorobenzophenonamidinohydrazo<br>ne acetate<br>-Nitrogen<br>-Triglycerides |
| 43 | rs118203914 | 1   | ТАТ   | p.E411X (1)<br>rs761817519<br>(1)<br>p.L201R (1)<br>rs758306831<br>(1)<br>rs775488556<br>(1) | Type 2C<br>Congenital<br>Disorder of<br>Glycosylation                                                                                                       | -                                                                                                                                                         |

The SNPs of interest are then characterized based on nucleotide change, nucleotide change region, and mutation type. The Japanese dataset is then compared to a dataset of Korean individuals focusing on the frequencies exhibited by the SNPs of interest **(Table 12)**. The vast majority of SNPs of interest are located in intronic regions, which play an important role in gene regulation. The comparison among the two populations pinpointed the rs1043618 as a polymorphism with a considerably different frequency among Japanese and Korean individuals. This polymorphism has been associated with depression in LitVar and COPD in response to environmental factors in ClinVar.

Table 12 A comparison of SNP frequencies among Korean and Japanese individuals

| Gene | SNP | Nucleotide | Type of    |  | Nucle    | otide | Nucleotide   |        |
|------|-----|------------|------------|--|----------|-------|--------------|--------|
|      |     | change     | mutation/  |  | freque   | ency  | frequency in |        |
|      |     |            | Nucleotide |  | in       | the   | the          | Korean |
|      |     |            | change     |  | Japanese |       | population   |        |
|      |     |            | region     |  | popula   | ation |              |        |

| HSPA1L  | rs2227956   | G>A | Missense<br>variant           | G=0,0858  | G=0,0765         |
|---------|-------------|-----|-------------------------------|-----------|------------------|
| HSPA1L  | rs2227955   | T>G | Missense<br>variant           | G=0,0201  | G=0,0171         |
| HSPA1L  | rs34620296  | C>T | Missense<br>variant           | T=0,0017  | T= 0,0048        |
| HSPA1L  | rs368138379 | C>T | Missense<br>variant           | T=0,0001  | -                |
| HSPA1B  | rs6457452   | C>T | 5 Prime UTR<br>Variant        | T=0,0622  | T=0,0875         |
| HSPA1A  | rs1043618   | G>C | 5 Prime UTR<br>Variant        | C=0,1599  | C=0,2801         |
| CYP3A5  | rs4646450   | G>A | Intron<br>Variant             | A=0,2601  | A=0,2304         |
| TP53    | rs201753350 | C>T | Missense<br>Variant           | T=0,0062  | T=0,0055         |
| FKBP5   | rs4713916   | A>G | Intron<br>Variant             | A=0,1999  | A=0,2096         |
| CYP2C9  | rs1057910   | A>C | Missense<br>Variant           | C=0,0242  | C=0,0413         |
| CYP2C9  | rs7089580   | A>T | Intron<br>Variant             | T=0,01    | T=0,0082         |
| CYP2C9  | rs4917639   | A>C | Intron<br>Variant             | C=0, 1474 | C=0,1345         |
| CYP2C19 | rs4244285   | G>A | Synonymous<br>Variant         | A=0,2944  | A=0,2765         |
| СҮРЗА5  | rs776746    | T>C | Splice<br>Acceptor<br>Variant | C=0,2444  | C=0,2249<br>(1K) |
| CYP2C19 | rs72552267  | G>A | Missense<br>Variant           | A=0,0003  | -                |
| ABCB1   | rs1045642   | A>G | Missense<br>Variant           | A=0,4119  | A=0,3488         |
| ABCB1   | rs3842      | T>C | 3 Prime UTR<br>Variant        | C=0,2797  | C=0,3061         |
| ABCB1   | rs1922242   | A>T | Intron<br>Variant             | T=0,3351  | T=0,3717         |
| ABCB1   | rs2235046   | T>C | Intron<br>Variant             | C=0,3948  | C=0,4085         |
| ABCB1   | rs2235013   | C>T | Intron<br>Variant             | T=0,3833  | T=0,4065         |
| ABCB1   | rs2235035   | G>A | Intron<br>Variant             | A=0,3187  | A=0,3590         |
| ABCB1   | rs2235033   | A>G | Intron<br>Variant             | G=0, 3706 | G=0,4065         |
| ABCB1   | rs10276036  | C>T | Intron                        | T=0,3816  | T=0,4061         |

|       |             |     | Variant     |          |              |
|-------|-------------|-----|-------------|----------|--------------|
| ABCB1 | rs1922240   | T>C | Intron      | C=0,3160 | C=0,3573     |
|       |             |     | Variant     |          |              |
| ABCB1 | rs868755    | T>G | Intron      | T=0,4118 | T=0,3788     |
|       |             |     | Variant     |          |              |
| ABCB1 | rs13237132  | C>G | Intron      | G=0,3168 | G=0,3563     |
|       |             |     | Variant     |          |              |
| ABCB1 | rs1202170   | C>T | Intron      | C=0,3856 | C=0,4058     |
|       |             |     | Variant     |          |              |
| ABCB1 | rs1202168   | G>A | Intron      | G=0,3846 | G=0,4038     |
|       |             |     | Variant     |          |              |
| ABCB1 | rs1016793   | G>A | Intron      | A=0,4084 | A=0,3860     |
|       |             |     | Variant     |          |              |
| ABCB1 | rs2235018   | T>C | Intron      | C=0,2069 | C=0,2160     |
|       |             |     | Variant     |          |              |
| ABCB1 | rs1211152   | A>C | Intron      | A=0      | A=0,001      |
|       |             |     | Variant     |          |              |
| ABCB1 | rs2235074   | G>A | Intron      | A=0,0709 | A=0,0565     |
|       |             |     | Variant     |          |              |
| ABCB1 | rs2214102   | T>C | Synonymous  | T=0      | T=0,0003     |
|       |             |     | Variant     |          |              |
| ABCB1 | rs3213619   | A>G | Intron      | G=0,0709 | G=0,0561     |
|       |             |     | Variant     |          |              |
| VDR   | rs2228570   | A>G | Initiator   | A=0,3674 | A=0,4041     |
|       |             |     | Codon       |          |              |
|       |             |     | Variant     |          |              |
| FKBP5 | rs1360780   | T>C | Intron      | T=0,2246 | T=0,2392     |
|       |             |     | Variant     |          |              |
| SUMO4 | rs237025    | G>A | Missense    | G=0,3028 | G=0,2973     |
|       |             |     | Variant     |          |              |
| PPARG | rs28936407  | G>A | Missense    | A=0,0001 | -            |
|       |             |     | Variant     |          |              |
| PPARG | rs1801282   | C>G | Missense    | G=0,0305 | G=0,0517     |
|       |             |     | Variant     |          |              |
| TAT   | rs118203914 | G>A | Stop Gained | A=0,0001 | -            |
| PPARA | rs1800206   | C>G | Missense    | G=0,0001 | G=0,0005(1K) |
|       |             |     | Variant     |          |              |
| SMAD4 | rs12456284  | A>G | 3 Prime UTR | 0,4243   | G=0,4049     |
|       |             |     | Variant     |          |              |

## Discussion

Polymorphisms on genes characteristic of the GR interactome lead to psychological and inflammatory diseases. These results are in accordance with the stress response system's role in neuropsychiatric disorders (265) and the important role of the glucocorticoid receptor in inflammation (266). Additionally, the importance of

genetic alterations in intronic regions was also highlighted since the majority of variants associated with pathologic conditions were located in introns. Moreover, the genetic similarity between the Korean and Japanese populations is in accordance with prior research, which states that a human migration wave from the Korean Peninsula to Kyushu, the most southerly of Japan's large islands, around 3000 years ago, played a major role in the genetic composition of the current Japanese population (256). Nonetheless, an interesting discrepancy was present between these two populations, which extended to discrepancies with the frequencies present on the TOPMED (267) and 1000 Genomes Project (268). Japanese individuals showcased an rs1043618 frequency of 0.1599 while Koreans had a frequency of 0.2801, with the TOPMED and 1000 Genomes Project frequencies being 0.478474 and 0.4812, respectively. According to the ClinVar database, this HSPA1A polymorphism has been associated with susceptibility to chronic obstructive pulmonary disease in response to environmental stressors in a Mexican population(269). This observation is really intriguing, since COPD displays a higher incidence rate in Korean than in Japanese individuals, with smoking habits being pretty similar among these populations (270, 271). HSP1A codes for Hsp70, an essential regulator of GR signaling. Hsp70 plasma levels have already been associated with COPD (272). Additionally, increased levels of Hsp70 may weaken a COPD patient's response to glucocorticoids (273). This may lead to the speculation that the rs1043618 could be partially responsible for such a phenomenon. Nevertheless, it is important to state that specific SNPs may be associated with a disease in one population but show no association in another one (274).

## Conclusions

Gene expression, i.e., the process in which information encoded in a gene is converted into a functional gene product, is considered one of the underlying factors for the emergence of phenotypic variation. Understanding the intricacies of phenotypic variation can elucidate why specific phenotypes display a higher risk of disease or why disease phenotypes themselves seem to differ among individuals wildly. One of the most significant groups of gene expression regulators are transcription factors, which are proteins that bind to regulatory regions in the DNA and promote or inhibit gene transcription. Genetic or structural alterations on transcription factors have played an important role in both the evolution of complex gene regulatory networks and the emergence of pathologic phenotypes. One of the largest families of transcription factors are nuclear receptors, whose function is ligand-dependent and govern biological mechanisms of great importance, including homeostasis maintenance, i.e., the preservation of an inner equilibrium. Since ligand-binding is essential in the evolution of nuclear receptors and their characteristics, researching the evolution of the structural regions that govern the ligand-receptor interaction may help provide novel information regarding gene regulatory networks and, subsequently, phenotypic variation.

Therefore, a hybrid phylogenetic analysis on nuclear receptors ligand-binding domain was conducted. The results highlighted that mutations on interaction sites

are somewhat frequent, but mutations on sites that maintain LBD structure are rarer. It appears that structure is essential for proper function, and mutations on interaction sites that do not influence structure are at the forefront of NR evolution. Four distinct monophyletic branches were uncovered while two major canonical forms were present, one steroid-hormone-like and one thyroid-hormone-like.

Another finding of this analysis was that the estrogen receptor alpha receptor seemed to split into two distinct subcategories based on its structure. These subcategories sequence differences were almost non-existent. It appears that the breast-cancer-associated Y537S mutation may be the main reason for this discrepancy. This mutation seems to lead to a conformational change that gives ERa the ability to bind both ERa and ERb ligands indiscriminately. The hybrid phylogenetic study also showed that the NR-box, a motif mainly found on NR cofactors, is also found in nuclear receptors. This motif mediates interaction with nuclear receptors may be more common than expected. Out of all nuclear receptors, the glucocorticoid receptor is most associated with homeostasis maintenance. The ligand-binding domain of the glucocorticoid receptor is characteristic of steroid hormone receptors, showcasing distinct signaling motifs and structures. Research on this receptor's literature could provide information that may also apply to several steroid hormone receptors or even nuclear receptors.

A thorough search on GR and GR signaling modulators literature mostly displayed the known importance of NRs and specifically GR signaling in numerous biological processes like immune response, metabolism, development, and proper brain function. The literature was focused on some intriguing subjects, such as the POLR1C gene, several intronic regions, and cancer. Intronic regions are known to produce non-coding RNAs, which have a significant role in gene expression. POLR1C codes for a subunit of RNA polymerase I and RNA polymerase III. Both enzymes participate in rRNA synthesis, and stress influences this process. The research on GR's role in pathways regulating rRNA synthesis is not that extensive; thus, future studies may provide novel information regarding the effect of GCs on cell processes. On the other hand, research on GR's role in cancer is quite extensive, but its role still remains elusive. GCs' function in cancer depends on the target cell and differs among various stages of cancer, hence making the study of their role in cancer pathogenesis and pathology extremely complicated.

Apart from publicly available literature data, multiple full-genome datasets from different populations are also publicly available for research. These datasets can help study how genomic alterations in the GR interactome may promote distinct population characteristics. A comparison between Japanese and Korean individuals showcased that most SNPs associated with pathological conditions were present in intronic regions, once again highlighting the importance of introns in biological function. Another observation is that rs1043618 frequency is quite different between the Japanese and Korean individuals, despite mentioned populations being pretty similar on a genetic level. This polymorphism has been associated with COPD in response to environmental stressors in a Mexican population. Since Korean individuals display a higher incidence rate of COPD than Japanese individuals, despite
similar smoking trends, this polymorphism may prove to be of great research interest.

Future research on two specific findings may prove to be quite beneficial. Firstly, the possibility that the Y537S mutation may force ERa to display a structure more similar to that of ERb could be useful in drug design since mentioned mutation has been heavily associated with breast cancer. Identifying antagonists that successfully block this variant of ERa may help advance current therapeutic approaches in breast cancer. The possibility that rs1043618 may be responsible for the disparity in COPD cases between the Japanese and Korean population may help identify individuals with a higher risk of COPD whose monitoring may help disease diagnosis. However, it should be stated that these findings are not definite and further research is needed. Several structures featuring the Y537S mutation also featured other mutations which too may have led to the emergence of the alternate ERa structure. Additionally, despite the large sample size, there exists only one research associating rs1043618 with COPD and the fact that specific SNPs may be associated with a pathological condition in one population but show no association in another one should be taken into consideration.

## References

1. Chrousos GP. Stress and disorders of the stress system. Nature Reviews Endocrinology. 2009;5(7):374-81.

2. Nicolaides NC, Kyratzi E, Lamprokostopoulou A, Chrousos GP, Charmandari E. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation. 2015;22(1-2):6-19.

3. Charmandari E, Tsigos C, Chrousos G. ENDOCRINOLOGY OF THE STRESS RESPONSE. Annual Review of Physiology. 2005;67(1):259-84.

4. Dunlavey CJ. Introduction to the Hypothalamic-Pituitary-Adrenal Axis: Healthy and Dysregulated Stress Responses, Developmental Stress and Neurodegeneration. J Undergrad Neurosci Educ. 2018;16(2):R59-R60.

5. Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. Jama. 1992;267(9):1244-52.

6. McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, et al. Mechanisms of stress in the brain. Nat Neurosci. 2015;18(10):1353-63.

7. Eisenmann ED, Rorabaugh BR, Zoladz PR. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents. Front Psychiatry. 2016;7:71-.

8. Franke HA. Toxic Stress: Effects, Prevention and Treatment. Children (Basel). 2014;1(3):390-402.

9. Benarroch EE. The locus ceruleus norepinephrine system: functional organization and potential clinical significance. Neurology. 2009;73(20):1699-704.

10. Lü Y-F, Yang Y, Li C-L, Wang Y, Li Z, Chen J. The Locus Coeruleus-Norepinephrine System Mediates Empathy for Pain through Selective Up-Regulation of P2X3 Receptor in Dorsal Root Ganglia in Rats. Front Neural Circuits. 2017;11:66-.

11. Kanczkowski W, Sue M, Bornstein SR. Adrenal Gland Microenvironment and Its Involvement in the Regulation of Stress-Induced Hormone Secretion during Sepsis. Front Endocrinol (Lausanne). 2016;7:156-.

12. DeMorrow S. Role of the Hypothalamic-Pituitary-Adrenal Axis in Health and Disease. Int J Mol Sci. 2018;19(4):986.

13. Chrousos GP. Stressors, stress, and neuroendocrine integration of the adaptive response. The 1997 Hans Selye Memorial Lecture. Annals of the New York Academy of Sciences. 1998;851:311-35.

14. Nicolaides NC, Charmandari E, Chrousos GP, Kino T. Circadian endocrine rhythms: the hypothalamic-pituitary-adrenal axis and its actions. Annals of the New York Academy of Sciences. 2014;1318:71-80.

15. Timmermans S, Souffriau J, Libert C. A General Introduction to Glucocorticoid Biology. Frontiers in immunology. 2019;10:1545.

16. Tsigos C, Chrousos GP. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research. 2002;53(4):865-71.

17. Stokes J, Noble J, Brett L, Phillips C, Seckl JR, O'Brien C, et al. Distribution of glucocorticoid and mineralocorticoid receptors and 11beta-hydroxysteroid dehydrogenases in human and rat ocular tissues. Investigative ophthalmology & visual science. 2000;41(7):1629-38.

18. Sevilla LM, Pérez P. Roles of the Glucocorticoid and Mineralocorticoid Receptors in Skin Pathophysiology. Int J Mol Sci. 2018;19(7):1906.

19. Viengchareun S, Le Menuet D, Martinerie L, Munier M, Pascual-Le Tallec L, Lombès M. The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology. Nucl Recept Signal. 2007;5:e012-e.

20. Koning A, Buurstede JC, van Weert L, Meijer OC. Glucocorticoid and Mineralocorticoid Receptors in the Brain: A Transcriptional Perspective. Journal of the Endocrine Society. 2019;3(10):1917-30.

21. Kumar R, Litwack G. Structural and functional relationships of the steroid hormone receptors' N-terminal transactivation domain. Steroids. 2009;74(12):877-83.

22. Tao LJ, Seo DE, Jackson B, Ivanova NB, Santori FR. Nuclear Hormone Receptors and Their Ligands: Metabolites in Control of Transcription. Cells. 2020;9(12):2606.

23. Rastinejad F, Huang P, Chandra V, Khorasanizadeh S. Understanding nuclear receptor form and function using structural biology. J Mol Endocrinol. 2013;51(3):T1-T21.

24. Porter BA, Ortiz MA, Bratslavsky G, Kotula L. Structure and Function of the Nuclear Receptor Superfamily and Current Targeted Therapies of Prostate Cancer. Cancers (Basel). 2019;11(12):1852.

25. Pawlak M, Lefebvre P, Staels B. General molecular biology and architecture of nuclear receptors. Curr Top Med Chem. 2012;12(6):486-504.

26. Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: A structural perspective. Protein Science. 2018;27(11):1876-92.

27. Helsen C, Kerkhofs S, Clinckemalie L, Spans L, Laurent M, Boonen S, et al. Structural basis for nuclear hormone receptor DNA binding. Molecular and cellular endocrinology. 2012;348(2):411-7.

28. Folkertsma S, van Noort PI, Brandt RF, Bettler E, Vriend G, de Vlieg J. The nuclear receptor ligand-binding domain: a family-based structure analysis. Current medicinal chemistry. 2005;12(9):1001-16.

29. Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Nuclear receptor structure: implications for function. Annu Rev Physiol. 2007;69:201-20.

30. Batista MRB, Martínez L. Conformational Diversity of the Helix 12 of the Ligand Binding Domain of PPARγ and Functional Implications. The Journal of Physical Chemistry B. 2015;119(50):15418-29.

31. McGrady AV. Effects of psychological stress on male reproduction: a review. Archives of andrology. 1984;13(1):1-7.

32. Cunningham RL, Lumia AR, McGinnis MY. Androgen receptors, sex behavior, and aggression. Neuroendocrinology. 2012;96(2):131-40.

33. Handa RJ, Mani SK, Uht RM. Estrogen receptors and the regulation of neural stress responses. Neuroendocrinology. 2012;96(2):111-8.

34. Ulrich-Lai YM, Ryan KK. PPARγ and stress: implications for aging. Exp Gerontol. 2013;48(7):671-6.

35. Buchanan TW, Lovallo WR. The role of genetics in stress effects on health and addiction. Curr Opin Psychol. 2019;27:72-6.

36. Ising M, Holsboer F. Genetics of stress response and stress-related disorders. Dialogues Clin Neurosci. 2006;8(4):433-44.

37. Pagliaccio D, Luby JL, Bogdan R, Agrawal A, Gaffrey MS, Belden AC, et al. Stresssystem genes and life stress predict cortisol levels and amygdala and hippocampal volumes in children. Neuropsychopharmacology. 2014;39(5):1245-53.

38. Bogdan R, Santesso DL, Fagerness J, Perlis RH, Pizzagalli DA. Corticotropin-releasing hormone receptor type 1 (CRHR1) genetic variation and stress interact to influence reward learning. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2011;31(37):13246-54.

39. Bet PM, Penninx BW, Bochdanovits Z, Uitterlinden AG, Beekman AT, van Schoor NM, et al. Glucocorticoid receptor gene polymorphisms and childhood adversity are associated with depression: New evidence for a gene-environment interaction. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics. 2009;150b(5):660-9.

40. Mihaljevic M, Zeljic K, Soldatovic I, Andric S, Mirjanic T, Richards A, et al. The emerging role of the FKBP5 gene polymorphisms in vulnerability-stress model of schizophrenia: further evidence from a Serbian population. European archives of psychiatry and clinical neuroscience. 2017;267(6):527-39.

41. Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571(7766):489-99.

42. Mazzio EA, Soliman KF. Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics. 2012;7(2):119-30.

43. Sarkies P. Molecular mechanisms of epigenetic inheritance: Possible evolutionary implications. Semin Cell Dev Biol. 2020;97:106-15.

44. Matosin N, Cruceanu C, Binder EB. Preclinical and Clinical Evidence of DNA Methylation Changes in Response to Trauma and Chronic Stress. Chronic stress (Thousand Oaks, Calif). 2017;1.

45. Jiang S, Postovit L, Cattaneo A, Binder EB, Aitchison KJ. Epigenetic Modifications in Stress Response Genes Associated With Childhood Trauma. Front Psychiatry. 2019;10:808-.

46. Hing B, Gardner C, Potash JB. Effects of negative stressors on DNA methylation in the brain: implications for mood and anxiety disorders. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics. 2014;165B(7):541-54.

47. Seematter G, Binnert C, Martin JL, Tappy L. Relationship between stress, inflammation and metabolism. Current opinion in clinical nutrition and metabolic care. 2004;7(2):169-73.

48. Vegiopoulos A, Herzig S. Glucocorticoids, metabolism and metabolic diseases. Molecular and cellular endocrinology. 2007;275(1-2):43-61.

49. Konstandi M, Johnson EO, Lang MA. Consequences of psychophysiological stress on cytochrome P450-catalyzed drug metabolism. Neuroscience and biobehavioral reviews. 2014;45:149-67.

50. Manikandan P, Nagini S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Current drug targets. 2018;19(1):38-54.

51. Schiffer L, Barnard L, Baranowski ES, Gilligan LC, Taylor AE, Arlt W, et al. Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. J Steroid Biochem Mol Biol. 2019;194:105439-.

52. Custodio JM, Donaldson KM, Hunt HJ. An In Vitro and In Vivo Evaluation of the Effect of Relacorilant on the Activity of Cytochrome P450 Drug Metabolizing Enzymes. Journal of clinical pharmacology. 2021;61(2):244-53.

53. Pantelidou M, Tsiakitzis K, Rekka EA, Kourounakis PN. Biologic Stress, Oxidative Stress, and Resistance to Drugs: What Is Hidden Behind. Molecules. 2017;22(2):307.

54. Tsigos C, Kyrou I, Kassi E, Chrousos GP. Stress: Endocrine Physiology and Pathophysiology Endotext [Internet]: 2020 Oct 17; 2000 [updated 2020 Oct 17.

55. Kalantaridou SN, Makrigiannakis A, Zoumakis E, Chrousos GP. Stress and the female reproductive system. Journal of reproductive immunology. 2004;62(1-2):61-8.

56. Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunologic research. 2014;58(2-3):193-210.

57. Morey JN, Boggero IA, Scott AB, Segerstrom SC. Current Directions in Stress and Human Immune Function. Curr Opin Psychol. 2015;5:13-7.

58. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nature Reviews Immunology. 2017;17(4):233-47.

59. Ronchetti S, Migliorati G, Bruscoli S, Riccardi C. Defining the role of glucocorticoids in inflammation. Clinical science (London, England : 1979). 2018;132(14):1529-43.

60. McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Annals of the New York Academy of Sciences. 2010;1186:190-222.

61. McEwen BS. Protective and damaging effects of stress mediators: central role of the brain. Dialogues Clin Neurosci. 2006;8(4):367-81.

62. Yaribeygi H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A. The impact of stress on body function: A review. EXCLI J. 2017;16:1057-72.

63. Vyas S, Rodrigues AJ, Silva JM, Tronche F, Almeida OFX, Sousa N, et al. Chronic Stress and Glucocorticoids: From Neuronal Plasticity to Neurodegeneration. Neural Plast. 2016;2016:6391686-.

64. Canet G, Chevallier N, Zussy C, Desrumaux C, Givalois L. Central Role of Glucocorticoid Receptors in Alzheimer's Disease and Depression. Front Neurosci. 2018;12:739-.

65. Mariotti A. The effects of chronic stress on health: new insights into the molecular mechanisms of brain-body communication. Future Sci OA. 2015;1(3):FSO23-FSO.

66. McEwen BS, Nasca C, Gray JD. Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology. 2016;41(1):3-23.

67. Lisman J, Buzsáki G, Eichenbaum H, Nadel L, Ranganath C, Redish AD. Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat Neurosci. 2017;20(11):1434-47.

68. Kim EJ, Pellman B, Kim JJ. Stress effects on the hippocampus: a critical review. Learn Mem. 2015;22(9):411-6.

69. Vyas A, Bernal S, Chattarji S. Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain research. 2003;965(1-2):290-4.

70. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2002;22(15):6810-8.

71. Guadagno A, Belliveau C, Mechawar N, Walker C-D. Effects of Early Life Stress on the Developing Basolateral Amygdala-Prefrontal Cortex Circuit: The Emerging Role of Local Inhibition and Perineuronal Nets. Frontiers in Human Neuroscience. 2021;15(484).

72. Hölzel BK, Carmody J, Evans KC, Hoge EA, Dusek JA, Morgan L, et al. Stress reduction correlates with structural changes in the amygdala. Soc Cogn Affect Neurosci. 2010;5(1):11-7.

73. Arnsten AFT. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10(6):410-22.

74. Baumeister D, Lightman SL, Pariante CM. The Interface of Stress and the HPA Axis in Behavioural Phenotypes of Mental Illness. Current topics in behavioral neurosciences. 2014;18:13-24.

75. Menke A. Is the HPA Axis as Target for Depression Outdated, or Is There a New Hope? Front Psychiatry. 2019;10:101-.

76. Yang L, Zhao Y, Wang Y, Liu L, Zhang X, Li B, et al. The Effects of Psychological Stress on Depression. Curr Neuropharmacol. 2015;13(4):494-504.

77. Raghupathi W, Raghupathi V. An Empirical Study of Chronic Diseases in the United States: A Visual Analytics Approach. Int J Environ Res Public Health. 2018;15(3):431.

78. Volden PA, Conzen SD. The influence of glucocorticoid signaling on tumor progression. Brain Behav Immun. 2013;30 Suppl(0):S26-S31.

79. Lin K-T, Wang L-H. New dimension of glucocorticoids in cancer treatment. Steroids. 2016;111:84-8.

80. Dai S, Mo Y, Wang Y, Xiang B, Liao Q, Zhou M, et al. Chronic Stress Promotes Cancer Development. Front Oncol. 2020;10:1492-.

81. Gupta A, Shah K, Oza MJ, Behl T. Reactivation of p53 gene by MDM2 inhibitors: A novel therapy for cancer treatment. Biomedicine & Pharmacotherapy. 2019;109:484-92.

82. Steptoe A, Kivimäki M. Stress and cardiovascular disease. Nature reviews Cardiology. 2012;9(6):360-70.

83. Roemmich JN, Lambiase MJ, Balantekin KN, Feda DM, Dorn J. Stress, behavior, and biology: risk factors for cardiovascular diseases in youth. Exerc Sport Sci Rev. 2014;42(4):145-52.

84. Gordan R, Gwathmey JK, Xie L-H. Autonomic and endocrine control of cardiovascular function. World J Cardiol. 2015;7(4):204-14.

85. Momen A, Mascarenhas V, Gahremanpour A, Gao Z, Moradkhan R, Kunselman A, et al. Coronary blood flow responses to physiological stress in humans. Am J Physiol Heart Circ Physiol. 2009;296(3):H854-H61.

86. Wei P, Li Y, Wu L, Wu J, Wu W, Chen S, et al. Serum cortisol levels and adrenal gland size in patients with chronic obstructive pulmonary disease. Am J Transl Res. 2021;13(7):8150-7.

87. Newsome BR, McDonnell K, Hucks J, Dawson Estrada R. Chronic Obstructive Pulmonary Disease: Clinical Implications for Patients With Lung Cancer. Clin J Oncol Nurs. 2018;22(2):184-92.

88. Pembroke TPI, Rasul F, Hart CL, Davey Smith G, Stansfeld SA. Psychological distress and chronic obstructive pulmonary disease in the Renfrew and Paisley (MIDSPAN) study. J Epidemiol Community Health. 2006;60(9):789-92.

89. Kelly SJ, Ismail M. Stress and type 2 diabetes: a review of how stress contributes to the development of type 2 diabetes. Annual review of public health. 2015;36:441-62.

90. Lloyd C, Smith J, Weinger K. Stress and Diabetes: A Review of the Links. Diabetes Spectrum. 2005;18(2):121-7.

91. Hackett RA, Steptoe A. Type 2 diabetes mellitus and psychological stress — a modifiable risk factor. Nature Reviews Endocrinology. 2017;13(9):547-60.

92. Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci. 2013;34(9):518-30.

93. Tan CK, Wahli W. A trilogy of glucocorticoid receptor actions. Proc Natl Acad Sci U S A. 2016;113(5):1115-7.

94. Kaziales A, Barkovits K, Marcus K, Richter K. Glucocorticoid receptor complexes form cooperatively with the Hsp90 co-chaperones Pp5 and FKBPs. Sci Rep. 2020;10(1):10733-.

95. Sinclair D, Fillman SG, Webster MJ, Weickert CS. Dysregulation of glucocorticoid receptor co-factors FKBP5, BAG1 and PTGES3 in prefrontal cortex in psychotic illness. Sci Rep. 2013;3(1):3539.

96. Baker JD, Ozsan I, Rodriguez Ospina S, Gulick D, Blair LJ. Hsp90 Heterocomplexes Regulate Steroid Hormone Receptors: From Stress Response to Psychiatric Disease. Int J Mol Sci. 2018;20(1):79.

97. Louw A. GR Dimerization and the Impact of GR Dimerization on GR Protein Stability and Half-Life. Frontiers in immunology. 2019;10:1693-.

98. Robertson S, Hapgood JP, Louw A. Glucocorticoid receptor concentration and the ability to dimerize influence nuclear translocation and distribution. Steroids. 2013;78(2):182-94.

99. Frego L, Davidson W. Conformational changes of the glucocorticoid receptor ligand binding domain induced by ligand and cofactor binding, and the location of cofactor binding sites determined by hydrogen/deuterium exchange mass spectrometry. Protein Sci. 2006;15(4):722-30.

100. Vandevyver S, Dejager L, Libert C. On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic (Copenhagen, Denmark). 2012;13(3):364-74.

101. Hudson WH, Youn C, Ortlund EA. The structural basis of direct glucocorticoidmediated transrepression. Nat Struct Mol Biol. 2013;20(1):53-8.

102. Groeneweg FL, van Royen ME, Fenz S, Keizer VIP, Geverts B, Prins J, et al. Quantitation of glucocorticoid receptor DNA-binding dynamics by single-molecule microscopy and FRAP. PLoS One. 2014;9(3):e90532-e.

103. Ristevski B, Chen M. Big Data Analytics in Medicine and Healthcare. J Integr Bioinform. 2018;15(3):20170030.

104. Mallappallil M, Sabu J, Gruessner A, Salifu M. A review of big data and medical research. SAGE Open Med. 2020;8:2050312120934839-.

105. Galetsi P, Katsaliaki K, Kumar S. Values, challenges and future directions of big data analytics in healthcare: A systematic review. Social science & medicine (1982). 2019;241:112533.

106. Car J, Sheikh A, Wicks P, Williams MS. Beyond the hype of big data and artificial intelligence: building foundations for knowledge and wisdom. BMC Med. 2019;17(1):143-.

107. Benke K, Benke G. Artificial Intelligence and Big Data in Public Health. Int J Environ Res Public Health. 2018;15(12):2796.

108. Hulsen T, Jamuar SS, Moody AR, Karnes JH, Varga O, Hedensted S, et al. From Big Data to Precision Medicine. Front Med (Lausanne). 2019;6:34-.

109. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JPA, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Reviews Genetics. 2008;9(5):356-69.

110. Mills MC, Rahal C. A scientometric review of genome-wide association studies. Communications Biology. 2019;2(1):9.

111. Chang M, He L, Cai L. An Overview of Genome-Wide Association Studies. Methods in molecular biology (Clifton, NJ). 2018;1754:97-108.

112. Liang B, Ding H, Huang L, Luo H, Zhu X. GWAS in cancer: progress and challenges. Molecular Genetics and Genomics. 2020;295(3):537-61.

113. Wong K-C. Big data challenges in genome informatics. Biophys Rev. 2019;11(1):51-4.

114. Ginsburg GS, Phillips KA. Precision Medicine: From Science To Value. Health Aff (Millwood). 2018;37(5):694-701.

115. Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril. 2018;109(6):952-63.

116. Abrahams E. Right drug-right patient-right time: personalized medicine coalition. Clin Transl Sci. 2008;1(1):11-2.

117. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Research. 2000;28(1):235-42.

118. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic acids research. 2017;45(D1):D896-D901.

119. Emerson JJ, Li W-H. The genetic basis of evolutionary change in gene expression levels. Philos Trans R Soc Lond B Biol Sci. 2010;365(1552):2581-90.

120. Breidbach O, Ghiselin MT. Evolution and development: Past, present, and future. Theory in Biosciences. 2007;125(2):157-71.

121. Reilly SK, Noonan JP. Evolution of Gene Regulation in Humans. Annual review of genomics and human genetics. 2016;17:45-67.

122. García-Sánchez A, Marqués-García F. Review of Methods to Study Gene Expression Regulation Applied to Asthma. Methods in molecular biology (Clifton, NJ). 2016;1434:71-89.

123. Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity. 2010;105(1):4-13.

124. Atkinson TJ, Halfon MS. Regulation of gene expression in the genomic context. Comput Struct Biotechnol J. 2014;9:e201401001-e.

125. Day DA, Tuite MF. Post-transcriptional gene regulatory mechanisms in eukaryotes: an overview. The Journal of endocrinology. 1998;157(3):361-71.

126. Laker RC, Ryall JG. DNA Methylation in Skeletal Muscle Stem Cell Specification, Proliferation, and Differentiation. Stem cells international. 2016;2016:5725927.

127. Alaskhar Alhamwe B, Khalaila R, Wolf J, von Bülow V, Harb H, Alhamdan F, et al. Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy Asthma Clin Immunol. 2018;14:39-.

128. Lorch Y, Maier-Davis B, Kornberg RD. Mechanism of chromatin remodeling. Proc Natl Acad Sci U S A. 2010;107(8):3458-62.

129. Duan G, Walther D. The roles of post-translational modifications in the context of protein interaction networks. PLoS Comput Biol. 2015;11(2):e1004049-e.

130. Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 2009;7(4):147-54.

131. Latchman DS. Transcription factors: an overview. Int J Exp Pathol. 1993;74(5):417-22.

132. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The Human Transcription Factors. Cell. 2018;172(4):650-65.

133. Klenk H-P, Doolittle WF. Evolution: Archaea and eukaryotes versus bacteria? Current Biology. 1994;4(10):920-2.

134. Lee DJ, Minchin SD, Busby SJ. Activating transcription in bacteria. Annual review of microbiology. 2012;66:125-52.

135. Venters BJ, Pugh BF. How eukaryotic genes are transcribed. Critical reviews in biochemistry and molecular biology. 2009;44(2-3):117-41.

136. Gehring AM, Walker JE, Santangelo TJ. Transcription Regulation in Archaea. J Bacteriol. 2016;198(14):1906-17.

137. Adcock IM, Caramori G. Chapter 31 - Transcription Factors. In: Barnes PJ, Drazen JM, Rennard SI, Thomson NC, editors. Asthma and COPD (Second Edition). Oxford: Academic Press; 2009. p. 373-80.

138. Powell RV, Willett CR, Goertzen LR, Rashotte AM. Lineage specific conservation of cis-regulatory elements in Cytokinin Response Factors. Sci Rep. 2019;9(1):13387.

139. Wilkinson AC, Nakauchi H, Göttgens B. Mammalian Transcription Factor Networks: Recent Advances in Interrogating Biological Complexity. Cell systems. 2017;5(4):319-31.

140. Rebeiz M, Tsiantis M. Enhancer evolution and the origins of morphological novelty. Current opinion in genetics & development. 2017;45:115-23.

141. Yesudhas D, Batool M, Anwar MA, Panneerselvam S, Choi S. Proteins Recognizing DNA: Structural Uniqueness and Versatility of DNA-Binding Domains in Stem Cell Transcription Factors. Genes. 2017;8(8).

142. Cheatle Jarvela AM, Hinman VF. Evolution of transcription factor function as a mechanism for changing metazoan developmental gene regulatory networks. EvoDevo. 2015;6(1):3.

143. Zhaxybayeva O, Lapierre P, Gogarten JP. Ancient gene duplications and the root(s) of the tree of life. Protoplasma. 2005;227(1):53-64.

144. Albalat R, Cañestro C. Evolution by gene loss. Nature reviews Genetics. 2016;17(7):379-91.

145. Rosanova A, Colliva A, Osella M, Caselle M. Modelling the evolution of transcription factor binding preferences in complex eukaryotes. Sci Rep. 2017;7(1):7596.

146. Pérez-Rueda E, Collado-Vides J, Segovia L. Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea. Computational biology and chemistry. 2004;28(5-6):341-50.

147. Duttke SH. Evolution and diversification of the basal transcription machinery. Trends in biochemical sciences. 2015;40(3):127-9.

148. Duttke SHC. Evolution and diversification of the basal transcription machinery. Trends in biochemical sciences. 2015;40(3):127-9.

149. Charoensawan V, Wilson D, Teichmann SA. Genomic repertoires of DNA-binding transcription factors across the tree of life. Nucleic acids research. 2010;38(21):7364-77.

150. Inukai S, Kock KH, Bulyk ML. Transcription factor-DNA binding: beyond binding site motifs. Current opinion in genetics & development. 2017;43:110-9.

151. Siepel A, Arbiza L. Cis-regulatory elements and human evolution. Current opinion in genetics & development. 2014;29:81-9.

152. Tuğrul M, Paixão T, Barton NH, Tkačik G. Dynamics of Transcription Factor Binding Site Evolution. PLoS genetics. 2015;11(11):e1005639.

153. Berg J, Willmann S, Lässig M. Adaptive evolution of transcription factor binding sites. BMC evolutionary biology. 2004;4:42.

154. Yang S, Yalamanchili HK, Li X, Yao KM, Sham PC, Zhang MQ, et al. Correlated evolution of transcription factors and their binding sites. Bioinformatics (Oxford, England). 2011;27(21):2972-8.

155. Morgunova E, Taipale J. Structural perspective of cooperative transcription factor binding. Current opinion in structural biology. 2017;47:1-8.

156. Amoutzias GD, Robertson DL, Van de Peer Y, Oliver SG. Choose your partners: dimerization in eukaryotic transcription factors. Trends in biochemical sciences. 2008;33(5):220-9.

157. Long HK, Prescott SL, Wysocka J. Ever-Changing Landscapes: Transcriptional Enhancers in Development and Evolution. Cell. 2016;167(5):1170-87.

158. Miller JA, Widom J. Collaborative competition mechanism for gene activation in vivo. Molecular and cellular biology. 2003;23(5):1623-32.

159. Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes & development. 2006;20(11):1405-28.

160. Everett L, Hansen M, Hannenhalli S. Regulating the regulators: modulators of transcription factor activity. Methods in molecular biology (Clifton, NJ). 2010;674:297-312.

161. Tootle TL, Rebay I. Post-translational modifications influence transcription factor activity: a view from the ETS superfamily. BioEssays : news and reviews in molecular, cellular and developmental biology. 2005;27(3):285-98.

162. Reiter F, Wienerroither S, Stark A. Combinatorial function of transcription factors and cofactors. Current opinion in genetics & development. 2017;43:73-81.

163. Lynch VJ, May G, Wagner GP. Regulatory evolution through divergence of a phosphoswitch in the transcription factor CEBPB. Nature. 2011;480(7377):383-6.

164. Lynch VJ, Wagner GP. Resurrecting the role of transcription factor change in developmental evolution. Evolution; international journal of organic evolution. 2008;62(9):2131-54.

165. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of human transcription factors: function, expression and evolution. Nature reviews Genetics. 2009;10(4):252-63.

166. Lawrence M, Daujat S, Schneider R. Lateral Thinking: How Histone Modifications Regulate Gene Expression. Trends in genetics : TIG. 2016;32(1):42-56.

167. Xin B, Rohs R. Relationship between histone modifications and transcription factor binding is protein family specific. Genome research. 2018;28(3):321-33.

168. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology. 2018;9(402).

169. Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nature Reviews Genetics. 2007;8(2):93-103.

170. Qiu C, Wang J, Yao P, Wang E, Cui Q. microRNA evolution in a human transcription factor and microRNA regulatory network. BMC Syst Biol. 2010;4:90-.

171. Holzer G, Markov GV, Laudet V. Evolution of Nuclear Receptors and Ligand Signaling: Toward a Soft Key-Lock Model? Current topics in developmental biology. 2017;125:1-38.

172. Markov GV, Laudet V. Origin and evolution of the ligand-binding ability of nuclear receptors. Molecular and cellular endocrinology. 2011;334(1-2):21-30.

173. MATLAB. R2018a. The MathWorks Inc.; 2018.

174. Papageorgiou L, Loukatou S, Sofia K, Maroulis D, Vlachakis D. An updated evolutionary study of Flaviviridae NS3 helicase and NS5 RNA-dependent RNA polymerase reveals novel invariable motifs as potential pharmacological targets. Molecular BioSystems. 2016;12(7):2080-93.

175. Pearson WR. Selecting the Right Similarity-Scoring Matrix. Current protocols in bioinformatics. 2013;43:3.5.1-3.5.9.

176. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics (Oxford, England). 2009;25(9):1189-91.

177. MOE. Molecular Operating Environment. Chemical Computing Group ULC: 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada; 2014.1.

178. Kufareva I, Abagyan R. Methods of protein structure comparison. Methods in molecular biology (Clifton, NJ). 2012;857:231-57.

179. Aertgeerts K, Skene R, Yano J, Sang BC, Zou H, Snell G, et al. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein. The Journal of biological chemistry. 2011;286(21):18756-65.

180. Papageorgiou L, Loukatou S, Koumandou VL, Makałowski W, Megalooikonomou V, Vlachakis D, et al. Structural models for the design of novel antiviral agents against Greek Goat Encephalitis. PeerJ. 2014;2:e664-e.

181. Papageorgiou L, Megalooikonomou V, Vlachakis D. Genetic and structural study of DNA-directed RNA polymerase II of Trypanosoma brucei, towards the designing of novel antiparasitic agents. PeerJ. 2017;5:e3061.

182. Michener CD, Sokal RR. A QUANTITATIVE APPROACH TO A PROBLEM IN CLASSIFICATION. Evolution; international journal of organic evolution. 1957;11(2):130-62.

183. Sneath PHA, RR S. Unweighted pair group method with arithmetic mean. Numerical Taxonomy. 1973:pp230-4.

184. Lu J, Xu G, Zhang S, Lu B. An effective sequence-alignment-free superpositioning of pairwise or multiple structures with missing data. Algorithms for Molecular Biology. 2016;11(1):18.

185. Pavlopoulos GA, Soldatos TG, Barbosa-Silva A, Schneider R. A reference guide for tree analysis and visualization. BioData mining. 2010;3(1):1.

186. Leaché AD, Wagner P, Linkem CW, Böhme W, Papenfuss TJ, Chong RA, et al. A hybrid phylogenetic–phylogenomic approach for species tree estimation in African Agama lizards with applications to biogeography, character evolution, and diversification. Molecular Phylogenetics and Evolution. 2014;79:215-30.

187. Fouquier J, Rideout JR, Bolyen E, Chase J, Shiffer A, McDonald D, et al. Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses. Microbiome. 2016;4:11.

188. Stecher G, Liu L, Sanderford M, Peterson D, Tamura K, Kumar S. MEGA-MD: molecular evolutionary genetics analysis software with mutational diagnosis of amino acid variation. Bioinformatics (Oxford, England). 2014;30(9):1305-7.

189. Mellor CL, Marchese Robinson RL, Benigni R, Ebbrell D, Enoch SJ, Firman JW, et al. Molecular fingerprint-derived similarity measures for toxicological read-across: Recommendations for optimal use. Regulatory toxicology and pharmacology : RTP. 2019;101:121-34. 190. Rácz A, Bajusz D, Héberger K. Life beyond the Tanimoto coefficient: similarity measures for interaction fingerprints. Journal of cheminformatics. 2018;10(1):48.

191. Bajusz D, Rácz A, Héberger K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? Journal of cheminformatics. 2015;7(1):20.

192. Fayard E, Auwerx J, Schoonjans K. LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends in cell biology. 2004;14(5):250-60.

193. Ghbeish N, Tsai C-C, Schubiger M, Zhou JY, Evans RM, McKeown M. The dual role of ultraspiracle, the <em>Drosophila</em> retinoid X receptor, in the ecdysone response. Proceedings of the National Academy of Sciences. 2001;98(7):3867-72.

194. Laffitte BA, Kast HR, Nguyen CM, Zavacki AM, Moore DD, Edwards PA. Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. The Journal of biological chemistry. 2000;275(14):10638-47.

195. Son YL, Park MJ, Lee YC. General and specific determinants of the selective interactions between SRC-1 NR box-2 and target nuclear receptors. Molecular biology reports. 2012;39(1):177-84.

196. Johansson L, Båvner A, Thomsen JS, Färnegårdh M, Gustafsson JA, Treuter E. The orphan nuclear receptor SHP utilizes conserved LXXLL-related motifs for interactions with ligand-activated estrogen receptors. Molecular and cellular biology. 2000;20(4):1124-33.

197. Bernardo TJ, Dubrovsky EB. The Drosophila juvenile hormone receptor candidates methoprene-tolerant (MET) and germ cell-expressed (GCE) utilize a conserved LIXXL motif to bind the FTZ-F1 nuclear receptor. The Journal of biological chemistry. 2012;287(10):7821-33.

198. Nicolaides NC, Roberts ML, Kino T, Braatvedt G, Hurt DE, Katsantoni E, et al. A novel point mutation of the human glucocorticoid receptor gene causes primary generalized glucocorticoid resistance through impaired interaction with the LXXLL motif of the p160 coactivators: dissociation of the transactivating and transreppressive activities. The Journal of clinical endocrinology and metabolism. 2014;99(5):E902-7.

199. Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell. 2002;110(1):93-105.

200. Jääskeläinen J, Mongan NP, Harland S, Hughes IA. Five novel androgen receptor gene mutations associated with complete androgen insensitivity syndrome. Human mutation. 2006;27(3):291.

201. Vitellius G, Fagart J, Delemer B, Amazit L, Ramos N, Bouligand J, et al. Three Novel Heterozygous Point Mutations of NR3C1 Causing Glucocorticoid Resistance. Human mutation. 2016;37(8):794-803.

202. Harrod A, Fulton J, Nguyen VTM, Periyasamy M, Ramos-Garcia L, Lai CF, et al. Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer. Oncogene. 2017;36(16):2286-96.

203. Achermann JC, Schwabe J, Fairall L, Chatterjee K. Genetic disorders of nuclear receptors. The Journal of clinical investigation. 2017;127(4):1181-92.

204. Nicolaides NC, Charmandari E. Chrousos syndrome: from molecular pathogenesis to therapeutic management. European Journal of Clinical Investigation. 2015;45(5):504-14.

205. Ai N, Krasowski MD, Welsh WJ, Ekins S. Understanding nuclear receptors using computational methods. Drug discovery today. 2009;14(9-10):486-94.

206. Matias PM, Carrondo MA, Coelho R, Thomaz M, Zhao XY, Wegg A, et al. Structural basis for the glucocorticoid response in a mutant human androgen receptor (AR(ccr)) derived from an androgen-independent prostate cancer. Journal of medicinal chemistry. 2002;45(7):1439-46.

207. Puyang X, Furman C, Zheng GZ, Wu ZJ, Banka D, Aithal K, et al. Discovery of Selective Estrogen Receptor Covalent Antagonists for the Treatment of  $ER\alpha(WT)$  and  $ER\alpha(MUT)$  Breast Cancer. Cancer discovery. 2018;8(9):1176-93.

208. Nettles KW, Bruning JB, Gil G, O'Neill EE, Nowak J, Guo Y, et al. Structural plasticity in the oestrogen receptor ligand-binding domain. EMBO reports. 2007;8(6):563-8.

209. Siltberg-Liberles J, Grahnen JA, Liberles DA. The evolution of protein structures and structural ensembles under functional constraint. Genes. 2011;2(4):748-62.

210. Wurtz JM, Bourguet W, Renaud JP, Vivat V, Chambon P, Moras D, et al. A canonical structure for the ligand-binding domain of nuclear receptors. Nature structural biology. 1996;3(1):87-94.

211. Papageorgiou L, Zervou MI, Vlachakis D, Matalliotakis M, Matalliotakis I, Spandidos DA, et al. Demetra Application: An integrated genotype analysis web server for clinical genomics in endometriosis. International journal of molecular medicine. 2021;47(6).

212. Ossom Williamson P, Minter CIJ. Exploring PubMed as a reliable resource for scholarly communications services. J Med Libr Assoc. 2019;107(1):16-29.

213. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308-11.

214. Allot A, Peng Y, Wei C-H, Lee K, Phan L, Lu Z. LitVar: a semantic search engine for linking genomic variant data in PubMed and PMC. Nucleic acids research. 2018;46(W1):W530-W6.

215. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic acids research. 2014;42(Database issue):D980-D5.

216. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516.

217. Gruver-Yates AL, Cidlowski JA. Tissue-specific actions of glucocorticoids on apoptosis: a double-edged sword. Cells. 2013;2(2):202-23.

218. Freishtat RJ, Nagaraju K, Jusko W, Hoffman EP. Glucocorticoid efficacy in asthma: is improved tissue remodeling upstream of anti-inflammation. J Investig Med. 2010;58(1):19-22.

219. Montgomery B, Cheng HH, Drechsler J, Mostaghel EA. Glucocorticoids and prostate cancer treatment: friend or foe? Asian J Androl. 2014;16(3):354-8.

220. Valle S, Sharifi N. Targeting Glucocorticoid Metabolism in Prostate Cancer. Endocrinology. 2021;162(9).

221. Rudrapal M, Khairnar SJ, Borse LB, Jadhav AG. Coronavirus Disease-2019 (COVID-19): An Updated Review. Drug research. 2020;70(9):389-400.

222. Alexaki VI, Henneicke H. The Role of Glucocorticoids in the Management of COVID-19. Horm Metab Res. 2021;53(1):9-15.

223. Isidori AM, Arnaldi G, Boscaro M, Falorni A, Giordano C, Giordano R, et al. COVID-19 infection and glucocorticoids: update from the Italian Society of Endocrinology Expert Opinion on steroid replacement in adrenal insufficiency. J Endocrinol Invest. 2020;43(8):1141-7.

224. Briot K, Roux C. Glucocorticoid-induced osteoporosis. RMD Open. 2015;1(1):e000014-e.

225. Strehl C, Ehlers L, Gaber T, Buttgereit F. Glucocorticoids-All-Rounders Tackling the Versatile Players of the Immune System. Frontiers in immunology. 2019;10:1744-.

226. Pufall MA. Glucocorticoids and Cancer. Adv Exp Med Biol. 2015;872:315-33.

227. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219-29.

228. Patil VS, Zhou R, Rana TM. Gene regulation by non-coding RNAs. Critical reviews in biochemistry and molecular biology. 2014;49(1):16-32.

229. Lee N, Steitz JA. Noncoding RNA-guided recruitment of transcription factors: A prevalent but undocumented mechanism? BioEssays : news and reviews in molecular, cellular and developmental biology. 2015;37(9):936-41.

230. Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer. 2011;2(12):1097-105.

231. Noack Watt KE, Achilleos A, Neben CL, Merrill AE, Trainor PA. The Roles of RNA Polymerase I and III Subunits Polr1c and Polr1d in Craniofacial Development and in Zebrafish Models of Treacher Collins Syndrome. PLoS genetics. 2016;12(7):e1006187-e.

232. Liu B, Goodwin JE. The Effect of Glucocorticoids on Angiogenesis in the Treatment of Solid Tumors. J Cell Signal. 2020;1(3):42-9.

233. Frey A, Seifart KH. Glucocorticoids directly affect the synthesis of ribosomal RNA in rat-liver cells. Molecular and cellular endocrinology. 1982;28(2):161-72.

234. Matsui H, Yazawa H, Suzuki N, Hosoya T. Effects of glucocorticoid and cycloheximide on the activity and amount of RNA polymerase I in nuclei of rat liver. The Biochemical journal. 1986;235(3):699-705.

235. Baruteau J, Broomfield A, Crook V, Finnegan N, Harvey K, Burke D, et al. Successful Desensitisation in a Patient with CRIM-Positive Infantile-Onset Pompe Disease. JIMD Rep. 2014;12:99-102.

236. Di Rocco M, Buzzi D, Tarò M. Glycogen storage disease type II: clinical overview. Acta Myol. 2007;26(1):42-4.

237. Dornelles AD, Junges APP, Pereira TV, Krug BC, Gonçalves CBT, Llerena JC, Jr., et al. A Systematic Review and Meta-Analysis of Enzyme Replacement Therapy in Late-Onset Pompe Disease. J Clin Med. 2021;10(21):4828.

238. Benedict M, Zhang X. Non-alcoholic fatty liver disease: An expanded review. World J Hepatol. 2017;9(16):715-32.

239. Woods CP, Hazlehurst JM, Tomlinson JW. Glucocorticoids and non-alcoholic fatty liver disease. J Steroid Biochem Mol Biol. 2015;154:94-103.

240. Jo B-S, Choi SS. Introns: The Functional Benefits of Introns in Genomes. Genomics Inform. 2015;13(4):112-8.

241. Bosia C, Osella M, Baroudi ME, Corà D, Caselle M. Gene autoregulation via intronic microRNAs and its functions. BMC Syst Biol. 2012;6:131.

242. Zhao Z, Dammert MA, Hoppe S, Bierhoff H, Grummt I. Heat shock represses rRNA synthesis by inactivation of TIF-IA and IncRNA-dependent changes in nucleosome positioning. Nucleic acids research. 2016;44(17):8144-52.

243. Boulon S, Westman BJ, Hutten S, Boisvert F-M, Lamond AI. The Nucleolus under Stress. Molecular Cell. 2010;40(2):216-27.

244. Mahajan PB, Thompson EA, Jr. Copurification of RNA polymerase I and the glucocorticoid-regulated transcription factor IC. Protein expression and purification. 1992;3(5):410-6.

245. Jin R, Zhou W. TIF-IA: An oncogenic target of pre-ribosomal RNA synthesis. Biochim Biophys Acta. 2016;1866(2):189-96.

246. Bruna A, Nicolàs M, Muñoz A, Kyriakis JM, Caelles C. Glucocorticoid receptor-JNK interaction mediates inhibition of the JNK pathway by glucocorticoids. EMBO J. 2003;22(22):6035-44.

247. Mayer C, Bierhoff H, Grummt I. The nucleolus as a stress sensor: JNK2 inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis. Genes & development. 2005;19(8):933-41.

248. Yoon M-S. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass. Frontiers in Physiology. 2017;8(788).

249. Mayer C, Zhao J, Yuan X, Grummt I. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes & development. 2004;18(4):423-34.

250. Iadevaia V, Zhang Z, Jan E, Proud CG. mTOR signaling regulates the processing of pre-rRNA in human cells. Nucleic Acids Res. 2012;40(6):2527-39.

251. Chen H. Population genetic studies in the genomic sequencing era. Dongwuxue Yanjiu. 2015;36(4):223-32.

252. Griffiths AJF MJ, Suzuki DT, et al. Population Genetics. An Introduction to Genetic Analysis 7th ed. New York: W. H. Freeman; 2000.

253. Platt A, Novembre J. A new era of human population genetics. Genome Biol. 2012;13(12):182-.

254. Nagasaki M, Yasuda J, Katsuoka F, Nariai N, Kojima K, Kawai Y, et al. Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. Nature Communications. 2015;6(1):8018.

255. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062-d7.

256. Takeuchi F, Katsuya T, Kimura R, Nabika T, Isomura M, Ohkubo T, et al. The fine-scale genetic structure and evolution of the Japanese population. PloS one. 2017;12(11):e0185487-e.

257. Klouwer FCC, Berendse K, Ferdinandusse S, Wanders RJA, Engelen M, Poll-The BT. Zellweger spectrum disorders: clinical overview and management approach. Orphanet J Rare Dis. 2015;10:151-.

258. Conzen SD. Recent advances in understanding glucocorticoid receptor function in cancer. Clin Adv Hematol Oncol. 2017;15(5):338-40.

259. Reyes-Aldasoro CC. The proportion of cancer-related entries in PubMed has increased considerably; is cancer truly "The Emperor of All Maladies"? PLoS One. 2017;12(3):e0173671-e.

260. Rose AJ, Vegiopoulos A, Herzig S. Role of glucocorticoids and the glucocorticoid receptor in metabolism: insights from genetic manipulations. The Journal of steroid biochemistry and molecular biology. 2010;122(1-3):10-20.

261. Dvorak Z, Pavek P. Regulation of drug-metabolizing cytochrome P450 enzymes by glucocorticoids. Drug metabolism reviews. 2010;42(4):621-35.

262. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2-13.

263. Henrie A, Hemphill SE, Ruiz-Schultz N, Cushman B, DiStefano MT, Azzariti D, et al. ClinVar Miner: Demonstrating utility of a Web-based tool for viewing and filtering ClinVar data. Hum Mutat. 2018;39(8):1051-60.

264. Robinson K, Tiriveedhi V. Perplexing Role of P-Glycoprotein in Tumor Microenvironment. Front Oncol. 2020;10:265-.

265. Jacobson L. Hypothalamic-pituitary-adrenocortical axis: neuropsychiatric aspects. Comprehensive Physiology. 2014;4(2):715-38.

266. Hübner S, Dejager L, Libert C, Tuckermann JP. The glucocorticoid receptor in inflammatory processes: transrepression is not enough. Biological chemistry. 2015;396(11):1223-31.

267. Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 2021;590(7845):290-9.

268. Devuyst O. The 1000 Genomes Project: Welcome to a New World. Perit Dial Int. 2015;35(7):676-7.

269. Ambrocio-Ortiz E, Pérez-Rubio G, Ramírez-Venegas A, Hernández-Zenteno R, Del Angel-Pablo AD, Pérez-Rodríguez ME, et al. Effect of SNPs in HSP Family Genes, Variation in the mRNA and Intracellular Hsp Levels in COPD Secondary to Tobacco Smoking and Biomass-Burning Smoke. Frontiers in Genetics. 2020;10(1307).

270. Leem AY, Park B, Kim YS, Jung JY, Won S. Incidence and risk of chronic obstructive pulmonary disease in a Korean community-based cohort. Int J Chron Obstruct Pulmon Dis. 2018;13:509-17.

271. Funatogawa I, Funatogawa T, Yano E. Trends in smoking and lung cancer mortality in Japan, by birth cohort, 1949-2010. Bull World Health Organ. 2013;91(5):332-40.

272. Cappello F, Macario AJL, Di Stefano A. Hsp27 and Hsp70 in chronic obstructive pulmonary disease: certainties vs doubts. Cell Stress Chaperones. 2015;20(5):721-3.

273. Holownia A, Mroz RM, Kielek A, Chyczewska E, Braszko JJ. Nuclear HSP90 and HSP70 in COPD patients treated with formoterol or formoterol and corticosteroids. Eur J Med Res. 2009;14 Suppl 4(Suppl 4):104-7.

274. Rao S, Yao Y, Ryan J, Li T, Wang D, Zheng C, et al. Common variants in FKBP5 gene and major depressive disorder (MDD) susceptibility: a comprehensive meta-analysis. Scientific reports. 2016;6:32687-.

## Glossary and Acronyms

#

17OHP: 17α-hydroxyprogesterone|

А

ACTH: Adrenocorticotropic Hormone

AD: Alzheimer's Disease | AF-1: Activation Function 1 | AF-2: Activation Function 2 | AI: Artificial Intelligence | AR: Androgen Receptor |

ARDS: Acute Respiratory Distress Syndrome | AVP: Arginine Vasopressin |

В

BAG-1: BAG Family Molecular Chaperone Regulator 1

С

cAMP: cyclic AMP| CAR: Constitutive Androstane Receptor|

CDD: Conserved Domains Database | CEBPB: CCAAT/Enhancer - Binding Protein Beta | CEs: catecholamines | CNS: Central Nervous System | CoFs: Cofactors |

COPD: Chronic Obstructive Pulmonary Disease | CORT: Cortisol |

COUP-TFa: Chicken Ovalbumin Upstream Promoter-Transcription Factor alpha COUP-TFb: Chicken Ovalbumin Upstream Promoter-Transcription Factor beta | CREs: Cis-Regulatory Elements | CRH: Corticotropin-Releasing Hormone |

CTD: C-Terminal Domain | CYPs: Cytochrome P450 enzymes |

D

DAX1: Dosage Sensitive Sex Reversal, Adrenal Hypoplasia Congenita Critical Region on the X Chromosome, Gene 1

DBD: DNA-Binding Domain | DNMTs: DNA methyltransferases | E

E: Epinephrine | EAR2: V-erbA-related Protein 2 | EHRs: Electronic Health Records | ERa: Estrogen Receptor alpha | ERb: Estrogen Receptor beta |

ERRa: Estrogen-Related Receptor alpha| ERRb: Estrogen-Related Receptor beta| ERRg: Estrogen-Related Receptor gamma|

F

FKBPs: FK506-binding Proteins|FXR: Farnesoid X Receptor| FXRb: Farnesoid X receptor beta|

G

GAA: Acid Alfa-Glucosidase | GCNF: Germ Cell Nuclear Factor | GCs: Glucocorticoids | GH: Growth Hormone | GnRH: Gonadotropin-Releasing Hormone |

GR: Glucocorticoid Receptor | GRE: Glucocorticoid Response Element |

GTFs: General Transcription Factors | GWAS: Genome-Wide Association Studies | H

HD: Homeodomain | HMG: High Mobility Group Box |

HNF4a: Hepatocyte Nuclear Factor 4 alpha

HNF4g: Hepatocyte Nuclear Factor 4 gamma | Hop: Hsp70-Hsp90 Organizing Protein | HPA axis: Hypothalamic-Pituitary-Adrenal axis |

HPG axis: Hypothalamic-Pituitary-Gonadal Axis | HR: Hinge Region |

HSD3B2: 3-beta-hydroxysteroid Dehydrogenase| Hsp40: Heat Schock Protein 40 kDa| Hsp70: Heat Shock Protein 70kDa| Hsp90: Heat Shock Protein 90 kDa|

Ι

IL-6: Interleukin-6|

J

JNK: c-Jun N-terminal kinases

L

LBD: Ligand-Binding Domain | LC: Locus Coeruleus |

LRH-1: Liver Receptor Homolog-1| LXRa: Liver X Receptor alpha|

LXRb: Liver X Receptor beta

Μ

MDD: Major Depressive Disorder | MDM2: Murine Double Minute 2 | miRNAs: MicroRNAs | miRs: MicroRNAs | MMP2: Matrix Metalloproteinase 2 |

MMP9: Matrix Metalloproteinase 9 | MOE: Molecular Operating Environment | MOF: Mometasone Furoate | MR: Mineralocorticoid Receptor |

MS: Multiple Sclerosis | mTOR: mammalian target of rapamycin |

N

ncRNA: Non-Coding RNA| NE: Norepinephrine| NF-kB: Nuclear Factor Kappa Beta| NGF1B: Nerve Growth Factor 1B| nGRE: Negative Glucocorticoid Response Element| NGS: Next-Generation Sequencing| NOR1: Neuron-Derived Orphan Receptor 1| NPC: Nuclear Pore Complex| NRs: Nuclear Receptors| NTD: N-Terminal Domain| NURR1: Nurr-Related Factor 1|

Р

PCOS: Polycystic Ovary Syndrome | PD: Parkinson's Disease |

PDB: RSCB Protein Data Bank| PFC: Prefrontal Cortex| PIC: Pre-Initiation Complex| PKA: Protein Kinase A| PNR: Photoreceptor-Cell-Specific Nuclear Receptor| POMC: Pro-Opiomelanocortin|

PPARa: Peroxisome Proliferator-Activated Receptor alpha| PPARb: Peroxisome Proliferator-Activated Receptor beta|

PPARg: Peroxisome Proliferator-Activated Receptor gamma

PR: Progesterone Receptor | PRRs: Pattern Recognition Receptors |

PTGES3/p23: Prostaglandin E Synthase 3| PTMs: Post-Translational Modifications| PTSD: Post-Traumatic Stress Disorder | PVN: Paraventricular Nucleus |

PXR: Pregnane X Receptor

R

RA: Rheumatoid Arthritis | RARa: Retinoic Acid Receptor alpha |

RARb: Retinoic Acid Receptor beta| RARg: Retinoic Acid Receptor gamma| REs: Response Elements| Rev-Erba: Rev-Erb alpha| Rev-Erbb: Rev-Erb beta|

RhoA: Ras Homolog Family Member A| RMSD: Root Mean Square Deviation| RNAIIP: RNA-Polymerase 2| RORa: RAR-related Orphan Receptor alpha| RORb: RAR-related Orphan Receptor beta|

RORg: RAR-related Orphan Receptor gamma| RXRa: Retinoid X Receptor alpha| RXRb:Retinoid X Receptor beta| RXRg: Retinoid X Receptor gamma|

S

SAM system: Sympathetic Adreno-Medullary system | SF1: Steroidogenic Factor 1 | SGK1: Serum and Glucocorticoid-regulated Kinase 1 |

SHP: Short Heterodimeric Partner | SNPs: Single Nucleotide Polymorphisms |  $\rm T$ 

T2DM: Typed 2 Diabetes Mellitus | TFs: Transcription Factors |

THRa: Thyroid Hormone Receptor alpha| THRb: Thyroid Hormone Receptor beta| TLX: Tailless Homolog Orphan Receptor| TR2: Testicular Receptor 2| TR4: Testicular Receptor 4| TSH: Thyroid-Stimulating Hormone| U

UPGMA: Unweighted Pair-Group Method | USP: Ultraspiracle Protein |  $\ensuremath{\mathbb{V}}$ 

VDR: Vitamin D Receptor | VEGF: Vascular Endothelial Growth Factor |

## List of Publications

Salis C, Papakonstantinou E, Pierouli K, **Mitsis A (as Mitsis Athanasios)**, Basdeki L, Megalooikonomou V, Vlachakis D, Hagidimitriou M. A genomic data mining pipeline for 15 species of the genus Olea. EMBNet J. 2019, e922

**Mitsis T**, Papageorgiou L, Efthimiadou A, Bacopoulou F, Vlachakis D, Chrousos GP, Eliopoulos E. Transcription Factors and Evolution: An integral part of gene expression. World Academy of Sciences Journal. 2020, 2(1), 3-8 <u>https://doi.org/10.3892/wasj.2020.32</u>

**Mitsis T**, Papageorgiou L, Efthimiadou A, Bacopoulou F, Vlachakis D, Chrousos GP, Eliopoulos E. A comprehensive structural and functional analysis of the Ligand Binding Domain of the Nuclear Receptor Superfamily shows highly conserved signaling motifs and two distinct canonical forms through evolution. World Academy of Sciences Journal. 2020; 1(6), 264-274 <a href="https://doi.org/10.3892/wasj.2020.30">https://doi.org/10.3892/wasj.2020.30</a>

Vlachakis D, Papakonstantinou E, **Mitsis T**, Pierouli K, Diakou I, Chrousos GP, Bacopoulou F. Molecular mechanisms of the novel coronavirus SARS-CoV-2 and potential anti-COVID19 pharmacological targets since the outbreak of the pandemic Food Chem Toxicol 2020, 2020 Dec;146:111805. https://doi.org/10.1016/j.fct.2020.111805

**Mitsis T**, Pierouli K, Diakou KL, Papakonstantinou E, Bacopoulou F, Chrousos GP, Vlachakis D. Exosomics EMBnet J 2020;26:e934

Vlachakis D, **Mitsis T**, Nicolaides N, Efthimiadou A, Giannakakis A, Bacopoulou F, Chrousos GP Exosomal Endocrinology: Functions, Pathophysiology, and Current Insights Molecular Medicine Reports 2021;23(1):26. doi: 10.3892/mmr.2020.11664.

Papakonstantinou E, Diakou KI, **Mitsis T**, Dragoumani K, Bacopoulou F, Megalooikonomou V, Kossida S, Chrousos GP, Vlachakis D Molecular fusion events in carcinogenic organisms: a bioinformatics study for the detection of fused proteins between viruses, bacteria and eukaryotes EMBnet Journal 2021, Accepted. In Press Papakonstantinou E, **Mitsis T**, Dragoumani K, Bacopoulou F, Megalooikonomou V, Chrousos GP, Vlachakis D The medical cyborg concept EMBnet Journal 2021, Accepted. In Press

Diakou KI, **Mitsis T**, Pierouli K, Papakonstantinou E, Bongcam-Rudloff E, Wayengera M, Vlachakis D. Ebola virus disease and current therapeutic strategies; a review. Adv Exp Med Biol 2021, Accepted. In Press

Diakou KI, **Mitsis T**, Pierouli K, Papakonstantinou E, Megalooikonomou V, Efthimiadou A, Vlachakis D Study of the Langat virus RNA-dependent RNA polymerase through homology modeling. EMBnet Journal 2021;26:e944

Papakonstantinou E, Pierouli K, **Mitsis T**, Diakou KI, Palaiogeorgou AM, Bacopoulou F, Chrousos GP, Eliopoulos E, Vlachakis D COVID-19 global social lockdowns: Energy-related, psychological, epigenetic, health and environmental impacts (Review) International Journal of Epigenetics 2021, 1, 6. <u>https://doi.org/10.3892/ije.2021.6</u>

Papakonstantinou E, **Mitsis T**, Dragoumani K, Efthimiadou A, Bacopoulou F, Chrousos GP, Eliopoulos E, Vlachakis D Materials of biological origin and biofuels: Small environmental footprint and epigenetic impact (Review) International Journal of Epigenetics 2021, 1, 8. <u>https://doi.org/10.3892/ije.2021.8</u>

Papakonstantinou E, Dragoumani K, Efthimiadou A, Palaiogeorgou AM, Pierouli K, **Mitsis T**, Chrousos GP, Bacopoulou F, Vlachakis D Haematological malignancies implications during the times of the COVID-19 pandemic (Review) Oncology Letters 2021, Accepted, In Press

Leptidis S, Papakonstantinou E, Diakou KI, Pierouli K, **Mitsis T**, Dragoumani K, Bacopoulou F, Sanoudou D, Chrousos GP, Vlachakis D Epitranscriptomics of Cardiovascular Diseases International Journal of Molecular Medicine 2021, Accepted, In Press