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Water quality assessment in Greek lakes by using remote sensing and statistical modelling

Department of Natural Resources Development & Agricultural Engineering
Laboratory of Soil Science & Agricultural Chemistry

ABSTRACT

The aim of the present PhD thesis is the achievement of continuous
monitoring and assessment of water quality (WQ) and trophic state of Greek
lakes by exploiting the implementation of the Water Framework Directive
(WFD) in Greece in synergy with satellite RS, providing parallel support to
sustainable water resources management at a national scale. Continuous WQ
monitoring is the most crucial aspect for lake management. Therefore, the
methodological framework developed herein has as an ultimate goal the
generation of lake WQ quantitative models while the practical use of this
approach was developed and evaluated in a total of 50 lake water bodies
(natural and artificial) from 2013-2018, constituting the National Lake
Network Monitoring of Greece in the context of the WFD. Concerning the
utilized Earth Observation (EO) data, images from Landsat 7 Enhanced
Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI)
sensors have been combined with co-orbital WQ in-situ measurements (Chl-a,
Secchi Disk depths and Total phosphorus-TP- concentrations) with the main
objective of delivering robust WQ assessment models.

From the statistical point of view, principal component analysis (PCA) was
performed to explore Greek lakes” interrelationships among their Chl-a values
and certain criteria, e.g. their characteristics (artificial/natural), WEFD
typology, climatic type (according to the Koppen-Geiger -climate
classification), season of water samplings and the date difference between
sampling and satellite overpass. PCA highlighted the lake characteristics
(natural/artificial) and WFD typology as the variables that mostly contribute
to the variance of Chl-az concentration; thus, numerous stepwise multiple
regression analyses (MLRs) among different groups of cases, formed by the
PCA criteria, were implemented with basic aim the generation of different
remote sensing-derived Chl-a algorithms for different types of lakes.
Moreover, correlation analysis among in-situ co-orbital WQ data was
conducted to explore and detect their inter-relationships. Subsequently, based
on correlation analysis’s results, further stepwise MLRs employing available
in-situ TP and Secchi depth datasets were further implemented to establish
optimal quantitative models. Eventually, trophic status classification was
conducted herein, calculating Carlson’s Trophic State Index (TSI) of each lake,
initially throughout all lakes and then oriented toward natural-only and
artificial-only lakes. The proposed scheme resulted in the development of
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models separately for natural (R = 0.78) and artificial (R = 0.76) lakes, while
the model developed without criteria proved weaker (R = 0.65) in comparison
to the other ones examined. MLRs among Landsat data and Secchi depths
resulted in 3 optimal models concerning the assessment of Secchi depth of all
lakes (Secchigeneral; R = 0.78; RMSE = 2 m), natural (Secchinatura;; R = 0.95; RMSE =
1.87 m) and artificial (Secchiarifica; R = 0.62; RMSE = 1.36 m), with reliable
accuracy. Study findings showed that TP-related MLR analyses failed to
deliver a statistically acceptable model for the reservoirs; nevertheless, they
delivered a robust TPgenerat model for all lakes (R = 0.71; RMSE = 0.008 mg/L)
and a TPrawra model for natural lakes (R = 0.93; RMSE = 0.018 mg/L).
Subsequently, regarding the TSI results, the higher deviation of satellite-
derived TSI values in relation to in-situ ones was detected in reservoirs and
shallower lakes (mean depth <5 m), indicating noticeable divergences among
natural and artificial waterbodies.

Next significant key questions that were answered are initially whether
Landsat-based empirical WQ algorithms can be efficiently applied to Sentinel
2 images and then whether the combined use of multi-sensor data improves
those algorithms’ prediction accuracy. Hence, Sentinel 2 images of 2018 with
concurrent dates with those of field measurements were utilized to facilitate a
WQ models” efficiency evaluation and comparison with the respective
Landsat’s validation results. Concerning the results, in particular for general
models of all WQ elements (Chl-a, Secchi depth and TP), all models were
more efficient and accurate when were accompanied by Landsat images while
no improvement was observed by using multi sensor images. Chl-a and TP
models (for natural lakes) presented lower values of error metrics when
employing Sentinel 2 images (RMSE Chl-a=16.4 pg/l vs 21.5 ug/l;, RMSE
TP=0.03 mg/1 vs 0.031 mg/l) and only Secchinawrat model performed better with
Landsat data (2.8 m vs 2.9 m). Concerning artificial lakes, performance of Chl-
a model was better by exploiting Landsat data (RMSE= 3.7 pg/l vs 7.7 pg/l of
Sentinel 2) while Secchi model achieved slightly better efficiency with Sentinel
2 images (RMSE= 1.5 m vs 1.6 m of Landsat). The largely worse performance
of Chl-a models compared to rest of WQ elements (median MAPE values
ranged from 42 % to 58%, Secchi depth from 24% to 44% and TP from 22% to
38%), emphasized once again the complexity that mapping of Chl-a in Case 2
waters (coastal and/or inland waters) hides.

Today, open source Cloud Computing platforms have emerged as a valuable
tool for geospatial analysis of image data from various satellites while the
Google Earth Engine (GEE) platform is the most widespread in the scientific
tield of satellite RS. Newest launches of various satellites in combination with
the GEE platform, facilitate in a great extent national-scale lake monitoring.
Next step was to test the transferability and performance of hereby-developed
WQ algorithms when employing Landsat (7 +ETM/8 OLI) and Sentinel 2
surface reflectance (SR) values embedded in GEE and subjected to different



atmospheric correction (AC) methods from those used as they were
developed. More particularly, GEE-Landsat and -Sentinel 2 SR of year 2018
was retrieved from the WFD lake sampling stations while were
atmospherically corrected by the methods LaSRC (Landsat 8 OLI), LEDAPS
(Landsat 7 ETM+) and Sen2Cor (Sentinel 2). Those SR values (GEE) were
matched with WQ in-situ data of 2018 within +7 days (from sampling date) of
satellite overpasses, while the same pairs were created with SR derived from
manually downloaded and pre-processed, with AC DOS1 method, respective
images. Empirical WQ models of Chl-a, Secchi depth and TP (for all and
separately for natural and artificial lakes), were applied twice employing both
types of SR (DOS1- and rest in GEE- corrected). Furthermore, double
application of WQ models was conducted separately for Landsat (7
ETM+/OLI) and Sentinel 2 data. Double application of WQ models resulted in
double quantifications of each studied WQ element in each sampling station
while those double WQ values were inserted in a linear regression analysis.
Yielded linear equations (corrected WQ models), for each sensor, were
accompanied by strong associations (R? ranging from 0.68 to 0.98). Initial and
corrected sensor-specific WQ models were validated based on available in-
situ WQ datasets of 2019 and 2020. Sensor-specific correction of WQ models
was proven essential for some of them while RMSE values ranged for Chl-a
from 11.68 ug/l (Landsat) to 14.88 ug/l1 (Sentinel 2), for Secchi depth from 2.02
m (Landsat) to 2.57 m (Sentinel 2) and TP from 0.14 mg/l (Landsat) to 0.09
mg/l (Sentinel 2), values that confirmed the stability and transferability of
hereby WQ models even when employ differently-from-DOS1 method
corrected SR.

One more ambiguous question that has been examined is whether WQ
universal models are efficient for WQ monitoring of oligotrophic Case-2
waters. The classification of waters in Case 1 (oceanic) and Case 2 (coastal
regions, rivers, and lakes), is characterized by great importance; Case 1 waters
are determined by phytoplankton and co-varying substances, while Case 2
waters are more complex concerning their composition and optical properties.
Oligotrophic lakes are classified as Case-2 rather than Case-1 waters since
they typically receive significant levels of terrigenous input and their water
clarity is primarily controlled by the concentration of Dissolved Organic
Carbon (DOC). In purview of the above, lake WQ models were applied to
Landsat 8 OLI images, with available in-situ WQ data, illustrating two (2)
Greek oligotrophic waterbodies, Trichonis and Amvrakia lakes. Conclusively,
their application was ineffective: Chl-agenera model yielded values of RMSE=1.9
ug/l, NRMSE=1.6 and median MAPE=256.8 %, Chl-gnawra model yielded
values of RMSE=1.8 pg/l, NRMSE=1.5 and median MAPE=176.6 % while
results of all models of Secchi Disk and Total Phosphorus were statistically
insignificant. Based on the previous approach, an effort has been made to
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develop special designed WQ algorithms in Trichonis lake based on a dense
sampling network (22 stations). Subsequently, the most statistically promising
quantitative models — accrued from statistical elaboration of 2014 data- were
applied to another satellite image of 2013 (with available in-situ WQ data).
Results from the validation process showed a relatively variable statistical
relationship between the in-situ data and reflectances (R logchl-a: 0.4, R NHa *:
0.7, R Chl-a: 0.5, R CDOM at 420 nm: 0.3). Hereby findings were concurrent
with other studies in international literature, indicating that estimations for
oligotrophic are less accurate than eutrophic and mesotrophic lakes, owing to
the lack of suspended particles that are detectable by satellite sensors.
Conclusively, background information required, suitable spectral bands and
essential circumstances are described for the most optimal designation of the
WQ monitoring in oligotrophic waterbodies.

Scientific area: Remote sensing, GIS and spatial analysis for inland water
quality monitoring

Keywords: lake WQ, PCA, MLR analysis, trophic status, Case-2, WEFD,
Landsat, Sentinel 2, GEE, oligotrophic



Extipnon tng modtntag twv vdATwV Twv EAANVIKWY APVOV Héow
TNAEMOKOMIONG KAL OTATIOTIKTG LOVTEAOTIOINOTNG

Tunua Aéomoinons Quokav Iopwv & I'ewpyixne Mnxavikng
Epyaotnpio Edbagoroyiac & I'ewpyixnc Xnueiag

ITEPIAHWH

Z1OX0S NG TapovoAG dOAKTOQIKTIG dxTOIBNG elval 1) emitevén ovvexoug
TTAQAKOAOVONOTC KAl EKTIUNONG NG TOWOTNTAS TWV LOATWV KAl TNG
TOOPIKTG  KATAOTAOTNG TwWV €AANVIKOV  AUVOV  aElOTOOVTIAE TNV
epapguoyn e Odnyiag INAaiow yix ta Yoata (OIIY) otnv EAAGda oe
ovvépyewx pe T dooudPopikr) TnAemiokdmnon, maQéxoviag MAQAAANAN
vrtoot)otEn ot PLOoUn dlaxelpon TV LIATIVWV TIOWV oe €0VIKN
KkAlpaxa. H ovvexrc magakoAovOnon g mootntag vdATwy elvat to Tio
KOIOWO  XaQaxTnEowoTikd G  OAOKANEwWMEVNG dxxeloong  Auvatwyv
owoovotnNuatwyv. Q¢ ek TOoUTOL, TO MEOODOAOYIKO TAalOO TOUL
avantoxOnke éxel wg amwTeQO 0TOXO TN ONULOLEY I HOVTEAWV TTOCOTIKTG
EKTIUNONG NG TOLOTNTAC LOATWV ALUVAV VW 1) TOAKTIKT] EPAQUOYT] TNS
pneQodoAoyiag aflodoynbnke oe ovvoAwd 50 Atlpves (Puokés kat
texvnteg) anv  meptodo 2013-2018, amoteAwvtag to EOvikO  AikTtuvo
IMaparkoAovOnong Awvav mg EAA&dag oto mAaiow tng OITY. Ocov
apopd ot dedopéva dOQUPOOIKNG TNAETILOKOTINOTG, EKOVES ATIO TOLG
awOntroec Landsat 7 Enhanced Thematic Mapper Plus (ETM+) kot Landsat
8 Operational Land Imager (OLI) ovvdvaotnkav pe in-situ HETONOELS
TOOTIKWV  TIARAUETOWY  (XAwEodpVUAAN-ar  -Chl-a-, B&Oog Secchi Disk,
ovykévtowon OAwkoV Pwodogov, TP- Total Phosphorus) pe xvglo otoxo
™V emitevln avVATTUENG HOVTEAWV EKTIHNONG TNG TMOLOTNTAS KAL TS
TOOPIKNG  Katdotaong  LOATwV.  AMO  OTATOTIKNG  AToyng,
noaypatoron)dnke  avaAvon  kUowv  ovviotwowv  (PCA-Principal
Component Analysis) yix va OtegevvnOovv oL CLOXETIOES TWV
ovykevrowoewv ¢ Chl-a Twv eAANvikwv Alpveov pe aAAa Baoukd toug
KOLTNOL, OTIWS TO €AV elvat puotkéc 1] texvntég, v tuntoAoyia (OITY), Tov
KALHATIKO TOTT0 oUpPwva pe To ovotnua taéivounonc Koppen-Geiger, tnv
emox1] derypatoAnNPwv vepoL Kat TNV NUEQOAOYLaKT) dapood peTald Twv
in-situ dertyaTtoANPLwv Kal Tov TEQATUATOS TOov dogupogov. H avaAvon
KUQLWV OLVIOTWOWV VTIEDELEE TO XAQAKTNOLOTIKO PLOLKN/TEXVITI] KAl TNV
turtoAoyia (OITY) touvg wg TIig mMaQapéTEoug oL KLELlws CVUPBAAAOLY OTn
dakvpavon g ovykévtowong g Chl-a.

Yan ovvéxelr, dievepynonkav avaAvoels MTOAAQTANG maAvdoounong, He
) pEO0dO stepwise, HeTall dADPOQETIKWV OUAdWV dedOUEVWY, OL OTOLES
drpoopwOnrav pe Pdon ta koo g PCA. Baowog otoxog ntav 1
aVATTUEN dLaPOoEETIKWV aAY0QLOUwWV exTiunong g ovykévrowong Chl-g,
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TIEOOAVATOALOHEVOL O€ dLAPOEETKOVG TUTIOVG Alvav. Emerta, dte&€nxOn
avdAvon ovoxétong (correlation analysis) petald twv in-situ HeTENOEWV
TWV UEAETOUHEVWV TIAQAETOWY TIOLOTNTAG HE OKOTO TN OleQeLVNOT] KAl
avixvevon twv ovoxetioewv tovs. Me Paon ta amoteAéopata g
avaAvong  ovoxétwong,  OleveoynOnkav  mepatéow  avaAvoElg
TAALVOQOUTOTG, XONOLUOTIOWOVTAC TIG in-situ Tipuég Babovg Secchi disk kot
TP vy ) dnuoveyia BEATIOTWV HOVTEAWY OAWV TWV KATI YOOV (OAEG,
duokég Kal texvnTég Alpveg). L ovvéxew, de€nxon n ta&vounon g
TQOPIKTG KATAOTAONG TWV HEAETOUHEVWY AlUvaV, vmoAoyilloviag Tov
Aelictn) Toopuc Kataotaong (TSI) tov Carlson yux kdOe Afpvn, agxikd
Y OAEG KAl 0T OVVEXELX EEXWOLOTA Y TIS Puoucés Kat Tig texvntéc. H
nootetvopevn)  pebodoAoyla  elxe wg amotédeopa TNV avdmTuén
EeXWOLOTWV HOVTEAWV Y Tig puvowés (R = 0.78) kat texvntéc (R= 0.76)
Alpveg, evw TO YevikO HOVTEAO mov  avamtuxOnke Xwolg KoLtrow
amodelxOnke aocBevéotepo (R = 0.65) oe ovykolon pe ta vmoAowma. O
avaAvoelg maAvdeounong petald twv dedouévwv Landsat kot Babovg
Secchi odr)ynoav oe 3 povtéAa: v 0Aec tig Alpveg (Secchigenera; R = 0.78;
RMSE =2 m), yix tic puowkég (Secchinawra; R = 0.95; RMSE = 1.87 m) kat v
TG texvnTég (Secchiarifical, R = 0.62, RMSE = 1.36 m), pe afomotn akoPewa.
Ta evorjpuata €detEarv Ot oL avaAvoelg TaAvdEOUNONG 1oL oxeTICOVTAL HE
oV OAkd POOPoOo améTvxav Vo avanTOEOLV EVa OTATIOTIKA XTIODEKTO
HOVTEAO Yix TIg TexvnTég Alpves. Qotdoo, avédeléav éva loxvEo Y OAeg
e Alpveg TPgeneral (R = 0.71, RMSE = 0.008 mg/L) xat yix tig puoucég TPrhatural
(R=0.93, RMSE =0.018 mg/L).

Yan ovvéxewr, 00ov adoQd Ot AMOTEAEOUATH TOUL O&(KTN TQOPIKYS
katdotaong TSI, 1 peyaAvtegn anokAlon twv MEOPAETOUEVWVY TIUWV O
OX£0T HE TIC avTloTOoLXEeC in-situ avixvevOnke oe TEXVNTEC KAL TO ONXES
Atpveg (péoo Babog < 5 m), eruPePaiwvoviag v VAL a&loonUelwTwY
dxPpoomomMoewV HeTAlD PLOKWOV KAL TEXVNTWV LOATIVWV OwpATwV. Ta
ETOUEVA  OTUAVTIKA  EQWTIUATA TA OTOIXx AMAVTNOE 1] TAQOVLOX
OWaKTOQIKT) dxToIPn) elval apxik &dv ot mpoavadpepbévteg eumeloucol
aAyopLOpoL TapakoAoVOT oS TS TOLOTNTAS AUVWV TTov avarTLXOnKav
pe ewkoveg Landsat umopovv va epaguootovy eTutuXws oe eikoveg Sentinel
2 KoL OTn OLVEXELX €AV 1] OLVOLAOUEVN) XONON EKOVWV TOAAATIAQWYV
aoOnmowv dvvatat va BeAtiwoel TV akpifelx moooTkoToinoNg Tovg.
ITpog avtr) TNV katevBOLVOT), xenouomomOnKav euoveg Sentinel 2 MSI g
xooviag 2018 pe muegounviec TALTOXQEOVES HE AUTEC TWV HETONOTEWV
mtedlov pe okoTo TNV aloAGYNOT) NG ATOd00TC TWV EUTIELQIKWV HOVTEAWV
KQL T1 OVYKQLOT] TWV AMOTEAETUATWV ETUKVOWONG TOVG e Ta avTiotolXa
Twv dopuPpopwv Landsat. Avadopika pe ta amoteAéoupata, Ta Yevika
HOVTEAa OAwV Twv mototikwv Tapapétowv (Chl-a, BaBog Secchi Disk xat
TP), pe epappoyr) oe OAec TG AlpVES NTav TO ATOTEAETUATUCK KAl akQLpT)
otav edpapuootnkayv oe eikoveg Landsat, evw dev mapatnenOnke PeAticoon



voTeQa ATO TN XOT)0T) EKOVWVY TOAAaTAwV atoOntowv. Ta povtéAa Chl-a
kat TP mapovolaoav pikQoteeg TiHéG OPAAUATOS OTaV ePAQUOOTNKAY OE
eucoveg Sentinel 2 (RMSE Chl-a=16.4 ug/l vs 21.5 pg/l; RMSE TP=0.03 mg/1 vs
0.031 mg/l) kat povo to povtéAo Secchinatura elxe KaAUTEQN amddoon e
dedopéva Landsat (2.8 m vs 2.9 m).

Oocov adood otovg aAYORLOHOUS TWV TEXVNTWV ALUVAV, TO HOVTEAO TNG
Chl-a antédwoe kaAVvTepa Votepa amo 1 xorjon Landsat ewdévov (RMSE=
3.7 ug/l vs 7.7 ug/l; Sentinel 2), eva to povtéAo ektipnong Pabouvg Secchi
Disk métvuxe eAadowc kaAvTEQN amodoorn) XENOIHOTIOLWVTAG ELKOVEG
Sentinel 2 (RMSE= 1.5 m vs 1.6 m; Landsat). Tn) xe1p0teQn anodoon avaueoo
OTIC VIO HEAETI) TIOLOTIKEG TMAQAUETQOVS MaQovoioav T HOVTEAXR TNG
Chl-a (ot dukpeoeg MAPE tipéc xopavOnkav anod 42 % éwe 58% evw tou
BdOoug Secchi amo 24% éwe 44% xat tov OAkov Pwodpogov atd 22% Ewg
38%), yeyovog mov emufePatwvel Yo akopa pioe pood v oAvtAokoTnTo
riov koVUPBeL 1 xaptoypeadnon g Chl-a ota Vvdata g Ilepimtwong 2
(MaAAKTIA, E0WTEQKA VOATA).

INpeon, oL MAATPOQHES VTOAOYLOTIKNG VEPOUS AVOLXTOU KOO €XOLV
avadeixOel oe mMOAVTIHA eQYaAelx YEWXWOIKNG avAAvoTg dedouévwv
eovag dxPogwv dopuPopwv, evw 1N TAatpoouax Google Earth Engine
(GEE) etvat n mio dxdedopévn 0To eTMOTNHOVIKO Ttedlo TG 00QUDOQLKTIS
mAemiokonnons. Ou mpoopates exto&evoelc dadogwv doQLUPOPWV OE
ovvovaopo pe v mAatpooua GEE, dievkoAvvouv oe peydAo Padbuod v
nagakoAovOnon Twv Aluvav oe Ovikn kAlpaxka. Me Baon ta magamavw,
0 emopevo Briua NTav 1 efakpiPwon TG AmoOdOONS TWV TOLOTIKWV
HOVTEAWV OtV  XONOLHOTIOOUV  TIHEG AVAKAKOTC OL OoTtoleg  €xouv
vroPAnOel oe duadopetikéc HeOOdOLVS ATUOTPAIQKTG OLOEOwWONS Ao
avteg otav avantoxOnrav. Ilio ovykekQuéva, TIHES avAKAROTNG Amo
ewcoveg Landsat kat Sentinel 2 tov étovg 2018, amoktiOnkav péow g
niAatdpoouag GEE otovg otaBpovg derypatoAniac Atpvwv g OITY evw
Ntav atpooPatgka dlopbwuéves pe tic pebodovg LaSRC (Landsat 8 OLI),
LEDAPS (Landsat 7 ETM+) kat Sen2Cor (Sentinel 2). Ot ev A0yw Tipég
avaxAaong (GEE) avtiotoixiotnkav pe ta emtonmia 0edopeva TolOTNToG
vddtwv Tov 2018 pe dxPood NUEQOUNVIWV 7 NMHEQWV (ATO TNV
nuegopnvia derypatoAniac), evaw ta dw Cevyn dnuoveynOnkav pe Tig
TIHEG AVAKAAONG TIQOEQXOHUEVESG ATIO TIC AVTIOTOLXEG ELKOVES, OL OTIOLEG
ATOKTNONKAV KAl TEO-eMeLeQyAXOTNKAV XElQOKIvnTa, pe T pueébodo g
atpoopatgkr)c dwebwong DOSI. Ta eumepwka povtéAa Chl-a, Babovg
Secchi Disk xat TP (yux 0Aeg xat EeXwOOTA yix PULOKEG KAL TEXVITEG
Alpveg), epaguoomnkayv dVo (GoEES XONOIHOTOLWVTAG KAl Tt dvo &ldn
avdakAaonc, v DOS1-01000wuévn avaxkAaon kat ekelvn ov amoktr|Onke
amd ewkoveg evowpatwpeveg ot GEE mAatpooua. EmimpdoOeta, n dimAn
ePAQUOYT] TWV EUTIEQIKWV HOVTEAWV EKTIUNONG TG TOLOTNTAG LOATWV
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nioaypatomou)0nke Eexwolota yix Toug dopudpopovg Landsat (7 ETM+/OLI)
kat Sentinel 2. H dmAr edaguoyn twv MmootV HOVTEAwWV elxe wg
ATOTEAEOUA TN OLTTAT] EKTIUNOT] TV TIHWV TNG €KAOTOTE TOLOTIKTG
TIAQAUETQOV OTOV EKAOCTOTE OTAOUO derypatoAnlag kal otn ovvexelr
avTEG oL OAEG TIpEG (TtpoexOpeveS atto DOSI kot AoLmtég aTtHOOPALQIKES
He@oddovg) ewonxbnoav oe avadAvon yoaupkng maAwvdoounons. Ot
YOAUULIKES €ELOWOELS TIOV MEOEKLYPAV HeHOVWUEVA Y kK&Oe aloOntrioa
(Landsat, Sentinel 2) vrtédelEav tipég vmArc cvoxétiong (R? amd 0.68 éwg
0.98). H d1000won twv eUmeQk@V HOVTEAWV avAdAoya pe Tov aloOntroa
noarypatomom)Onie pe Paon ta dwbéoua in-situ dedopéva TOLOTNTAS TOV
2019 xat tov 2020 eva amodelxOnke amagalTnTn yix 0QLOHEVA Ao avTtd,
pe tic tués RMSE va kvpaivovtat yux ) Chl-a an6 11.68 ug/l (Landsat)
¢wc 14.88 g/l (Sentinel 2), yix to BaBoc Secchi Disk a6 2.02 m (Landsat)
éwg 2.57 m (Sentinel 2) kot TP artd 0.14 mg/1 (Landsat) éwg 0.09 mg/1 (Sentinel
2), Tipég mov emiBePatwoav ) otabeQoTnTA KAl T duvaTOTNTA LETAPOQAS
TWV  EUTEIQIKWY HOVTEAWV O  EKOVEG  OLAPOQETIKX  ATUOOPAQUKA
dlopBwpéveg, omnv mAatpooua GEE.

‘Eva axoun mepinAoko epwtnua mov éxel e£etaotel elval edv T HOVTEAQL
extipunong mowtntag vdatwv (Chl-a, Babovg Secchi Disk kar OAucov
PwoPpogov) divatal va elval ATOTEAETUATIKA YIX TNV TaQakoAovOnon
NG MOTNTAS TV OAryoteodPk@v vddtwv. H ta&vounon twv vdatwv
omv Ieplntwon 1 (wkeavia) kat otnv Iepintwon 2 (mMagaxTieg meQLoXEg,
TOTALX KL Alpveg), etvat waitepa onuavtikr). Ta vepa tng Iepimtwong 1
nipoodoptlovtat pe PAorn To PUTOTAAYKTOV KAl AOLTEC OLOlEG, evw Ta
vepd g Ieplmtwoncg 2 etvat o moAvTAoKa 6OV apoea 0TI CVOTAOT) Kol
TIC OMTIKEG TOLG WLOTNTES. Ot 0ALyoTeOdIKéS Alpves amoteAovv pia
EexwoLloT Katnyopla twv meginAokwy ontikd vdatwv g ITegimtwong 2
kat de ta&wvopovvtar otnv Ileplmtwon 1 dedopévov ott ocvvrBwg
AapBavouy onUavTiKé el0Qoég WNUATWY Kat 1) dxUYEelA TV LOATWY TOUG
eAéyxetat ouvnOwe AMO TIC OUYKEVTIQWOELS TOU OLXAVHEVOL 0QYAVIKOU
avOoaka (DOC-Dissolved Organic Carbon) kat 6xt and to PUTOTAAYKTOV.
Me Baon ta meoavadepévia, Ta HOVTEAR eKTIUNOTC TTOLOTNTAS LOATWY
Aqpvawv (Chl-a, BdBouvg Secchi Disk kat TP), edpappootnav oe ewoveg
Landsat 8 OLI mov ameucoviCovv dvo (2) eAANVik& oAryotoodka vd&TIva
owpata, Tg Atlpves Toxwvida xat AuPoakia. Luumeoaopatikd, 1)
ePAQUOYT] TWV HOVTEAWV 0& AUTEG TIC AlUveg NTAV avaAmoTEAETUATIKNY TO
Yevikd  HOVTEAO LTMOAOYOHOU TG XAWEOPUAANG-ar  amédwoe  TLUEG
RMSE=19 pg/l, NRMSE=1.6 xat median MAPE=256.8, 10 povtéAo
LTTOAOYLOHOU XAWQEOPUAANG-at 0Tig Ppuotkéc Alpves amédwoe: RMSE=1.8
ug/l, NRMSE=1.5 kat median MAPE=176.6 ev&) ta amoteAéopata Ttwv
Aoy povtéAwv OAucov Pwodogov kat BaBovg Secchi Disk dev 1tav
OTATIOTIKA ONUAVTIKA.



AappBavovtag vmopv ta mooavadepfévia amoteAéopata, £ywve Hix
TEOOTIADELX AVATITUENG HOVTEAWY EKTIUNOTG TNG TOLOTNTAS LOATWVY OTN
Atpvn Towxwvida pe Baon éva mukvo diktvo derypatoAnpiag (22 otabpuol).
Ian ovvéxelwr, ta BEATIota povtéAa (mov avamtoxOnkav pe Baon ta
dopuvdopkd  kat emtomix  dedouéva tov 2014) edapuoonKAy  OTN)
doovdogikny ewkova Tov 2013 kal N EMKVEWON TWV ATOTEAEOCUATWYV
TIOAYUATOTIO)ONKE XONOIHOTIOLWVTAG Tt AvTioToLXa in-Situ dedOEVA TOV
2013. Ta amoteAéopata amd Tt dwdkaoia emkLEWONG €deléav Ui
OXETIKA OLXPOQETIKN) OTATIOTIKN) OXE0T HETAED TwV in-situ dedOUEVWV Kal
twv avakAdoewv (R logchl-a: 0.4, R NHa *: 0.7, R Chl-a: 0.5, R CDOM ota 420
nm: 0.3). Q¢ ex TOUTOL, T evENUATA TALVTICOVTAL HE HE auTtd AAAWV
pneAetwv ot dedvn BBAloyeadia, vodekviovtag OTL 1) TapakoAovOn o
TG TOLOTNTASC VOATWV OTIG OALYOTQOPLKEG Alpveg etvat Atyotepo axQpr|g
oe OxE0T HE TG €VTEOPIKEG KAL HECOTQOPLKES, AOYw TG amovoiog
ALWEOVHEVWY  OwHaTWIwV Ta omola  elvat  avixvedoa amd  Toug
dopvdopkovs  atobntroes. EmmAéov megrypddovial oL amaltoUpeVES
TtAnpodoptec VTOPAOEOVL, oL kKaATAAANAec Paouaticés Cwveg Kol oL Paotkég
ovvOnkeg yix tov BéATIoTo oXedopd Twv pneBodwv magarkoAovOnoTC
TIOLOTNTAS LOATWYV O& OALYOTQOPUKA VOATIVO CWHATA.

Emotnuovikr) megoxr): TnAemokornnon, GIS kat xwowr) avaAvon vy
TNV TAQAKOA0VOT0T) TG TTOLOTNTAC TWV E0WTEQIKWV VOATWY

AéEetg-kAedid: ot VOATWV Atpvav, PCA, avédAvon MLR, toodun
kataotaon, [Teplntwon-2, OITY, Landsat, Sentinel 2, GEE, oAtyotoodikod
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YIIEYOYNH AHAQXH

ANAdvw 0Tl elpatl 1) AQmMOKAElOTIKN)  ovyYoadEéag NG  MAQOVOAS
Awwaxtookng Axtoifric pe titdo: «Water Quality Assessment in Greek
Lakes by Using Remote Sensing and Statistical Modelling», 11 omola etvat
TIOWTOTLUT KAl dev €xel avrrypadel (UEQOS TS 1) 0AOKANEN) amo &AAn
Onuootevpévn 1 adnuootevtn mvevpatikny eoyacio. BePaiwvw otL éxw
TNOTOEL TOVG KAVOVES TeEQl AOYOKAOTG TOL TUNpatog AloToinong
Qvowkwv  TTopwv kar Tewoywrne Mnxavikric tov Tewmovucov
IMavermomnuiov AOnvwv. EmmpooOeta, PePaiwvw Ot €xw TnErnoet
ATREYKALTA 00 0 VOHOG 0Qilel Tepl MveLHATIKNG WOKTNOAG Kot €Xw
ovpupoodpwOel mMANOWS He T TMEOPAETOUEVA OTO VOUO TeQl TROOTAOING

TIROOWTIKWV DEOOUEVWV KAL TIG XQX €S AKAdNUATKNG AeovTOAOYiaG.
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EYXAPIXTIEX

Ye avtd 1o onuelo Ba Nbeda va exPoaow TIG eLVXAQLOTIES Kol TN
BaBewd evyvwpoovvn pov oe 0AOLG Tovg avOEWTOLG TIoL OTABNKAV TTAAL
HoL Kat ovVEPaAAav pe TOwiAovg TEOTOUS 0TV OAOKANQWOT NG
TaEOvoAG dAKTOQKTG daxtoPric. H meplodog exmovnong g datoPrig
HoL aTtodelxOnke kamoleg Ppopég “emimova’” ovvaETIAOTIKY OXL HOVO YTl
TOAD OTUAVTIKA TG TUNHATa 0AOKAN0WwONKAV Kot T dlaQkelx TNg
é¢Eapong e mavdnuiag tov kogovoiov (COVID-19) -upe o,t1t avto
OLVETIAYETAL- AAAA Kal yiatl ovvéTeoe pe afloonUelwTa YEYOVOTA TN
TIOOOWTIKNG Kal owkoyevelakng pov Cwrne. H oAokAnpowon g datofrig
HoL armoteAel AOLTOV TNV MO ONUAVTIKY] oty TG Cwng Hov HETA TNV
AaTOKTNOT TOL TALdLOV Hov.

Agxikd, viwOw ™V avaykn va evxaootTow Tov emiBAEmovTa
Kabnyntm tov Tewmovucov Ilavermotmnuiov AOnvwv, Ap. Awoviooio
KaAvBa, o omolog pe epmiotevtnke kat pe kabodrjynoe pe evlovolaouo,
drAodolia kat vTTopoOV KaTd T dtdoKelx OAWV TwV dAPOQETIKWV OTAdIWV
EKTIOVNONG avTNG NS datEPrc. AwoBdvouar wWwitepa TuxXEEN TOL UE
adoour] T GoiTNnoT) HOL OTO HETATTLUXIAKO TIEOYQAUA TTOL OLVTOVICEL pe
titdo  «Edapgpoyéc TewmAnpodoownc otovg Puowkovg  Ildgovg»,
draotavpwOnKav oL dEOpoL pHag kabwg elpat olyovgn OTL aTéKTNOX AKOMA
éva OO UAXO 0T HEAAOVTIKY] HOV ETULOTNHOVIKY ol (kat 6L HOVO).

Tic Oeguéc pov evxaplotieg Oa MBeAa emiong va ekPEATW KAl OTO
TEOOWTIKO TG €0evvNTIKNG povadag Tewyoadkwv ITAngodpogaxwy
Zvomuatwv (EMITIZ) tov Tewmovikov IMavemiomnuiov ABnvav kabwg
vroéav MAVTAX aQwYol O& OTOLOONTIOTE €UTIODIO TQOEKVTITE &lte o€
ETILOTNHOVIKO €lTe O€ eMimedo TEXVOYVWOLlAG XONONG EWOKWV AOYIOUIKWV.

It ovvéxea Oa 10eAa va evxagotow tov Ag. HAla Anunrolov,

Epevvnm) A’ tov EAANvikov Kévtoov OaAdoowwv Egevvav kat éva amod ta



HEAN TNG OUHUPBOVAEVTIKNG ETULTEOTING TOL dOAKTOQLKOV Hov. AlocOavouat
OTL D&V LTIAEXOLV AdYLX YIX Vo TEQLYQAPw TNV EVYVWHOOUVT] KAL TNV
extipnon pov xkabws o Ap. HAlag Anunteiov amoteAel tov moaypatiko
Hov pévtooar Kal elvatr exelvog 0 avOpwmog Tov  dlevEULVE  TOVG
ETILOTNHOVIKOUG POV 0QLLOVTES KAL OVOLAOTIKA HE «dda&e» WS VA ayartw
KL V& AELOTIOLW TNV ETUOTIUN YIX TO KOO kaAo. 'Hrav mavta dimAa pov
va pe kabodnynoet kat va pe Pondnoet va EemeQAow OTOLOdNTIOTE
okOTeA0 eumodille v eféAEN e datoric pov, Xapllovtac Hov
TAQAAAT At TO «TTOAVTLO» DWQO TNG KOLTIKNG OKEYTC.

[duaitepeg evxaplotieg opelAdw otov Ap. T'ewpywo IletpdémovAo -
Entikovgo Kabnynt) tov Xapokomeov Iavemotnuiov- yix v apéoot
LTOOTNELEN, KaBod1YNon kot LTIOHOVY] TTOL LTTEdELEE KatOOAN T didorelx
EKTIOVNONG TNG dOAKTOQLKT)S pov datofr)c. Entiong tov evxapoiotw Oeopa
VX Tt WDALTEQWS TIOAVTIHA OXOALX TOU KATA TN OLXQKELX TIQOETOLUATIOG
TWV ETUOTNHOVIKQOV ONUOCLEVOEWV TOL TEOEKLYPAV ATO TNV TAaQovoA
dxtoPn kabwg ovvetéAdeoav otnv TaxVTEEN 0AOKANIPWON TS dadikaoiag
¢ kplong Tovc. ITépa dpwe amd avtd, o Ag. I'ewpylog ITetpdTOLAOC TV
0 A&vOowmog TOL TMEWTOS HOL OWafe TO TEdO TG OOQLDOELKTS
TAETUOKOTNONG -G KAONYNTIC OTO HUETATTTUXIAKO TQOYQAXHUUX  TTOV
TAQAKOAOVON - KAl €K TWV MEAYUATWV [e €deQe EWTN Good o€ emtadn
He TO avrtikeipevo oto omolo éueAde aQyoTEQx va  adleQwow  TO
HEYAAVTEQO HEQOG TWV EMAYYEAUATIKWV OV OKEPEWV KAL AVNOLXLWV.

Emmooofeta, Oa nMbeAda va evxagotiow touvg Ap. Tewpytlo
[NTanadomovAo - AvanAnowtr) Kabnynty-, Ao. EppavounA Wowuiddn -
Enttkovgo Kabnynm- kat Ap. Kwvotavtivo ZovAn-Entikovpo KaOnyntn)-
tov I'ewmovikov Iavemotnuiov AOnvwv kat tov Ag. Iwdvvn Kapaovla -
Epevvnt) I”- tov EAAnvikov Kévtoov OaAaoowwv Egevvav, apxika yiax tnv

ATI0dOXT] TOUG VA CUUHETATXOVV WG HEAT TNG EEETAOTIKNG ETLTOOTIG TNG
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dLdAKTOQIKNG HOL dXTOPNG AAAL KAL YIX TO XQOVO TIOL aAPLEQWIAV Yl
TNV AVAYVWON TNG KAL TNV TAQOXT TV WPEALUWY OXOALWV TOUG.

EmmpooBeta, Oa nMbeAda va ekdpoaow TIG evXaQloTiec HOL OTO
MEOOWTIKO oL EAANVIKOU Kévtpov Botomwv-Yypotomwyv (EKBY) tou
Movoeiov  TovAavdory Pvowng Iotoolag yux tov  amodederyuévo
ETIAYYEAUATIONO TOUG OXETIKA UE TN OLAAOYN KAl dAVOUY] TV AQTLX
emeEeQyaouévwy in-situ dedopévwv molotnTag vddtwv. H mapakoAovOnon
twv 50 Apvav Aertovpyet aduaAewmta and to EKBY and to 2012 ot
evraooetal 0to EOvikd Atktvo ITagakoAovOnong g mootntag kat g
TIOCOTINTAG TWV LOATWYV TOL CLYKEOTONKe e Kowvr) Yroveywkr) Amodpaon
(KYA 140384/2011) oto mAaiowo epagpoync tng Odnyiag yix ta Ydata.

Ze avto 1o onuelo de O HToQOVOR VA NV ELXAQLOTIOW KAL VX U1V
eEKPOACT TNV AMEQLOTH EKTIHNOT) HOL Yiax OAovG Tovg oLV-AdEQDOLS Kat
KaAoUg/éc  didovg/eg mov €xw amoktjoel tooa xeovia otov Touéa
Eowtepwewv Ydatwv (aAA& kal ota Aowma Ivotitovta) tov EAKEGE. H
kaOnpeown) pag eradr) ta teAsvtala tovAaxotov 10 xpovia ovveloédege
OXL HOVO 0tnV eEEALEN TG eTAYYEAUATIKIIG MOV TtoQelag aAAQ Kat otV
amokTnon pag Ceomg avOpwrivng aAAnAentidoaong, N omoila NTav mavTa
aQWYOS 0TI PLXOAOYIKT) HOVL eunueQia kKal 0TV 0AOKAN|QWOT) TOL €V AOYw
ETULOTNHUOVIKOV €YXELOTHUATOC.

ATEQLOQLOTA  EVYVWHWVY KAl TuxXeEn atobavopal Kal yix Toug
KAAOUG/€C kal mIoToUG/éG pov pidovg/eg Ttov e ovvtpodevovv otr Cwr) Yo
navw and 20 xeovia otnEllovtag pe o0& OAEC TIC XAQEC Kat AVTEG” XwOlg
avTovc/ég, N eEEALEN pov Ba MTav evieAws dadOQETIKT).

H peyaAvteon evyvwpooLvn HOU avikel OKAIWUATIKA OTNV
OKOYEVELX POV, 1 OoTtolar e OTnELleL KAl pe eVOUVAUWVEL adlaKkoTIa ATt
t0Te IOV OLUAMAL TOV €QLTO HOL. MNTéQa KAl AVTLYOV 0QG EVXAQLOTW
wlaitepa yx tn ovvexn evOappuvvor, ouvaloOnuUATik) LTTOOTELET KoL TNV

AVEL OQLX AYATIN OAG.
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“Our future lies with today’s kids and

tomorrow’s space exploration”

Sally Ride
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Xtov yio pov Odvooéa kat
oTN uvnun Tov noAvayannuévov uov natépa BaoiAn
kaOwc xat ot dvo pali, nrav, eivar kat navta Oa eivat

oL pwTewvol papot tne Cwng pov
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I. LIST OF ABBREVIATIONS AND ACRONYMS

Abbreviation Meaning
ALI Advanced Land Imager
ALOS Advanced Land Observation Satellite
ANN Artificial Neural Networks
AQP Apparent Optical properties
ASTER Advanced Spaceborne The.rmal Emission and Reflection
Radiometer
avg average
CDOM Colored Dissolved Organic Matter
Chl-a Chlorophyll-a
CI Cyanobacteria Index
CI Condition lindices
DN Digital Number
DOC Dissolved Organic Carbon
DOM Dissolved Organic Matter
DOS1 Dark Object Subtraction 1
EC European Commission
Goulandris Natural History Museum, Greek
EKBY .
Biotope/Wetland Centre
EO Earh Observation
EPA (U.S.) Environmental Protection Agency
ESA European Space Agency
ETM+ Enhanced Thematic Mapper Plus
EVI Enhanced Vegetation Index
FLH Fluorescence Line Height
GA Genetic Algorithms
GCP Ground Control Points
GEE Google Earth Engine
GIS Geographical Information Systems
GNDVI Green Normalized Difference Vegetation Index
HCMR Hellenic Centre for the Marine Research
IDW Inverse Distance Weighted
10P Inherent Optical Properties
KML Keyhole Markup Language
L8 Landsat 8
LaSRC Land Surface Reflectance Code
LEDAPS Ecosystem Disturbance Adaptive Processing System
LOQ Limit of Quantitation

LULC Land Use/Land Cover




MAPE

Mean Absolute Percentage Error

MCI Maximum Chlorophyll Index
ME Mean Error
MERIS Medium Resolution Imaging Spectrometer
ML Machine learning
MLRs Multiple Regressions
MNDWI Modified Normalized Difference Water Index
MODIS Moderate Resolution Imaging Spectroradiometer
MSFD Marine Strategy Framework Directive
MSI Multispectral Instrument
MSS Multi-Spectral Scanner
N Nitrogen
NASA National Aeronautics and Space Administration
NDCI Normalized Difference Chlorophyll Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NIR Near Infrared
NRMSE Normalized Root Mean Square Error
NRVI Normalized Vegetation Index
OACs Optically Active Components
OLI Operational Land Imager (Landsat 8)
OLI-2 Operational Land Imager-2 (Landsat 9)
OWTs Optical Water Types
P Phosphorus
PC Phycocyanin
PCA Principal Component Analysis
Q-GIS Quantum Geographic Information System
RF Random Forest
rho Pearson correlation coefficient
RMSE Root Mean Square Error
RS Remote Sensing
SABI Surface Algal Bloom Index
SCL Scan Line Corrector
SCP Semi-automatic Classification Plugin
SD Secchi Depth
SDD Secchi Disk Depth
SDT Secchi Disk Transparency
Sen2Cor Sentinel 2 Correction (algorithm)
SPM Suspended Particulate Matter
SPOT

Satellite Pour I’ Observation de la Terre

SR

Surface Reflectance
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SVM Support Vector Machine
SWIR Short-wave infrared

TIR Thermal Infrared Sensor

™ Thematic Mapper

TN Total Nitrogen

TOA Top of Atmosphere (reflectance)

TP Total Phosphorus

TSI (Carlson’s) Trophic State Index
TSM Total Suspended Matter

TSS Total Suspended Solids
USGS United State Geological Survey

VIF Variance Inflation Factor
WED Water Framework Directive

WQ Water Quality




II. GLOSSARY

Case 1 Waters
which optical properties are mainly
determined by  phytoplankton
(oceanic).

waters:

Case 2 waters: The optically
complex waters. The optical signal
is dominated by phytoplankton but
also by particulate inorganic matter
and CDOM (coastal regions, rivers,
and lakes).

Freshwater

Lacustrine waters:

lakes

Water clarity: A measure of
underwater visibility, influenced
by turbidity and color.

Lake trophic status/state:
Biological condition dependent on
(nitrogen,
phosphorus, pH, turbidity, color
etc).

various factors

In-situ (water sampling): In the
natural/original position/place
(water sampling).

Multi-sensor images: Images from
multiple satellite sensors.

Absorption  wavelength:  The
wavelength at which a water
sample absorbs light depending on
the ion or molecule of component’s
composition.

Spectral Reflectance: The spectral
fraction of light reflected by a
surface.

Spectral bands: Specific portions of
the electromagnetic spectrum of
eflected light.

Backscatter: The scattering of
radiation in a direction opposite to
that of the incident radiation due to
reflection from particles of the
medium traversed.

Transboundary lakes: Lakes shared
by two or more countries.

Eutrophication: Process of
increased productivity of a lake (as
it ages) which is greatly accelerated
by human activities (increase in
nutrients), resulting in an increase
in biological production.

Surveillance monitoring stations
(WFD): Member States must
monitor at least for a period of a
year for parameters indicative of all
biological, hydromorphological
and general physico-chemical
quality elements.

Operational monitoring stations
(WFD): Member States are required
to monitor for those biological and
hydromorphological quality
elements most sensitive to the
pressures to which the body or
bodies are subject. Operational
monitoring must use parameters
relevant to the assessment of the
effects of the pressures placing the
body at risk.
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Spatial resolution: Refers to the
size of the smallest feature that can
be detected by a satellite sensor or
displayed in a satellite image, is
represented in pixels and noted as
how many meters that pixel
represents.

Radiometric resolution: The
amount of information in each
pixel, that is the number of bits
representing the energy recorded.

Spectral resolution: The number
and size of  bands in
the electromagnetic spectrum that a
remote sensing platform can
capture.

Temporal resolution: Refers to the
frequency at which imagery is
recorded for a particular area.

Solar zenith angle: The angle
measured from the local zenith and
the line of sight of the sun.

Optically shallow waters (OSWs):
The bottom signals can be reflected
in the water-leaving radiance and
remote sensing reflectance (Rrs(l))
signatures. For clean waters, OSWs
are those with depths <20 m, and
turbid waters with depths 1-3 m.

Spectral indices: Mathematical
equations
employing two or more spectral
bands (wavelengths) of an image
per pixel.

(combinations)

Image pre-processing: Radiometric,
atmospheric and
corrections of raw remotely sensed
image data.

geometric

Band stacking: The process of
combining multiple bands into a
single image file.

Time window: Date difference
between field
satellite overpass.

sampling and

Path/Row: Row refers to the
latitudinal center line of a frame
of imagery. As the satellite moves
along itspath, the satellite
instruments  are  continuously
scanning the terrain below. These
will be squares centered on the
orbital path, but tilted clockwise
when viewed on the UTM
projection used for the distributed

data.

Resampling procedure: Technique
of transforming an image by
recalculating its pixel values to be
titted to another image.

Focal statistics tool: Performs an
operation that calculates a statistic
(mean, maximum, or sum) for all
input cells within a set of
overlapping neighborhoods and
within each neighborhood.

Multicollinearity: The occurrence
of high intercorrelations among
two or more independent variables
in a multiple regression model.



Water specular reflection: The term
used to describe ‘'mirror-like’
reflection, from the surface of
water (angle of reflection equals
angle of incidence).

Spatial interpolation: Predicts
values for cells in a raster from a
limited number of sample data
points. It can be used to predict
unknown  values  for  any
geographic point data, such as
chemical concentrations.

WQ Optically Active Components:
Phytoplankton (Chl-a), Secchi Disk
Depth, Temperature, CDOM, TOC
(Total Organic Carbon), TSM (Total
Suspended Matters, Turbidity, Sea
Surface salinity and Electrical
Conductivity. Components that
interact with light and change the
energy spectrum of reflected solar
radiation from waterbodies.
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I11. PhD in numbers

PhD in numbers...

Satellite images Study area: 50 lakes

Landsat (7 ETM+ and 8 OLI): 320 Natural: 24

Sentinel 2: 44 Reservoirs: 26
Transboundary: 3

In-situ WQ measurements Publications: 4

Chlorophyll-a: 1000 Journal papers: 3

Secchidepths: 1343 Conference papers: 1

Total Phosphorus: 726

Sampling stations (WFD): 53
Surveillance: 27
Operational: 26



IV. PhD OUTLINE

This PhD Thesis is divided into one (1) Introductory section and four (4)
main chapters (Figure 1).

General Introduction describes the background knowledge required and the
state-of-the-art methodologies applied, concerning the main herein attempted
task; the monitoring of lake water quality (WQ) and trophic status through
satellite remote sensing (RS). Special reference is made to: (1) the great lakes’
significance for all living organisms, the necessity of continuous lake WQ
monitoring for their sustainable management due to ongoing human
pressures and by extension to lakes’ greatest threat; the so-called
eutrophication, (2) traditional and latest scientific trends of lake WQ
monitoring, (3) recent developments in geoinformation technologies and the
contribution of RS in WQ monitoring, (4) Water Framework Directive (WFD)
instructions and requirements concerning the monitoring of lakes” WQ, (5)
Earh Observation (EO) data, WQ key indicators and the contribution of
Landsat mission to efficient lake WQ monitoring, (6) traditionally used
methodologies for lake WQ monitoring through satellite RS, (7) description of
optically and non-optically active WQ constituents measured by RS
accompanied by the most utilized methodologies, (8) the high contribution,
accrued from the combination of various multi-spectral sensors, to
acquirement of high-frequency lake WQ time series and performance of
multi-temporal analyses, (9) the development of Big Eath Data Cloud
Processing Platforms and in particular the significance of Google Earth
Engine (GEE) cloud-based platform to large-scale lake WQ assessment and
long-time-series analyses, (10) background information about the waters’
distinction in Case-1 and Case-2 and further research on WQ monitoring of a
distinct category of optically complex Case-2 waters, oligotrophic lakes;
obstacles and weaknesses are discussed concerning the achievement of a
higher accuracy. Furthermore, this chapter presents the aim and objectives of
the current thesis.

Chapter 2 is entitled “Towards the modelling of Greek lakes WQ using RS
technology” and presents the methodological framework established herein
for the development of WQ models (Chl-a, Secchi depth and Total
Phosphorus), applied in 50 lakes constituting the National Lake Network
Monitoring of Greece (WFD). This chapter also examines and discusses the
efficiency of hereby Landsat-developed WQ models: (1) when applied to
Sentinel 2 images, and (2) when employing multi-sensor image data. The
significance of this chapter lies initially in the fact that lake WQ elements have
been determined with high accuracy (RMSE Chl-a values ranging from 1.53
ug/l to 4.6 pug/l; RMSE Secchi values from 0.89 m to 1.7 m; RMSE TP values
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from 0.008 mg/l to 0.03 mg/l) throughout the studied lakes. Given the
complexity that characterizes the mapping of WQ elements in Case 2 waters
(coastal, lakes, rivers) in combination with the wide study area while covering
a broad range of limnological conditions, hereby chapter contributes
essentially to sustainable water resources management at a country level.
Towards strengthening the facilitation of WQ and/or trophic status
monitoring across Greek lakes, employment of Sentinel 2 and multi-sensor
image data (Landsat 7 ETM; Landsat 8; Sentinel 2 MSI) permits the
integration among existing and historical missions while contributing to long-
term time series data collection. In this way, the delivery of detailed spatial
variability of WQ and trophic status over Greek lakes in fine spatial resolution
(10-30 m) further grants the monitoring of lake eutrophication and its spatio-
temporal changes; information that is fundamentally valuable in terms of lake
management in the framework of national environmental policy.

Chapter 3 with title “Atmospheric correction analysis of lake WQ models by
employing surface reflectance (SR) embedded in GEE platform” emphasizes
on the harmonization among SR values subjected to different atmospheric
correction (AC) methods. The harmonization is based on the further
development of corrected sensor-specific (Landsat/ Sentinel 2) WQ models,
accommodating inherent spectral and pre-processing differences. Eventually,
efficient performance of WQ models employing GEE-derived SR values
(datasets of 2 validation years yielded mean RMSE values of Chl-a: 20 ug/l-
Landsat; 13.4 ug/l Sentinel 2, Secchi depths: 2.1 m —Landsat; 2.8 m- Sentinel 2
and TP: 0.15 mg/l-Landsat; 0.11 mg/l- Sentinel 2) confirmed their spatio-
temporal stability despite the AC method applied and satellite sensor used.
The significance of this chapter lies on the fact that even though retrieval of
WQ parameters requires precise AC, hereby developed models managed to
perform well exploiting the massive GEE warehouse of data while exempting
from the pre-processing procedure. In this way, GEE facilitates the long-term,
near real-time, national-scale lake WQ and trophic status monitoring by
mapping long-term WQ trends in less time and fine spatial resolution.

Chapter 4 is entitled “Operational development of techniques for
characterising WQ of oligotrophic Case-2 waters” and emphasizes on a
distinct category of optically complex Case-2 waters; oligotrophic
waterbodies. This chapter investigates hereby WQ models’ performance
when applied in oligotrophic Trichonis and Amvrakia lakes, and underlies
the necessity of the development of special oligotrophic algorithms for a more
efficient and comprehensive lake management. Afterwards, an attempt to
independently model WQ of Trichonis lake is described, by assessing certain
WQ elements through satellite RS and evaluating special models” accuracy.
This chapter confirms, in absolute agreement with the relevant literature, the



underachievement of universal WQ models at the lowest chlorophyll
concentrations (oligotrophic waterbodies) and at cases where the optical
contribution is non-algal. Furthermore, several indications concerning the
appropriate satellite bands, the existence of more and narrower wavelengths
in specific ranges of electromagnetic spectrum and the refinement of AC
processors are provided dedicated to this sub-category of Case-2 waters.
Aforementioned indications, accompanied by the preceding and thorough
research on phytoplankton community composition, Chl-a distributions,
particles and CDOM, constitute the background knowledge required and the
trigger for a more accurate WQ monitoring of oligotrophic waterbodies along
Greece. Based on the above, this research facilitates the refinement of lake WQ
monitoring in Greece by laying the foundation stone of further discrimination
of Case-2 Greek waterbodies into discrete optical water types (OWT).

Chapter 5 summarizes the most fundamental conclusions, innovation and
limitations emerged in the context of this thesis. Additionally, the significance
of the current thesis is presented which substantially lies in the generation of
national lake WQ models which:

a) have been developed and applied in 50 different Greek lake systems of
varied chemistry, limnological conditions and trophic level while were
sampled during different seasons

b) accommodate the spectral composition differences among Landsat (7
ETM+, 8 OLI) and Sentinel 2 sensors

c) also accommodate the differences emerging from the different
atmospheric correction methods applied in manually-elaborated and in
GEE-embedded reflectance values

d) were proven reliable for the systematic assessment of Chl-a and TP
concentrations and Secchi Disk depths with high accuracy across Greek
lakes while providing spatial WQ and trophic status variability in fine
resolution (10-30 m)

Based on those characteristics, hereby-delivered WQ models substantially
facilitate the monitoring of lake WQ in Greece through satellite RS as they
have the potential to constitute a part of a wider national lake
management plan and early warning system through the timely
identification of pollution events and by extension the promptly
performance of sustainably efficient solutions.
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Figure 1. Flowchart presenting the main chapters of the current thesis.



V. EKTENHX INIEPIAHYH

Aedopévng e peYAANG onuaciag mov €xouvv oL AlpVES Y TO
neplBAAAOV kat T Cwr) Tov avOEWTOoUL, 1) CLVEXTS TTAPAKOAOVON O NG
TOLOTNTAC TWV LOATWYV TOUS HEow NG edpaguoyns tne Odnylag IMAalowo
yux ta Nepa (OIIY-WFD) Oewoeltar amagaltntn yx v Puooun
duaxelpon tove. H emitorua (in-situ) magakoAovOnon tng motdtntag veQov
-Héow detypatoANPov- twv Avev oe ouvdvaoud He T d0QLPOQLKN
mAemiokonnon  (Remote Sensing) avTimpoowmevel TAYKOOUIWS TNV
TeAevTalal EMOTNHOVIKT) TAOT] 0€ TTOAAX TTQOYQAHUATA TTAQAKOAOVONOTG
rnodtnTag vOATwV. )G €k TOUTOV, TO €VEV HeBOdOAOYIKO TAalolO0 TOL
avantoxOnke otV MaEovoA dOAKTOQLKN dXTELPT] £xel WS Pacikd oTdXO
m  OnuovEyia  pOVTEAWV  EKTIUNONG  TOTNTAS  LOATWV  ALUVAOV
vrtootneilovtag MaEAAANAa ™ Bloun dxXeloLoT TV LOATIVWVY TIORWV
oe e0vikn xkAlpaxka. H moaktikr) epaguoyn avmmg e pebodoAoyilag
avantoxOnke kat afloAoynOnke ovvoAwd oe 50 Afpveg (Puowkég kat
texvnteg) v mepiodo 2013-2018, amoteAwvtac to EOvko  AikTtvo
IMaparkoAovOnong Awvav mg EAA&dag oto mAaiow tng OITY. Ocov
apopd ot dedopéva dOQUPOOIKNG TNAETILOKOTINOTG, EKOVES ATIO TOUG
atoOnoeg Landsat 7 Enhanced Thematic Mapper Plus (ETM+) kat Landsat
8 Operational Land Imager (OLI) ovvdvaotnkav pe in-situ HETONOELS
TIOOTIKWOV  THQAUETOWY  HE KUQLO OTOXO TNV eTtitevln avamtuéng
HOVTEAWV EKTIUNOTG TNG TOOTNTAS KAL TNG TQOPIKTG KATAOTAONG LOATWV.
OL To0TIKEG TTAQAMETQOL TOL peAetOnkav elval 1 oLYKEVTOWON TNG
XAweopVAANG-a (Chl-a), to B&Oog Secchi Disk, 1 ovyxévtowon OAwkov
Ddwodogov (TP- Total Phosphorus) kat kat’eméxtaon o Aeiktng Toodung
Katdotaong (TSI- Trophic State Index).

Apgxwkd, n extiunon g ovykévrowons e Chl-a oe Vvdata g
[Tepintwonc-2 (Case-2 waters; mMAXQAKTLEG TEQLOXES, TMOTAMLA KAl ALUVEQ)
etval kaipag onuaociag, kabws avt N TAQAUETOOS ATOTEAEL OTUAVTIKT|
EvOELEN NG AKEQALOTNTAG TOV OLKOOVOTHUATOS. ATIO OTATIOTIKTG AToPng,
noaypatomomOnke  avaAvon  kVowv  ouvviotwowv  (PCA-Principal
Component Analysis) yix va 0OtegevvnBovv oL ovoxetioels TV
ovykevtowoewv ¢ Chl-a twv eAANvikwv Aluvov pe aAda Baotk& toug
KOLTNOW, OTIWS TO €AV elval puotkéc N texvnteg, v tvmoAoyia (OITY), tov
KALHATIKO TUTO oVHPwva pe to ovotnua taévopnons Koppen-Geiger, tnv
eTOXN OeLYHATOANPLWV VEQODU Kol TNV NUEQOAOYIAKN dXPOoQd HETAED TWV
in-situ QeLyLATOANPLOV KAl TOU TEQATUATOS TOL dopudhoov. H avaivan
KUQLWV OUVIOTWOWV VTEDELEE TO XAQAKTNOLOTIKO GLOLKT)/TEXVTTT] KAl
v tuvnodoyia (OIIY) Tovg wg TIG TMAQAUETQOVG MOV  KULELWG
ovuBaAdovv ot dwakvpavon tng ovykévroworng tng Chl-a. X
ovvéxelwa, OleveQynoOnkav avaAvoelc MOAAATANG TAALVOQOUNOTG, HE T
HéBodo stepwise, petall dAPOQETIKWY OUAdWV dedopévwy, Ol Omoleg
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drpoopwOnrav pe Paon ta koo s PCA. Baouog otoxog ntav 1
aVATTUEN dLPOEETIKWV aAYOQLOUWV ekTiunong g ovykévtowong Chl-g,
TEOCAVATOALOEVOL  0e  dlaooeTikovg  tomovg  Apvwv.  TTpooOeteg
aAVaAVOELS TAALVOQOUNOTG EPAQUOOTNKAV KAl 08 OVUVOAX eDOUEVWVY YIX
T omola de ANPONKav LTIOYN CLYKEKQLIUEVA KOLTNELX KAl adoQovV TIg
TLEQLTITWOELS OTAV D&V VTIAQXOLV dxOéoipes MANQOPOQLEG OXETIKA HE T
XXQAKTNOLOTIKA TWV HEAETOUHEVWV ALUV@V.

Yan ovvéxewn, de&nxOn avaAvon ovoxétiong (correlation analysis)
HeTa &V TV in-situ HETQNOEWV TWV HEAETOVUEVWY TIAQAUETOWY TIOLOTNTAG
(Chl-a, BaOn Secchi disk kat TP) pe okomo 1 deevivnor kal avixvevor
Twv ovoxeticewv tovs. Me Paon ta amoteAéopata TG avAaAvorg
OLOXETIONG, OlevepyNOnkav  meQatéow  avaAvoels  TaAvoQounong,
xonowonowvtag Tig in-situ tipéc PaBouvg Secchi disk kat TP yux 1)
onuoveyla BEATIOTWV HOVTEAWY OAWV TWV KATI YOOV (0AES, PLOLKEGS Kal
texvntéc  Alpveg). ‘Emewrta, 0e&nxOn n  tafwvounon g teodpiknc
KATAOTAONG TV HEAETOVHEVWV Alvwy, vToAoyiCovtag Tov Aegiktn
Toopwkng Kataotaong (TSI) tov Carlson yix kaOe Alpvn, apxikd v 6Aeg
KL OTN OLVEXEWR CEXWELOTA Ywax TG Puokés kat T texvnrés. Ot
vTtoAoYLopOL TwV dtadoeTikwv dektwv TSI (yevikog, Gpuokog, texvnTog)
vroAoylotnkav pe Bdon ta avriotoxa povtéAa molotnTag (XAweopuAAn-
a, PaBog Secchi disk kot OAucoc Gawodoog).

LUVOAIKA, Ta amoTeAéopaTa MOV adoQovV OTNV EKTIUNOT] TWV
OUYKEVIQWOEWV TNG XAwEOPUAANG-a& KAl TLO OUVYKEKQIUEVA TOU
AoyaplOuikov petacxnuaticpov tovg (logChl-a), anédelav tnv
KATAAANAOTNTA TV dedopévwy twv dogudpogwv Landsat (7 ETM+ kau 8
OLID. H mpotewvouevn pebodoAoyia elxe wg amotéAeoua TNV avantuén
EeXwOLOTWV HOVTEAWV Yia Tig Ppvotkés (R = 0.78) kar texvntés (R= 0.76)
Alpveg, eV TO YeEVIKO MOVTEAO TMOL avamtuxOnke xwEic kQlLTrox
amodeixOnke acOevéotego (R = 0.65) o oVYKkQLOT pe T vdAoma. Ta
amoteAéopata tov mivaka ovoxétiong (correlation matrix) petalv twv
in-situ  dedopévwv XAwEodPpVAANG-a, Pabwv Secchi disk xar TP
vnédetEav vPnAn kar Betikny oxéon petalv TP kar XAweopvAAns-a
(0.85), evw vymnAég apvnrikés oxéoels evromiotnkav petalv Pabovg
Secchi disk pe TP (-0.84) kot XAwEopvAAn-a (-0.83). Ov avadvoelg
naAvdgounong petal twv dedopévwv Landsat kot BaOovg Secchi
odnynoav oe 3 povtéAa: yia 0Aes Tig Aipveg (Secchigenera; R = 0.78; RMSE
=2 m), yix Tig Gpvoikég (Secchinawray R = 0.95; RMSE = 1.87 m) kot yia Tig
texvnTég (Secchiarificial, R = 0.62, RMSE = 1.36 m), pe afiomotn axgipeia.
Ta evonuata €detlav oOtL oL avaAvoelg MAAvOQOUNONG mTOov
oxetiCovtar pe tov OAtk6 Pwodogo amétvxav va avantvéouvv éva
OTATIOTIKA OMOOEKTO HOVTEAO Yl TG TeEXVNTEG Alpves. Qotooo,
avédetEav éva 1oxveo yia 0Aeg tig Aipveg TPgenerat (R = 0.71, RMSE = 0.008
mg/L) kot yiax tig Gpvokég TPnawra (R = 0.93, RMSE = 0.018 mg/L). Xtn



OUVEXELR, OO0V aPOQA OTA AMOTEAEOHATA TOUL deikTn TEOdPIKNG
kataotaong TSI, n peyaAvteon anokAion twv MEOPAENOUEVWY TIUWV
oe OX£01 M€ TIG AVTIOTOLXEG in-situ aviXvevOnke ge TexvnTég KAl TLO
onxés Aipves (péoo PaBog < 5 m), emPefatwvoviag Tnv VMAEEN
afloonueiwtTwv dladoQoMoOewVv HeETAED GUOIKWV KAL TEXVITWV
voaTIvVwV cwudtwv. ZuvopiCovtac, pe Pdon ta anoteAéopata e 0ANG
ETUOTNUOVIKIG  mEoomaOelxg, amodeixOnke OTL 1 OULYKEKQLUEVN
pneBodoAoylar etvar kavyy va LTOOTNELEEL KAVOTIOMTIKA T OLXQKT
TTAQAKOAOVONOT) TG TOLOTNTAS LOATWV KAL TNV AELOAOYTON TNG TEOPLKT]S
KATaotaons twv eAANvikwv Alpvov. Kat' eméktaor, dievkoAvvetat 1)
Brawoun dixxelplor) Tovg, WIAlTEQR O€ TEQLMTWOELS TIOL Tt in-situ dedopeva
elval OXETIKA TTEQLOQLOUEVAL.

AAa Pacwd  egwTUATA T OMOIX  ATIAVTNOE 1] TAQOVOX
OOAKTOQLKT] dATELP elval aQxka eav ot mpoavadepOévteg eumeloucol
aAyoplOpol mapakoAovONoNG NG moWTNTAS ALUVWV TIOL avamTuxOnKav
ue eucoveg Landsat pmogovv va epaguootovv emituxws oe etkoveg Sentinel
2 KAl 0T OULVEXEWR €AV 1 OLUVOLAOHEVT] XONOT eWOVwY TOAAATIAWV
atoOnmowv duvatal va BeAtiwooel TNV akEiBelx TOOOTIKOTOMONG TOLG.
EmmAéov, aveEapmta and v vmapsn 1) OxL kdmowg PeAtiowong, évag
AAAOG 0TOXOG AVTHG TNG CLVOLAOUEVNG TEOCEYYLONG elvat va kaBoploTel
eav oL &xoves  moAAamAwv  awoOnmowv B umogovoav  va
xonotpomomOovv pe ToLAaXLOoTOV e&loov alldmiota anoteAéopata OTWS
QAUTA TIOL TEOKVTITOLV QATO T XONOT] €IKOVWV HOVO €vog aoOntmoa.
Metal twv moAAamA@v  awoOnTrowv  avixvevoviat moAvAaQlOueg
TOOXIAKES, XWOWKES KAl  Paouatikés  dxpoQOTOOEL, WOTOOO0 1)
duvatdNTa HeTaPOoQAS TwV AAYOQIOUWY EKTIUNONS TOLOTNTAS LOATWYV
peTalV tovg, dev éxel eEetaotel emagkws ot dedvr) BipAtoyoadioa. ITgog
avt) Vv katevOvvor, xonowonowmOnkav ewkoveg Sentinel 2 MSI g
xooviag 2018 pe muegounviec TALTOXQOVEC HE QAUTEC TWV HETONOEWV
Tedlov pe OKOTIO TNV AELOAGYNOT) TG ATODOOTG TWV EUTEQIKWV HOVTEAWY
KAl TN OUYKQLON TWV ATMOTEAEOCUATWYV ETUKVQWONG TOVG HE TA avTloTOoLXX
TwVv dopvPpopwv Landsat.

EmmAéov, pix &AAn mpoomaOeix  PeAtiwong g axoifeiaxg
TOOOTIKOTOIMOTG  Twv  HOVTEAwV  mEaypatormombOnke  péow  Tng
ovvdvaouévng xonong ewovwyv Landsat (7 ETM+, 8 OLI) kat Sentinel 2 MS],
evw 1 emAoyn kabe eovag yix kdbe meginmtwon Paciotnke otnv
nANoLéoteen nuegopnvia ANYmc g oe oxéon pHe avt) TNG avTioTOLXTS
delyHaToANTITIKNG. AVAPOQIKA HE TA ATIOTEAETUATA, TO YEVIKA HOVTEAX
OAwVv twv motoTikwv ntagapétowv (Chl-a, BaBog Secchi Disk kat TP), pe
epaguoYr) 0 0Aeg TIG ALUVEG NTAV TLO ATOTEAECUATIKA KAl aKQLPN
otav epaguootnkav ot ekoves Landsat, evw dev magatnonOnke
BeAtiwomn vOoTEQA Ao TN XET) 01 EIKOVWV MoAAanAwv arocOntrowv. Ta
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HOVTEAQ MOV avanTuxOnkav kat epaguoOoTNKAV OTIG GUOLKEG ALUVEG),
nagovoiaoav dadogetikr) ovunegrpogd. Ta povréda Chl-a ko TP
MAQOVOLACAV HUIKQOTEQES TIUEG OPAAPATOG OTav eDAQUOOTNKAV OF
eicoveg Sentinel 2 (RMSE Chl-a=16.4 pg/l vs 21.5 pg/l; RMSE TP=0.03 mg/1
vs 0.031 mg/l) xat povo to povtédo Secchinatural €l KAAVTEQN OdOOT
pe dedopéva Landsat (2.8 m vs 2.9 m). H ovvdvaoTikn xoron eikovwv
Landsat xat Sentinel 2 dev moooédege kapia PeATiwon oTa avTioToLXa
povtéda Chl-a kot BaBouvg Secchi Disk, evw 1 xonon exdévwv
MOAAATAWV aloONTEWV 001 YN OE OTNV EKTIUNOT OVYKeVTOWOEewV TP
pe eficov aflomota amotedéouata OMwWs AVTA Twv Oedopévwv
Sentinel 2. Ocov adopd oToVG AAYOEIOHOVGS TWV TEXVNTWV ALUVQ@YV, TO
povtédo tng Chl-a anédwoe kalvtepa voTEQa amd T xonon Landsat
ecovwv (RMSE= 3.7 g/l vs 7.7 ug/l; Sentinel 2), evw T0 povtédo
extipnong Pabovg Secchi Disk métvxe eAadows kaAvTepn anddoon
xonotponowwvtag etkoves Sentinel 2 (RMSE= 1.5 m vs 1.6 m; Landsat). Tn)
XELQOTEQN AMAdOO0TN AVAUETA OTIG VTIO HEAETT MOLOTIKEG MAQAUETQOVG
nagovoiacav ta povtéda tng Chl-a (ou dudpecec MAPE  tuéc
KLpAvOnKav anod 42 % éwe 58% evd tov Pdbouvg Secchi ano 24% éwe 44%
kat Tov OAo Pwodogov amd 22% Ewg 38%), Yeyovog mov emufePatwvel
Yot akopa pior Goed TNV MOAVTTAOKOTITA IOV KEUPEL 1) XAXQTOYQAPNOT) TNG
Chl-a ota Vdata 1ng Ileplmtwong 2 (MaQakTA, €0WTEQUKA VOAT).
Zuvopllovtag, TEOTELVETAL TA EUTEQIKA HOVTEAX TaQakoAovONoNG g
TOLOTNTAG TV EAANVIKOV Alvov va edpagpoloviatl kKuplwg oe ekdveg
Landsat. Qotooo, n xoron twv dedopévwv Sentinel 2 duvntikd mapdyet
efloov  almota  anoteAéopuata pe  OQLOMEVES  (OXL ONUAVTIKEG)
amokALloElS amo ta avtiotoixa anoteAépota twv Landsat aAA& kat amod Tig
ETULTOTILEG UETQNOELS TNG TOLOTITAG VOXTWY TWV ALUVAV.

INueoa, ot MAXTPOQUES VTIOAOYLOTIKNG VEPOUS AVOLXTOU KWOOKX
éxouv avadexOel oe mMOAVTIUA  eQyaAelar  YEWXWOLKTG  avAaAvong
dedopevwy  ekovag dxdpoowv  doguPopwv. Idaltepar 1 xonon g
nAatpoopag Google Earth Engine (GEE), etvar 11 mio dwxdedopévn oto
ETUOTNHUOVIKO Ttedlo g dopudogiktc tnAemiokonnone. Ou mpoopateg
eKTOEEVOELS dlaPOQWV DOELPOPWYV e TLVdVACTHO pe TNV TTAatdpooua GEE,
dtevkoAvvouvv oe peyado Babud v magakoAovOnon twv Aluvav oe
eOvuen) kKA lpaxa. Me Baoikovg otoxovg adpevog v a&lomoinon twv in-situ
dedopévwv mootntac e OITY, kat adetégov T0 CLVOLACUO TOVG HE T
duvapkr] g mAatpoopas GEE, to emouevo Prjpa tav 1 eEaxolPworn g
AaTOOO0TNG TWV TIOLOTIKWYV HOVTEAWY OTAV XOTOLHUOTIOLOVV TIHES AVAKAXKOT)G
oL omoleg €xovv vmoPANOel oe dxPopeTKés HeOODOVS ATHOOPAIQKTC
d16pBwoNG amd avtég OTav avanTLXOnKav.

[Tio ovykekouéva, TéS avakAaong amd ewoves Landsat kat Sentinel 2
tov étovug 2018, amoktOnkav péow g tAatdpoopas GEE otovg otabpoig
derypatoAnpiag Aqpvav g OITY eva 1tav atpoodatgik dopOwHEVES pE



tic ueBodovg LaSRC (Landsat 8 OLI), LEDAPS (Landsat 7 ETM+) kot
Sen2Cor (Sentinel 2). Ot ev A0yw TIHEG AVAKAQAOTG avTIOTOLXOTNKAV e Ta
in-situ  dedopeva molotnTag tov 2018 pe dlaxdood NUEQOUNVIWV +7 TJUEQWYV
(amto v nuegopunvia g derypatoAnpiag), amodidovrag 192 kat 210 Cevyn
dedopévwv pe ekoveg Landsat kat Sentinel 2, avtiotoixa. Ta dwx Cevyn
onuwoveynOnkav pe TG TIHEG AVAKARONG TQEOEQXOMEVES ATO  TIC
avtloTolXeg ewdveg, oL oToleg amoKTONKAV Kal TQO-eTeEeQYRTTNKAY
xewoxkivnta, pe 1 puébodo e atpoodalgikrc dwEbwone DOSI. Ta
epmepkax povtéAa Chl-g, B&dOouvg Secchi Disk kat TP (yix 0Aec xkat
Eexwolotd Yir Puokés kat TexvNTég Alpveg), epaguootnkay dvo Poeég
XONOLHOTIOWOVTAG Kat T Vo €ldn avakAaong, tnv DOS1-01000wpévn
AVAKAROT] KAl eKEVT] TOL AmMOKTNONKE ATO EIKOVEG EVOWUATWHEVES 0T
GEE mAatpooua. EmimpdoOeta, 1n OMAN] epagupoyn) Twv EUTTEIQKWOV
HOVTEAWV  eKTIUMONG 1N¢  TOWOTNTASC  LOATWV  TOAYUATOTIOW)OnKke
Eexwolota yix tovg dogudpodpovg Landsat (7 ETM+/OLI) kot Sentinel 2. H
OLTIAT] EPAQUOYT] TWV TOLOTIKWV HOVTEAWV Elxe wg amoTéAeoua T OLTAT
EKTIUNON TWV TV TNG EKAOTOTE TIOLOTIKNG TAQAUETQOV OTOV €KAOTOTE
otabuo  derypatoAnpiag xat ot ovvéxelx avtéc oL OMAEG  TIUEG
(mooepxoueves amo DOS1  xat Aowméc  atpoodalgikéc  pefodoug)
eloNxOnoav oce avaAvon yoappkng maAwwdoounonc. Ot yoappikég
eflowaelg mov mEoékvPav pepovwpéva yia kabe atoOntnoa (Landsat,
Sentinel 2) vnédeifav Tipéc vPnAng ovoxétiong (R?* ano 0.68 £wg 0.98)
KAl anotédeoav ta dlogOwEva MAEOV HOVTEAQ EKTIUNOT)G TOLOTNTAG
Y XoNomn kat epaguoyr) Tovg pe dedopéva mov £xovv vmoPAnOet oe
1OLeg peBodovg atuoodalgikrg dOEOBwoNG pe avtéc mov evromifovtal
otn GEE mAatdogua.

Ta agxwa aAdd xar ta doEOwpéva povtéAa extipmnong g
TOWOTNTAG  ETUKLEWONKAV  TeQaLTéQW e Paon ta dwbéowa in-situ
dedopéva twv etwv 2019 kat 2020, meotAapPavovtag 239 (Landsat-GEE) wo
242 (Sentinel 2-GEE) xat 220 (Landsat-GEE) wat 286 (Sentinel 2-GEE)
avtotolXlopéva Cevyn, avtiotolxa. H emkdowon twv agXkav kal Twv
OL000wpEVWY HOVTEAWY ekTiUNOoNG NG ToloTnTAg LVO&TWY Paciotnke 01N
XOT0T) OTATIOTIKWV JEKTWV KAl HETQIKWV OPAAUATWV OTwe 1) oila péTOL
teToaywvikov  opaApatoc  (RMSE), 10 kavovikomomuévo — peco
tetoaywvikd opaApa (NRMSE) watr 1 péon exatootaio amoAvtn
amokAlon (MAPE).

H 01000won Twv eumeQikwv HOVTEAWV avaAoyx HE TOV
aoOnInoa anodeixOnke anaQalTnIn yiax 0QLOHEVA A0 AVTAR, EVW OL
tipég RMSE kvpavOnkav yux tr Chl-a ano 11.68 pg/l (Landsat) éwg 14.88
ug/l (Sentinel 2), yix to BaBog Secchi Disk ano 2.02 m (Landsat) éwg 2.57
m (Sentinel 2) ko TP ano 0.14 mg/l (Landsat) éwg 0.09 mg/l (Sentinel 2),
Tinég mov  emuPefaiwoav T otabepotnTa kAL TN duvvatotnia
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HETAPOQAS TWV EUMEIQIKWY MHOVTEAWV Of &1koveg OladoQeTika
atpoodagika dogbwuéves, otnv mAatdpooua GEE. Me avtd tov t100T0o,
eEoucovopeltatl MOAVTIHOG XOOVOG MOV avTLOToLXel otV mEoemelepyaoia
TwV  d0QUPOPIKWYV  EIKOVWV aAmO TO XENOTN 7OV T XENON TOvG,
dtevkoAvvovtag €toL TNV maEakoAovON o™ NG TOLOTNTAG ALUVWV O& €0VIKO
eTUTEDO KAl TMTAQEXOVTAG TAQAAANAQ OTOUG DIAXEWQLOTEG VOATIVWV TIOQWV
éva mEoo0eto egyadelo yiax ) ANYPn HETOWV TTIEOOTACIAG TWV LOATWV.
Edooov diepgevvnOnie n emituxIc 11 U1 €PpaguUoyn TwV HOVTEAWYV
eKT(UNONG moTNTAg LVI&TWV aQxlkd oe Sentinel 2 ewkoves kaL otn
OULVEXELX O€ €WKOVEG TIOL €XOLV LTOOTEL atHooPalgkr) dl0EOwon péow
dapopetikwv peBddwv ot GEE mAatdpooua, amavirOnke axdpa éva
rteplmAoko eowtnua. To MEWTO OKEAOG TOV €QWTIHATOS TIOL €QeLVNOTKE
etvat 10 eav ta povtéAa extipnong mowot)tag vdatwv (Chl-a, BdBoug
Secchi Disk kot OAucov Pwodogov) dbvatal va eival AmOTEAETUATIKA Vit
TNV TTAQAKOAOVONOT] NG TTOLOTNTAS KAL TWV OALYOTQOPIKWV LOATWY KAL TO
devteQo okéAog adood otV efaxpifwon e VTAEENS 1) U1 avAyKng va
avantuxBovv edwol aAyoQLOpOL ATIOKAELOTIKA TEOOAVATOALOUEVOL OE
avt TV katnyopla vddtwv. H ta&ivounon twv vddtwv otnv Ilepinmtwon
1 (wxeavwx) kar oty Ileplmtwon 2 (MAQAKTIEG TEQLOXES, TIOTAMLA KAl
Alpveg),  etvar waltegar onpavtikr). Ta vepd g Ilepimtwong 1
mipoodlopilovtal pe BAon T0 PUTOTAAYKTOV KAl AOLTTEG OvOle, evw T
vepa ¢ ITeplmtwong 2 etvat o moAVTIAOka 000V ok ot oLOTAOT) KAt
TIc omTkég Tovg Wiotntes. Evag amd tovg Pactkovs magdyovteg mTov
epumodilel TNV ekTipnomn ¢ modtNTac LO&TWV ota vepa g Iepintwong 2
ue axpiBewax etvat To yeyovog OTL T AlwQOVHEVA VALK, T) CUYKEVTOWOT] TG
éyxowuns OwxAeAvpuévng opyaviknig VAng (CDOM- Colored Dissolved
Organic Matter) kat 1 avakAaon tov muOuéva petafaAloviat aveEdotnta
0 éva amd 1o dAA0. Ot oAryotoducég Alpves amoteAovV Hia E€X@WOLOTH
KaTNyoplar twv meQimAokwy omtik vddtwv g Ilepimtwong 2 xat de
ta&wvopovvtat oty Ileplntwon 1 dedouévov otL ovvrBws Aaupdvouvv
ONHUAVTIKES €10Q0EG INUATWY KAl N davyela TV LOATWV TOVG EAEYXETAL
ouvNOwWS Ao TIC CUYKEVIQWOELS TOL OXAVHEVOL 0QyavikoL dvOpaka
(DOC-Dissolved Organic Carbon) kat oxL and to putomAayktov. Me Baon
T mEoavadeQévta, T HOVTEAX €KTIUNOMG TOOTNTAS LOATWV ALUVWV
(Chl-a, Ba&Oovg Secchi Disk kat TP), ta omola avamtoxOnkav o
«EKTIALOEVTNKAV»  HE €V  QQKETX HEYAAO €VQOC OUYKEVTIQWOEWY,
epapuootkav oe ewoveg Landsat 8 OLI mov amewoviCovv dvo (2)
EAANVIKA OAryoteodpika vdaTva cwpata, T Alpves Toyxwvida xat
Appoaxta. Ta duxOéoua in-situ dedopéva moldtNTag cLAAEXONKAV Ta €t
2013 kat 2014, evw ot D0QUPOQLKES ELKOVES TIOL XOTNOLHOTOMONKAV £€X0oLV
tavtoxpoveg nuegounvies. H  ebaguoyn twv  poviéAwv  OTig
oAryotgodikés  Aipveg Toxwvida kot ApfPoakia  nTav
AVATIOTEAEOUATIKT]T TO  YEVIKO  HOVTEAO  UMOAOYLOHOU  TNg



XAwopUAANG-a anédwoe tipnég RMSE=1.9 ug/l, NRMSE=1.6 kot median
MAPE=256.8, T0 povtélo vmoAoyiopov XAweoPpvAANG-a ot Guotkég
Alpveg anédwoe: RMSE=1.8 ug/l, NRMSE=1.5 kot median MAPE=176.6
EVW T AMOTEALOUATA TwV AoIMwV HOVTEAwV OAtkov Pwodogov kat
BaBovg Secchi Disk dev ntav ogtatiotikd onuaviikd cvpPwva pe to
Oeiktn  ovvadelwag Spearman r Kot pe  emOupnto  emimedo
onuavtikotntag 0.01. Ta mooavadpepbévta evorjpuata elval TAQOUOLX LLE
exelva AAAWV peEAET@V TIOL dLEQEVVTIOAV OALYOTQOPIKA LVOATIVA CWUATA.
Emmeoo0eta, ot Wwitepa xapunAég kat opowoyeveic ovykevrowoelg Chl-g,
péomn tun) 0.6 pg/l kar 0.7 pg/l, mov petonOnrav otig Alpveg Toixwvida kat
Appoaxia, avtiotoixa, vTEdEEAV OTL 1) HeYaALTeQN OUVMPBOAT] omTik&
TOOEQXETAL aATO OwHATOWt Un oxetllopevwy He TO GLTOTIAAYKTOV,
YEYOVOG TTOL VTTIOONAWVEL TNV AVAYKN AVATITUENG €KWV aAyoiOuwy.
Aappavovtag vmoPwv ta meoavadepévia amoteAéopata, &yve
Ml TEOOTIAD eI aAVATITVENG HOVTEAWVY EKTIINONG TNG TOLOTNTAS LOATWV
ot Atpvn Totxwvida. Xto mAalolo avtrg ¢ meoomtabelag, diepevvr)Onke
N KATaAAANAOTNTA elkOVWV ToL dopLuPooL Landsat 8 OLI vy v akopn)
extipunon twv ovykeviowoewv Chl-g, twv Ogemtikwv aAdtwv kat Tng
amopodmnorne CDOM oe ovykekQupuéva pnkn kopatos. H Atuvn Touxwvida
amotedel ) peyaAvteon Guowkt) Alpuvn otnv EAAGda, etvat oAryotgodikn
KAl Xapaktnolletar amd avOTAQKTN TOOOTIKY], XQOVIKT] Kl XWOLK)
HETABANTOTNTA WS TOOG TIG OVYKEVTOWOELS TWV UEAETOUHEVWY TIOLOTIKWV
TAQAUETOWV. Aelypata veQoU cLAAEXONKav amo 22 otabuovg ota TéAN
Avyovotov 2014 xat oL HETQOVUMEVES in-situ  OVYKEVIQWOELS TOUG
OLVOLACTNKAV HEOW AVAALOTIG TTAALVOQOUTOTC e pia DOQUPOQEIKT| etkOVa
Landsat 8 OLI tng dixg nueQOUNVIAS pe OKOTIO TNV AVATITUEN HOVTEAWV
extipunong mowmtag vdAtwv. Xan ovvéxewr, ta BéATota povTEAa
epagpooTNKav ot d0QuLPoELKT] ewova tov 2013 kal 1 ETKVEWON TWV
ATOTEAEOUATWY TIOXYUAXTOTIOMO1KE XONOLUOTIOWOVTAS TA AVTIOTOLXX in-
situ dedopéva tov 2013. Ta amotedéopata amo 1 Owadikaocia
EMKVOWOTNG €detfav pla OXETIKA OLAPOQETIKT] OTATIOTIKY] OXE0M
petalv twv in-situ dedopévwv kat twv avakAaocewv (R logchl-a: 0.4, R
NHas *: 0.7, R Chl-a: 0.5, R CDOM ota 420 nm: 0.3). Ot eTtOmMMIES HETONOELS
TWV OVYKEVTQWOEWYV VITOLKWY, VITOWOWV, GPwoPoQikwV aAdTwV KAt OALKOU
alwtov tov 2014 petenOnKav wg xaunAdTeQeS ATO TO OQLO AVIXVELONG TOV
XONOLUOTIOWOVIEVOL  0QYAVOV,  €TMOMEVWS  dev  meaypatomow)Onke
otatotkn emefepyaoia. EmmAéov, n availvon naAtvdgounong petalv
TNG AVAKAAONG KAl TwV OvYyKevTowoewv TP 0dnynoe oe xaunAés ka
OTATIOTIKA UT) OnuavTikés ovoxetioets (ot Tipés R? kopavOnkav anod
0.06 ¢wg 0.07). Ta evorjuatd pag Yoy emlONg MAQOUOLX e aVTA AAAWYV
HeAetwv ot dedvn BpAloyeadia, vodekvooviag OTL 1] TaEakoAovONoN
TIOLOTNTAG OTIG OALYOTEOPUCES Alpveg etvat Atyotego axQifr)c oe oxéon He
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TIC €VTQOPIKES KAl HECOTQOPKEG, AdYyw TNG AmMoLOlAg ALWQOVUEVWV
ocwHaTWlwV T omolx Elval aviXveLola Aamo  Tovg  doELPOLKOVS
atoONT)oes. LUUTEQAOUATIKA TIQOKVTITEL OTL TAQA TNV VTIAQETN TIOAAWYV in-
situ LETONOEWV O& TUKVO OIKTLO OTaOHWV, 0T OLVERT 0TV TAEOLOX
OlTEPT), HLt TTOOOTIKA aKQOUPNG EKTIUNOT TOLOTIKWV TIAQAMETOWY OTX
TIAQAKTLA/EOWTEQIKA VOATA TIAQAMEVEL Lot LEYAAT) TIOQOKATOM.



VI. EXTENDED SUMMARY

Given the great importance of lakes in Earth’s environment and human
life, continuous water quality (WQ) monitoring within the frame of the Water
Framework Directive (WFD) is the most crucial aspect for lake management.
In-situ monitoring of lake WQ in synergy with satellite remote sensing (RS)
represents the latest scientific trend in many WQ monitoring programs
worldwide. Therefore, the wide methodological framework developed herein
has as an ultimate goal the generation of lake WQ quantitative models,
supporting sustainable water resources management at a national scale. The
practical use of this approach was developed and evaluated in a total of 50
lake water bodies (natural and artificial) from 2013-2018, constituting the
National Lake Network Monitoring of Greece in the context of the WEFD.
Concerning the utilized Earth Observation (EO) data, images from Landsat 7
Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land
Imager (OLI) sensors have been combined with co-orbital WQ in-situ
measurements with the main objective of delivering robust WQ assessment
models.

In the first instance, assessing Chlorophyll-a (Chl-a) pigments in
complex inland water systems (Case-2 waters) is of key importance as this
parameter constitutes a major ecosystem integrity indicator. From the
statistical point of view, principal component analysis (PCA) was performed
to explore Greek lakes’ interrelationships among their Chl-a values and
certain criteria, e.g. their characteristics (artificial/natural), WFD typology,
climatic type (according to the Koppen-Geiger climate classification), season
of water samplings and the date difference between sampling and satellite
overpass. PCA highlighted the lake characteristics (natural/artificial) and
WED typology as the variables that mostly contribute to the variance of Chl-a
concentration; thus, numerous stepwise multiple regression analyses (MLRs)
among different groups of cases, formed by the PCA criteria, were
implemented with basic aim the generation of different remote sensing-
derived Chl-a algorithms for different types of lakes. MLRs analysis was also
implemented employing datasets without considering certain criteria for
cases where no information is available about their characteristics.

Moreover, correlation analysis among in-situ co-orbital WQ data including
Chl-a, Secchi depths and Total phosphorus (TP) concentrations, was
conducted to explore and detect their inter-relationships. Subsequently, based
on correlation analysis’s results, further stepwise MLRs employing available
in-situ TP and Secchi depth datasets were further implemented to establish
optimal quantitative models (general, oriented to natural-only and artificial-
only lakes). Eventually, trophic status classification was conducted herein,
calculating Carlson’s Trophic State Index (TSI) of each lake, initially
throughout all lakes and then oriented toward natural-only and artificial-only
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lakes. Those three types of TSI (general, natural, artificial) were calculated
based on hereby specially designed WQ models (Chl-a, Secchi depth, TP).

All in all, the results, concerning Chl-a, evidenced the suitability of Landsat
data to estimate log-transformed Chl-a. The proposed scheme resulted in
the development of models separately for natural (R = 0.78) and artificial (R
= 0.76) lakes, while the model developed without criteria proved weaker (R
= 0.65) in comparison to the other ones examined. Correlation matrix results
among in-situ Chl-a, Secchi and TP data showed a high and positive
relationship between TP and Chl-a (0.85), whereas high negative
relationships were found between Secchi depth with TP (-0.84) and Chl-a (-
0.83). MLRs among Landsat data and Secchi depths resulted in 3 optimal
models concerning the assessment of Secchi depth of all lakes (Secchigeneray;
R = 0.78; RMSE = 2 m), natural (Secchinatwra; R = 0.95; RMSE = 1.87 m) and
artificial (Secchiaisicay R = 0.62; RMSE = 1.36 m), with reliable accuracy.
Study findings showed that TP-related MLR analyses failed to deliver a
statistically acceptable model for the reservoirs; nevertheless, they
delivered a robust TPgenerat model for all lakes (R = 0.71; RMSE = 0.008 mg/L)
and a TPnawa model for natural lakes (R = 0.93; RMSE = 0.018 mg/L).
Subsequently, regarding the TSI results, the higher deviation of satellite-
derived TSI values in relation to in-situ ones was detected in reservoirs and
shallower lakes (mean depth <5 m), indicating noticeable divergences among
natural and artificial waterbodies. Summarizing, this particular part of the
whole scientific effort was proven capable of providing important support
towards the perpetual WQ monitoring and trophic status assessment of Greek
lakes and, by extension, their sustainable management, particularly in cases
when ground truth data is limited.

Some other key questions that this thesis answered are initially
whether aforementioned Landsat-based empirical WQ algorithms can be
efficiently applied to Sentinel 2 images and then whether the combined use of
multi-sensor data improves those algorithms’ prediction accuracy.
Additionally, independently from whether there is some improvement or not,
another goal of this combined approach is to decide whether multi-sensor
images could be used with at least equally reliable results as those accrued
from only-one sensor’s utilization. Among sensors numerous orbital, spatial
and spectral differences are detected, however transferability of WQ
algorithms across them remains poorly examined. Towards this direction,
Sentinel 2 images of 2018 with concurrent dates with those of field
measurements were utilized to facilitate a WQ models’ efficiency evaluation
and comparison with the respective Landsat’s validation results.
Additionally, another effort has been made to improve WQ models’
quantification capability through the combined use of Landsat (7 ETM+, 8
OLI) and Sentinel 2 images, while the selection of each image for each case
was based on the nearest acquisition date to the sampling one. As far as the



results are concerned, in particular for general models of all WQ elements
(Chl-a, Secchi depth and TP), all models were more efficient and accurate
when were accompanied by Landsat images while no improvement was
observed by using multi sensor images. Models developed and applied to
natural lakes, though, demonstrated a different behavior. Chl-a and TP
models (natural lakes) presented lower values of error metrics when
employing Sentinel 2 images (RMSE Chl-a=16.4 pg/l vs 21.5 ug/l;, RMSE
TP=0.03 mg/l vs 0.031 mg/l) and only Secchinaurat model performed better
with Landsat data (2.8 m vs 2.9 m). Combined utilization of Landsat and
Sentinel 2 images did not provide any improvement to corresponding Chl-a
and Secchi models whereas the multi sensor images resulted in TP
concentrations with equally reliable outcomes as those employing Sentinel 2.
Regarding the algorithms developed and applied in artificial lakes,
performance of Chl-a model was better by exploiting Landsat data (RMSE=
3.7 ug/l vs 7.7 ug/l of Sentinel 2) while Secchi model achieved slightly
better efficiency with Sentinel 2 images (RMSE= 1.5 m vs 1.6 m of Landsat).
The largely worse performance of Chl-a models compared to rest of WQ
elements (median MAPE values ranged from 42 % to 58%, Secchi depth from
24% to 44% and TP from 22% to 38%), emphasized once again the complexity
that mapping of Chl-a in Case 2 waters (coastal and/or inland waters) hides.
Summing up, it is proven that hereby WQ models are proposed to employ
principally Landsat images; however, the employment of Sentinel 2 data
potentially produces reliable results with some (not significant) deviations in
assessment of lake WQ.

Today, open source Cloud Computing platforms have emerged as a
valuable tool for geospatial analysis of image data from various satellites. In
particular, the Google Earth Engine (GEE) platform is the most widespread in
the scientific field of satellite RS. Newest launches of various satellites in
combination with the GEE platform, facilitate in a great extent national-scale
lake monitoring. In order to take advantage of in-situ lake WQ data derived
from the ongoing WFD implementation in Greece and the high potential of
GEE platform, next step was to test the transferability and performance of
hereby-developed empirical WQ algorithms when employing Landsat (7
+ETM/8 OLI) and Sentinel 2 surface reflectance (SR) values embedded in GEE
and subjected to different atmospheric correction (AC) methods from those
used as they were developed. More particularly, GEE-Landsat and -Sentinel 2
SR of year 2018 was retrieved from the WFD lake sampling stations and were
atmospherically corrected by the methods LaSRC (Landsat 8 OLI), LEDAPS
(Landsat 7 ETM+) and Sen2Cor (Sentinel 2). Those SR values (GEE) were
matched with WQ in-situ data of 2018 within +7 days (from sampling date) of
satellite overpasses, yielding 192 (Landsat) and 210 (Sentinel 2) matched pairs.
Same pairs were created with SR derived from manually downloaded and
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pre-processed, with AC DOS1 method, respective images. Empirical WQ
models of Chl-a, Secchi depth and TP (for all and separately for natural and
artificial lakes), were applied twice employing both types of SR (DOS1- and
rest in GEE- corrected). Furthermore, double application of WQ models was
conducted separately for Landsat (7 ETM+/OLI) and Sentinel 2 data. Double
application of WQ models resulted in double quantifications of each studied
WQ element in each sampling station while those double WQ values were
inserted in a linear regression analysis. Yielded linear equations (corrected
WQ models), for each sensor, were accompanied by strong associations (R?
ranging from 0.68 to 0.98). Initial and corrected sensor-specific WQ models
were combined with available in-situ WQ datasets, yielding 239 (Landsat) and
242 (Sentinel 2) matched pairs of 2019 and 220 (Landsat) and 286 (Sentinel 2)
matched pairs of 2020, retrieved from the GEE platform. Sensor-specific
correction of WQ models was proven essential for some of them while
RMSE values ranged for Chl-a from 11.68 pg/l (Landsat) to 14.88 g/l
(Sentinel 2), for Secchi depth from 2.02 m (Landsat) to 2.57 m (Sentinel 2)
and TP from 0.14 mg/l (Landsat) to 0.09 mg/l (Sentinel 2), values that
confirmed the stability and transferability of empirically developed models
even when apply differently-from-DOS1 method corrected SR embedded
in GEE platform. In this way, valuable time concerning the images’ pre-
processing is saved while in parallel national lake WQ monitoring is
facilitated by providing water resources managers an additional tool for
taking water protection measures.

Since the transferability of hereby developed WQ models initially
across different sensors and then when employing SR corrected with different
AC methods embedded in GEE have been explored, one more ambiguous
question has been examined; whether those universal models are efficient for
WQ monitoring of oligotrophic Case-2 waters and then reach final
conclusions whether there is a need for the development of special algorithms
exclusively oriented to oligotrophic waterbodies. The classification of waters
in Case 1 (oceanic) and Case 2 (coastal regions, rivers, and lakes), is
characterized by great importance; Case 1 waters are determined by
phytoplankton and co-varying substances, while Case 2 waters are more
complex concerning their composition and optical properties. Oligotrophic
lakes are classified as Case-2 rather than Case-1 waters since they typically
receive significant levels of terrigenous input and their water clarity is
primarily controlled by the concentration of Dissolved Organic Carbon
(DOC). One of the main factors hindering accurate WQ monitoring in Case 2
waters is the fact that suspended material, yellow substances, and bottom
reflectance vary independently of each other. In purview of the above, lake
WQ quantitative models (Chl-a, Secchi depth and TP), developed and trained
based on wide concentration ranges derived from WFD implementation, were
applied to Landsat 8 OLI images illustrating two (2) Greek oligotrophic



waterbodies, Trichonis and Amvrakia lakes. The respective available in-situ
WQ datasets was collected by HCMR staff from both of lakes and concern
years 2013 and 2014 while satellite dates were concurrent with sampling ones.
Conclusively, application of hereby developed WQ models in oligotrophic
Trichonis and Amvrakia lakes was ineffective: Chl-agenerai model yielded
values of RMSE=1.9 pg/l, NRMSE=1.6 and median MAPE=256.8 %, Chl-
anawral model yielded values of RMSE=1.8 ug/l, NRMSE=1.5 and median
MAPE=176.6 % while results of all models of Secchi Disk and Total
Phosphorus were statistically insignificant according to Spearman’s rank
correlation coefficient values at significance level 0.01. Aforementioned
results agree with those of other studies investigating oligotrophic
waterbodies. Moreover, particularly low and homogeneous in-situ measured
Chl-a concentrations, mean values equal to 0.6 pg/l (Trichonis) and 0.7 pg/l
(Amvrakia), indicated that, in those lakes, the greatest optical contribution
originates from non-algae particles implying the need for the development of
special designed WQ algorithms.

Based on the previous approach, an effort has been made to develop special
designed WQ algorithms in Trichonis lake. In the framework of this effort, the
suitability of Landsat 8 OLI in accurately estimating Chl-a, nutrient
concentrations and CDOM (Colored Dissolved Organic Matter) absorption at
specific wavelengths was investigated. As a case study, the largest freshwater
and oligotrophic body of Greece e.g. Trichonis Lake, is characterized by
inexistent quantitative, temporal and spatial variability. Water samples were
collected at 22 different stations on late August of 2014 and the satellite image
of the same date was used to statistically correlate the in-situ measurements
with various combinations of L8 bands in order to develop algorithms that
best describe those relationships and calculate accurately the aforementioned
WQ components. Subsequently, the most statistically promising quantitative
models — accrued from statististical elaboration of 2014 data- were applied to
the satellite image of 2013 and validation was conducted using in-situ data of
2013 as reference. Results from the validation process showed a relatively
variable statistical relationship between the in-situ data and reflectances (R
logchl-a: 0.4, R NH4 *: 0.7, R Chl-a: 0.5, R CDOM at 420 nm: 0.3). In-situ
nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were
measured as lower than the detection limit of the instrument used, hence no
statistical elaboration was conducted. On the other hand, MLR analysis
among reflectance measures and TP concentrations resulted in low and
statistical insignificant correlations (R? values ranged from 0.06 to 0.07). Our
findings were concurrent with other studies in international literature,
indicating that estimations for oligotrophic are less accurate than eutrophic

and mesotrophic lakes, owing to the lack of suspended particles that are
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detectable by satellite sensors. Yet, even with the presence of a lot of ground
information as was the case in our study, a quantitatively accurate estimation
of WQ constituents in coastal/inland waters remains a great challenge.
Nevertheless, although those regression models, developed and applied to
Trichonis oligotrophic lake are less accurate, may still be useful indicators of
its WQ deterioration.



1. GENERAL INTRODUCTION

Lakes’ significance

Surface freshwater is one of the most essential resources for the
terrestrial ecosystem and the predominant source of drinking water on Earth
(Whyte et al., 2018). Part of this resource is stored in lakes and reservoirs,
while 14 million lakes (>10 ha) have been recorded in the world (Meyer et al.,
2020). Lake water is used to satisfy environmental and human requirements
while itplays a key role in the European and the global economy since it is
exploited for civil (e.g., irrigation), industrial (e.g., processing and cooling,
energy production, fishery) and recreational purposes. These activities,
though, critically depend on a sufficient amount of freshwater. In particular,
lakes in land-locked countries are valuable since they are among the most
significant water sources (Knoll et al., 2019).

Given the great significance of lakes for human well-being, the rationale
of universal access to water in quality and quantity is fundamental. Therefore,
it is an objective of several global environmental agendas, like the United
Nations Agenda for Sustainable Development (United Nations, 2015), which
has 17 Sustainable Development Goals (SDG). Since lakes are a principal
source of food and water supply, they are considered as essential ecosystems
contributing to SDG 2, (Target 2.1. “By 2030, end hunger and ensure access by all
people, in particular the poor and people in vulnerable situations, including infants,
to safe, nutritious and sufficient food all year round”) and SDG 6, sustainable
management of water and sanitation (e.g., Target 6.1. “By 2030, achieve
universal and equitable access to safe and affordable drinking water for all”).
Furthermore, the employment of lakes in producing hydropower and
supplying biomass participate as well to SDG 7, affordable and clean energy
(e.g., Target 7.2. “By 2030, increase substantially the share of renewable energy in
the global energy mix”) and reduce reliance on fossil fuel (Inacio et al., 2022)

However, scarcity of freshwater resources is already perceptible,
constraining development and societal well-being in many countries (Coppin
et al., 2004), while the expected growth of global population over the coming
decades, together with growing economic prosperity, is expected to increase
water demand, aggravating those problems (Vorosmarty et al., 2000; Arnell,
2004; Alcamo et al., 2007; Schewe et al., 2013). Over the past few decades, the
effect of climate change (global warming) and the anthropogenic pressure on
natural resources have deteriorated their water quality (WQ; Michalak, 2016).
The impacts of climate change on lake ecosystems are a well-studied topic,
highlighting that alterations in temperature and precipitation patterns, result
in regulation of other components such as water balance, limnology, and
biogeochemical characteristics (Paulsson and Widerlund, 2022).
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Intergovernmental Panel on Climate Change (IPCC) predicts that the
increase in temperature will be higher for lakes of high latitudes than the
global average (IPCC, 2021), due to their high exposure to atmospheric
conditions (Schirpke and Ebner, 2022). Those lakes are further predicted to be
subjected to a loss of perennial ice cover, and to stronger stratification in the
water column due to inflowing snow melt, increasing duration of open water
conditions, and shifts in the water balance. Climate warming affects as well
lake ecological dynamics, in particulate of alpine (Schirpke and Ebner, 2022)
and shallow lakes located in arid regions, where climate and hydrological
regime exercise a strong control on water constituents’ concentrations
(Weyhenmeyer et al., 2019; Teubner et al., 2020).

Various direct and indirect human-induced pressures have severe
impacts on ecosystem conditions and processes of lakes (Mammides, 2020),
varying according to certain characteristics. Low elevation lakes are highly
affected by overfishing and environmental pollution, whereas mountain lakes
are less exploited due to their far proximity (Lyche Solheim et al., 2019). The
lakes” shorelines are often transformed for touristic infrastructure, or by
constructed dams, causing a severe degradation of littoral habitats, resulting
in a decrease of biodiversity and ecological integrity (Porst et al., 2019).
Accelerated touristic use, including aquatic recreation and hiking activities,
alters species composition and ecosystem functions (Senetra et al,
2020; Tiberti et al., 2019). Agricultural activities in proximity to lakes as well
as the use of fertilizers for intensive farming, lead to the World’s lakes’
greatest threat; increasing eutrophication of lakes and WQ degradation
through increased nutrient inflows (Van Colen et al., 2018, Pedreros-Guarda
et al., 2021).

Limnological research concerning the last two decades supports that
existing global warming tends to intensify the responses of lakes to
cultural eutrophication including accelerating hypolimnetic anoxia and
nutrient release from lake sediments, intensified nutrient recycling, and
increased algal production (Salmaso and Tolotti, 2021). Moreover, European
surface water bodies were studied by European Environment Agency (EEA,
2018) concerning their impact from nutrient loads. Based on this report, 60%
of the surface water bodies fail to achieve the objectives of good water quality
defined by the international directives on water quality, such as the
European Water Framework Directive (2000), with diffuse emission from
agriculture being the second most important pressure affecting surface waters
(Nikolaidis et al., 2022).

The need for sustainable management of water bodies highlights the fact
that water resources are not inexhaustible and have limited resistance under
anthropogenic pressures (ongoing drainage, conversion, and pollution).
Hence, one of the most significant aspects for the sustainable management of
water bodies is the constant monitoring of their quality, as well as of their


https://www.sciencedirect.com/science/article/pii/S0883292722000397#bib22
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hydrological-regime
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hydrological-regime
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/shoreline
https://www.sciencedirect.com/science/article/pii/S0301479722011793#bib73
https://www.sciencedirect.com/science/article/pii/S0301479722011793#bib73
https://www.sciencedirect.com/science/article/pii/S0301479722011793#bib81
https://www.sciencedirect.com/science/article/pii/S0048969721069746#bb0060
https://www.sciencedirect.com/science/article/pii/S0048969721069746#bb0060

watersheds (Gholizadeh et al., 2016). WQ monitoring is the most crucial
aspect for lake management while the term “lake management” refers to
management designed to maintain an ongoing viability of lake ecosystems
that provide the basis for aquatic and non-aquatic life (Bonansea et al., 2015).

Water Quality (WQ) monitoring

WQ is the most significant indicator of a water body’s ecological status,
while its assessment assumes the continuous monitoring of mainly physico-
chemical and biological elements (Fatima, 2018; Nikolaidis et al., 2022). The
continuous monitoring of large water bodies is a complex task, since it
demands frequent and detailed data collection and interpretation efforts.
Only exhaustive sampling field works can fully attain the spatial and
temporal variance of common key WQ indicators. This results to an essential
compromise between the number of sampling stations and the need of
maintaining costs within reasonable limits (Strobel et al., 2000).

WQ parameters are traditionally measured based on in-situ
measurements, collection of water samples and laboratory analysis (Li et al.,
2016). Although in-situ WQ monitoring provides high accuracy (at specific
location and time), it is a time-consuming procedure, and it cannot ensure a
simultaneous WQ dataset on a regional or greater scale (Duan et al., 2013;
Gholizadeh et al.,, 2016; Topp et al.,, 2020). Furthermore, traditional point
sampling methods are not capable of detecting the spatial or temporal
variations in WQ), as required in extensive assessment and management of
water bodies. Additionally, patchy distribution of elements such as nutrients,
algal blooms, and TSM (Total Suspended Matter) classify those methods as
unsuitable for monitoring a large number of water bodies at a regional or
national scale (Japitana and Burce, 2019).

Nowadays in-situ monitoring of lake WQ in synergy with satellite RS
represents the latest scientific trend in many WQ monitoring programs
worldwide (Japitana and Burce, 2019; Neil et al.,, 2019; Topp et al, 2020).
Although the ability of RS to assess WQ is undeniable, this technique alone is
not adequately precise and should be combined with field water sampling
(Gholizadeh et al., 2016). Therefore, point-specific WQ datasets, which lack
spatiotemporal trends, in conjuction with simultaneous RS datasets which
provide a synoptic spatiotemporal view of ongoing earth surface processes,
facilitate the monitoring, assessment and identification of WQ management
strategies.

Contribution of RS in WQ monitoring

Recent developments in geoinformation technologies and in particular
of RS and Geographical Information Systems (GIS), concerning pollution
loads and lake WQ), offer a number of advantages that practically address the
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limitations of traditional water sampling (Brivio et al., 2001; Pozdnyakov et
al., 2005; Tyler et al., 2006). Among the key advantages of RS is the ability to
cover large areas (Chatziantoniou et al, 2017) and to collect spectral
information at variable spatial scales- including lakes that are otherwise
inaccessible (MacKay et al., 2009; Whyte et al., 2018), at multi-scale temporal
analysis and at dramatically lower cost compared to field measurements
(Haddad and Harris, 1985).

Satellite RS is an efficient, beneficial tool for the assessment of spatial
and temporal differentiations in WQ (Bonansea et al., 2015; Japitana and
Burce, 2019). RS technologies enable researchers to acquire a unique, holistic
perspective of the ecosystems. From the vantage point of space, satellite data
becomes an invaluable tool in support of lake management while this is of
especial importance in the context of the increasingly strict environmental
regulations approved by governments worldwide such as Water Framework
Directive (WFD; 2000/60/EC) and the European Marine Strategy Framework
Directive (MSFD; 2008/56/EC) (Nikolaidis et al., 2022)

Apart from the law-required WQ components, the major factors which
can influence the quality of inland water bodies are the suspended sediments
(turbidity; Avdan et al. 2019), phytoplankton and cyanobacteria (i.e.,
chlorophylls, carotenoids), dissolved organic matter (DOM; Olmanson et al.,
2020), organic and inorganic nutrients, pesticides, metals, thermal releases,
macrophytic algae, pathogens and oils (Topp et al, 2020). The above-
mentioned factors affect the optical properties of waters (except for nutrients);
thus, directly change the signal acquired by optical sensors over water bodies
(Gholizadeh et al., 2016). The parameters which can be directly quantified
using RS techniques are the suspended particulate matter (SPM), which is
placed in suspension by wind-wave stirring of shallow waters and can be a
tracer for inflowing pollutants (Eleveld, 2012), the phytoplankton mainly as
chlorophyll-a (chl-a) or phycocyanin (PC), that can be used to indicate the
trophic level, to evaluate the presence of potentially toxic algal blooms and as
a proxy of phytoplankton biomass (Pahlevan et al., 2020) and the coloured
DOM (CDOM), commonly called yellow substances, which might indicates
the presence of either fulvic or humic acids; CDOM is also investigated
because of its role in protecting aquatic biota from ultraviolet solar radiation
and its influence on specifically heterotrophic bacterial productivity in the
water column, indicative of the shift from net autotrophy to net heterotrophy
(Gholizadeh et al., 2016; Topp et al., 2020; Pizani and Maillard, 2022).

WEFD and WQ monitoring

Several WQ monitoring programs, such as the US Clean Water Act
(CWA) and Safe Drinking Water Act (SDWA), the Australian Reef Water
Quality Protection Plan (Reef Plan) and Water Framework Directive (WFD)



have been implemented worldwide requiring large datasets of several WQ
parameters to be monitored on a regular basis.

WED, in particular, has been applied in a broad framework of catchment
management while it provides a scheme for the conservation and
improvement of inland, ground, and coastal waters’ ecological status and
aims to harmonize European legislation on water. Thus, pan-European
hydromorphological, physicochemical, and biological datasets are used to
determine ecological status of surface waters (Article 8) in order to assure and
turther improve future WQ and quantity (Mavromati et al., 2017; Nikolaidis
et al., 2022). For each one category of datasets, a descriptive definition of high,
good, moderate, poor, and bad status is given. Each National authority
should set standards for those elements most relevant to the pressures faced
by the water body under its responsibility and classify waters accordingly
(Nikolaou et al., 2008).

Since the European Commission WFD (EC, 2000) was declared, Member
States have started to establish lake ecological status assessment schemes, and
integrating the setting of TP (Total Phosphorus) and Chl-a as reference
conditions for European lakes of different types and ecoregions (Cardoso et
al., 2007; Carvalho et al., 2008; Poikane et al., 2010; Huo 2013; Nikolaidis et al.,
2022)

At the national level, the Greek Water Monitoring Network according to
the Joint Ministerial Decision 140384/2011, operates for WFD and is
implemented by the Goulandris Natural History Museum, Greek
Biotope/Wetland Centre (EKBY). The monitoring network consists of 50 lake
water bodies with an area of 0.5 km? including 26 artificial and 24 natural
ones. At the majority of the lakes only one sampling station is detected,
except for transboundary lakes (Megali Prespa, Mikri Prespa and Doirani),
where two sampling stations are located. From the total of 53 sampling sites,
the 27 are the surveillance and the 26 the operational ones. Surveillance
stations operate in water bodies of good status for a certain period of time
(one year in every monitoring cycle) unless during the previous monitoring
period a specific lake system was determined to have reached the good
condition and no changes are detected. The minimum monitoring frequency
for the physicochemical parameters is 3 months unless longer time intervals
are justified based on expert judgement. Furthermore, in the framework of
surveillance monitoring, biological and hydromorphological parameters are
monitored at least once during the whole period. On the other hand,
operational stations run continuously on water bodies which fail to achieve
good status while the suitable monitoring frequency for each element is
determined based on the acquisition of sufficient enough data to provide a
reliable assessment of the ecological status. In general, monitoring should be
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performed at intervals not exceeding the limits listed in the table below (Table
1-1;, WED; 2000/60/EC).

Table 1-1. Specifications of Directive 2000/60/EC regarding monitoring frequency.

WQ element Lakes
Biological
Phytoplankton 6 months
Aquatic flora 3 years
Macroinvertebrates 3 years
Fish 3 years
Hydromorphological
Hydrology 1 month
Morphology 6 years
Physicochemical
Temperature 3 months
Oxygen 3 months
Salinity 3 months
Nutrients 3 months
pH 3 months
Pollutants 3 months
Priority substances 1 month

EO data and Landsat’s contribution to lake WQ monitoring

Even though inland WQ measurements based on RS approaches dates
back nearly 50 years (Topp et al., 2020) and during the last 20 years new
instruments (platforms and sensors) have been developed for this purpose
(Pizani and Maillard, 2022), a slow evolution has been observed compared to
terrestrial and oceanic RS techniques. The effectiveness of each RS application
for WQ monitoring depends on the selection of appropriate platforms and
instruments (Pizani and Maillard, 2022) while there are several categories of
the most commonly sensors used in WQ assessments, including airborne -
along with unmanned aerial vehicles (UAV)- and satellite sensors (with
visible and infrared wavelengths), passive microwave radiometers (MWR)
and synthetic aperture radar (SAR). According to Gholizadeh et al. (2016),
Sagan et al. (2020), Topp et al. (2020) and Pizani and Maillard (2022), the most
utilized sensors for inland WQ assessment are the passive optical and thermal



ones, since water is highly absorptive within the near and shortwave infrared
spectrum and the majority of water-leaving radiance occurs within the visible
spectrum. In optically complex waters though, sediment reflectance exceeds
the absorptive properties of water in the near/shortwave infrared
wavelengths where high absorption within the visible spectrum results in low
range of reflectance values. This low range demands high sensitivity to detect
small changes in reflectance and therefore significant improvement
concerning spectral, spatial and radiometric resolutions, revisit time, number
of satellite bands and free access to data have been made (Topp et al., 2020).
EO data from several optical ocean color sensors such as Moderate Resolution
Imaging Spectroradiometer (MODIS), Earth Observing 1-Hyperion, and
Medium Resolution Imaging Spectrometer (MERIS) and Sentinel-3 Ocean and
Land Cover Instrument (OLCI) or optical land surface including Landsat
series, Sentinel 2 A/B Multispectral Instrument (MSI) and Satellite Pour 1’
Observation de la Terre (SPOT), have been widely used for the study of
surface WQ (Odermatt et al., 2018; Cao et al., 2019; Chelotti et al., 2019). In
general, satellite data from the aforementioned sensors have been utilized in
the development of models leveraging the relationship between a
waterbody’s optical qualities and its concentration of optically active water
quality constituents (Topp et al., 2020).

According to Kutser (2009) and Matthews (2011), Advanced Land
Imager (ALI) (30 m), Advanced Land Observation Satellite (ALOS) (10 m),
SPOT-5 (10 m) and Landsat sensors, compared to sensors of higher spatial
resolution, are characterised by a better radiometric performance which
contributes to a more accurate assessment of the concentrations of quality
parameters over water.

Landsat 7 (launched in 1999) introduced the Enhanced Thematic Mapper
Plus (ETM+), whose analysis was similar to Thematic Mapper (TM) except for
two bands, a 60 m thermal and a new 15 m panchromatic band, respectively
(Loveland and Dwyer 2012). Since 2003, Landsat 7 had a sensor deficiency
where the Scan Line Corrector (SCL) was off and even though those images
are characterized by black line gaps (Tebbs et al. 2013), its radiometric and
geometric analyses remain undisturbed (Bonansea et al. 2015). On May 30,
2013, data from the Landsat-8 satellite (launched on 11 February, 2013)
became available allowing the continuance of studies on WQ of lakes
(Giardino et al., 2014); this satellite bears two sensors, the Operational Land
Imager (OLI) and the Thermal Infrared Sensor (TIR) while it includes a
narrower near-infrared band, and a 12-bit radiometric resolution compared to
the 8 bits of previous Landsat satellites (Olmanson et al. 2016; Bonansea et al.,
2018).

Moreover, Landsat 9 (OLI-2) was successfully launched on Monday,
Sept. 27, 2021 continuing the Landsat program’s critical role in monitoring,
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understanding and managing the water resources needed to sustain human
life. Furthermore, since June 2015, Sentinel 2 mission provides simultaneous
image data with those of Landsat 8 OLI offering great opportunities for long
term high-frequency WQ monitoring (Mandanici and Bitelli, 2016) through
building time-series.

The Sentinel-2 mission carries two satellites, Sentinel-2A and Sentinel-
2B. They are both equipped with identical Multispectral Instruments (MSI)
capable of acquiring data at 13 bands at different spatial resolutions (between
10 m and 60 m) while the revisit frequency of each satellite is 10 days. Landsat
(30 m spatial resolution) and Sentinel-2 (10-60 m spatial resolution) missions
provide fine-scale spatial data and have been reported to be suitable for the
quantification of multiple WQ indices in freshwater lakes and reservoirs
(Allan et al., 2011; Giardino et al., 2014; Kim et al., 2014; Markogianni et al.,
2014; Bresciani et al., 2018; Markogianni et al., 2018; Bramich et al., 2021).

Inland waters, and especially lakes, are small water bodies that are not
detected by current ocean color satellites, and even though this lack prevents
the monitoring and estimation of their WQ components, it has been
replenished by the use of Landsat, Sentinel-2, and ASTER (Advanced
Spaceborne Thermal Emission and Reflection Radiometer) multispectral
images. Their fine spatial resolutions (10~60 m) enable them to resolve small
freshwater lakes and rivers more than a few hundred meters wide. Therefore,
the application of those images has been preferred for freshwater lake
mapping projects (Wang et al., 2020). Furthermore, recent reviews of state-of-
the-art RS-based approaches by Gholizadeh et al. (2016) and Pizani and
Maillard (2022) underpin the use of particularlyLandsat sensors, TM
(Thematic Mapper), MSS (Multi-Spectral Scanner), ETM (Enhanced Thematic
Mapper), OLI (Operational Land Imager) and OLI-2 (Landsat 9) as fairly
successful choices to assess the important WQ parameters, including Chl-g,
Secchi Disk Depth (S5DD), TP, and trophic status.

Although Landsat sensors were not designed for aquatic applications
(Kutser, 2012; McCullough et al., 2012a), there are numerous examples of
Landsat images’ employment for estimating and/or monitoring lake WQ.
Several studies have proposed reliable algorithms between Landsat data and
WQ parameters, including chlorophyll; phytoplankton and phycocyanin
concentrations (Yacobi et al., 1995; Vincent et al., 2004; Brezonik et al., 2005;
Tyler et al., 2006; Torbick et al., 2008; Karakaya et al., 2011; Tebbs et al., 2013),
water clarity (Stadelmann et al., 2001; Hadjimitsis et al., 2006; Olmanson et al.,
2008; Guan et al., 2011; Zhao et al., 2011; McCullough et al., 2012a), CDOM
(Brezonik et al.,, 2005; Zhu et al., 2014; Brezonik et al.,, 2015), blooms of
cyanobacteria (Vincent et al., 2004), macrophyte (Albright and Ode, 2011) and
TSM (Guang et al., 2006; Zhou et al., 2006; Onderka and Pekarova, 2008;
Kulkarni, 2011; Bonansea and Fernandez, 2013;).



Traditionally used approaches for lake WQ monitoring via satellite RS

The most commonly used approach to monitor WQ of inland waters via
RS involves fitting a standard linear regression between spectral band/band
ratio values and temporally coincident in-situ WQ measurements (e.g. Topp et
al., 2020).

In general, according to Topp et al. (2020), there are three (3) well-
documented methodologies to estimate the concentration of WQ elements in
inland waters: empirical, semi-empirical, and physical or analytical
methodology (Table 1-2). Empirical methods attempt to establish
relationships between in-situ WQ measurements and water leaving radiance
measured by the sensor without the precondition of prior understanding of
the complex water and light interactions. Those relationships imply effective
data improvement but limited transferability (Austin and Petzold, 1981).
Moreover, empirical methods incorporate machine learning techniques,
which are differentiated by their robust ability to handle complicated non-
linear relationships, typical of WQ remote sensing data (Sagan et al., 2020;
Topp et al, 2020). Machine learning algorithms include artificial neural
networks (ANN), genetic algorithms (GA), support vector machines (SVM),
random forest regression trees, and empirical orthogonal functions (Topp et
al., 2020). On the other hand, through semi-empirical techniques, spectral and
physical knowledge of studied WQ constituents” properties are combined and
then correlated to the in-situ concentrations. Regarding physical or analytical
approaches, the acquisition of certain biogeochemical parameter values (e.g.,
Chl-a, CDOM) is required, as well as inherent (IOP) and apparent optical
properties (AOP), and those models are based on radiative transfer and
calibrated using field observations.

Although analytical methods, including fuzzy logic and Principal
Component Analysis (PCA), have already been extensively used, empirical
and semi-empirical predicting models are still widely utilized (Gholizadeh et
al., 2016). Analytical methods’ complexity in terms of their theory and
calculation difficulties (Gholizadeh et al., 2016) and the non-availability of
required detailed spectral information of the optically active water
constituents (optical properties, radiometric quantities) have contributed to
the maintenance and development of empirical models. This trend is further
observed especially in cases where machine learning models are utilized, as
most of them reduce overall error and maximize model fit (Topp et al., 2020).
However, it should be noted that empirical algorithms are more specific to
certain water types, regional or optical (Odermatt et al., 2012). It should also
be noted that semi-analytical methods are superior to empirical ones mainly
concerning the reliability of results and the fact that no in-situ data are
required afterwards for recalibrating the retrieval algorithm. On the other
hand, those approaches require the utilization of a spectroradiometer and the
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collection of in situ-measured Rrs spectra including the radiance of skylight,

radiance from a standard gray board, and the total upwelling radiance from
the water (Jiang et al., 2019).

Table 1-2. Summary of the common approaches for remote sensing of lake WQ monitoring.

Modelli
oce=ng including Advantages Limitations
Approach
Easily interpretable, no Limited transferability (dependant
Empirical a priori assumptions on range of training data), uncapable
required of handling non-linear relationships
Machine Capa‘ble of handl.mg . ' .
learnin complicated non-linear Computationally expensive, risk of
. & Relationships, no a priori overfitting
techniques . .
assumptions required
Ser.n%— Easily interpretable Uncapable of h.andh?lg non-linear
Empirical relationships
Computationally expensive,
Physical/ Theoretically knowledge of optical properties and
Analytical generalizable collection of in-situ Rrs spectra are
required

WQ elements measured by RS

There are numerous parameters measured for WQ monitoring; the
optically-active ones (e.g. Chlorophyll-a, transparency, turbidity, total
suspended matters, true colour,
temperature) can be monitored remotely and others that are non-optically
active (total phosphorus, total nitrogen, pH, dissolved oxygen) and can be
assessed indirectly through their relationship with the optically active ones
(as proxies; Gholizadeh et al., 2016; Pizani and Maillard, 2022).

Chlorophyll-a concentration, is indicative of phytoplankton abundance
in waters, and can be directly quantified using EO techniques implying the
trophic level, the existence of toxic algal blooms and the phytoplankton
biomass (Randolph et al., 2008; Ruiz-Verdu et al., 2008). Chl-a is the major
indicator of trophic state and considered as one of the top water pollution
indices related to public health, eutrophication, and deterioration of
ecosystem habitat.

Findings from numerous published studies have indicated that
biological and chemical water quality parameters such as Chl-a have

coloured dissolved organic matter,

distinctive spectral characteristics and can be measured using spectral indices.
A variety of spectral indices derived from remote sensing data based on

empirical or semi-empirical relationships have been developed for




transforming spectral data into WQ parameters. These indices may involve
three (Song et al., 2013; Sun et al., 2014; Huang et al., 2014;) and four spectral
bands (Le et al, 2009). The majority of spectral indices are based on
reflectance ratios of two spectral bands (near infrared and red) for operational
purpose. A band ratio between the near infrared (NIR, ~0.7 um) and Red (~0.6
um) has frequently been used to estimate Chl-z in waters due to a positive
reflectivity of Chl-a in the NIR and an inverse behavior in the red (Rundquist
et al., 1996; Pepe et al., 2001) while NIR and red bands are involved in most
indices (Yang et al., 2017). Spectral band ratios are generalizable and easily
applicable across wide geographic ranges. These indices, however, appear to
be less reliable in diverse water bodies including lakes, ponds, rivers and
streams in coastal regions (Yang et al., 2017; Sagan et al.,, 2020), as they
assume constant water and atmospheric conditions. This assumption may
result in significant estimation errors, especially when applied across time
series. Therefore, spectral indices are proposed to identify spatial distribution
of WQ rather than make exact predictions (Sagan et al., 2020).

On the other hand, few studies have aimed to assess and model nutrient
concentrations, due to their weak optical characteristics and low signal noise
ratio as nutrients constitute non-optically active WQ constituents (Gholizadeh
et al., 2016). Nutrient models have not yielded statistically strong results or at
least similar as of those constituents that have optical properties (Dewidar
and Khedr, 2001; Wu et al., 2010; Chen and Quan, 2012; Isenstein and Park,
2014). Indirect methods, however, can be utilized to estimate nitrogen (N) and
phosphorus (P) concentrations. RS has been widely demonstrated as an
effective solution for detecting the relationship between algae concentration
and corresponding nutrients (Sagan et al, 2020). Nitrogen (N) and
phosphorus (P) are vital micronutrients for algae, while P (existing either in a
particulate or dissolved phase) is the key limiting nutrient responsible for
eutrophication in most lakes (Correll, 1999). In general, special attention
should be paid depending on which nutrient is growth limiting, as in one
water body the correlation with Chl-a might be with N, while in a different
water body the correlation might be with P (Topp et al, 2020). Total
phosphorus (TP) estimation via RS has been explored due to its high
correlation with optically active constituents (Kutser et al., 1995; Wang et al.,
2004; Wu et al., 2010) since it cannot be measured directly using optical RS
instruments. The Chl-a and TP relationship has been investigated in
individual lakes (Smith, 1982; Malve and Qian, 2006), and it is well
documented to be accompanied by a strong and positive correlation among
lakes (Healey and Hendzel, 1979; Busse et al., 2006). As TP is highly
correlated to Chl-a concentration, and TSM usually reflects TP loading, TP is
also closely related to Secchi depth (SD) with an exponential equation
according to Carlson’s findings (Carlson, 1977).
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As the algae and suspended inorganic matter increase in a lake, the
depth to which light can penetrate is reduced (Fuller et al., 2004). Therefore,
SD is often used as a trophic state indicator (Carlson, 1977). Generally, there
are two methodologies followed to retrieve Secchi Disk Transparency (SDT)
based on RS data. Empirical approach estimating SD through regression
analysis and semi-analytical approach retrieving SD based on an underwater
visibility theory (Jiang et al., 2019). Regarding empirical models, reflectance at
the red spectrum has been almost globally used to retrieve water clarity
(Baban, 1993; Nelson et al.,, 2003; Wu et al., 2008; McCullough et al., 2012;
Hicks et al., 2013) since increased brightness is accompanied by decreased
water clarity (Matthews, 2011). Moreover, further studies have also
documented the usefulness of spectral response of the blue, green, and near-
infrared spectral bands in combination with in-situ measurements of SD and
Chl-a concentrations in predicting water clarity for inland lakes (Avdan et al.,
2019). Since water clarity has long been proven to interact with nutrient
availability and Chl-a concentrations within lakes (Song et al.,, 2022), RS
studies frequently use it to assess overall lake trophic status (oligotrophic,
mesotrophic, or eutrophic).

Utilization of multi sensor image data for lake WQ monitoring

Effective and accurate remote sensing of lake WQ requires frequent in-
situ time series WQ data accompanied by simultaneous satellite images.
Performance of high-frequency time series and multi-temporal analyses
becomes more possible when multi sensor image data is available (Mandanici
and Bitelli, 2016). Furthermore, the use of various multi-spectral sensors, with
different radiometric characteristics- makes possible to measure many of the
WQ parameters required by law (Mantas et al., 2013; Mandanici and Bitelli,
2016).

In the framework of this research, the emphasis has been mainly given
on the combination initially of Landsat sensors (7 ETM+;8 OLI) and then of
Landsat and Sentinel 2 image data. This selection was based on the fact that
the majority of available in-situ WQ data were recorded during 2013-2015,
hence images of sensors Landsat 7 ETM+ and Landsat 8 OLI were the
exclusive choice for the implementation of current research. Moreover,
images from both platforms have been proven particularly valuable for inland
lakes while both offer free open access data-archive (Deutsch et al., 2018).

Incorporation of Landsat sensors was attempted to increase the temporal
range of observations; temporal resolution is sixteen (16) days while Landsat
7 ETM+ and 8 OLI together, provide four (4) satellite images for every 32 days
(Pedreros-Guarda et al., 2021). Based on relevant literature review, Landsat 7
ETM+ and Landsat 8 OLI images have similar spatial resolution (30 m), are
statistically comparable and homogeneous over WQ sample sites (Wang et al.,
2020) while both have similar spectral band placements for the Blue (ETM+



band 1, 0.45-0.52 um; 8 OLI band 2, 0.45- 0.51 pm) and Green bands (ETM+
band 2, 0.52-0.60 um; 8 OLI band 3: 0.53-0.59 um). Differences are
particularly observed in the NIR (ETM+ Band 4, 0.76-0.90 um; 8 OLI Band 5,
0.85-0.88 um) and to a lesser extent in Red bands (ETM+ Band 3, 0.63-0.69
um; 8 OLI Band 4, 0.64-0.67 um) (Olmanson et al., 2016; Deutsch et al., 2018).
Moreover, Landsat 8 OLI is characterized by 12-bit radiometric resolution,
higher signal to noise ratios, increased spectral bands and narrower near-
infrared bands compared to ETM+, features that have contributed to a more
accurate monitoring of freshwater quality (Li et al., 2021).

Sentinel 2 MSI data were then selected initially based on their significant
match with the corresponding spectral bands of Landsat 8 OLI data and then
based on their high spatial resolution (10m at visible and near infrared bands)
and short revisit interval (5 days; Li et al.,, 2021). Joint use of Landsat and
Sentinel 2 images achieve globally a 2-3-day revisit time (Li et al., 2021) while
since both platforms are characterized by 12-bit quantization, provide an
improved radiometric quality resulting in an also improved inland water
monitoring (Mandanici and Bitelli, 2016). Conclusively, combined use of
Landsat and Sentinel 2 data grants access to a greater amount of satellite
images while facilitates high frequency time series analyses.

On the other hand, when multi sensor image data are combined, a
number of conceptual and technical challenges may accrue originating from
their orbital, spatial and spectral differences (Deutsch et al., 2018). Moreover,
even though Mandanici and Bitelli (2016) highlighted a significant match
between Landsat 8 OLI and Sentinel 2 MSI spectral bands, differences in the
recorded radiometric values were also observed. What is important though,
concerning those differences, is the application and the approach adopted to
implement multi-sensor time series analyses. On one hand, many empirical
approaches based on multispectral indices be more affected by the problem
(Werff and Meer, 2016) but when methods and processing are applied
separately on discrete images and the training is also independent, results are
less affected (Mandanici and Bitelli, 2015; 2016). Furthermore, independent
elaboration of only-one sensor images does not require implementation of a
resampling procedure, which is mostly essential in change detection analyses,
given the different spatial resolution of the two sensors (e.g. Landsat 30 vs.
Sentinel 10 m).

Big Earth Data Cloud Processing Platforms-the GEE platform

Despite the advantages that RS offers compared to field works,
computing WQ properties from RS images may become time-consuming and
complicated because of the processing data chain that a large-scale WQ
assessment and long-time-series analyses demand (Kumar and Mutanga,
2018). Cloud computing has emerged as a significant tool to process Big Data
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with main advantages the convenient access and processing of big geospatial
data and substantial computational capabilities (Zhao et al., 2022). Some of
the most currently popular Big Earth cloud processing platforms include
Google Earth Engine (GEE), Amazon Web Services (AWS), Microsoft Azure,
NASA Earth Exchange (NEX), Sentinel Hub (SH), Processing and Analysis for
Land Monitoring (SEPAL), open EO and Open Data Cube (ODC). Gomes et
al. (2020) compared seven platforms for big EO data regarding the following
criteria: data abstraction, processing abstraction, physical infrastructure
abstraction, open governance, reproducibility of science, infrastructure
replicability, processing scalability, storage scalability, data access
interoperability and extensibility. Based on this evaluation but as well to Zhao
et al. (2022) and Pizani and Maillard (2022), GEE is the most significant cloud
processing platform for the remote sensing community due to its ease of use
and maturity.

Google Earth Engine (GEE) platform has emerged as a valuable tool for
geospatial analysis of image data from various satellites based on open source
Cloud Computing (Bioresita et al., 2021). In addition to this, several involved
operators such as the United State Geological Survey (USGS), National
Aeronautics and Space Administration (NASA), and European Space Agency
(ESA) -among others- are collaborating with Google Inc. and have made
satellite data available online through the Google Earth Engine (GEE) cloud
platform (Wang et al., 2020).

GEE provides a Javascript API (Application Programming Interface) and
a Python API for data management and analysis while offers a data catalog
that stores a large repository including among others geospatial data,
environmental variables, climate forecasts, land cover and topographic
datasets (Gomes et al., 2020). Concerning optical imagery of satellites, the
data repository of GEE includes among others the entire datasets collected by
Landsat 4/5/7/8, Sentinel 1/2, and ASTER while it is updated on a daily basis
with around 6000 new image scenes. The GEE offers a parallel computation
capability and utilizes many processors to conduct individual tasks, hence
accelerating the time-consuming computing, required for large-scale
applications. Moreover, satellite images are pre-processed to various
processing levels and products, such as surface reflectance, top of
atmospheric reflectance (TOA), and vegetation indices (Wang et al., 2020).

A plethora of recent studies have been published employing GEE for
inland waters” WQ monitoring (Jia et al., 2019; Zong et al., 2019; Maeda et al.,
2019; Wang et al., 2020; Weber et al, 2020; Somasundaram et al., 2021;
Bioresita et al., 2021; Lobo et al., 2021; Vaiciuté et al., 2021; Kislik et al., 2022;
Wen et al, 2022). Wang et al. (2020) used GEE to automatically search
matching cloud- and haze-free image pixels across multiple sensors using
online scripts for Chl-a samples while a SVM was trained and eventually
predicted Chl-a concentrations with reasonable accuracy. Wen et al. (2022)



established empirical models between satellite reflectance- derived from
archived Landsat images embedded in GEE- and in-situ TSM observations
over 426 Chinese lakes during a 10-year time span (2011-2020) and managed
to confirm their temporal stability and suitability for examination of long-
term TSM trend in lakes. Bioresita et al. (2021), assessed Chl-a and TSS
concentrations through certain formulas along Kali Porong estuary
(Indonesia) and validated their results by utilizing Sentinel-2 reflectance
values retrieved from GEE platform. Validation of results was conducted by
using available in-situ data and was accompanied by high correlation values

(Chl-a: 0.654; TSS: 0.652).

Case 1-Case 2 waters and oligotrophic waterbodies

The classification of waters in Case 1 (oceanic) and Case 2 (coastal
regions, rivers, and lakes), refined by Morel and Gordon (1983), is
characterized by great importance when RS techniques are utilized to monitor
their WQ and/or trophic status. The distinction between the two cases has
some significant effects on the interpretation and modelling of optical data. In
particular, according to this classification scheme, the optical properties of
Case 1 waters are determined by phytoplankton and co-varying substances,
while Chl-a is considered a proxy of phytoplankton concentration. This
assumption has facilitated the implementation of large-scale optical models
and the development of Chl-a predicting algorithms for Case 1 waters
(Markogianni et al., 2022).

On the other hand, single variable models should be abandoned when
Case 2 waters are the case. It is, on the whole, acknowledged that Case 2
waters are more complex than Case 1 concerning their composition and
optical properties. Monitoring the WQ of Case 2 waters is a more
sophisticated task since phytoplankton, suspended material, yellow
substances, and perhaps bottom reflectance vary independently of each other.
The main difficulty lies in the fact that the alterations in optical signal and the
concentrations of the dissolved constituents are often so small that they
hinder the ability to extract reliable information or the optical signal may be
affected in a similar way by more than one substance, which results in an
inability to discriminate the different materials (Gholizadeh et al., 2016).
Runoff and discharges from rivers/streams are also one of the main factors
adding to the complexity of the water constituent retrieval process in Case 2
waters while those inflows from streams introduce different organic/inorganic
particles, known as total suspended solids (TSS).

Hence, given the difficulty that WQ monitoring of Case 2 waters
constitutes a multi-variable, non-linear problem, it is more realistic to
establish a series of algorithms rather than a single all-purpose one. In this
way, more than one algorithm will attempt to capture and solve the problem
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for all variables and over several and different ranges of concentrations
(IOCCG, 2000).

In parallel, the Case 1/Case 2 classification can substantially improve RS
products when associated with individual optical water types (OWTs). In
particular, coastal regions and inland waters are characterized by such optical
diversity that any further information about their variability in IOPs and
biogeochemical significance would be particularly valuable. Some OWTs can
be hypereutrophic waters, turbid waters with high organic content, sediment-
laden waters, CDOM-rich waters, or even very clear blue waters. Several
hierarchical, partitional, and hybrid clustering techniques have been utilized
to further discriminate distinct OWTs within and between Case 1 and Case 2
waters (Spyrakos et al., 2018). After all, a reliable OWT classification
optimizes the selection of the finest constituent algorithms when simpler
approaches cannot yield reliable results.

The different ranges of concentrations within Case 2 waters correspond
to classes of trophic status. Carlson (1977) developed a method of trophic
status classification for inland waters considering Chl-a and phosphorus
concentrations and Secchi disk depths (ZSD, m). Ranges of those WQ
elements are associated with three (3) main trophic classes: oligotrophic,
mesotrophic and eutrophic (McCullough, 2012) including also transitional
categories (e.g. ultra-oligotrophic, hypertrophic; etc; Watanabe et al., 2020).

Based on this rationale, very clear lakes are classified as oligotrophic
Case-2 rather than Case-1 (Gons et al., 2008) since they typically receive
significant levels of terrigenous input (Gons and Auer, 2004) and their water
clarity is primarily controlled by the concentration of Dissolved Organic
Carbon (DOC) (Lisi and Hein, 2019; Song et al., 2022). Water clarity, in turn,
affects a plethora of chemical, physical and biological processes, including
thermal structure, light transmission for photosynthesis, attenuation of
damaging levels of ultraviolet light, vertical distribution of plants and
animals, as well as the form and availability of toxic metals (Schindler et al.,
1997; Williamson et al., 1999a; Pérez-Fuentetaja et al., 1999; Gunn et al., 2001).

In purview of the above and based on the relevant literature, it has been
reported that there is a need for further algorithm development, especially for
oligotrophic water bodies, while, of principle value is the selection of the
appropriate wavelengths.

Gons and Auer (2004) measured spectra in the Keweenaw Bay (Lake
Superior) which were typical of oligotrophic lacustrine waters. However,
strong absorption by water in the red region hindered the accurate detection
of Chl-a highlighting the need of algorithm development for oligotrophic
waterbodies.

Furthermore, Gons et al. (2008) managed to adequate assess Chl-a
concentrations of the Great Lakes (North America) through an empirically
developed algorithm employing blue-to-green bands. Additionally, there is a



plethora of studies highlighting the utilization of blue-to-green band ratios as
the most optimal choice for the monitoring of WQ elements in oligotrophic
lakes (Binding et al. 2019; O'Reilly and Werdell, 2019; Warren et al., 2019)
Even though for clear waters the results warrant the use of the blue-green
ratio, blue-green algorithms are not suitable in turbid regions. Therefore, AC
processors need to further improve so that the NIR-red band ratio algorithms
can be used in more turbid waterbodies (Case-2 waters; Warren et al., 2019)

1.1 Scope and objectives of the current thesis

All in all, the present PhD thesis constitutes, to the author’s knowledge
the first attempt to achieve the continuous monitoring and assessment of WQ
and trophic state of Greek lakes. Taking advantage of the ongoing
implementation of WFD in Greece, collection of large in-situ WQ datasets in
synergy with satellite RS, will further provide the essential means for the
monitoring of lake eutrophication and its spatio-temporal changes. Hereby
delivered “tools” will be proven fundamentally valuable in the framework of
national environmental policy in general, and in particular of lake
management at a national scale.

Overall, the main objectives of this research are to:

1. Establish a methodological framework that aims to model WQ and
trophic status of optically diverse Greek lakes (Case 2 waters) by
assessing key WQ elements with fine spatial resolution (10-30 m) RS
image data. Ultimate goal of this proposed methodology is the accurate
spatial assessment of WQ and trophic status over various types of
lakes, thus acquiring the valuable information about their variability.
The unique contribution of this objective lies in the fact that spatially
distributed WQ of Greek lakes can be monitored continuously, for the
first time, reflecting their trophic status and detecting the possible
pollutant threats in near real time and in fine spatial resolution.

2. Explore the spatio-temporal transferability of Landsat-developed WQ
models across sensors; initially across Sentinel 2 and then across multi-
sensor image data (Landsat 7 ETM+, 8 OLI and Sentinel 2 MSI). The
transferability is tested along the National Lake Network Monitoring
of Greece (WFD) and concerns the sampling campaigns of 2018. In
particular, the smoothly and operating transferability of WQ models
across different sensors will facilitate the acquisition of high-frequency
time series and multi-temporal WQ analyses, further contributing to
continuous lake WQ monitoring at a national scale (Greece).

3. An examination of the influence of different atmospheric correction
methods to WQ models” performance after employing differently-

atmospherically corrected SR values. Statistically-modified WQ models
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harmonize the differences accrued from the application of DOSI1
(manually applied to images of all sensors) and LaSRC, LEDAPS and
Sen2Cor correction methods applied to Landsat 8 OLI, Landsat 7 ETM+
and Sentinel 2 images, respectively through the GEE platform. This
analysis is performed across the National Lake Network Monitoring of
Greece (WFD) and the comparison of results is based on the in-situ WQ
data of years 2018, 2019 and 2020. High performance of WQ models
employing SR from GEE environment further contributes to the
continuous lake WQ monitoring across Greece in an even faster
manner, whilst liberate researchers from the time-demanding and
complicated atmospheric correction of raw image products.

4. Assess WQ models” performance in a distinct category of optically
complex Case-2 waters, oligotrophic Trichonis and Amvrakia lakes.
The unique contribution of this objective lies in the final decision on
whether national WQ models adequately support perpetual WQ
monitoring of Greek oligotrophic lakes or special oligotrophic
algorithms should be developed and under which circumstances.
Furthermore, it includes the background information required for the
designation of the WQ monitoring methodology of oligotrophic
waterbodies.

5. Model WQ of oligotrophic Trichonis lake by assessing WQ key
elements (Chl-4, nutrient concentrations and CDOM absorption at 420
nm) through satellite RS. Trichonis is the largest freshwater lake of
Greece while the available in-situ and satellite datasets concern years
2013 and 2014.

1.2 Thesis ‘s Significance

The most significant aspect concerning the contribution of the present
PhD thesis lies in the fact that the methodology has been developed, applied
and validated in 50 different Greek lake systems of varied chemistry,
limnological conditions and trophic level, while covering a broad geographic
area and a wide range of WQ elements’ concentrations collected over
different seasons. The hereby developed WQ models were proven to
efficiently accommodate initially the spectral composition differences among
Landsat (7 ETM+, 8 OLI) and Sentinel 2 sensors and then the differences
regarding the pre-processing procedures among SR values that are subjected
to different atmospheric correction methods (DOS1, LaSRC, LEDAPS and
Sen2Cor).

Wide WEFD in-situ lake WQ datasets in conjuction with satellite images
managed to generate uniform models for the systematic assessment of Chl-a
and TP concentrations and Secchi Disk depths at a greater scale (country



level), compared to the majority of the respective literature focusing on
regional scales and discrete inland water bodies.

Furthermore, WQ models exhibited spatial and temporal stability to
variations of the optical properties of lakes while their good performance
when employing SR retrieved from GEE platform facilitates and significantly
improves and accelerates the perpetual lake WQ and trophic status
monitoring especially when in-situ data are limited. Addittionally, the
detailed spatial variability of WQ and trophic status over lakes is delivered
spatially finer compared to similar, large-scale, purely based on EO
applications, offered worldwide (e.g. SDG6 Hydrology TEP Reporting portal;
90m spatial resolution). By extension, WQ empirical models were also proved
priceless means for the monitoring of lake eutrophication and the drivers of
its dynamics, particularly nowadays that this phenomenon has been evolved
into a growing public concern and lakes are undergone the dual impact of
human activities and climate change.

Ultimate goal of this thesis and the delivered WQ models is to constitute a
valuable tool, part of a wider national early warning system, in the hands of
scientists and competent public authorities for the timely identification of
pollution events and by extension the promptly performance of sustainably
efficient solutions. Moreover, what is the most desired is the uninterrupted
continuation of WFD implementation in Greece as the on-going combination
of RS and WFD in-situ data will further improve the temporal resolution of
lake WQ monitoring while offering a multi-platform observation by acquiring
more comprehensive information.
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2. Towards the Modelling of Greek Lakes
Water Quality Using Satellite Remote
Sensing technology

2.1 Estimating Chlorophyll-a of Inland Water Bodies in
Greece Based on Landsat Data

Published as: Markogianni, V.; Kalivas, D.; Petropoulos, G.P.; Dimitriou, E.
Estimating Chlorophyll-a of Inland Water Bodies in Greece Based on Landsat
Data. Remote Sens. 2020, 12, 2087. https://doi.org/10.3390/rs12132087

Preamble

Assessing chlorophyll-a (Chl-a) pigments in complex inland water systems is
of key importance as this parameter constitutes a major ecosystem integrity
indicator. In this study, a methodological framework is proposed for
quantifying Chl-a pigments using Earth observation (EO) data from Landsat 7
Enhanced Thematic Mapper Plus (ETM+) and 8 Operational Land Imager
(OLI) sensors. This effort aimed at exploring different remote sensing-derived
Chl-a algorithms for various types of lakes. The practical use of the proposed
approach was evaluated in a total of 50 lake water bodies (natural and
artificial) from 2013-2018, constituting the National Lake Network
Monitoring of Greece in the context of the Water Framework Directive
(WFD). All in all, the results evidenced the suitability of Landsat data when
used with the proposed technique to estimate log-transformed Chl-a. The
methodological framework proposed herein can be used as a useful resource
toward a continuous monitoring and assessment of lake water quality,
supporting sustainable water resources management.

2.1.1 Introduction

Accumulating passive exploitation of natural resources, improper land-
use practices and irregular development activities in lake basins undermine
various significant functions of water resources (Alymkulova et al., 2016).
Surface water provides exceptional financial benefits, regarding water supply
(quantity and quality), fisheries, agriculture, wildlife resources and recreation
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and tourism opportunities (Ramsar Information Paper no. 1 2007; Ramsar
Convention Bureau). The need for sustainable management of water bodies
highlights the fact that water resources are not inexhaustible and have limited
resistance under anthropogenic pressures such as ongoing drainage,
conversion and pollution.

Hence, one of the most significant aspects for the sustainable
management of water bodies - lakes in particular - is the constant monitoring
of their quality as well as of their watersheds (Gholizadeh et al., 2016). Water
quality parameters comprising physical, chemical, and biological properties
are conventionally measured by collecting samples from the field and then
analysing those samples in the laboratory. Although in-situ monitoring
provides high accuracy, it is a time-consuming procedure, and cannot ensure
a simultaneous water quality dataset on a regional or greater scale
[Gholizadeh et al., 2016; Duan et al., 2013; Duan et al., 2013b). Furthermore,
traditional point sampling methods are not capable of detecting the spatial or
temporal variations in water quality, as required in extensive assessment and
management of water bodies. On the other hand, geoinformation technologies
provide a promising direction in that respect. In particular, the combined use
of Earth Observation (EO) and Geographical Information Systems (GIS)
allows monitoring in an efficient and robust way lake parameters over
variable spatial scales, including lakes that are otherwise inaccessible
(MacKay et al., 2009; Whyte et al., 2018).

Various EO instruments mounted on either airborne or satellite
platforms, acquire spectral information and measure the energy from the
water’s surface at different wavelengths (Gholizadeh et al., 2016). The most
commonly used approach to inland water remote sensing involves fitting a
standard linear regression between spectral band/band ratio values and
temporally coincident in-situ water quality measurements (Topp et al., 2020).
Visible, near and short infrared bands of the solar spectrum have been usually
used by many researchers to acquire powerful correlations -through empirical
approaches- among water column reflectance values and constituents, in
different water bodies (Ritchie et al., 2003; Gitelson et al., 2008; Olmanson et
al.,, 2008; Gholizadeh et al., 2016; El-Din et al., 2013; Giardino et al., 2014;
Markogianni et al., 2018). EO data from several satellite and airborne sensors
such as SPOT, MODIS, Earth Observing 1-Hyperion and MERIS have been
used for Chl-a estimation (Nas et al., 2007; Kim et al., 2014; Zhang et al., 2015;
Lim et al., 2015; Bonansea et al.,, 2018). Nonetheless, it revealed that the
Landsat seems to be more appropriate and widely used for Chl-a assessment
due to its temporal coverage, spatial resolution and easy accessibility
(Gholizadeh et al., 2016).

Chl-a is the major indicator of trophic state and considered as one of the
top water pollution indices related to public health, eutrophication and
deterioration of ecosystem habitat. In Case 2 waters (i.e. inland and coastal



waters), the optical properties are measured based on a compound of
dissolved organic matter, dead organic and inorganic particulate matter and
phytoplankton (Chl-z). Therefore, determination of Chl-a concentration is
much more complex and less accurate (Ritchie et al., 1990; Dekker and Peters,
1993; George, 1997; Gholizadeh et al., 2016). Oligotrophic to mesotrophic
waterbodies with low biomass, present a Chl-a spectrum characterized by a
sun-induced fluorescence peak centered at 680 nm (Gitelson et al., 1994; Topp
et al., 2020), while eutrophic waterbodies (high biomass) present a florescence
signal which is masked by absorption features and backscatter peaks around
665 nm and 710 nm, respectively (Matthews et al., 2012; Topp et al., 2020). The
ratio between these two wavelengths has been widely used to quantify Chl-a
concentrations with high accuracy (Le et al., 2011; Topp et al., 2020).

Many studies have focused on monitoring eutrophication or trophic
state through Chl-a concentration retrieval in Greek lakes. For example, Peppa
et al. (2020) applied Chl-a detection algorithms in Lake Pamvotis using
Sentinel-2 Data, (Markogianni et al., 2014) developed empirical Chl-
a quantitative models based on Landsat 5 images in the brackish urban
shallow Koumoundourou lake while Markogianni et al. (2018) investigated
the suitability of the OLI instrument on-board the Landsat 8 satellite platform
in accurately estimating Chl-a in the largest freshwater body of Greece
(Trichonis Lake). In another study, Kontopoulou et al. (2017), tried to exploit
the Water Framework Directive (WFD) dataset and measure Chl-
a concentrations by using Landsat 8 data in 11 (6 natural; 5 artificial) of the 50
lakes comprising the national sampling network.

In this study, authors discuss the utility of remotely sensed techniques in
the qualitative assessment of 50 lake water bodies and particularly of Chl-a
concentrations, derived from the WFD (2000/60/EC) monitoring network for
lakes in Greece. WFD provides a scheme for the conservation and
improvement of inland, ground and coastal waters” ecological status and aims
to harmonize European legislation on water. Thus, pan-European
hydromorphological, physicochemical and biological datasets are used to
determine ecological status of surface waters (Article 8) in order to assure and
further improve future water quality and quantity (Mavromati et al., 2017).

In purview of the above, this study proposes a methodological
framework that aims to provide Chl-a in Case 2 complex inland waters of
Greece by generating accurate quantitative models with EO data from the
Landsat 7 ETM+ and 8 OLI satellite series. The methodology applied initially
includes the implementation of stepwise MLR analysis of the whole available
Chl-a dataset with the basic aim of exploring its potential to establish robust
Chl-a quantitative algorithms, regardless of lake characteristics. Then, PCA is
performed to highlight which are the most significant parameters
(artificial/natural, WFD typology, water sampling’s season and climatic type)
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affecting Chl-a values. This procedure was considered to be proven valuable
for the next step, involving the execution of multiple stepwise MLR analyses -
based on PCA results- among different groups of cases. This effort aimed at
exploring different remote sensing derived Chl-a algorithms for various types
of lakes according to the most significant lake characteristics. The practical
use of the proposed approach is evaluated in a total of 50 lake water bodies
(natural and artificial) during 2013-2018, consisting the National Lake
Network Monitoring of Greece in the context of Water Framework Directive
(WED).

2.1.2 Materials and Methods

2.1.2.1 Study area

The National Monitoring Network of Waters in Greek lakes, according
to the Joint Ministerial Decision 140384/2011, is implemented by the
Goulandris Natural History Museum, Greek Biotope/Wetland Centre (EKBY).
The network consists of 50 lake water bodies, natural and artificial.

At the majority of the lakes only one sampling station is detected, except
for trans-boundary lakes (Megali Prespa, Mikri Prespa and Doirani), where
two sampling stations are located (Table 2.1.2-1; Figure 2.1.2-1). From the total
of 53 sampling sites, the 27 are surveillance and the 26 operational ones.
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Figure 2.1.2-1 Monitoring network for lakes in Greece (GGRS_1987 coordinate system;
Transverse Mercator projection; numbers of sampling stations coincide with the numbers
presented in Table 2.1.2-1).
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Table 2.1.2-1. General characteristics of the lakes comprising the National Lake Network

Monitoring in Greece (WFD; Mavromati et al., 2018).

Koppe
M
Nation | (N)atu n Mnea Nation | (N)atu Koppen nea
N al ral/ Typol | climat N al ral/ Typol | climate
. dept . ... | dept
o | Name | (A)rtif | ogy e h o | Name | (A)rtif | ogy | classific h
Station icial classifi Station | icial ation
. (m) (m)
cation
Lake Lake GR-
1 Ladona A L-M8 Csa - 28 Petron N VSNL Cfa 3.1
Lake Lake GR-
2 Pineiou A L-M8 Csa 15.1 | 29 Zazari N SNL Cfa 3.95
Lake Lake
GR- GR-
X .
3 Sty'mfal N VSN Csa 1.3 | 30 C}Te'lma N VSNL Cfa 1.01
ia ditida
L- Lake
g | Lake A | M57 | Csa | 105 | 31 | Kastori | N GR- Cfa 3.7
Feneou SNL
W as
Lake Lake L-
5 | Kremas A L-M8 Csa 472 | 32 . A M>5/7 BSk 23.2
Sfikias
ton W
Lake L- Lake L-
6 | Kastrak A M>5/7 Csa 33.2 | 33 | Asomat A M>5/7 BSk 20.8
iou ' on '
Lake L-
L R-
7 ake A ¢ Csa | 96 |34 | Polyfyt | A | Ms5/7 | Cfa | 224
Stratou SR
ou W
Lake
Lake L- Mikri GR-
8 | Tavrop A M5/7 Csa 15.0 | 35 N Csa 3.95
Prespa SNL
ou W
A
Lake
Lake
GR- Mikri GR-
Lysi . -
9 ysima N SNIL Csa 35 | 36 Prespa N DNL Csa
cheia
B
Lake
Lake GR- Megali GR-
10 N . 7 N 17
Ozeros SNL Csa 38 3 Prespa DNL Csa
A
Lake
Lake
. GR- Megali GR-
11 Tr%chon N DNL Csa 29.6 | 38 Prespa N DNL Csa -
ida
B
Lake Lake
GR- .. GR-
12 Am.vra N DNL Csa 23.4 | 39 | Doirani N SNL Dfc 4.6
kia 1
Lake Lake
GR- GR-
1 : irani -
3 V01'11ka N VSNL Csa 0.96 | 40 | Doirani N SNL Dfc
ria 2
14 Lake N GR- Csa - 41 Lake N GR- Cfb 1.2




Saltini SP1 PikroL SP2
(lago ake (speci
on) al
categ
ory)
Lake L- Lake GR
15 | Morno M5/7 Csa 38.5 | 42 | Korone N Csa 3.8
. VSNL
u ' ia
Lake L- Lake GR-
16 Evinou M>5/7 Csa 315 | 43 Volvi N DNL Csa 12.3
W
Lake L-
Lak R-
17 | Pigon M5/7 | Csa | 208 |44 | e 1A | © Dfc | 2.19
Kerkini SR
Aoou W
Lake L- Lake CR-
18 | Pourna M>5/7 Csa 29.8 | 45 | Leukog A SR Dfc 4.05
riou W eion
Lake Lake
GR- . GR-
19 Pa‘mvot SNIL Csa 5.3 46 | Ismarid N VSNL Csb 09
ida a
Lake GR Lake L-
20 | Pourna SR Csa 11.7 | 47 | Platano A M5/7 Dfc 26.4
riou II Vrysis \
Lake Lake L-
21 | Marath L-M8 Csa 15.8 | 48 | Thisavr A M>5/7 Dfc 38.4
ona ou W
Lake L-
gy | Lake CR- 1 e - |49 | Gratini | A | M5/7 | Csb | 142
Dystos VSNL
S '
Lake N.
Lake GR- GR-
. Adriani A -
23 Yliki DNL Csa 20.1 | 50 dl::aru SR Csb
Lake
GR- Lake GR-
24 | Parala SNIL Csa 299 | 51 Kourna N DNL Csa 15
ke
Lake
25 | Lake R Bsk | 09 |52 |Bramia| A | LMs | Csa | 101
Karlas SR
nou
Lake Lake
26 | Smoko L-M8 Csa - 53 | Fanero A L-M8 Csa 9.98
vou menis
Lake CR
27 | Vegorit Dfa 26.52 1(Zacharias et al., 2002)
da DNL
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2.1.2.2 Data acquisition
2.1.2.2.1 In-situ data

In this study Chl-a concentrations, measured from 2013 up to 2018
(summer, autumn and spring) throughout the studied lake stations were
acquired while the Chl-z concentrations (in ug/l) were determined
spectrophotometrically (Method 10200 H; APHA, 1989). Those data were
retrieved from the EKBY’s site (Goulandris Natural History Museum, Greek
Biotope/Wetland
data#!IMGP4731), where more details about the sampling periods, stations

Centre;

http://biodiversity-info.gr/index.php/el/lakes-

and the variables measured can be found. Apart from the Chl-a
measurements, some basic characteristics of the 50 studied lakes have been
also considered, such as whether they are natural or artificial, their typology
according to the Water Framework Directive (Table 2.1.2-2) and the climatic
type according to the Képpen-Geiger climate classification (Table 2.1.2-3; Peel
et al., 2007). The determination of the Mediterranean lake types is based on
the 2013/480/EU decision (Table 2.1.2-2) while the WFD typology of each lake
has been retrieved from the respective reports, acquired from the
Environment and Energy Ministry’s website (http://wfdver.ypeka.gr/).

Table 2.1.2-2. WFD national lake types.

Precipitation
(mm) and
T t M
Tvpe Characteristics Elevation emie(:;')a ure Surface d:iﬁ Catchment Thermal
yp (m) (km?) P (km? | Stratification
(mean (m)
annual
values)
Artificial
Deep, large
L- reservoirs, >800 or/and
1 . 1
M5/7W silicate, wet <1000 <15 >0 >15 <20000
areas
Deep, large
L-M8 reservoirs, <1000 - >0.5 >15 <20000
limestones
GR-SR Shallow <1000 ; 505 | <15 -
reservoirs
Natural
GR- Thermal
- >| .
DNL Deep lakes 0-1000 0.5 >9 monomictic
GR- 1 ghallow lakes | 0-1000 >0.5 3-9 Polymictic
SNL ! Y
GR- Very shallow .
VSNL lakes 0-1000 >0.5 <3 Polymictic



http://biodiversity-info.gr/index.php/el/lakes-data#!IMGP4731
http://biodiversity-info.gr/index.php/el/lakes-data#!IMGP4731
http://wfdver.ypeka.gr/

Table 2.1.2 -3. Koppen-Geiger’s Classification of Climatic Regions of Greece.

Climate type Description
Csa Mediterranean hot summer climates
Csb Mediterranean warm/cool summer

climates

Cfa Humid subtropical climates
Cfb Oceanic climate
Dfa Hot summer continental climates
Dfc Subarctic or boreal climates
BSk Cold semi-arid climate

2.1.2.2.2 EO Data

Landsat 8 satellite was launched in 2013 and bears two sensors, the
Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIR). It also
includes a narrower near-infrared band, and a 12-bit radiometric resolution
compared to the 8 bits of previous Landsat satellites (Bonansea et al., 2018;
Olmanson et al., 2016). The main aim was to match as many records from the
available Chl-a dataset as possible with Landsat 8 images. In cases where no
Landsat 8 images were available or were cloud-covered, Landsat 7 ETM+
images were used. Landsat 7, launched in 1999, introduced the Enhanced
Thematic Mapper Plus (ETM+), while its analysis was similar to TM except
for a 60 m thermal and a new 15 m panchromatic band (Loveland and Dwyer,
2012). Since 2003, Landsat 7 had a sensor deficiency where the Scan Line
Corrector (SCL) was off and even though those images are characterized by
black line gaps (Tebbs et al., 2013), its radiometric and geometric analyses
remain undisturbed (Bonansea et al., 2015).

In order to cover the 50 lakes throughout Greece and the different
sampling dates, a 2013-2016 and 2018 time series of 296 Landsat imageries
(102 L7 ETM+, 194 L8 OLI) were downloaded from the USGS (United States
Geological Survey) Data Centre (https://earthexplorer.usgs.gov/). Images
from both sensors reside in Landsat Collection 1 Level-1 category data
products. Furthermore, the mean time window between the satellite overpass
and the in-situ measurements is about +15 days. More information about the
bandwidths and spatial resolution of the aforementioned sensors can be
found at NASA's official website (https://landsat.gsfc.nasa.gov/).

2.1.2.3 Satellite Data Pre-Processing

Pre-processing was carried out to the Landsat images using the Semi-
automatic Classification plugin (SCP) of the free and open-source cross-
platform desktop Quantum Geographic Information System (Q-GIS), v. 3.6.3-
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Noosa. Images of both Landsat 7 ETM+ and Landsat 8 sensors were subject to

the following pre-processing steps:

1. Conversion of images from Digital Numbers (DN) to the physical
measure of Top of Atmosphere reflectance (TOA)

2. Atmospheric correction using the DOS1 method (Dark Object Subtraction
1; image-based technique), which was applied to all bands except for
thermal ones

3. Creation of band stack set for each image. The band stack set of L7 ETM+
includes the bands B1 (blue), B2 (green), B3 (red), B4 (NIR), B5 (SWIR1)
and B7 (SWIR2) while L8 set incorporates bands B2 (blue), B3 (green), B4
(red), B5 (NIR), B6 (SWIR1) and B7 (SWIR2).

More information about each correction including the theoretical
background can be found at the SCP Documentation Release 6.2.0.1 (Congedo
2019). To ensure the use of only cloud-free pixels over the sampled lakes, the
Cloud Masking QGIS plugin (https://smbyc.github.io/CloudMasking) was
used. By using this tool, clouds, cloud shadow, cirrus, aerosols and ice/snow
were masked for all Landsat images using the combination of the Fmask and
Blue Band processes.

Pre-processing procedure of L7 images also included the retrieval of
data that coincided with the aforementioned black diagonal stripes. By visual
checking, sampling sites covered by those stripes were recognized and by
employing GIS operations and Focal Statistics, the mean value within a circle
of 7 cells around it for each input cell location was calculated. This radius was
the most adequate among several trials. Then, by applying the Con and IsNull
functions were replaced only the cells that had no values. In cases where part
of sampled lakes was cloud covered, the SetNull and IsNull functions were
combined with the Cloud mask calculated in earlier stages to remove the
cloud biased pixels.

2.1.2.4 Statistical methods of analysis

2.1.2.4.1 Basic statistics and PCA

Basic statistical analysis among the Chl-a datasets of 2013, 2014, 2015,
2016 and 2018 was carried out including the calculation of mean, median,
standard deviation and min-max. Based on the available lake characteristics
(Table 2.1.2.-1) a Factor Analysis was used with the Varimax-Rotated
Principal Component Analysis (PCA) for factor extraction method to interpret
the major patterns of Chl-a variation within the whole dataset.

Furthermore, PCA ‘s basic aim was to explore and indicate the presence
of inter-correlations among Chl-a concentrations, lakes’ characteristics,
climatic type, WFD typology and season’s sampling and further indicate
which of them are the most significant parameters affecting Chl-a


https://smbyc.github.io/CloudMasking

concentrations in studied lakes. The seasons are defined as: summer (June,
July, and August), autumn (September, October and November) and spring
(March, April, and May). Chl-a concentrations” distribution was grouped and
categorized by the most significant variables/criteria that PCA indicated, by
using box-plots diagrams. PCA was performed in SPSS Statistical Package (v.
24.0).

2.1.2.4.2 Developing Relationships between Landsat and
Chlorophyll-a Data

There are several band combinations and transformations proposed in
the relevant literature for establishing relationships between the Landsat
reflectance data (independent) and Chl-a, log (Chl-z) and In (Chl-a) data
(Markogianni et al.,, 2018). Matthews (2011) reported that the wavelength
areas where water reflects and scatters the majority of the entering solar
radiation are those that are mostly used for the monitoring of water quality
constituents. These wavelengths incorporate the water-leaving reflectance in
visible and NIR wavelengths of the electromagnetic spectrum. Thus, to
compare Chl-a concentrations and EO data, visible (blue, green and red), NIR
and SWIR bands were used while aerosol, cirrus, panchromatic and TIRS
spectral bands were excluded. In addition, Landsat band ratios, additions,
subtractions, log and In-transformations were added to the analysis to
establish accurate and reliable estimation algorithms. Based on the respective
literature, more than 75 available band transformations/combinations were
developed, also including spectral indices such as Enhanced Vegetation Index
(EVL Liu and Huete, 1995), Normalized Vegetation Index (NRVI; Baret and
Guyot, 1991), Normalized Difference Water Index (NDWI; McFeeters 1996),
Modified Normalized Difference Water Index (MNDWI; Xu 2006), Green
Normalized Difference Vegetation Index (GNDVI; Gitelson et al., 1996),
Normalized Difference Vegetation Index (NDVI; Rouse et al., 1974) and SABI
(Surface Algal Bloom Index; Alawadi 2010).

As a first step, the main objective was to distinguish the highest
important predictors among the aforementioned band
transformations/combinations by conducting a correlation analysis among
them and the Chl-a, log(Chl-a) and In (Chl-a) concentrations. Taking into
account only the significant at the 0.01 level correlations, a threshold value of
Spearman r was set to +0.4 (moderate relationship; Dancey and Reidy, 2007).
Variables that presented an r value equal or higher than the aforementioned,
were selected. Then, those variables/predictors were further inserted -
combined in various ways-in numerous stepwise MLRs while examining for
statistical performance and residuals. Further criteria consisting multi-
collinearity, tolerance factor and variance inflation factor (VIF) were applied
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and checked to a subset of optimal models in order to further compare them
and select the simplest models with higher accuracy (higher R?). To develop a
robust Chl-a algorithm, stepwise MLR analyses have been evaluated in the
context of 2 scenarios, as also illustrated in Figure 2.1.2-2:

1st scenario: Basic aim of this scenario was the exploration of the potential
of stepwise MLR analysis to establish robust Chl-a quantitative algorithms.
The training dataset was randomly established and included the 80% of the
whole available dataset (481 out of 565 Chl-a measurements, regardless of
lake characteristics; Figure 2.1.2-2). This methodology is widely used in
remote sensing of inland water quality and attempted to develop an
algorithm that can be applied in multiple types of lakes.

2nd scenario: This scenario aimed at exploring different remote sensing
derived Chl-a algorithms for various types of lakes according to the most
significant lake characteristics as resulted by PCA of Chl-a values, lakes’
climatic type, WFD typology and season’s sampling. PCA-indicated
parameters were combined in all possible ways, forming the various
modelling cases examined to highlight the most optimal model. In this
scenario, the various training datasets were subsets of the whole dataset of in-
situ Chl-a values, defined by the respective combination of the PCA derived
criteria. Each training dataset was then used in a separate MLR analysis
(Figure 2.1.2-2). As an additional criterion, a confined time window of +5 days
was used, defined as the difference between field measurements and satellite
overpass. Kloiber et al. (2002) observed that in-situ measurements within one
day off the satellite image date resulted in the best calibrations, but larger
number of ground observations with the longer time difference balances some
of the loss of accuracy. Hence, since the available dataset of in-situ Chl-a
measurements is quite large, the 5 days window was determined presuming
that during this period the water quality usually does not exhibit large and
rapid water quality fluctuations.

During the analyses which included both scenarios mentioned above, it
was ensured that the separate training and validation datasets contained
representative samples of the data, 80% and 20%, respectively of the initial
dataset. Training datasets of both scenarios comprised the in-situ Chl-a
measurements of 2013-2016.
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Figure 2.1.2-2. Flowchart summarizing the methodology followed in this study.

2.1.2.5 Validation approach
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The qualitative capability of the derived algorithms was evaluated by
regression analysis in two ways. Algorithms derived from the MLR based on
the 1st scenario (random dataset), were applied in Landsat images associated
with the respective validation dataset (20%) and in images of the year 2018
(Figure 2.1.2-2). The algorithms resulted from the 2nd scenario’s training
datasets (criteria), were applied in available Landsat imageries concerning the
Chl-a of each respective validation dataset (20%) and the in-situ Chl-a values
of 2018. After applying several models on the available images, the optimal
ones were verified based on Spearman’s r correlation coefficient, mean
residual value (e) and RMSE (Root-Mean-Square Error) statistical indices

(Figure 2.1.2-2).

Markogianni V. Water Quality Assessment in Greek Lakes by Using Remote Sensing and Statistical Modelling

95|Page




2.1.3 Results
2.1.3.1 Statistical Analyses

Total measurements of in-situ Chl-a concentrations of years 2013-2016
and 2018 are 702, including all sampling campaigns in all lakes, while the
most measurements presented in 2015 (Table 2.1.3-1). Sampling campaigns of
2014 indicated the highest range in Chl-a values (1026.7 ug/l) while in the rest
of years the annual ranges are significantly lower. Minimum Chl-a value is
0.22 ug/l for years 2013 and 2014 whereas this value is increasing over the
years. Despite this fact though, mean Chl-a value is remaining similar
between different years, indicating no special deterioration trend in Greek
lakes” water quality. Furthermore, datasets of all years are skewed right with
low values while the kurtosis of all years is described as leptokurtic (fat tails).

Table 2.1.3-1. Descriptive statistics-Summary table of in-situ Chlorophyll-a of years 2013-
2016 and 2018.

Chl-a Chl-a Chl-a | Chl-a | Chl-a | Chl-a

(ug/D- | (ug/M- | (ug/D- | (ug/M- | (ug/D- | (ug/-
2013 2014 2015 2016 2018 all

N 157 155 172 82 136 702

Minimum 22 22 .36 45 .58 22

Maximum | 263.9 1026.9 286.96 | 292.7 361.7 | 1026.9

Mean 24.44 29.13 23.06 27.99 27.03 26.06

Std. 46.94 101.82 46.27 45.34 55.92 64.31
Deviation

Skewness 3.05 7.7 3.24 3.23 3.83 7.87

Kurtosis 9.7 67.8 11.7 14.1 16.9 97.5

Performance of Factor Analysis (using as extraction method the
Principal Component Analysis - PCA) included five (5) variables/criteria, e.g.
sampling’s  season, in-situ  Chl-a  concentrations, lakes’ nature
(natural/artificial), WFD typology and climatic type. Factor Analysis was
implemented to obtain an indication of underlying common factors
(components) that explain the interrelationships among those aforementioned
variables. The analysis initially extracts 5 components (Table 2.1.3-2). Finally,
only the first three components with eigenvalues higher than 1 are retained
(as those which represents a real underlying factor) in the extraction sums of
squared loadings. The percentage of the total variance explained by the three
components (calculated after the implementation of the varimax rotation



method) is 35.4 %, 21.9% and 20.8%, respectively and cumulatively those first
three explain the 78% of the total variance.

Based on rotated component matrix’s results (Table 2.1.3-3),
communalities of studied variables are further discussed. Thus, the 53% of
Chl-a’s variance is explained by the second component which also explains
the 57% of the sampling’s season variance. The first component explains the
10% of Chl-a variance which also explains the 81.5% of the variance of lakes’
characteristics (natural/artificial) and the 79% of the variance of the lakes’
WED typology. The third component explains only 5% of the Chl-a variance
and 90% of the climatic types’ variance. Considering those results, the
variables that mostly contribute and affect the variance of Chl-a
concentrations are the lakes’ characteristics (natural/artificial) and WFD
typology followed by the samplings” season.

Table 2.1.3-2. Total variance explained, initial eigenvalues and extracted components.

T, Extraction Sums of Rotation Sums of Squared
Initial Eigenvalues . .
Squared Loadings Loadings
Compon
% of . % of . .
ent . Cumulativ . |Cumulativ, % of |Cumulative
Total | Varianc Total | Varian Total .
e % e % Variance %
e ce

1 1.78 | 35.5 35.6 1.78 | 35.6 35.6 1.8 35.4 35.4
2 112 | 224 57.9 112 | 224 57.9 1.1 21.9 57.4
3 1.01 20.2 78.1 1.01 | 20.2 78.1 1.04 20.8 78.12
4 .79 15.9 93.98
5 .30 6.02 100

Table 2.1.3-3. Rotated component matrix (Rotation Method: Varimax with Kaiser
Normalization, Rotation converged in 5 iterations); (*Percentages of the variables total
communalities explained by each component).

Component

PCA |PCA |PCA 1* 2* |Commu | 3*

Communa Communa ..

Score|Score|Score lities (1) lities (2) nalities

ITEM 1 2 3 (3)
Sampling’s season | 25 | .75 | .26 0.06 6 0.56 56 0.07 7
Chl-a (ug/l) -31| .73 | -.23 0.096 |9.6 0.53 53 0.053 |5.3
Natural/Artificial 9 | -.03]| .06 0.81 81| 0.0009 |0.09| 0.004 |04
Koppen/ Climate type| -.08 | .02 | .95 0.006 |0.6| 0.0004 |0.04 0.9 90
WED Typology 89 | .01 | -.15 0.79 79 | 0.0001 |0.01| 0.023 |23

Concentrations of Chl-a of natural lakes were found notably higher in
comparison to artificial while the highest measured values are detected in
artificial lakes during the summer and autumn months (outlier values) while
in natural during autumn (Figure 2.1.3-1a). In general, seasonality of Chl-a
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Chl-a (ugh)

concentrations is more evident in natural rather than in artificial lakes. The
highest discrepancies are detected at natural lakes (Zazari and Voulkaria
lakes, 07/2014) followed by autumn sampling campaigns (eg Zazari lake,
09/2014).

Measured Chl-a concentrations in both artificial and natural lakes
present a greater range during summer while most outliers of artificial lakes
are illustrated also during summer (Kerkini-08/2014; 08/2016 and Karla
reservoirs, 07/2014) and autumn seasons (Kerkini reservoir, 10/2015). Spring
also presents significant differences between natural and artificial lakes where
median value of the latter is evidently decreased.

The same Chl-a pattern is illustrated in a different way by the second
boxplot (Figure 2.1.3-1b). As far as the Chl-a distribution based on the lakes’
typology is concerned, the highest values are detected at natural GR-VSNL
and GR-SNL shallow (Zazari lake) and very shallow lakes (Voulkaria lake).
These cases are followed by the values measured in deep natural lakes GR-
DNL (Yliki lake), while the lowest Chl-a values were detected in artificial
shallow reservoirs (Pournari II and Stratos reservoirs).
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Figure 2.1.3-1. Boxplots presenting basic descriptive statistics (median, percentiles, min-
max, outliers and extremes) of chlorophyll-a concentrations of years 2013-2016 and 2018
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2.1.3.2 Relationships between Landsat and Chlorophyll-a Data

Blue, Green, Red, NIR and SWIR Landsat 8 and Landsat 7 ETM+ bands
and more than 75 different band transformations and indices were used for
investigating the most suitable relationship to estimate Chl-a concentrations
throughout 50 Greek lakes.

Correlation analysis among all available variables and Chl-4, log(Chl-a)
and In (Chl-a) concentrations resulted in Spearman r values that ranged from -
0.6 to +0.6. Based on the correlation matrix, the highest important predictors
that met the criterion of the set threshold value of Spearman (r) +0.40 in
relation to log(chl-a) are the following: Blue/Green, Green/Blue, Blue/Red,
Red/Blue, Red/ Green, Red/SWIR1, Log(Blue/Green), Log(Blue/Red),
LogBlue/LogGreen, LogBlue/LogRed, (Blue-Red)/Green, LnBlue/LnGreen,
LnBlue/LnRed, LnGreen /LnBlue, LnRed/LnBlue, LnRed /LnSWIR1 and
LnRed /LnSWIR2. Those variables/predictors were further inserted in several
combinations in numerous stepwise linear regressions. As the number of the
generated models is quite large, hereby are included only the most significant
models from a statistical point of view.

Based on the 1st scenario, MLR analysis among the indicated variables
generated several models with good performance. Based on tests on statistical
significance of the bi coefficient of the independent factors (t-test with p
values less than 0.05) and on tests for multicollinearity (Variance Inflation
Factor-VIF with values higher than 1 and less than 10 and Tolerance higher
than 0.1) the following model was finally selected as satisfactory (Equation
2.1.3-1; Table 2.1.3-4).

blue

d)—2.183*(

log Chla = 3.599 — 0.63 * ( Inred )

In swir2

(2.1.3-1)

re

Table 2.1.3-4. Regression analysis statistics and models’ summary among reflectance
values and log-chlorophyll-a concentrations (dependent variable).

Scenario Adjusted | Std. Error of Durbin-
/Model | R | R? R? the Estimate Watson
1A .654 | 427 425 .525 1.95

Predictors: (Constant), BLUE/RED, LNRED/LNSWIR2

Descriptive statistics results obtained for the training and validation
datasets (regarding logchl-a) suggested that there is no discrepancy in the
mean (training: 0.8; validation: 0.79) and standard deviation (training: 0.69;
validation: 0.68) values, between the two groups. To ensure statistically
significant results, an independent t-test for the mean values was also
implemented. Based on these results (t-value 0.276, p= 0.783), it is assumed
that there is no difference in the group means.
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Random selection of Chl-s measurements, and MLR analysis (1Ist
scenario, 1A model) yielded a model accompanied by a value of coefficient of
determination equal to 0.43, including the band ratios Inred/Inswir2 and
blue/red (Table 2.1.3-4). The standard error of the estimate is equal to 0.53
and the collinearity statistics were considered acceptable.

Concerning the 2nd scenario, MLR analysis conducted among the
selected predictors and the various combinations of the criteria (Table 2.1.3-5)
indicated by the PCA, generated several models. Examination though of
aforementioned statistical indices highlighted two (2) models (Table 2.1.3.2-6;
Equations 2.1.3-2 and 2.1.3-3). It should also be noted that the various criteria
combinations always included in the examined dataset the values with Chl-a
concentrations lower than 500 pg/l (based on the normal Q-Q Plot of Chl-a
concentrations and outliers analysis) and mean depth higher than 5 m to
surely avoid the bottom reflectance noise (McKinna and Werdell, 2018). The
criterion of the time window of +5 days, was applied in cases with statistically
significant results to examine and explore any further improvement. The 13th
criterion case (Table 2.1.3.2-7) aimed to establish accurate algorithms
considering only the mean depth differentiation of the lakes by including the
shallow reservoirs (<15 m) as well as shallow (3-9 m) and some deep (>9 m)
natural lakes.

Table 2.1.3-5. Description of cases including all possible combinations of criteria applied.
The criteria were selected according to PCA results.

No of case

regarf:hn-g Combination of criteria

the criteria

application
1 Mean depth > 5 m, natural lakes, all seasons
2 Mean depth > 5 m, artificial lakes, all seasons
3 Mean depth > 5 m, natural lakes, season spring
4 Mean depth > 5 m, natural lakes, season autumn
5 Mean depth > 5 m, natural lakes, season summer
6 Mean depth > 5 m, artificial lakes, season spring
7 Mean depth > 5 m, artificial lakes, season autumn
8 Mean depth > 5 m, artificial lakes, season summer
9 Mean depth > 5 m, season spring
10 Mean depth > 5 m, season autumn
11 Mean depth > 5 m, season summer
1 Mean depth > 5 m, date difference (sampling/satellite): +5

days

13 >3 m mean depth <15 m




values and log-chlorophyll-a concentrations (dependent variable).

Table 2.1.3-6. Regression analysis statistics and models’ summary among reflectance

Std. Error
Scenario Adjusted| of the | Durbin-
/Model | R R? R? Estimate | Watson
2A 776 | .602 587 432 1.666
2B 757 | 574 .563 291 2.034
The 2A regression model is the following:
1
log Chla =4.443 — 1421 » (o) — 3.454 * (220 ) 4 1.304 * (——)
green In swir2 green
(2.1.3-2)

with 85 number of selected cases; based on the criteria: Chl-a
concentration <500 pg/l, mean depth > 5 m, natural lakes, all seasons.

The equation of the 2B regression model is:

red
green

Inred

log Chla = 2.919 — 2.011 * )+ 1449« (

) — 1.441 (“‘ﬂ)

In blue

(2.1.3-3)

Inswiril

with 125 number of selected cases and developed based on the following
criteria: Chl-a concentration <500 pg/l, mean depth > 5 m, artificial lakes, all
seasons and date difference between sampling and satellite overpass +5 days.

The optimal Chl-a models developed based on the 2nd scenario
incorporated the band ratios Inred/Inswir2, blue/green, Inred/Inblue,
red/green and Inred/Inswirl while the coefficient of determination was equal
to 0.57 (2B) and 0.6 (2A) and the standard error of the estimate 0.29 (2B) and
0.4 (2A). Collinearity statistics (Tolerance and VIF) of the coefficients were
also considered acceptable. In general, the highest beta coefficient values
accompany the band ratios red/green, blue/red and blue/green while Durbin-
Watson’s statistic test indicates an absence of autocorrelation especially in the
residuals of models developed in the 2nd scenario.

2.1.3.3 Regression models’ validation

Developed regression models were validated for both scenarios while
validation datasets were different for each model. Concerning the Ist
scenario’s analysis (1A), the model was applied in Landsat 8 and 7 ETM+
images connected to the remaining 20% of the respective validation dataset
(47 measurements; first validation) and then for the second validation by
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using images and all available Chl-z measurements of the year 2018 (N= 71;
Table 2.1.3-7). Models 2A and 2B were validated based on the 20% of
remaining datasets characterized by the set criteria (2A, N=20 measurements;
2B, N=29; Table 2.1.3-7) and subsequently the in-situ Chl-a values of 2018 were
used for the 2nd validation process (2A, N=23; 2B, N=40). More specifically,
2A model was validated by using the measurements concerning the natural
lakes while for the validation of 2B model, measurements of artificial lakes
with sampling/satellite date difference of +5 days, regardless the sampling’s
season were used. It should also be noted that validation results have been
enhanced by extracting outlier values, concerning the residuals between in-
situ and satellite values.

Table 2.1.3-7. Statistical indices used to validate the selected algorithms (**. Correlation
significant at the 0.01 level (2-tailed) and *. at the 0.05 level (2-tailed), respectively).

1st validation (20%) 2nd validation (2018 data)
Avera | Avera RMS Avera | Avera RMSE
] Aver . Avera
. ge in- ge | age E ge in- ge . ge (pg/D
Scenario/ | Spear | situ | satelli resid (ug/) | Spearma | situ | satelli residu
Models | manr | Chl-a te uals nr Chl-a te als
(ug/l) | Chl-a (nell) (ug/l) | Chl-a (se/])
(gl | 8 (ugn | 78
1A
Training | .688** .758**
dataset N=d7 29 4.3 -1.3 3.96 N=71 4.8 5.01 -0.19 4.6
N=481
2A
Training | .782** .697%%
dataset N=20 10.9 9.7 1.3 5.6 N=23 5.6 6.9 -1.3 42
N=85
2B
Training | .622** .593**
dataset N=29 2.3 2 0.3 1.53 N=40 3 2.5 0.5 2.3
N=125

The 1st scenario yielded a model (1A) that even though is characterized
by a quite low coefficient of determination (0.43), is accompanied by two
validation processes with high Spearman (r) values (0.69 and 0.76,
respectively, significant at the 0.01 level) and quite large validation datasets
(N=47 and 71). Additionally, the differences among the mean in-situ and
satellite derived values in both validations are not high (Figure 2.1.3-2a),
while mean residual (Figure 2.1-5) and RMSE values are quite satisfactory for
both validation processes (particularly of 2018 dataset; RMSE 1+
Validation:3.96 pg/l; RMSE 27 Validation: 4.6 ug/l; Table 2.1.3-7). Hence, this
specific model could be included as one of the proposed Chl-a quantitative



algorithms; however it is inferior compared to special natural and artificial
models.

Hence, concerning the models resulted from the 2nd scenario and their
validations, 2A and 2B models are those that are mostly proposed. Model 2A
is derived from a regression analysis with R? equal to 0.6 and Spearman
values equal to 0.78 (first validation) and 0.7 (second validation), respectively.
Mean in-situ and satellite Chl-a values are similar (Figure 2.1.3-2b) while
RMSE values are quite low, 5.6 ug/l (first validation) and 4.2 pg/l for the
second validation, respectively. Likewise, 2B Model, demonstrated high
enough Spearman values (0.62 and 0.59), low average residuals (Figure 2.1.3-
3), low RMSE values (1.53 and 2.3 pg/l) and is also accompanied by one of the
largest validation datasets (2018 dataset; N=40).

Furthermore, Chl-a maps of selected lakes were created after the
application of the resulted algorithms (Figure 2.1.3-4). Landsat 8 OLI satellite
image of 11/08/2013 was used in order to produce the satellite derived spatial
distribution of Chl-a values of this day while the respective in-situ values of
those lakes have been sampled with -2 and +5-days difference from the
aforementioned date. Application of 1A model resulted in Chl-a
concentrations that range from 0.18 to 58.9 ug/l and from 0.71 to 61.7 pg/l for
artificial and natural lakes, respectively (Figure 2.1.3-4a). Application of 2A
model in natural lakes yielded Chl-a values ranging between 2.75 and 70.8
ug/l (Figure 2.1.3-4b) while 2B model resulted in Chl-a values varying from to
0.019 to 12.6 pg/l (Figure 2.1.3-4c), as far as the artificial lakes are concerned.
1A model yielded quite higher Chl-a values in relation to 2B model,
concerning the artificial lakes, while in natural lakes the satellite derived Chl-a
values from 1A model are slightly lower than those produced by the 2A
model. Moreover, it should be noted that in situ values concern point samples
whereas satellite derived values relate to the spatially distributed Chl-a
concentrations along the lakes” surfaces.

Summarizing the information derived from the validation process, the
most optimal Chl-a assessment model throughout the WFD Greek lakes when
no information is available about their characteristics is 1A. When the studied
lakes are natural, the Chl-a model becomes more complex (2A) incorporating
three band ratios and when artificial lakes are the case, then model 2B is
proposed with the condition that the date difference between field
measurements and satellite overpass ranges from -5 to +5 days.
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system).



2.1.4 Discussion

WED application in Greece concerning Lake Waterbodies yielded so far,
a significant Chl-a dataset including years 2013-2016 and 2018. Statistical
analyses of Chl-a measurements indicated that natural lakes presented
notably higher concentrations in relation to artificial. Those results indicate a
degraded water quality of natural lakes comparing to artificial with some
lakes being characterized as vulnerable to eutrophication. Dense algal blooms,
provoking high turbidity, are a frequent indicator of lake eutrophication
(Schindler et al, 2008). Independent studies on natural lakes have
demonstrated a strong correlation between Chl-z and total phosphorus
concentrations (Sakamoto, 1966; Jones and Bachmann, 1976; Canfield 1979).
Canfield (1979) predicted total phosphorus concentrations and trophic states
(by measuring Chl-a and Secchi depths) in natural and artificial lakes through
the development of empirical phosphorus models. Canfield (1979) concluded
that while total phosphorus concentrations can be predicted equally well in
natural and artificial lakes, prediction of lake trophic state was less reliable in
artificial lakes. Relationships between Chl-a concentrations to total
phosphorus and Secchi disc transparency were less precise in artificial lakes
than natural lakes while this difference was attributed to non-algal turbidities.
Non-algal turbidities were detected in the artificial lakes and recorded as
important water clarity determinants for many of this type’s lakes (Canfield
and Bachmann, 1981). Based on this hypothesis, phosphorus concentrations in
studied lakes may be examined to ascertain the drivers of decreased water
clarity and levels of Chl-a concentrations in both types of Greek lakes.

Harmonization of Landsat 7 ETM+ and 8 OLI images yielded three Chl-a
qualitative models including the ratios blue to green and red, red to green and
blue, and the In transformed bands SWIR1 and SWIR2. According to Barrett
and Frazier (2016) ratios between either chlorophyll absorption bands (red
and blue) or chlorophyll reflectance bands (green and NIR) with either of the
two SWIR bands are highlighting the spectrum’s part influenced by
chlorophyll. Thus, modelled values are better correlated with actual in-situ
ones.

MLR analysis using the total amount of the available Chl-a dataset
resulted to a quite reliable assessment model (R=0.65). Next, it was explored
what are the most significant parameters affecting the variance of Chl-a
concentrations in studied lakes and the outcome implied the lakes’
characteristics (natural/artificial) and WFD typology followed by the
samplings” season. The final models were separately developed for natural
(R=0.78) and artificial lakes (R=0.76), with the latter being accompanied by a
date difference between in-situ and satellite data ranging +5 days. Those
models were proven to be better -based on statistical indices concerning the
validation process - in relation to the one yielded from the total amount of the
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dataset. This superiority highlights the significance of the information
acquisition concerning the studied areas.

Results of this study are in accordance with others similar studies
exploring properties of inland waters using either Landsat or other EO
spaceborne sensors. Gholizadeh et al. (2016) have conducted a detailed review
on water quality parameters that are widely estimated using remote sensing
techniques. As authors noted, most Chl-a assessment models use a
wavelength near 675 nm and 700 nm. Many researchers have developed
empirical Chl-a algorithms using various but basically common image bands;
Nas et al. (2007) used the visible near-infrared (VNIR) and the shortwave
infrared (SWIR) of Terra/ASTER for Chl-a2 mapping, presenting a R? value
0.86. Zhang and Han (2015) used the coastal, blue, red and green Landsat 8
OLI bands to map Chl-a concentrations in Laizhou Bay while Kim et al. (2014)
utilized the blue, NIR and the ratio blue to red Landsat 8 OLI bands to
measure Chl-a in the Fjord of Svalbard, in arctic sea with R? value 0.6. Lim
and Choi (2015) also used Landsat-8/OLI in order to monitor water quality of
Nakdong River in Korea and presented high correlations among Chl-a2 and
OLI bands especially the green and NIR bands and the band ratio NIR to
green (Pearson’s correlation coefficient of -0.7, 0.71 and -0.64, respectively).
Bonansea et al. (2018) tried to generate a different Chl-a model for different
Landsat sensors (5 TM, 7 ETM+ and 8 OLI) in the largest artificial reservoir in
Cordoba province (Rio Tercero, Argentina). Overall, they observed that each
Landsat sensor can be used to estimate Chl-a in the reservoir while the best
model for TM sensor included a combination of green, red and NIR band, and
the ratio green/red (R?= 0.92) and for ETM+ sensor (R?= 0.91) the green and
SWIR-1 bands and the ratio red/green.

While several satellite sensors can be used for Chl-a determination,
mapping Chl-a in Case 2 waters is a complicated task since the optical
properties are measured based on a compound of dissolved organic matter,
dead organic and inorganic particulate matter and phytoplankton (Chl-a).
Therefore, Chl-a determination is characterized by less accuracy as these
constituents are not statistically correlated. Taking this shortcoming into
account, we tried to use spectral band ratios which decrease irradiance and
atmospheric biases in the sensor’s signal (Dekker and Peters, 1993) and more
than one band, since then the scattering and absorption of Chl-a are better
studied (Dekker et al., 1991). Furthermore, according to Kloiber et al. (2002),
all significant band combinations for chlorophyll include at least one of the
short-wave infrared bands, thus SWIR bands were incorporated into this
study’s analysis in order to produce optimal assessment Chl-a models.

A major difference in relation to aforementioned studies is that the study
area used in the present study incorporates 50 different lake systems
throughout Greece covering a broad geographic area and a wide range of
limnological conditions, while the majority of the respective literature focuses



on regional scales and discrete inland water bodies. Large spatial scales
require greater computational potential; thus, the release of the Google Earth
Engine platform dramatically increased the scale at which earth observation
research can take place (Topp et al., 2020). An example of extended study area
is the research by Lin et al. (2018) who combined in-situ Chl-a data from 1157
lakes (2007) with Landsat data and developed a well-validated lake national
model (RMSE = 34.9 ug/L), by using machine learning algorithms built into
Google Earth Engine. Another example regarding Greece is the study by
Kontopoulou et al. (2017) who used Landsat 8 images and WFD Chl-2 and
turbidity datasets concerning 11 lakes for years 2013-2015. They conducted
regression analysis by using Matlab scripts and also examined the effect of the
time difference between satellite and field data. In that study, an R? of 0.78
(log Chl-a, n=168) was reported for a time window 0-15 days, while R?
reached 0.8 (n=39) for a narrower three-day time difference.

Since Chl-a concentrations in lakes cannot be accurately determined due
to aforementioned restrictions, we consider that the proposed empirical
models are reliable and should be applicable to most natural and artificial
lakes within Greece. One limitation of empirical models is their restriction to
confident assessments only within the range and setting of the input data.
This restriction limits their application across spatiotemporal domains (Topp
et al., 2020), risk which to a large extent is restrained since training datasets of
this study include the majority of Greek lakes and three sampling seasons.
However, the general applicability and potential limitations of this approach
have not been thoroughly addressed, hence further improvement will be
explored as soon as the latest WFD datasets are released.

Furthermore, clearly, there are some factors that should be taken into
consideration in this study, affecting the accuracy of Chl-a quantification in
Greek studied lakes.

1. An uncertainty of accuracy regarding the location of sampling
points. Sampling in lakes requires special attention as winds and
other external factors (e.g. season, lake depth and changes in water
level, ease of proximity) contribute to potential transpositions of
sampling sites.

2. The implementation of the DOS1 atmospheric correction method
has not been validated in order to assure that atmosphere biases
have been completely removed. However, this method is widely
used by the EO community and has proven useful when no
atmospheric measurements are available.

3. Optimal models have been applied to lake surfaces accrued from
lake shapefiles, acquired from the Environment and Energy
Ministry’s website. Since no classification between land and water
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has been conducted, there is the possibility that some pixels,
covering land, hinder Chl-a quantification with high accuracy.

All in all, it should be noted that EO is recommended to be combined
with conventional in-situ water sampling in order to achieve high assessment
accuracy. Such a synergistic approach in conjunction with cooperation among
government and scientists contribute to increased data retrieval, obtained
knowledge of the lakes” water quality and by extension to better protection
and pollution mitigation measures.

2.1.5 Conclusions

In this study a methodological framework has been proposed for
quantifying Chl-a pigments using Earth Observation (EO) data from Landsat
7 ETM+ and 8 OLI sensors. Its practical use is evaluated in a total of 50 lake
water bodies (natural and artificial) during 2013-2018, consisting the National
Lake Network Monitoring of Greece in the context of Water Framework
Directive (WFD).

Use of geoinformation technologies, such as of EO and GIS, in
combination with conventional field surveying and spatial data analysis
methods are the most efficient ways forward for monitoring water quality
parameters in lakes. Application of WFD in Greece has resulted in a
significant dataset of various water quality parameters concerning, in this
case, 50 lake water bodies with different morphological characteristics and
other properties. The integration of spectral information from two Landsat
sensors and statistical analyses employing principle component analysis and
stepwise MLR analyses yielded statistically significant results. Optimal
models were developed in this study, separately for natural and artificial
lakes, and increased the feasibility of Chl-a assessment with high accuracy.
The majority of the respective literature focuses on discrete inland water
bodies reporting the most accurate and statistically significant models.
Monitoring of water quality in large spatial scales though, as in this study,
may result in sustainable water resources management even though the
models may be statistically weaker.

Since Chl-a is the major indicator of trophic state, considered as one of
the top water pollution indices related to eutrophication, this study supports
WED application concerning the perpetual water quality monitoring of Greek
lakes. WFD application throughout Europe aims at the monitoring of
hydromorphological, physicochemical and biological data to assess ecological
status of surface waters. Those data include optically active constituents of
water that interact with light (e.g. Chl-a) and can be measured using remote
sensing and also others that lack optical properties. Some examples are pH,
dissolved oxygen and nutrient concentrations. Monitoring of those properties,
characterized by low signal noise ratio, by using geoinformation technologies-



in particular EO and GIS- is a challenging task and has motivated us to
pursue it in the near future, exploiting the WFD monitoring results.
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2.2 Modelling of Greek Lakes Water Quality Using Earth
Observation in the Framework of the Water Framework
Directive (WFD)

Published as: Markogianni, V.; Kalivas, D.; Petropoulos, G.P.; Dimitriou, E.
Modelling of Greek Lakes Water Quality Using Earth Observation in the
Framework of the Water Framework Directive (WFD). Remote Sens. 2022, 14,
739. https://doi.org/10.3390/rs14030739

Preamble

Given the great importance of lakes in Earth’s environment and human life,
continuous water quality (WQ) monitoring within the frame of the Water
Framework Directive (WFD) is the most crucial aspect for lake management.
In this study, Earth Observation (EO) data from Landsat 7 Enhanced
Thematic Mapper Plus (ETM*) and Landsat 8 Operational Land Imager (OLI)
sensors have been combined with co-orbital in-situ measurements from 50
lakes located in Greece with the main objective of delivering robust WQ
assessment models. Subsequently, trophic status classification was conducted
herein, calculating Carlson’s Trophic State Index (TSI) initially throughout all
lakes and then oriented toward natural-only and artificial-only lakes. All in
all, the study findings provide important support toward the perpetual WQ
monitoring and trophic status prediction of Greek lakes and, by extension,
their sustainable management, particularly in cases when ground truth data is
limited.

2.2.1 Introduction

Surface freshwater is one of the most essential resources for the
terrestrial ecosystem and the predominant source of drinking water on Earth
(Whyte et al., 2018). Over the past few decades, climate change and human
activities have deteriorated water quality (WQ) (Michalak 2016). Some factors
responsible for it include rapid development, as well as changes in land
use/land cover (LULC) patterns, industrialization, and urbanization (El-Alem
et al., 2012). The close proximity of water reservoirs to settlements may reduce
the price of water to consumers. However, it may also prevent the sustainable
management of water resources against deteriorating activities and
inappropriate disposal of urban sewage generated within drainage basins
(Alparslan et al., 2009).



Deterioration of lake systems” WQ has resulted in many lake
eutrophication problems; therefore, environmental scientists have tried to
monitor, manage, and limit it for more than two decades (Shafique et al.,
2003). WQ monitoring is the most crucial aspect for lake management
(Bonansea et al., 2018) and particularly includes the monitoring of certain WQ
properties through in-situ sampling and field work. The aforementioned WQ
properties include Chl-a concentration, total suspended matter (TSM), Secchi
depth (SD), and nutrient concentrations (Moore et al., 2014).

However, conventional WQ measurements and in-situ sampling are
laborious, costly and time consuming (El-Alem et al., 2012). Moreover, those
techniques are characterized by limited ability to provide a synoptic
spatiotemporal view of WQ (Giardino et al., 2001; He et al., 2008) since the
condition of an entire water body cannot be fully represented. Furthermore,
patchy distribution of nutrients, algal blooms, and TSM define those methods
as unsuitable for monitoring a large number of water bodies at a regional or
national scale (Dekker et al., 1991; Poor 2010).

Recent developments in geoinformation technologies and in particular
of Remote Sensing (RS) and Geographical Information Systems (GIS),
concerning pollution loads and WQ, offer a number of advantages that
practically address the limitations of traditional water sampling (Brivio et al.,
2001; Pozdnyakov et al., 2005; Tyler et al., 2006). Among the key advantages
of RS is the ability to cover large areas (Chatziantoniou et al., 2017) and to
collect spectral information at variable spatial scales and at dramatically lower
cost compared to field measurements (Haddad and Harris, 1985).

According to Morel and Gordon (1980), there are three well-documented
methodologies to estimate the concentration of WQ elements in inland
waters: empirical, semi-empirical, and physical or analytical methodology.
Empirical methods attempt to establish relationships between in-situ water
quality measurements and water leaving radiance measured by the sensor
without the precondition of prior understanding of the complex water and
light interactions. Those relationships imply effective data improvement but
limited transferability (Austin and Petzold, 1981). Moreover, empirical
methods incorporate machine learning techniques, which are differentiated
by their robust ability to handle complicated non-linear relationships, typical
of WQ remote sensing data (Sagan et al., 2020; Topp et al., 2020). Machine
learning algorithms include artificial neural networks (ANN), genetic
algorithms (GA), support vector machines (SVM), random forest regression
trees, and empirical orthogonal functions (Topp et al., 2020). On the other
hand, through semi-empirical techniques, spectral and physical knowledge
are combined and then correlated to the in-situ concentrations. Regarding
physical or analytical approaches, the acquisition of certain biogeochemical
parameter values (e.g., Chl-a, CDOM) is required, as well as inherent and
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apparent optical properties, and are based on radiative transfer within the
water column. Then, the in-situ concentrations are assessed by modeling the
reflectance of surface water. Although analytical methods, including fuzzy
logic and Principal Component Analysis (PCA), have already been
extensively used, empirical and semi-empirical predicting models are still
widely utilized (Gholizadeh et al., 2016). Analytical methods” complexity in
terms of their theory and calculation difficulties (Gholizadeh et al., 2016) and
the non-availability of required detailed spectral information of the optically
active water constituents (optical properties, radiometric quantities) have
contributed to the maintenance and development of empirical models. This
trend is further observed especially in cases where machine learning models
are utilized, as most of them reduce overall error and maximize model fit
(Topp et al., 2020). However, it should be noted that empirical algorithms are
more specific to certain water types, regional or optical (Odermatt et al., 2012).

The classification of waters in Case 1 (oceanic) and Case 2 (coastal
regions, rivers, and lakes, refined by (Gordon and Morel, 1983), is
characterized by great importance when remote sensing techniques are
utilized to monitor their WQ. The distinction between the two cases has some
significant effects on the interpretation and modeling of optical data. In
particular, according to this classification scheme, the optical properties of
Case 1 waters are determined by phytoplankton and co-varying substances,
while Chl-a is considered a proxy of phytoplankton concentration. This
assumption has facilitated the implementation of large-scale optical models
and the development of Chl-a predicting algorithms for Case 1 waters. On the
other hand, single variable models should be abandoned when Case 2 waters
should be studied. It is, on the whole, acknowledged that Case 2 waters are
more complex than Case 1 concerning their composition and optical
properties. Monitoring the WQ of Case 2 waters is a more sophisticated task
since phytoplankton, suspended material, yellow substances, and perhaps
bottom reflectance vary independently of each other. The main difficulty lies
in the fact that the alterations in optical signal and the concentrations of the
dissolved constituents are often so small that they hinder the ability to extract
reliable information or the optical signal may be affected in a similar way by
more than one substance, which results in an inability to discriminate the
different materials (Gholizadeh et al., 2016). Moreover, of principal value is
the choice of the appropriate wavelengths, as well as their number in a Case 2
adopted algorithm. Hence, given the difficulty that WQ monitoring of Case 2
waters constitutes a multi-variable, non-linear problem, it is more realistic to
establish a series of algorithms rather than a single all-purpose one. In this
way, more than one algorithm will attempt to capture and solve the problem
for all variables and over several and different ranges of concentrations
(IOCCG 2000).



In parallel, the Case 1/Case 2 classification can substantially improve
remote sensing products when associated with individual optical water types
(OWTs). In particular, coastal regions and inland waters are characterized by
such optical diversity that any further information about their variability in
IOPs and biogeochemical significance would be particularly valuable. Some
OWTs can be hypereutrophic waters, turbid waters with high organic content,
sediment-laden waters, CDOM-rich waters, or even very clear blue waters.
Several hierarchical, partitional, and hybrid clustering techniques have been
utilized to further discriminate distinct OWTs within and between Case 1 and
Case 2 waters (Spyrakos et al., 2018). After all, a reliable OWT classification
optimizes the selection of the finest constituent algorithms when simpler
approaches cannot yield reliable results.

Inland waters, and especially lakes, are small water bodies that are not
detected by current ocean color satellites, and even though this lack prevents
the monitoring and estimation of their WQ components, it has been
replenished by the use of Landsat sensors. A recent review of state-of-the-art
RS-based approaches by (Gholizadeh et al.,, 2016) underpins the use of
Landsat sensors, TM (Thematic Mapper), MSS (Multi-Spectral Scanner), ETM
(Enhanced Thematic Mapper), and OLI (Operational Land Imager) as fairly
successful choices to assess the important WQ parameters, including Chl-g,
SDD, TP, and trophic status (Alparslan et al., 2009; Allan et al., 2011; Giardino
et al., 2014; Kim et al., 2014; Markogianni et al., 2014; Markogianni et al., 2018;
Markogianni et al., 2020).

RS has been widely demonstrated as an effective solution for detecting
the relationship between algae concentration and corresponding nutrients
(Hans et al., 2002). Nitrogen (N) and phosphorus (P) are vital micronutrients
for algae, while P (existing either in a particulate or dissolved phase) is the
key limiting nutrient responsible for eutrophication in most lakes (Correll
1999). In general, special attention should be paid depending on which
nutrient is growth limiting, as in one water body the correlation with Chl-a
might be with N, while in a different water body the correlation might be
with P (Sagan et al., 2020). Total phosphorus (ITP) estimation via RS has been
explored due to its high correlation with optically active constituents (Kutser
et al., 1995; Wang et al., 2004; Wu et al., 2010) since it cannot be measured
directly using optical RS instruments. The chlorophyll-a (Chl-a) and TP
relationship has been investigated in individual lakes (Smith 1982; Malve and
Qian, 2006), and it is well documented to be accompanied by a strong and
positive correlation among lakes (Healey and Hendzel 1979; Busse et al.,
2006). He et al. (2008) performed routine WQ monitoring on the slightly-
polluted Guanting Reservoir in China using Landsat-5 TM and retrieved WQ
data with eight variables, namely algae, turbidity, concentrations of chemical
oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH3-N),
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nitrate nitrogen (NO3-N), total phosphorus (ITP), and dissolved phosphorus
(DP). Their results indicated a statistically significant correlation (10-30%
mean relative error) among all estimated parameters and reflectance
regression algorithms. Landsat-5 TM data was also used by (Akbar et al.,
2010), who predicted TP among other water quality components of different
sources across Alberta and managed to classify lakes into four trophic states
indicating low to very high productivity. In another study, Song et al. (2006)
established both a regression model and an empirical neural network to
simulate the relationship between TP and Landsat TM radiances for Chagan
Lake, China. As TP is highly correlated to Chl-a concentration, and TSM
usually reflects TP loading, TP is also closely related to Secchi depth (SD) with
an exponential equation according to Carlson’s findings (Carlson 1977). Based
on the same rationale, (Song et al., 2012) estimated TP empirically through
associated Chl-a, TSM, and Secchi depth across three reservoirs in Indiana,
US, with R? values between in-situ and spectral data ranging from 0.55 to 0.72.

Water clarity, commonly reflected by SD, is reduced by the increased
presence of suspended sediment, organic matter, and zooplankton (Carlson
1977). The stimulating production of algae in a lake usually originates from
increased nutrients, in particular, phosphorus (Busse et al., 2006). As the algae
and suspended inorganic matter increase in a lake, the depth to which light
can penetrate (Fuller et al., 2004) is reduced. Therefore, SD is often used as a
trophic state indicator (Carlson 1977). In general, there are two methodologies
followed to retrieve SDT based on remote sensing data. Empirical approach
estimating SD through regression analysis and semi-analytical approach
retrieving SD based on an underwater visibility theory (Jiang et al., 2019).
Regarding empirical models, reflectance at the red spectrum has been almost
globally used to retrieve water clarity (Baban 1993; Nelson et al., 2003; Wu et
al., 2008; McCullough et al., 2012; Hicks et al., 2013) since increased brightness
is accompanied by decreased water clarity (Matthews 2011). Moreover,
turther studies have also documented the usefulness of spectral response of
the blue, green, and near-infrared spectral bands in combination with in-situ
measurements of SD and Chl-a concentrations in predicting water clarity for
inland lakes (Olmanson et al., 2001; Fuller et al., 2004). It should also be noted
that semi-analytical methods are superior to empirical ones mainly
concerning the reliability of results and the fact that no in-situ data are
required afterwards for recalibrating the retrieval algorithm. On the other
hand, those approaches require the utilization of a spectroradiometer and the
collection of in-situ measured Rrs spectra including the radiance of skylight,
radiance from a standard gray board, and the total upwelling radiance from
the water (Jiang et al., 2019).

Since water clarity has long been proven to interact with nutrient
availability and Chl-a concentrations within lakes (Carlson 1977; Megard et
al., 1980), remote sensing studies frequently use it to assess overall lake



trophic status (oligotrophic, mesotrophic, or eutrophic) (Peckham et al., 2006;
Olmanson et al., 2008). WQ monitoring programs (such as WFD) have been
implemented worldwide to acquire large datasets of several WQ parameters,
while several methods (such as cluster and discriminant analysis) have been
efficiently utilized to manage those complex data and interpret the
underlying patterns of trophic status. However, these methods need
continuous in-situ measurements, while the classical and most widely used
method to characterize a lake’s trophic status is Carlson’s Trophic State Index
(TSI) (Carlson 1977). This approach includes equations employing Secchi
depth, Chl-g, and TP measurements (Nauman 1929).

The hereby adopted methodological scheme includes the
implementation of stepwise multiple regression (MLR) analyses among in-situ
measurements and satellite data. In-situ data concern Secchi depths and TP
concentrations along 50 lakes, included in the National Lake Monitoring of
Greece (WFD), and since the majority of those data were recorded during
2013-2015, images of sensors Landsat 7 ETM+ and Landsat 8 were the
exclusive choice for the implementation of this research. According to a
previous study conducted by the authors (Markogianni et al., 2020), a
principal component analysis (PCA) indicated that the variance of Chl-a
concentrations of the same lakes was affected by whether the lakes were
natural or artificial, while the rest of the tested parameters were the climatic
type, WED typology, and the sampling season. Hence, based on those PCA’s
results, hereby MLR analyses concerned: (a) all in-situ measurements of TP
and Secchi depth during 2015-2016 and 2013-2016, respectively, and (b) in-
situ TP and Secchi depth datasets of the same years, including natural-only
and artificial-only lakes. Correlation analyses were additionally conducted to
explore and detect the existing interrelationships among TP, Chl-a
concentrations, and SD of monitored lakes and improve the effectiveness of
the WQ assessment models by indicating further significant predictors.
Subsequently, Chl-a regression models developed by Markogianni et al.
(2020), and hereby established TP and Secchi depth’s models were utilized to
calculate the water trophic index of the studied lakes.

In purview of the above and taking advantage of the large in-situ dataset
derived from the application of National Lake Monitoring in Greece (WFD),
the present study aims to: (1) explore the complicated relationships among
TP, Chl-a concentrations, and Secchi depth measurements throughout 50
lakes, substantially representing Case 2 waters, (2) generate accurate
quantitative TP and Secchi depth models by incorporating satellite images
with concurrent in-situ measurements, and (3) derive the Carlson Trophic
Index for assessing water trophic state spatially over all monitored
waterbodies.
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2.2.2 Study area

The study area includes 50 lakes, natural and artificial (Figure 2.2.2-1;
Table 2.2.2-1). These waterbodies comprise the National Monitoring Network
of Waters in Greece, which is implemented by the Goulandris Natural History
Museum, Greek Biotope/Wetland Centre (EKBY). More information about the
general characteristics of the monitored lakes can be found at the study
conducted by Markogianni et al. (2020) or more detailed data can be retrieved
from the EKBY’s site (Goulandris Natural History Museum, Greek
Biotope/Wetland  Centre;  http://biodiversity-info.gr/index.php/el/lakes-
data#!IMGP4731; accessed date 5 February 2020).
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Figure 2.2.2-1. National Lake Monitoring Network in Greece (numbers of sampling
stations coincide with the numbers presented in Table 2.2.2-1).
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Table 2.2.2-1. Main characteristics of the lakes included in the National Lake Monitoring
Network in Greece (WFD) (Mavromati et al., 2018; Markogianni et al., 2020).

N National Name Surface | (N)atural/ ?eiﬁ N National Name Surface | (N)atural/ reiﬁ
° Station (km?) |(A)rtificial| “P | Station (km?)  |(A)rtificial| P
(m) (m)
1 Lake Ladona - A - 28 Lake Petron 11.91 N 3.1
2 Lake Pineiou 19.64 A 15.1 | 29 Lake Zazari 2.98 N 3.95
3 Lake Stymfalia - N 1.31 | 30 |Lake Cheimaditida 9.82 N 1.01
4 Lake Feneou 0.47 A 105 | 31 Lake Kastorias 30.87 N 3.7
5 Lake Kremaston 68.43 A 472 | 32 Lake Sfikias 3.96 A 23.2
6 Lake Kastrakiou 25.58 A 33.2 | 33 | Lake Asomaton 2.46 A 20.8
7 Lake Stratou 7.02 A 9.6 | 34 | Lake Polyfytou 63.49 A 22.4
L ikri P
8 | Lake Tavropou 21.46 A 150 | 35 |Fake Mﬂ:l respal N 3.95
9 | Lake Lysimacheia | 10.87 N 35 |36 |FK€ Mﬂ](;l Prespa N -
10 Lake Ozeros 10.57 N 38 | a7 | LakeMegali - N 17
Prespa A
11 | Lake Trichonida | 93.53 N 296 | 38 | LakeMegali N -
Prespa B
12 Lake Amvrakia 13.14 N 234 | 39 | Lake Doirani 1 33.25 N 4.6
13 Lake Voulkaria 7.38 N 096 | 40 Lake Doirani 2 N -
14 Lake Saltini - N - 41 | Lake Pikrolimni 6.30 N 1.2
15 Lake Mornou 17.50 A 385 | 42 Lake Koroneia - N 3.8
16 Lake Evinou 2.68 A 315 | 43 Lake Volvi 70.36 N 12.3
17 | Lake Pigon Aoou 11.44 A 20.8 | 44 Lake Kerkini - A 2.19
18 | Lake Pournariou 19.28 29.8 | 45 | Lake Leukogeion 0.83 4.05
19 Lake Pamvotida 21.82 N 5.3 46 Lake Ismarida - N 0.9
20 | Lake Pournariou II 0.56 11.7 | 47 |Lake Platanovrysis 2.99 A 26.4
21 Lake Marathona 2.17 A 15.8 | 48 | Lake Thisavrou 13.43 A 38.4
22 Lake Dystos - N - 49 Lake Gratinis 0.80 A 14.2
23 Lake Yliki 19.96 N 20.1 | 50 | Lake N. Adrianis - A -
24 Lake Paralimni 9.96 N 299 | 51 Lake Kourna - N 15
25 Lake Karlas - A 0.9 52 | Lake Bramianou - A 10.1
26 Lake Smokovou - A - 53 |Lake Faneromenis 0.33 A 9.98
27 Lake Vegoritida 47.67 N 26.52
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2.2.3 Materials and Methods
2.2.3.1 Data acquisition
2.2.3.1.1 In-situ data

Data used in this study were collected in the framework of the Greek
Water Monitoring Network for lakes (WFD). All data is freely accessible and
was downloaded from the EKBY’s site (Goulandris Natural History Museum,
Greek Biotope/Wetland Centre (http://biodiversity-info.gr/index.php/el/lakes-
data#!IMGP4731; in Greek). The network incorporates 50 lakes, natural and
reservoirs. At the majority of the lakes, only one sampling station is detected,
except for trans-boundary lakes (Megali Prespa, Mikri Prespa, and Doirani),
where two sampling stations are located (Table 2.2.2-1; Figure 2.2.2-1). From
the total of 53 sampling sites, there are 27 surveillance and 26 operational
ones. Surveillance stations operate in water bodies of good status, for a certain
period of time (one year in every monitoring cycle), while operational stations
are monitored on a monthly or seasonal basis, in water bodies which fail to
achieve good status (Markogianni et al., 2020). The selected data used herein
includes the Secchi depth measurements in several dates from 2013 up to 2018
and TP concentrations from 2015 up to 2018 throughout the monitored lake
stations. Secchi depth measurements were conducted with a Secchi disk,
measuring the transparency of water while in-situ Chl-a data was already
available in the framework of our last study (Markogianni et al., 2020).

Particularly, Chl-a concentrations were measured from 2013 to 2018 and
determined spectrophotometrically (Method 10200 H; APHA 1989). TP
concentrations include all inorganic, organic and dissolved forms of
phosphorus and the available dataset incorporates measurements analyzed
during the years 2015, 2016 and 2018. During years 2013 & 2014 (i.e. since the
beginning of the WEFD), analysis of orthophosphates resulted in low
concentrations, lower than the quantitation limit (LOQ) of the respective
adopted method, hence no measurement was available during this period.
Therefore, the following years (ie. 2015, 2016, 2018) analyses of
orthophosphates were replaced by Total phosphorus ones, which resulted in
the acquirement of actual measurements during this period.

Further investigation of in-situ data included a seasonal statistical
analysis by incorporating dates of same season of all lakes during the
monitored years. The seasons were determined as: summer (June, July, and
August), autumn (September, October and November), winter (December,
January and February) and spring (March, April, and May) while more
information about the sampling periods, sampling and analysis
methodologies can also be found in EKVY” site.

Exploratory statistics among the Secchi depth measurements of 2013,
2014, 2015, 2016 and 2018 and TP concentrations of 2015, 2016 and 2018 were


http://biodiversity-info.gr/index.php/el/lakes-data#!IMGP4731
http://biodiversity-info.gr/index.php/el/lakes-data#!IMGP4731

calculated incorporating the estimation of mean, median, standard deviation
and min-max. Skewness, Kurtosis and the Kolmogorov-Smirnov and Shapiro-
Wilk tests were conducted to explore the data normality. Furthermore, SPSS
Statistical Package (v. 24.0) was used to group and categorize the under
studied WQ parameters based on the sampling’s season, year and whether
the lakes are natural or artificial. Moreover, correlation matrix among
simultaneous in-situ measurements of TP, Chl-a and Secchi depths was
conducted to explore their existent interrelationships and further contribute to
indicating the most significant predictors.

2.2.3.2 Exploratory Statistical Analyses

Secchi depths throughout the monitored Greek lakes were measured
during the years 2013, 2014, 2015, 2016 and 2018 (Table 2.2.3-1). Minimum
values ranged from 0.03 (2014, 2015) to 0.2 m (2013) while maximum ones
from 11 (2015) up to 15.5 m (2018). Mean values of Secchi depth are similar
during all years and equal to around 3.2 m. Secchi depths are presented
higher in artificial than in natural lakes while the highest values are observed
during summer months for both natural and artificial lakes (Figure 2.2.3-1a).
The temporal distribution of Secchi depths was categorized on the criterion of
whether the lakes are artificial or natural; values are also higher in artificial
lakes during all sampling years with some exceptions (e.g. Trichonida Lake;
Figure 2.2.3-1b).

Table 2.2.3-1. Summary of descriptive statistics of in-situ Secchi depth values during
years 2013-2016 and 2018.

Secc?; izgrt:h (m) N Min Max Mean Dej;iion Skewness | Kurtosis
2013 134 .20 14.0 3.1 2.8 1.5 3.3
2014 125 .030 14.0 3.8 3.1 9 2
2015 140 .030 11.0 3.2 2.6 .8 -2
2016 64 .050 15.0 3.03 3.2 1.7 3.1
2018 314 .100 15.5 3.04 2.7 1.4 24
all years 777 .03 15.5 3.2 2.8 1.3 1.7
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Figure 2.2.3.2-1. Boxplots presenting basic statistics of Secchi depths (a) grouped by the

lake’s nature and categorized by the sampling season, and (b) grouped by sampling year
and categorized by the lake’s nature.

Total measurements of TP concentrations are 370, including years 2015,

T
2018

2016 and 2018 (Table 2.2.3-2). Minimum TP values are similar during all years

(around 0.01 mg/l) while maximum values are increasing during the years.

Same tendency is reflected based on average values with the mean TP value
of 2018 to be double compared to the respective value of 2016. Higher TP
concentrations are detected in natural lakes, particularly during autumn
sampling months while water sampling analysis in summer revealed the
highest TP concentrations in artificial lakes (Figure 2.2.3-2a). As far as the
yearly distribution of TP concentrations in Greek lakes is concerned, it is
confirmed that natural lakes are more affected by TP pollution sources than
the artificial ones with an increasing tendency throughout the years (Figure
2.2.3-2b).

Table 2.2.3-2. Summary of descriptive statistics of in-situ TP concentrations during

years 2015-2016 and 2018.

Total phosphorus (mg/1) in

Year: N |Min|Max|Mean| Std. Deviation | Skewness | Kurtosis
2015 169 .01 | 42 | .14 .56 6.7 454
2016 69|.02]51| .23 .8 5.5 29.9
2018 132| .02 [13.3| .48 1.8 49 25.98
all years 370| .01 |13.3| .28 1.2 6.9 54.2
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Figure 2.2.3-2. Boxplots presenting basic statistics of TP concentrations (a) grouped
by the lake’s nature and categorized by the sampling season, and (b) grouped by
sampling year and categorized by the lake’s nature (top and bottom panels illustrate
the range of in-situ TP measurements in a logarithmic scale divided in 0-0.8 mg/l
and 1-15 mg/l extents, respectively).

2.2.3.3 EO Data Acquisition & Pre-Processing

Landsat 8 OLI and Landsat 7 ETM+ images used herein covered the 50
monitored lakes throughout Greece. These data had been previously acquired
in the framework of our previous study (Markogianni et al., 2020). In
particular, a 2013-2016 and 2018 time series of 296 Landsat images— with a
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mean time window between the satellite overpass and the in-situ
measurements equal to 4 days—were downloaded from the USGS (United
States Geological Survey) Data Centre (https://earthexplorer.usgs.gov/
(accessed date 5 February 2020)) for Chl-a estimations. More specifically, total
in-situ Chl-a data include 702 measurements, and the time window between
sampling and satellite dates ranges from -21 to 17 days. Moreover, since not
all monitored WQ parameters were sampled on simultaneous dates, Secchi
depth data were aligned with a total of 304 images (2013-2018) and the TP
concentrations with 122 images (2015-2018), including some newly
downloaded extra images. Secchi depth measurements are equal to 578, and
the time window difference ranges between -16 to 19 days with a mean time
gap of approximately 4 days.

As far as the TP measurements are concerned, 268 total values were
recorded during the years 2015, 2016, and 2018, accompanied by satellite
images with overpass dates ranging from 21 to 14 days before and after the
tield work, respectively and the mean time gap is equal to 4 days. Moreover,
it should be noted that the majority of the satellite images have been used for
the monitoring of more than one of the studied WQ parameters, and the
statistical analysis eventually included those that met certain criteria (e.g.,
images that portrayed lakes with mean depth higher than 5 m; images of
dates coincident with sampling dates of all the three parameters Chl-a; TP;
Secchi depth for the TSI calculation, etc.).

Concerning the great time window between sampling and satellite dates
in some cases, it should be noted that only a few images are temporally far
from the field work’s date. It has been proven that a time-window up to +7
days yields reasonable results and is not considered a problem when lake
water quality, especially in non-tidal systems, is monitored (Kloiber et al.,
2002; Hellweger et al., 2004; Chu et al., 2018). Therefore, concerning the Chl-a
training dataset (general model), only 15.4% of records surpassed the +7 days’
time gap. The respective percentages for Secchi depth and TP training
datasets are 13.2% and 15%, while 50% and 71% of those records, respectively,
constitute artificial lakes that have been separately elaborated in a restricted
time gap of +5 days. The percentages are similarly low concerning the
development of WQ models for natural lakes. The Chl-a natural model was
developed by employing 12 out of 85 records (14.1%) with a date difference
higher than #7 days from the satellite overpass, while the Secchi natural
model included 5 out of 65 (7.7%) records characterized by the same time
window. As far as the TP natural model is concerned, only 2 out of 29
measurements have been aligned with images acquired at dates greater than
+7 days from the sampling date. Given the low percentage rates of those
records utilized in the development of WQ models, it is assumed that their
effect is insignificant on the models” performance and prediction accuracy.



The pre-processing steps that were adopted herein are identical to the
ones described in our earlier study (Markogianni et al., 2020). More
particularly, semi-automatic classification plugin (SCP) of the free and open-
source cross-platform desktop geographic information system Q-GIS v. 3.6.3-
Noosa was employed to perform: (a) conversion of images from digital
numbers (DN) to top-of-atmosphere reflectance (TOA), (b) atmospheric
correction by using the DOS1 method (applied to all bands except for thermal
ones), and (c) the creation of a band stack set for each image. The band stack
set of L7 ETM+ includes bands B1 (blue), B2 (green), B3 (red), B4 (NIR), B5
(SWIR1), and B7 (SWIR2), while L8 incorporates bands B2 (blue), B3 (green),
B4 (red), B5 (NIR), B6 (SWIR1), and B7 (SWIR?2).

Since 2003, sensor ETM+ has acquired and delivered data with gaps
caused by Scan Line Corrector (SLC) failure. In order to retrieve the data that
concurred with those line gaps, several calculations were conducted by
employing focal statistics through ArcMap. Those line gaps are
approximately 205 m in length on the vertical axis, and in combination with
the spatial resolution of the Landsat sensor (30 m), the mean value within a
circle of 7 cells was determined among several trials as the most optimal
neighborhood to include the coincident sampling station everywhere within
this line. Through the focal statistics tool, an output raster (focal raster) for
each input one (satellite band) was calculated, and then the Con and IsNull
functions were applied (Equation (2.2.3-1)) in order only the no-values cells to
be replaced while the rest preserved their values.

Con (IsNull(Satellite band with gaps), (focalRaster), (Satellite band with
gaps)) (2.2.3-1)

The implementation of the DOS1 atmospheric correction method was
not validated in order to ensure that atmosphere biases were completely
removed. However, this method is widely used by the EO community
(Barrett and Frazier 2016; Japitana and Burce 2019) and proved useful when
no atmospheric measurements are available and correcting historical imagery.
In the framework of the effort of (Dona et al., 2014) to develop WQ empirical
algorithms across certain Spanish lakes and ponds, they evaluated three
different atmospheric correction methods (DOS; ATCOR3; MODTRANS).
Those methods were applied to Landsat 7 ETM+ bands, and the results
indicated that the DOS method performed better than the others, reporting
the lowest errors.

Moreover, to further ensure the use of only cloud-free pixels over the
sampled lakes, the Cloud Masking QGIS plugin
(https://smbyc.github.io/CloudMasking; accessed date 10 March 2020) was
used. By using this tool, clouds, cloud shadow, cirrus, aerosols, and ice/snow
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were masked for all Landsat images using the combination of the Fmask and
Blue Band processes.

2.2.3.4 Statistical approach

2.2.3.4.1 Establishment of relationships between Landsat data, Secchi
depths and TP

The hereby available in-situ data include Secchi depth and TP lake
measurements, recorded in the framework of the WFD application in Greece
during the years 2013-2016 and 2018. Especially in-situ data of 2018 was used
as an independent validation dataset for both of the WQ elements. Visible
(blue, green and red), NIR and SWIR spectral bands, combined with their
ratios, additions, subtractions, In- and log-transformations were employed in
multiple combinations including also transformations from the respective
scientific literature (Table 2.2.3-3) with basic aim to explore and develop
statistically significant relationships between them and in-situ Secchi depths
and TP measurements of coincident dates. Figure 2.2.3-3 illustrates the
discrete methodological steps followed herein regarding the two in-situ
datasets indicated by numbers (1) and (2) for Secchi depths and TP values,
respectively.

Dependent parameters:
Greek WFD in-situ

(
(1) Secchi depth, Landsat pre-processed,

log (Secchi), In transformed bands
(Secchi) and SQRT accompanied by: set rules =
(Secchi) (1) in-situ Chl-a, log (Chi- ificant 2 “‘“, e (values
(2013-2016) a), In (Chl-a) ) ctations SEN ot and } rance WQ
Corr r poth ictor 1mpo for poth
\ o1 leve! gpearma” f predict®’ T ance)
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BDER [T et Ve
log (Secchi), In (Secchi)
\

Final selected Landsat band
—— combinations and other
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depth and (2) TP predictors
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and (2) TP
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models based on developed training datasets regardless of lake
R%, R, residuals /T characteristics [80% of each whole dataset; (1-

Multicollinearity tests: Secchi) 2013-2016; (2-TP) 2015-2016]
10>VIF =1 CASE B) MLR analyses among natural-only and
TOL=1 artificial-only lakes. Extra criterion for artificial-
only lakes : 5 days between sampling and
satellite overpass date. Training datasets also
included the 80% of each whole dataset.

*Training datasets included lakes with mean
depth higher than 5 m.
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th Secchi depth ani and RMSE , A) For all lakes
A B) Natural-only lakes
+ Entire datasets of year 2018 ©) Artificial-only lakes

established according to criteria of
CasesAand B

Figure 2.2.3-3. Flow diagram describing the methodology followed regarding the WQ
models’ establishment and validation.



As far as the Secchi depth dataset (1) is concerned, a correlation analysis
between several band transformations and Secchi depths” measurements, as
well as log, In and SQRT Secchi depths was conducted, including previously
published band combinations (Table 2.2.3-3). In those independent variables,
in-situ Chl-a was also included as this parameter has been previously proved
to affect lake water clarity (Song et al., 2012). Correlation analysis results and
the selection of certain significant predictors of Secchi depth was determined
based on specific rules. Setting initially a threshold value of the significant
correlations at the 0.01 level and a Spearman value equal or higher than +0.4
(which indicates moderate relationship according to Dancey and Reidy (2007),
resulted in the distinction of the initial wide group of Secchi depth’s
predictors. Furthermore, those predictors were also enriched and confirmed
based on the results of the predictor importance chart (IBM SPSS software
Statistics v. 23.0, Armonk, NY, USA). This chart indicates the relative
importance of each predictor in estimating a model while the predictor
importance relates to the importance of each predictor in making a prediction,
not whether or not the prediction is accurate.

Additional criteria including multi-collinearity and values of tolerance
factor, variance inflation factor (VIF) and R? were also applied to explore
statistical performance and residuals and resulted in a subset of the initial
predictors. According to Markogianni et al. (2020), a factor analysis was
implemented to obtain an indication of underlying common factors
(components) that explain the interrelationships among Chl-a concentrations,
lake nature (natural/artificial), sampling season and climatic type. The rotated
component matrix results indicated that the lake characteristics
(natural/artificial), followed by the sampling season were the variables that
mostly affect the variance of Chl-a concentrations in the same -as in this work-
studied lakes during the same period (2013-2018).

In the effort of the authors (Markogianni et al., 2020) to further enhance
the efficiency of Chl-a regression models, a confined time window of +5 days
between field measurements and satellite overpass was used, in cases with
statistically significant results. Those results were indeed further improved
when artificial lakes were the case, regardless of the sampling season. Hence,
since a) the herein research concerns the same lakes being monitored during
the same period and b) the ultimate goal is the assessment of their trophic
status, it was decided to conduct MLR analyses based on the same rationale
as in (Markogianni et al., 2020). Consequently, the two basic scenarios
employed, concern: Case A) MLR analysis among attributes originating from
a randomly- developed training dataset.

Total Secchi depth measurements were divided in training and
validation datasets including 80% (228 out of 286 Secchi depth measurements)
and 20% of the entire dataset, respectively. This analysis constitutes an effort
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to develop a Secchi depth quantitative model for lakes when no information is
available (e.g. regardless the sampling season, natural/artificial etc.), and,
Case B) MLRs analysis focused separately on attributes concerning natural-
only or artificial-only lakes, with the latter being accompanied by a time
window of #5 days between sampling and satellite date as proposed by
(Markogianni et al., 2020). Furthermore, the addition of Chl-a values in the
possible Secchi depth’s predictors had as a result to further shorten the initial
total in-situ dataset, as only the records of dates characterized by
simultaneous sampling of Secchi depths and Chl-a were included in the
analysis.

The same methodology was also adopted in the TP concentrations (2 in
Figure 2.2.3-3). In-situ dataset of TP is narrower than the one concerning
Secchi depths, as it includes only values sampled during the years 2015 and
2016 (dataset of 2018 was utilized as an independent validation dataset).
Correlation analysis was also conducted among satellite band transformations
(Table 2.2.3-3) and in-situ TP values while in-situ Chl-a concentrations, Secchi
depths and their logarithmic transformations were also included since they
have been proven to interact and affect TP concentrations in lakes (Kutser et
al., 1995, Wang et al., 2004; Wu et al., 2010). Due to fewer TP available
measurements, the threshold value of Spearman r was set to 0.3 to avoid the
loss of possible significant TP predictors and the proposed TP predictors were
also confirmed by the significance predictor chart. Hence, according to Figure
2.2.3-3, multiple datasets with simultaneous measurements of all the three
parameters or combinations of them were established and constituted the
randomly made datasets (Case A). Those multiple datasets were further
divided in training (80% of each total records) and validation ones (the rest
20%). Then, concerning MLRs analyses of B case (Figure 2.2.3-3), the
aforementioned datasets were further divided in cases including natural-only
and artificial-only lakes (with data acquisition time window of +5 days), while
they were additionally separated in training (80%) and validation (20%)
datasets, respectively.

Training datasets regarding the in-situ Secchi depths and TP include
measurements of 2013-2016 and 2015-2016, respectively. It should also be
noted that training and validation datasets contained lakes with mean depth
higher than 5 m to surely avoid the bottom reflectance noise (McKinna and
Werdell, 2018). In particular McKinna and Werdell (2018) recommended that
any pixel with a water-column depth of 5 m or less should be characterized as
optically shallow and omitted from the analysis in order to avoid any
unwanted optically shallow effects apparent in satellite -derived products;
WQ models and their efficiency in our case. Final results of the MLRs should
be the development of rigorous quantitative algorithms regarding: a) Secchi
depth and TP for all the lakes, b) Secchi depth and TP for natural lakes, c)
Secchi depth and TP for artificial lakes.



Table 2.2.3-3. Published band combinations utilized in remotely estimating TP and Secchi

depth values.
Reference Parameters Band combinations and sensors
Lim ;;fSChOI’ TP Blue, Green, Red, NIR, NIR/Green (L8)
Song et al.,
2006; Song et TP Blue, Green, Red, and NIR (L5)
al., 2012
Wu et al., 2010 Ln (TP) Blue, Red/Green, Blue/Red (L5)
Alparslan et TP Blue,
al., 2009 Green, Red, NIR, SWIR1 and SWIR2 (L5)
(1) Red,
(1) TP Green, Red/Blue, (Green + Red)/2, Green?, (Blue
Baban 1993 + Green)/2 (L5)

(2) Secchi depth

(2) Red/Blue, Red?, Blue, (Blue+Green)/2, (Blue +
Red)/2 (L5)

Isenstein and

(1) SQRT (TP)

(1)  Red, SWIR2 (L7 ETM+)

Park, 2014 (2) Secchi depth (2)  LOGRed, LOGSWIR2 (L7 ETM+)
Chen and
Quan, 2012 Phosphorus Blue, Green, Red, NIR (L5)
H 1.,
ua;(;gl;t a LOG (P) NIR/Visible light (GOCI)
Moses et al., (1) Phosphates (1) Red, MIR
2014 (2) TP (2) Red IRS P6 (LISS IIT)
Shaﬁggg;t al., TP LOG (Green/Red to NIR), (CASI)
1) Blue/R Blue-Ri L Blue-
Allan et al., (1) Secchi depth (m) (1) Blue/Red, (Blue-Red)/Green, LN [(Blue
2011 (2) LN Secchi depth Red)/Green] (L7 ETM+)
p (2) NIR, (Blue-Red)/Green, LN Red
Brezo;(;g;t als [N Secchi depth Blue, Blue/Red (L5)
Choubey 1998 Secchi depth Blue, Green, Red (IRS-1A)
Zhou et al,, . Green, Red, Blue, Vegetation red edge (B5),
2021 Secchi Depth Water Vapour (Sentinel 2)
Ohammad and Secchi depth Green, Blue (MODIS-Aqua)
Alsahli, 2021 P ' d
Kmtzgrlst al, Secchi depth Blue, Red (MERIS)

2.2.3.5 Validation approach

WQ quantitative models were validated in two ways. The basic
statistical metric selected to verify efficiency is the Spearman’s (r) correlation
coefficient which was selected based on the Kolmogorov-Smirnov and
Shapiro-Wilk tests of normality. Additionally, the mean error (e) and the
Root-Mean-Square Error (RMSE) indices were also applied. Initially, each
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validation dataset, including the 20% of the total values during years 2013-
2016 for Secchi depths and 2015-2016 for TP, respectively, constituted the first
validation process (the rest 80% were used as training datasets). Then those
values were linked with the respective images in order to acquire the
predicted parameters’ values and further assure the good performance of the
selected models. The second validation process included the utilization of the
independent in-situ datasets sampled during the year 2018 (Figure 2.2.3-3).

2.2.3.6 Carlson’s Trophic State Index (TSI) and validation

Carlson’s Trophic State Index (TSI) is the most widely used tool for

characterizing a lake’s health or its trophic state while the latter is defined as
the biological reaction of water bodies to nutrient additions (Nauman 1929).
Carlson’s method (Carlson 1977) uses Secchi depth in meter, a logarithmic
transformation (Ln) of chlorophyll-a concentration in microgram per liter, and
total phosphorus measurements in microgram per liter while it concerns an
index represented as a numerical scale to categorize lakes into classes related
to their trophic status.
Equations (2.2.3-2), (2.2.3-3) and (2.2.3-4), derived from Carlson (1977), have
been widely used to compute the TSIs according to TP, Chl-a and SD,
respectively, while an average (Equation 2.2.3-5) is estimated to produce the
tinal trophic state as follows:

_ _ 1N(zp) ]
TSI(TP) = 10 + [6 = 2] (2.2.3-2)
TSI(Chla) = 10 « [6 — (2.04 — (0.68 * ‘“L(;g;”))] (2.2.3-3)
TSI(SDT) = 10 % [6 — (%(’Z)”)] (2.2.3-4)

TSI(average) = [TSI(TP) + TSI(Chla) + TSI(SDT)]/3  (2.2.3-5)

The trophic status classification system categorizes lakes as oligotrophic
(TSI value<30), mesotrophic (TSI value 40-50), eutrophic (TSI value 60-70),
and hypereutrophic (TSI value>70; Table 2.2.3-4) and since the scale of the
index is arithmetic, it can describe trophic changes and a larger number of
transitional individual lake classes (e.g. oligotrophic-mesotrophic,
mesotrophic-eutrophic).



Table 2.2.3-4. Carlson’s trophic state index values and classification of lakes
(Carlson 1977; Prasad and Siddaraju, 2012).

TSI
S Trophic Attributes
values
Status
<30 Oligotrophic Transparent water
<40
30-40 | Oligotrophic-Mesotrophic
High idity, higher al
41-48 Mesotrophic igher turbidity, higher algae abundance and
macrophytes
41-50
49-50 |  Mesotrophic-Eutrophic
51-60 | Mesotrophic-Eutrophic
51-70
61-70 Eutrophic Usually blue-green algae blooms
>70 Hypereutrophic Extreme blue-green algae blooms

Based on these equations, the in-situ TSI for all the cases accompanied by
available simultaneous in-situ measurements of TP, Chl-a and Secchi depths
were also calculated. In the framework of the study conducted by
Markogianni et al. (2020), through the harmonization of Landsat 7 ETM+ and
8 OLI images, three Chl-a quantitative models were developed including the
ratios of blue to green and red, red to green and blue, and the In-transformed
bands SWIR1 and SWIR2. Those models were established based on the same
period and same lakes as the ones developed herein; equation 2.2.3-6 concerns
the calculation of Chl-a concentrations across all lakes while equations 2.2.3-7
and 2.2.3-8 regard the Chl-a assessment of natural-only and artificial-only
lakes, respectively. Hence, taking into consideration those Chl-a models, we
calculated TSI (Chl-a; Eq. 2.2.3-3) by using the equation being established
regardless the lake characteristics (Equation 2.2.3-6), TSI (Chl-a) of natural
lakes by employing the respective equation (Equation 2.2.3- 7) and TSI (Chl-a)
of reservoirs by using the Chl-a equation respectively developed (Equation
2.2.3-8). Then we used the hereby developed models concerning the TP and
Secchi depths for the calculation of satellite derived TSI (TP; Eq. 2) and TSI
(SDT; Eq. 2.2.3-4), respectively. After implementing equations (2.2.3-2), (2.2.3-
3), (2.2.3-4) and (2.2.3-5), satellite-derived TSI values have been calculated and
trophic state classification has been conducted initially for the cases
concerning all the lakes and then separately for the natural-only and artificial-
only cases (by using the independent models). Validation of satellite TSI was
carried out based on statistical analysis and the resulted deviation from the
respective in-situ TSI values.
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blue Inred
logChla = 3.599 — 0.63 (2o ) — 2.183 () (2.2.3-6)
logChla = 4.443 — 1.421 (g”r’:‘:n) — 3454+ (220 ) 4 1304 + (g:ZZn)(2.2.3—7)
logChla = 2.919 — 2.011 * (2o + 1.449 » (g:jjn) — 1441 * (10)(2.2.3-8)

2.2.4 Results

2.2.4.1 Secchi depth and Total phosphorus Quantitative models for
Greek lakes

2.2.4.1.1 Secchi depth models

Spearman r values that resulted from the correlation analysis among all
available band transformations and Secchi depth values, log, In and SQRT
Secchi depth values ranged from -0.56 to +0.56. In total 74 band
transformations have been elaborated in correlation analysis and those
parameters are provided in the Appendix (Table 1). Correlation matrix in
combination with the predictor importance chart (IBM SPSS software
Statistics v. 23.0, Armonk, NY, USA) indicated the highest important
predictors. Values of importance for the same variables varied depending on
the dependent parameter (Secchi, SQRTSecchi etc.), some variables were
common for all the Secchi transformations (Table 2.2.4-1) whereas each Secchi
transformation (e.g. SQRT, LOG, LN) indicated also some different variables
that were important concerning their prediction. Those variables/predictors
were further inserted in several combinations in numerous stepwise linear
regressions. Application of multi-collinearity tests (i.e. Variance Inflation
Factor-VIF with values higher than 1 and less than 10 and Tolerance higher
than 0.1) and R? values indicated the optimal Secchi quantitative models
which included as dependent variables the In-, log- and SQRT Secchi
transformations, with the latter proven to be the most satisfactory (Equation
2.2.4-1; Table 2.2.4-2). The selected SQRT(Secchi)genera model incorporated
ratios of bands blue, red and green from the visible spectrum and the second
band from the short-wave infrared part of spectrum while collinearity
statistics suggested an absence of autocorrelation.

Table 2.2.4-1. Common variables with the highest value of importance concerning
the prediction of Secchi, SQRTSecchi and LOG/LN Secchi, derived from the
predictor importance chart.

Value of Importance
Variable Secchi SQRT(Secchi) | LOG-LN(Secchi)
Green/SWIR1 0.014 0.008 0.011
LOG(Blue/Red) 0.033 0.044 0.041




(Blue -Red)/ (Blue + Red) 0.034 0.045 0.042

LN Green/LN Blue 0.035 0.041 0.045

Red / Blue 0.035 0.045 0.046

LOG Blue /LOG Green 0.037 0.043 0.047
LN((Blue-SWIR2)/(Green-SWIR1)) 0.039 0.032 0.038
(Blue -Red)/ Green 0.046 0.054 0.050

Blue + Red + Red /Blue 0.046 0.050 0.047
Green/Blue 0.052 0.052 0.058

(Blue -Green)/ (Blue +Green) 0.056 0.055 0.059
LOG (Blue /Green) 0.056 0.055 0.059

Table 2.2.4-2. Regression analysis statistics and Secchigeneral model’s summary.

Model R Rz Adjusted |Std. Erf'or of the| Durbin-
R? Estimate Watson
SeCChigeneral 0.74 0.54 0.54 0.46 2.24

Predictors: (Constant), Blue+Red+Red/Blue, LN Green/LN SWIR2

In-situSQRT(Secchi)

4

w
1

In-situ SQRT(Secchi)
N
1

-
1

SEE=0.37

pros |

T T T T T
1.0 1.5 2.0

Estimated SQRT(Secchi)-Artificial

Figure 2.2.4-1. Scatter plots between in-situ and estimated SQRT Secchi depths derived
from a) General model, b) model established for natural lakes and c¢) model established for
reservoirs (lines set at confidence intervals 95%).
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To ensure that further independent special models are essential to be
developed for natural and artificial lakes to gain higher accuracy, the
Secchigenerat model (Equation 2.2.4-1) was also separately applied to natural-
only and artificial-only lakes. Even though some statistical indices were
acceptable, special models for the different type of lakes proved to perform
better compared to the general one, particularly concerning artificial lakes.
Statistical and verification results derived from the application of the general
model to natural and artificial lakes are presented at the validation section.

red Ingreen

SQRT (Secchi) generar = 1215 — 2.479 + (blue + red + )

(2.2.4-1)

) +3.394 % (

blue Inswir2

Subsequently, after the conduction of multiple MLR analyses employing
separately natural-only and artificial-only lakes, the SQRT Secchi
transformation proved as well to perform better in both cases and reflected
adequate and reliable Secchi depths. It should be noted that autonomous
elaboration of natural and artificial lakes signified the log-chl-a
transformation as a Secchi predictor accompanied by high beta coefficient,
especially for natural lakes (Table 2.2.4-3). Hence, the models that met the
aforementioned criteria and were finally selected to calculate Secchi depth in
natural (Equation 2.2.4-2) and artificial (Equation 2.2.4-3) lakes, included
except for the logchl-a, visible bands as well: red, green and blue while
equation 2.2.4-3 (artificial lakes) incorporated additionally the SWIR1 band.

SQRT(Secchi)pngturar = 1.172 — (1.003 * logchl — a) — (1.031 * logred) (2.2.4-

2)
SQRT (Secchi) areigiciar = 3927 — 1365 + (2) — 0.318 + () — 0.361 *
logchl — a (2.2.4-3)

Table 2.2.4-3. Regression analysis statistics and Secchinaturat and Secchiartificial models’

summaries.
. Adjusted| Std. Error of the | Durbin-
2

Scenario/Model R R R? Estimate Watson

Secchi natural 0.78 | 0.6 0.59 0.55 2.14

Secchi artificial 0.73 | 0.53 | 0.51 0.37 2.12

Predictors natural: (Constant), Log Chl-a, Log Red
Predictors aritical: Green/Blue, Red/SWIR1, Log Chl-a




2.2.4.1.2 Total phosphorus models

The correlation matrix among all variables including all the lakes with
mean depth higher than 5 meters resulted in slightly weaker correlations than
those regarding Secchi depths. In this case, Spearman threshold value was
reduced to #0.3 to discriminate and incorporate more phosphorus
variables/predictors. In total 69 band transformations have been elaborated in
correlation analysis and those parameters are provided in the Appendix
(Table 2). Furthermore, coefficient of determination among phosphorus,
chlorophyll-a and Secchi depths were very high with values equal to 0.85 and
-0.84, respectively. Optimal predictors with Spearman values higher than +0.3
were further enriched and confirmed based on the calculation of their
significance according to the significance predictor chart. Final selected
predictors (Table 2.2.4-4) were inserted in manifold stepwise MLRs. The
insertion of Chl-a and Secchi depth data as independent variable in MLRs,
improved the results and yielded some statistically acceptable models
employing some of those predictors.

Table 2.2.4-4. Common variables with the highest value of importance concerning the
prediction of TP and LOG/LN TP, derived from the predictor importance chart.

Value of Importance
Variable TP LOG-LN (TP)

Red/SWIR1 0.2672 0.3283

Green/SWIR1 0.2296 0.2973
LN Green /LNSWIR1 0.1308

Green / Red 0.1249 0.1525

LOG Chl-a 0.0953 0.1848
LOG (Red / Green) 0.0776
LN Red /LN Green 0.0344

LN Secchi 0.1315

Among the most optimal models, Equation 2.2.4-4 is the one selected for
TP quantification in Greek lakes, employing except for the Chl-g, the band
ratio of Ln-Red and Ln-SWIR1 bands. Both predictors are accompanied by
equally high beta coefficient values while Durbin-Watson’s statistic test is
fully acceptable (Table 2.2.4-5).

Inred

LogTPgeneral = —1.425 + 0.452 x logChla — 0.573 * (

) (2.2.4-4)

Inswirl

Table 2.2.4-5. Regression analysis statistics and TPgeneral model’s summary.

Adjusted | Std. Error of Durbin-
Model R R2
ode R2 the Estimate Watson
LOgTPgeneral 0.85 |0.73 0.71 0.18 2.34

Predictors: (Constant), LogChl-a, LN Red/LN SWIR1
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Figure 2.2.4-2. Scatter plots between in-situ and estimated LOG TP values derived from a)
General model, b) model established for natural lakes (lines set at confidence intervals 95%).

MLRs that concerned artificial lakes, resulted in weak models
characterized by poor statistical performance -R? values ranged from 0.13 up
to 0.3- while TP models concerning the natural lakes managed to deliver
highly acceptable results based on given statistical indices. Since no special
model was delivered for TP quantification in artificial lakes, the LogTPgeneral
model’s further efficiency was explored by applying it on natural and
artificial lakes (dataset of 2018) while the results are presented in the
validation section. Concerning natural lakes, the log Secchi proved to be a
strong TP predictor, followed by the band ratio of green and red (Equation
2.2.4-5). The best quantitative TPnawa model is characterized by high
Pearson’s and coefficient of determination values while no autocorrelation
problem is detected (Table 2.2.4-6).

LogTPnatural = —0.633 — (0.704  logSecchi) — 0.392 * (=) (2.2.4-5)

red

Table 2.2.4-6. Regression analysis statistics and TPraturat model’s summary.

. Std. Error of Durbin-
2 2
Model R R? |Adjusted R the Estimate Watson
LOgTPnatural 0.91 0.82 0.81 0.17 19

Predictors: (Constant), LogSecchi, Green/Red

2.2.4.2 Models’ validation

This section presents the results of the analysis concerning the
evaluation of the general models” (Secchigeneral, TPgeneral) performance after their
application separately on natural-only and artificial-only lakes. Since those



two general models were developed based on data of 2013-2016, their
validation was conducted based only on data of 2018. Regarding the
Spearman value, all correlations selected and presented are significant at the
0.01 level.

2.2.4.2.1 Secchi depth models

Secchigeneral model was developed based on 228 cases and validated twice
based on 55 and 105 cases, respectively while RMSE values are similar, equal
to 1.6 m (1* validation) and 1.7 m (2018 validation), respectively (Table 2.2.4-
7). Application of Secchigenerat model on natural lakes resulted in acceptable
and reliable results and similar values regarding the examined statistical
indices as those derived by the Secchinaturai model. Nevertheless, Spearman
and RMSE values of Secchinawra model (2018 data) are better than the general’s
one, hence Secchinawral is selected as the most optimum to quantify Secchi
depths in natural lakes.

As far as the artificial lakes are concerned, Secchiariicat model is selected
compared to the Secchigenera, since both average residuals and the RMSE
values are lower (-0.2 compared to 0.5 m and RMSE 1.4 m compared to 1.7 m).

Table 2.2.4-7. Statistical indices used to validate the Secchi selected algorithms
(**correlation significant at the 0.01 level (two-tailed). RMSE —root-mean-square error. *
Values concern Secchi depths in m).

1st validation (20%) 2nd validation (2018 data)
Averag Avera
A A RMSE A
Spearma V(?rag e errage 5 . |Spearman |Average| ge Vfarage RMSE (Secchi;
Models e in- .. [residual| (Secchi; . . |residual
nr .., satellite r in-situ* |satellit m)
situ . s (m) m) ot s (m)
SeCChigeneral
Training 78%% 58**
dataset N=55 4.45 4.7 -0.24 1.6 N=105 4.2 3.8 0.4 1.7
N=228
SeCChigeneral
applied on 65%*
natural N=42 3.8 3.6 0.15 1.7
SeCChigeneral 51%*
applied on X 4 35 0.5 1.7
o N=48
artificial
SeCChi natural
Training .95%* 73%*
dataset N=24 3.1 3.3 -0.21 1.1 N=24 3.2 3.5 -0.3 1.1
N=65
SeCChi artificial
Training .627%* .56**
dataset N=23 3.9 4.2 -0.24 0.89 N=39 4.7 4.8 -0.2 14
N=111
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2.2.4.2.2 Total phosphorus models

LogTPgenert model performed well concerning both validation
procedures (Table 2.2.4-8). High Spearman values derived from datasets of 12
and 31 cases respectively, and similar average in-situ and satellite TP values
characterize both validations. RMSE is 0.008 mg/l (1t validation) and 0.03
mg/l (validation of 2018). Application of the LogTPgeera model on artificial
lakes yielded as well acceptable results since RMSE equals to 0.03 mg/1.

Concerning the application of the general model on natural lakes, it is
clear that the special developed model for natural lakes is superior since the
values of average residuals and RMSE are quite lower (-0.003 compared to
0.01 mg/l; RMSE=0.03 compared to 0.08 mg/l). Moreover, higher Spearman
value (0.68) and larger size of the validation dataset (n=47) indicate as well the
advantage of this model in assessment of TP concentrations in natural lakes.

Table 2.2.4-8. Statistical indices used to validate the TP selected algorithms (**correlation
significant at the 0.01 level (two-tailed). RMSE —root-mean-square error. *All values
concern TP in mg/1.

1st validation (20%) 2nd validation (2018 data)
Averag
Spear |Average| e Av?rage RMSE Spear Avc.erag Average Av‘erage RMSE
Models manr |in-situ* satelliteresuiual (TP; manr e m- satellite* residuals (TP; mg/1)
. s (mg/l)| mg/l) situ* (mg/1) !
LOgTPgeneral
Training 71 81%*
.02 .02 .001 . . . .002 .
dataset N=12 0.0 0.0 0.00 0.008 N=31 0.08 0.08 0.00 0.03
N=46
LOgTPgeneral
applied on .55%*
natural N=38 0.09 0.08 0.01 0.08
LOgTPgeneral 86+
applied on X 0.06 0.07 -0.02 0.03
‘pe s N=11
artificial
LOgTPnatural
Training .93%* .68*
dataset N=7 0.034 0.04 | -0.008 0.02 N=47 0.07 0.08 -0.003 0.03
N=29

Furthermore, Chl-a, Secchi depth and TP maps of selected lakes were
created after application of the Chl-a (Figure 2.2.4-3) algorithms derived by
Markogianni et al. (2020) and the herein developed Secchi (Figure 2.2.4-4) and
TP algorithms (Figure 2.2.4-5). The Landsat 8 OLI satellite image of 11 August
2013 was used in order to produce the satellite-derived spatial distribution of
the studied WQ parameters of this day, while the respective in situ values of




those lakes were sampled with -2 and +5 days (Chl-a) and -5 and +5 days
(Secchi depth) of difference from the aforementioned date while there is no
available in situ data for their TP concentrations.

Application of the Secchi general model resulted in Secchi depth values
ranging from 0.000002 to 8.2 m and from 0.000005 to 30.2 m for natural and
artificial lakes, respectively (Figure 2.2.4-4a). Application of the Secchi natural
model in natural lakes, yielded Secchi depths ranging between 0.000001 and
7.8 m (Figure 2.2.4-4b), while the Secchi artificial model resulted in Secchi
depth’s values varying from to 0.05 to 8.4 m (Figure 2.2.4-4c), as far as the
artificial lakes are concerned. Secchi general model (Equation 2.2.4-1) was
applied by using the aforementioned band combinations while Secchi natural
(Equation 2.2.4-2) and Secchi artificial (Equation 2.2.4-3) models were applied
including the respective Chl-a equations specially designed for the natural
(Equation 2.2.3-7; Markogianni et al., 2020) and artificial (Equation 2.2.3-8;
Markogianni et al., 2020) lakes, respectively.

Concerning the application of TP general model which also includes
Chl-a, Equation 2.2.4-4 was used whereas TP model of natural lakes employed
the Secchi natural model in order to be applied. TP general model resulted in
values ranging from 0.0008 to 0.85 mg/l and from 0.002 to 0.12 mg/l for
natural and artificial lakes, respectively (Figure 2.2.4-5a). Values of specially
designed TP model for natural lakes vary from 0.016 to 19 mg/l while only a
few values are higher than 0.2 mg/l (Figure 2.2.4-5b). Furthermore, since the
variance of TP estimated values is small, it was decided to present those
values by grouping them in classes as stretching values resulted in low
quality of results’ presentation. Furthermore, it should be noted that all
parameters’ values have been converted in actual units e.g. Chl-a in ug/l,
Secchi depth in meters and TP in mg/1 to facilitate the understanding and the
comparison among the concentrations.
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Figure 2.2.4-3. Satellite-derived Chl-a maps (on 11 August 2013) of selected lakes
after the application of General-(a), Natural (b), and Artificial (c) models
(WGS_1984, UTM Zone 34 N Coordinate system), derived by Markogianni et al.

(2020).
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Figure 2.2.4-4. Satellite-derived Secchi maps (on 11 August 2013) of selected lakes
after the application of Secchi General-(a), Secchi Natural (b), and Secchi Artificial
(c) models (WGS_1984, UTM Zone 34 N Coordinate system).
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Figure 2.2.4-5. Satellite-derived TP maps (on 11 August 2013) of selected lakes after
the application of TP General-(a), and TP natural (b) models (WGS_1984, UTM Zone

34 N Coordinate system).



2.2.4.3 Satellite derived assessment of trophic status of Greek lakes
based on Carlson’s Trophic State Index

2.2.4.3.1 Evaluation of the lake trophic status’s assessment based on
the whole dataset

Calculation of both types of TSI using in-situ only data and models
based on satellite data concerns the attributes that were accompanied by
available simultaneous in-situ measurements of TP and Chl-a concentrations
and Secchi depth measurements (176 total cases). Since in-situ available TP
data are those analyzed during the years 2015-2016 and 2018, both calculated
TSIs concern the same period. Furthermore, the application of equations
(2.2.3-2), (2.2.3-3), (2.2.3-4) and (2.2.3-5) concerning both the in-situ only data
and the models resulted in categorizing the under-study attributes (and by
extension the lakes) in 5 classes regarding their trophic status (Table 2.2.4-9).
The main difference is that in-situ measurements indicated 1 eutrophic case
and none hypereutrophic while remote sensing detected 2 hypereutrophic
cases and none eutrophic. In both analyses, cases that are characterized as
oligotrophic are the majority of the entire dataset and cases with a tendency to
mesotrophy and mesotrophic ones occupy the next positions.

Table 2.2.4-9. In-situ and satellite derived TSIs’ s frequencies and percentages of all cases.

WHOLE DATASET | TSLn-situ) | TSI (satellite) | TSI (in-situ) | TSI (satellite)
Frequency Valid Percent
1 (Oligotrophic) 92 124 52.3 70.5
2 (Oligotrophic- 42 30 239 17
Mesotrophic)
3 (Mesotrophic) 26 15 14.8 8.5
4 (Mesotrophlc— 15 5 85 8
Eutrophic)
5 (Eutrophic) 1 - 0.6 -
6 (Hypereutrophic) - 2 1.1
Total 176 176 100.0 100.0
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Figure 2.2.4-6. Scatter plot between in-situ and satellite-derived TSI values, based on
the whole dataset (lines set at confidence intervals 95%).

Further statistical analysis suggested that 103 out of 176 attributes (58.5
%) were identically classified based on the two TSI calculations while 50 cases
out of 73 that were classified differently, were allied to the right previous or
next class (-1, +1) in relation to the in-situ results. Furthermore, attributes that
were misclassified in 3 or 4 classes away from the in-situ ones are in total §,
which correspond to a 4.5 % of the misclassified dataset. Considering the
mean depth of the lakes (Figure 2.2.4-7a), it is proven that cases concerning
deeper lakes (> 5 m) were more successfully classified than the shallow ones
verifying the effect of the bottom reflectance as an obstacle in the remote
sensing elaboration. Records belonging to natural lakes were the majority of
those that were either identically (56 out of 112) or by-one-class misclassified
(40 out of 112; Figure 2.2.4-7b).

Concerning the sampling season (Figure 2.2.4-7c), results of summer
months resulted in 68 attributes that were identically classified by both TSI
calculations, while 40 out of 120 were misclassified in the previous or next
trophic status class. All records regarding spring- monitored lakes were
identically classified while remote sensing concerning autumn season
indicated a slight weakness in properly classifying the trophic status of lakes
compared to summer. The total number of 176 attributes is divided in 49
sampled in autumn, 7 sampled in spring and 120 cases sampled in summer
months. Those sampling dates are accompanied by 26 images during autumn,
6 images during spring and 51 images during summer months.
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Figure 2.2.4-7. Count of satellite-classified/misclassified cases concerning all
monitored lakes grouped by (a) the lake’s mean depth, (b) lakes’ nature and (c)
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satellite and in-situ derived TSIs while 0 indicates no differentiation. Positive and
negative signs represent the direction of the deviation from oligotrophy to hyper-
eutrophy and vice versa, respectively based on the corresponding in-situ TSI value

(reference value).

2.2.4.3.2 Evaluation of the lake trophic status assessment concerning
natural and artificial lakes

The calculation of in-situ TSI values of records belonging to natural lakes
categorized them in 5 trophic status classes (1-5), while satellite TSI resulted
in 6 classes (1-6), characterizing 5 cases as hypereutrophic (Table 2.2.4-10;

Figure 2.2.4-8).

Furthermore,

the majority of those attributes were

characterized as oligotrophic and oligotrophic-mesotrophic based on both
calculations while one case was classified as eutrophic by both calculations.

Table 2.2.4-10. In-situ and satellite derived TSIs’ s frequencies and percentages of cases

belonging to natural lakes.

NATURAL LAKES Tilh(:? " | TSI (satellite) | TSI (in-situ) | TSI (satellite)
Frequency Valid Percent

1 (Oligotrophic) 50 59 44.6 52.7

2 (Oligotrophic-Mesotrophic) 35 29 31.3 259
3 (Mesotrophic) 14 11 12.5 9.8
4 (Mesotrophic-Eutrophic) 12 7 10.7 6.3
5 (Eutrophic) 1 1 0.9 0.9
6 (Hypereutrophic) - 5 - 4.5

Total 112 112 100.0 100.0
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Figure 2.2.4-8. Scatter plot between in-situ and satellite-derived TSI values, of
natural lakes (lines set at confidence intervals 95%).

From the total of 112 records concerning the natural lakes, 66 of them
were identically classified in the same class while the 46 that presented
differences concern mostly cases that were misclassified by only one class (30
out of 46). Furthermore 6 cases out of 46 were misclassified by three or four
classes away from the respective in-situ ones. Trophic status classification of
deep natural lakes (average depth> 5 m) was in particular successful since 22
out of 27 cases were identically classified according to both TSI calculations
and the rest of 5 cases were misclassified by only one class deviation (Figure
2.2.4-9a). Trophic status classification of shallower natural lakes was also
satisfactory since 44 out of 85 cases have no difference regarding their
classification, 25 were misclassified by only one class deviation while 10 cases
were misclassified by 2-classes from the respective in-situ ones.

As far as the water sampling seasons are concerned (Figure 2.2.4-9b),
calculation of satellite derived average TSI during summer months was also
proved successful since 52 out of 80 cases presented no difference compared
to respective in-situ TSI while 18 presented misclassifications by one category
deviation. Furthermore, all of 5 cases concerning spring-monitored lakes were
identically classified based on both in-situ and satellite TSI values. The
calculation of TSI throughout the natural lakes was based on the acquirement
of 19 images while 4 and 36 images were used for calculating the spring and
summer TSI, respectively including 5 and 80 attributes.
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Figure 2.2.4-9. Count of satellite-classified/misclassified cases belonging to natural
lakes grouped by (a) the lake’s mean depth and (b) sampling season. Numbers from
-4 up to 3 represent the class deviation between the satellite and in-situ derived TSIs
while 0 indicates no differentiation. Positive and negative signs represent the
direction of the deviation from oligotrophy to hyper-eutrophy and vice versa,
respectively based on the corresponding in-situ TSI value (reference value).

As far as the artificial lakes are concerned, both in-situ and satellite TSI
calculations resulted in similar trophic status classifications and identical
classes (1-4; Table 2.2.4-11). The majority of records concerning the artificial
lakes are characterized as oligotrophic and oligotrophic-mesotrophic while 3
cases were classified as mesotrophic-eutrophic based on both TSI values (in-

situ only, models).

Table 2.2.4-11. In-situ and satellite derived TSIs’ s frequencies and percentages of cases

belonging to artificial lakes.

TSI (in-si TSI (satellite) | TSI (in-si TSI (satellit
ARTIFICIAL LAKES SI (in-situ) ‘ SI (satellite) | TSI (in sztu.) ‘ SI (satellite)
Frequency Valid Percent
1 (Oligotrophic) 42 48 65.6 75
2 (Oligotrophic- 7 9 109 14.1
Mesotrophic)
3 (Mesotrophic) 12 4 18.8 6.3
4 (MesotroPhlc— 3 3 47 47
Eutrophic)
Total 64 64 100.0 100.0
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Figure 2.2.4-10. Scatter plot between in-situ and satellite-derived TSI values, of
artificial lakes (lines set at confidence intervals 95%).

Regarding the trophic status misclassifications of artificial lakes, only 21
out of 64 records were misclassified and particularly 12 out of 21 were
classified in categories that deviated only 1 class away from the respective in-
situ ones. Observing artificial lakes based on their mean depth (Figure 2.2.4-
11a), it is proven that attributes regarding deeper artificial lakes were
successfully classified concerning their trophic status since 33 out of 35
presented no classification differentiation and two (2) of them were
misclassified in classes that deviated 3 and 2 classes from the in-situ ones,
respectively. Additionally, cases belonging to shallower artificial lakes were
also satisfactory classified as 10 out of 29 showed no differentiation and 12
were misclassified by one class difference.

Observing classification of artificial lakes based on the sampling season
(Figure 2.2.4-11b), it is clear that not only summer trophic status classifications
are successful (26 out of 40 cases presented no differentiation) but also TSI
calculations during spring and autumn seasons managed to classify records
with high accuracy. TSI classification throughout the artificial lakes during
autumn was conducted by using 15 Landsat images, while 2 and 28 images
were used for spring and summer seasons, respectively.
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Figure 2.2.4-11. Count of satellite-classified/misclassified cases belonging to artificial
lakes grouped by (a) the lake’s mean depth and (b) sampling season. Numbers from
-3 up to 3 represent the class deviation between the satellite and in-situ derived TSIs
while 0 indicates no differentiation. Positive and negative signs represent the
direction of the deviation from oligotrophy to hyper-eutrophy and vice versa,
respectively based on the corresponding in-situ TSI value (reference value).

2.2.5 Discussion

Increasing human activities and industrialization have dramatically
degraded lake water quality (Zheng et al., 2021). Therefore, implementation of
WED in Greece, as well as in other European countries, has as a main aim to
ensure sustainable management of lakes. Use of geoinformation technologies
- and in particular of RS and GIS - with conventional in-situ water samplings
have been proven as the most efficient, cheap and reliable tool to monitor WQ
parameters in lakes. WFD has been implemented in Greece at least the last
seven years while numerous in-situ measurements of WQ elements provide
valuable means to scientists and public authorities to assess and monitor
Greek lake WQ. In particular in-situ measurements of Secchi depths and TP
concentrations combined with Landsat data have been utilized in this study
framework to assess trophic status of monitored Greek lakes.

The significance of lakes’ nature concerning the constituents’ variance

Exploratory statistical analysis of the available datasets indicated higher
Secchi depth values in artificial rather than in natural lakes during all
sampling years (2013-2018) whereas the highest TP concentrations were
detected in natural lakes, illustrating accumulating TP loadings and an
increasing tendency throughout the years (2015-2018). Moreover,
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Markogianni et al. (2020) reported that natural lakes presented also notably
higher Chl-a concentrations in relation to reservoirs. The present study
findings are also in accordance with those reported in other similar studies.
For example, (Seballe et al, 1992) documented that chlorophyll-a
concentrations tend to be lower in reservoirs than in natural lakes because
higher inorganic turbidity and high flushing rates (low hydraulic residence
times) in reservoirs limit the development of phytoplankton biomass. In this
way, higher Secchi depth values in artificial lakes indicate clearer water. This
is once again interpreted by a higher presence of non-algal turbidities in this
type of lakes compared to natural (Canfield and Bachmann, 1981).
Concerning the TP values, it should be noted that artificial lakes lose nutrients
(in particular P) through settling in a downstream direction. The sampling
station’s location plays a major role in WQ monitoring. One of the main
differences between artificial and natural lakes is that artificial
characteristically exhibit a trophic gradient (Seballe et al., 1992) as it may
grade from eutrophic (in its upper reaches) to oligotrophic (close to the dam)
(Virginia 2007).

Correlation matrix among in-situ measurements of monitored WQ
parameters throughout all lakes resulted in high and positive correlation
between TP and Chl-a (0.85) and high negative relationship between Secchi
depth with TP and Chl-a with values of coefficient of determination equal to -
0.84 and -0.83, respectively. This finding agrees with results reported in other
studies studying natural and artificial lakes around the world e.g. (Canfield
and Bachmann, 1981; Canfield and Hodgson, 1983). For most lakes,
chlorophyll a was highly correlated with SD, phosphorus was directly
correlated with chlorophyll a and inversely correlated with SD. This is mainly
due to the fact that increases in nutrient concentrations (in particular TP)
result directly in higher algal growth (Chl-a concentration) and decreased
water transparency (Secchi depth) (Virginia 2007). Additional explanation to
the fact that Secchi depth is decreased with increasing TP concentration, was
given by (Heiskary and Wilson, 2005), who proved that a proportion of
phosphorus may be linked to suspended particles resulted from soil erosion
and carried through river’s downslope.

MLR analysis and resulted proxies of studied WQ parameters

MLRs analyses among in-situ Sechi depth measurements and Landsat 7
ETM+ and 8 OLI data yielded three (3) optimal Secchi estimation models
concerning the assessment of Secchi depth of all lakes (Secchigenera), natural
(Secchinawral) and artificial (Secchiarificial) ones. The Secchigenera model
incorporated a combination of bands blue, red, green and SWIR2 while
models developed for natural and artificial lakes were accompanied by the
insertion of logchl-a as a significant Secchi predictor. The Secchigenerat model



was also independently applied to natural and artificial lakes to further
explore its effectiveness regarding the nature of lakes. The abovementioned
model proved to perform better concerning the natural lakes than the
reservoirs since water transparency in artificial lakes is notably influenced by
non-algal sources of turbidity. This rationale is equally supported by (Lind
1986), who documented that the use of Chl-a to estimate Secchi depth is
inappropriate for waters where even moderate amounts of non-algal turbidity
are present. On the other, (Lorenzen 1980) proposed to take into consideration
this type of turbidity when reservoirs are evaluated. However, many
scientists argue that Secchi depth data are calibrated for each lake or reservoir,
hence they may be used for WQ monitoring. Numerous algorithms have been
developed for Secchi depth assessment. Relevant literature is enriched with
studies that demonstrated strong relationships between Landsat data and in-
situ Secchi depths by employing mostly the blue, green, red, NIR bands and
their ratios of the visible spectrum (Allee and Johnson, 1999; Olmanson et al.,
2001; Giardino et al., 2001; Olmanson et al., 2008) while in the framework of
this paper we also tried and managed to combine other water quality
indicators and remotely sensed spectral reflectance. Even more models based
on Landsat series data have been empirically developed to map SD for inland
and coastal waters (Olmanson et al., 2008; Dona et al., 2014; Page et al., 2019).
However, in contrast to our work, those studies utilized calibration and
validation datasets sampled from one, two or a few lakes within a small
geographical region, failing to generate a uniform model for the systematic
assessment of SD at a greater scale (Zhang et al., 2021). On the other hand,
Zhang et al. (2021) constructed a general SD power function model (based on
red band) established on extensive in-situ SD and Landsat reflectance from
225 China lakes, exploring SD spatial variation from 1986 to 2018. This study
in agreement to ours, not only performed regression-related efforts but also
confirmed that Landsat series data can result in an accurate long-term
estimation of the SD. Another effort to develop a 20-year water clarity census
on a broad regional and spatial scale has been conducted by Olmanson et al.
(2001) who studied over 10500 lakes of Minnesota state. In particular, a
regression model incorporating the blue and red bands of several Landsat
series (4 MSS, 7 ETM+, 5 TM) demonstrated that satellite imagery is an
accurate method to assess water clarity over a long period of time. Moreover,
one of the latest studies that developed a unified model mapping global lake
clarity using Landsat imagery was conducted by (Dekker et al., 1996). In the
framework of this research, the combination of trained in-situ SD data (3586
data points; 2235 lakes across the world) and match-up Landsat images (TOA;
L5-TM; L7-ETM+; L8-OLI) were used to establish various regression models.
The proposed model based on the blue/green and red/blue bands
demonstrated its applicability to monitor SD in inland bodies across the globe
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and its stability to variations in time and space of the optical properties of
lakes.

MLRs analyses among TP concentrations and Landsat band
transformations yielded statistically weak models whereas further insertion of
in-situ Chl-a and Secchi depth data improved the results. A general TP
assessment model with application on all lakes was produced including the
logarithmic transformation of Chl-z and the band ratio of Ln-Red and Ln-
SWIR1 bands with reliable values of tested statistical indices. The fact that
none statistically acceptable model was generated for artificial lakes may
partly be attributed to the time lag that has been observed for phytoplankton
to consume TP in this type of lakes. This fact makes the relationship between
TP and Chl-a or SD more complicated (Song et al., 2012) in reservoirs and
further limnological research is needed to additionally penetrate into the
functions of those lakes” system. On the other hand, as far as the natural lakes
are concerned, Secchi depth proved to be a strong TP predictor. The TP model
developed for natural lakes incorporated also the ratio of green and red bands
and was accompanied by a high value of coefficient of determination. The
weakness of MLRs to produce an optimal TP model for artificial lakes urged
us to further explore the efficiency of the TP general model on artificial and
natural lakes as well. Application of the TPgenera model on artificial lakes (2018
data) yielded acceptable results, fact that characterizes it as reliable enough to
be used at this type of lakes. On the other hand, special developed TP model
for natural lakes was superior compared to the general one based on basic
statistical indices (Spearman and RMSE values).

Uusitalo et al. (2000) suggested that TP could not be assessed using RS
techniques because it represents dissolved constituents and it is characterized
by weak optical characteristics and low signal noise ratio. Nevertheless, it has
been investigated based on its high correlation with optically active
constituents (Song et al.,, 2006; Busse et al., 2006) such as phytoplankton
(Baban 1993) and Secchi depth (Ritchie et al., 1990). Furthermore, data from
Landsat series, among many other satellite sensors, has been widely used for
TP assessment in inland waters and especially lakes (Kutser et al., 1995; Wu et
al., 2010). Lim and Choi (2015) selected a MLR model (R=0.57) using blue,
green, red and NIR Landsat 8 bands to estimate TP among other WQPs in
Nakdong River with weak accuracy. Further TP studies have detected similar
correlations between the NIR band and the 3 visible bands (blue, green, and
red) and Chl-a (Lathrop 1993; Lillesand and Kiefer 2000). Another research
that utilized SWIR data for the assessment of phosphate concentrations in
Akkulam-Veli Lake, Kerala, India is the one conducted by (Moses et al., 2014).
They produced an equation (R?>= 0.5) accompanied except for the red band
also by the MIR (middle infrared; band that followingly was replaced by the
SWIR) (Buiteveld et al., 1994).



The contribution of SWIR bands in WQ monitoring of Case 2 waters

The results accrued by the herein MLRs analyses and the observed
weight of SWIR bands regarding the calculation of Secchi depth and TP
concentrations constitute a topic that needs further exploration and
explanation. The main interpretation is based on the fact that lakes belong to
Case 2 waters which are optically complex. Since those waters are influenced
also by inorganic and yellow substances- except for phytoplankton and
related particles- it is well recognized that sediment reflectance exceeds the
absorptive properties in the NIR and SWIR wavelengths (IOCCG 2000; Ouma
et al.,, 2020) and the standard algorithms in use today in Case 1 waters
(especially for chlorophyll retrieval from satellite data), break down (IOCCG
2000). Furthermore, according to Moses et al. (2014), in cases where there is
even a small quantity of impurities, significant changes are caused in the
refractive index of a substance with substances containing more polarizer
groups. Hence, since, for example, TP is a pollutant with more polarity, it
changes the refractive index of water which in turns changes the reflectance of
NIR and MIR in water. In accordance with this theory, there are several
studies that have widely used SWIR bands concerning the monitoring of WQ
elements in Case 2 waters. Barrett and Frazier (2016) studied WQ of lakes in
eastern Oklahoma and indicated the existence of a relationship between SWIR
reflection and algae/plant production by including at least one of the short-
wave infrared bands (SWIR) in all of their significant band combinations for
chlorophyll-a. The SWIR band of a Sentinel 2A/MSI image was proven once
again important for Chl-a estimation (R? = 0.7) in Chebara Dam (Kenya)
(Kontopoulou et al., 2017) and in particular a second-order polynomial fit was
found to be suitable using the reflectance from the difference between the
green (B3) and the SWIR-1 (B11) band. Furthermore, Tripathi and Patil (2004)
studied 11 representative lakes of Greece (included in our dataset) regarding
their Chl-a concentrations and managed to establish high correlations
between the red and SWIR bands of Landsat 8 images. He et al. (2008) also
generated a Chl-a three-variable predictive model employing green and
SWIR-1 bands and the ratio red/green using EMT+ sensor (R? =0.91) in Rio
Tercero reservoir (Argentina).

Lakes’ TSI classification and exploration of the factors affecting its accuracy

In the framework of this study, assessment models of the studied WQPs
(TP, Secchi depth) were developed. Then, the Carlson’s Trophic State Index
(TSI) was applied to assess the trophic status initially of all studied lakes and
afterwards separately of natural and artificial ones. TSI can be successfully
monitored for lakes using satellite techniques and this methodology has been
documented in numerous studies (Papoutsa et al., 2014; Membrillo-Abad et

Markogianni V. Water Quality Assessment in Greek Lakes by Using Remote Sensing and Statistical Modelling

157|Page



al., 2016; Rivani and Wicaksono, 2018). Trophic status classification based on
satellite-derived TSI of all the cases was coincident with the respective in-situ
at a percentage of 58.5 % while the 28.5 % of the misclassified cases concerned
a deviation at only one (1) trophic class. Satellite TSI calculation
independently of cases regarding natural and artificial lakes yielded results
that were highly coincident with the in-situ derived classes (58.9% and 67.2 %,
respectively). Considering the mean depth and the nature of the lakes, deeper
(> 5 m) and natural lakes were more successfully classified compared to
shallow and artificial ones. Deeper lakes are less affected by the bottom
reflectance, fact that is once more verified based on the hereby findings. Light
bottom reflection in shallow waters may be a result of the above-water
remotely sensed reflectance spectra, hence it cannot be very reliable.
Therefore, the estimation of WQPs in shallow waters should be validated
using in-situ data (Chen et al., 2007).

Concerning the higher TSI misclassification in artificial lakes, it should
be noted that TP and Secchi depth are far more variable in reservoirs than in
natural lakes (Canfield and Bachmann, 1981). Most models are developed
with the assumption that phosphorus is the primary factor limiting algal
growth (Kimmel et al., 1990). Nevertheless, there are other nutrients, such as
nitrogen, or other factors (e.g. incident light) that may also limit algal
production, particularly in reservoirs (Virginia, 2007). The above-mentioned
rationales in combination with the fact that in this study TP concentration of
artificial lakes has been assessed based on the TPgrnerai model, may partly
explain the fact that TSI evaluation is less robust in those impoundments.

A significant aspect concerning the contribution of the present study lies
in the fact that the study area includes 50 different lake systems of varied
chemistry, trophic level, from different regions of Greece and WQ elements
collected over different seasons. WQ assessment models have been developed
concerning a wide range of limnological conditions with emphasis on
whether the lakes are natural or artificial, deep (> 5 m mean depth) or
shallow. WQ empirical models are priceless means for trophic status
classification for the majority of Greek lakes, especially when in-situ data are
limited. In addition to their proven predictive performance, it should be noted
that- based on the validation processes- they exhibited spatial and temporal
stability to variations of the optical properties of the lakes. Furthermore,
according to (Loveland and Dwyer 2012), Landsat OLI and ETM+ have
similar wavelength ranges and based on the results yielded by (Song et al.,
2012), excellent consistency was also found between those sensors in the blue,
green, red and NIR regions. Hence, the hereby developed models also
accommodates the spectral configuration differences among the used Landsat
sensors. However, those empirical models are accompanied by several
restrictions such as the accuracy of sampling points’ geolocation and the
incorporation of many sampling seasons, while the latter plays a crucial role



on TP loadings and Secchi depth values. Moreover, an additional and deeper
limnological research is needed mostly oriented towards the primary limiting
factors of Chl-a production and the predominant sources of turbidity
(algal/non-algal), particularly in reservoirs. A wider limnological research
would provide valuable information about the lake-wide stratification effects,
water movement and other ecosystem-interaction effects on lake water
quality, especially for the areas than cannot be accessed and sampled.

2.2.6 Conclusions

This study developed an approach of modelling Greek lakes” water
quality by combining EO data (Landsat 7 ETM+ and 8 OLI) with in-situ
measurements of TP and Secchi depths derived from the application of WFD
in Greece. Furthermore, based on our previous study (Markogianni et al.,
2020) and the derived Chl-z empirical models, WQ assessment models
developed herein contribute to the evaluation of the trophic status of all
monitored lakes (N=50; National Lake Monitoring Network), by applying the
Carlson’s trophic index.

Stepwise MLR analyses incorporated, except for Landsat reflectance
bands, in-situ measurements of water constituents that according to the
relevant literature play a role as a proxy of other WQ parameters. Even
though estimation of non-optically active constituents of WQ remains a
complex challenge for remote sensing, those enhanced analyses managed to
explore and highlight the most significant predictors of TP and Secchi depth’s
values of all lakes but also separately of artificial and natural ones.

According to recent respective literature, even though physical and bio-
optical models are considered more robust, they require deep knowledge,
collection and parameterization of certain spectral features. Furthermore,
even deep learning approaches (belonging to empirical/non-linear methods)
still hide issues regarding the appropriate balance between the depth of
network and the computational efficiency (Sagan et al., 2020). On the other
hand, empirical methods (mostly linear approaches) have the benefit of being
easy to implement and straightforward for data processing and in some cases
as in (Brewin et al., 2015) proved to outperform a range of bio-optical
methods when applied to regional datasets. Based on this perspective,
empirical separate models” development (general, natural, artificial) for the
assessment of certain WQ parameters (TP, Secchi depth) provides a great
opportunity to water resources managers to gain information at any time
about the trophic status of any lake in Greece. A reliable prediction of lake
trophic status, as the one proposed herein, will further support the
monitoring of eutrophication and the drivers of its dynamics, especially
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nowadays that lakes are undergone the dual influence of human activities
and climate change.

Current approaches for modelling WQ elements in lakes have limited
transferability (in space and time). The hereby delivered WQ models may be
applicable and deliver fairly acceptable results in lakes outside Greece.
However, even though there is a strong possibility those models to be
effective only within the borders of Greece, eutrophication has been evolved
into such a growing public concern that its investigation and monitoring is
considered essential and important even at a country level. In this way, this
study supports the aims of WFD and facilitates the continuous water quality
monitoring of Greek lakes.

The present study can be extended in different directions; the ultimate
goal is the development of a robust tool monitoring WQ parameters in
various scales and of a direct and reliable assessment of trophic status for all
Greek lakes. However, future work initially includes the harmonization of
Sentinel and Landsat images with main aims the investigation of the
performance of the hereby developed models if combined with Sentinel
images and the minimization of the large time windows (>+7 days) between
in-situ and satellite data. Moreover, based on the continuous operation of
WEFD in Greece, at least until 2023, ongoing quality control tests will be
conducted to further improve those models’ efficiency. Furthermore, since the
DOS1 atmospheric correction method has not been validated, one more key
priority future action is the application of alternative atmospheric correction
methods with principle goal the exploration of their wider effect on models’
predictive ability. Additional to hereby utilized methodology, and given the
nature of the available data which is non-parametric, authors intend to
employ in the near future non-linear methods. Those methods offer,
according to literature, great potential for WQ parameter estimation and a
sensitivity analysis among several empirical methods would contribute to
better understanding of WQ constituents” behavior and possibly to their more
accurate assessment. The authors hope that successfully accomplishing all the
aforementioned research tasks, on condition the continuous updating of wide
WQ datasets, will provide the best opportunity for researchers and public
authorities to guide and eventually manage to take sustainably public safety
decisions and effective protection measures.
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2.3 Landsat-based Lake Water Quality Monitoring: How
Transferable are the WQ Algorithms to Sentinel 2 images?

2.3.1 Introduction

This chapter’s section basic aim is to explore initially whether Landsat-
based empirical WQ algorithms can be efficiently applied to Sentinel 2 images
and then whether the combined use of multi-sensor data improves the
algorithms’ prediction accuracy. Furthermore, independently from whether
there is some improvement or not, the ultimate goal of this combined
approach is to decide whether multi-sensor images could be used with at least
equally reliable results as those accrued from only-one sensor’s utilization.

In previous chapters, the methodology regarding the development of
WQ models has been fully described. In particular, image data from Landsat 7
ETM+ and 8 OLI were combined with simultaneous in-situ WQ data during
2013-2016 while afterwards the implementation of MLR analyses resulted in
the generation of quantitative models of Chl-a, Secchi disk depths and Total
Phosphorus concentrations of 50 Greek lake water bodies. Proposed WQ
models have been developed separately for natural-only and artificial-only
lakes while in-situ dataset of year 2018 was used to further validate their
efficiency. In this dissertation, Landsat 7 ETM+ and 8 OLI sensors have been
incorporated in an effort to increase the temporal range of available and
useful data, since the majority of in-situ measurements were recorded during
2013-2015 and together the sensors provide four (4) satellite images for every
32 days (Pedreros-Guarda et al., 2021). However, we investigated whether
there is a possibility to arise issues from the combined use of different
Landsat sensors. Based on relevant literature review, Landsat 7 ETM+ and
Landsat 8 OLI images have similar spatial resolution (30 m), are statistically
comparable and homogeneous over WQ sample sites (Wang et al., 2020)
while both have similar spectral band placements (Table 2.3.2-1) for the Blue
(ETM+ band 1, 0.45-0.52 um; 8 OLI band 2, 0.45- 0.51 pym) and Green bands
(ETM+ band 2, 0.52-0.60 um; 8 OLI band 3: 0.53-0.59 um). Differences are
particularly observed in the NIR (ETM+ Band 4, 0.76-0.90 um; 8 OLI Band 5,
0.85-0.88 um) and to a lesser extent in Red bands (ETM+ Band 3, 0.63-0.69
um; 8 OLI Band 4, 0.64-0.67 um) (Deutsch et al., 2018). Furthermore, an effort
trying to assess CDOM concentrations and water clarity in oligotrophic lakes
and reservoirs of Minnesota (Olmanson et al. 2016) by using Landsat 7 ETM+
and 8 OLI sensors, indicated once again that are generally comparable.

The successful launch of Sentinel 2 in June 2015 and the simultaneous
provision of image data with those of Landsat 8 OLI offered great
opportunities for long term high-frequency WQ monitoring (Mandanici and
Bitelli, 2016) through building time-series. The Sentinel-2 mission carries two
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satellites, Sentinel-2A and Sentinel-2B. They are both equipped with identical
Multispectral Instruments (MSI) capable of acquiring data at 13 bands at
different spatial resolutions (between 10 m and 60 m) while the revisit
frequency of each satellite is 10 days.

According to Deutsch et al. (2018) the transferability of WQ algorithms
across sensors remains poorly examined, while a number of conceptual and
technical challenges may accrue originating from their orbital, spatial and
spectral differences. Towards this direction, Sentinel 2 images of 2018 with
concurrent dates with those of field measurements were utilized to facilitate a
WQ models’ efficiency evaluation and comparison with respective Landsat’s
validation results.

Additionally, another effort has been made to improve WQ models’
quantification capability through the combined use of Landsat (7 ETM+, 8
OLI) and Sentinel 2 images, while the selection of each image for each case
was based on the acquisition date depending on the corresponding sampling
one. In this way, when Sentinel 2 sensor is combined especially with the
Landsat 8 OLI, the revisit time is significantly reduced to 2-3 days globally (Li
et al., 2021). Mandanici and Bitelli (2016) highlighted some potentials and
challenges deriving from the joint use of Landsat and Sentinel 2 sensors; they
observed a significant match between the corresponding spectral bands,
however differences in the recorded radiometric values were also present.
What is important though, concerning those differences, is the application
and the approach adopted to implement multi-sensor time series analyses. On
one hand, may empirical approaches based on multispectral indices be more
affected by the problem (Werff and Meer, 2016) but when methods and
processing are applied separately on every image and the training is also
independent, as in our case, results are less affected (Mandanici and Bitelli,
2015; 2016). The independent elaboration of Landsat and Sentinel 2 images in
the framework of this study, did not require the implementation of a
resampling procedure, which is essential mostly in change detection analyses,
based on the different spatial resolution of the two sensors (Landsat 30 vs.
Sentinel 10 m).

2.3.2 Methodology

2.3.2.1 In-situ/Remote-sensing data and pre-processing

The selected in-situ data used herein includes Chlorophyll-a, Secchi
depth measurements and TP concentrations of 2018 in different dates
throughout the monitored lake stations (surveillance and operational). The
available in-situ WQ dataset includes 136 Chl-a measurements, 218 Secchi disk
depth values and 88 TP concentrations which are freely accessible and were
downloaded from the EKBY’s site (Goulandris Natural History Museum,



Greek Biotope/Wetland Centre (http://biodiversity-info.gr/index.php/el/lakes-
data#!IMGP4731; in Greek).

Forty-nine (49) Landsat 7 ETM+ and 8 OLI images of 2018 were already
downloaded from the USGS (United States Geological Survey) Data Centre
(https://earthexplorer.usgs.gov/) in the context of our previous study
(Markogianni et al., 2022). Moreover, forty-four (44) Sentinel 2 images of 2018,

with concurrent dates to sampling ones, up to * 7 days, were also
downloaded from the Copernicus open access hub
(https://scihub.copernicus.eu/dhus/#/home). Some Landsat and Sentinel 2
images have been used twofold or more depending on the studied WQ
element (Figure 2.3.2-1) and the sampling date connected to more than one
parameter. The majority of in-situ WQ data and by extension of satellite
images, are detected during summer months whereas Secchi depths were
measured during the whole year (Figure 2.3.2-1). The selection of the Sentinel
2 imagery was based on the tiling grid which is available by the ESA
(https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products) as a
KML file, providing unique IDs for each tile (100*100 km? ortho-images in
UTM/WGS84 projection).

What is important concerning the pre-processing process is that images
from both sensors underwent the same process, to minimise possible
discrepancies originating from the correction (Mandanici and Bitelli, 2016).
Hence, Sentinel 2 images were subjected to the same pre-processing
procedure as the Landsat ones (fully described by Markogianni et al., 2022)
and more particularly, they were imported in the semi-automatic
classification plugin (SCP) of the free and open-source cross-platform desktop
Quantum Geographic Information System (Q-GIS), v. 3.6.3-Noosa to perform:
(a) conversion of images from digital numbers (DN) to top-of-atmosphere
reflectance (TOA), (b) atmospheric correction by using the DOS1 method
(applied to all bands except for thermal ones), and (c) the creation of a band
stack set for each image. The band stack set and and bandwidths of each
satellite sensor is presented in Table 2.3.2-1.
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Table 2.3.2-1. Band stack sets and bandwidths (BW) of Landsat 7 ETM+, 8 OLI and Sentinel 2
Sensors.

BW BW BW BW BW BW
Sensor | Blue Green Red NIR SWIR1 SWIR2
(um) (um) (um) (um) (um) (um)
0.441- 0.51 0.63 0.772 1.54
0.514 9- 1- - 7- 2.064-
L7 ETM+ Bl B2 B3 B4 B5 B7
0.60 0.69 0.898 1.74 2.345
1 2 9
0.452- 0.53 0.63 0.851 1.56
0.512 3- 6- - 6- 2.107-
L8 OLI B2 B3 B4 B5 B6 B7
0.59 0.67 0.879 1.65 2.294
0 3 1
0.458- 0.54 0.65 0.785 1.56
Sentinel 0.523 3- 0- BO - 5- 2.100-
BO2 BO3 BO4 B11 B12
2 0.57 0.68 8 0.899 1.65 2.280
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Figure 2.3.2-1. Number of Landsat 7 ETM+/8 OLI and Sentinel 2 images of 2018, grouped by
studied WQ element.




2.3.2.2 Comparison of sensors’ performance and validation

WQ models developed by Markogianni et al., 2020 (Chl-a); 2022 (Secchi
depth; TP) were initially applied to Landsat 7+ETM/ 8 OLI and then to
Sentinel 2 images of 2018, based on the corresponding in-situ dataset.
Application of WQ models includes Chl-a models (General- Equation 2.3.2-1;
Natural- model-Equation 2.3.2-2; Artificial model -Equation 2.3.2-3), Secchi
depth models (General-Equation 2.3.2-4; Natural model- Equation 2.3.2-5;
Artificial model -Equation 2.3.2-6) and TP models (General-Equation 2.3.2-7;
Natural model -Equation 2.3.2-8). Concerning the total phosphorus WQ
element, it should be noted that no statistically strong model was delivered
for TP quantification in artificial lakes (Markogianni et al., 2022).

blue Inred
log Chla = 3.599 — 0.63  (2or) — 2183 * (=) (2.3.2-1)
log Chla = 4.443 — 1.421 « (g”rl::n) — 3454+ (o) + 1.304 + G ~0)(23.2:2)
Inred red Inred
log Chla = 2.919 — 2.011 * (S5om) + 1.449 » (green) — 1441 5 (10)(2.3.2-3)
SQRT (Secchi) geperar = 1.215 — 2.479 * (blue +red + ”d) +3.394 (2222

(2.3.2-4)

SQRT (Secchi)ngturar = 1.172 — (1.003 * logchl — a) — (1.031 * logred)(2.3.2-5)

. _ green red
SQRT (Secchi) ayeificiar = 3.927 — 1.365 * (m) 0318 * (< Wm) —0.361 *
logchla (2.3.2-6)
LogTPgeneral = —1.425 + 0.452  logChla — 0.573 * (1) (2.3.2-7)
LogTPnatural = —0.633 — (0.704  logSecchi) — 0.392 x (green) (2.3.2-8)

All in-situ datasets (general, natural, artificial) concern lakes with mean
depth higher than 5 meters to surely avoid the bottom reflectance noise
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(McKinna and Werdell, 2018), but in case of TP, where in situ data are fewer
than those concerning Secchi depths and Chl-a concentrations, the
aforementioned depth criterion was set to 3.5 m. Additionally, in another
effort to improve WQ models’ quantification capability, we established a
combined use of Landsat (7 ETM+, 8 OLI) and Sentinel 2 images. WQ models
were once again applied to multi-sensor images while the selection of each
image was based on the smallest time window between the satellite
acquisition and in-situ date. In cases where this difference was the same for
Landsat and Sentinel sensors, the Landsat image was selected as the WQ
models are Landsat-developed and was hypothesized to be more effective
compared to ones employing Sentinel images. A resampling procedure has
not been performed since each satellite image was separately elaborated
depending on the best matching date. ~ Furthermore, the WQ models’
performance- depending on the sensor used- was based on the Spearman’s (r)
correlation coefficient and the error metrics Mean Error (ME), Mean Absolute
Percentage Error (MAPE), Root Mean Squared Error (RMSE) and Normalized
Root Mean Squared Error (NRMSE). MAPE metric is calculated based on the
following equation (2.3.2-9):

t=n| ,
MAPE = lz B 1000 (2.3.2-9)

Memp=1 Y

where y’is forecasted value, y is the true value and n is the total number of
values in the dataset. Furthermore, Lewis (1982) created a table (Table 2.3.2-2)
containing typical MAPE values and their interpretation concerning the
forecasting potential. MAPE’s greatest disadvantage is that the absolute
percentage error distribution -characterised by having only positive values
with no upper bound-usually has a right or positive skew brought about by
the presence of outlier values to this side of the distribution (Moreno et al.,
2013). Hence, if the denominator is extremely small or large, the MAPE value
adopts the same behaviour.

Table 2.3.2-2. Typical MAPE values and interpretation (Lewis, 1982, p. 40).

MAPE Interpretation
<10 Highly accurate forecasting
10-20 Good forecasting
20-50 Reasonable forecasting
>50 Inaccurate forecasting




In view of the aforementioned limitation of MAPE, NRMSE is used
additionally and comparatively; NRMSE (Equation 2.3.2-10) is an extension of
RMSE and often utilized to compare different datasets or predictive models of
different scales (e.g. different units as in our case) while it has been calculated
by using the range of the true values (difference of minimum and maximum
values; Equation 2.3.2-10). Furthermore, it takes values 0-1.

Low values of all error metrics (ME, MAPE, RMSE and NRMSE) indicate the
good performance of models.
NRMSE = —F (2.3.2-10)

Ymax—-Ymin

2.3.3 Results
2.3.3.1 Chlorophyll-a

Application of Chl-agemera model in Landsat-only and Sentinel-only
images yielded similar results with a light superiority of Landsat-employing
model based on ME (mean error) and RMSE values (Table 2.3.3-1). Median
MAPE value of Sentinel-2 model touched the upper threshold for reasonable
forecasting (50 %; Lewis, 1982) while the corresponding value of Landsat
model slightly surpassed it. Combined utilization of Landsat and Sentinel 2
images has not indicated any further improvement of Chl-agenerai model since
all RMSE, NRMSE and MAPE values were higher than those accrued from
one-sensor based applications (Figure 2.3.3-1; Figure 2.3.3-2).

As far as the Chl-gnawra model is concerned (Table 2.3.3-2), results are
different. Sentinel-2 model is superior to the corresponding Landsat one
based on RMSE, NRMSE and median MAPE values. Only the value of ME
resulting from the utilization of Landsat images is significantly lower
compared to Sentinel (-0.12 vs. 2.9 ug/l). Furthermore, application of Chl-
Anawral MOdel in joined Landsat and Sentinel 2 images has not managed to
increase its performance since almost all values of error metrics are higher
than those resulted from the independently employment of either Landsat or
Sentinel 2 data.

Concerning the Chl-garitiia model (Table 2.3.3-3), values of ME and
RMSE are lower with Landsat-employed data (Figure 2.3.3-1), indicating a
better performance of this model compared to that employing Sentinel 2 or
mixed satellite data.

Regarding general and natural models’ applications, all correlations
among in-situ and satellite-derived values were statistically significant with
Sentinel 2 data presenting the highest values (general: r=0.71; natural: r=0.72),
followed by Landsat (general: r=0.6; natural: r=0.697) and mixed satellites
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(general: r=0.54; natural: r=0.64). Values of coefficient of correlation were

similar for all applications in artificial lakes.

Table 2.3.3-1. Values of error metrics regarding the sensor-based applications of Chl-a general

model (Underlined value indicates the lowest value among all three cases; ** Correlation is
significant at the 0.01 level (2-tailed).

Average Average
In - RMSE MEDIAN
Cl’:rll-oajeenleral N SPEAI:MAN Situ Sztﬁil;te ( 1\;/}:‘;_‘) (Chl-a’ NRMSE MAPE
Chl-a (ug/L) " ug/L) (%)
g | M
Landsat 7 .
ETM+soL1 | 74| 0601 7.9 5.5 25 146 0.149 54.5
SENTINEL 2 67 0.711** 8.3 4.6 3.7 14.9 0.152 50
MIXED .
SATELLITES 67 0.54 8.3 4.9 3.4 15.9 0.162 57.8

Table 2.3.3-2. Values of error metrics regarding the sensor-based applications of Chl-a natural

model (** Correlation is significant at the 0.01 level (2-tailed).

Average Average
In . RMSE MEDIAN
CI;;“;;’I““‘ N SPEA]:MAN Situ S‘gglze (Ng[/]i) (Chl-g; | NRMSE | MAPE
L K ug/L) (%)
g | M
Landsat 7 .
ETMssoLr | 28| 0697 13.9 14 -0.12 215 0.22 57.9
SENTINEL2 | 26 |  0.72* 14.7 11.8 2.9 164 | 017 2
MIXED N
SATELLITES | 26 0.64 14.7 12.1 26 24.1 0.25 52.4

Table 2.3.3-3. Values of error metrics regarding the sensor-based applications of Chl-a

artificial model (Underlined value indicates the lowest value among all three cases; **

Correlation is significant at the 0.01 level (2-tailed).

AVGI:;age Average RMSE MEDIAN
Chl-aartificial N SPEARMAN Situ Satellite ME (Chl- NRMSE MAPE
model r Chl-a (ng/L) a;
Chl-a ( g/L) g/L) (%)
g | M H
Landsat 7 .
ETM+/8 OLI 41 0.59 42 2.5 0.95 3.7 0.18 49
SENTINEL2 | 33 0.57** 4.6 2.03 2.6 7.74 0.17 41.8
MIXED -
SATELLITES 40 0.57 4.3 2.3 21 7.3 0.16 53.5
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Figure 2.3.3-1. Stacked bars illustrating RMSE values of Chl-a concentrations (ug/1) per

satellite sensor.
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forecasting; Lewis, 1982).
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2.3.3.2 Secchi depth

In general, application of Secchigenerat model on Landsat only images
indicated better performance compared to Sentinel 2 data (Table 2.3.3-4).
Moreover, the performance of general model is improved when mixed
satellite data is used. In particular, the high decrease of ME value (0.25 vs 0.7
m) and the similar values of RMSE (Figure 2.3.3-3) to those of only-Landsat
employed data prove that the combination of mixed satellite data yields
reliable Secchi depth values.

Secchinaturat model (Table 2.3.3-5) employing Landsat-only images was
proven once again better based on RMSE value. On the other hand, the ME
value is significantly lower when is accompanied by Sentinel 2 data, (0.1 vs
0.6 m). However, it should be noted that those differences are not significant.
Results yielded from multi sensor images are similar to those of Landsat data
except for the median MAPE value which seems to increase (38.7 vs. 30.2 %)
with the combined satellite sensors.

Application of Secchiarifiiar model (Table 2.3.3-6) indicated a light
superiority when is accompanied by Sentinel 2 data but no great differences
are noticed. Similar but lower values of RMSE, NRMSE and median MAPE
indicated that the Landsat-developed Secchi artificial model can perform
satisfactorily and quantify reliable Secchi depth values in reservoirs based on
Sentinel-2 reflectance data. Secchiaritica model performs equally well even
when employing multi sensor data. Similar values of most of metrics but
significantly lower value of ME (0.01 m) implied the suitability of this model
even with combined satellite data.

Concerning the values of coefficient correlation, all correlations among
satellite and in-situ data were statistically significant ranging from 0.54 (mixed
satellites; general model) to 0.73 (Landsat; natural model).

Table 2.3.3-4. Values of error metrics regarding the sensor-based applications of Secchigeneral
model (Underlined value indicates the lowest value among all three cases; ** Correlation is
significant at the 0.01 level (2-tailed).

Average Average
i In . RMSE MEDIAN
Se:;:;g;ml N[ STRARMANT gipy S;tceg:ﬁ ME (m) | (SECCHI; | NRMSE | MAPE
SECCHI m) (O/o)
(m)
(m)
Landsat 7 .
ETM+/s oLl | 10 0.57 45 3.8 0.702 2512 0.165 34.1
SENTINEL 2 | 111 0.57** 4.64 5.24 -0.699 4.368 0.287 43.9
MIXED .
SATELLITES | ‘11 0.54 45 43 0252 2.375 0.156 35.2




Table 2.3.3-5. Values of error metrics regarding the sensor-based applications of Secchinatural

model (Underlined value indicates the lowest value among all three cases; ** Correlation is
significant at the 0.01 level (2-tailed).

Average Average
In RMSE MEDIAN
hinatura PEARMA 11i
Se::o;e; S rM Y| si :Etgc;el ME (m) | (SECCHI; | NRMSE | MAPE
SECCHI m) (0/0)
(m)
(m)
Landsat 7 "
ETM#+/8 OLI | 2 073 4.24 3.6 0.63 2.765 0.182 302
SENTINEL2 | 28 0.56* 4.24 41 0.103 2.929 0.193 412
MIXED .
SATELLITES | 28 0.66 424 3.7 0.495 2.844 0.187 38.7

Table 2.3.3-6. Values of error metrics regarding the sensor-based applications of Secchiartificial

model (Underlined value indicates the lowest value among all three cases; ** Correlation is
significant at the 0.01 level (2-tailed).

Average Average
. In A RMSE MEDIAN
Se‘l;cll;‘dél“ N SPEAI:MAN Situ :;tcelcl‘;[‘; ME (m) | (SECCHIL; | NRMSE | MAPE
SECCHI m) (%)
(m)
(m)
Landsat 7
ETM+/8 OLI | 40 0.56** 4.85 4.8 -0.071 1.612 0.183 24.7
SENTINEL 2 | 36 0.63** 4.47 4.32 0.149 1.458 0.159 24.22
MIXED
SATELLITES | 43 0.58** 4.6 4.6 0.008 1.528 0.166 25.1
Models
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Figure 2.3.3-3. Stacked bars illustrating RMSE values of Secchi disk depths (m) per satellite

sensor.
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Figure 2.3.3-4. NRMSE and median MAPE (%) values per satellite sensor grouped by Secchi
depth models. (Red reference line to right Y axis is set to 50 %, upper threshold value for
reasonable forecasting; Lewis, 1982).

2.3.3.3 Total phosphorus

Application of TPgenerat model in Landsat-only images demonstrated a
clear superiority compared to the Sentinel 2-based employment (Table 2.3.3-
7). All of the studied error metrics’ values accrued from the Landsat used data
are lower in comparison with those of the corresponding Sentinel 2.
Furthermore, the combined adoption of multi sensor images has not revealed
any further improvement while the majority of resulted statistical indices are
similar to those resulted by the use of Sentinel 2 data.

Application of special TP model on only natural lakes (Table 2.3.3-8)
yielded different results. Value of RMSE is lower when mixed satellite data
are employed whereas ME value is significantly lower after the employment
of Sentinel 2 images (Figure 2.3.3-5; green line). The employment of mixed
satellite images indicated the natural model’s suitability even when used in
combination with Landsat and Sentinel 2 satellite data, based on RMSE
metric.

Correlations among satellite derived and in-situ TP concentrations
revealed in general strong relationships while Spearman values ranged from
0.67 (Landsat; natural model) to 0.75 (Sentinel 2; general model).
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Table 2.3.3-7. Values of error metrics regarding the sensor-based applications of TPgeneral

model (Underlined value indicates the lowest value among all three cases; ** Correlation is
significant at the 0.01 level (2-tailed).

Average Average
In RMSE MEDIAN
TPgenera PEARMA 1i
general N S MAN Situ Satellite ME (TP; NRMSE MAPE
model r TP (mg/1)
P (g mg/D (%)
(mg/1)
Landsat 7 .
EtMssoLr | 0| 071 0075 | 0077 | -0.0014 0.028 0.139 217
SENTINEL 2 | 30 0.75* 0.08 0.07 0.0047 0.032 0.156 23.6
MIXED .
SATELLITES | 2° 0.73 0.08 0.076 0.0016 0.0295 0.145 247

Table 2.3.3-8. Values of error metrics regarding the sensor-based applications of TPnatural

model (** Correlation is significant at the 0.01 level (2-tailed).

Avirage Average RMSE MEDIAN
n .
TPratwrat || SPEARMA | o | Satellite | (mg/l) | (TP; | NRMSE | MAPE
model Nr TP
TP mg/1) (%)
(mg/1) (mg/1)
Landsat 7
ETM+/8OLI |55 |  0.67** 0.07 0.076 -0.0051 0.0312 0.148 38.2
SENTINEL 2 | 49 0.7% 0.07 0.07 0.0005 0.0308 0.146 263
MIXED
SATELLITE
S 49| 0.69% 0.07 0.071 -0.0007 0.0300 0.142 263
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Figure 2.3.3-5. NRMSE and median MAPE (%) values per satellite sensor grouped by TP

models. (Red reference line to right Y axis is set to 50 %, upper threshold value for reasonable
forecasting; Lewis, 1982).

Concerning the overall efficiency of WQ models based on MAPE values,
it is observed that Chl-a models are characterized by less quantification
accuracy compared to respective Secchi and TP (Figure 2.3.3-6). Most of Chl-a
models touch and even surpass the threshold MAPE value of 50% indicating
marginally reasonable forecasting. Secchi and TP models achieved better
results providing more superior forecasting.
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Figure 2.3.3-6. Median MAPE (%) values per WQ quantitative model grouped by WQ
parameters. (Red reference line to Y axis is set to 50 %, upper threshold value for reasonable
forecasting; Lewis, 1982).

2.3.4 Discussion

Main objective of this chapter section was to explore initially whether
Landsat-based empirical WQ algorithms can be efficiently applied to Sentinel
2 images and then whether the combined use of multi-sensor data improves
the algorithms” prediction accuracy. Furthermore, independently from
whether there is some improvement or not, the ultimate goal of this combined
approach was to decide whether multi-sensor images could be used with at
least equally reliable results as those accrued from only-one sensor’s
utilization.

As far as the general models of all WQ elements (Chl-a, Secchi depth and
TP) is concerned, all models were more efficient and accurate when were
accompanied by Landsat images while no improvement was observed by
using multi sensor images with the exception of Secchigenerat model. Natural
models, though, demonstrated a different behavior. More particularly, Chl-a
and TP natural models presented lower values of error metrics when
employing Sentinel 2 images and only Secchi natural model performed better
with Landsat data. Combined utilization of Landsat and Sentinel 2 images did
not provide any improvement to corresponding Chl-a and Secchi models
whereas the multi sensor images resulted in TP concentrations with equally
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reliable outcomes as those employing Sentinel 2. Regarding the artificial
algorithms, performance of Chl-a model was similar either by exploiting
Landsat or Sentinel 2 data while Secchi model achieved slightly better
efficiency with Sentinel 2 images.

The shortcoming of Sentinel 2 images to reach Landsat” performance in
most of cases can probably be attributed to two reasons: first of all, hereby
utilized WQ empirical models were developed based on Landsat-7 ETM+ and
8 OLI images; hence it is expected to be affected by the corresponding spectral
configuration and perform better when employing Landsat rather than
Sentinel 2 reflectance.

Furthermore, according to Mandanici and Bitelli (2016) who compared
reflectance and index values of Landsat 8 OLI and Sentinel 2 imagery for a
combined use, confirmed that MSI band 8A (vegetation red edge) is the
optimal option from the radiometric point of view when Sentinel-2 images are
associated with Landsat 8 ones. Instead, MSI band 8 (NIR) is highly
recommended for a joint use with older Landsat series, such as Landsat 5. In
the framework of this study though, the match of the Sentinel 2 B08 (NIR)
band to bands B4 (L7 ETM+) and B5 (L8 OLI), may constituted an obstacle in
achieving better and more accurate WQ quantifications when employing
Sentinel 2 data. Further sources of different results between Landsat and
Sentinel 2 images are the residual effects of water specular reflections, derived
from the different azimuth and elevation of the sensors.

Similar works (Werff and Meer, 2016) having studied the potential
combined usage of Landsat and Sentinel 2 images, indicated that by visual
inspection satellite products of Landsat and Sentinel 2 sensors are similar;
when however, reflectance values are compared there are differences which
should in each case be evaluated (Mandanici and Bitelli, 2016).

Furthermore, the largely worse performance of Chl-a models compared
to rest of WQ elements emphasizes once again the complexity that mapping
of Chl-z in Case 2 waters (coastal and/or inland waters) hides. As optical
properties are measured based on a compound of dissolved organic matter,
dead organic and inorganic particulate matter, and phytoplankton (Chl-a),
Chl-a determination is characterized by less accuracy since these constituents
are not statistically correlated (Markogianni et al., 2020).

All in all, it is proven that hereby WQ models are proposed to employ
principally Landsat images; however, the employment of Sentinel 2 data
potentially produces reliable results with some (not significant) deviations,
from reference in-situ data, regarding the assessment of lake WQ.
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3. Atmospheric correction analysis of lake
WQ models by employing surface
reflectance embedded in GEE platform

3.1 Introduction

Nowadays, the World’s lakes’ greatest threat is common; the so-called
eutrophication, which is greatly connected to the increase of nutrients, mainly
phosphorus and nitrogen (Pedreros-Guarda et al., 2021).

Water quality is the most significant indicator of a water body’s state,
while its assessment requires the continuous monitoring of mainly physico-
chemical and biological elements (Fatima, 2018). Traditionally, WQ estimation
is conducted based on in-situ sampling and laboratory analysis (Li et al.,
2016). However, those methods are time- and labor-intensive particularly
when large-scale investigations are the case (Zhang et al., 2014). Today,
through the evolution of Remote Sensing (RS) techniques, satellite images
offer valuable information facilitating the assessment of different WQ
components, such as the total suspended matter (TSM) and colored dissolved
organic matter (CDOM) content, the Secchi depth (SD), and the chlorophyll-a
concentration (Brezonik et al.,, 2015; Sagan et al., 2020; Markogianni et al.,
2020; Zhang et al, 2021; Song et al, 2022; Markogianni et al., 2022).
Furthermore, due to their wide coverage, RS expedites the regional and large-
scale WQ monitoring (Gholizadeh et al., 2016; Topp et al., 2020; Pizani and
Maillard, 2022).

However, computing WQ properties from RS images may also become
time-demanding and sophisticated because of the processing data chain
particularly a great-scale WQ assessment and high-frequency time series
demand (Kumar and Mutanga, 2018). Today, platforms for big EO Data
Management and Analysis have emerged as computational solutions that
provide functionalities for big EO data management, storage and access
including processing without downloading big amounts of EO data sets and
provision of images of certain pre- processing levels (Gomes et al., 2020).
Gomes et al. (2020) overviewed and compared seven platforms among certain
functionalities: Google Earth Engine (GEE), Sentinel Hub (SH), Open Data
Cube (ODC), System for Earth Observation Data Access, Processing and
Analysis for Land Monitoring (SEPAL), open EO, JEODPP and pipsCloud
while the reviewed functionalities are the following: data abstraction,
processing abstraction, physical infrastructure abstraction, open governance,
reproducibility of science, infrastructure replicability, processing scalability,
storage scalability, data access interoperability and extensibility. Based initial



on this survey and then on researches conducted by Maciel et al. (2021), Zhao
et al. (2022) and Pizani and Maillard (2022), it was concluded that GEE
outperforms among the available cloud computing systems as it proven the
most significant cloud processing platform for the remote sensing community
due to its ease of use and maturity.

Google Earth Engine (GEE) platform has changed the traditional RS data
processing mode (Li et al., 2022) as it consists of a multi-petabyte analysis-
ready data catalog while allowing users to compute massive-scale analysis
and accomplish multiple RS and geospatial tasks at remarkable speeds and
scales (Gorelick et al., 2017). The data repository of GEE includes publicly
available geospatial datasets, along with observations from a variety of
satellite and aerial imaging systems in both optical and non-optical
wavelengths, environmental variables, weather forecasts, land cover and
other datasets (Gorelick et al., 2017). In addition to this, several involved
operators such as the United State Geological Survey (USGS), National
Aeronautics and Space Administration (NASA), and European Space Agency
(ESA) -among others- are collaborating with Google Inc. and have made
satellite data available online through the Google Earth Engine (GEE) cloud
platform (Wang et al., 2020). The satellite data catalog is updated on a daily
basis with around 6000 new image scenes.

Recent studies have recorded applications of WQ monitoring based on
Google Earth Engine (Jia et al., 2019; Zong et al., 2019; Maeda et al., 2019;
Wang et al.,, 2020; Weber et al., 2020; Lobo et al., 2021; Somasundaram et al.,
2021; Bioresita et al., 2021; Vaiciuté et al., 2021; Kislik et al., 2022; Wen et al.,
2022).

Based on all of the above, this effort will employ GEE-retrieved
reflectance values to assess WQ elements in 50 Greek natural and artificial
lakes, constituting the National Lake Monitoring Network in Greece for the
WED.

The hereby adopted methodological scheme includes the exploration of
the performance of published empirically-developed WQ quantitative models
of Chl-a (Markogianni et al., 2020), Secchi depth and Total phosphorus
(Markogianni et al., 2022) when employing GEE-retrieved reflectance values
subjected to different atmospheric correction (AC) methods. Precise AC is
important for applications where small differences in surface reflectance (SR)
are significant, such as retrieval of WQ parameters (Nazeer et al.,, 2014;
Warren et al.,, 2019; Pahlevan et al.,, 2021). Furthermore, it enables direct
comparison between different image dates and different sensors. AC methods
fall into two types, namely physical (e.g. FLAASH, ATCOR, 6S) and image-
based methods (e.g. DOS). Physical methods use a radiative transfer model to
estimate SR while image-based methods obtain relevant parameters from the
image (Nazeer et al., 2014).
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In this study, in-situ measurements of Chl-a, Secchi depth and Total
phosphorus of 2018 have been paired twice with concurrent satellite
reflectance values derived from combined Landsat 7 +ETM/ 8 OLI (first
dataset) and Sentinel 2 MSI (second dataset) images. The two-fold match
concern initially the reflectance derived from manually downloaded and pre-
processed images with the DOS1 method and then the GEE- derived
reflectance (from the exact same satellite images) subjected to LaSRC (Landsat
8 OLI), LEDAPS (Landsat 7 ETM+) and Sen2Cor (Sentinel 2) correction
algorithms. The aforementioned reflectance values were extracted from the
points were WFD sampling sites are located. Linear regression analysis
among the resulted WQ values was then conducted to highlight and
potentially harmonize inherent differences primarily between the differently
pre-processed reflectance values and afterwards among the different sensors
used.

As it is already mentioned, used sensors in this research are the Landsat
7ETM+/8 OLI and Sentinel 2. Landsat (30 m spatial resolution) and Sentinel-2
(10-60 m spatial resolution) missions provide fine-scale spatial data and have
been reported to be suitable for the quantification of multiple WQ indices in
freshwater lakes and reservoirs (Bresciani et al.,, 2018, Markogianni et al.,
2018; Pahlevan et al., 2020; Bramich et al., 2021; Zhou et al., 2021; Zhang et al.,
2021; Song et al., 2022). Landsat sensors’ temporal resolution is 16 days while
Landsat 7 ETM+ and 8 OLI together, provide one (1) satellite image for every
8 days (Pedreros-Guarda et al.,, 2021). The Sentinel-2 mission carries two
satellites—Sentinel-2A  and  Sentinel-2B—equipped = with  identical
Multispectral Instruments (MSI)-, the revisit frequency of each satellite is 10
days while the combined revisit equals to 5 days.

However, those sensors differ in their orbital spatial, and spectral
configuration, resulting in affecting the recorded radiometric values; hence
sensor-based datasets have been processed independently to be less
influenced (Mandanici and Bitelli, 2015). Moreover, available in-situ WQ data
of years 2019 and 2020 have been paired with concurrent GEE-derived
reflectance values to further validate and certify the strength and the
suitability of the WQ universal models for estimating Chl-a, Secchi depth and
Total phosphorus concentrations of optically-diverse inland waters at a
national scale (Greece).

In purview of the above, present study’s specific objectives are to: (1) test
the spatiotemporal performance of empirically-developed WQ models when
employing GEE-retrieved reflectance that is pre-processed with different
correction methods; (2) highlight the differences and harmonize them by
developing corrected WQ models; (3) develop sensor-specific corrected WQ
monitoring algorithms individually for Landsat and Sentinel 2 sensors and (4)
map WQ elements across Greek studied lakes, through GEE cloud-based
platform.



3.2 Methodology
3.2.1 In-situ data

In-situ dataset used in this study concern the freely accessible data
collected in the context of the Greek Water Monitoring Network for lakes
(WFD) by the staff of the Goulandris Natural History Museum, Greek
Biotope/Wetland Centre. Water samples have been collected along 50 lakes,
natural and artificial, from 53 sites (27 surveillance; 26 operational) (Figure
3.2.1-1). In particular, herein used data include measured values of Chl-a and
Total phosphorus concentrations and Secchi depth measurements on several
dates during the years 2018, 2019 and 2020.
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Figure 3.2.1-1. National Lake Monitoring Network in Greece (numbers of sampling stations
coincide with the numbers presented in Table 2.2.2-1).

3.2.2 Satellite imagery selection and pre-processing

Acquired SR products from the GEE repository included Sentinel-2 MSI
(Level-2A SR data) and Landsat 7 +ETM /8 OLI multispectral images
(Collection 1 Level 1-precision and terrain correction- Tier 1; SR data). In this
study, the time window for satellite acquisition from GEE, was set to + 7 days
in relation to the sampling date as in Wen et al. (2022). GEE-derived
reflectance values have undergone different AC algorithms; more particularly



Landsat 8 OLI and Landsat 7 +ETM images are corrected using the Land
Surface Reflectance Code (LaSRC) and the Ecosystem Disturbance Adaptive
Processing System (LEDAPS) methods, respectively. LaSRC AC is performed
using a radiative transfer model, auxiliary atmospheric data from MODIS and
utilizes the coastal aerosol band for aerosol inversion tests. LEDAPS
algorithm calculates the radiative transfer for atmospheric data from MODIS
and NCEP (Ermida et al., 2020). Sentinel-2 products were processed with the
Sentinel 2 Correction (Sen2Cor) algorithm.  Sen2Cor algorithm is a
combination of state-of-the-art techniques for performing AC together with a
scene classification algorithm, which allows detection of clouds, snow and
cloud shadows and generation of a classification map. This map consists of 3
different classes for clouds (including cirrus), 6 different classifications for
shadows, cloud shadows, vegetation, not vegetated, water and snow (ESA,
Sentinel Online, accessed on 10/07/2022). Then, SR values of several dates
during the years 2018, 2019 and 2020 were extracted through the GEE
platform at the points where the sampling stations are located, initially from
Landsat (8 OLI, 7+ETM) and then from Sentinel 2 MSI images (Figure 3.2.2-1).
Since the reflectance fraction in GEE is scaled by 10000, values were divided
by 10000 to obtain 0-1 reflectance values from the respective cells. SR
extraction from images in GEE platform was accomplished by the staff of GIS
Research Unit of Agricultural University of Athens.

Concerning the manual pre-processing of satellite images, Landsat 7
ETM+ and 8 OLI images of 2018 were downloaded from the USGS (United
States Geological Survey) Data Centre (https://earthexplorer.usgs.gov/) in the
context of the study conducted by Markogianni et al. (2022). Moreover,
Sentinel 2 images of 2018, were as well downloaded from the Copernicus
open access hub (https://scihub.copernicus.eu/dhus/#/home), in the context of
the previous chapter, studying the transferability/performance of Landsat-
based WQ models to Sentinel 2 ones. Manually downloaded Sentinel 2 and
Landsat images have been subjected to the same pre-processing procedure,
as described in Markogianni et al. (2022) and more particularly, they were
imported in the semi-automatic classification plugin (SCP) of the free and
open-source cross-platform desktop Quantum Geographic Information
System (Q-GIS), v. 3.6.3-Noosa to perform: (a) conversion of images from
digital numbers (DN) to top-of-atmosphere reflectance (TOA), (b) AC by
using the DOS1 method (Chavez J., 1988; applied to all bands except for
thermal ones), and (c) the creation of a band stack set for each image. DOS1
method minimizes the additive effect of the atmosphere caused by haze. The
main assumption is that dark objects represent 1% of reflectance while they
are identified by an area with clear water in deep lakes or by the histogram
method, which selects the DN of haze from the DN frequency histogram of an
image (El Alem et al., 2021). The selection of DOS method was based on the
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studies of Nazeer et al. (2014) and Dona et al. (2014), who evaluated 5 (6S,
FLAASH, ATCOR, DOS and ELM) and 3 (DOS; ATCOR3; MODTRANS5)
different AC methods, respectively. Nazeer et al. (2014) overviewed those
methods over sand, artificial surface, grass and water while they concluded
that DOS performed well over water, it showed higher differences than the
physical methods and is proposed as a good choice for SR estimation of dark
surfaces such as water. Dona et al. (2014), evaluated the aforementioned
methods across certain Spanish lakes and ponds and concluded that DOS
performed better than the others, reporting the lowest errors.

Harmonization of differences accrued from
differently, atmospherically corrected images

Landsat 7 +ETM/ 8 OLI Retrieval

Retrieval of
Downloaded from Preprocessing wQ

images USGS and A reflectance values dix of WQ
Sentinel 2 MSI images Copernicus hub through SCP plugin (at sampling mlcf ets values
(2018) (QGIs) stations) application )

Landsat 7 +ETM/ 8 OLI
images GEE PLATFORM

Retrieval
of WQ
values

2

Retrieval of reflectance
values* (at sampling
stations)

WQ models
application

Sentinel 2 MSI images
(2018)

*by GIS Research Unit of AUA

Linear equationsfor each WQ I . ||
Linear
element l 3
+«——| Regression |l
(corrected sensor specific WQ Analysis
Validation of the harmonization process- models denoted as *_cor) L y

Evaluation of initial and corrected WQ models

Landsat7 +ETM/8 OLI Retrieval of reflectance Initial and Validation of all models

images __GEEPLATFORM | values* (at sampling corrected WQ (RMSE, NRMSE, MAPE)
Sentinel 2 MSI images stations) models 355 based on in-situ data of
2019, 2020 application = 2019 and 2020

*by GIS Research Unit of AUA

Figure 3.2.2-1. Flowchart of research methodology steps (harmonization and validation
processes). Different shades of grey color [also distinguished with numbers (1) and (2)]
represent the distinctive image datasets that are differently pre-processed (DOS1-manually
and LaSRC; LEDAPS; Sen2Cor-GEE) and employed in WQ models. Different years of in-situ
datasets are highlighted with distinct colors.

3.2.3 Harmonization among SR products subjected to different
atmospheric correction methods

In the context of this study, the WQ models developed by Markogianni
et al. (2020; Chl-a); and Markogianni et al. (2022; Secchi depth; TP) were
initially applied to manually-downloaded and DOS1-pre-processed Landsat
7+ETM/ 8 OLI and Sentinel 2 images of 2018 (Figure 3.2.2-1). Then, WQ
models employed GEE-derived SR values originating from the same images,



but undergone different AC methods (Figure 3.2.2-1). Application of WQ
models includes Chl-2 models (General- Equation 3.2.3-1; Natural- model-
Equation 3.2.3-2; Artificial model -Equation 3.2.3-3), Secchi depth models
(General-Equation 3.2.3-4; Natural model- Equation 3.2.3-5; Artificial model -
Equation 3.2.3- 6) and TP models (General-Equation 3.2.3-7; Natural model -
Equation 3.2.3-8). The basic goal of this elaboration is the exploration and
establishment of relationships between same-located lake WQ values which
originate from different AC methods and sensors. Linear regression analyses
incorporate WQ values accrued by the employment of a) manually DOS1
corrected reflectance (dependent variable) and b) LaSRC, LEDAPS and
Sen2Cor-corrected reflectance in GEE (independent variable) at
corresponding locations. The development of linear equations should
facilitate the normalization of the WQ models’ results to acceptable and
comparable values when employing different-from-DOS1 corrected
reflectance values for each WQ model, its specifications (general model,
natural-only, artificial-only; Figure 3.2.2-1) ans each sensor. This
normalization was based on the dataset of 2018 (Figure 3.2.2-1) while the
analysis yielded 192 and 210 match-up points of in-situ data and Landsat 7
+ETM/8 OLI and Sentinel 2 images embedded in GEE platform, respectively.
Furthermore, the possible detection of strong relationships would indicate the
suitability of WQ models to employ images not only subjected to
aforementioned AC methods except for DOS but also of Sentinel 2 sensor.
Regression analysis concern all cases presented in Table 3.2.3-1.

blue

log Chla = 3.599 — 0.63 * (m) —2.183 (li‘:;‘ifz) (3.2.3-1)
log Chla = 4.443 — 1.421 * (g":::n) — 3454+ (-220) 1 1,304 + (gzzn)(3.z.3-2)
log Chla = 2.919 — 2.011 * (h‘l“S:Vel‘jl) + 1.449 (g:z’n) — 1.441 (l‘r‘:;;i )(3.2.3-3)
SQRT(Secchi) generar = 1.215 — 2479  (blue + red + 2= ) + 3.394 +
Corawirs)3:234)

SQRT (Secchi)ngturar = 1.172 — (1.003 * logchl — a) — (1.031 * logred)(3.2.3-5)

red
swirl

green

SQRT(SeCChi)artificial =3.927 — 1.365 « ( blue
logchla (3.2.3-6)

)—0.318*( )—0.361 .
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Inred

LogTPgeneral = —1.425 + 0.452 x logChla — 0.573 * (mswm) (3.2.3-7)
LogTPnatural = —0.633 — (0.704 * logSecchi) — 0.392 * (g::n) (3.2.3-8)

Table 3.2.3-1. WQ models involved in regression analysis (2018 dataset) for harmonization of
different reflectance values emerged from different pre-processing methods and satellite

Sensors.
Equation Models and preconditions Sensor
Chl-a_general; mean Landsat 7+ETM/8 OLI;
3.2.311 .
depth>5m Sentinel2
Chl-a_natural; mean Landsat 7+ETM/8 OLI;
3.2.3-2 .
depth>5m Sentinel2

Chl-a_artificial; mean
depth> 5m; date

Landsat 7+ETM/8 OLI;
3.2.3-3 difference andsa . / ’
. . Sentinel2
(sampling/satellite): +-5
days
Secchi_general; mean Landsat 7+ETM/8 OLI;
3.2.3-4 .
depth>5m Sentinel2
Secchi_natural; mean Landsat 7+ETM/8 OLI;
3.2.3-5 .
depth>5m Sentinel2
Secchi_artificial; mean
depth> 5m; date
) Landsat 7+ETM/8 OLI;
3.2.3-6 difference .
. . Sentinel2
(sampling/satellite): +-5
days
TP_general; mean depth> Landsat 7+ETM/8 OLI;
3.2.3-7 .
3.5m Sentinel2
TP_natural; mean depth> Landsat 7+ETM/8 OLI;
3.2.3-8 .
3.5m Sentinel2
TP_artificial; Application of
TP general model on
artificial lakes:
Landsat 7+ETM/8 OLI;
3.2.3-7 mean depth> 3.5; date Sentinel2

difference
(sampling/satellite): +-5
days (where was possible)




Since dataset of 2018 was used for the development of the linear
equations e.g. the corrected WQ models, in-situ datasets of 2019 and 2020
were used for their validation (Figure 3.2.2-1). In particular, as far as the year
2019 is concerned, 239 pairs of in-situ measurements and Landsat 7 +ETM/ 8
OLI values of reflectance (GEE) were created, accompanied by 242 pairs with
Sentinel 2 images. Concerning the year of 2020, the paired reflectance of
Landsat 7+ETM/ 8 OLI and Sentinel 2 (GEE) with in-situ data were 220 and
286, respectively. Further validation of initial and corrected WQ models’
performance (Equations 3.2.3-1 to 3.2.3-8) for years 2019 and 2020 was based
on the error metrics MAPE, RMSE and NRMSE. Additionally, MAPE values
are interpreted according to Lewis (1982) concerning their forecasting
potential (Table 2.3.2-2).

3.3 Results

3.3.1 Harmonization among SR values subjected to different AC
processors

After the application of WQ models, initially by employing DOS1-
corrected reflectance and then GEE-derived reflectance values connected to
2018 in-situ values, linear regression analyses were conducted among the
resulted values, concerning all the three WQ elements (Chl-a, Secchi depth,
TP) and utilized satellite sensors (integrated Landsat 7 +ETM/8 OLI images;
Sentinel 2). The aforementioned statistical analyses yielded linear equations
(Table 3.3.1-1) accompanied by high coefficient of determination (R?) values
except for Chl-garisiciaa model based on Landsat reflectance and Chl-agenera, Chl-
Aartificial and Secchigeneral models based on Sentinel 2 reflectance.

Application of Chl-ggeneri model on Landsat images indicated a
superiority concerning the ME value when the LaSRC and LEDAPS
correction methods are used (compared to DOS1) even though both values of
RMSE are similar. On the other hand, the Chl-anaturat model employing LaSRC
and LEDAPS corrected data performs worse than the respective DOS1 one,
based on values of both ME and RMSE. Chl-gariiia model performs equally
well with all AC methods.

Regarding the Secchi depths, the general model (DOS1; Table 3.3.1-1)
presents a lower ME value and a similar RMSE to the respective employing
the corrected reflectance retrieved from the GEE platform. The Secchinatural
model, using LaSRC and LEDAPS correction methods, introduces a lower ME
value but similar RMSE with the respective using DOS-1 corrected data.
Moreover, Secchiarisicial model applied on Landsat images performs better with
DOSI1-corrected reflectance.
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Based on the given statistics, all models predicting total phosphorus by
using Landsat images are achieving better results when they employ DOS1
corrected reflectance values.

As far as the application of WQ models on Sentinel 2 images is
concerned, Chl-a models present a similar pattern to Landsat-based analysis.
More particularly, only the Chl-agenerai model performs better with Sen2Cor-
corrected reflectance whereas natural-only and artificial-only models are
more successful when they employ DOSI reflectance data. The same behavior
is observed with Secchi models, where the general one presents better results
with Sen2Cor methodwhereas natural and artificial ones perform better when
employing the DOSI1 corrected reflectance. Finally, the performance of TPgeneral
model is comparable with both types of corrected reflectance (Sen2Cor,
DOS1) while the TPrawra model offers better results when exploits the DOS1
correction method.

Table 3.3.1-1. Regression analysis basic statistics between the resulted values after the two-
fold employment of SR (DOS1- and LaSRC; LEDAPS; Sen2Cor-corrected reflectance in GEE)
in WQ models (developed by Markogianni et al., 2020; 2022) concerning datasets of year 2018.
(Different reflectance products are referred as DOS1 and as GEE reflect. for LaSRC; LEDAPS
and Sen2Cor correction methods. The units of ME and RMSE are ug/l, meters and mg/l for
Chlorophyll-a, Secchi depth and Total phosphorus, respectively).

Dur
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w E f -
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3.3.2 Validation of initial and corrected lake WQ models employing

LaSRC, LEDAPS and Sen2Cor corrected reflectance values retrieved
from the GEE platform

WQ models of Chl-a, Secchi depth and TP, developed by Markogianni et
al. (2020); (2022), initially employed reflectance values from images in
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GEEand were matched with corresponding in-situ datasets of 2019 and 2020
for both satellite sensors (mixed Landsat 7+ETM/8 OLI and Sentinel 2 images).
Then, initial WQ models incorporated the developed corrected WQ models
(Table 3.3.1-1) (noted as *_cor in Tables 3.3.1-2; 3.3.1-3; 3.3.1-4) and once again
employed the same GEE-derived reflectance values of Landsat and Sentinel 2
images with basic aim the exploration of any further enhancement of each
WQ element’s quantification.

3.3.2.1 Chl-a models

Employment of GEE-retrieved reflectance values of Landsat and
Sentinel images of 2019 in Chl-agenera models (1a;4a; Table 3.3.1-2) yielded
similar results based on ME and RMSE values while the employment of
Sentinel reflectance resulted in lower MAPE values (122.3 vs 221.7).

Considering the corresponding corrected equations (1b; 4b), Landsat-
employing model resulted in lower ME value (1.5 vs 3.7 ug/l) and slightly
lower RMSE value (16.4 vs 16.8) compared to Sentinel-employing model. In
general, the application of the corrected equations (1b; 4b) did not contribute
to any further enhancement of Chl-a prediction (general model).

Regarding the Chl-gnawa models, initial model employing Sentinel
images (5a) performed better compared to Landsat (2a), while the corrected
models (2b;5b) improved greatly the Chl-a prediction in natural-only lakes,
especially regarding the Landsat-based model, and according to ME, RMSE
and MAPE values (Table 3.3.1-2).

Chl-gariticial model achieved better results utilizing Landsat reflectance (3a
vs. 12a), especially based on ME value, while no improvement was observed
concerning the corrected models (3b; 6b), except for the MAPE value
connected to Sentinel reflectance.

Table 3.3.1-2. Basic statistical error metrics evaluating the Chl-a models’ performance in
conjunction with in-situ WQ datasets of 2019. (The units of ME and RMSE are pg/l, NRMSE
has no units while MAPE has percentage units).

No. Model ME RMSE | NRMSE | MAPE | Sensor
1a Chl-a_general -1.34 16.4 0.11 221.7
1b Chl-a_general_cor 1.5 16.4 0.11 169.5

Landsat
2a Chl-a_natural -13.6 29.1 0.2 350.5
2b Chl-a_natural_cor 4.6 25.4 0.2 98.9
3a Chl-a_artificial 0.81 4.6 0.17 79.3




3b Chl-a_artificial_cor 1.71 4.9 0.18 87.5

43 Chl-a_general 1.65 154 0.11 122.3

4b Chl-a_general_cor 3.7 16.8 0.12 116.8

5a Chl-a_natural -3.6 14.98 0.11 177.7 | sentinel
5b Chl-a_natural_cor 7.4 25.4 0.18 84.9 2

6a Chl-a_artificial 1.9 4.5 0.17 82.7

6b Chl-a_artificial_cor 2.4 4.99 0.19 65.5

3.3.2.2 Secchi Disk models

Secchigenera models (Table 3.3.1-3; 1la; 4a) performed, in general, better
than Chl-z ones and especially when employing Landsat data (1a) compared
to Sentinel ones (4a). The Secchi corrected model enhanced in a great extent
the assessment of Secchi depths by using Landsat images (1b) while the
respective model employing Sentinel reflectance (4b) presented only a slight
refinement (except for MAPE values in both cases).

Secchinatural models performed adequately regarding the prediction of
Secchi depths while both the corrected models (2b; 5b) enhanced further their
initial performance, especially the Sentinel-employing model (Table 3.3.1-3).

Secchiartifiiai models performed almost similarly regarding the sensor
used (3a; 6a) yielding Secchi Depth values with adequate accuracy in relation
to in-situ ones, while the corrected models (3b; 6b), further improved the
Secchi prediction based on ME and RMSE values (Table 3.3.1-3).

Table 3.3.1-3. Basic statistical error metrics evaluating the Secchi Disk models’ performance in
conjunction with in-situ WQ datasets of 2019. (The units of ME and RMSE are meters, NRMSE
has no units while MAPE has percentage units).

No. Model ME RMSE | NRMSE | MAPE | Sensor
1la Secchi_general 1.27 2.4 0.19 46.5
1b Secchi_general_cor 0.65 2.2 0.17 52.7
2a Secchi_natural -0.53 1.83 0.15 56.2
Landsat
2b Secchi_natural_cor 0.31 1.9 0.16 43.3
3a Secchi_artificial 1.55 25 0.3 51.7
3b Secchi_artificial_cor -0.2 2.01 0.24 83.2
4a Secchi_general -0.3 3.8 0.3 80.8 | sentinel
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4b Secchi_general_cor -0.58 2.6 0.2 132.7 2
5a Secchi_natural -1.16 3.4 0.27 57.4
5b Secchi_natural_cor -0.49 2.7 0.22 48.7
6a Secchi_artificial 1.31 2.4 0.29 60.2
6b Secchi_artificial_cor -0.13 2.1 0.25 83.9

3.3.2.3 TP models

TPgeneral initial model performed slightly better with Sentinel images
(Table 3.3.3-4; 4a) compared to Landsat (Table 3.3.3-4; 1a), while the corrected
ones (Table 3.3.3-4; 1b; 4b) did not manage to improve the TP prediction with
the exception of MAPE value.

TPrawrat model employing Sentinel data (Table 3.3.3-4; 5a) performed
better compared to Landsat (Table 3.3.3-4; 2a) while the corrected models
(Table 3.3.3-4; 2b; 5b) have not offered any significant differentiation.

Application of TPgeerat model on artificial lakes sampled on 2019,
presented better results when employing Landsat reflectance (3a; Table 3.3.3-
4) rather than Sentinel. The corrected TP model (3b) improved slightly the
performance of the initial one whereas no corrected TP model has been built
for Sentinel data, due to existence of few records.

The application of all WQ models (including the corrected) on Landsat
and Sentinel images of 2020 illustrated similar results with those accrued from
the dataset of 2019; hence the corresponding statistical error metrics, are
presented in the Appendix (Table 3).

Table 3.3.3-4. Basic statistical error metrics evaluating the TP models’ performance in
conjunction with in-situ WQ datasets of 2019. (The units of ME and RMSE are mg/l, NRMSE
has no units while MAPE has percentage units).

No. Model ME RMSE | NRMSE | MAPE | Sensor
1a TP_general 0.07 0.34 0.15 53.8
1b TP_general_cor 0.08 0.36 0.16 47.5
2a TP_natural 0.05 0.26 0.11 58.3

Landsat
2b TP_natural_cor 0.04 0.27 0.12 71.1

Application of TP
3a general model on -0.01 0.04 0.21 44.4
artificial lakes




Application of TP
3b general model on -0.002 0.035 0.19 37.5
artificial lakes_cor

43 TP_general 0.03 0.19 0.15 45.2

4b TP_general_cor 0.039 0.19 0.15 41.2

5a TP_natural 0.03 0.14 0.12 54.7 )
Sentinel

5b TP_natural_cor 0.01 0.15 0.12 74.7 2

Application of TP
6 general model on 0.002 0.01 0.37 27.5
artificial lakes

3.3.2.4 All WQ models

Observing basic statistical indices and in particular values of ME per
model, clustered by year and utilized satellite sensor, it can be concluded that
Chl-a models resulted in higher divergences from in-situ values compared to
Secchi and TP models (Figure 3.3.1-1a). Based on negative residual values, it
seems that Chl-agenera model employing Landsat reflectance overestimates Chl-
a concentrations while the same applies for Chl-gnawura models for both sensors
but in greater extent for Landsat.

Secchi models have the same behavior based on the sampling year
(except for Secchinauracor model employing Sentinel data) but present
differences based on the utilized sensor. Secchigenera and Secchigeneral_cor models
using Landsat data seems to underestimate Secchi depths whilst respective
models employing Sentinel 2 data overestimate those measurements. TP
models in general indicated low residual values (Figure 3.3.1-1a).

The highest RMSE values are also accrued from the application of Chl-a
models, followed by Secchi and TP models (Figure 3.3.1-1b). Distribution of
RMSE values per WQ model is similar between the two years except for the
value resulted after applying the Chl-anawrat model on Landsat images of 2020.
Additionally, Landsat-based Chl-2 models suggest higher RMSE values
compared to the respective Sentinel.

Examining the MAPE values derived from all WQ models and taking into
consideration the threshold value of 50 (reasonable forecasting; Lewis 1982;
Table 2.3.2-2), it can be concluded that mostly Secchi models, followed by the
respective TP can be characterized as efficient enough to quantify each
corresponding WQ element (Figure 3.3.1-1c). Concerning the application of
Chl-ggenerat models and the corresponding corrected ones, it can be declared
that even though there has been an enhancement in models’ performance,
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MAPE values are still quite high independently from sensor or year (Figure
3.3.1-1c). Chl-garificial models do not indicate any improvement concerning the
year of 2020, but Sentinel-based model applied on 2019 dataset performs
better than Landsat one (Figure 3.3.1-1c).

Even though Secchigenersi models have not been upgraded, the initial
uncorrected ones presented highly acceptable MAPE values, indicating a
good forecasting performance. In addition to Secchi models, Secchinatural
models, after the fine tuning, have resulted in highly acceptable MAPE
values. Secchiariticial models were not particularly enhanced but MAPE values
accrued from the initial equations can guarantee a satisfactory Secchi
quantification.

TPgenerat models have been improved based on both years and utilized
sensors and particularly the employment of 2019 dataset resulted in valuable
outcomes (for both sensors). TPrawra models were also not improved and
concerning the initial models, only that employing Sentinel 2 reflectance of
2020, is considered reliable to use. As far as the application of TPgenerat model
on artificial lakes is considered, no safe conclusion can be drawn due to the
existence of few available records. Despite this, Landsat-based models
presented an improved performance for both studied years. Concerning the
NRMSE metric, values” distribution is presented per WQ model clustered by
satellite sensor and year (Figure 3.3.1-2). Thus, values range from 0.1 to 1.3,
while both of them are observed in 2020 employing Landsat data in Chl-ageneral
and Chl-anawrat model, respectively. In general, low values close to 0 indicate
the good performance of each respective WQ model while the median and
average values of the whole dataset equal to 0.18 and 0.21, respectively.

Average NRMSE values per satellite sensor revealed a light superiority
of models employing Landsat compared to Sentinel 2 reflectance (0.21 vs.
0.23) while the utilization of satellite and in-situ dataset of 2019 presented
better performance than this of 2020 (0.18 vs. 0.24).
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Figure 3.3.1-1. Distribution of (a) ME, (b) RMSE and (c) MAPE values per WQ model clustered by satellite sensor and year of sampling. (Red reference line to Y axis is set to
50, upper threshold value for reasonable forecasting.
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Figure 3.3.1-2. Distribution of NRMSE values per WQ model clustered by satellite sensor and grouped by year of sampling. (Red reference line to Y axis is set to 0.3 as an
indicative low value).
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34 Discussion

This study is perhaps the first attempt to facilitate the quantification of
spatiotemporal lake WQ across the Greek Lake Monitoring Network of WFD,
by using multi-sensor reflectance values retrieved from GEE platform.
Landsat (7 ETM+/8 OLI) and Sentinel 2 reflectance values in GEE were
matched with concurrent WQ in-situ data of 2018 while the same pairs were
created with reflectance derived from manually pre-processed respective
images.

Published Landsat- based empirical WQ models of Chl-a (Markogianni et al.,
2020), Secchi depth and Total Phosphorus (Markogianni et al., 2022) were
applied twice employing two (2) different-atmospherically corrected
reflectance values (DOS1 and other AC methods embedded in GEE) while
linear regression analysis among resulted WQ values, separately for each
sensor, yielded WQ-corrected linear equations accompanied by strong
associations. Double employment (2018) of differently atmospheric corrected
reflectance values in WQ models indicated the DOS1 as the most effective
method for the quantification of lake WQ elements in almost all cases and for
all sensors (Landsat/Sentinel 2); the only exceptions were the Chl-agenera and
Secchinawral models employing Landsat data, where LaSRC and LEDAPS
methods were proved better and Chl-agenerat and Secchigeneral models employing
Sentinel 2 data (Table 3.4-1; 2018 dataset), indicating their better performance
after the application of Sen2Cor method. Results from several studies agree
with the superiority of DOS method regarding the WQ monitoring of inland
waters (Nazeer et al., 2014; Dona et al. 2014; El Alem et al., 2021; Abdelal et al.
2022). In particular, Abdelal et al. (2022) studied the extraction of WQ
parameters in King Talal reservoir (Jordan) by testing several atmospheric
correction methods, including DOS, in Landsat 8 and Sentinel 2 images.
According to their atmospheric correction analysis, the DOS algorithm was
the most successful in representing the Sentinel-2 satellite image while they
recorded that it can be applied on images of both satellite sensors with not
much accuracy loss which is not the case for the rest correction techniques
examined (dark spectrum fitting -DSF-, atmospheric and topographic
correction -ATCOR-, and exponential extrapolation -EXP). Furthermore, El
Alem et al. (2021) compared image-based and physical correction models for
retrieving suspended particulate matter (SPM) concentrations in lakes (United
States and Canada) using Landsat imagery. Based on the results, image-based
models, particularly the COST and DOS, are more appropriate than physical
models for retrieving SPM concentrations in inland waters if the inputs of the
physical atmospheric parameters are not well controlled. The basic
assumption concerning the physical methods is that they usually use two or
more NIR (or SWIR) wavebands, where the marine signal is assumed to be
zero (open ocean waters). However, the signal in the NIR (or SWIR) is not



negligible in Case-2 waters, due to the concentrations of particulate matter in
inland water bodies, and, consequently, maritime correction over inland
water causes low or even negative water reflectance in the visible bands. As a
consequence, reflectance over inland water bodies is assessed based on
assumptions including 0 water-leaving radiance in the NIR (or SWIR) and
aerosol origin/type models, resulting to the confusion of this natural optical-
physical relationship (in terms of reflectance) of WQ parameters across the
electromagnetic spectrum (EI Alem et al., 2021).

Addittionally, cases of 2018 dataset where low values of coefficient of
determination among same-located WQ values were observed, concern
mainly Chl-2 models (general and artificial) employing Sentinel 2 reflectance.
On one hand it is well known that mapping Chl-z in Case 2 waters is a
complicated task and characterized by less accuracy since the optical
properties are measured based on a compound of dissolved organic matter,
dead organic-inorganic particulate matter, and phytoplankton (Chl-a;
Markogianni et al., 2020). On the other hand, hereby utilized WQ empirical
models have been developed based on Landsat-7 ETM+ and 8 OLI images
which were atmospherically corrected with the DOS1 method; hence it is
expected to be affected not only by this factor but also by the corresponding
spectral composition and eventually perform better when employing Landsat
rather than Sentinel 2 reflectance, as it is hereby observed (Table 3.4-1;
datasets of 2019 and 2020). Major exceptions constitute the Chl-anatural, TPgeneral
and TParifiiar models which seem to present more reliable results, for both
validation years, with Sentinel 2 images.

Concerning the question whether the corrected WQ models contribute to
the improvement of WQ elements’ quantification, the answer is, in general,
positive. In particularly, regarding Chl-a models, Chl-anawra model is
presented widely enhanced for both satellite sensors and validation years
(except for Sentinel 2 in 2020). Secchi models (general, natural, artificial)
illustrated the greatest improvement, compared to Chl-a and TP models, with
the exception of general and artificial-only models employing Sentinel 2
images in 2020. TP models also provided refined values based on in-situ
datasets, except for the natural-only ones.
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Table 3.4-1. Summarized results indicating the best performance of empirical WQ models
employing a) different AC processors (2018 dataset) and b) GEE-derived reflectance values
(2019, 2020) and exploration of the correction necessity via the application of the sensor-
specific models. (x symbol denotes the best performance among the sensors used; NO*
denotes that only reduced MAPE values were observed while YES* denotes increased MAPE

values).
Chl- Chl- Chl-
2018 secchigeneral Secchinatural secchiartificial TPgeneraI TPnaturaI TPartificiaI
ageneral Onatural | artificial
Landsat LasRC, DOS1 ALL DOS1 LasRC, DOS1 DOS1 DOS1 DOS1
LEDAPS LEDAPS
Sentinel 2 Sen2Cor | DOS1 | DOS1 Sen2Cor DOS1 DOS1 ALL DOS1 DOS1
Chl- Chl- Chl-
2019 secchigeneral secChinatural S(:3'-':‘:l'|iartificial TPgeneraI TPnaturaI TPartificiaI
ageneral Qnatural | artificial
Landsat X X X X X X
Sentinel 2 X X X X
ENHANCEMENT
Landsat NO* YES NO YES YES YES* YES NO YES
. NO
Sentinel 2 NO YES NO* YES YES YES* YES NO
MODEL
Chl- Chl- Chl-
2020 SeCChigeneral Secchinatural secchiartificial TPgeneraI TPnaturaI TPartificiaI
ageneral Anatural | Aartificial
Landsat X X X X X X X
Sentinel 2 X X X
ENHANCEMENT
Landsat NO YES NO YES* YES YES* YES NO YES
. NO
Sentinel 2 NO* NO* NO* NO YES NO YES NO
MODEL

Chl-ggenera model employing Landsat reflectance yielded for both

validation years, an average RMSE of 12.21 ug/l whereas the corresponding
value related to Sentinel 2 data equals to 14.9 pg/l. The Chl-anawral corrected
model is proposed to be utilized in conjunction with Landsat data while the
average RMSE value is 17.45 ug/l. The Chl-garisiciaa model (without correction)
presented lower RMSE values, 5.4 and 5.7 ug/l for Landsat and Sentinel 2
reflectance, respectively.

To our knowledge, there are a few recent studies trying to estimate Chl-a
concentrations at a large regional scale with GEE. Lin et al. (2018) combined in




situ Chl-a data from 1157 lakes (2007) with Landsat data and developed a
well-validated lake national model (RMSE = 34.9 ug/L), by using machine
learning algorithms built into the GEE. Wang et al. (2020) used GEE to
automatically form match-up points from multi-sensor satellite observations
with ground WQ samples and then an SVM was developed to map Chl-a
concentrations across 12 lakes in the tri-state region of Kentucky, Indiana and
Ohio (USA). Furthermore, RMSE of Chl-a of the SVM model trained by
Landsat 8 OLI imagery was 4.42 ug/L. Kislik et al. (2022) analyzed four
spectral indices - Normalized Difference Vegetation Index (NDVI),
Normalized Difference Chlorophyll Index (NDCI), BSAB4, and B3B2 - to
retrieve chlorophyll-a data for algal bloom identification in two highly
dynamic freshwater reservoirs by using Sentinel 2-MSI in GEE. Among the
results, NDCI most accurately identified chlorophyll-a across all study sites
(highest adjusted R? = 0.84, lowest RMSE = 0.02 ug/l), followed by NDVI. A
few studies have also been conducted to estuarine and marine environments.
Li et al. (2022) extracted Chl-a concentrations of SeaWiFS and Terra/Aqua
MODIS embedded in GEE across the Yellow Sea to examine their relationship
to green tide while Bioresita et al. (2021) used Sentinel 2 images through the
GEE platform to monitor Chl-az concentrations in the Kali Porong Estuary
(Indonesia) employing certain estimation formulas.

Except for GEE utilization, other studies of remotely estimation of Chl-a
concentrations have yielded comparable and even higher RMSE values than
ours; Bonansea et al. (2018) presented an RMSE of 18.47 g/l in the largest
artificial reservoir in Cordoba province (Rio Tercero, Argentina) while Dona
et al. (2014) showed an RMSE of 40 pg/l across certain Spanish lakes and
ponds. Additionally, Zhang et al. (2020) developed an SVM model on Landsat
8 OLI images to estimate the Chl-a concentrations of multiple lakes in China,
while they reported an RMSE of 22.64 ug/L.

As far as the Secchi models are concerned, all of corrected ones
presented enhanced results; Secchigenera yielded average 2-year RMSE values
of 2.22 m (Landsat) and 2.7 m (Sentinel 2), Secchinaturat model 1.95 m (Landsat)
and 2.95 m (Sentinel 2) while the respective RMSE values resulted from the
Secchiarificial model equal to 1.91 m (Landsat) and 2.05 m (Sentinel 2). One of
the few studies that combined the derivation of Secchi depth in reservoirs and
GEE, was conducted by Somasundaram et al. (2021) while the resulted RMSE
value is particularly low and equals to 32.6 cm. Considering the high
difference between this RMSE value and the hereby derived one, it should be
noticed that Somasundaram et al. (2021) applied a Zsd (Secchi Disk depth)
model consisted of a combination of the Normalized Difference Chlorophyll
Index (NDCI) and a mechanistic model for the derivation of the absorption
coefficient and backscattering. According to literature (IOCCG, 2006) those
models depict more applicability and reliable results compared to those
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utilizing the relationship between WQ parameters and in-situ measurements.
Furthermore, Zhang et al. (2021) documented the most recent Secchi Disk
estimation models used in previous studies since 1993, based on remote
sensing techniques. Referring to the comparison of their performance, the
average RMSE value among those studies is 1.13 m while the highest (1.7 m)
has been recorded by Allan et al. (2011).

Considering the performance of TP models, it is evident that only the
TPgenera model needs the corrected version while the specially developed
model for natural-only lakes stands efficiently without correction. Corrected
TPgenerat model yielded RMSE values of 0.23 mg/l (Landsat) and 0.14 mg/l
(Sentinel 2), TPnaturat model 0.18 mg/l (Landsat) and 0.11 mg/1 (Sentinel 2) while
the application of TPgenerat model on artificial lakes- illustrated only in Landsat
images- resulted in an RMSE value of 0.02 mg/l. During a thorough literature
review, none recent study was detected utilizing GEE for the quantification of
total phosphorus concentrations in lakes. Nevertheless, a survey was
conducted to record RMSE values of remotely-sensed phosphorus
concentrations to compare with hereby results. Zeng et al. (2022) developed a
novel-semi-analytical algorithm in the eutrophic Lake Taihu, China and the
validation showed satisfactory performance (RMSE=0.01 mg/l). Lim and Choi
(2015), who also constructed multiple regression equations to retrieve total
phosphorus concentrations in Nakdong river Korea, reported a TP regression
model accompanied by an RMSE value of 0.01 mg/l. Lastly, Song et al. (2012)
established a hybrid model combining genetic algorithms and partial least
square (GA-PLS) to estimate remotely TP concentrations in 3 central Indiana
reservoirs and RMSE values ranged from 0.009 to 0.03 mg/l, depending on in-
situ datasets.

Taking into consideration the hereby-developed WQ models’
evaluation, it is proven that GEE public data is sufficient for mapping Chl-g,
Secchi depth and TP concentrations in a large geographical region and
particularly at a national scale (Greece). Even though the WQ models were
developed based on multiple linear regression analyses (MLRs) and Landsat 7
+ETM and 8 OLI images, their efficiency was indicated when were applied in
GEE images, despite the pre-processing differentiation.

3.5 Conclusions

Estimation of important WQ elements in lakes across Greece employing
satellite data embedded in the GEE platform, facilitates the monitoring and
the estimation of their trophic status at a national scale. Hereby derived
results indicated that WQ models, empirically developed, are applicable to
both archived and future Landsat and Sentinel 2 image data despite the
different pre-processing methodologies applied. Further, the aforementioned



models were trained based on a big dataset collected over different lakes with
various optical properties and covering a long enough period of time.

Efficient application of empirical WQ models in GEE platform exempt
users from the complicated AC of raw image products, key procedure for
achieving stable performance. The hereby results confirm the spatio-temporal
stability of the models while when combined with GEE-retrieved SR, offer
scientists and Greek competent authorities the opportunity to exploit this
massive warehouse of data for map long-term trend in WQ of lakes and
identify the underlying factors and possible pollutant threats.
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4. Operational Development of Techniques
for Characterizing Water Quality of
oligotrophic Case-2 waters

4.1 Analysis on the WQ models” Performance in
Oligotrophic Case-2 waters

4.1.1 Introduction

The classification of waters in Case 1 (oceanic) and Case 2 (coastal
regions, rivers, and lakes), refined by Gordon and Morel (1983), is
characterized by great importance when RS techniques are utilized to monitor
their WQ and/or trophic status. The distinction between the two cases has
some significant effects on the interpretation and modelling of optical data. In
particular, according to this classification scheme, the optical properties of
Case 1 waters are determined by phytoplankton and co-varying substances,
while Chl-a is considered a proxy of phytoplankton concentration. This
assumption has facilitated the implementation of large-scale optical models
and the development of Chl-a predicting algorithms for Case 1 waters
(Markogianni et al., 2022).

It is, however, acknowledged that Case 2 waters are more complex than
Case 1 concerning their composition and optical properties. Hence, satellite
ocean color algorithms, primarily developed for ocean, cannot be always
applied to lakes due to, except for optical complexity, atmospheric conditions,
altitudes and land proximity (IOCCG, 2018; Seegers et al., 2021). One of the
main factors hindering accurate WQ monitoring in Case 2 waters is the fact
that suspended material, yellow substances, and perhaps bottom reflectance
vary independently of each other. Moreover, alterations in optical signal and
the concentrations of the dissolved constituents are often so small that they
hinder the ability to extract reliable information (Gholizadeh et al., 2016).

Hence, given the difficulty that WQ monitoring of Case 2 waters
constitutes a multi-variable, non-linear problem, it is more realistic to
establish a series of algorithms rather than a single all-purpose one. In this
way, more than one algorithm contributes to capturing and solving the
problem for all variables and over several and different ranges of
concentrations (IOCCG, 2000). Those different ranges of concentrations
correspond to classes of trophic status. Carlson (1977) developed a method of
trophic status classification considering Chl-a and phosphorus concentrations
and Secchi disk depths (ZSD). Ranges of those WQ elements were associated
with three (3) main trophic classes: oligotrophic, mesotrophic and eutrophic



(McCullough, 2012) including also transitional categories (e.g. ultra-
oligotrophic, hypertrophic; Watanabe et al., 2020).

Based on this rationale, very clear lakes are classified as oligotrophic
Case-2 rather than Case-1 (Gons et al., 2008) since they typically receive
significant levels of terrigenous input (Gons and Auer, 2004), while dissolved
organic carbon (DOC), in this type of lakes, has an exceptionally powerful
influence on water clarity (Gunn et al.,, 2001). Hence, there is a need for
further algorithm development, especially for oligotrophic water bodies,
while, of principal value is the choice of the appropriate wavelengths.

On one hand, red/NIR bands are usually utilized for the assessment of
Chl-a concentrations in Case-2 waters (O'Reilly and Werdell, 2019; Seegers et
al. 2021); however, AC algorithms need to further improve to replicate the
spectral shape in the NIR bands so that the NIR-red band ratio algorithms can
be used in such turbid waters (Warren et al., 2019). On the other hand,
escpecially for clear waters, the use of blue-green ratio has been reported as
the most effective for the monitoring of WQ elements (Binding et al. 2019;
O'Reilly and Werdell, 2019, Warren et al., 2019) since their turbidities are non-
algal and inorganic (Warren et al., 2019)

In purview of the above, hereby-developed lake WQ quantitative
models (Chl-a, Secchi depth and Total phosphorus), based on wide
concentration ranges, were applied to Landsat 8 OLI images illustrating two
(2) Greek oligotrophic lakes. Basic aims of this effort are to explore the
efficiency of the aforementioned WQ models in monitoring Trichonis and
Amvrakia lakes’ trophic status and reach final conclusions concerning
whether there is indeed a need for the development of special algorithms
exclusively oriented to oligotrophic waterbodies.

4.1.2 Methodology

4.1.2.1 Study areas

Trichonis Lake (Figure 4.1.2-1) is the largest natural freshwater body in
Greece and it receives pollutants from numerous anthropogenic activities,
especially from intensive agricultural practices, urban sewages, stock grazing
land and small industries. Even though large quantities of fertilizers are
applied in the lake’s catchment, the trophic status of the lake is oligotrophic to
oligomesotrophic (Koussouris 1993; Zacharias et al.,, 2002; Bertahas et al.,
2006). Trichonis Lake is a deep freshwater body which has a surface area of 97
km?, a maximum depth of 58 m and a potential water volume of
approximately 2.8x10° m3 (Figure 4.1.2-1; Dimitriou et al., 2001).

Lake Amvrakia (Figure 4.1.2-1) belongs to the European Ecological
Network Natura 2000, has a surface area of 14 km? and a maximum water
depth of 50 m. Lake Amvrakia is characterized by strong water level
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fluctuations due to high evaporation rates, especially during the summer, and
the irrigation of the surrounding agricultural area. These alterations usually
lead to the drainage of the shallower northern part (Figure 4.1.2-1) of the
basin in certain periods and, consequently, to the fluctuation of the surface
area of the lake (Zotos et al., 2021).
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Figure 4.1.2-1. Sampling stations in Trichonis and Amvrakia lakes.

4.1.2.2 Water sampling, in-situ data and Chemical analyses

Water samplings were conducted by HCMR staff in the framework of a
research project studying water quality of lakes and rivers located in the
western part of central Greece. A total of twenty-two (22) and eleven (11)
water samples were collected across the surfaces (5-10 cm) of lake Trichonis
and Amvrakia, respectively while a GPS (Global Position System) was
utilized to record the coordinate data of each station. Water was collected
with NIO samplers of 1.5-1 capacity in 29-30/10/2013 (Trichonis), 31/10/2013
(Amvrakia), 30/08/2014 (Trichonis) and 31/08/2014 (Amvrakia). Following
collection, the water samples for nutrient analysis were preserved by the
addition of HgClz2 and on return to the HCMR laboratories were filtered and
analyzed for total phosphorus concentrations. Samples were filtered through
0.45 pm cellulose acetate filters that had been precleaned with 10%
hydrochloric acid (pH = 2) followed by rinsing with Milli-Q water.




A specific quantity of water samples for chlorophyll-a (usually 1 L) was
filtered through Whatman GF/F filters immediately after collection. These
filters were maintained in a dry and dark environment at —15 °C and then
transferred to HCMR laboratories for further analysis.

In-situ data utilized in the framework of this study includes Chl-a and
TP concentrations. However, since Secchi disk measurements have not been
conducted in none of the studied lakes, an effort has been made to estimate
Secchi depths from turbidity data based on the following regression model
(Rasmussen et al., 2009; Equation 4.1.2-1):

Secchi Depth = 11.123 * TBDY ~%-637 (4.1.2-1)

where Secchi Depth is in feet and TBDY is turbidity in FNU. This equation
includes a bias correction factor of 1.01 while more information can be found
in http://pubs.usgs.gov/tm/tm3c4/. Furthermore, it should ne noted that
turbidity measurements were conducted only in water sampling of 2013, thus
Secchi depth values concern only this year. Turbidity was measured with the
HACH 2100Q IS Portable Turbimeter.

Concentrations of TP were determined in the soluble fraction using the
photometer Merck Nova 400. The Chl-a concentrations were determined with
a TURNER 00-AU- 10U fluorometer according to the method of Holm-
Hansen et al. (1965), moditfied by Welschmeyer (1994).

Trophic status classification

In order to classify the water quality of Trichonis and Amvrakia lakes,
the EPA (Environmental Protection Agency) classification system was used
(EPA, 2000). According to this scheme, the classification of lakes into seven
quality classes (Table 4.1.2-1) is based on the total phosphorus concentration,
water transparency and trophic index (Trophic State Index—TSI). Trophic
index TSI is calculated for each classification quality parameter as follows
(Carlson and Simpson, 1996):

TSI (SD) = 60 — 14.41 * LN(SD) (4.1.2-2)
TSI (Chla) = 9.81 * LN(Chla) + 30.6 (4.1.2-3)
TSI(TP) = 14.42 « LN(TP) + 4.15 (4.1.2-4)

where SD is the Secchi disk (m) and Chl-a and TP (ug/l) are the concentrations
of chlorophyll-a and total phosphorus, respectively. In the context of this
study, there are no available data of Secchi disk therefore, this water quality
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classification effort is based only on TP and Chl-a values, aiming to better

understanding of the prevailing conditions during the sampling periods and

afterwards to ascertain lakes” oligotrophic nature.

Table 4.1.2-1. Proposed lake WQ classification system by United States EPA (Carlson and
Simpson, 1996).

TSI average

30 - 40

SD (m)

TP (ug/D

Chl-a (ug/l)

094-2.6

Trophic status-Attributes

Oligotrophic-Clear water, oxygen throughout the
year in the hypolimnion

Oligotrophic -A lake will still exhibit
oligotrophy, but some shallower lakes will
become anoxic during the summer

40 -50

12 -24

26-64

Mesotrophic-Water moderately clear, but
increasing probability of anoxia during the
summer

50 - 60

24 -48

6.4-20

Eutrophic-Lower boundary of classical eutrophy:
Decreased transparency, warm-water fisheries
only

60 - 70

05-1

48 - 96

20 - 56

Eutrophic-Dominance of blue-green algae, algal
scum probable, extensive macrophyte problems

>70

<0.25

>96

> 56

Hypereutrophic, Heavy algal blooms possible
throughout the summer, often hypereutrophic

4.1.2.3 Satellite data and pre-processing

Two Landsat 8 OLI images (Path 184, Row 33) illustrating Trichonis and
Amvrakia lakes of 30 October 2013 and 30 August 2014 were used for this
study. The satellite images were acquired from the USGS (United States
Geological Survey) Data Centre (http://glovis.usgs.gov/) while image
processing was completed in ENVI software (EXELIS Visual Information

Solutions, Version 5.1).

Each band for both Landsat 8 OLI images was radiometrically and
geometrically corrected (using GCP). After assessing geometric accuracy
based on Global Position System measurements (coordinate data) taken in the
study areas, the geometrical accuracy was determined to be less than one half
pixel (<15 m). Finally, each band was converted to top-of-atmosphere (TOA)
reflectance with sun angle correction using radiometric calibration coefficients
provided in the metadata file to normalize the images for comparison


http://glovis.usgs.gov/

between different days. For atmospheric correction, dark object subtraction
(DOS) technique was used, which takes the minimum value in each band and
removes it from each pixel (Lathrop et al. 1992; Keiner and Yan 1998; Vincent
et al., 2004).

4.1.2.4 Application of WQ models in Landsat 8 OLI images and
performance evaluation

Hereby used WQ models concern quantitative Chl-a models developed
by Markogianni et al. (2020) and Secchi depth and TP models developed by
Markogianni et al. (2022). Application of WQ models includes Chl-a models
(General- Equation 4.1.2-5; Natural- model-Equation 4.1.2-6), Secchi depth
models (General-Equation 4.1.2-7; Natural model- Equation 4.1.2-8) and TP
models (General-Equation 4.1.2-9; Natural model -Equation 4.1.2-10).
Secchigeneral and Secchinaral models have been applied only in Landsat 8 OLI
image of 2013 while the same applies for TPrawra model (Equation 4.1.2-10)
since it employs Secchi depth data.

log Chla = 3.599 — 0.63 * (2o ) — 2.183 * (") (4.1.2-5)
log Chla = 4.443 — 1.421 * (;’TZ‘;) —3.454 % (-200) 41,304 + " (o %) (4.1.2:6)

In green)
Inswir2

SQRT (Secchi) generar = 1.215 — 2.479 = (blue + red + —) +3.394 x (———

(4.1.2-7)

SQRT (Secchi)ngturar = 1.172 — (1.003 * logchl — a) — (1.031 * logred)(4.1.2-8)

Inred

LogTPgeneral = —1.425 + 0.452 x logChla — 0.573 * (

) (4.1.2-9)

Inswirl

LogTPnatural = —0.633 — (0.704 * logSecchi) — 0.392 * (green) (4.1.2-10)

After the models” application, satellite-derived values of Chl-a and TP
(general) concentrations of 2013 and 2014 and Secchi depth and TP (natural)
of 2013, acquired from both Trichonis and Amvrakia lakes, were compared
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with the corresponding in-situ values. WQ models” performance was based on
the Spearman’s (r) correlation coefficient and the error metrics Mean Absolute
Percentage Error (MAPE), Root Mean Squared Error (RMSE) and Normalized
Root Mean Squared Error (NRMSE).

4.1.3 Results

4.1.3.1 Trophic status classification

Considering the concentrations of total phosphorus and Chl-a and the
estimated average Trophic Index (TSI) of both the sampling campaigns,
Amvrakia Lake is characterized as oligotrophic to oligomesotrophic for both
years (Table 4.1.3-1) due to increased TP concentrations. Furthermore,
according to Markogianni et al. (2018), Trichonis lake was also classified as
oligotrophic to oligomesotrophic in 2013 and oligotrophic in 2014.

Table 4.1.3-1. EPA classification system and estimated TSI for Amvrakia Lake.

TP TSI Classification

avg Chl-a (pg/l) | TSI (Chl-a) (ng/1) TSI (TP) average

Oligotrophic to

2013 21.00 48.05 38 oligomesotrophic
Oligotrophic to
2014 32.45 54.33 38.4 oligomesotrophic

4.1.3.2 WQ models’ application in Trichonis and Amvrakia lakes

Application of WQ models in Trichonis and Amvrakia lakes indicated
their bad performance concerning all WQ elements. Even though the
correlations between in-situ and satellite Chl-a (general and natural) data were
statistically significant (Table 4.1.3-2), the values of error metrics NRMSE and
median MAPE are particularly high (indicating inaccurate forecasting).
Median MAPE was selected as it is considered more resilient to outliers than
MAPE. Relatively better performance was presented by TP models based on
RMSE, NRMSE and MAPE metrics; however, no correlation was detected
among satellite and in-situ data. Secchi models’ performance was also poor
but, in this point, it should be noted that in-situ Secchi values have emerged
via the transformation of turbidity values; factor that has surely affected their
effectiveness and contributed to statistical insignificant correlations.



Table 4.1.3-2. Error metrics’ values after the WQ models’ application to Landsat 8 OLI images

(** Correlation is significant at the 0.01 level (2-tailed).

Units | 28 avg median | Spearman
WQ model in-situ | satellite ME RMSE | NRMSE | MAPE r
Chl-agenerat | pg/l | 0.66 2.25 16 1.9 16 256.8 0.513*
Chl-arawat | pg/l | 0.66 1.84 -1.19 18 15 176.6 0.44**
TPgeneral mg/l | 0.031 0.02 0012 | 0.022 0.32 54.7 -0.16
TPnatural
1| 0.035 0.033 0002 | 0024 | 034 37.9 0.17
(2013) mg/
Secchigererat | 331 6.43 3.12 335 0.79 93.6 0.099
2013 . . . . . . .
Secchinaturl m 3.31 8.26 4.95 5.1 12 143.4 0.08
2013 . . . . . . .

4.1.4 Discussion

Landsat 7 ETM+/8 OLI-developed WQ models have been established on
the basis of in-situ data, sampled from 50 different lake water bodies across
Greece. Chl-a, Secchi and TP quantitative models have been built based on a
wide range of concentrations (Markogianni et al., 2020; 2022) representing
almost all trophic status classes. In the framework of this work, an effort has
been made to apply those WQ models and explore their performance in a
distinct category of Case-2 waters, e.g. oligotrophic lakes. Trichonis and
Amvrakia lakes are classified as oligotrophic based on both the recorded
literature and the hereby trophic status classification, which relied on two (2)
field trips in 2013 and 2014. Furthermore, trophic status of both lakes has been
assessed by utilizing in-situ data from numerous sampling stations across
each studied lake.

Application of WQ models in oligotrophic Trichonis and Amvrakia
lakes was ineffective while particularly low and homogeneous measured Chl-
a concentrations indicated lakes where the greatest optical contribution
originates from non-algae particles. Considering the relevant literature there
are a plethora of studies with similar to hereby results. Seegers et al. (2021)
evaluated the Cyanobacteria Index (CI)-based Chl-a algorithm (Chlre) by
using MERIS radiometric time series (2002-2012) for over 2300 waterbodies
(United States) and more than 5000 in Alaska while they tried to derive a new
CI-to-Chl-a relationship (Chlss). According to their results, the Chlss algorithm
performed best in the >7 ug/l range, while underachieved at the lowest
chlorophyll concentrations (oligotrophic-mesotrophic). Seegers et al. (2021)
attributed the bad performance mainly to the need of gs(A) signal in the NIR
to overcome the absorption of pure water in that range of low concentrations

and afterwards to the fact that satellite instrument performance in the NIR
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may confound meaningful retrievals. Moreover, Gilerson et al. (2010)
reported that Chl algorithms using the red/NIR surpassed blue-green band
ratio algorithms at concentrations higher than 5 ug/l while Binding et al.
(2019) also found that the MCI (Maximum Chlorophyll Index) and CI
performed better than band-ratio approaches for Chl-a concentrations higher
than 10 pg/l.

Another study was conducted by Gons and Auer (2004) who attempted
to use spectral reflectance R (0, A) for Chl-a retrieval in the Keweenaw Bay
(Lake Superior). Measured spectra were typical of oligotrophic lacustrine
waters while strong absorption by water was observed in the red region
which hindered the accurate detection of Chl-a absorption. Ultimately, they
also indicated the need of algorithm development for oligotrophic
waterbodies.

Considering the utilized bands for Chl-a retrieval in oligotrophic lakes,
Gons et al. (2008) implied that Chl-2 mapping in oligotrophic areas of the
Great Lakes (north America) remains problematic for the current generation
of satellite sensors, in particular MERIS and MODIS. More specifically, they
proposed the existence of more and narrower bands in the red-NIR spectral
region in the case where the adequate performance of their empirically
developed algorithm- employing blue-to-green bands- was coincidental.
O'Reilly and Werdell (2019) also suggested an approach using a blue-green
band ratio algorithm in oligotrophic systems and a red/NIR method in lakes
with concentrations ranging 3-155 ug/L.

Considering the contribution of machine learning methods in trophic
status classification of diverse water bodies, Watanabe et al. (2020) tested
Artificial Neural Network (ANN), Random Forest (RF) and Support Vector
Machine (SVM) algorithms in four (4) reservoirs in Brazil based on in-situ
reflectance measurements while all of them exhibited the poorest modelling
for oligotrophic samples.

As far as the calculation of Secchi depths in Trichonis and Amvrakia
lakes is concerned, no safe conclusions can be drawn in the context of this
study, due to absence of available data. However, according to literature, the
Secchi depth monitoring seems also problematic in lakes with fewer particles
dissolved in water. More particularly, established relationships between
trophic status and Secchi depths of Maine lakes indicated more accurate
estimates -in relation to observed conditions- for eutrophic and mesotrophic
(on average within 1 m) than for oligotrophic (on average deviated higher
than 1 m) lakes (Maine Pearl, 2011). According to Lathrop (1992), increased
turbidity and phytoplankton connected with higher chlorophyll-a
concentrations, result in escalating energy received by the satellite; thus, red
band is a less accurate predictor of Secchi depth in clear waters (McCullough,
2012). McCullough (2012) also highlights that the longer red band may reach
the bottom before the deepest SDD is attained, yielding ambiguous results.



Therefore, based on the hereby utilized Secchinatura model which employs Chl-
a concentrations and the red band, inaccurate results are anticipated
concerning Secchi depths in Trichonis and Amvrakia lakes.

Concerning TP estimation in hereby studied lakes, results were proven
better compared to Chl-a and Secchi depth except for the absence of a
statistically significant correlation between predicted and observed values.
Despite the oligotrophic character of Trichonis and Amvrakia lakes, measured
TP concentrations for both years characterize them as marginally eutrophic
(EPA, 2000). Regardless of the high measured concentrations which
theoretically would contribute to a better prediction, TP cannot be assessed
remotely because is characterized by weak optical characteristics and a low
signal noise ratio (Markogianni et al., 2022). However, TP is highly correlated
with optically active constituents while the hereby applied TP models also
employ Chl-a concentrations (general model) and Secchi depths (natural
model). The involvement initially of Chl-a values (which are exceptionally
low) and afterwards of Secchi depths which originated from the Turbidity
transformations hindered the achievement of a higher accuracy due to
reasons extensively described above.

Poor performance of WQ models could further be attributed to other
sources of inaccuracy such as the employment of multiple laboratory
techniques and the lack of knowledge about regional phytoplankton
community composition. Some algorithms were proven to present sensitivity
to community composition (diatom- or cyanobacteria dominated sampling
stations; Binding et al.,, 2019); hence more research is required involving
known Chl-a distributions, particles and CDOM before the establishment of
special algorithms, exclusively oriented to oligotrophic lakes.
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4.2.1 Introduction

Water resources are essential for the survival of all living organisms.
Part of those resources is stored in lakes and reservoirs, and is used to satisfy
environmental and human requirements. Unfortunately, in many cases WQ is
chemically deteriorated, and water managers/ scientists need new means for
efficient monitoring (Seegers et al., 2021).

The continuous monitoring of large water bodies is a complex task, since
it demands frequent and detailed data collection and interpretation efforts.
Only frequent fieldworks can fully attain the spatial and temporal variance of
WQ key indicators. This requires a compromise concerning the number of
sampling stations while keeping maintainance costs reasonable (Lyu et al.,
2022).

Satellite remote sensing (RS) is a powerful supportive tool for assessing
of spatial and temporal variations in WQ (Lyu et al., 2022). RS technologies
enable researchers to acquire a unique, holistic perspective of the ecosystems.
From the vantage point of space, satellite data become an invaluable tool in
support of wetland management. This is of especial importance in the context
of the increasingly strict environmental regulations approved by governments
worldwide (e.g. Water Framework Directive and the European Marine
Strategy Framework Directive) (Pizani and Maillard, 2022).

Since the European Commission Water Framework Directive (EC, 2000)
was promulgated, Member States have started to develop lake ecological
status assessment systems, and finished setting TP and Chl-a as reference
conditions for European lakes in different lake types and ecoregions
(Nikolaidis et al., 2022). In particular, the use of multi-spectral sensors makes
possible to measure many of the parameters required by law (Gholizadeh et
al., 2016). Apart from the law-required components, the major factors which
can influence the quality of inland water bodies are the suspended sediments
(turbidity), phytoplankton and cyanobacteria (i.e., chlorophylls, carotenoids),
dissolved organic matter (DOM), organic and inorganic nutrients, pesticides,
metals, thermal releases, macrophytic algae, pathogens and oils. The above-
mentioned factors affect the optical properties of waters (except for nutrients)
thus they directly change the signal acquired by optical sensors over water
bodies (Gholizadeh et al., 2016, Pizani and Maillard, 2022). The parameters
which can be directly quantified using RS techniques are the suspended
particulate matter (SPM), which is placed in suspension by wind-wave
stirring of shallow waters and can be a tracer for inflowing pollutants
(Eleveld, 2012), the phytoplankton mainly as Chlorophyll-a (chl-a) or
phycocyanin (PC), that can be used to indicate the trophic level, to evaluate
the presence of potentially toxic algal blooms and as a proxy of
phytoplankton biomass (Randolph et al., 2008; Ruiz-Verdu et al., 2008), the
coloured DOM (CDOM), which is investigated because of its role in
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protecting aquatic biota from ultraviolet solar radiation and its influence on
specifically heterotrophic bacterial productivity in the water column,
indicative of the shift from net autotrophy to net heterotrophy (Kutser et al.,
2005; Giardino et al., 2014).

A number of satellite sensors have been used for the study of surface
WQ (Kutser et al., 2009; Yacobi et al., 2011; Matthews, 2011; Odermatt et al.,
2012a). Matthews (2011) and Kutser (2012) have provided a detailed review of
RS instruments which can be used to assess WQ in inland and near-coastal
waters. Medium spatial resolution multi-spectral sensor such as Advanced
Land Imager (ALI) (30 m), Advanced Land Observation Satellite (ALOS) (10
m), SPOT-5 (10 m) and Landsat provide images in the visible and near-
infrared wavelengths; compared to the higher spatial resolution sensors, these
sensors are characterized by a higher radiometric performance which
contributes to a more accurate assessment of the concentrations of quality
parameters over water. On May 30, 2013, data from the Landsat-8 satellite
(launched on 11 February, 2013) became available allowing the continuance of
studies on WQ of lakes (Giardino et al., 2014).

Although Landsat sensors were not designed for aquatic applications
(Kutser, 2012; McCullough et al., 2012a), we find numerous examples of
applications of Landsat images for estimating and/or monitoring lake WQ.
Several studies have proposed reliable algorithms between Landsat data and
WQ parameters, including chlorophyll; phytoplankton and PC concentrations
(Brezonik et al., 2005; Karakaya et al., 2011; Tebbs et al., 2013), water clarity
(Hadjimitsis et al., 2006; Guan et al., 2011; Zhao et al., 2011), CDOM (Brezonik
et al., 2005; Zhu et al., 2014; Brezonik et al., 2015), blooms of cyanobacteria
(Vincent et al., 2004), macrophyte (Albright and Ode, 2011) and total
suspended sediments (TSS; Zhou et al., 2006; Guang et al., 2006; Onderka and
Pekarova, 2008; Bonansea et al., 2013). Few studies, though, have attempted to
monitor and model nutrient data, since those data do not have optical
properties and the regression models usually yield statistically insignificant
results (Gholizadeh et al., 2016). In particular, Chen and Quan (2012) used
Landsat TM imagery to predict nitrogen and phosphorus concentrations in
Tiahu Lake, China with some successful results for phosphorus and less
successful results for nitrogen. In general, the aforementioned studies
considerably increase knowledge of WQ and most of their developed
algorithms are commonly based on empirical relationships using classical
simple linear regression models between remotely sensed reflectance values
and measurements collected simultaneously in the field.

In contrast to the clear oceanic waters (Case-1 waters), retrieval
problems of some WQ parameters have arisen for coastal and inland waters
(Case-2 waters) (Gons et al., 2008). Monitoring of WQ parameters in Case 2
waters is not an easy task due to runoff and discharges from rivers/streams,
which add to the complexity of the water constituent retrieval process.



Inflows from streams introduce different organic/ inorganic particles (e.g.
TSS). As opposed to particles, Chl-a and particularly CDOM are absorbing
components of water with CDOM absorbing the highest in short wavelengths
(350-440 nm) and Chl-a representing two absorption peaks in the blue and the
red regions of the spectrum (Pahlevan and Schott, 2013). Whereas Chl-a in
Case-1 waters can be accurately estimated on the basis of the pigment's
absorption peak in the blue, in oligotrophic Case-2 waters, estimation on the
basis of the Chl-a absorption peak in the red can be no alternative due to the
overwhelming absorption by water of the red and near-infrared (NIR)
wavelength bands (Gons et al., 2008).

Moreover, findings from numerous published studies have indicated
biological and chemical WQ parameters such as Chl-a can be measured using
spectral indices. However, these indices appear to be less reliable in diverse
water bodies e.g Case 2 waters (lakes, ponds, rivers and streams in coastal
regions) (Yang et al., 2017). A variety of spectral indices derived from RS data
based on empirical or semi-empirical relationships have been developed for
transforming spectral data into WQ parameters. Water indices” usefulness has
been demonstrated in different studies for drought monitoring and early
warning assessment (Memon et al., 2015; Bohn et al., 2017). Nevertheless, the
vegetation indices and reflectance (individual bands and band ratios) values’
application is highly encouraged for the estimation of WQ parameters (i.e.
chlorophyll-a, transparency) in lakes (Bonansea et al., 2015; Dona et al., 2015;
Bohn et al.,, 2017). These indices may involve three (Yang et al., 2010; Song et
al., 2013; Sun et al., 2014; Huang et al., 2014) and four spectral bands (Le et al.,
2009). The majority, though, of spectral indices are based on reflectance ratios
of two spectral bands (near infrared and red) for operational purpose. A band
ratio between the near infrared (NIR, ~0.7 pum) and Red (~0.6 um) has
frequently been used to estimate Chl-a in waters due to a positive reflectivity
of Chl-z in the NIR and an inverse behavior in the red while NIR and red
bands are involved in most indices (Yang et al., 2017).

As well, lake water clarity can be estimated more accurately in eutrophic
and mesotrophic than oligotrophic lakes, due to the absence of suspended
particles in oligotrophic lakes that are evident by satellite sensors
(McCullough, 2012). In oligotrophic lakes, water clarity is primarily controlled
by the concentration of coloured dissolved organic matter (CDOM) (Gunn et
al., 2001; Giardino et al., 2014), which, in turn, affects a wide range of
chemical, physical and biological processes. These include thermal structure,
light transmission for photosynthesis, attenuation of damaging levels of
ultraviolet light, vertical distribution of plants and animals, as well as the
form and availability of toxic metals (Gunn et al., 2001).

This study presents the analysis of L8 OLI imagery in combination with
simultaneous field data to conduct basic spatial assessment of various WQ
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parameters in a natural lake, characterized by particularly low concentration
values and the absence of strong spatial and temporal variability. The main
objective is to develop quantification algorithms and determine Chl-a
concentration, CDOM absorption at 420 and 440 nm (acdom(420); acdom(440)) and
nutrient concentrations in the deep oligotrophic Lake Trichonida (Greece),
using MLR analysis. Selected optimal algorithms were applied to another L8
image of different date but with available in-situ Chl-a, nutrient and CDOM
absorption data, to validate the results while satellite derived values were
compared to in-situ ones.

4.2.2 Methodology

4.2.2.1 Study area

Trichonis Lake (Figure 4.2.2-1) is the largest natural freshwater body in
Greece while a more detailed description can be found at 4.1.2 Chapter (Study
areas). A significant hydrogeologic aspect of Trichonis lake’s catchment is that
groundwater inflows to the lake during the dry periods are considerably high,
which enhances the water abstraction potential for anthropogenic activities
(Zacharias et al., 2003). Trichonis Lake’s catchment is a 399 km? semi-
mountainous area in Western Greece (Figure 4.2.2-1). The regional climate is
characterized as semi-arid to arid Mediterranean with an average annual
rainfall of 936 mm and an average annual temperature of 17 °C which
fluctuates by 19 °C annually (Zacharias et al., 2005).
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Figure 4.2.2-1. Trichonis Lake’s catchment and bathymetry and Chl-a, CDOM and nutrients’
sampling stations of 30-31/10/2013 and 30/08/2014.



4.2.2.2 Water sampling

Regarding the date difference between satellite image and fieldwork,
water samplings were conducted at the same date as the satellite overpass. A
total of 22 water samples were collected across the lake Trichonis’s surface (5-
10 cm) with NIO samplers of 1.5 1 capacity in 29-30/10/2013 and 30/08/2014.
Following collection, the preservation of the water samples for nutrient and
Chl-a analysis was conducted as previously described in 4.1.2 Chapter (Water
sampling, in-situ data and trophic status classification subchapter).

Water samples for CDOM absorption were filtered through 0.22 um
polycarbonate filter immediately after sampling. Filtered water was
transferred into acid-cleaned (HCL 10%, 12 h) glass bottles and stored in the
dark at ~-20 °C. Before measurement, the samples were allowed to stand until
reaching room temperature.

4.2.2.3 Chemical Analyses and EPA quality classification system

Concentrations of nutrients (NOs, NOz, NHs, and POs: 3 ) were
determined in the soluble fraction using an ion analyser Metrohm, the
automatic analyzer Radiometer and the photometer Merck Nova 400. The
Chl-a concentrations were determined with a TURNER 00-AU- 10U
fluorometer according to the method of Holm-Hansen et al. (1965), modified
by Welschmeyer (1994). CDOM absorption spectra were obtained between
250 and 700 nm at 1 nm increments using a dual beam UV-visible
spectrophotometer (Perkin Elmer, Lambda 25) equipped with 5 cm quartz
cells and referenced to Milli-Q water. A baseline correction was applied by
subtracting the average sample absorbance between 690 and 700 nm from the
entire spectrum. In addition, a blank scan containing Milli-Q water was
subtracted from each spectrum. Absorption units were converted to
absorption coefficients using the relationship (Eq. 4.2.2-1):

a() = 2.303 = A(D) /1 (4.2.2-1)

where a(A) = absorption coefficient (m), A(A) = absorbance, 1 = cell’s light
pathlength (m).

The EPA classification system was used for the WQ classification of
Trichonis lake (EPA, 2000). According to this scheme, total phosphorus (TP)
concentration, water transparency and trophic index (Trophic State Index —
TSI) determine the classification of lakes into six quality classes (Table 4.2.2-1).
Trophic index TSI is calculated for each quality parameter as follows (Carlson
and Simpson, 1996):

TSI (SD) = 60 — 14.41 * LN(SD) (4.2.2-2)
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TSI (Chla) = 9.81 * LN(Chla) + 30.6 (4.2.2-3)
TSI(TP) = 14.42 « LN(TP) + 4.15 (4.2.2-4)
where SD is the Secchi disk (m) and Chl-a and TP (ug/l) are the concentrations

of Chl-a and TP, respectively.

Table 4.2.2-1. Proposed lake WQ classification system by United States EPA (Environmental
Protection Agency) (Carlson and Simpson, 1996).

TSI average

30 - 40

SD (m)

TP (ug/D

Chl-a (ug/l)

094-2.6

Trophic status-Attributes

Oligotrophic-Clear water, oxygen throughout the
year in the hypolimnion

Oligotrophic -A lake will still exhibit
oligotrophy, but some shallower lakes will
become anoxic during the summer

40 -50

12 -24

26-64

Mesotrophic-Water moderately clear, but
increasing probability of anoxia during the
summer

50 - 60

24 -48

6.4-20

Eutrophic-Lower boundary of classical eutrophy:
Decreased transparency, warm-water fisheries
only

60 -70

05-1

48 - 96

20 - 56

Eutrophic-Dominance of blue-green algae, algal
scum probable, extensive macrophyte problems

>70

<0.25

>96

> 56

Hypereutrophic, Heavy algal blooms possible
throughout the summer, often hypereutrophic

4.2.2.4 Satellite Data and Pre-Processing

L8 Operational Land Imager (OLI) images consist of 9 spectral bands
with a medium spatial resolution (30 meters) for Bands 1 to 7 and 9. The ultra-
blue Band 1 is advantageous for coastal and aerosol research. Furthermore,
Band 9 is expendient for cirrus cloud observation. The resolution for Band 8
(panchromatic) is 15 meters (Table 4.2.2-2) (Barsi et al., 2014). Two L8 OLI
images of Lake Trichonis (Path 184, Row 33) of 30 October 2013 (17:22:09Z)
and 30 August 2014 (14:50:07Z) were used for this study. According to the
large size of the Trichonis Lake, the number of sampling stations (22) were
considered to be adequate for monitoring variability of CDOM, Chl-a and
nutrient concentrations. The satellite images were acquired from the USGS
(United States Geological Survey) Data Centre (http://glovis.usgs.gov/). The



image processing was completed in ENVI software (EXELIS Visual
Information Solutions, Version 5.1) while further data elaboration and
analysis were conducted in ESRI's software (ArcGIS v. 10.1).

The geometric accuracy for the two images was determined to be less
than one half pixel (<15 m) based on Global Position System measurements
(coordinate data) taken in the study area. Finally, each band was converted to
top-of-atmosphere (TOA) reflectance with sun angle correction using
radiometric calibration coefficients provided in the metadata file to normalize
the images and facilitate the comparison between different days. For
atmospheric correction, dark object subtraction (DOS) technique was used.
The basic principle of this method is that within the image there are some
pixels completely shadowed and their radiances received at the satellite
originate entirely from atmospheric scattering (path radiance). This radiance
value is then being subtracted from each pixel value in the image. The largest
sources of errors for water constituents’ retrieval is usually attributed to the
bio-optical model that relates water leaving radiance (or reflectance) to the
constituents’ concentrations and to treatment of aerosol reflectance in the
atmospheric correction procedure (Ruddick et al., 2000).

Furthermore, based on the demonstrated water indices’” usefulness for
the estimation of WQ parameters (i.e. chlorophyll-a, transparency) in lakes,
several spectral (vegetation and water) indices were calculated (Table 4.2.2-3)
to assess Chl-a concentrations.

Table 4.2.2-2. Landsat 8 spectral bands, wavelengths and spatial resolution.

Wavelength | Resolution
Bands .
(micrometers) | (meters)
Band 1 - Ultra Blue 0435 - 0451 30
(coastal/aerosol)
Band 2 - Blue 0.452 - 0.512 30
Band 3 - Green 0.533 - 0.590 30
Band 4 - Red 0.636 - 0.673 30
Band 5 - NIR 0.851 - 0.879 30
Band 6 - Shortwave
Infrared (SWIR) 1 1.566 - 1.651 30
Band 7 - Shortwave
107 - 2.294
Infrared (SWIR) 2 2.107-2.29 30
Band 8 - Panchromatic 0.503 - 0.676 15
Band 9 - Cirrus 1.363 - 1.384 30
Band 10 - Thermal .
Infrared (TIRS) 1 10.60 - 11.19 | 100 * (30)
Band 11- Thermal .
Infrared (TIRS) 2 11.50 - 12.51 100 * (30)
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Table 4.2.2-3. Selected spectral indices calculated, according to literature.

INDEX EQUATION Source
Enhanced Vegetation Index EVI= G * ((nir - red)/(nir + C1 Liu and Huete, 1995
(EVI) *red - C2 * blue + L_evi))
Normalised Ratio Vegetation | NRVI= (red/nir - 1)/(red/nir +
B 1991
Index (NRVI) D aret and Guyot, 199

Normalised Difference Water | NDWI= (green - nir)/(green +

McFeeters, 1996

Index (NDWI) nir)
Normalised Difference Water NDWI2= (nir - swir2)/(nir +
. Gao, 1996
Index (NDWI2) swir2)
Modified Normalised
Difference Water Index ng)]/)(viign(ﬁr;e;r-z ) Xu, 2006
(MNDWI) §

Green Normalised Difference
Vegetation Index (GNDVI)

GNDVI= (nir - green)/(nir +

green) Gitelson et al., 1996

Normalised Difference

DVI= (nir - ;
Vegetation Index (NDVI) NDVI= (nir - red)/(nir + red)

Rouse et al., 1974

4.2.2.5 Development of Models Relating L8 and WQ Data

MLR analysis was used in this study to develop relationships between
remotely sensed reflectance data (independent) and Chl-a, log(Chl-a), spectral
indices, CDOM and nutrient values (dependant). Initially, attempts were
made to find combinations, transformations, or logarithmic transformations
of L8 OLI bands which would provide more information about the under-
study parameters in the lake than only one band. Subsequently, pixel values
of each transformed image were retrieved from those regions where the 22
sampling stations are located. The transformed variables were denoted as
log(Chl-a), Chl-a, In(acpom@20)) and In(acdom440). In addition to the above, the
calculated vegetation and water indices (Table 4.2.2-3) were added to the
analysis.

The first criterion considered in order to select the best quantitative
model was the predictor importance chart conducted in IBM SPSS software
Statistics Base v. 23.0. The predictor importance chart contributes to indicating
the relative importance of each predictor in estimating the model; it does not
relate to model accuracy but to the importance of each predictor in making a
prediction. Subsequently, after having selected the predictors with the highest
importance for each WQ parameter, they were further imported in a series of
stepwise and backward linear regressions. Criteria of multicollinearity and
values of tolerance factor, variance inflation factor (VIF) and condition indices
(CI) were applied to a subset of strategic models to further help compare
them. Ultimate goal was to select more straightforward models versus models
with higher accuracy (higher R) but more complexity to pick an optimal one




to assess WQ attributes across Trichonis Lake. Then, the optimal quantitative
models developed based on field sampling of 30 August 2014 and satellite
image L8 of the same date, were applied to the Landsat image of 30/10/2013 to
assess and validate their efficiency by comparing the resulting estimates with
the respective available in-situ measurements.

4.2.3 Results

4.2.3.1 Statistical Summary of Trichonis lake’s In-Situ Measurements
and WQ Classification

In-situ dataset of both sampling campaigns covered wide ranges of WQ
key indicators: Chl-a, a acpomuz0), acpomus, TP, total nitrogen (TN), nitrate,
nitrite, phosphate and ammonium concentrations. In-situ nitrate, nitrite,
phosphate and TN concentrations of 2014 were measured as lower than the
detection limit of the instrument used (photometer Merck Nova 400), hence
no statistical elaboration was conducted. Data distributions for the rest
parameters were skewed with mostly low values and without extremely high
values or outliers (Table 4.2.3-1). In general, most values of all parameters of
2013 were measured slightly higher than the values of 2014, without
indicating great differences or existence of WQ deterioration in 2013.

Chl-a concentrations ranged from 0.5 to 1.4 ug/l with mean value 1.07
ug/l during the sampling campaign of 2013 and between 0.2 and 0.9 pg/l with
average value 0.39 ug/l in 2014. Mean values of TP indicate the presence of
similar conditions into the lake since those values for both years are equal to
0.04 and 0.02 mg/1 for 2013 and 2014, respectively (Figure 4.2.3-1, Figure 4.2.3-
2b).

Ammonium concentrations demonstrated even more resembling values,
which ranged from 0.02 to 0.06 mg/l in 2013 and from 0.01 to 0.09 mg/l in
2014, with identical mean value equal to 0.03 mg/l. In general, concentrations
of Chl-a and TP were measured slightly higher in 2013 than the values of 2014
compared to ammonium concentrations (Figure 4.2.3-1, Figure 4.2.3-2a; 4.2.3-
2b). Those values though are slightly increased; thus, no WQ deterioration is
indicated in 2013.
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Table 4.2.3-1. Descriptive statistics-Summary table of in-situ Chl-a, TP and ammonium
concentrations and acpom 20), acpom (a40) of 2013 and 2014.

Std Skewness
Minimum Maximum Mean

Deviation Statistic Std. Error

201 | 201 | 201
2013 | 2014 | 2013 | 2014 | 2013 | 2014 | 2013 | 2014 | 2013

4 3 4

Chla
22 5 0.2 1.4 .88 1.07 .39 22 14 -51 [ 215] 49 | 49

(ug/D
acdom (420) | 22 1 .08 4 4 .19 22 .09 .09 1.35 46 | .49 49

acdom (440) | 22 | .07 .06 .33 .38 16 18 .07 .09 134 | 97 | 49 | 49

TP (mg/l) | 22| .03 .01 .08 .06 .04 .02 013 .012 1.2 19 | 49 | 49

NH4+*

22 .02 .01 .06 .09 .03 .03 .01 .02 2.1 1.99 | 49 49
(mg/1)
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Figure 4.2.3-1. Frequency graphs presenting the distribution of the in-water constituents Chl-

a, TP and NH4* for both years.
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Figure 4.2.3-2. Temporal boxplots presenting basic descriptive statistics (median, percentiles,
min-max, outliers and extremes) over sampling season of (a) Chl-a and (b) TP concentrations.

In order to classify the WQ of Trichonis lake, the EPA classification
system (EPA, 2000) was used; however, in the context of this study, there are
no available data of Secchi disk. Therefore, it should be noted that this WQ
classification effort is developed to better understand the prevailing
conditions during the sampling periods and not to definitely classify the WQ
of the Trichonis Lake. Considering the concentrations of TP and Chl-a2 and the
estimated average TSI of both the sampling campaigns, Trichonis Lake is
characterized as oligotrophic to oligomesotrophic in 2013 and oligotrophic in
2014 (Table 4.2.3-2).

Table 4.2.3-2. EPA lake WQ classification system and estimated TSI for Trichonis Lake.

TSI (Chl- TSI
Date | TSI(TP) ( Classification
a) average
ligotrophic t
2013 | 574 31.3 443 OIBOTOPE 0
oligomesotrophic
2014 47.35 214 34.4 oligotrophic

4.2.3.2 MLR analysis and regression models

MLR analysis concerning the in-situ data and L8 band combinations of
2013 returned statistical insignificant results. Regarding the correlations
accompanied by the highest values of correlation coefficient, correlation
analysis was subsequently attempted between the in-situ data of 2013 and
mean remote sensed values. Those values were retrieved from 90 m buffer
zones that were created around each sampling station and were transformed



into surface reflectance. The retrieval of a mean reflectance value around each
in-situ sampling site was considered more appropriate in order to reduce
sensor and algorithm noise (Hu et al,, 2001). Those results were equally
statistically insignificant. Subsequently, in-situ data and band combinations of
satellite image of 2014 were correlated. This correlation analysis, after having
tested more than 45 band combinations, yielded more statistically acceptable
results compared to data of 2013.

Low and statistically insignificant relationships were detected
particularly among reflectance values and TP concentrations while the most
remarkable (but still statistical insignificant) results, are presented below
(Table 4.2.3-3). TP quantitative model (1, Table 4.2.3-3) yielded R and R?
values equal to 0.27 and 0.07, respectively while the predictors included are
the subtraction between bands Green and Red and the natural logarithm of
Red and Green ratio (Table 4.2.3-3). Then, using the backward linear
regression, In (Red/Green) was removed (Table 4.2.3-4) and quantitative
model (2; Table 4.2.3-3) resulted in R and R? values equal to 0.24 and 0.06,
respectively while Durbin-Watson’s statistic indicates an absence of
autocorrelation in the residuals (Table 4.2.3-3). Considering certain statistical
indices (especially the value of R?), all predictive models of TP were rejected
due to their low performance.

Concerning the Chl-a regression model, coefficients Blue/ (Ultra
Blue+Blue+Green) and (Ultra Blue+Blue)/2 were indicated by the predictor
importance chart (Figure 4.2.3-3a) and were used presenting acceptable
multicollinearity statistics with values of tolerance and VIF 0.96 and 1.04,
respectively.

Concerning the spatial distribution of spectral indices, measured from
satellite image of 2014, slight differences and variance were also indicated
(Table 4.2.3-5). Moreover, the highest value range is apparent in NDVI values
(0.0227) while the lowest is in the EVI index. Regarding all indices, no great
difference is detected in maximum and minimum values, indicating once
again the high spatial homogeneity and the lack of variability that
characterizes Trichonis Lake. For the logChl-a model, four (4) equations were
evaluated, with the following independent variables: the EVI, NDWI,
MNDWI and NDVI vegetation and water indices (Table 4.2.3-6). Chl-a can be
measured initially by using vegetation indices and by extension based on the
Green and SWIR bands of water indices (NDWI, MNDWI) due to Chl-a
absorbance in violet-blue and orange-red wavelengths and its reflection in
green/yellow light. Concerning the selected logChl-a quantitative model,
vegetation and water spectral indices EVI, NDWI, MNDWI and NDVI were
employed presenting marginally acceptable statistics (Table 4.2.3-7).

MLR model involving Landsat 8 bands 2 (Blue), 3 (Green) and 4 (Red)
proved to be the most suitable for predicting CDOM absorption at 420 nm in
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Trichonis Lake (Table 4.2.3-7). Correlation coefficient equals to 0.48 (training
data) while Durbin-Watson value indicates independence of residuals. The
optimal estimating model of ammonium concentration includes the bands 1
(Ultra-Blue), 3 (Green), and 4 (Red) (Table 4.2.3-7; Figure 4.2.3-3b), while the
value of the correlation coefficient is equal to 0.26 (training data). Collinearity
statistics (Tolerance and VIF) of the coefficients are 1, excluding the possibility
of multicollinearity.

Table 4.2.3-3. Regression analysis statistics and models’” summary among reflectance
values and total phosphorus concentrations (dependent variable).

Change Statistics
R Durbin
Squar|Adjusted| Std. Error of [R Square F Sig. F -
Model| R e |RSquare| the Estimate | Change | Change | dfl | df2 | Change |Watson
1 |.268% .072 | -.026 0117 072 734 2 19 49 1.611
2 |.239%| .057 | .010 0115 -.015 301 1 19 .59

Dependent Variable: TP (mg/1)

a. Predictors: (Constant), B3-B4, In (B4/B3)

b. Predictors: (Constant), B3-B4

Table 4.2.3-4. Variables entered/removed from TP predictive models depending on the
regression method used.

Variables Variables
Model Entered Removed Method
1 B3-B4, In (B4/B3) . Enter
2 . In (B4/B3) Backward (criterion:

Probability of F-to-
remove >=.100).

3 . B3-B4 Backward (criterion:

Probability of F-to-

remove >=.100).

a. Dependent Variable: TP (mg/1)
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Figure 4.2.3-3. Predictor importance charts indicating the optimal factors for the

assessment of Chlorophyll-a (a) and Ammonium concentrations (b).

Table 4.2.3-5. Descriptive statistics-Summary
calculated from satellite image of 2014.

tables of selected spectral indices

2014 N | Range | Min | Max | Mean Std. Skew- Std. | Kurto- | Std.
Deviation ness Error sis Error
EVI 22 | 0.0001 | -0.002 | -0.002 | -0.002 0.0 0.17 0.49 1.32 0.95

NRVI | 22 | 0.0002 | -1.002 | -1.002 | -1.002 0.0 -0.58 0.49 -0.3 0.95

NDWI | 22 | 0.0064 | 0.86 | 0.87 | 0.87 0.002 0.46 0.49 -0.6 0.95
MNDWI | 22 | 0.0021 | 094 | 0.94 0.94 0.0005 0.02 0.49 0.08 0.95
GNDVI | 22 | 0.0218 | -0.424 | -0.4 | -0.42 0.006 0.72 0.49 -0.08 0.95

NDVI | 22 | 0.023 | -029 | -0.26 | -0.28 0.006 0.797 0.491 0.46 0.953
Table 4.2.3-6. Regression analysis statistics and models’ summary among multiple
spectral indices and log-chlorophyll-a concentrations (dependent variable).

Std. Change Statistics
Error of
R | Adjuste| the

Mod Squar | dR | Estimat | R Square F Sig.F | Durbin-

el R e Square e Change | Change | dfl | df2 | Change | Watson

1 578 334 126 12 334 1.608 5 16 214

2 5760|332 175 12 -.002 .054 1 16 819

3 493¢| 243 117 12 -089| 2275 1 17 150

4 4734|224 142 12 -.019 449 1 18 512 2.235

a. Predictors: (Constant), NDVIL, MNDWI, EVI, NDWI2, NRVI
b. Predictors: (Constant), NDVI, MNDWI, EVI, NDWI2
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c. Predictors: (Constant), NDVI, EVI, NDWI2

d. Predictors: (Constant), NDVI, NDWI2

e. Dependent Variable: LOGCHL-A

Table 4.2.3-7. Statistical summary and description of final water quality parameters’

models.
Std. .
Error R? Dzrbl
Model R R? | of .the Chang| watso
Estima e
n
te
acdom420 = —2.195 — (859.4 = Green) + (3426.1 * Red) — 497.51
« [(Blue + Red)/2] 0.48 023 | 0.08 | 023 | 1.75
NH4+* = —0.32 4+ 0.14 = [(Ultra Blue — Red)/(Green — Red)] 0.26 0.07 | 0.02 0.7 2.33
CHL — a = —38.62 + 92.05 * [(Blue/(Ultra blue + Blue + Green)]
+2239.7 * [(Ultra blue + Blue)/2] 044 10191 013 1 019 ) 2.5
log Chl — a = —117.64 — (4894.002 * EVI) — (313.07 * NDWI) 058 1033 | 012 |-0000| 294

+ (433.46 * MNDWI) + (103.14 * NDVI)

4.2.3.3 Algorithm validation

In order to explore the reliability of the final regression WQ models,
regressions between L8 estimates of Chl-a, logchl-a, acooma20 and ammonium
concentrations in Trichonis Lake versus respective in-situ measurements of
2013 were conducted. Several models (linear, logarithmic, quadratic, cubic,
power and exponential) have been applied in order to detect the best
potential agreement between the observed and satellite-estimated values with
the cubic model presenting the highest correlation coefficients for all
parameters, except for logChl-a where quadratic model was proven to yield
slightly better results than the cubic one (Table 4.2.3-8). Nevertheless, the
moderate fit between in-situ and predicted WQ parameters by each selected
MLR indicated the moderate and low quantification capacity of these models.

Besides, the highest correlation coefficient among all validation models,
is associated with the ammonium concentration assessment model and it is
equal to 0.7 (standard error of estimates 0.004 mg/l), then follows Chl-a cubic
model with R equal to 0.5 and finally logchl-a predictive model (employing
spectral indices) with similar values between cubic and quadratic models, 0.4
and 0.41, respectively (Table 4.2.3-8). Following, correlation coefficient of
acpomaz0) was calculated 0.3 with standard error of estimates 0.17 m (Table
4.2.3-8).




Table 4.2.3-8. Regression analysis statistics and summary of WQ parameters’ regression
models, used in validation process. (R% the proportion of variance in the dependent
variable which can be predicted from the independent variables, R: Correlation
coefficient, Std. Error of the Estimate: measure of the accuracy of predictions).

Chl-a (ug/1) R | R? |Std. Error of the Estimate

linear 0.200{0.040 0.220
logarithmic 0.223] 0.05 0.218
quadratic 0.440/0.194 0.207

cubic 0.44710.199 0.207

power 0.226|0.051 0.094
exponential 0.202(0.041 0.095
Chl-a (pg/l)

R R? |Std. Error of the Estimate
(spectral indices)

Linear 0.34 | 0.11 0.02
Logarithmic 0.30 | 0.09 0.02
Quadratic 0.41 | 0.17 0.02
Cubic 0.40 | 0.17 0.02
Power 0.30 | 0.09 0.01
Exponential 034 | 0.11 0.01

acdom420 (mM-1) R R2 | Std. Error of the Estimate

linear 0.11 |0.012 0.162
logarithmic  |0.131|0.017 0.162
quadratic 0.196(0.038 0.164

cubic 0.258 |0.067 0.166

power 0.136(0.018 0.106
exponential  |0.118]0.014 0.106

NHs¢* (mg/1) R | R2? |Std. Error of the Estimate

linear 0.325/0.106 0.005
logarithmic 0.252]0.064 0.006
quadratic 0.611(0.374 0.005
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cubic 0.689|0.474 0.004

power 0.421(0.177 0.379

exponential |0.5050.255 0.360

Spatial distribution of in-situ measurements of NH4* (Figure 4.2.3-4a)
and Chl-a concentration (Figure 4.2.3-5a, Figure 4.2.3-5a) was mapped
through their spatial interpolation using the Spline method. Other
interpolation methods, e.g., IDW (Inverse Distance Weighted) and natural
neighbour were also tested, but Spline method generated the smoothest
surfaces and representative values that were closer to the in-situ measured
concentrations. The ammonium regression model was applied on the satellite
image of 2013 and yielded concentrations ranging from 0 to 0.11 mg/I (Figure
4.2.3-4b) in relation to in-situ ammonium distribution which ranged from 0 to
0.08 mg/1 (Figure 4.2.3-4a). Pixels having negative values were deleted and the
few remained are illustrated with black colour.

Furthermore, the application of the regression models on the satellite
data of 2013 indicated some increasing or decreasing assessment trends
compared to the respective in-situ data. In particular, Chl-a regression models
overestimated the actual Chl-a concentrations with the main difference that
the model retrieved from singe band combinations present a more fluctuated
value distribution (Figures 4.2.3-5b) than the Chl-a retrieved from specific
spectral indices (Figures 4.2.3-6b).
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Figure 4.2.3-4. In-situ (a) and satellite derived (b) NHs* (mg/l) of 2013 along the
Trichonis Lake, after applying the satellite-regression algorithm.
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Figure 4.2.3-5. In-situ (a) and satellite derived (b) Chl-a (ug/l) spatial distribution of
2013 along the Trichonis Lake, after applying the satellite-regression algorithm
using L8 bands.
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Figure 4.2.3-6. In-situ (a) and satellite derived (b) Chl-a (ug/l) spatial distribution of
2013 along the Trichonis Lake, after applying the satellite-regression algorithm
using spectral indices.
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4.2.4 Discussion

Remote sensing provides suitable information concerning WQ and
aquatic systems management. In this study, the feasibility of Landsat 8 OLI
imagery in combination with in-situ WQ parameters’ concentrations to
identify relevant algorithms for WQ assessment in an oligotrophic waterbody
(Trichonis lake) was demonstrated limited. Water samples from Trichonis
Lake were analyzed twice in 2013 and 2014 regarding concentrations of Chl-g,
ammonium and CDOM concentration, which was determined as the
absorption at 420 nm, acpomw), extrapolated from the absorption spectra.
According to literature and lab measurements, Trichonis Lake is not only
characterized as an oligotrophic lake but also illustrates a relatively low
quantitative, temporal and spatial variability.

MLRs were conducted among available data and the majority of models
were characterized by insignificant statistical correlations. Optimal models
were selected based on statistical criteria but presented low coefficients and
unsuccessful results. The selected predictive model of Chl-a concentration
involves the combination of Ultra-Blue (B1), Blue (B2) and Green (B3) OLI
bands of L8 satellite sensor. These results are in accordance with those of
Pahlevan et al. (2014), who attempted to map OLI's spectroradiometric
sensitivity to changes in optically active components (OACs), such as Chl-g,
for a nominal solar zenith angle 0s=40°, (solar zenith angle in our study equals
to 0s=35°). According to their results, the Blue band (B2) shows the highest
sensitivity to changes in Chl-g, in particular on average for changes higher
than 0.5 ug/l. This implies difficulties in detecting changes smaller than 0.5
units of Chl-a on the focal plane using this single band. While the Ultra Blue
(B1) and the green bands (B3), on average, exhibit similar sensitivity to the
changes in Chl-g, the B1 band is slightly better for waters with low Chl-a
concentrations.

Addittionally, the logChl-a predictive model based on spectral indices
incorporated OLI bands 2 (Blue), 3 (Green), 4 (Red), 5 (NIR) and 7 (SWIR2)
with R equal to 0.58 (training data). Brezonik et al. (2005); Olmanson et al.
(2008); Fadel et al. (2016) and Bohn et al. (2017) used similar bands for the
estimation of Chl-a in lakes and reservoirs and more particular vegetation
indices and bands TM and ETM 1 (Blue), 2 (Green) and 4 (NIR). Bohn et al.
(2017) used the NDVI in Laguna Chascomus in relation to Chl-a estimation
for its optical characteristics and because it is sensitive to the pigment
absorption. NDVI has been found to be very sensitive to changes in the
environment (Kahru et al., 1993; Bohn et al., 2017). Moreover, its use is more
successful in zones with moderate wind speeds without developing waves,
which is not the case in Trichonis Lake. Furthermore, water indices include
SWIR band and according to Barrett and Frazier (2016) all significant band



combinations for chlorophyll included at least one of the short-wave infrared
bands (SWIR), although most WQ studies to this point have not included
SWIR bands. Ratios between either chlorophyll absorption bands (Red and
Blue) or chlorophyll reflectance bands (Green and NIR) with either of the two
SWIR bands are expected to emphasize the portion of the spectrum affected
by chlorophyll, thereby making estimated values more readily correlated with
actual sample values (Barrett and Frazier, 2016).

As far as the utilized satellite sensor is concerned, Bonansea et al. (2018)
tried to generate a different Chl-a model for different Landsat sensors (5 TM, 7
ETM+ and 8 OLI). Although OLI sensor has better radiometric sensitivity and
signal to noise ratio, they could not prove that OLI is better than TM and
ETM+ sensors. Overall, they observed that each Landsat sensor can be used to
estimate Chl-a in the reservoir while the best model for TM sensor included a
combination of Green, Red and NIR band, and the ratio green/red (R? = 0.92).
A three-variable model using Green and SWIR-1 bands and the ratio
red/green was the best model to predict Chl-a using EMT+ sensor (R?=0.91).

Concerning the assessment of CDOM absorption via RS, Pahlevan et al.
(2014) explored the detection limits associated with CDOM absorption at 440
nm. While hereby study resulted in a predictive model for CDOM absorption
at 420 nm combining the Blue, Green and Red bands, Pahlevan et al. (2014)
found out that in waters with relatively low CDOM concentrations,
(acpom@40<0.5 m™), the Blue and the Green bands exhibit the highest sensitivity
whereas the Red band was found insensitive to the changes in CDOM
absorption. In general, it was found that OLI is, on average, sensitive to
changes in CDOM absorption larger than 0.1 m. Although actual retrievals
can be improved by the use of multiple bands, the fact that in Trichonis lake
detected changes in Chl-a concentrations and to a lesser extent in CDOM
absorption are marginally equal to the aforementioned threshold values (0.5
ug/l and 0.1 m?, respectively), could be the main reason of not managing
high-precision assessment results. Furthermore, Pahlevan and Schott (2013)
applied a physics-based approach to fully examine the potential of OLI in
CDOM absorption mapping. Based on their observations they concluded that
the disparity between the response functions of OLI is more noticeable in
turbid waters than in clearer waters when mapping CDOM absorption.

Development of reliable methods to retrieve CDOM information from
spectral reflectance data is difficult. Indeed, among the major WQ variables
measurable by remote sensing (e.g., suspended solids, chlorophyll, Secchi
depth), for several reasons CDOM may be the most difficult to measure
accurately in inland waters. CDOM absorbs but does not scatter or reflect
light while it has no absorbance troughs or peaks, such as are found for plant
pigments; instead light absorption by CDOM follows a simple quasi-
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exponential decrease with increasing wavelength. There are no wavelength
bands in the visible spectrum uniquely associated with CDOM that can be
used for measurement purposes. Thus, measurement of low to moderate
levels of CDOM in optically complex Case-2 waters is especially difficult
because light scattering by these particles dominates their reflectance spectra
(Brezonik and Olmanson, 2015).

Predicting ammonium concentration in inland waters can be a hard task
since very few studies have attempted to monitor data with non-optical
properties, such as nutrient concentrations. Furthermore, not many previous
studies have been able to provide total nitrogen models with statistically
significant results or reasonable adjusted R? values (Isenstein and Park, 2014).
Hereby research resulted in the ammonium predictive model incorporating
Ultra-Blue, Green and Red bands yielding a regression coefficient equal to 0.7,
regarding the validation process. Similar results, concerning the utilized
wavelengths, were presented by Dewidar and Khedr (2001) and Isenstein and
Park (2014), who detected the strongest correlation among TN and Landsat
TM bands 1 (Blue) and 2 (Green). Chen and Quan (2012) predicted TN
concentrations with Landsat TM bands 1 (Blue), 2 (Green), 3 (Red), and 4
(NIR), however these results were not very successful (R? = 0.24). Effective
and precise WQ determination is dependent on the satellite sensor used, the
methodology followed and also on the nature of the waters studied (Case-1,
Case-2). Based in these premises, Gons et al., (2008) attempted to estimate
Chl-a concentration by using MERIS images and they concluded that the
application of MERIS FLH algorithms in oligotrophic waters may indeed be
precluded because of too low signal to noise ratio.

All in all, in this study results showed that WQ monitoring of
oligotrophic freshwater bodies through RS tools can be a really challenging
task. Landsat 8 has been widely used in eutrophic lakes and even fewer
studies have managed to estimate nutrients, particularly ammonium
concentrations. Season of water samplings, lake trophic status and the spatial
homogeneity may be the greatest limitations that prevented a better and more
accurate prediction.

5.2.5 Conclusions

Hereby study explored the use of RS technology and specifically of
Landsat 8 OLI sensor, to accurately quantify certain WQ parameters in
Trichonis lake.

According to the in-situ data analysis and their spatial distribution, it has
been strongly ascertained that Trichonis Lake is characterized by particularly
low concentrations and the lack of any spatial or temporal value



differentiation across the twenty-two sampling stations, case that inhibited a
greater predictive potential.

Furthermore, weak correlations were detected among in-situ and
satellite data while those correlations, particularly in autumn and summer,
may also be due to the lake turnover effect. When the equalization of the
thermal gradient in the lake induces mixing of surface and bottom waters,
remote monitoring is made difficult due to instability (Barrett and Frazier,
2016). Moreover, the incorporation of the SWIR band into Chl-a estimation (in
contrast to other studies) suggests that there may be a relationship between
SWIR reflection and algae/plant production, which deserves further
investigation.

Additional water samplings should be made during different time
periods concerning specific mixing boundaries (surface-bottom waters) in
order to investigate whether the feasibility of remote monitoring increases. In
case strong relationships are found, this may help improve prediction
capabilities by providing researchers with bounded time periods (according
to region) (Barrett and Frazier, 2016).

Further research is required towards the investigation of more water
parameters or using sensors of different spatial and geometrical analysis in
order to be able to compare the outcomes among all different cases.

Even though early results demonstrated the vulnerability of the Landsat
8 imagery to precisely determine certain WQ components in an inland
oligotrophic body, it is generally accepted that those models may initially
increase the knowledge of Trichonis lake’s WQ and then be utilized as
warning indicators of WQ deterioration.
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5. General Conclusions and Limitations

This chapter recapitulates the final key conclusions drawn in the framework
of this PhD thesis, accompanied by the scientific contributions offered and
limitations accrued per main objective pursued.

Objective 1: Establish a methodological framework that aims to model WQ
and trophic status of optically diverse Greek lakes (Case 2 waters) by
assessing key WQ elements with fine spatial resolution (10-30 m) RS image
data. Ultimate goal of this methodology is the accurate spatial assessement of
WQ and trophic status over various types of lakes, thus acquiring the
valuable information of their variability in near-real time.

Conclusions:

(a) WFD application in Greece concerning Lake Waterbodies yielded so
far significant WQ datasets whose statistical elaboration indicated the
great significance of lakes’ nature concerning the constituents’
variance. Furthermore, hereby developed WQ models initially
accommodated the spectral configuration differences among the
Landsat sensors (7 ETM+ and 8 OLI) and then managed to assess
adequately WQ and trophic status of Greek lakes. Studied WQ
parameters include Chl-a and TP concentrations and Secchi Disk
depths while their employment into Carlson’s trophic state index (TSI)
equation facilitated the lakes’ trophic status assessment. The most
optimal Chl-2 quantitative models include the ratios Blue to Green and
Red, Red to Green and Blue, and the In transformed bands SWIR1 and
SWIR2. The Secchigenerat model incorporated a combination of bands
Blue, Red, Green and SWIR2 while models developed for natural and
artificial lakes were accompanied by the insertion of logchl-a as a
significant Secchi predictor. The general TP assessment model includes
the logarithmic transformation of Chl-a and the band ratio of Ln-Red
and Ln-SWIR1 bands while the TPrawra model incorporates also the
ratio of Green and Red bands. Based on those results, the background
knowledge on whether a lake is natural or artificial proved to be
valuable concerning the models” predictions’s accuracy; hence, it was
concluded that WQ and trophic status assessment of a) artificial and
b) shallow (mean depth <5 m) lakes was less successful.
Consequently, a deeper limnological research regarding the primary
limiting factors of Chl-a production and the predominant sources of



turbidity (algal/non-algal), particularly in reservoirs, is considered
essential. This prerequisite is further strengthened by the fact that none
TP statistically acceptable model was generated for artificial lakes,
partly attributed to the time lag that has been observed for
phytoplankton to consume TP in this type of lakes.
Above all, herewith delivered WQ models were proved capable of
supporting perpetual lake WQ monitoring and sustainable
management at a national scale, at near real time and at finer spatial
resolution compared to similar, large-scale applications-based on EO
techniques- offered worldwide. Furthermore, lake WQ monitoring can
be more effectively pursued after obtaining the valuable information of
spatial variability, while there is the possibility for WQ and trophic
status classification no longer be controlled by only one (1) sampling
station. WQ models can potentially be delivered to competent public
authority which is responsible for WQ monitoring of Greek lakes; in
this way there will be the opportunity to inspect lakes” trophic status at
times independently of the scheduled upcoming sampling campaigns.
(b) Development of WQ models and their validation indicated the high
contribution of SWIR bands in WQ monitoring of Case-2 waters,
although they have not been widely used by other studies. It was
proven that when Case 2 waters is the case, sediment reflectance
exceeds the absorptive properties of water in the SWIR wavelengths,
thus a common assumption made in Case 1 waters is abandoned.

Scientific contribution:

This is the first time, to the author’s knowledge, that 50 representative Greek
lakes” WQ has been modeled efficiently by using in-situ data and RS
technology. Spatial distribution of lakes” Chl-a, Secchi depth, TP values and
by extension trophic status can by assessed and monitored continuously in
near-real time and in fine spatial resolution, constituting a valuable lake
management tool - at a country level- in the hands of scientists and competent
authorities.

Given the complexity that characterizes the mapping of WQ elements in Case
2 waters (coastal, lakes, rivers) in combination with the wide study area
which includes a broad range of limnological conditions, hereby delivered
lake WQ models contribute essentially to sustainable water resources
management of Greece.

Limitations:

(@) A more accurate lake WQ assessment was hindered by the intense
optical diversity characterizing the wunder study Greek lakes.
Considering the high number (50) of the studied lakes and the fact that
their optical properties may vary resembling either to both Case 1 or
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(b)

(d)

()

Case 2 waters or classes within Case 2 waters, there has been an effort
to distinguish distinct optical water types (OWTs) among them based
on statistical analysis. However, hierarchical cluster analysis
incorporating in-situ WQ constituents (concentrations of Chl-a, TP and
Secchi depths) and Landsat response (respective reflectance at bands
blue, green, red, NIR and SWIRS) did not manage to yield reliable
results. Classification efforts employed datasets including all, average
and median values of WQ data, and median values of WQ data
grouped by seasonal sampling. The factor Season was considered since
it affects indirectly the eutrophication degree of waterbodies, e.g. the
growth of algae, the influx of nutrients caused by rainfall, the re-
suspension of suspended matter caused by wind and so on.

One more factor that has potentially prevented a better prediction of
lakes” WQ is the existence of an uncertainty of accuracy regarding the
location of sampling stations. Water sampling in lakes requires special
attention as winds and other external factors (e.g. season, lake depth
and changes in water level, ease of proximity) contribute to potential
transpositions even when revisiting the same sampling sites.

In addition to the aforementioned, the location of sampling stations
plays a major role in WQ monitoring, particularly of artificial lakes.
One of the main differences between artificial and natural lakes is that
artificial characteristically exhibit a trophic gradient as it may grade
from eutrophic (in its upper reaches) to oligotrophic (close to the dam).
As reservoirs lose nutrients (in particular P) through settling in a
downstream direction, utilized training in-situ data of a WQ model
may not reflect the actual WQ conditions of an artificial lake. Based on
this rationale, water samples from reservoirs is proposed to be
collected from at least two (2) stations with optimal quantity the three
(3) ones. The first one should be near to the point where each
river/stream drains into the lake, the second one in the middle of the
lake (as is now the case with the studied 50 lakes) and the third one
close to the dam.

It is reported that water transparency in artificial lakes is notably
influenced by non-algal sources of turbidity (Canfield and Bachmann,
1981). Moreover, Lind (1986) documented that the use of Chl-a to
estimate Secchi depth is inappropriate for waters where even moderate
amounts of non-algal turbidity are present; this presumption surely
affects hereby results, since the Secchiarisicial model developed herein,
employs the logarithmic transformation of Chl-a.

The implementation of the DOS1 atmospheric correction method has
not been validated in order to assure that atmosphere biases have been
completely removed. Given the high number of utilized satellite
imageries, though and the absence of atmospheric measurements, this



method was considered as adequate since it is widely used by the EO
community.

(f) One more limitation concerning hereby attempted lake WQ monitoring
through RS techniques, is the dependence on good climatic conditions.
More particularly, a quite large number of satellite images with dates
matching those of in-situ measurements, could not be used due to
atmospheric effects. This fact induced the loss of a significant amount
of field data, which otherwise could have contributed to the
development of even stonger WQ models.

(g) Employment of RS techniques is also restricted by the utilized sensor ‘s
temporal resolution or revisit time. In the context of this thesis, this
feature has surely prevented a more effective lake WQ monitoring for
those cases when the frequency desired was greater than the revisit
capacity of Landsat sensors. Hence, it is further suggested that the
EKBY’s WQ monitoring field trips will be planned to coincide with the
dates of Landsat and/or Sentinel 2 sensors overpass over the studied
lakes. In this way, more in-situ data with matching satellite images can
be employed in WQ models” validation.

(h) Concerning the distinction between land and water throughout the
satellite imageries, no prior classification has been conducted. WQ
models have been applied to lake surfaces accrued from lake
shapefiles, hence there is the possibility that some pixels, while
covering land, were defined as water; thus, may have prevented WQ
parameters’ quantification with higher accuracy.

Objective 2: Explore the spatio-temporal transferability of Landsat-developed
WQ models across sensors; initially across Sentinel 2 and then across multi-
sensor image data (Landsat 7 ETM+, 8 OLI and Sentinel 2 MSI). The
transferability was tested along the National Lake Network Monitoring of
Greece (WFD) and concerns the sampling campaigns of 2018.

Conclusion:

In general, herewith developed WQ models are proposed to employ
principally Landsat images; however, the employment of Sentinel 2 data
potentially produces reliable enough results with some (not significant)
deviations from both corresponding Landsat-derived and in-situ reference
lake WQ. Furthermore, the employment of multi-sensor (Landsat/ Sentinel 2)
image data offered some improvement on a case by case basis while joint use
facilitates in those cases the performance of high-frequency time series
analyses. This effort highlighted a match between the corresponding spectral
bands of Landsat and Sentinel 2 sensors; however, the slight inferiority of
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Sentinel 2 images indicated the existence of differences in the final recorded
radiometric values.

Scientific contribution:

As it has been already mentioned, the transferability of published WQ models
across different sensors has been poorly examined, due to inherent differences
(radiometrical, orbital, spatial, spectral). Towards strengthening the
facilitation of WQ and trophic status monitoring across Greek lakes,
employment of Sentinel 2 and multi-sensor image data (Landsat 7 ETM;
Landsat 8; Sentinel 2 MSI) permits the integration among existing and
historical missions while contributing to long-term time series data collection.
In this way, the smoothly and well-operating performance of hereby WQ
models will facilitate the multi-temporal lake WQ analyses, supporting
further integrated lake management in the framework of national
environmental policy.

Limitation concerning the WQ models” application on Sentinel-2 images:
WQ empirical models were developed based on Landsat-7 ETM+ and 8 OLI
images; hence it is expected to be affected by the corresponding spectral
composition and perform better when employing Landsat rather than
Sentinel 2 reflectance.

Limitations concerning the combined use of Landsat and Sentinel-2 images:
(a) Mandanici and Bitelli (2016) documented that Sentinel-2 MSI band 8A
(vegetation red edge) is the optimal option from the radiometric point
of view when Sentinel-2 images are associated with Landsat 8 ones.
Instead, MSI band 8 (NIR) is highly recommended for a joint use with
older Landsat series, such as Landsat 5. However, in this thesis, the
utilization of the Sentinel 2 B0O8 (NIR) band to match with B4 (L7
ETM+) and B5 (L8 OLI), may constituted an obstacle in achieving better
and more accurate WQ quantifications when employing Sentinel 2

data.

(b) Another factor that plays a major role in the combination of Landsat
and Sentinel 2 data are the residual effects of water specular reflections.
Those are usually derived from the different zenith and azimuth angles
and spacecraft altitude of the different sensors.

Objective 3:

An examination of the influence of different atmospheric correction methods
to WQ models’ performance after employing differently-atmospherically
corrected SR values. The harmonization between the different SR products is
based on the development of corrected sensor-specific (Landsat/ Sentinel 2)
WQ models by utilizing dataset of 2018. Analysis and validation processes are



performed across the National Lake Network Monitoring of Greece (WFD)
and the comparison of results is based on the in-situ WQ data of years 2019
and 2020.

Conclusion:

Double employment (dataset of 2018) of differently atmospheric corrected
reflectance values (DOS1, LaSRC, LEDAPS and Sen2Cor) in WQ models
indicated the DOS1 as the most effective method for the quantification of lake
WQ elements in almost all cases and for all sensors (Landsat/Sentinel 2). In
this way, empirically-developed WQ models, were proved to be applicable to
both archived and future Landsat and Sentinel 2 image data embedded in
GEE platform, exempting the user from the time-consuming pre-processing
procedure. Furthermore, sensor-corrected models provided better assessment
accuracy on a case by case basis depending on each water constituent’s
behavior with Secchi models (general, natural, artificial) illustrating the
highest improvement, followed by TP and Chl-a models. WQ models’
evaluation of years 2019 and 2020, indicated the sufficiency of GEE public
data for mapping Chl-a, Secchi depth and TP concentrations in a large
geographical region and particularly at a national scale (Greece).

Scientific contribution:

This is the first attempt, to the author’s knowledge, to facilitate the
quantification of spatiotemporal lake WQ across the Greek Lake Monitoring
Network of WFD, by using multi-sensor reflectance values retrieved from
GEE platform. Moreover, this research demonstrated the WQ models’
temporal stability when employ SR retrieved from the GEE platform, offering
scientists and Greek competent authorities the opportunity to exploit this
massive warehouse of satellite data combined with the on-going WFD
application.

All in all, exploitation of GEE image data promotes the long-term, near real-
time, national-scale lake WQ and trophic status monitoring by mapping long-
term WQ trends in less time and fine spatial resolution.

Limitations: Satellite imageries from Landsat and Sentinel 2 sensors,
manually downloaded, have been subjected to different preprocessing
procedures (DOS1) compared to corresponding, embedded in GEE platform
(LaSRC, LEDAPS and Sen2Cor). Different atmospheric correction methods
make harmonization of those differences essential to eventually generate
reflectance values that can be comparable and combined. Otherwise, RS
scientists are strongly recommended to apply the same AC algorithms as
those adopted in GEE platform in cases where manually-derived satellite
products need to be compared or/and combined with GEE-integrated images.
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Objective 4: Assess WQ models’” performance in a distinct category of
optically complex Case-2 waters, oligotrophic Trichonis and Amvrakia lakes.

Conclusion:

Chl-g, Secchi and TP quantitative models have been empirically built based
on a wide range of concentrations measured throughout 50 Greek lakes,
representing almost all trophic status classes. However, their application in
oligotrophic Trichonis and Amvrakia lakes was ineffective, confirming in
absolute agreement with the relevant literature, the underachievement of
universal WQ models at the lowest chlorophyll concentrations (oligotrophic
waterbodies) and at cases where the optical contribution is non-algal and
inorganic (e.g. sediments). In this way, the necessity of the development of
special oligotrophic algorithms for a more efficient and comprehensive lake
management is underlined. A more accurate WQ assessment in oligotrophic
bodies requires more appropriate satellite bands (blue-to-green ratios), more
and narrower wavelengths specifically in NIR spectrum, additional water
samplings during different time periods and the refinement of AC processors.
Additional to those implications, a preceding and thorough research on
phytoplankton community composition, Chl-a distributions, particles and
CDOM is required for a more accurate WQ monitoring of oligotrophic
waterbodies along Greece.

Scientific contribution:

The unique contribution of this objective lies in fact of making the final
decision on whether national WQ models support adequately the perpetual
WQ monitoring of Greek oligotrophic lakes or special oligotrophic algorithms
should be developed. Based on the above, this research facilitates the
refinement of lake WQ monitoring in Greece by laying the foundation stone
of further discriminating Case-2 Greek waterbodies into distinct optical water
types (OWT). Hence, the increase of WQ assessment’s accuracy per OWT is
promoted and in particular of oligotrophic lakes by providing the
background knowledge required.

Limitations:

a) The extremely low measurements of Chl-a concentrations in Trichonis
and Amvrakia lakes; those are usually connected with decreased
turbidity (lack of suspended particles) and by extension with decreased
energy received by the satellite sensor.

b) Oligotrophic lake WQ monitoring by using Landsat (7 ETM+/8 OLI)
sensors may be problematic. Sensors delivering images with more and
narrower bands in the red-NIR spectral region may perform better in
oligotrophic waterbodies. Furthermore, Chl-a and turbidity are



documented to be better quantified with sensors having red-edge band
(680-710 nm) such as Sentinel 2, Sentinel 3 and Rapideye (Pizani and
Maillard, 2022). Additionally, the alternative proposed for oligotrophic
waters is the development of blue-to-green ratio algorithms (O'Reilly
and Werdell, 2019).

c) Water samples initially from Trichonis/Amvrakia lakes and then
throughout the WFD lake network have been collected by different
institutions’s staff, more probably using different methodology.
Furthermore, the determination of Chl-a and nutrients” concentrations
has been conducted employing different laboratory techniques,
equipment and calibrations in different facilities, e.g. EKBY and
HCMR. Those differences generate errors and biases concerning their

intercomparison.

Objective 5: Model WQ of oligotrophic Trichonis lake by assessing WQ key
elements (Chl-g, nutrient concentrations and CDOM absorption at 420 nm)
through satellite RS. Trichonis is the largest freshwater lake of Greece while
the available in-situ and satellite data concern years 2013 and 2014.

Conclusion: The ability of Landsat 8 OLI imagery was proven limited
concerning the establishment of WQ models in the oligotrophic Trichonis
lake. Furthermore, observed weak correlations among in-situ and satellite
data, particularly in autumn and summer, may also be due to the lake
turnover effect. When the equalization of the thermal gradient in the lake
induces mixing of surface and bottom waters, remote monitoring is made
difficult due to instability (Barrett and Frazier, 2016). Further research is
required towards the investigation of more water parameters or using sensors
of different spatial and geometrical analysis in order to be able to compare the
outcomes among all different cases.

Scientific contribution:

Even though early results demonstrated the vulnerability of the Landsat 8
imagery to precisely determine certain WQ components in an inland
oligotrophic body, it is generally accepted that those models may initially
increase the knowledge of Trichonis lake’s WQ and then be utilized as
warning indicators of its WQ deterioration.

Limitations:
(b)The main factors disabling WQ assessment in Trichonis lake are the
extremely low constituents’ concentrations and the lack of any value
differentiation among the sampling stations. Water samplings have
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been conducted in autumn and summer seasons; additional water
samplings should be made during different time periods concerning
specific mixing boundaries (surface-bottom waters) in order to
investigate whether the feasibility of remote monitoring increases. In
case strong relationships are found, this may help improve prediction
capabilities by providing researchers with bounded time periods.

(c)Another significant factor is the lack of any prior knowledge about
regional phytoplankton community composition, namely whether the
sampling stations are diatom- or cyanobacteria- dominated. When
assessing the retrieval accuracy of satellite observations, phytoplankton
community composition should be considered as spatial and temporal
variations in composition may result in uncertainty in the inference of
bloom severity. Binding et al. (2019) documented that if satellite Chl-a
algorithms are calibrated primarily on one-species-cyanobacteria-
dominated conditions, it may lead to significant uncertainty in derived
phytoplankton biomass within mixed bloom assemblages or blooms
dominated by other cyanobacteria. This may lead to potential
misrepresentation of bloom severity while such uncertainty is
particularly important for long term trend analysis.

5.1 Future work

Monitoring of lake WQ is a key priority topic, in terms of national
environmental policy, which, ideally, should operate continuously while
yielding updated and accurate results. During the accomplishment of this
PhD thesis arose obstacles and particular factors hindering the achievement of
more precise outcomes; on the other hand, in this way future pathways were
configured towards the direction of managing an ever-enhanced and
succesful WQ assessment throughout Greek lakes based on EO applications.

Overall, studies have concluded that there are atmospheric correction
(AC) methods that perform better when employed for the assessment of
certain WQ parameters compared to others. Since the DOS1 atmospheric
correction method has not been validated in the context of this thesis, one of
priority future actions is the application of alternative atmospheric correction
methods with principle goal the exploration of their wider effect on WQ
models” predictive ability and the selection of the most optimal one. A robust
statistical analysis of how effective a AC method is, requires ground truth Rrs
values, collected using a hand-held or shipborne spectroradiometer, to
compare and evaluate AC corrected pixels. With a much larger dataset of
observations on the optical properties, it will be possible to separate the
match-ups by water type, giving further information and possible targeting of



water bodies with specific AC processors. AC methods” intercomparison will
manage to imply the most optimal AC algorithm and even distinguish the
most appropriate one not only for each WQ constituent but also for each
OWT (optical water type).

Based on the rationale of connecting suitable AC method with respective
OWT, the classification of hereby-studied 50 lakes in distinct OWTs is
considered necessary. In general, lakes and reservoirs may present WQ
variability not only across the study area (Greece) but also among regions and
within some water bodies. The aim of this classification is to ensure that every
OWT will be linked to specific bio-optical conditions in order to reflect the
dominance of individual or group WQ elements’ concentrations. The most
commonly used inland water OWT classification system has been developed
by Spyrakos et al. (2018) and is based on freely shared in-situ lake
hyperspectral data, across global range. More particularly, resampling of
OWT classes spectra to Landsat and Sentinel 2 spectra- except for WQ
constituents” concentrations as was herewith performed- and the detection of
their inter similarities would facilitate their OWT classification in an efficient
and accurate manner. The use of OWTs contributes to the development of
WQ algorithms for optically complex waters while in parallel helps to choose
an efficient AC processor for a specific region of interest.

Moreover, authors intend to expand their research horizons and
experiment with non-linear methods concerning the WQ models’
development. Empirical methods and in particular machine learning
techniques are able to handle complicated non-linear relationships which
typically characterize the WQ remote sensing data. Considering the non-
parametric nature of the hereby-utilized data, a sensitivity analysis among
artificial neural network, genetic algorithms and support vector machine
might be valuable for a more accurate assessment of WQ constituents.
Additionally, the indication of the most optimal non-linear method and its
comparison with herewith WQ linear models would overall contribute to a
deeper knowledge of WQ parameters’ behaviour.

Concerning the hereby delivered lake WQ models, one of the most
significant tasks that will definitely be accomplished in the near future, is
their integration in the GEE platform. Separate Chl-a, Secchi and Total
Phosphorus models developed for all, natural and artificial lakes
accompanied by the respective TSI equations for the trophic state assessment
will be unified in an automated tool for near real time, national-scale WQ and
trophic status monitoring.

As far as the utilized satellite sensors are concerned, most of the inland
water applications developed for WQ monitoring and management have been
established by using images from multispectral and medium to high spatial
resolution satellites (e.g., Landsat, Sentinel-2-MSI). Nowadays, spaceborne
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hyperspectral sensors have been attracting a significant attention since they
offer simultaneous collection of hundreds of narrow spectral bands,
facilitating the retrieval of WQ parameters. Hence, experimentation with
hyperspectral image data such as PRISMA, DESIS, HISUI and EnMAP
constitutes one more future task which will be conducted concerning the WQ
parameters’ estimation in Greek lakes. Especially EnMAP is proposed as a
suitable choice for remote estimation of Case-2 WQ properties as it has a
spatial resolution of 30 m, 4 days of minimum temporal resolution and its
products consist of 224 bands.

Above all, it should be emphasized that the most significant
precondition in order all of the above-mentioned future tasks be successfully
achieved, is the on-going operation of WFD in Greece.



