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Water quality assessment in Greek lakes by using remote sensing and statistical modelling 

 

Department of Natural Resources Development & Agricultural Engineering 

Laboratory of Soil Science & Agricultural Chemistry 
 

 

ABSTRACT 
 

The aim of the present PhD thesis is the achievement of continuous 

monitoring and assessment of water quality (WQ) and trophic state of Greek 

lakes by exploiting the implementation of the Water Framework Directive 

(WFD) in Greece in synergy with satellite RS, providing parallel support to 

sustainable water resources management at a national scale. Continuous WQ 

monitoring is the most crucial aspect for lake management. Therefore, the 

methodological framework developed herein has as an ultimate goal the 

generation of lake WQ quantitative models while the practical use of this 

approach was developed and evaluated in a total of 50 lake water bodies 

(natural and artificial) from 2013–2018, constituting the National Lake 

Network Monitoring of Greece in the context of the WFD. Concerning the 

utilized Earth Observation (EO) data, images from Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) 

sensors have been combined with co-orbital WQ in-situ measurements (Chl-a, 

Secchi Disk depths and Total phosphorus-TP- concentrations) with the main 

objective of delivering robust WQ assessment models.  

From the statistical point of view, principal component analysis (PCA) was 

performed to explore Greek lakes’ interrelationships among their Chl-a values 

and certain criteria, e.g. their characteristics (artificial/natural), WFD 

typology, climatic type (according to the Köppen-Geiger climate 

classification), season of water samplings and the date difference between 

sampling and satellite overpass. PCA highlighted the lake characteristics 

(natural/artificial) and WFD typology as the variables that mostly contribute 

to the variance of Chl-a concentration; thus, numerous stepwise multiple 

regression analyses (MLRs) among different groups of cases, formed by the 

PCA criteria, were implemented with basic aim the generation of different 

remote sensing-derived Chl-a algorithms for different types of lakes. 

Moreover, correlation analysis among in-situ co-orbital WQ data was 

conducted to explore and detect their inter-relationships. Subsequently, based 

on correlation analysis’s results, further stepwise MLRs employing available 

in-situ TP and Secchi depth datasets were further implemented to establish 

optimal quantitative models. Eventually, trophic status classification was 

conducted herein, calculating Carlson’s Trophic State Index (TSI) of each lake, 

initially throughout all lakes and then oriented toward natural-only and 

artificial-only lakes. The proposed scheme resulted in the development of 



models separately for natural (R = 0.78) and artificial (R = 0.76) lakes, while 

the model developed without criteria proved weaker (R = 0.65) in comparison 

to the other ones examined. MLRs among Landsat data and Secchi depths 

resulted in 3 optimal models concerning the assessment of Secchi depth of all 

lakes (Secchigeneral; R = 0.78; RMSE = 2 m), natural (Secchinatural; R = 0.95; RMSE = 

1.87 m) and artificial (Secchiartificial; R = 0.62; RMSE = 1.36 m), with reliable 

accuracy. Study findings showed that TP-related MLR analyses failed to 

deliver a statistically acceptable model for the reservoirs; nevertheless, they 

delivered a robust TPgeneral model for all lakes (R = 0.71; RMSE = 0.008 mg/L) 

and a TPnatural model for natural lakes (R = 0.93; RMSE = 0.018 mg/L). 

Subsequently, regarding the TSI results, the higher deviation of satellite-

derived TSI values in relation to in-situ ones was detected in reservoirs and 

shallower lakes (mean depth < 5 m), indicating noticeable divergences among 

natural and artificial waterbodies.  

Next significant key questions that were answered are initially whether 

Landsat-based empirical WQ algorithms can be efficiently applied to Sentinel 

2 images and then whether the combined use of multi-sensor data improves 

those algorithms’ prediction accuracy. Hence, Sentinel 2 images of 2018 with 

concurrent dates with those of field measurements were utilized to facilitate a 

WQ models’ efficiency evaluation and comparison with the respective 

Landsat’s validation results.  Concerning the results, in particular for general 

models of all WQ elements (Chl-a, Secchi depth and TP), all models were 

more efficient and accurate when were accompanied by Landsat images while 

no improvement was observed by using multi sensor images. Chl-a and TP 

models (for natural lakes) presented lower values of error metrics when 

employing Sentinel 2 images (RMSE Chl-a=16.4 μg/l vs 21.5 μg/l; RMSE 

TP=0.03 mg/l vs 0.031 mg/l) and only Secchinatural model performed better with 

Landsat data (2.8 m vs 2.9 m). Concerning artificial lakes, performance of Chl-

a model was better by exploiting Landsat data (RMSE= 3.7 μg/l vs 7.7 μg/l of 

Sentinel 2) while Secchi model achieved slightly better efficiency with Sentinel 

2 images (RMSE= 1.5 m vs 1.6 m of Landsat). The largely worse performance 

of Chl-a models compared to rest of WQ elements (median MAPE values 

ranged from 42 % to 58%, Secchi depth from 24% to 44% and TP from 22% to 

38%), emphasized once again the complexity that mapping of Chl-a in Case 2 

waters (coastal and/or inland waters) hides.  

Today, open source Cloud Computing platforms have emerged as a valuable 

tool for geospatial analysis of image data from various satellites while the 

Google Earth Engine (GEE) platform is the most widespread in the scientific 

field of satellite RS. Newest launches of various satellites in combination with 

the GEE platform, facilitate in a great extent national-scale lake monitoring. 

Next step was to test the transferability and performance of hereby-developed 

WQ algorithms when employing Landsat (7 +ETM/8 OLI) and Sentinel 2 

surface reflectance (SR) values embedded in GEE and subjected to different 
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atmospheric correction (AC) methods from those used as they were 

developed. More particularly, GEE-Landsat and -Sentinel 2 SR of year 2018 

was retrieved from the WFD lake sampling stations while were 

atmospherically corrected by the methods LaSRC (Landsat 8 OLI), LEDAPS 

(Landsat 7 ETM+) and Sen2Cor (Sentinel 2). Those SR values (GEE) were 

matched with WQ in-situ data of 2018 within ±7 days (from sampling date) of 

satellite overpasses, while the same pairs were created with SR derived from 

manually downloaded and pre-processed, with AC DOS1 method, respective 

images. Empirical WQ models of Chl-a, Secchi depth and TP (for all and 

separately for natural and artificial lakes), were applied twice employing both 

types of SR (DOS1- and rest in GEE- corrected). Furthermore, double 

application of WQ models was conducted separately for Landsat (7 

ETM+/OLI) and Sentinel 2 data. Double application of WQ models resulted in 

double quantifications of each studied WQ element in each sampling station 

while those double WQ values were inserted in a linear regression analysis. 

Yielded linear equations (corrected WQ models), for each sensor, were 

accompanied by strong associations (R2 ranging from 0.68 to 0.98). Initial and 

corrected sensor-specific WQ models were validated based on available in-

situ WQ datasets of 2019 and 2020. Sensor-specific correction of WQ models 

was proven essential for some of them while RMSE values ranged for Chl-a 

from 11.68 μg/l (Landsat) to 14.88 μg/l (Sentinel 2), for Secchi depth from 2.02 

m (Landsat) to 2.57 m (Sentinel 2) and TP from 0.14 mg/l (Landsat) to 0.09 

mg/l (Sentinel 2), values that confirmed the stability and transferability of 

hereby WQ models even when employ differently-from-DOS1 method 

corrected SR.  

One more ambiguous question that has been examined is whether WQ 

universal models are efficient for WQ monitoring of oligotrophic Case-2 

waters. The classification of waters in Case 1 (oceanic) and Case 2 (coastal 

regions, rivers, and lakes), is characterized by great importance; Case 1 waters 

are determined by phytoplankton and co-varying substances, while Case 2 

waters are more complex concerning their composition and optical properties. 

Oligotrophic lakes are classified as Case-2 rather than Case-1 waters since 

they typically receive significant levels of terrigenous input and their water 

clarity is primarily controlled by the concentration of Dissolved Organic 

Carbon (DOC). In purview of the above, lake WQ models were applied to 

Landsat 8 OLI images, with available in-situ WQ data, illustrating two (2) 

Greek oligotrophic waterbodies, Trichonis and Amvrakia lakes. Conclusively, 

their application was ineffective: Chl-ageneral model yielded values of RMSE=1.9 

μg/l, NRMSE=1.6 and median MAPE=256.8 %, Chl-anatural model yielded 

values of RMSE=1.8 μg/l, NRMSE=1.5 and median MAPE=176.6 % while 

results of all models of Secchi Disk and Total Phosphorus were statistically 

insignificant.  Based on the previous approach, an effort has been made to 



develop special designed WQ algorithms in Trichonis lake based on a dense 

sampling network (22 stations). Subsequently, the most statistically promising 

quantitative models – accrued from statistical elaboration of 2014 data- were 

applied to another satellite image of 2013 (with available in-situ WQ data). 

Results from the validation process showed a relatively variable statistical 

relationship between the in-situ data and reflectances (R logchl-a: 0.4, R NH4 +: 

0.7, R Chl-a: 0.5, R CDOM at 420 nm: 0.3). Hereby findings were concurrent 

with other studies in international literature, indicating that estimations for 

oligotrophic are less accurate than eutrophic and mesotrophic lakes, owing to 

the lack of suspended particles that are detectable by satellite sensors. 

Conclusively, background information required, suitable spectral bands and 

essential circumstances are described for the most optimal designation of the 

WQ monitoring in oligotrophic waterbodies.  
 

 

 
Scientific area: Remote sensing, GIS and spatial analysis for inland water 

quality monitoring 

 

Keywords: lake WQ, PCA, MLR analysis, trophic status, Case-2, WFD, 

Landsat, Sentinel 2, GEE, oligotrophic 
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Εκτίμηση της  ποιότητας των υδάτων των ελληνικών λιμνών μέσω 

τηλεπισκόπησης και στατιστικής μοντελοποίησης 

 

Τμήμα Αξιοποίησης Φυσικών Πόρων & Γεωργικής Μηχανικής 

Eργαστήριο Εδαφολογίας & Γεωργικής Χημείας 

 

ΠΕΡΙΛΗΨΗ 

Στόχος της παρούσας διδακτορικής διατριβής είναι η επίτευξη συνεχούς 

παρακολούθησης και εκτίμησης της ποιότητας των υδάτων και της 

τροφικής κατάστασης των ελληνικών λιμνών αξιοποιώντας την 

εφαρμογή της Οδηγίας Πλαίσιο για τα Ύδατα (ΟΠΥ) στην Ελλάδα σε 

συνέργεια με τη δορυφορική Τηλεπισκόπηση, παρέχοντας παράλληλη 

υποστήριξη στη βιώσιμη διαχείριση των υδάτινων πόρων σε εθνική 

κλίμακα. Η συνεχής παρακολούθηση της ποιότητας υδάτων είναι το πιο 

κρίσιμο χαρακτηριστικό της ολοκληρωμένης διαχείρισης λιμναίων 

οικοσυστημάτων. Ως εκ τούτου, το μεθοδολογικό πλαίσιο που 

αναπτύχθηκε έχει ως απώτερο στόχο τη δημιουργία μοντέλων ποσοτικής 

εκτίμησης της ποιότητας υδάτων λιμνών ενώ η πρακτική εφαρμογή της 

μεθοδολογίας αξιολογήθηκε σε συνολικά 50 λίμνες (φυσικές και 

τεχνητές) την περίοδο 2013-2018, αποτελώντας το Εθνικό Δίκτυο 

Παρακολούθησης Λιμνών της Ελλάδας στο πλαίσιο της ΟΠΥ. Όσον 

αφορά στα δεδομένα δορυφορικής τηλεπισκόπησης, εικόνες από τους 

αισθητήρες Landsat 7 Enhanced Thematic Mapper Plus (ETM+) και Landsat 

8 Operational Land Imager (OLI) συνδυάστηκαν με in-situ μετρήσεις 

ποιοτικών παραμέτρων (Χλωροφύλλη-α -Chl-a-, βάθος Secchi Disk, 

συγκέντρωση Ολικού Φωσφόρου,TP- Total Phosphorus)  με κύριο στόχο 

την επίτευξη ανάπτυξης μοντέλων εκτίμησης της ποιότητας και της 

τροφικής κατάστασης υδάτων. Από στατιστικής άποψης, 

πραγματοποιήθηκε ανάλυση κύριων συνιστωσών (PCA-Principal 

Component Analysis) για να διερευνηθούν οι συσχετίσεις των 

συγκεντρώσεων της Chl-a των ελληνικών λιμνών με άλλα βασικά τους 

κριτήρια, όπως το εάν είναι φυσικές ή τεχνητές, την τυπολογία (ΟΠΥ), τον 

κλιματικό τύπο σύμφωνα με το σύστημα ταξινόμησης Köppen-Geiger, την 

εποχή δειγματοληψιών νερού και την ημερολογιακή διαφορά μεταξύ των 

in-situ δειγματοληψιών και του περάσματος του δορυφόρου. Η ανάλυση 

κύριων συνιστωσών υπέδειξε το χαρακτηριστικό φυσική/τεχνητή και την 

τυπολογία (ΟΠΥ) τους ως τις παραμέτρους που κυρίως συμβάλλουν στη 

διακύμανση της συγκέντρωσης της Chl-a.  

Στη συνέχεια, διενεργήθηκαν αναλύσεις πολλαπλής παλινδρόμησης, με 

τη μέθοδο stepwise, μεταξύ διαφορετικών ομάδων δεδομένων, οι οποίες 

διαμορφώθηκαν με βάση τα κριτήρια της PCA. Βασικός στόχος ήταν η 

ανάπτυξη διαφορετικών αλγορίθμων εκτίμησης της συγκέντρωσης Chl-a, 



προσανατολισμένοι σε διαφορετικούς τύπους λιμνών. Έπειτα, διεξήχθη 

ανάλυση συσχέτισης (correlation analysis) μεταξύ των in-situ μετρήσεων 

των μελετούμενων παραμέτρων ποιότητας με σκοπό τη διερεύνηση και 

ανίχνευση των συσχετίσεών τους. Mε βάση τα αποτελέσματα της 

ανάλυσης συσχέτισης, διενεργήθηκαν περαιτέρω αναλύσεις 

παλινδρόμησης, χρησιμοποιώντας τις in-situ τιμές βάθους Secchi disk και 

TP για τη δημιουργία βέλτιστων μοντέλων όλων των κατηγοριών (όλες, 

φυσικές και τεχνητές λίμνες). Στη συνέχεια, διεξήχθη η ταξινόμηση της 

τροφικής κατάστασης των μελετούμενων λιμνών, υπολογίζοντας τον 

Δείκτη Τροφικής Κατάστασης (TSI) του Carlson για κάθε λίμνη, αρχικά 

για όλες και στη συνέχεια ξεχωριστά για τις φυσικές και τις τεχνητές. Η 

προτεινόμενη μεθοδολογία είχε ως αποτέλεσμα την ανάπτυξη 

ξεχωριστών μοντέλων για τις φυσικές (R = 0.78) και τεχνητές (R= 0.76) 

λίμνες, ενώ το γενικό μοντέλο που αναπτύχθηκε χωρίς κριτήρια 

αποδείχθηκε ασθενέστερο (R = 0.65) σε σύγκριση με τα υπόλοιπα. Οι 

αναλύσεις παλινδρόμησης μεταξύ των δεδομένων Landsat και βάθους 

Secchi οδήγησαν σε 3 μοντέλα: για όλες τις λίμνες (Secchigeneral; R = 0.78; 

RMSE = 2 m), για τις φυσικές (Secchinatural; R = 0.95; RMSE = 1.87 m) και για 

τις τεχνητές (Secchiartificial, R = 0.62, RMSE = 1.36 m), με αξιόπιστη ακρίβεια. 

Τα ευρήματα έδειξαν ότι οι αναλύσεις παλινδρόμησης που σχετίζονται με 

τον Ολικό Φώσφορο απέτυχαν να αναπτύξουν ένα στατιστικά αποδεκτό 

μοντέλο για τις τεχνητές λίμνες. Ωστόσο, ανέδειξαν ένα ισχυρό για όλες 

τις λίμνες TPgeneral (R = 0.71, RMSE = 0.008 mg/L) και για τις φυσικές TPnatural 

(R = 0.93, RMSE = 0.018 mg/L). 

Στη συνέχεια, όσον αφορά στα αποτελέσματα του δείκτη τροφικής 

κατάστασης TSI, η μεγαλύτερη απόκλιση των προβλεπόμενων τιμών σε 

σχέση με τις αντίστοιχες in-situ ανιχνεύθηκε σε τεχνητές και πιο ρηχές 

λίμνες (μέσο βάθος < 5 m), επιβεβαιώνοντας την ύπαρξη αξιοσημείωτων 

διαφοροποιήσεων μεταξύ φυσικών και τεχνητών υδάτινων σωμάτων. Τα 

επόμενα σημαντικά ερωτήματα τα οποία απάντησε η παρούσα 

διδακτορική διατριβή είναι αρχικά εάν οι προαναφερθέντες εμπειρικοί 

αλγόριθμοι παρακολούθησης της ποιότητας λιμνών που αναπτύχθηκαν 

με εικόνες Landsat μπορούν να εφαρμοστούν επιτυχώς σε εικόνες Sentinel 

2 και στη συνέχεια εάν η συνδυασμένη χρήση εικόνων πολλαπλών 

αισθητήρων δύναται να βελτιώσει την ακρίβεια ποσοτικοποίησής τους. 

Προς αυτή την κατεύθυνση, χρησιμοποιήθηκαν εικόνες Sentinel 2 MSI της 

χρονιάς 2018 με ημερομηνίες ταυτόχρονες με αυτές των μετρήσεων 

πεδίου με σκοπό την αξιολόγηση της απόδοσης των εμπειρικών μοντέλων 

και τη σύγκριση των αποτελεσμάτων επικύρωσής τους με τα αντίστοιχα 

των δορυφόρων Landsat. Αναφορικά με τα αποτελέσματα, τα γενικά 

μοντέλα  όλων των ποιοτικών παραμέτρων (Chl-a, βάθος Secchi Disk και 

TP), με εφαρμογή σε όλες τις λίμνες ήταν πιο αποτελεσματικά και ακριβή 

όταν εφαρμόστηκαν σε εικόνες Landsat, ενώ δεν παρατηρήθηκε βελτίωση 
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ύστερα από τη χρήση εικόνων πολλαπλών αισθητήρων. Τα μοντέλα Chl-a 

και TP παρουσίασαν μικρότερες τιμές σφάλματος όταν εφαρμόστηκαν σε 

εικόνες Sentinel 2 (RMSE Chl-a=16.4 μg/l vs 21.5 μg/l; RMSE TP=0.03 mg/l vs 

0.031 mg/l)  και μόνο το μοντέλο Secchinatural είχε καλύτερη απόδοση με 

δεδομένα Landsat (2.8 m vs 2.9 m). 

Όσον αφορά στους αλγόριθμους των τεχνητών λιμνών, το μοντέλο της 

Chl-a απέδωσε καλύτερα ύστερα από τη χρήση Landsat εικόνων (RMSE= 

3.7 μg/l vs 7.7 μg/l; Sentinel 2), ενώ το μοντέλο εκτίμησης βάθους Secchi 

Disk  πέτυχε ελαφρώς καλύτερη απόδοση χρησιμοποιώντας εικόνες 

Sentinel 2 (RMSE= 1.5 m vs 1.6 m; Landsat). Τη χειρότερη απόδοση ανάμεσα 

στις υπό μελέτη ποιοτικές παραμέτρους παρουσίασαν τα μοντέλα της 

Chl-a (οι διάμεσες MAPE τιμές κυμάνθηκαν από 42 % έως 58% ενώ του 

βάθους Secchi από 24% έως 44% και του Ολικού Φωσφόρου από 22% έως 

38%), γεγονός που επιβεβαιώνει για ακόμα μία φορά την πολυπλοκότητα 

που κρύβει η χαρτογράφηση της Chl-a στα ύδατα της Περίπτωσης 2 

(παράκτια, εσωτερικά ύδατα).  

Σήμερα, οι πλατφόρμες υπολογιστικής νέφους ανοιχτού κώδικα έχουν 

αναδειχθεί σε πολύτιμα εργαλεία γεωχωρικής ανάλυσης δεδομένων 

εικόνας διαφόρων δορυφόρων, ενώ η πλατφόρμα Google Earth Engine 

(GEE) είναι η πιο διαδεδομένη στο επιστημονικό πεδίο της δορυφορικής 

τηλεπισκόπησης. Οι πρόσφατες εκτοξεύσεις διαφόρων δορυφόρων σε 

συνδυασμό με την πλατφόρμα GEE, διευκολύνουν σε μεγάλο βαθμό την 

παρακολούθηση των λιμνών σε εθνική κλίμακα. Με βάση τα παραπάνω, 

το επόμενο βήμα ήταν η εξακρίβωση της απόδοσης των ποιοτικών 

μοντέλων όταν χρησιμοποιούν τιμές ανάκλασης οι οποίες έχουν 

υποβληθεί σε διαφορετικές μεθόδους ατμοσφαιρικής διόρθωσης από 

αυτές όταν αναπτύχθηκαν. Πιο συγκεκριμένα, τιμές ανάκλασης από 

εικόνες Landsat και Sentinel 2 του έτους 2018, αποκτήθηκαν μέσω της 

πλατφόρμας GEE στους σταθμούς δειγματοληψίας λιμνών της ΟΠΥ ενώ 

ήταν ατμοσφαιρικά διορθωμένες με τις μεθόδους  LaSRC (Landsat 8 OLI), 

LEDAPS (Landsat 7 ETM+) και Sen2Cor (Sentinel 2). Οι εν λόγω τιμές 

ανάκλασης (GEE) αντιστοιχίστηκαν με τα επιτόπια δεδομένα ποιότητας 

υδάτων του 2018 με διαφορά ημερομηνιών ±7 ημερών (από την 

ημερομηνία δειγματοληψίας), ενώ τα ίδια ζεύγη δημιουργήθηκαν με τις 

τιμές ανάκλασης προερχόμενες από τις αντίστοιχες εικόνες, οι οποίες 

αποκτήθηκαν και προ-επεξεργάστηκαν χειροκίνητα, με τη μέθοδο της 

ατμοσφαιρικής διόρθωσης DOS1. Τα εμπειρικά μοντέλα Chl-a, βάθους 

Secchi Disk και TP (για όλες και ξεχωριστά για φυσικές και τεχνητές 

λίμνες), εφαρμόστηκαν δύο φορές χρησιμοποιώντας και τα δύο είδη 

ανάκλασης, την DOS1-διορθωμένη ανάκλαση και εκείνη που αποκτήθηκε 

από εικόνες ενσωματωμένες στη GEE πλατφόρμα. Επιπρόσθετα, η διπλή 

εφαρμογή των εμπειρικών μοντέλων εκτίμησης της ποιότητας υδάτων 



πραγματοποιήθηκε ξεχωριστα για τους δορυφόρους Landsat (7 ETM+/OLI) 

και Sentinel 2. Η διπλή εφαρμογή των ποιοτικών μοντέλων είχε ως 

αποτέλεσμα τη διπλή εκτίμηση των τιμών της εκάστοτε ποιοτικής 

παραμέτρου στον εκάστοτε σταθμό δειγματοληψίας και στη συνέχεια 

αυτές οι διπλές τιμές (προερχόμενες από DOS1 και λοιπές ατμοσφαιρικές 

μεθόδους) εισήχθησαν σε ανάλυση γραμμικής παλινδρόμησης. Οι 

γραμμικές εξισώσεις που προέκυψαν μεμονωμένα για κάθε αισθητήρα 

(Landsat, Sentinel 2) υπέδειξαν τιμές υψηλής συσχέτισης (R2 από 0.68 έως 

0.98). Η διόρθωση των εμπειρικών μοντέλων ανάλογα με τον αισθητήρα 

πραγματοποιήθηκε με βάση τα διαθέσιμα in-situ δεδομένα ποιότητας του 

2019 και του 2020 ενώ αποδείχθηκε απαραίτητη για ορισμένα από αυτά, 

με τις τιμές RMSE να κυμαίνονται για τη Chl-a από 11.68 μg/l (Landsat) 

έως 14.88 μg/l (Sentinel 2), για το βάθος Secchi Disk από 2.02 m (Landsat) 

έως 2.57 m (Sentinel 2) και TP από 0.14 mg/l (Landsat) έως 0.09 mg/l (Sentinel 

2), τιμές που επιβεβαίωσαν τη σταθερότητα και τη δυνατότητα μεταφοράς 

των εμπειρικών μοντέλων σε εικόνες διαφορετικά ατμοσφαρικά 

διορθωμένες,  στην πλατφόρμα GEE.   

Ένα ακόμη περίπλοκο ερώτημα που έχει εξεταστεί είναι εάν τα μοντέλα 

εκτίμησης ποιότητας υδάτων (Chl-a, βάθους Secchi Disk και Ολικού 

Φωσφόρου) δύναται να είναι αποτελεσματικά για την παρακολούθηση 

της ποιότητας των ολιγοτροφικών υδάτων.  Η ταξινόμηση των υδάτων 

στην Περίπτωση 1 (ωκεάνια) και στην Περίπτωση 2 (παράκτιες περιοχές, 

ποτάμια και λίμνες), είναι ιδιαίτερα σημαντική. Τα νερά της Περίπτωσης 1 

προσδιορίζονται με βάση το φυτοπλαγκτόν και λοιπές ουσίες, ενώ τα 

νερά της Περίπτωσης 2 είναι πιο πολύπλοκα όσον αφορά στη σύσταση και 

τις οπτικές τους ιδιότητες. Οι ολιγοτροφικές λίμνες αποτελούν μια 

ξεχωριστή κατηγορία των περίπλοκων οπτικά υδάτων της Περίπτωσης 2 

και δε ταξινομούνται στην Περίπτωση 1 δεδομένου ότι συνήθως 

λαμβάνουν σημαντικές εισροές ιζημάτων και η διαύγεια των υδάτων τους 

ελέγχεται συνήθως από τις συγκεντρώσεις του διαλυμένου οργανικού 

άνθρακα (DOC-Dissolved Organic Carbon) και όχι από το φυτοπλαγκτόν. 

Με βάση τα προαναφερθέντα, τα μοντέλα εκτίμησης ποιότητας υδάτων 

λιμνών (Chl-a, βάθους Secchi Disk και TP), εφαρμόστηκαν σε εικόνες 

Landsat 8 OLI που απεικονίζουν δύο (2) ελληνικά ολιγοτροφικά υδάτινα 

σώματα, τις λίμνες Τριχωνίδα και Αμβρακία. Συμπερασματικά, η 

εφαρμογή των μοντέλων σε αυτές τις λίμνες ήταν αναποτελεσματική˙ το 

γενικό μοντέλο υπολογισμού της Χλωροφύλλης-α απέδωσε τιμές 

RMSE=1.9 μg/l, NRMSE=1.6 και median MAPE=256.8, το μοντέλο 

υπολογισμού Χλωροφύλλης-α στις φυσικές λίμνες απέδωσε: RMSE=1.8 

μg/l, NRMSE=1.5 και median MAPE=176.6 ενώ τα αποτελέσματα των 

λοιπών μοντέλων Ολικού Φωσφόρου και βάθους Secchi Disk δεν ήταν 

στατιστικά σημαντικά. 
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 Λαμβάνοντας υπόψιν τα προαναφερθέντα αποτελέσματα, έγινε μια 

προσπάθεια ανάπτυξης μοντέλων εκτίμησης της ποιότητας υδάτων στη 

λίμνη Τριχωνίδα με βάση ένα πυκνό δίκτυο δειγματοληψίας (22 σταθμοί).  

Στη συνέχεια, τα βέλτιστα μοντέλα (που αναπτύχθηκαν με βάση τα 

δορυδορικά και επιτόπια δεδομένα του 2014) εφαρμόστηκαν στη 

δορυφορική εικόνα του 2013 και η επικύρωση των αποτελεσμάτων 

πραγματοποιήθηκε χρησιμοποιώντας τα αντίστοιχα in-situ δεδομένα του 

2013. Τα αποτελέσματα από τη διαδικασία επικύρωσης έδειξαν μια 

σχετικά διαφορετική στατιστική σχέση μεταξύ των in-situ δεδομένων και 

των ανακλάσεων (R logchl-a: 0.4, R NH4 +: 0.7, R Chl-a: 0.5, R CDOM στα 420 

nm: 0.3).  Ως εκ τούτου, τα ευρήματα ταυτίζονται με με αυτά άλλων 

μελετών στη διεθνή βιβλιογραφία, υποδεικνύοντας ότι η παρακολούθηση 

της ποιότητας υδάτων στις ολιγοτροφικές λίμνες είναι λιγότερο ακριβής 

σε σχέση με τις ευτροφικές και μεσοτροφικές, λόγω της απουσίας 

αιωρούμενων σωματιδίων τα οποία είναι ανιχνεύσιμα από τους 

δορυφορικούς αισθητήρες. Επιπλέον περιγράφονται οι απαιτούμενες 

πληροφορίες υποβάθρου, οι κατάλληλες φασματικές ζώνες και οι βασικές 

συνθήκες για τον βέλτιστο σχεδιασμό των μεθόδων παρακολούθησης 

ποιότητας υδάτων σε ολιγοτροφικά υδάτινα σώματα. 

 

 

Επιστημονική περιοχή: Τηλεπισκόπηση, GIS και χωρική ανάλυση για 

την παρακολούθηση της ποιότητας των εσωτερικών υδάτων 

 

Λέξεις-κλειδιά: ποιότητα υδάτων λιμνών, PCA, ανάλυση MLR, τροφική 
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I. LIST OF ABBREVIATIONS AND ACRONYMS 

  

Abbreviation Meaning 

ALI Advanced Land Imager 

ALOS Advanced Land Observation Satellite 

ANN Artificial Neural Networks 

AOP Apparent Optical properties 

ASTER 
Advanced Spaceborne Thermal Emission and Reflection 

Radiometer 

avg average 

CDOM Colored Dissolved Organic Matter 

Chl-a Chlorophyll-a 

CI Cyanobacteria Index 

CI Condition Iindices 

DN Digital Number 

DOC Dissolved Organic Carbon 

DOM Dissolved Organic Matter 

DOS1 Dark Object Subtraction 1 

EC European Commission 

EKBY 
Goulandris Natural History Museum, Greek 

Biotope/Wetland Centre 

EO Earh Observation 

EPA (U.S.) Environmental Protection Agency 

ESA European Space Agency 

ETM+ Enhanced Thematic Mapper Plus 

EVI Enhanced Vegetation Index 

FLH Fluorescence Line Height 

GA Genetic Algorithms 

GCP Ground Control Points 

GEE Google Earth Engine 

GIS Geographical Information Systems 

GNDVI Green Normalized Difference Vegetation Index 

HCMR Hellenic Centre for the Marine Research 

IDW Inverse Distance Weighted 

IOP Inherent Optical Properties 

KML Keyhole Markup Language 

L8 Landsat 8 

LaSRC Land Surface Reflectance Code 

LEDAPS Ecosystem Disturbance Adaptive Processing System 

LOQ Limit of Quantitation 

LULC Land Use/Land Cover 
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MAPE Mean Absolute Percentage Error 

MCI Maximum Chlorophyll Index 

ME Mean Error 

MERIS Medium Resolution Imaging Spectrometer 

ML Machine learning 

MLRs Multiple Regressions 

MNDWI Modified Normalized Difference Water Index 

MODIS Moderate Resolution Imaging Spectroradiometer 

MSFD Marine Strategy Framework Directive 

MSI Multispectral Instrument 

MSS Multi-Spectral Scanner 

N Nitrogen 

NASA National Aeronautics and Space Administration 

NDCI Normalized Difference Chlorophyll Index 

NDVI Normalized Difference Vegetation Index 

NDWI Normalized Difference Water Index 

NIR Near Infrared 

NRMSE Normalized Root Mean Square Error 

NRVI Normalized Vegetation Index 

OACs Optically Active Components 

OLI Operational Land Imager (Landsat 8) 

OLI-2 Operational Land Imager-2 (Landsat 9) 

OWTs Optical Water Types 

P Phosphorus 

PC Phycocyanin 

PCA Principal Component Analysis 

Q-GIS Quantum Geographic Information System 

RF Random Forest 

rho Pearson correlation coefficient 

RMSE Root Mean Square Error 

RS Remote Sensing 

SABI Surface Algal Bloom Index 

SCL Scan Line Corrector 

SCP Semi-automatic Classification Plugin 

SD Secchi Depth 

SDD Secchi Disk Depth 

SDT Secchi Disk Transparency 

Sen2Cor Sentinel 2 Correction (algorithm) 

SPM Suspended Particulate Matter 

SPOT Satellite Pour l’ Observation de la Terre 

SR Surface Reflectance 



SVM Support Vector Machine 

SWIR Short-wave infrared 

TIR Thermal Infrared Sensor 

TM Thematic Mapper 

TN Total Nitrogen 

TOA Top of Atmosphere (reflectance) 

TP Total Phosphorus 

TSI (Carlson’s) Trophic State Index 

TSM Total Suspended Matter 

TSS Total Suspended Solids 

USGS United State Geological Survey 

VIF Variance Inflation Factor 

WFD Water Framework Directive 

WQ Water Quality 
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II. GLOSSARY  

Case 1 waters:  Waters 

which optical properties are mainly 

determined by phytoplankton 

(oceanic). 

 

Case 2 waters: The optically 

complex waters. The optical signal 

is dominated by phytoplankton but 

also by particulate inorganic matter 

and CDOM (coastal regions, rivers, 

and lakes). 

 

Lacustrine waters: Freshwater 

lakes 

 

Water clarity: A measure of 

underwater visibility, influenced 

by turbidity and color. 

 

Lake trophic status/state: 

Biological condition dependent on 

various factors (nitrogen, 

phosphorus, pH, turbidity, color 

etc). 

 

In-situ (water sampling): In the 

natural/original position/place 

(water sampling). 

 

Multi-sensor images: Images from 

multiple satellite sensors. 

 

Absorption wavelength: The 

wavelength at which a water 

sample absorbs light depending on 

the ion or molecule of component’s 

composition. 

 

Spectral Reflectance: The spectral 

fraction of light reflected by a 

surface. 

Spectral bands: Specific portions of 

the electromagnetic spectrum of 

eflected light. 

 

Backscatter: The scattering of 

radiation in a direction opposite to 

that of the incident radiation due to 

reflection from particles of the 

medium traversed. 

 

Transboundary lakes: Lakes shared 

by two or more countries. 

 

Eutrophication: Process of 

increased productivity of a lake (as 

it ages) which is greatly accelerated 

by human activities (increase in 

nutrients), resulting in an increase 

in biological production. 

 

Surveillance monitoring stations 

(WFD): Member States must 

monitor at least for a period of a 

year for parameters indicative of all 

biological, hydromorphological 

and general physico-chemical 

quality elements. 

 

Operational monitoring stations 

(WFD): Member States are required 

to monitor for those biological and 

hydromorphological quality 

elements most sensitive to the 

pressures to which the body or 

bodies are subject. Operational 

monitoring must use parameters 

relevant to the assessment of the 

effects of the pressures placing the 

body at risk. 

 



Spatial resolution: Refers to the 

size of the smallest feature that can 

be detected by a satellite sensor or 

displayed in a satellite image, is 

represented in pixels and noted as 

how many meters that pixel 

represents. 

 

Radiometric resolution: The 

amount of information in each 

pixel, that is the number of bits 

representing the energy recorded. 

 

 

Spectral resolution: The number 

and size of bands in 

the electromagnetic spectrum that a 

remote sensing platform can 

capture. 

 

Temporal resolution: Refers to the 

frequency at which imagery is 

recorded for a particular area. 

 

Solar zenith angle: The angle 

measured from the local zenith and 

the line of sight of the sun. 

 

Optically shallow waters (OSWs): 

The bottom signals can be reflected 

in the water-leaving radiance and 

remote sensing reflectance (Rrs(l)) 

signatures. For clean waters, OSWs 

are those with depths <20 m, and 

turbid waters with depths 1–3 m. 

 

Spectral indices: Mathematical 

equations (combinations) 

employing two or more spectral 

bands (wavelengths) of an image 

per pixel. 

 

Image pre-processing: Radiometric, 

atmospheric and geometric 

corrections of raw remotely sensed 

image data. 

 

Band stacking: The process of 

combining multiple bands into a 

single image file. 

 

Time window: Date difference 

between field sampling and 

satellite overpass. 

 

Path/Row: Row refers to the 

latitudinal center line of a frame 

of imagery. As the satellite moves 

along its path, the satellite 

instruments are continuously 

scanning the terrain below.  These 

will be squares centered on the 

orbital path, but tilted clockwise 

when viewed on the UTM 

projection used for the distributed 

data. 

 

Resampling procedure: Technique 

of transforming an image by 

recalculating its pixel values to be 

fitted to another image. 

 

Focal statistics tool: Performs an 

operation that calculates a statistic 

(mean, maximum, or sum) for all 

input cells within a set of 

overlapping neighborhoods and 

within each neighborhood. 

 

Multicollinearity: The occurrence 

of high intercorrelations among 

two or more independent variables 

in a multiple regression model. 
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Water specular reflection: The term 

used to describe 'mirror-like' 

reflection, from the surface of 

water (angle of reflection equals 

angle of incidence). 

 

Spatial interpolation: Predicts 

values for cells in a raster from a 

limited number of sample data 

points. It can be used to predict 

unknown values for any 

geographic point data, such as 

chemical concentrations. 

 

WQ Optically Active Components:  

Phytoplankton (Chl-a), Secchi Disk 

Depth, Temperature, CDOM, TOC 

(Total Organic Carbon), TSM (Total 

Suspended Matters, Turbidity, Sea 

Surface salinity and Electrical 

Conductivity. Components that 

interact with light and change the 

energy spectrum of reflected solar 

radiation from waterbodies.  

 

 

 

 

 

 

 

 

  



III. PhD in numbers 
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IV. PhD OUTLINE 

This PhD Thesis is divided into one (1) Introductory section and four (4) 

main chapters (Figure 1). 

 

General Introduction describes the background knowledge required and the 

state-of-the-art methodologies applied, concerning the main herein attempted 

task; the monitoring of lake water quality (WQ) and trophic status through 

satellite remote sensing (RS). Special reference is made to: (1) the great lakes’ 

significance for all living organisms, the necessity of continuous lake WQ 

monitoring for their sustainable management due to ongoing human 

pressures and by extension to lakes’ greatest threat; the so-called 

eutrophication, (2) traditional and latest scientific trends of lake WQ 

monitoring, (3) recent developments in geoinformation technologies and the 

contribution of RS in WQ monitoring, (4) Water Framework Directive (WFD) 

instructions and requirements concerning the monitoring of lakes’ WQ, (5) 

Earh Observation (EO) data, WQ key indicators and the contribution of 

Landsat mission to efficient lake WQ monitoring, (6) traditionally used 

methodologies for lake WQ monitoring through satellite RS, (7) description of 

optically and non-optically active WQ constituents measured by RS 

accompanied by the most utilized methodologies, (8) the high contribution, 

accrued from the combination of various multi-spectral sensors, to 

acquirement of high-frequency lake WQ time series and performance of 

multi-temporal analyses, (9) the development of Big Eath Data Cloud 

Processing Platforms and in particular the significance of Google Earth 

Engine (GEE) cloud-based platform to large-scale lake WQ assessment and 

long-time-series analyses, (10) background information about the waters’ 

distinction in Case-1 and Case-2 and further research on WQ monitoring of a 

distinct category of optically complex Case-2 waters, oligotrophic lakes; 

obstacles and weaknesses are discussed concerning the achievement of a 

higher accuracy. Furthermore, this chapter presents the aim and objectives of 

the current thesis. 

 

Chapter 2 is entitled “Towards the modelling of Greek lakes WQ using RS 

technology” and presents the methodological framework established herein 

for the development of WQ models (Chl-a, Secchi depth and Total 

Phosphorus), applied in 50 lakes constituting the National Lake Network 

Monitoring of Greece (WFD). This chapter also examines and discusses the 

efficiency of hereby Landsat-developed WQ models: (1) when applied to 

Sentinel 2 images, and (2) when employing multi-sensor image data. The 

significance of this chapter lies initially in the fact that lake WQ elements have 

been determined with high accuracy (RMSE Chl-a values ranging from 1.53 

μg/l to 4.6 μg/l; RMSE Secchi values from 0.89 m to 1.7 m; RMSE TP values 



from 0.008 mg/l to 0.03 mg/l) throughout the studied lakes. Given the 

complexity that characterizes the mapping of WQ elements in Case 2 waters 

(coastal, lakes, rivers) in combination with the wide study area while covering 

a broad range of limnological conditions, hereby chapter contributes 

essentially to sustainable water resources management at a country level. 

Towards strengthening the facilitation of WQ and/or trophic status 

monitoring across Greek lakes, employment of Sentinel 2 and multi-sensor 

image data (Landsat 7 ETM; Landsat 8; Sentinel 2 MSI) permits the 

integration among existing and historical missions while contributing to long-

term time series data collection. In this way, the delivery of detailed spatial 

variability of WQ and trophic status over Greek lakes in fine spatial resolution 

(10-30 m) further grants the monitoring of lake eutrophication and its spatio-

temporal changes; information that is fundamentally valuable in terms of lake 

management in the framework of national environmental policy. 

 

Chapter 3 with title “Atmospheric correction analysis of lake WQ models by 

employing surface reflectance (SR) embedded in GEE platform” emphasizes 

on the harmonization among SR values subjected to different atmospheric 

correction (AC) methods. The harmonization is based on the further 

development of corrected sensor-specific (Landsat/ Sentinel 2) WQ models, 

accommodating inherent spectral and pre-processing differences. Eventually, 

efficient performance of WQ models employing GEE-derived SR values 

(datasets of 2 validation years yielded mean RMSE values of Chl-a: 20 μg/l-

Landsat; 13.4 μg/l Sentinel 2, Secchi depths: 2.1 m –Landsat; 2.8 m- Sentinel 2 

and TP: 0.15 mg/l-Landsat; 0.11 mg/l- Sentinel 2) confirmed their spatio-

temporal stability despite the AC method applied and satellite sensor used. 

The significance of this chapter lies on the fact that even though retrieval of 

WQ parameters requires precise AC, hereby developed models managed to 

perform well exploiting the massive GEE warehouse of data while exempting 

from the pre-processing procedure. In this way, GEE facilitates the long-term, 

near real-time, national-scale lake WQ and trophic status monitoring by 

mapping long-term WQ trends in less time and fine spatial resolution. 

 

Chapter 4 is entitled “Operational development of techniques for 

characterising WQ of oligotrophic Case-2 waters” and emphasizes on a 

distinct category of optically complex Case-2 waters; oligotrophic 

waterbodies. This chapter investigates hereby WQ models’ performance 

when applied in oligotrophic Trichonis and Amvrakia lakes, and underlies 

the necessity of the development of special oligotrophic algorithms for a more 

efficient and comprehensive lake management. Afterwards, an attempt to 

independently model WQ of Trichonis lake is described, by assessing certain 

WQ elements through satellite RS and evaluating special models’ accuracy. 

This chapter confirms, in absolute agreement with the relevant literature, the 
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underachievement of universal WQ models at the lowest chlorophyll 

concentrations (oligotrophic waterbodies) and at cases where the optical 

contribution is non-algal. Furthermore, several indications concerning the 

appropriate satellite bands, the existence of more and narrower wavelengths 

in specific ranges of electromagnetic spectrum and the refinement of AC 

processors are provided dedicated to this sub-category of Case-2 waters. 

Aforementioned indications, accompanied by the preceding and thorough 

research on phytoplankton community composition, Chl-a distributions, 

particles and CDOM, constitute the background knowledge required and the 

trigger for a more accurate WQ monitoring of oligotrophic waterbodies along 

Greece. Based on the above, this research facilitates the refinement of lake WQ 

monitoring in Greece by laying the foundation stone of further discrimination 

of Case-2 Greek waterbodies into discrete optical water types (OWT). 

 

 

Chapter 5 summarizes the most fundamental conclusions, innovation and 

limitations emerged in the context of this thesis. Additionally, the significance 

of the current thesis is presented which substantially lies in the generation of 

national lake WQ models which: 

a) have been developed and applied in 50 different Greek lake systems of 

varied chemistry, limnological conditions and trophic level while were 

sampled during different seasons 

b) accommodate the spectral composition differences among Landsat (7 

ETM+, 8 OLI) and Sentinel 2 sensors 

c) also accommodate the differences emerging from the different 

atmospheric correction methods applied in manually-elaborated and in 

GEE-embedded reflectance values 

d) were proven reliable for the systematic assessment of Chl-a and TP 

concentrations and Secchi Disk depths with high accuracy across Greek 

lakes while providing spatial WQ and trophic status variability in fine 

resolution (10-30 m) 

Based on those characteristics, hereby-delivered WQ models substantially 

facilitate the monitoring of lake WQ in Greece through satellite RS as they 

have the potential to constitute a part of a wider national lake 

management plan and early warning system through the timely 

identification of pollution events and by extension the promptly 

performance of sustainably efficient solutions. 

 

 



 
Figure 1. Flowchart presenting the main chapters of the current thesis.  
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V. ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ 

Δεδομένης της μεγάλης σημασίας που έχουν οι λίμνες για το 

περιβάλλον και τη ζωή του ανθρώπου, η συνεχής παρακολούθηση της 

ποιότητας των υδάτων τους μέσω της εφαρμογής της Οδηγίας Πλαίσιο 

για τα Νερά (ΟΠΥ-WFD) θεωρείται απαραίτητη για την βιώσιμη 

διαχείρισή τους. Η επιτόπια (in-situ) παρακολούθηση της ποιότητας νερού 

-μέσω δειγματοληψιών- των λιμνών σε συνδυασμό με τη δορυφορική 

τηλεπισκόπηση (Remote Sensing) αντιπροσωπεύει παγκοσμίως την 

τελευταία επιστημονική τάση σε πολλά προγράμματα παρακολούθησης 

ποιότητας υδάτων. Ως εκ τούτου, το ευρύ μεθοδολογικό πλαίσιο που 

αναπτύχθηκε στην παρούσα διδακτορική διατριβή έχει ως βασικό στόχο 

τη δημιουργία μοντέλων εκτίμησης ποιότητας υδάτων λιμνών 

υποστηρίζοντας παράλληλα τη βιώσιμη διαχείριση των υδάτινων πόρων 

σε εθνική κλίμακα. Η πρακτική εφαρμογή αυτής της μεθοδολογίας 

αναπτύχθηκε και αξιολογήθηκε συνολικά σε 50 λίμνες (φυσικές και 

τεχνητές) την περίοδο 2013–2018, αποτελώντας το Εθνικό Δίκτυο 

Παρακολούθησης Λιμνών της Ελλάδας στο πλαίσιο της ΟΠΥ. Όσον 

αφορά στα δεδομένα δορυφορικής τηλεπισκόπησης, εικόνες από τους 

αισθητήρες Landsat 7 Enhanced Thematic Mapper Plus (ETM+) και Landsat 

8 Operational Land Imager (OLI) συνδυάστηκαν με in-situ μετρήσεις 

ποιοτικών παραμέτρων με κύριο στόχο την επίτευξη ανάπτυξης 

μοντέλων εκτίμησης της ποιότητας και της τροφικής κατάστασης υδάτων. 

Οι ποιοτικές παράμετροι που μελετήθηκαν είναι η συγκέντρωση της 

Χλωροφύλλης-α (Chl-a), το βάθος Secchi Disk, η συγκέντρωση Ολικού 

Φωσφόρου (TP- Total Phosphorus) και κατ’επέκταση ο Δείκτης Τροφικής 

Κατάστασης (TSI- Trophic State Index). 

Αρχικά, η εκτίμηση της συγκέντρωσης της Chl-a σε ύδατα της 

Περίπτωσης-2 (Case-2 waters; παράκτιες περιοχές, ποτάμια και λίμνες) 

είναι καίριας σημασίας, καθώς αυτή η παράμετρος αποτελεί σημαντική 

ένδειξη της ακεραιότητας του οικοσυστήματος. Από στατιστικής άποψης, 

πραγματοποιήθηκε ανάλυση κύριων συνιστωσών (PCA-Principal 

Component Analysis) για να διερευνηθούν οι συσχετίσεις των 

συγκεντρώσεων της Chl-a των ελληνικών λιμνών με άλλα βασικά τους 

κριτήρια, όπως το εάν είναι φυσικές ή τεχνητές, την τυπολογία (ΟΠΥ), τον 

κλιματικό τύπο σύμφωνα με το σύστημα ταξινόμησης Köppen-Geiger, την 

εποχή δειγματοληψιών νερού και την ημερολογιακή διαφορά μεταξύ των 

in-situ δειγματοληψιών και του περάσματος του δορυφόρου. Η ανάλυση 

κύριων συνιστωσών υπέδειξε το χαρακτηριστικό φυσική/τεχνητή και 

την τυπολογία (ΟΠΥ) τους ως τις παραμέτρους που κυρίως 

συμβάλλουν στη διακύμανση της συγκέντρωσης της Chl-a. Στη 

συνέχεια, διενεργήθηκαν αναλύσεις πολλαπλής παλινδρόμησης, με τη 

μέθοδο stepwise, μεταξύ διαφορετικών ομάδων δεδομένων, οι οποίες 



διαμορφώθηκαν με βάση τα κριτήρια της PCA. Βασικός στόχος ήταν η 

ανάπτυξη διαφορετικών αλγορίθμων εκτίμησης της συγκέντρωσης Chl-a, 

προσανατολισμένοι σε διαφορετικούς τύπους λιμνών. Πρόσθετες 

αναλύσεις παλινδρόμησης εφαρμόστηκαν και σε σύνολα δεδομένων για 

τα οποία δε λήφθηκαν υπόψη συγκεκριμένα κριτήρια και αφορούν τις 

περιπτώσεις όταν δεν υπάρχουν διαθέσιμες πληροφορίες σχετικά με τα 

χαρακτηριστικά των μελετούμενων λιμνών. 

Στη συνέχεια, διεξήχθη ανάλυση συσχέτισης (correlation analysis) 

μεταξύ των in-situ μετρήσεων των μελετούμενων παραμέτρων ποιότητας 

(Chl-a, βάθη Secchi disk και TP) με σκοπό τη διερεύνηση και ανίχνευση 

των συσχετίσεών τους. Mε βάση τα αποτελέσματα της ανάλυσης 

συσχέτισης, διενεργήθηκαν περαιτέρω αναλύσεις παλινδρόμησης, 

χρησιμοποιώντας τις in-situ τιμές βάθους Secchi disk και TP για τη 

δημιουργία βέλτιστων μοντέλων όλων των κατηγοριών (όλες, φυσικές και 

τεχνητές λίμνες). Έπειτα, διεξήχθη η ταξινόμηση της τροφικής 

κατάστασης των μελετούμενων λιμνών, υπολογίζοντας τον Δείκτη 

Τροφικής Κατάστασης (TSI) του Carlson για κάθε λίμνη, αρχικά για όλες 

και στη συνέχεια ξεχωριστά για τις φυσικές και τις τεχνητές. Οι 

υπολογισμοί των διαφορετικών δεικτών TSI (γενικός, φυσικός, τεχνητός) 

υπολογίστηκαν με βάση τα αντίστοιχα μοντέλα ποιότητας (Χλωροφύλλη-

α, βάθος Secchi disk και Ολικός φώσφορος). 

Συνολικά, τα αποτελέσματα που αφορούν στην εκτίμηση των 

συγκεντρώσεων της Χλωροφύλλης-α και πιο συγκεκριμένα του 

λογαριθμικού μετασχηματισμού τους (logChl-a), απέδειξαν την 

καταλληλότητα των δεδομένων των δορυφόρων Landsat (7 ETM+ και 8 

OLI). Η προτεινόμενη μεθοδολογία είχε ως αποτέλεσμα την ανάπτυξη 

ξεχωριστών μοντέλων για τις φυσικές (R = 0.78) και τεχνητές (R= 0.76) 

λίμνες, ενώ το γενικό μοντέλο που αναπτύχθηκε χωρίς κριτήρια 

αποδείχθηκε ασθενέστερο (R = 0.65) σε σύγκριση με τα υπόλοιπα. Τα 

αποτελέσματα του πίνακα συσχέτισης (correlation matrix) μεταξύ των 

in-situ δεδομένων Χλωροφύλλης-α, βαθών Secchi disk και TP 

υπέδειξαν υψηλή και θετική σχέση μεταξύ TP και Χλωροφύλλης-α 

(0.85), ενώ υψηλές αρνητικές σχέσεις εντοπίστηκαν μεταξύ βάθους 

Secchi disk με TP (-0.84) και Χλωροφύλλη-α (-0.83). Οι αναλύσεις 

παλινδρόμησης μεταξύ των δεδομένων Landsat και βάθους Secchi 

οδήγησαν σε 3 μοντέλα: για όλες τις λίμνες (Secchigeneral; R = 0.78; RMSE 

= 2 m), για τις φυσικές (Secchinatural; R = 0.95; RMSE = 1.87 m) και για τις 

τεχνητές (Secchiartificial, R = 0.62, RMSE = 1.36 m), με αξιόπιστη ακρίβεια. 

Τα ευρήματα έδειξαν ότι οι αναλύσεις παλινδρόμησης που 

σχετίζονται με τον Ολικό Φώσφορο απέτυχαν να αναπτύξουν ένα 

στατιστικά αποδεκτό μοντέλο για τις τεχνητές λίμνες. Ωστόσο, 

ανέδειξαν ένα ισχυρό για όλες τις λίμνες TPgeneral (R = 0.71, RMSE = 0.008 

mg/L) και για τις φυσικές TPnatural (R = 0.93, RMSE = 0.018 mg/L). Στη 
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συνέχεια, όσον αφορά στα αποτελέσματα του δείκτη τροφικής 

κατάστασης TSI, η μεγαλύτερη απόκλιση των προβλεπόμενων τιμών 

σε σχέση με τις αντίστοιχες in-situ ανιχνεύθηκε σε τεχνητές και πιο 

ρηχές λίμνες (μέσο βάθος < 5 m), επιβεβαιώνοντας την ύπαρξη 

αξιοσημείωτων διαφοροποιήσεων μεταξύ φυσικών και τεχνητών 

υδάτινων σωμάτων. Συνοψίζοντας, με βάση τα αποτελέσματα της όλης 

επιστημονικής προσπάθειας, αποδείχθηκε ότι η συγκεκριμένη 

μεθοδολογία είναι ικανή να υποστηρίξει ικανοποιητικά τη διαρκή 

παρακολούθηση της ποιότητας υδάτων και την αξιολόγηση της τροφικής 

κατάστασης των ελληνικών λιμνών. Κατ' επέκταση, διευκολύνεται η 

βιώσιμη διαχείρισή τους, ιδιαίτερα σε περιπτώσεις που τα in-situ δεδομένα 

είναι σχετικά περιορισμένα. 

Άλλα βασικά ερωτήματα τα οποία απάντησε η παρούσα 

διδακτορική διατριβή είναι αρχικά εάν οι προαναφερθέντες εμπειρικοί 

αλγόριθμοι παρακολούθησης της ποιότητας λιμνών που αναπτύχθηκαν 

με εικόνες Landsat μπορούν να εφαρμοστούν επιτυχώς σε εικόνες Sentinel 

2 και στη συνέχεια εάν η συνδυασμένη χρήση εικόνων πολλαπλών 

αισθητήρων δύναται να βελτιώσει την ακρίβεια ποσοτικοποίησής τους. 

Επιπλέον, ανεξάρτητα από την ύπαρξη ή όχι κάποιας βελτίωσης, ένας 

άλλος στόχος αυτής της συνδυασμένης προσέγγισης είναι να καθοριστεί 

εάν οι εικόνες πολλαπλών αισθητήρων θα μπορούσαν να 

χρησιμοποιηθούν με τουλάχιστον εξίσου αξιόπιστα αποτελέσματα όπως 

αυτά που προκύπτουν από τη χρήση εικόνων μόνο ενός αισθητήρα. 

Μεταξύ των πολλαπλών αισθητήρων ανιχνεύονται πολυάριθμες 

τροχιακές, χωρικές και φασματικές διαφοροποιήσεις, ωστόσο η 

δυνατότητα μεταφοράς των αλγόριθμων εκτίμησης ποιότητας υδάτων 

μεταξύ τους, δεν έχει εξεταστεί επαρκώς στη διεθνή βιβλιογραφία. Προς 

αυτή την κατεύθυνση, χρησιμοποιήθηκαν εικόνες Sentinel 2 MSI της 

χρονιάς 2018 με ημερομηνίες ταυτόχρονες με αυτές των μετρήσεων 

πεδίου με σκοπό την αξιολόγηση της απόδοσης των εμπειρικών μοντέλων 

και τη σύγκριση των αποτελεσμάτων επικύρωσής τους με τα αντίστοιχα 

των δορυφόρων Landsat.  

Επιπλέον, μια άλλη προσπάθεια βελτίωσης της ακρίβειας 

ποσοτικοποίησης των μοντέλων πραγματοποιήθηκε μέσω της 

συνδυασμένης χρήσης εικόνων Landsat (7 ETM+, 8 OLI) και Sentinel 2 MSI, 

ενώ η επιλογή κάθε εικόνας για κάθε περίπτωση βασίστηκε στην 

πλησιέστερη ημερομηνία λήψης της σε σχέση με αυτή της αντίστοιχης 

δειγματοληπτικής. Αναφορικά με τα αποτελέσματα, τα γενικά μοντέλα  

όλων των ποιοτικών παραμέτρων (Chl-a, βάθος Secchi Disk και TP), με 

εφαρμογή σε όλες τις λίμνες ήταν πιο αποτελεσματικά και ακριβή 

όταν εφαρμόστηκαν σε εικόνες Landsat, ενώ δεν παρατηρήθηκε 

βελτίωση ύστερα από τη χρήση εικόνων πολλαπλών αισθητήρων. Τα 



μοντέλα που αναπτύχθηκαν και εφαρμόστηκαν στις φυσικές λίμνες), 

παρουσίασαν διαφορετική συμπεριφορά. Τα μοντέλα Chl-a και TP 

παρουσίασαν μικρότερες τιμές σφάλματος όταν εφαρμόστηκαν σε 

εικόνες Sentinel 2 (RMSE Chl-a=16.4 μg/l vs 21.5 μg/l; RMSE TP=0.03 mg/l 

vs 0.031 mg/l)  και μόνο το μοντέλο Secchinatural είχε καλύτερη απόδοση 

με δεδομένα Landsat (2.8 m vs 2.9 m). Η συνδυαστική χρήση εικόνων 

Landsat και Sentinel 2 δεν προσέφερε καμία βελτίωση στα αντίστοιχα 

μοντέλα Chl-a και βάθους Secchi Disk, ενώ η χρήση εικόνων 

πολλαπλών αισθητήρων οδήγησε στην εκτίμηση συγκεντρώσεων TP 

με εξίσου αξιόπιστα αποτελέσματα όπως αυτά των δεδομένων 

Sentinel 2. Όσον αφορά στους αλγόριθμους των τεχνητών λιμνών, το 

μοντέλο της Chl-a απέδωσε καλύτερα ύστερα από τη χρήση Landsat 

εικόνων (RMSE= 3.7 μg/l vs 7.7 μg/l; Sentinel 2), ενώ το μοντέλο 

εκτίμησης βάθους Secchi Disk  πέτυχε ελαφρώς καλύτερη απόδοση 

χρησιμοποιώντας εικόνες Sentinel 2 (RMSE= 1.5 m vs 1.6 m; Landsat). Τη 

χειρότερη απόδοση ανάμεσα στις υπό μελέτη ποιοτικές παραμέτρους 

παρουσίασαν τα μοντέλα της Chl-a (οι διάμεσες MAPE τιμές 

κυμάνθηκαν από 42 % έως 58% ενώ του βάθους Secchi από 24% έως 44% 

και του Ολικού Φωσφόρου από 22% έως 38%), γεγονός που επιβεβαιώνει 

για ακόμα μία φορά την πολυπλοκότητα που κρύβει η χαρτογράφηση της 

Chl-a στα ύδατα της Περίπτωσης 2 (παράκτια, εσωτερικά ύδατα). 

Συνοψίζοντας, προτείνεται τα εμπειρικά μοντέλα παρακολούθησης της 

ποιότητας των ελληνικών λιμνών να εφαρμόζονται κυρίως σε εικόνες 

Landsat. Ωστόσο, η χρήση των δεδομένων Sentinel 2 δυνητικά παράγει 

εξίσου αξιόπιστα αποτελέσματα με ορισμένες (όχι σημαντικές) 

αποκλίσεις από τα αντίστοιχα αποτελέμστα των Landsat αλλά και από τις 

επιτόπιες μετρήσεις της ποιότητας υδάτων των λιμνών. 

Σήμερα, οι πλατφόρμες υπολογιστικής νέφους ανοιχτού κώδικα 

έχουν αναδειχθεί σε πολύτιμα εργαλεία γεωχωρικής ανάλυσης 

δεδομένων εικόνας διαφόρων δορυφόρων. Ιδιαίτερα η χρήση της 

πλατφόρμας Google Earth Engine (GEE), είναι η πιο διαδεδομένη στο 

επιστημονικό πεδίο της δορυφορικής τηλεπισκόπησης.  Οι πρόσφατες 

εκτοξεύσεις διαφόρων δορυφόρων σε συνδυασμό με την πλατφόρμα GEE, 

διευκολύνουν σε μεγάλο βαθμό την παρακολούθηση των λιμνών σε 

εθνική κλίμακα. Με βασικούς στόχους αφενός την αξιοποίηση των in-situ 

δεδομένων ποιότητας της ΟΠΥ, και αφετέρου το συνδυασμό τους με τη 

δυναμική της πλατφόρμας GEE, το επόμενο βήμα ήταν η εξακρίβωση της 

απόδοσης των ποιοτικών μοντέλων όταν χρησιμοποιούν τιμές ανάκλασης 

οι οποίες έχουν υποβληθεί σε διαφορετικές μεθόδους ατμοσφαιρικής 

διόρθωσης από αυτές όταν αναπτύχθηκαν.  

Πιο συγκεκριμένα, τιμές ανάκλασης από εικόνες Landsat και Sentinel 2 

του έτους 2018, αποκτήθηκαν μέσω της πλατφόρμας GEE στους σταθμούς 

δειγματοληψίας λιμνών της ΟΠΥ ενώ ήταν ατμοσφαιρικά διορθωμένες με 
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τις μεθόδους  LaSRC (Landsat 8 OLI), LEDAPS (Landsat 7 ETM+) και 

Sen2Cor (Sentinel 2). Οι εν λόγω τιμές ανάκλασης αντιστοιχίστηκαν με τα 

in-situ  δεδομένα ποιότητας του 2018 με διαφορά ημερομηνιών ±7 ημερών 

(από την ημερομηνία της δειγματοληψίας), αποδίδοντας 192 και 210 ζεύγη 

δεδομένων με εικόνες Landsat και Sentinel 2, αντίστοιχα. Τα ίδια ζεύγη 

δημιουργήθηκαν με τις τιμές ανάκλασης προερχόμενες από τις 

αντίστοιχες εικόνες, οι οποίες αποκτήθηκαν και προ-επεξεργάστηκαν 

χειροκίνητα, με τη μέθοδο της ατμοσφαιρικής διόρθωσης DOS1. Τα 

εμπειρικά μοντέλα Chl-a, βάθους Secchi Disk και TP (για όλες και 

ξεχωριστά για φυσικές και τεχνητές λίμνες), εφαρμόστηκαν δύο φορές 

χρησιμοποιώντας και τα δύο είδη ανάκλασης, την DOS1-διορθωμένη 

ανάκλαση και εκείνη που αποκτήθηκε από εικόνες ενσωματωμένες στη 

GEE πλατφόρμα. Επιπρόσθετα, η διπλή εφαρμογή των εμπειρικών 

μοντέλων εκτίμησης της ποιότητας υδάτων πραγματοποιήθηκε 

ξεχωριστα για τους δορυφόρους Landsat (7 ETM+/OLI) και Sentinel 2. Η 

διπλή εφαρμογή των ποιοτικών μοντέλων είχε ως αποτέλεσμα τη διπλή 

εκτίμηση των τιμών της εκάστοτε ποιοτικής παραμέτρου στον εκάστοτε 

σταθμό δειγματοληψίας και στη συνέχεια αυτές οι διπλές τιμές 

(προερχόμενες από DOS1 και λοιπές ατμοσφαιρικές μεθόδους) 

εισήχθησαν σε ανάλυση γραμμικής παλινδρόμησης. Οι γραμμικές 

εξισώσεις που προέκυψαν μεμονωμένα για κάθε αισθητήρα (Landsat, 

Sentinel 2) υπέδειξαν τιμές υψηλής συσχέτισης (R2 από 0.68 έως 0.98) 

και αποτέλεσαν τα διορθωμένα πλέον μοντέλα εκτίμησης ποιότητας 

για χρήση και εφαρμογή τους με δεδομένα που έχουν υποβληθεί σε 

ίδιες μεθόδους ατμοσφαιρικής διόρθωσης με αυτές που εντοπίζονται 

στη GEE πλατφόρμα. 

Τα αρχικά αλλά και τα διορθωμένα μοντέλα εκτίμησης της 

ποιότητας επικυρώθηκαν περαιτέρω με βάση τα διαθέσιμα in-situ 

δεδομένα των ετών 2019 και 2020, περιλαμβάνοντας 239 (Landsat-GEE) και 

242 (Sentinel 2-GEE) και 220 (Landsat-GEE) και 286 (Sentinel 2-GEE) 

αντιστοιχισμένα ζεύγη, αντίστοιχα. Η επικύρωση των αρχικών και των 

διορθωμένων μοντέλων εκτίμησης της ποιότητας υδάτων βασίστηκε στη 

χρήση στατιστικών δεικτών και μετρικών σφαλμάτων όπως η ρίζα μέσου 

τετραγωνικού σφάλματος (RMSE), το κανονικοποιημένο μέσο 

τετραγωνικό σφάλμα (NRMSE) και η μέση εκατοστιαία απόλυτη 

απόκλιση (MAPE).  

Η διόρθωση των εμπειρικών μοντέλων ανάλογα με τον 

αισθητήρα αποδείχθηκε απαραίτητη για ορισμένα από αυτά, ενώ οι 

τιμές RMSE κυμάνθηκαν για τη Chl-a από 11.68 μg/l (Landsat) έως 14.88 

μg/l (Sentinel 2), για το βάθος Secchi Disk από 2.02 m (Landsat) έως 2.57 

m (Sentinel 2) και TP από 0.14 mg/l (Landsat) έως 0.09 mg/l (Sentinel 2), 

τιμές που επιβεβαίωσαν τη σταθερότητα και τη δυνατότητα 



μεταφοράς των εμπειρικών μοντέλων σε εικόνες διαφορετικά 

ατμοσφαρικά διορθωμένες,  στην πλατφόρμα GEE. Με αυτό τον τρόπο, 

εξοικονομείται πολύτιμος χρόνος που αντιστοιχεί στην προεπεξεργασία 

των δορυφορικών εικόνων από το χρήστη πριν τη χρήση τους, 

διευκολύνοντας έτσι την παρακολούθηση της ποιότητας λιμνών σε εθνικό 

επίπεδο και παρέχοντας παράλληλα στους διαχειριστές υδάτινων πόρων 

ένα πρόσθετο εργαλείο για τη λήψη μέτρων προστασίας των υδάτων. 

Εφόσον διερευνήθηκε η επιτυχής ή μη εφαρμογή των μοντέλων 

εκτίμησης ποιότητας υδάτων αρχικά σε Sentinel 2 εικόνες και στη 

συνέχεια σε εικόνες που έχουν υποστεί ατμοσφαιρική διόρθωση μέσω 

διαφορετικών μεθόδων στη GEE πλατφόρμα, απαντήθηκε ακόμα ένα 

περίπλοκο ερώτημα.  Το πρώτο σκέλος του ερωτήματος που ερευνήθηκε 

είναι το εάν τα μοντέλα εκτίμησης ποιότητας υδάτων (Chl-a, βάθους 

Secchi Disk και Ολικού Φωσφόρου) δύναται να είναι αποτελεσματικά για 

την παρακολούθηση της ποιότητας και των ολιγοτροφικών υδάτων και το 

δεύτερο σκέλος αφορά στην εξακρίβωση της ύπαρξης ή μη ανάγκης να 

αναπτυχθούν ειδικοί αλγόριθμοι αποκλειστικά προσανατολισμένοι σε 

αυτή την κατηγορία υδάτων. Η ταξινόμηση των υδάτων στην Περίπτωση 

1 (ωκεάνια) και στην Περίπτωση 2 (παράκτιες περιοχές, ποτάμια και 

λίμνες), είναι ιδιαίτερα σημαντική. Τα νερά της Περίπτωσης 1 

προσδιορίζονται με βάση το φυτοπλαγκτόν και λοιπές ουσίες, ενώ τα 

νερά της Περίπτωσης 2 είναι πιο πολύπλοκα όσον αφορά στη σύσταση και 

τις οπτικές τους ιδιότητες. Ένας από τους βασικούς παράγοντες που 

εμποδίζει την εκτίμηση της ποιότητας υδάτων στα νερά της Περίπτωσης 2 

με ακρίβεια είναι το γεγονός ότι τα αιωρούμενα υλικά, η συγκέντρωση της 

έγχρωμης διαλελυμένης οργανικής ύλης (CDOM- Colored Dissolved 

Organic Matter) και η ανάκλαση του πυθμένα μεταβάλλονται ανεξάρτητα 

το ένα από το άλλο. Οι ολιγοτροφικές λίμνες αποτελούν μια ξεχωριστή 

κατηγορία των περίπλοκων οπτικά υδάτων της Περίπτωσης 2 και δε 

ταξινομούνται στην Περίπτωση 1 δεδομένου ότι συνήθως λαμβάνουν 

σημαντικές εισροές ιζημάτων και η διαύγεια των υδάτων τους ελέγχεται 

συνήθως από τις συγκεντρώσεις του διαλυμένου οργανικού άνθρακα 

(DOC-Dissolved Organic Carbon) και όχι από το φυτοπλαγκτόν. Με βάση 

τα προαναφερθέντα, τα μοντέλα εκτίμησης ποιότητας υδάτων λιμνών 

(Chl-a, βάθους Secchi Disk και TP), τα οποία αναπτύχθηκαν και 

«εκπαιδεύτηκαν» με ένα αρκετά μεγάλο εύρος συγκεντρώσεων, 

εφαρμόστηκαν σε εικόνες Landsat 8 OLI που απεικονίζουν δύο (2) 

ελληνικά ολιγοτροφικά υδάτινα σώματα, τις λίμνες Τριχωνίδα και 

Αμβρακία. Τα διαθέσιμα in-situ δεδομένα ποιότητας συλλέχθηκαν τα έτη 

2013 και 2014, ενώ οι δορυφορικές εικόνες που χρησιμοποιήθηκαν έχουν 

ταυτόχρονες ημερομηνίες. Η εφαρμογή των μοντέλων στις 

ολιγοτροφικές λίμνες Τριχωνίδα και Αμβρακία ήταν 

αναποτελεσματική˙ το γενικό μοντέλο υπολογισμού της 
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Χλωροφύλλης-α απέδωσε τιμές RMSE=1.9 μg/l, NRMSE=1.6 και median 

MAPE=256.8, το μοντέλο υπολογισμού Χλωροφύλλης-α στις φυσικές 

λίμνες απέδωσε: RMSE=1.8 μg/l, NRMSE=1.5 και median MAPE=176.6 

ενώ τα αποτελέσματα των λοιπών μοντέλων Ολικού Φωσφόρου και 

βάθους Secchi Disk δεν ήταν στατιστικά σημαντικά σύμφωνα με το 

δείκτη συνάφειας Spearman r και με επιθυμητό επίπεδο 

σημαντικότητας 0.01.  Τα προαναφερθέντα ευρήματα είναι παρόμοια με 

εκείνα άλλων μελετών που διερεύνησαν ολιγοτροφικά υδάτινα σώματα. 

Επιπρόσθετα, οι ιδιαίτερα χαμηλές και ομοιογενείς συγκεντρώσεις Chl-a, 

μέση τιμή 0.6 μg/l και 0.7 μg/l, που μετρήθηκαν στις λίμνες Τριχωνίδα και 

Αμβρακία, αντίστοιχα, υπέδειξαν ότι η μεγαλύτερη συμβολή οπτικά 

προέρχεται από σωματίδια μη σχετιζόμενων με το φυτοπλαγκτόν, 

γεγονός που υποδηλώνει την ανάγκη ανάπτυξης ειδικών αλγορίθμων. 

Λαμβάνοντας υπόψιν τα προαναφερθέντα αποτελέσματα, έγινε 

μια προσπάθεια ανάπτυξης μοντέλων εκτίμησης της ποιότητας υδάτων 

στη λίμνη Τριχωνίδα. Στο πλαίσιο αυτής της προσπάθειας, διερευνήθηκε 

η καταλληλότητα εικόνων του δορυφόρου Landsat 8 OLI για την ακριβή 

εκτίμηση των συγκεντρώσεων Chl-a, των θρεπτικών αλάτων και της 

απορρόφησης CDOM σε συγκεκριμένα μήκη κύματος. Η λίμνη Τριχωνίδα 

αποτελεί τη μεγαλύτερη φυσική λίμνη στην Ελλάδα, είναι ολιγοτροφική 

και χαρακτηρίζεται από ανύπαρκτη ποσοτική, χρονική και χωρική 

μεταβλητότητα ως προς τις συγκεντρώσεις των μελετούμενων ποιοτικών 

παραμέτρων. Δείγματα νερού συλλέχθηκαν από 22 σταθμούς στα τέλη 

Αυγούστου 2014 και οι μετρούμενες in-situ συγκεντρώσεις τους 

συνδυάστηκαν μέσω ανάλυσης παλινδρόμησης με μία δορυφορική εικόνα 

Landsat 8 OLI της ίδιας ημερομηνίας με σκοπό την ανάπτυξη μοντέλων 

εκτίμησης ποιότητας υδάτων. Στη συνέχεια, τα βέλτιστα μοντέλα 

εφαρμόστηκαν στη δορυφορική εικόνα του 2013 και η επικύρωση των 

αποτελεσμάτων πραγματοποιήθηκε χρησιμοποιώντας τα αντίστοιχα in-

situ δεδομένα του 2013. Τα αποτελέσματα από τη διαδικασία 

επικύρωσης έδειξαν μια σχετικά διαφορετική στατιστική σχέση 

μεταξύ των in-situ δεδομένων και των ανακλάσεων (R logchl-a: 0.4, R 

NH4 +: 0.7, R Chl-a: 0.5, R CDOM στα 420 nm: 0.3). Οι επιτόπιες μετρήσεις 

των συγκεντρώσεων νιτρικών, νιτρωδών, φωσφορικών αλάτων και ολικού 

αζώτου του 2014 μετρήθηκαν ως χαμηλότερες από το όριο ανίχνευσης του 

χρησιμοποιούμενου οργάνου, επομένως δεν πραγματοποιήθηκε 

στατιστική επεξεργασία. Επιπλέον, η ανάλυση παλινδρόμησης μεταξύ 

της ανάκλασης και των συγκεντρώσεων TP οδήγησε σε χαμηλές και 

στατιστικά μη σημαντικές συσχετίσεις (οι τιμές R2 κυμάνθηκαν από 

0.06 έως 0.07). Τα ευρήματά μας ήταν επίσης παρόμοια με αυτά άλλων 

μελετών στη διεθνή βιβλιογραφία, υποδεικνύοντας ότι η παρακολούθηση 

ποιότητας στις ολιγοτροφικές λίμνες είναι λιγότερο ακριβής σε σχέση με 



τις ευτροφικές και μεσοτροφικές, λόγω της απουσίας αιωρούμενων 

σωματιδίων τα οποία είναι ανιχνεύσιμα από τους δορυφορικούς 

αισθητήρες. Συμπερασματικά προκύπτει ότι παρά την ύπαρξη πολλών in-

situ μετρήσεων σε πυκνό δίκτυο σταθμών, όπως συνέβη στην παρούσα 

διατριβή, μια ποσοτικά ακριβής εκτίμηση ποιοτικών παραμέτρων στα 

παράκτια/εσωτερικά ύδατα παραμένει μια μεγάλη πρόκληση.  
 

  



Markogianni V. Water Quality Assessment in Greek Lakes by Using Remote Sensing and Statistical Modelling 

47 | P a g e  

 

VI. EXTENDED SUMMARY 

Given the great importance of lakes in Earth’s environment and human 

life, continuous water quality (WQ) monitoring within the frame of the Water 

Framework Directive (WFD) is the most crucial aspect for lake management. 

In-situ monitoring of lake WQ in synergy with satellite remote sensing (RS) 

represents the latest scientific trend in many WQ monitoring programs 

worldwide. Therefore, the wide methodological framework developed herein 

has as an ultimate goal the generation of lake WQ quantitative models, 

supporting sustainable water resources management at a national scale. The 

practical use of this approach was developed and evaluated in a total of 50 

lake water bodies (natural and artificial) from 2013–2018, constituting the 

National Lake Network Monitoring of Greece in the context of the WFD. 

Concerning the utilized Earth Observation (EO) data, images from Landsat 7 

Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land 

Imager (OLI) sensors have been combined with co-orbital WQ in-situ 

measurements with the main objective of delivering robust WQ assessment 

models.  

In the first instance, assessing Chlorophyll-a (Chl-a) pigments in 

complex inland water systems (Case-2 waters) is of key importance as this 

parameter constitutes a major ecosystem integrity indicator. From the 

statistical point of view, principal component analysis (PCA) was performed 

to explore Greek lakes’ interrelationships among their Chl-a values and 

certain criteria, e.g. their characteristics (artificial/natural), WFD typology, 

climatic type (according to the Köppen-Geiger climate classification), season 

of water samplings and the date difference between sampling and satellite 

overpass. PCA highlighted the lake characteristics (natural/artificial) and 

WFD typology as the variables that mostly contribute to the variance of Chl-a 

concentration; thus, numerous stepwise multiple regression analyses (MLRs) 

among different groups of cases, formed by the PCA criteria, were 

implemented with basic aim the generation of different remote sensing-

derived Chl-a algorithms for different types of lakes. MLRs analysis was also 

implemented employing datasets without considering certain criteria for 

cases where no information is available about their characteristics. 

Moreover, correlation analysis among in-situ co-orbital WQ data including 

Chl-a, Secchi depths and Total phosphorus (TP) concentrations, was 

conducted to explore and detect their inter-relationships. Subsequently, based 

on correlation analysis’s results, further stepwise MLRs employing available 

in-situ TP and Secchi depth datasets were further implemented to establish 

optimal quantitative models (general, oriented to natural-only and artificial-

only lakes). Eventually, trophic status classification was conducted herein, 

calculating Carlson’s Trophic State Index (TSI) of each lake, initially 

throughout all lakes and then oriented toward natural-only and artificial-only 



lakes. Those three types of TSI (general, natural, artificial) were calculated 

based on hereby specially designed WQ models (Chl-a, Secchi depth, TP). 

All in all, the results, concerning Chl-a, evidenced the suitability of Landsat 

data to estimate log-transformed Chl-a. The proposed scheme resulted in 

the development of models separately for natural (R = 0.78) and artificial (R 

= 0.76) lakes, while the model developed without criteria proved weaker (R 

= 0.65) in comparison to the other ones examined. Correlation matrix results 

among in-situ Chl-a, Secchi and TP data showed a high and positive 

relationship between TP and Chl-a (0.85), whereas high negative 

relationships were found between Secchi depth with TP (-0.84) and Chl-a (-

0.83). MLRs among Landsat data and Secchi depths resulted in 3 optimal 

models concerning the assessment of Secchi depth of all lakes (Secchigeneral; 

R = 0.78; RMSE = 2 m), natural (Secchinatural; R = 0.95; RMSE = 1.87 m) and 

artificial (Secchiartificial; R = 0.62; RMSE = 1.36 m), with reliable accuracy. 

Study findings showed that TP-related MLR analyses failed to deliver a 

statistically acceptable model for the reservoirs; nevertheless, they 

delivered a robust TPgeneral model for all lakes (R = 0.71; RMSE = 0.008 mg/L) 

and a TPnatural model for natural lakes (R = 0.93; RMSE = 0.018 mg/L). 

Subsequently, regarding the TSI results, the higher deviation of satellite-

derived TSI values in relation to in-situ ones was detected in reservoirs and 

shallower lakes (mean depth < 5 m), indicating noticeable divergences among 

natural and artificial waterbodies. Summarizing, this particular part of the 

whole scientific effort was proven capable of providing important support 

towards the perpetual WQ monitoring and trophic status assessment of Greek 

lakes and, by extension, their sustainable management, particularly in cases 

when ground truth data is limited. 

Some other key questions that this thesis answered are initially 

whether aforementioned Landsat-based empirical WQ algorithms can be 

efficiently applied to Sentinel 2 images and then whether the combined use of 

multi-sensor data improves those algorithms’ prediction accuracy. 

Additionally, independently from whether there is some improvement or not, 

another goal of this combined approach is to decide whether multi-sensor 

images could be used with at least equally reliable results as those accrued 

from only-one sensor’s utilization. Among sensors numerous orbital, spatial 

and spectral differences are detected, however transferability of WQ 

algorithms across them remains poorly examined. Towards this direction, 

Sentinel 2 images of 2018 with concurrent dates with those of field 

measurements were utilized to facilitate a WQ models’ efficiency evaluation 

and comparison with the respective Landsat’s validation results.  

Additionally, another effort has been made to improve WQ models’ 

quantification capability through the combined use of Landsat (7 ETM+, 8 

OLI) and Sentinel 2 images, while the selection of each image for each case 

was based on the nearest acquisition date to the sampling one. As far as the 
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results are concerned, in particular for general models of all WQ elements 

(Chl-a, Secchi depth and TP), all models were more efficient and accurate 

when were accompanied by Landsat images while no improvement was 

observed by using multi sensor images. Models developed and applied to 

natural lakes, though, demonstrated a different behavior. Chl-a and TP 

models (natural lakes) presented lower values of error metrics when 

employing Sentinel 2 images (RMSE Chl-a=16.4 μg/l vs 21.5 μg/l; RMSE 

TP=0.03 mg/l vs 0.031 mg/l) and only Secchinatural model performed better 

with Landsat data (2.8 m vs 2.9 m). Combined utilization of Landsat and 

Sentinel 2 images did not provide any improvement to corresponding Chl-a 

and Secchi models whereas the multi sensor images resulted in TP 

concentrations with equally reliable outcomes as those employing Sentinel 2. 

Regarding the algorithms developed and applied in artificial lakes, 

performance of Chl-a model was better by exploiting Landsat data (RMSE= 

3.7 μg/l vs 7.7 μg/l of Sentinel 2) while Secchi model achieved slightly 

better efficiency with Sentinel 2 images (RMSE= 1.5 m vs 1.6 m of Landsat). 

The largely worse performance of Chl-a models compared to rest of WQ 

elements (median MAPE values ranged from 42 % to 58%, Secchi depth from 

24% to 44% and TP from 22% to 38%), emphasized once again the complexity 

that mapping of Chl-a in Case 2 waters (coastal and/or inland waters) hides. 

Summing up, it is proven that hereby WQ models are proposed to employ 

principally Landsat images; however, the employment of Sentinel 2 data 

potentially produces reliable results with some (not significant) deviations in 

assessment of lake WQ. 

Today, open source Cloud Computing platforms have emerged as a 

valuable tool for geospatial analysis of image data from various satellites. In 

particular, the Google Earth Engine (GEE) platform is the most widespread in 

the scientific field of satellite RS. Newest launches of various satellites in 

combination with the GEE platform, facilitate in a great extent national-scale 

lake monitoring. In order to take advantage of in-situ lake WQ data derived 

from the ongoing WFD implementation in Greece and the high potential of 

GEE platform, next step was to test the transferability and performance of 

hereby-developed empirical WQ algorithms when employing Landsat (7 

+ETM/8 OLI) and Sentinel 2 surface reflectance (SR) values embedded in GEE 

and subjected to different atmospheric correction (AC) methods from those 

used as they were developed. More particularly, GEE-Landsat and -Sentinel 2 

SR of year 2018 was retrieved from the WFD lake sampling stations and were 

atmospherically corrected by the methods LaSRC (Landsat 8 OLI), LEDAPS 

(Landsat 7 ETM+) and Sen2Cor (Sentinel 2). Those SR values (GEE) were 

matched with WQ in-situ data of 2018 within ±7 days (from sampling date) of 

satellite overpasses, yielding 192 (Landsat) and 210 (Sentinel 2) matched pairs. 

Same pairs were created with SR derived from manually downloaded and 



pre-processed, with AC DOS1 method, respective images. Empirical WQ 

models of Chl-a, Secchi depth and TP (for all and separately for natural and 

artificial lakes), were applied twice employing both types of SR (DOS1- and 

rest in GEE- corrected). Furthermore, double application of WQ models was 

conducted separately for Landsat (7 ETM+/OLI) and Sentinel 2 data. Double 

application of WQ models resulted in double quantifications of each studied 

WQ element in each sampling station while those double WQ values were 

inserted in a linear regression analysis. Yielded linear equations (corrected 

WQ models), for each sensor, were accompanied by strong associations (R2 

ranging from 0.68 to 0.98). Initial and corrected sensor-specific WQ models 

were combined with available in-situ WQ datasets, yielding 239 (Landsat) and 

242 (Sentinel 2) matched pairs of 2019 and 220 (Landsat) and 286 (Sentinel 2) 

matched pairs of 2020, retrieved from the GEE platform. Sensor-specific 

correction of WQ models was proven essential for some of them while 

RMSE values ranged for Chl-a from 11.68 μg/l (Landsat) to 14.88 μg/l 

(Sentinel 2), for Secchi depth from 2.02 m (Landsat) to 2.57 m (Sentinel 2) 

and TP from 0.14 mg/l (Landsat) to 0.09 mg/l (Sentinel 2), values that 

confirmed the stability and transferability of empirically developed models 

even when apply differently-from-DOS1 method corrected SR embedded 

in GEE platform. In this way, valuable time concerning the images’ pre-

processing is saved while in parallel national lake WQ monitoring is 

facilitated by providing water resources managers an additional tool for 

taking water protection measures. 

Since the transferability of hereby developed WQ models initially 

across different sensors and then when employing SR corrected with different 

AC methods embedded in GEE have been explored, one more ambiguous 

question has been examined; whether those universal models are efficient for 

WQ monitoring of oligotrophic Case-2 waters and then reach final 

conclusions whether there is a need for the development of special algorithms 

exclusively oriented to oligotrophic waterbodies. The classification of waters 

in Case 1 (oceanic) and Case 2 (coastal regions, rivers, and lakes), is 

characterized by great importance; Case 1 waters are determined by 

phytoplankton and co-varying substances, while Case 2 waters are more 

complex concerning their composition and optical properties. Oligotrophic 

lakes are classified as Case-2 rather than Case-1 waters since they typically 

receive significant levels of terrigenous input and their water clarity is 

primarily controlled by the concentration of Dissolved Organic Carbon 

(DOC). One of the main factors hindering accurate WQ monitoring in Case 2 

waters is the fact that suspended material, yellow substances, and bottom 

reflectance vary independently of each other. In purview of the above, lake 

WQ quantitative models (Chl-a, Secchi depth and TP), developed and trained 

based on wide concentration ranges derived from WFD implementation, were 

applied to Landsat 8 OLI images illustrating two (2) Greek oligotrophic 
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waterbodies, Trichonis and Amvrakia lakes. The respective available in-situ 

WQ datasets was collected by HCMR staff from both of lakes and concern 

years 2013 and 2014 while satellite dates were concurrent with sampling ones. 

Conclusively, application of hereby developed WQ models in oligotrophic 

Trichonis and Amvrakia lakes was ineffective: Chl-ageneral model yielded 

values of RMSE=1.9 μg/l, NRMSE=1.6 and median MAPE=256.8 %, Chl-

anatural model yielded values of RMSE=1.8 μg/l, NRMSE=1.5 and median 

MAPE=176.6 % while results of all models of Secchi Disk and Total 

Phosphorus were statistically insignificant according to Spearman’s rank 

correlation coefficient values at significance level 0.01.  Aforementioned 

results agree with those of other studies investigating oligotrophic 

waterbodies. Moreover, particularly low and homogeneous in-situ measured 

Chl-a concentrations, mean values equal to 0.6 μg/l (Trichonis) and 0.7 μg/l 

(Amvrakia), indicated that, in those lakes, the greatest optical contribution 

originates from non-algae particles implying the need for the development of 

special designed WQ algorithms. 

Based on the previous approach, an effort has been made to develop special 

designed WQ algorithms in Trichonis lake. In the framework of this effort, the 

suitability of Landsat 8 OLI in accurately estimating Chl-a, nutrient 

concentrations and CDOM (Colored Dissolved Organic Matter) absorption at 

specific wavelengths was investigated. As a case study, the largest freshwater 

and oligotrophic body of Greece e.g. Trichonis Lake, is characterized by 

inexistent quantitative, temporal and spatial variability. Water samples were 

collected at 22 different stations on late August of 2014 and the satellite image 

of the same date was used to statistically correlate the in-situ measurements 

with various combinations of L8 bands in order to develop algorithms that 

best describe those relationships and calculate accurately the aforementioned 

WQ components. Subsequently, the most statistically promising quantitative 

models – accrued from statististical elaboration of 2014 data- were applied to 

the satellite image of 2013 and validation was conducted using in-situ data of 

2013 as reference. Results from the validation process showed a relatively 

variable statistical relationship between the in-situ data and reflectances (R 

logchl-a: 0.4, R NH4 +: 0.7, R Chl-a: 0.5, R CDOM at 420 nm: 0.3). In-situ 

nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were 

measured as lower than the detection limit of the instrument used, hence no 

statistical elaboration was conducted. On the other hand, MLR analysis 

among reflectance measures and TP concentrations resulted in low and 

statistical insignificant correlations (R2 values ranged from 0.06 to 0.07). Our 

findings were concurrent with other studies in international literature, 

indicating that estimations for oligotrophic are less accurate than eutrophic 

and mesotrophic lakes, owing to the lack of suspended particles that are 



detectable by satellite sensors. Yet, even with the presence of a lot of ground 

information as was the case in our study, a quantitatively accurate estimation 

of WQ constituents in coastal/inland waters remains a great challenge. 

Nevertheless, although those regression models, developed and applied to 

Trichonis oligotrophic lake are less accurate, may still be useful indicators of 

its WQ deterioration.  
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1. GENERAL INTRODUCTION 
 

Lakes’ significance 

Surface freshwater is one of the most essential resources for the 

terrestrial ecosystem and the predominant source of drinking water on Earth 

(Whyte et al., 2018). Part of this resource is stored in lakes and reservoirs, 

while 14 million lakes (>10 ha) have been recorded in the world (Meyer et al., 

2020).  Lake water is used to satisfy environmental and human requirements 

while itplays a key role in the European and the global economy since it is 

exploited for civil (e.g., irrigation), industrial (e.g., processing and cooling, 

energy production, fishery) and recreational purposes. These activities, 

though, critically depend on a sufficient amount of freshwater. In particular, 

lakes in land-locked countries are valuable since they are among the most 

significant water sources (Knoll et al., 2019). 

Given the great significance of lakes for human well-being, the rationale 

of universal access to water in quality and quantity is fundamental. Therefore, 

it is an objective of several global environmental agendas, like the United 

Nations Agenda for Sustainable Development (United Nations, 2015), which 

has 17 Sustainable Development Goals (SDG). Since lakes are a principal 

source of food and water supply, they are considered as essential ecosystems 

contributing to SDG 2, (Target 2.1. “By 2030, end hunger and ensure access by all 

people, in particular the poor and people in vulnerable situations, including infants, 

to safe, nutritious and sufficient food all year round”) and SDG 6, sustainable 

management of water and sanitation (e.g., Target 6.1. “By 2030, achieve 

universal and equitable access to safe and affordable drinking water for all”). 

Furthermore, the employment of lakes in producing hydropower and 

supplying biomass participate as well to SDG 7, affordable and clean energy 

(e.g., Target 7.2. “By 2030, increase substantially the share of renewable energy in 

the global energy mix”) and reduce reliance on fossil fuel (Inácio et al., 2022) 

However, scarcity of freshwater resources is already perceptible, 

constraining development and societal well-being in many countries (Coppin 

et al., 2004), while the expected growth of global population over the coming 

decades, together with growing economic prosperity, is expected to increase 

water demand, aggravating those problems (Vörösmarty et al., 2000; Arnell, 

2004; Alcamo et al., 2007; Schewe et al., 2013). Over the past few decades, the 

effect of climate change (global warming) and the anthropogenic pressure on 

natural resources have deteriorated their water quality (WQ; Michalak, 2016).  

The impacts of climate change on lake ecosystems are a well-studied topic, 

highlighting that alterations in temperature and precipitation patterns, result 

in regulation of other components such as water balance, limnology, and 

biogeochemical characteristics (Paulsson and Widerlund, 2022). 



Intergovernmental Panel on Climate Change (IPCC) predicts that the 

increase in temperature will be higher for lakes of high latitudes than the 

global average (IPCC, 2021), due to their high exposure to atmospheric 

conditions (Schirpke and Ebner, 2022). Those lakes are further predicted to be 

subjected to a loss of perennial ice cover, and to stronger stratification in the 

water column due to inflowing snow melt, increasing duration of open water 

conditions, and shifts in the water balance. Climate warming affects as well 

lake ecological dynamics, in particulate of alpine (Schirpke and Ebner, 2022) 

and shallow lakes located in arid regions, where climate and hydrological 

regime exercise a strong control on water constituents’ concentrations 

(Weyhenmeyer et al., 2019; Teubner et al., 2020). 

Various direct and indirect human-induced pressures have severe 

impacts on ecosystem conditions and processes of lakes (Mammides, 2020), 

varying according to certain characteristics. Low elevation lakes are highly 

affected by overfishing and environmental pollution, whereas mountain lakes 

are less exploited due to their far proximity (Lyche Solheim et al., 2019). The 

lakes’ shorelines are often transformed for touristic infrastructure, or by 

constructed dams, causing a severe degradation of littoral habitats, resulting 

in a decrease of biodiversity and ecological integrity (Porst et al., 2019). 

Accelerated touristic use, including aquatic recreation and hiking activities, 

alters species composition and ecosystem functions (Senetra et al., 

2020; Tiberti et al., 2019). Agricultural activities in proximity to lakes as well 

as the use of fertilizers for intensive farming, lead to the World’s lakes’ 

greatest threat; increasing eutrophication of lakes and WQ degradation 

through increased nutrient inflows (Van Colen et al., 2018, Pedreros-Guarda 

et al., 2021).  

Limnological research concerning the last two decades supports that 

existing global warming tends to intensify the responses of lakes to 

cultural eutrophication including accelerating hypolimnetic anoxia and 

nutrient release from lake sediments, intensified nutrient recycling, and 

increased algal production (Salmaso and Tolotti, 2021). Moreover, European 

surface water bodies were studied by European Environment Agency (EEA, 

2018) concerning their impact from nutrient loads.  Based on this report, 60% 

of the surface water bodies fail to achieve the objectives of good water quality 

defined by the international directives on water quality, such as the 

European Water Framework Directive (2000), with diffuse emission from 

agriculture being the second most important pressure affecting surface waters 

(Nikolaidis et al., 2022).  

The need for sustainable management of water bodies highlights the fact 

that water resources are not inexhaustible and have limited resistance under 

anthropogenic pressures (ongoing drainage, conversion, and pollution). 

Hence, one of the most significant aspects for the sustainable management of 

water bodies is the constant monitoring of their quality, as well as of their 

https://www.sciencedirect.com/science/article/pii/S0883292722000397#bib22
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hydrological-regime
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hydrological-regime
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/shoreline
https://www.sciencedirect.com/science/article/pii/S0301479722011793#bib73
https://www.sciencedirect.com/science/article/pii/S0301479722011793#bib73
https://www.sciencedirect.com/science/article/pii/S0301479722011793#bib81
https://www.sciencedirect.com/science/article/pii/S0048969721069746#bb0060
https://www.sciencedirect.com/science/article/pii/S0048969721069746#bb0060
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watersheds (Gholizadeh et al., 2016). WQ monitoring is the most crucial 

aspect for lake management while the term “lake management” refers to 

management designed to maintain an ongoing viability of lake ecosystems 

that provide the basis for aquatic and non-aquatic life (Bonansea et al., 2015). 

 

Water Quality (WQ) monitoring 

WQ is the most significant indicator of a water body’s ecological status, 

while its assessment assumes the continuous monitoring of mainly physico-

chemical and biological elements (Fatima, 2018; Nikolaidis et al., 2022). The 

continuous monitoring of large water bodies is a complex task, since it 

demands frequent and detailed data collection and interpretation efforts. 

Only exhaustive sampling field works can fully attain the spatial and 

temporal variance of common key WQ indicators. This results to an essential 

compromise between the number of sampling stations and the need of 

maintaining costs within reasonable limits (Strobel et al., 2000).  

WQ parameters are traditionally measured based on in-situ 

measurements, collection of water samples and laboratory analysis (Li et al., 

2016). Although in-situ WQ monitoring provides high accuracy (at specific 

location and time), it is a time-consuming procedure, and it cannot ensure a 

simultaneous WQ dataset on a regional or greater scale (Duan et al., 2013; 

Gholizadeh et al., 2016; Topp et al., 2020). Furthermore, traditional point 

sampling methods are not capable of detecting the spatial or temporal 

variations in WQ, as required in extensive assessment and management of 

water bodies. Additionally, patchy distribution of elements such as nutrients, 

algal blooms, and TSM (Total Suspended Matter) classify those methods as 

unsuitable for monitoring a large number of water bodies at a regional or 

national scale (Japitana and Burce, 2019).  

Nowadays in-situ monitoring of lake WQ in synergy with satellite RS 

represents the latest scientific trend in many WQ monitoring programs 

worldwide (Japitana and Burce, 2019; Neil et al., 2019; Topp et al, 2020). 

Although the ability of RS to assess WQ is undeniable, this technique alone is 

not adequately precise and should be combined with field water sampling 

(Gholizadeh et al., 2016). Therefore, point-specific WQ datasets, which lack 

spatiotemporal trends, in conjuction with simultaneous RS datasets which 

provide a synoptic spatiotemporal view of ongoing earth surface processes, 

facilitate the monitoring, assessment and identification of WQ management 

strategies. 

 

Contribution of RS in WQ monitoring 

Recent developments in geoinformation technologies and in particular 

of RS and Geographical Information Systems (GIS), concerning pollution 

loads and lake WQ, offer a number of advantages that practically address the 



limitations of traditional water sampling (Brivio et al., 2001; Pozdnyakov et 

al., 2005; Tyler et al., 2006). Among the key advantages of RS is the ability to 

cover large areas (Chatziantoniou et al., 2017) and to collect spectral 

information at variable spatial scales- including lakes that are otherwise 

inaccessible (MacKay et al., 2009; Whyte et al., 2018), at multi-scale temporal 

analysis and at dramatically lower cost compared to field measurements 

(Haddad and Harris, 1985). 

Satellite RS is an efficient, beneficial tool for the assessment of spatial 

and temporal differentiations in WQ (Bonansea et al., 2015; Japitana and 

Burce, 2019). RS technologies enable researchers to acquire a unique, holistic 

perspective of the ecosystems. From the vantage point of space, satellite data 

becomes an invaluable tool in support of lake management while this is of 

especial importance in the context of the increasingly strict environmental 

regulations approved by governments worldwide such as Water Framework 

Directive (WFD; 2000/60/EC) and the European Marine Strategy Framework 

Directive (MSFD; 2008/56/EC) (Nikolaidis et al., 2022) 

Apart from the law-required WQ components, the major factors which 

can influence the quality of inland water bodies are the suspended sediments 

(turbidity; Avdan et al. 2019), phytoplankton and cyanobacteria (i.e., 

chlorophylls, carotenoids), dissolved organic matter (DOM; Olmanson et al., 

2020), organic and inorganic nutrients, pesticides, metals, thermal releases, 

macrophytic algae, pathogens and oils (Topp et al., 2020). The above-

mentioned factors affect the optical properties of waters (except for nutrients); 

thus, directly change the signal acquired by optical sensors over water bodies 

(Gholizadeh et al., 2016). The parameters which can be directly quantified 

using RS techniques are the suspended particulate matter (SPM), which is 

placed in suspension by wind-wave stirring of shallow waters and can be a 

tracer for inflowing pollutants (Eleveld, 2012), the phytoplankton mainly as 

chlorophyll-a (chl-a) or phycocyanin (PC), that can be used to indicate the 

trophic level, to evaluate the presence of potentially toxic algal blooms and as 

a proxy of phytoplankton biomass (Pahlevan et al., 2020) and the coloured 

DOM (CDOM), commonly called yellow substances, which might indicates 

the presence of either fulvic or humic acids; CDOM is also investigated 

because of its role in protecting aquatic biota from ultraviolet solar radiation 

and its influence on specifically heterotrophic bacterial productivity in the 

water column, indicative of the shift from net autotrophy to net heterotrophy 

(Gholizadeh et al., 2016; Topp et al., 2020; Pizani and Maillard, 2022).  

 

WFD and WQ monitoring 

Several WQ monitoring programs, such as the US Clean Water Act 

(CWA) and Safe Drinking Water Act (SDWA), the Australian Reef Water 

Quality Protection Plan (Reef Plan) and Water Framework Directive (WFD) 
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have been implemented worldwide requiring large datasets of several WQ 

parameters to be monitored on a regular basis.  

WFD, in particular, has been applied in a broad framework of catchment 

management while it provides a scheme for the conservation and 

improvement of inland, ground, and coastal waters’ ecological status and 

aims to harmonize European legislation on water. Thus, pan-European 

hydromorphological, physicochemical, and biological datasets are used to 

determine ecological status of surface waters (Article 8) in order to assure and 

further improve future WQ and quantity (Mavromati et al., 2017; Nikolaidis 

et al., 2022). For each one category of datasets, a descriptive definition of high, 

good, moderate, poor, and bad status is given. Each National authority 

should set standards for those elements most relevant to the pressures faced 

by the water body under its responsibility and classify waters accordingly 

(Nikolaou et al., 2008).  

Since the European Commission WFD (EC, 2000) was declared, Member 

States have started to establish lake ecological status assessment schemes, and 

integrating the setting of TP (Total Phosphorus) and Chl-a as reference 

conditions for European lakes of different types and ecoregions (Cardoso et 

al., 2007; Carvalho et al., 2008; Poikane et al., 2010; Huo 2013; Nikolaidis et al., 

2022)  

At the national level, the Greek Water Monitoring Network according to 

the Joint Ministerial Decision 140384/2011, operates for WFD and is 

implemented by the Goulandris Natural History Museum, Greek 

Biotope/Wetland Centre (EKBY). The monitoring network consists of 50 lake 

water bodies with an area of 0.5 km2, including 26 artificial and 24 natural 

ones.  At the majority of the lakes only one sampling station is detected, 

except for transboundary lakes (Megali Prespa, Mikri Prespa and Doirani), 

where two sampling stations are located. From the total of 53 sampling sites, 

the 27 are the surveillance and the 26 the operational ones. Surveillance 

stations operate in water bodies of good status for a certain period of time 

(one year in every monitoring cycle) unless during the previous monitoring 

period a specific lake system was determined to have reached the good 

condition and no changes are detected. The minimum monitoring frequency 

for the physicochemical parameters is 3 months unless longer time intervals 

are justified based on expert judgement. Furthermore, in the framework of 

surveillance monitoring, biological and hydromorphological parameters are 

monitored at least once during the whole period. On the other hand, 

operational stations run continuously on water bodies which fail to achieve 

good status while the suitable monitoring frequency for each element is 

determined based on the acquisition of sufficient enough data to provide a 

reliable assessment of the ecological status. In general, monitoring should be 



performed at intervals not exceeding the limits listed in the table below (Table 

1-1; WFD; 2000/60/EC). 

 
 

Table 1-1. Specifications of Directive 2000/60/EC regarding monitoring frequency. 

WQ element Lakes 

Biological 

Phytoplankton 6 months 

Aquatic flora 3 years 

Macroinvertebrates 3 years 

Fish 3 years 

Hydromorphological 

Hydrology 1 month 

Morphology 6 years 

Physicochemical 

Temperature 3 months 

Oxygen 3 months 

Salinity 3 months 

Nutrients 3 months 

pH 3 months 

Pollutants 3 months 

Priority substances 1 month 

 

 

EO data and Landsat’s contribution to lake WQ monitoring 

Even though inland WQ measurements based on RS approaches dates 

back nearly 50 years (Topp et al., 2020) and during the last 20 years new 

instruments (platforms and sensors) have been developed for this purpose 

(Pizani and Maillard, 2022), a slow evolution has been observed compared to 

terrestrial and oceanic RS techniques. The effectiveness of each RS application 

for WQ monitoring depends on the selection of appropriate platforms and 

instruments (Pizani and Maillard, 2022) while there are several categories of 

the most commonly sensors used in WQ assessments, including airborne -

along with unmanned aerial vehicles (UAV)- and satellite sensors (with 

visible and infrared wavelengths), passive microwave radiometers (MWR) 

and synthetic aperture radar (SAR). According to Gholizadeh et al. (2016), 

Sagan et al. (2020), Topp et al. (2020) and Pizani and Maillard (2022), the most 

utilized sensors for inland WQ assessment are the passive optical and thermal 
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ones, since water is highly absorptive within the near and shortwave infrared 

spectrum and the majority of water-leaving radiance occurs within the visible 

spectrum. In optically complex waters though, sediment reflectance exceeds 

the absorptive properties of water in the near/shortwave infrared 

wavelengths where high absorption within the visible spectrum results in low 

range of reflectance values. This low range demands high sensitivity to detect 

small changes in reflectance and therefore significant improvement 

concerning spectral, spatial and radiometric resolutions, revisit time, number 

of satellite bands and free access to data have been made (Topp et al., 2020). 

EO data from several optical ocean color sensors such as Moderate Resolution 

Imaging Spectroradiometer (MODIS), Earth Observing 1-Hyperion, and 

Medium Resolution Imaging Spectrometer (MERIS) and Sentinel-3 Ocean and 

Land Cover Instrument (OLCI) or optical land surface including Landsat 

series, Sentinel 2 A/B Multispectral Instrument (MSI) and Satellite Pour l’ 

Observation de la Terre (SPOT), have been widely used for the study of 

surface WQ (Odermatt et al., 2018; Cao et al., 2019; Chelotti et al., 2019).  In 

general, satellite data from the aforementioned sensors have been utilized in 

the development of models leveraging the relationship between a 

waterbody’s optical qualities and its concentration of optically active water 

quality constituents (Topp et al., 2020).  

According to Kutser (2009) and Matthews (2011), Advanced Land 

Imager (ALI) (30 m), Advanced Land Observation Satellite (ALOS) (10 m), 

SPOT-5 (10 m) and Landsat sensors, compared to sensors of higher spatial 

resolution, are characterised by a better radiometric performance which 

contributes to a more accurate assessment of the concentrations of quality 

parameters over water.  

Landsat 7 (launched in 1999) introduced the Enhanced Thematic Mapper 

Plus (ETM+), whose analysis was similar to Thematic Mapper (TM) except for 

two bands, a 60 m thermal and a new 15 m panchromatic band, respectively 

(Loveland and Dwyer 2012). Since 2003, Landsat 7 had a sensor deficiency 

where the Scan Line Corrector (SCL) was off and even though those images 

are characterized by black line gaps (Tebbs et al. 2013), its radiometric and 

geometric analyses remain undisturbed (Bonansea et al. 2015). On May 30, 

2013, data from the Landsat-8 satellite (launched on 11 February, 2013) 

became available allowing the continuance of studies on WQ of lakes 

(Giardino et al., 2014); this satellite bears two sensors, the Operational Land 

Imager (OLI) and the Thermal Infrared Sensor (TIR) while it includes a 

narrower near-infrared band, and a 12-bit radiometric resolution compared to 

the 8 bits of previous Landsat satellites (Olmanson et al. 2016; Bonansea et al., 

2018).  

Moreover, Landsat 9 (OLI-2) was successfully launched on Monday, 

Sept. 27, 2021 continuing the Landsat program’s critical role in monitoring, 



understanding and managing the water resources needed to sustain human 

life. Furthermore, since June 2015, Sentinel 2 mission provides simultaneous 

image data with those of Landsat 8 OLI offering great opportunities for long 

term high-frequency WQ monitoring (Mandanici and Bitelli, 2016) through 

building time-series.  

The Sentinel-2 mission carries two satellites, Sentinel-2A and Sentinel-

2B. They are both equipped with identical Multispectral Instruments (MSI) 

capable of acquiring data at 13 bands at different spatial resolutions (between 

10 m and 60 m) while the revisit frequency of each satellite is 10 days. Landsat 

(30 m spatial resolution) and Sentinel-2 (10–60 m spatial resolution) missions 

provide fine-scale spatial data and have been reported to be suitable for the 

quantification of multiple WQ indices in freshwater lakes and reservoirs 

(Allan et al., 2011; Giardino et al., 2014; Kim et al., 2014; Markogianni et al., 

2014; Bresciani et al., 2018; Markogianni et al., 2018; Bramich et al., 2021). 

Inland waters, and especially lakes, are small water bodies that are not 

detected by current ocean color satellites, and even though this lack prevents 

the monitoring and estimation of their WQ components, it has been 

replenished by the use of Landsat, Sentinel-2, and ASTER (Advanced 

Spaceborne Thermal Emission and Reflection Radiometer) multispectral 

images. Their fine spatial resolutions (10~60 m) enable them to resolve small 

freshwater lakes and rivers more than a few hundred meters wide. Therefore, 

the application of those images has been preferred for freshwater lake 

mapping projects (Wang et al., 2020). Furthermore, recent reviews of state-of-

the-art RS-based approaches by Gholizadeh et al. (2016) and Pizani and 

Maillard (2022) underpin the use of particularlyLandsat sensors, TM 

(Thematic Mapper), MSS (Multi-Spectral Scanner), ETM (Enhanced Thematic 

Mapper), OLI (Operational Land Imager) and OLI-2 (Landsat 9) as fairly 

successful choices to assess the important WQ parameters, including Chl-a, 

Secchi Disk Depth (SDD), TP, and trophic status. 

Although Landsat sensors were not designed for aquatic applications 

(Kutser, 2012; McCullough et al., 2012a), there are numerous examples of 

Landsat images’ employment for estimating and/or monitoring lake WQ. 

Several studies have proposed reliable algorithms between Landsat data and 

WQ parameters, including chlorophyll; phytoplankton and phycocyanin 

concentrations (Yacobi et al., 1995; Vincent et al., 2004; Brezonik et al., 2005; 

Tyler et al., 2006; Torbick et al., 2008; Karakaya et al., 2011; Tebbs et al., 2013), 

water clarity (Stadelmann et al., 2001; Hadjimitsis et al., 2006; Olmanson et al., 

2008; Guan et al., 2011; Zhao et al., 2011; McCullough et al., 2012a), CDOM 

(Brezonik et al., 2005; Zhu et al., 2014; Brezonik et al., 2015), blooms of 

cyanobacteria (Vincent et al., 2004), macrophyte (Albright and Ode, 2011) and 

TSM (Guang et al., 2006; Zhou et al., 2006; Onderka and Pekárová, 2008; 

Kulkarni, 2011; Bonansea and Fernandez, 2013;).  
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Traditionally used approaches for lake WQ monitoring via satellite RS 

The most commonly used approach to monitor WQ of inland waters via 

RS involves fitting a standard linear regression between spectral band/band 

ratio values and temporally coincident in-situ WQ measurements (e.g. Topp et 

al., 2020).  

In general, according to Topp et al. (2020), there are three (3) well-

documented methodologies to estimate the concentration of WQ elements in 

inland waters: empirical, semi-empirical, and physical or analytical 

methodology (Table 1-2). Empirical methods attempt to establish 

relationships between in-situ WQ measurements and water leaving radiance 

measured by the sensor without the precondition of prior understanding of 

the complex water and light interactions. Those relationships imply effective 

data improvement but limited transferability (Austin and Petzold, 1981). 

Moreover, empirical methods incorporate machine learning techniques, 

which are differentiated by their robust ability to handle complicated non-

linear relationships, typical of WQ remote sensing data (Sagan et al., 2020; 

Topp et al., 2020). Machine learning algorithms include artificial neural 

networks (ANN), genetic algorithms (GA), support vector machines (SVM), 

random forest regression trees, and empirical orthogonal functions (Topp et 

al., 2020). On the other hand, through semi-empirical techniques, spectral and 

physical knowledge of studied WQ constituents’ properties are combined and 

then correlated to the in-situ concentrations. Regarding physical or analytical 

approaches, the acquisition of certain biogeochemical parameter values (e.g., 

Chl-a, CDOM) is required, as well as inherent (IOP) and apparent optical 

properties (AOP), and those models are based on radiative transfer and 

calibrated using field observations. 

Although analytical methods, including fuzzy logic and Principal 

Component Analysis (PCA), have already been extensively used, empirical 

and semi-empirical predicting models are still widely utilized (Gholizadeh et 

al., 2016). Analytical methods’ complexity in terms of their theory and 

calculation difficulties (Gholizadeh et al., 2016) and the non-availability of 

required detailed spectral information of the optically active water 

constituents (optical properties, radiometric quantities) have contributed to 

the maintenance and development of empirical models. This trend is further 

observed especially in cases where machine learning models are utilized, as 

most of them reduce overall error and maximize model fit (Topp et al., 2020). 

However, it should be noted that empirical algorithms are more specific to 

certain water types, regional or optical (Odermatt et al., 2012). It should also 

be noted that semi-analytical methods are superior to empirical ones mainly 

concerning the reliability of results and the fact that no in-situ data are 

required afterwards for recalibrating the retrieval algorithm. On the other 

hand, those approaches require the utilization of a spectroradiometer and the 



collection of in situ-measured Rrs spectra including the radiance of skylight, 

radiance from a standard gray board, and the total upwelling radiance from 

the water (Jiang et al., 2019). 

 
Table 1-2. Summary of the common approaches for remote sensing of lake WQ monitoring. 

 
Modelling 

Approach 
including Advantages Limitations 

Empirical  

Easily interpretable, no 

a priori assumptions 

required 

Limited transferability (dependant 

on range of training data), uncapable 

of handling non-linear relationships 

 

Machine 

learning 

techniques 

Capable of handling 

complicated non-linear 

Relationships, no a priori 

assumptions required 

Computationally expensive, risk of 

overfitting 

Semi-

Empirical 
 Easily interpretable 

Uncapable of handling non-linear 

relationships 

Physical/ 

Analytical 
 

Theoretically 

generalizable 

Computationally expensive, 

knowledge of optical properties and 

collection of in-situ Rrs spectra are 

required 

 

 

WQ elements measured by RS 

There are numerous parameters measured for WQ monitoring; the 

optically-active ones (e.g. Chlorophyll-a, transparency, turbidity, total 

suspended matters, coloured dissolved organic matter, true colour, 

temperature) can be monitored remotely and others that are non-optically 

active (total phosphorus, total nitrogen, pH, dissolved oxygen) and can be 

assessed indirectly through their relationship with the optically active ones 

(as proxies; Gholizadeh et al., 2016; Pizani and Maillard, 2022).  

Chlorophyll-a concentration, is indicative of phytoplankton abundance 

in waters, and can be directly quantified using EO techniques implying the 

trophic level, the existence of toxic algal blooms and the phytoplankton 

biomass (Randolph et al., 2008; Ruiz-Verdu et al., 2008). Chl-a is the major 

indicator of trophic state and considered as one of the top water pollution 

indices related to public health, eutrophication, and deterioration of 

ecosystem habitat.  

Findings from numerous published studies have indicated that 

biological and chemical water quality parameters such as Chl-a have 

distinctive spectral characteristics and can be measured using spectral indices. 

A variety of spectral indices derived from remote sensing data based on 

empirical or semi-empirical relationships have been developed for 
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transforming spectral data into WQ parameters. These indices may involve 

three (Song et al., 2013; Sun et al., 2014; Huang et al., 2014;) and four spectral 

bands (Le et al., 2009).  The majority of spectral indices are based on 

reflectance ratios of two spectral bands (near infrared and red) for operational 

purpose. A band ratio between the near infrared (NIR, ~0.7 μm) and Red (~0.6 

μm) has frequently been used to estimate Chl-a in waters due to a positive 

reflectivity of Chl-a in the NIR and an inverse behavior in the red (Rundquist 

et al., 1996; Pepe et al., 2001) while NIR and red bands are involved in most 

indices (Yang et al., 2017). Spectral band ratios are generalizable and easily 

applicable across wide geographic ranges.  These indices, however, appear to 

be less reliable in diverse water bodies including lakes, ponds, rivers and 

streams in coastal regions (Yang et al., 2017; Sagan et al., 2020), as they 

assume constant water and atmospheric conditions. This assumption may 

result in significant estimation errors, especially when applied across time 

series. Therefore, spectral indices are proposed to identify spatial distribution 

of WQ rather than make exact predictions (Sagan et al., 2020).   

On the other hand, few studies have aimed to assess and model nutrient 

concentrations, due to their weak optical characteristics and low signal noise 

ratio as nutrients constitute non-optically active WQ constituents (Gholizadeh 

et al., 2016). Nutrient models have not yielded statistically strong results or at 

least similar as of those constituents that have optical properties (Dewidar 

and Khedr, 2001; Wu et al., 2010; Chen and Quan, 2012; Isenstein and Park, 

2014). Indirect methods, however, can be utilized to estimate nitrogen (N) and 

phosphorus (P) concentrations. RS has been widely demonstrated as an 

effective solution for detecting the relationship between algae concentration 

and corresponding nutrients (Sagan et al., 2020). Nitrogen (N) and 

phosphorus (P) are vital micronutrients for algae, while P (existing either in a 

particulate or dissolved phase) is the key limiting nutrient responsible for 

eutrophication in most lakes (Correll, 1999). In general, special attention 

should be paid depending on which nutrient is growth limiting, as in one 

water body the correlation with Chl-a might be with N, while in a different 

water body the correlation might be with P (Topp et al., 2020). Total 

phosphorus (TP) estimation via RS has been explored due to its high 

correlation with optically active constituents (Kutser et al., 1995; Wang et al., 

2004; Wu et al., 2010) since it cannot be measured directly using optical RS 

instruments. The Chl-a and TP relationship has been investigated in 

individual lakes (Smith, 1982; Malve and Qian, 2006), and it is well 

documented to be accompanied by a strong and positive correlation among 

lakes (Healey and Hendzel, 1979; Busse et al., 2006). As TP is highly 

correlated to Chl-a concentration, and TSM usually reflects TP loading, TP is 

also closely related to Secchi depth (SD) with an exponential equation 

according to Carlson’s findings (Carlson, 1977). 

https://www.sciencedirect.com/science/article/pii/S2352938516300593#t0005


As the algae and suspended inorganic matter increase in a lake, the 

depth to which light can penetrate is reduced (Fuller et al., 2004). Therefore, 

SD is often used as a trophic state indicator (Carlson, 1977). Generally, there 

are two methodologies followed to retrieve Secchi Disk Transparency (SDT) 

based on RS data. Empirical approach estimating SD through regression 

analysis and semi-analytical approach retrieving SD based on an underwater 

visibility theory (Jiang et al., 2019). Regarding empirical models, reflectance at 

the red spectrum has been almost globally used to retrieve water clarity 

(Baban, 1993; Nelson et al., 2003; Wu et al., 2008; McCullough et al., 2012; 

Hicks et al., 2013) since increased brightness is accompanied by decreased 

water clarity (Matthews, 2011). Moreover, further studies have also 

documented the usefulness of spectral response of the blue, green, and near-

infrared spectral bands in combination with in-situ measurements of SD and 

Chl-a concentrations in predicting water clarity for inland lakes (Avdan et al., 

2019). Since water clarity has long been proven to interact with nutrient 

availability and Chl-a concentrations within lakes (Song et al., 2022), RS 

studies frequently use it to assess overall lake trophic status (oligotrophic, 

mesotrophic, or eutrophic).  

 

Utilization of multi sensor image data for lake WQ monitoring 

Effective and accurate remote sensing of lake WQ requires frequent in-

situ time series WQ data accompanied by simultaneous satellite images. 

Performance of high-frequency time series and multi-temporal analyses 

becomes more possible when multi sensor image data is available (Mandanici 

and Bitelli, 2016). Furthermore, the use of various multi-spectral sensors, with 

different radiometric characteristics- makes possible to measure many of the 

WQ parameters required by law (Mantas et al., 2013; Mandanici and Bitelli, 

2016).  

In the framework of this research, the emphasis has been mainly given 

on the combination initially of Landsat sensors (7 ETM+;8 OLI) and then of 

Landsat and Sentinel 2 image data.  This selection was based on the fact that 

the majority of available in-situ WQ data were recorded during 2013–2015, 

hence images of sensors Landsat 7 ETM+ and Landsat 8 OLI were the 

exclusive choice for the implementation of current research. Moreover, 

images from both platforms have been proven particularly valuable for inland 

lakes while both offer free open access data-archive (Deutsch et al., 2018). 

Incorporation of Landsat sensors was attempted to increase the temporal 

range of observations; temporal resolution is sixteen (16) days while Landsat 

7 ETM+ and 8 OLI together, provide four (4) satellite images for every 32 days 

(Pedreros-Guarda et al., 2021). Based on relevant literature review, Landsat 7 

ETM+ and Landsat 8 OLI images have similar spatial resolution (30 m), are 

statistically comparable and homogeneous over WQ sample sites (Wang et al., 

2020) while both have similar spectral band placements for the Blue (ETM+ 
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band 1, 0.45–0.52 μm; 8 OLI band 2, 0.45– 0.51 μm) and Green bands (ETM+ 

band 2, 0.52–0.60 μm; 8 OLI band 3: 0.53–0.59 μm). Differences are 

particularly observed in the NIR (ETM+ Band 4, 0.76–0.90 μm; 8 OLI Band 5, 

0.85–0.88 μm) and to a lesser extent in Red bands (ETM+ Band 3, 0.63–0.69 

μm; 8 OLI Band 4, 0.64–0.67 μm) (Olmanson et al., 2016; Deutsch et al., 2018). 

Moreover, Landsat 8 OLI is characterized by 12-bit radiometric resolution, 

higher signal to noise ratios, increased spectral bands and narrower near-

infrared bands compared to ETM+, features that have contributed to a more 

accurate monitoring of freshwater quality (Li et al., 2021). 

Sentinel 2 MSI data were then selected initially based on their significant 

match with the corresponding spectral bands of Landsat 8 OLI data and then 

based on their high spatial resolution (10m at visible and near infrared bands) 

and short revisit interval (5 days; Li et al., 2021).  Joint use of Landsat and 

Sentinel 2 images achieve globally a 2-3-day revisit time (Li et al., 2021) while 

since both platforms are characterized by 12-bit quantization, provide an 

improved radiometric quality resulting in an also improved inland water 

monitoring (Mandanici and Bitelli, 2016). Conclusively, combined use of 

Landsat and Sentinel 2 data grants access to a greater amount of satellite 

images while facilitates high frequency time series analyses.  

On the other hand, when multi sensor image data are combined, a 

number of conceptual and technical challenges may accrue originating from 

their orbital, spatial and spectral differences (Deutsch et al., 2018). Moreover, 

even though Mandanici and Bitelli (2016) highlighted a significant match 

between Landsat 8 OLI and Sentinel 2 MSI spectral bands, differences in the 

recorded radiometric values were also observed. What is important though, 

concerning those differences, is the application and the approach adopted to 

implement multi-sensor time series analyses. On one hand, many empirical 

approaches based on multispectral indices be more affected by the problem 

(Werff and Meer, 2016) but when methods and processing are applied 

separately on discrete images and the training is also independent, results are 

less affected (Mandanici and Bitelli, 2015; 2016). Furthermore, independent 

elaboration of only-one sensor images does not require implementation of a 

resampling procedure, which is mostly essential in change detection analyses, 

given the different spatial resolution of the two sensors (e.g. Landsat 30 vs. 

Sentinel 10 m).  

 

Big Earth Data Cloud Processing Platforms-the GEE platform 

Despite the advantages that RS offers compared to field works, 

computing WQ properties from RS images may become time-consuming and 

complicated because of the processing data chain that a large-scale WQ 

assessment and long-time-series analyses demand (Kumar and Mutanga, 

2018). Cloud computing has emerged as a significant tool to process Big Data 



with main advantages the convenient access and processing of big geospatial 

data and substantial computational capabilities (Zhao et al., 2022). Some of 

the most currently popular Big Earth cloud processing platforms include 

Google Earth Engine (GEE), Amazon Web Services (AWS), Microsoft Azure, 

NASA Earth Exchange (NEX), Sentinel Hub (SH), Processing and Analysis for 

Land Monitoring (SEPAL), open EO and Open Data Cube (ODC). Gomes et 

al. (2020) compared seven platforms for big EO data regarding the following 

criteria: data abstraction, processing abstraction, physical infrastructure 

abstraction, open governance, reproducibility of science, infrastructure 

replicability, processing scalability, storage scalability, data access 

interoperability and extensibility. Based on this evaluation but as well to Zhao 

et al. (2022) and Pizani and Maillard (2022), GEE is the most significant cloud 

processing platform for the remote sensing community due to its ease of use 

and maturity. 

Google Earth Engine (GEE) platform has emerged as a valuable tool for 

geospatial analysis of image data from various satellites based on open source 

Cloud Computing (Bioresita et al., 2021). In addition to this, several involved 

operators such as the United State Geological Survey (USGS), National 

Aeronautics and Space Administration (NASA), and European Space Agency 

(ESA) -among others- are collaborating with Google Inc. and have made 

satellite data available online through the Google Earth Engine (GEE) cloud 

platform (Wang et al., 2020). 

GEE provides a Javascript API (Application Programming Interface) and 

a Python API for data management and analysis while offers a data catalog 

that stores a large repository including among others geospatial data, 

environmental variables, climate forecasts, land cover and topographic 

datasets (Gomes et al., 2020).  Concerning optical imagery of satellites, the 

data repository of GEE includes among others the entire datasets collected by 

Landsat 4/5/7/8, Sentinel 1/2, and ASTER while it is updated on a daily basis 

with around 6000 new image scenes. The GEE offers a parallel computation 

capability and utilizes many processors to conduct individual tasks, hence 

accelerating the time-consuming computing, required for large-scale 

applications. Moreover, satellite images are pre-processed to various 

processing levels and products, such as surface reflectance, top of 

atmospheric reflectance (TOA), and vegetation indices (Wang et al., 2020). 

A plethora of recent studies have been published employing GEE for 

inland waters’ WQ monitoring (Jia et al., 2019; Zong et al., 2019; Maeda et al., 

2019; Wang et al., 2020; Weber et al., 2020; Somasundaram et al., 2021; 

Bioresita et al., 2021; Lobo et al., 2021; Vaičiūtė et al., 2021; Kislik et al., 2022; 

Wen et al., 2022). Wang et al. (2020) used GEE to automatically search 

matching cloud- and haze-free image pixels across multiple sensors using 

online scripts for Chl-a samples while a SVM was trained and eventually 

predicted Chl-a concentrations with reasonable accuracy. Wen et al. (2022) 
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established empirical models between satellite reflectance- derived from 

archived Landsat images embedded in GEE- and in-situ TSM observations 

over 426 Chinese lakes during a 10-year time span (2011-2020) and managed 

to confirm their temporal stability and suitability for examination of long-

term TSM trend in lakes. Bioresita et al. (2021), assessed Chl-a and TSS 

concentrations through certain formulas along Kali Porong estuary 

(Indonesia) and validated their results by utilizing Sentinel-2 reflectance 

values retrieved from GEE platform. Validation of results was conducted by 

using available in-situ data and was accompanied by high correlation values 

(Chl-a: 0.654; TSS: 0.652). 

 

Case 1-Case 2 waters and oligotrophic waterbodies 

The classification of waters in Case 1 (oceanic) and Case 2 (coastal 

regions, rivers, and lakes), refined by Morel and Gordon (1983), is 

characterized by great importance when RS techniques are utilized to monitor 

their WQ and/or trophic status. The distinction between the two cases has 

some significant effects on the interpretation and modelling of optical data. In 

particular, according to this classification scheme, the optical properties of 

Case 1 waters are determined by phytoplankton and co-varying substances, 

while Chl-a is considered a proxy of phytoplankton concentration. This 

assumption has facilitated the implementation of large-scale optical models 

and the development of Chl-a predicting algorithms for Case 1 waters 

(Markogianni et al., 2022).  

On the other hand, single variable models should be abandoned when 

Case 2 waters are the case. It is, on the whole, acknowledged that Case 2 

waters are more complex than Case 1 concerning their composition and 

optical properties. Monitoring the WQ of Case 2 waters is a more 

sophisticated task since phytoplankton, suspended material, yellow 

substances, and perhaps bottom reflectance vary independently of each other. 

The main difficulty lies in the fact that the alterations in optical signal and the 

concentrations of the dissolved constituents are often so small that they 

hinder the ability to extract reliable information or the optical signal may be 

affected in a similar way by more than one substance, which results in an 

inability to discriminate the different materials (Gholizadeh et al., 2016). 

Runoff and discharges from rivers/streams are also one of the main factors 

adding to the complexity of the water constituent retrieval process in Case 2 

waters while those inflows from streams introduce different organic/inorganic 

particles, known as total suspended solids (TSS).  

Hence, given the difficulty that WQ monitoring of Case 2 waters 

constitutes a multi-variable, non-linear problem, it is more realistic to 

establish a series of algorithms rather than a single all-purpose one. In this 

way, more than one algorithm will attempt to capture and solve the problem 



for all variables and over several and different ranges of concentrations 

(IOCCG, 2000). 

In parallel, the Case 1/Case 2 classification can substantially improve RS 

products when associated with individual optical water types (OWTs). In 

particular, coastal regions and inland waters are characterized by such optical 

diversity that any further information about their variability in IOPs and 

biogeochemical significance would be particularly valuable. Some OWTs can 

be hypereutrophic waters, turbid waters with high organic content, sediment-

laden waters, CDOM-rich waters, or even very clear blue waters. Several 

hierarchical, partitional, and hybrid clustering techniques have been utilized 

to further discriminate distinct OWTs within and between Case 1 and Case 2 

waters (Spyrakos et al., 2018). After all, a reliable OWT classification 

optimizes the selection of the finest constituent algorithms when simpler 

approaches cannot yield reliable results. 

The different ranges of concentrations within Case 2 waters correspond 

to classes of trophic status. Carlson (1977) developed a method of trophic 

status classification for inland waters considering Chl-a and phosphorus 

concentrations and Secchi disk depths (ZSD, m). Ranges of those WQ 

elements are associated with three (3) main trophic classes: oligotrophic, 

mesotrophic and eutrophic (McCullough, 2012) including also transitional 

categories (e.g. ultra-oligotrophic, hypertrophic; etc; Watanabe et al., 2020).  

Based on this rationale, very clear lakes are classified as oligotrophic 

Case-2 rather than Case-1 (Gons et al., 2008) since they typically receive 

significant levels of terrigenous input (Gons and Auer, 2004) and their water 

clarity is primarily controlled by the concentration of Dissolved Organic 

Carbon (DOC) (Lisi and Hein, 2019; Song et al., 2022). Water clarity, in turn, 

affects a plethora of chemical, physical and biological processes, including 

thermal structure, light transmission for photosynthesis, attenuation of 

damaging levels of ultraviolet light, vertical distribution of plants and 

animals, as well as the form and availability of toxic metals (Schindler et al., 

1997; Williamson et al., 1999a; Pérez-Fuentetaja et al., 1999; Gunn et al., 2001).  

In purview of the above and based on the relevant literature, it has been 

reported that there is a need for further algorithm development, especially for 

oligotrophic water bodies, while, of principle value is the selection of the 

appropriate wavelengths. 

Gons and Auer (2004) measured spectra in the Keweenaw Bay (Lake 

Superior) which were typical of oligotrophic lacustrine waters. However, 

strong absorption by water in the red region hindered the accurate detection 

of Chl-a highlighting the need of algorithm development for oligotrophic 

waterbodies. 

Furthermore, Gons et al. (2008) managed to adequate assess Chl-a 

concentrations of the Great Lakes (North America) through an empirically 

developed algorithm employing blue-to-green bands. Additionally, there is a 
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plethora of studies highlighting the utilization of blue-to-green band ratios as 

the most optimal choice for the monitoring of WQ elements in oligotrophic 

lakes (Binding et al. 2019; O'Reilly and Werdell, 2019; Warren et al., 2019) 

Even though for clear waters the results warrant the use of the blue-green 

ratio, blue-green algorithms are not suitable in turbid regions. Therefore, AC 

processors need to further improve so that the NIR-red band ratio algorithms 

can be used in more turbid waterbodies (Case-2 waters; Warren et al., 2019) 

 
 

1.1 Scope and objectives of the current thesis 

All in all, the present PhD thesis constitutes, to the author’s knowledge 

the first attempt to achieve the continuous monitoring and assessment of WQ 

and trophic state of Greek lakes.  Taking advantage of the ongoing 

implementation of WFD in Greece, collection of large in-situ WQ datasets in 

synergy with satellite RS, will further provide the essential means for the 

monitoring of lake eutrophication and its spatio-temporal changes. Hereby 

delivered “tools” will be proven fundamentally valuable in the framework of 

national environmental policy in general, and in particular of lake 

management at a national scale. 

Overall, the main objectives of this research are to: 

1. Establish a methodological framework that aims to model WQ and 

trophic status of optically diverse Greek lakes (Case 2 waters) by 

assessing key WQ elements with fine spatial resolution (10-30 m) RS 

image data. Ultimate goal of this proposed methodology is the accurate 

spatial assessment of WQ and trophic status over various types of 

lakes, thus acquiring the valuable information about their variability. 

The unique contribution of this objective lies in the fact that spatially 

distributed WQ of Greek lakes can be monitored continuously, for the 

first time, reflecting their trophic status and detecting the possible 

pollutant threats in near real time and in fine spatial resolution.  

2. Explore the spatio-temporal transferability of Landsat-developed WQ 

models across sensors; initially across Sentinel 2 and then across multi-

sensor image data (Landsat 7 ETM+, 8 OLI and Sentinel 2 MSI). The 

transferability is tested along the National Lake Network Monitoring 

of Greece (WFD) and concerns the sampling campaigns of 2018. In 

particular, the smoothly and operating transferability of WQ models 

across different sensors will facilitate the acquisition of high-frequency 

time series and multi-temporal WQ analyses, further contributing to 

continuous lake WQ monitoring at a national scale (Greece). 

3. An examination of the influence of different atmospheric correction 

methods to WQ models’ performance after employing differently-

atmospherically corrected SR values. Statistically-modified WQ models 



harmonize the differences accrued from the application of DOS1 

(manually applied to images of all sensors) and LaSRC, LEDAPS and 

Sen2Cor correction methods applied to Landsat 8 OLI, Landsat 7 ETM+ 

and Sentinel 2 images, respectively through the GEE platform. This 

analysis is performed across the National Lake Network Monitoring of 

Greece (WFD) and the comparison of results is based on the in-situ WQ 

data of years 2018, 2019 and 2020. High performance of WQ models 

employing SR from GEE environment further contributes to the 

continuous lake WQ monitoring across Greece in an even faster 

manner, whilst liberate researchers from the time-demanding and 

complicated atmospheric correction of raw image products.   

4. Assess WQ models’ performance in a distinct category of optically 

complex Case-2 waters, oligotrophic Trichonis and Amvrakia lakes. 

The unique contribution of this objective lies in the final decision on 

whether national WQ models adequately support perpetual WQ 

monitoring of Greek oligotrophic lakes or special oligotrophic 

algorithms should be developed and under which circumstances. 

Furthermore, it includes the background information required for the 

designation of the WQ monitoring methodology of oligotrophic 

waterbodies. 

5. Model WQ of oligotrophic Trichonis lake by assessing WQ key 

elements (Chl-a, nutrient concentrations and CDOM absorption at 420 

nm) through satellite RS. Trichonis is the largest freshwater lake of 

Greece while the available in-situ and satellite datasets concern years 

2013 and 2014.  

 

 

1.2 Thesis ‘s Significance 

The most significant aspect concerning the contribution of the present 

PhD thesis lies in the fact that the methodology has been developed, applied 

and validated in 50 different Greek lake systems of varied chemistry, 

limnological conditions and trophic level, while covering a broad geographic 

area and a wide range of WQ elements’ concentrations collected over 

different seasons. The hereby developed WQ models were proven to 

efficiently accommodate initially the spectral composition differences among 

Landsat (7 ETM+, 8 OLI) and Sentinel 2 sensors and then the differences 

regarding the pre-processing procedures among SR values that are subjected 

to different atmospheric correction methods (DOS1, LaSRC, LEDAPS and 

Sen2Cor). 

Wide WFD in-situ lake WQ datasets in conjuction with satellite images 

managed to generate uniform models for the systematic assessment of Chl-a 

and TP concentrations and Secchi Disk depths at a greater scale (country 
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level), compared to the majority of the respective literature focusing on 

regional scales and discrete inland water bodies. 

Furthermore, WQ models exhibited spatial and temporal stability to 

variations of the optical properties of lakes while their good performance 

when employing SR retrieved from GEE platform facilitates and significantly 

improves and accelerates the perpetual lake WQ and trophic status 

monitoring especially when in-situ data are limited. Addittionally, the 

detailed spatial variability of WQ and trophic status over lakes is delivered 

spatially finer compared to similar, large-scale, purely based on EO 

applications, offered worldwide (e.g. SDG6 Hydrology TEP Reporting portal; 

90m spatial resolution). By extension, WQ empirical models were also proved 

priceless means for the monitoring of lake eutrophication and the drivers of 

its dynamics, particularly nowadays that this phenomenon has been evolved 

into a growing public concern and lakes are undergone the dual impact of 

human activities and climate change. 

Ultimate goal of this thesis and the delivered WQ models is to constitute a 

valuable tool, part of a wider national early warning system, in the hands of 

scientists and competent public authorities for the timely identification of 

pollution events and by extension the promptly performance of sustainably 

efficient solutions. Moreover, what is the most desired is the uninterrupted 

continuation of WFD implementation in Greece as the on-going combination 

of RS and WFD in-situ data will further improve the temporal resolution of 

lake WQ monitoring while offering a multi-platform observation by acquiring 

more comprehensive information. 
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2. Towards the Modelling of Greek Lakes 

Water Quality Using Satellite Remote 

Sensing technology  
 

2.1  Estimating Chlorophyll-a of Inland Water Bodies in 

Greece Based on Landsat Data 
 

Published as: Markogianni, V.; Kalivas, D.; Petropoulos, G.P.; Dimitriou, E. 

Estimating Chlorophyll-a of Inland Water Bodies in Greece Based on Landsat 

Data. Remote Sens. 2020, 12, 2087. https://doi.org/10.3390/rs12132087 

 

Preamble 

Assessing chlorophyll-a (Chl-a) pigments in complex inland water systems is 

of key importance as this parameter constitutes a major ecosystem integrity 

indicator. In this study, a methodological framework is proposed for 

quantifying Chl-a pigments using Earth observation (EO) data from Landsat 7 

Enhanced Thematic Mapper Plus (ETM+) and 8 Operational Land Imager 

(OLI) sensors. This effort aimed at exploring different remote sensing-derived 

Chl-a algorithms for various types of lakes. The practical use of the proposed 

approach was evaluated in a total of 50 lake water bodies (natural and 

artificial) from 2013–2018, constituting the National Lake Network 

Monitoring of Greece in the context of the Water Framework Directive 

(WFD). All in all, the results evidenced the suitability of Landsat data when 

used with the proposed technique to estimate log-transformed Chl-a. The 

methodological framework proposed herein can be used as a useful resource 

toward a continuous monitoring and assessment of lake water quality, 

supporting sustainable water resources management. 

 

2.1.1 Introduction 

Accumulating passive exploitation of natural resources, improper land-

use practices and irregular development activities in lake basins undermine 

various significant functions of water resources (Alymkulova et al., 2016). 

Surface water provides exceptional financial benefits, regarding water supply 

(quantity and quality), fisheries, agriculture, wildlife resources and recreation 



and tourism opportunities (Ramsar Information Paper no. 1 2007; Ramsar 

Convention Bureau). The need for sustainable management of water bodies 

highlights the fact that water resources are not inexhaustible and have limited 

resistance under anthropogenic pressures such as ongoing drainage, 

conversion and pollution.  

Hence, one of the most significant aspects for the sustainable 

management of water bodies - lakes in particular - is the constant monitoring 

of their quality as well as of their watersheds (Gholizadeh et al., 2016). Water 

quality parameters comprising physical, chemical, and biological properties 

are conventionally measured by collecting samples from the field and then 

analysing those samples in the laboratory. Although in-situ monitoring 

provides high accuracy, it is a time-consuming procedure, and cannot ensure 

a simultaneous water quality dataset on a regional or greater scale 

[Gholizadeh et al., 2016; Duan et al., 2013; Duan et al., 2013b). Furthermore, 

traditional point sampling methods are not capable of detecting the spatial or 

temporal variations in water quality, as required in extensive assessment and 

management of water bodies. On the other hand, geoinformation technologies 

provide a promising direction in that respect. In particular, the combined use 

of Earth Observation (EO) and Geographical Information Systems (GIS) 

allows monitoring in an efficient and robust way lake parameters over 

variable spatial scales, including lakes that are otherwise inaccessible 

(MacKay et al., 2009; Whyte et al., 2018). 

Various EO instruments mounted on either airborne or satellite 

platforms, acquire spectral information and measure the energy from the 

water’s surface at different wavelengths (Gholizadeh et al., 2016). The most 

commonly used approach to inland water remote sensing involves fitting a 

standard linear regression between spectral band/band ratio values and 

temporally coincident in-situ water quality measurements (Topp et al., 2020). 

Visible, near and short infrared bands of the solar spectrum have been usually 

used by many researchers to acquire powerful correlations -through empirical 

approaches- among water column reflectance values and constituents, in 

different water bodies (Ritchie et al., 2003; Gitelson et al., 2008; Olmanson et 

al., 2008; Gholizadeh et al., 2016; El-Din et al., 2013; Giardino et al., 2014; 

Markogianni et al., 2018). EO data from several satellite and airborne sensors 

such as SPOT, MODIS, Earth Observing 1-Hyperion and MERIS have been 

used for Chl-a estimation (Nas et al., 2007; Kim et al., 2014; Zhang et al., 2015; 

Lim et al., 2015; Bonansea et al., 2018). Nonetheless, it revealed that the 

Landsat seems to be more appropriate and widely used for Chl-a assessment 

due to its temporal coverage, spatial resolution and easy accessibility 

(Gholizadeh et al., 2016).  

Chl-a is the major indicator of trophic state and considered as one of the 

top water pollution indices related to public health, eutrophication and 

deterioration of ecosystem habitat. In Case 2 waters (i.e. inland and coastal 
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waters), the optical properties are measured based on a compound of 

dissolved organic matter, dead organic and inorganic particulate matter and 

phytoplankton (Chl-a). Therefore, determination of Chl-a concentration is 

much more complex and less accurate (Ritchie et al., 1990; Dekker and Peters, 

1993; George, 1997; Gholizadeh et al., 2016). Oligotrophic to mesotrophic 

waterbodies with low biomass, present a Chl-a spectrum characterized by a 

sun-induced fluorescence peak centered at 680 nm (Gitelson et al., 1994; Topp 

et al., 2020), while eutrophic waterbodies (high biomass) present a florescence 

signal which is masked by absorption features and backscatter peaks around 

665 nm and 710 nm, respectively (Matthews et al., 2012; Topp et al., 2020). The 

ratio between these two wavelengths has been widely used to quantify Chl-a 

concentrations with high accuracy (Le et al., 2011; Topp et al., 2020). 

Many studies have focused on monitoring eutrophication or trophic 

state through Chl-a concentration retrieval in Greek lakes. For example, Peppa 

et al. (2020) applied Chl-a detection algorithms in Lake Pamvotis using 

Sentinel-2 Data, (Markogianni et al., 2014) developed empirical Chl-

a quantitative models based on Landsat 5 images in the brackish urban 

shallow Koumoundourou lake while Markogianni et al. (2018) investigated 

the suitability of the OLI instrument on-board the Landsat 8 satellite platform 

in accurately estimating Chl-a in the largest freshwater body of Greece 

(Trichonis Lake). In another study, Kontopoulou et al. (2017), tried to exploit 

the Water Framework Directive (WFD) dataset and measure Chl-

a concentrations by using Landsat 8 data in 11 (6 natural; 5 artificial) of the 50 

lakes comprising the national sampling network.   

In this study, authors discuss the utility of remotely sensed techniques in 

the qualitative assessment of 50 lake water bodies and particularly of Chl-a 

concentrations, derived from the WFD (2000/60/EC) monitoring network for 

lakes in Greece. WFD provides a scheme for the conservation and 

improvement of inland, ground and coastal waters’ ecological status and aims 

to harmonize European legislation on water. Thus, pan-European 

hydromorphological, physicochemical and biological datasets are used to 

determine ecological status of surface waters (Article 8) in order to assure and 

further improve future water quality and quantity (Mavromati et al., 2017).  

In purview of the above, this study proposes a methodological 

framework that aims to provide Chl-a in Case 2 complex inland waters of 

Greece by generating accurate quantitative models with EO data from the 

Landsat 7 ETM+ and 8 OLI satellite series. The methodology applied initially 

includes the implementation of stepwise MLR analysis of the whole available 

Chl-a dataset with the basic aim of exploring its potential to establish robust 

Chl-a quantitative algorithms, regardless of lake characteristics. Then, PCA is 

performed to highlight which are the most significant parameters 

(artificial/natural, WFD typology, water sampling’s season and climatic type) 



affecting Chl-a values. This procedure was considered to be proven valuable 

for the next step, involving the execution of multiple stepwise MLR analyses - 

based on PCA results- among different groups of cases. This effort aimed at 

exploring different remote sensing derived Chl-a algorithms for various types 

of lakes according to the most significant lake characteristics. The practical 

use of the proposed approach is evaluated in a total of 50 lake water bodies 

(natural and artificial) during 2013-2018, consisting the National Lake 

Network Monitoring of Greece in the context of Water Framework Directive 

(WFD). 
 

2.1.2 Materials and Methods  

2.1.2.1 Study area 

The National Monitoring Network of Waters in Greek lakes, according 

to the Joint Ministerial Decision 140384/2011, is implemented by the 

Goulandris Natural History Museum, Greek Biotope/Wetland Centre (EKBY). 

The network consists of 50 lake water bodies, natural and artificial.  

At the majority of the lakes only one sampling station is detected, except 

for trans-boundary lakes (Megali Prespa, Mikri Prespa and Doirani), where 

two sampling stations are located (Table 2.1.2-1; Figure 2.1.2-1). From the total 

of 53 sampling sites, the 27 are surveillance and the 26 operational ones.  
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Figure 2.1.2-1 Monitoring network for lakes in Greece (GGRS_1987 coordinate system; 

Transverse Mercator projection; numbers of sampling stations coincide with the numbers 

presented in Table 2.1.2-1). 



Table 2.1.2-1. General characteristics of the lakes comprising the National Lake Network 

Monitoring in Greece (WFD; Mavromati et al., 2018). 

N

o 

Nation

al 

Name 

Station 

(N)atu

ral/ 

(A)rtif

icial 

Typol

ogy 

Koppe

n 

climat

e 

classifi

cation 

Mea

n 

dept

h 

(m) 

N

o 

Nation

al 

Name 

Station 

(N)atu

ral/ 

(A)rtif

icial 

Typol

ogy 

Koppen 

climate 

classific

ation 

Mea

n 

dept

h 

(m) 

1 
Lake 

Ladona 
A L-M8 Csa - 28 

Lake 

Petron 
N 

GR-

VSNL 
Cfa 3.1 

2 
Lake 

Pineiou 
A L-M8 Csa 15.1 29 

Lake 

Zazari 
N 

GR-

SNL 
Cfa 3.95 

3 

Lake 

Stymfal

ia 

N 
GR-

VSNL 
Csa 1.31 30 

Lake 

Cheima

ditida 

N 
GR-

VSNL 
Cfa 1.01 

4 
Lake 

Feneou 
A 

L- 

M5/7

W 

Csa 10.5 31 

Lake 

Kastori

as 

N 
GR-

SNL 
Cfa 3.7 

5 

Lake 

Kremas

ton 

A L-M8 Csa 47.2 32 
Lake 

Sfikias 
A 

L- 

M5/7

W 

BSk 23.2 

6 

Lake 

Kastrak

iou 

A 

L- 

M5/7

W 

Csa 33.2 33 

Lake 

Asomat

on 

A 

L- 

M5/7

W 

BSk 20.8 

7 
Lake 

Stratou 
A 

GR-

SR 
Csa 9.6 34 

Lake 

Polyfyt

ou 

A 

L- 

M5/7

W 

Cfa 22.4 

8 

Lake 

Tavrop

ou 

A 

L- 

M5/7

W 

Csa 15.0 35 

Lake 

Mikri 

Prespa 

A 

N 
GR-

SNL 
Csa 3.95 

9 

Lake 

Lysima

cheia 

N 
GR-

SNL 
Csa 3.5 36 

Lake 

Mikri 

Prespa 

B 

N 
GR-

DNL 
Csa - 

10 
Lake 

Ozeros 
N 

GR-

SNL 
Csa 3.8 37 

Lake 

Megali 

Prespa 

A 

N 
GR-

DNL 
Csa 17 

11 

Lake 

Trichon

ida 

N 
GR-

DNL 
Csa 29.6 38 

Lake 

Megali 

Prespa 

B 

N 
GR-

DNL 
Csa - 

12 

Lake 

Amvra

kia 

N 
GR-

DNL 
Csa 23.4 39 

Lake 

Doirani 

1 

N 
GR-

SNL 
Dfc 4.6 

13 

Lake 

Voulka

ria 

N 
GR-

VSNL 
Csa 0.96 40 

Lake 

Doirani 

2 

N 
GR-

SNL 
Dfc - 

14 Lake N GR- Csa - 41 Lake N GR- Cfb 1.2 
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Saltini SP1 

(lago

on) 

PikroL

ake 

SP2 

(speci

al 

categ

ory) 

15 

Lake 

Morno

u 

A 

L- 

M5/7

W 

Csa 38.5 42 

Lake 

Korone

ia 

N 
GR-

VSNL 
Csa 3.8 

16 
Lake 

Evinou 
A 

L- 

M5/7

W 

Csa 31.5 43 
Lake 

Volvi 
N 

GR-

DNL 
Csa 12.3 

17 

Lake 

Pigon 

Aoou 

A 

L- 

M5/7

W 

Csa 20.8 44 
Lake 

Kerkini 
A 

GR-

SR 
Dfc 2.19 

18 

Lake 

Pourna

riou 

A 

L- 

M5/7

W 

Csa 29.8 45 

Lake 

Leukog

eion 

A 
GR-

SR 
Dfc 4.05 

19 

Lake 

Pamvot

ida 

N 
GR-

SNL 
Csa 5.3 46 

Lake 

Ismarid

a 

N 
GR-

VSNL 
Csb 0.9 

20 

Lake 

Pourna

riou II 

A 
GR-

SR 
Csa 11.7 47 

Lake 

Platano

vrysis 

A 

L- 

M5/7

W 

Dfc 26.4 

21 

Lake 

Marath

ona 

A L-M8 Csa 15.8 48 

Lake 

Thisavr

ou 

A 

L- 

M5/7

W 

Dfc 38.4 

22 
Lake 

Dystos 
N 

GR-

VSNL 
Csa - 49 

Lake 

Gratini

s 

A 

L- 

M5/7

W 

Csb 14.2 

23 
Lake 

Yliki 
N 

GR-

DNL 
Csa 20.1 50 

Lake N. 

Adriani

s 

A 
GR-

SR 
Csb - 

24 

Lake 

ParaLa

ke 

N 
GR-

SNL 
Csa 2.99 51 

Lake 

Kourna 
N 

GR-

DNL 
Csa 15 

25 
Lake 

Karlas 
A 

GR-

SR 
BSk 0.9 52 

Lake 

Bramia

nou 

A L-M8 Csa 10.1 

26 

Lake 

Smoko

vou 

A L-M8 Csa - 53 

Lake 

Fanero

menis 

A L-M8 Csa 9.98 

27 

Lake 

Vegorit

ida 

N 
GR-

DNL 
Dfa 26.52 1(Zacharias et al., 2002) 

 

 

 

 



2.1.2.2 Data acquisition 

2.1.2.2.1 In-situ data 

In this study Chl-a concentrations, measured from 2013 up to 2018 

(summer, autumn and spring) throughout the studied lake stations were 

acquired while the Chl-a concentrations (in μg/l) were determined 

spectrophotometrically (Method 10200 H; APHA, 1989). Those data were 

retrieved from the EKBY’s site (Goulandris Natural History Museum, Greek 

Biotope/Wetland Centre; http://biodiversity-info.gr/index.php/el/lakes-

data#!IMGP4731), where more details about the sampling periods, stations 

and the variables measured can be found. Apart from the Chl-a 

measurements, some basic characteristics of the 50 studied lakes have been 

also considered, such as whether they are natural or artificial, their typology 

according to the Water Framework Directive (Table 2.1.2-2) and the climatic 

type according to the Köppen-Geiger climate classification (Table 2.1.2-3; Peel 

et al., 2007). The determination of the Mediterranean lake types is based on 

the 2013/480/ΕU decision (Table 2.1.2-2) while the WFD typology of each lake 

has been retrieved from the respective reports, acquired from the 

Environment and Energy Ministry’s website (http://wfdver.ypeka.gr/). 

Table 2.1.2-2. WFD national lake types. 

Type Characteristics 
Elevation 

(m) 

Precipitation 

(mm) and 

Temperature 

(oC)  

(mean 

annual 

values) 

Surface 

(km2) 

Mean 

depth 

(m) 

Catchment 

(km2) 

Thermal 

Stratification 

Artificial 

L- 

M5/7W 

Deep, large 

reservoirs, 

silicate, wet 

areas 

<1000 
>800 or/and 

<15 
>0.5 >15 <20000  

L-M8 

Deep, large 

reservoirs, 

limestones 

<1000 - >0.5 >15 <20000  

GR-SR 
Shallow 

reservoirs 
<1000 - >0.5 <15 -  

Natural 

GR-

DNL 
Deep lakes 0-1000  >0.5 >9  

Thermal 

monomictic 

GR-

SNL 
Shallow lakes 0-1000  >0.5 3-9  Polymictic 

GR-

VSNL 

Very shallow 

lakes 
0-1000  >0.5 <3  Polymictic 

 

http://biodiversity-info.gr/index.php/el/lakes-data#!IMGP4731
http://biodiversity-info.gr/index.php/el/lakes-data#!IMGP4731
http://wfdver.ypeka.gr/
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Table 2.1.2 -3. Köppen-Geiger’s Classification of Climatic Regions of Greece. 

Climate type Description 

Csa Mediterranean hot summer climates 

Csb 
Mediterranean warm/cool summer 

climates 

Cfa Humid subtropical climates 

Cfb Oceanic climate 

Dfa Hot summer continental climates 

Dfc Subarctic or boreal climates 

BSk Cold semi-arid climate 

 

2.1.2.2.2 EO Data 

Landsat 8 satellite was launched in 2013 and bears two sensors, the 

Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIR). It also 

includes a narrower near-infrared band, and a 12-bit radiometric resolution 

compared to the 8 bits of previous Landsat satellites (Bonansea et al., 2018; 

Olmanson et al., 2016). The main aim was to match as many records from the 

available Chl-a dataset as possible with Landsat 8 images. In cases where no 

Landsat 8 images were available or were cloud-covered, Landsat 7 ETM+ 

images were used. Landsat 7, launched in 1999, introduced the Enhanced 

Thematic Mapper Plus (ETM+), while its analysis was similar to TM except 

for a 60 m thermal and a new 15 m panchromatic band (Loveland and Dwyer, 

2012). Since 2003, Landsat 7 had a sensor deficiency where the Scan Line 

Corrector (SCL) was off and even though those images are characterized by 

black line gaps (Tebbs et al., 2013), its radiometric and geometric analyses 

remain undisturbed (Bonansea et al., 2015).  

In order to cover the 50 lakes throughout Greece and the different 

sampling dates, a 2013-2016 and 2018 time series of 296 Landsat imageries 

(102 L7 ETM+, 194 L8 OLI) were downloaded from the USGS (United States 

Geological Survey) Data Centre (https://earthexplorer.usgs.gov/). Images 

from both sensors reside in Landsat Collection 1 Level-1 category data 

products. Furthermore, the mean time window between the satellite overpass 

and the in-situ measurements is about ±15 days. More information about the 

bandwidths and spatial resolution of the aforementioned sensors can be 

found at NASA’s official website (https://landsat.gsfc.nasa.gov/).  
 

2.1.2.3 Satellite Data Pre-Processing 

Pre-processing was carried out to the Landsat images using the Semi-

automatic Classification plugin (SCP) of the free and open-source cross-

platform desktop Quantum Geographic Information System (Q-GIS), v. 3.6.3-

https://earthexplorer.usgs.gov/
https://landsat.gsfc.nasa.gov/


Noosa. Images of both Landsat 7 ETM+ and Landsat 8 sensors were subject to 

the following pre-processing steps: 

1. Conversion of images from Digital Numbers (DN) to the physical 

measure of Top of Atmosphere reflectance (TOA) 

2. Atmospheric correction using the DOS1 method (Dark Object Subtraction 

1; image-based technique), which was applied to all bands except for 

thermal ones 

3. Creation of band stack set for each image. The band stack set of L7 ETM+ 

includes the bands B1 (blue), B2 (green), B3 (red), B4 (NIR), B5 (SWIR1) 

and B7 (SWIR2) while L8 set incorporates bands B2 (blue), B3 (green), B4 

(red), B5 (NIR), B6 (SWIR1) and B7 (SWIR2). 

More information about each correction including the theoretical 

background can be found at the SCP Documentation Release 6.2.0.1 (Congedo 

2019). To ensure the use of only cloud-free pixels over the sampled lakes, the 

Cloud Masking QGIS plugin (https://smbyc.github.io/CloudMasking) was 

used. By using this tool, clouds, cloud shadow, cirrus, aerosols and ice/snow 

were masked for all Landsat images using the combination of the Fmask and 

Blue Band processes.  

Pre-processing procedure of L7 images also included the retrieval of 

data that coincided with the aforementioned black diagonal stripes. By visual 

checking, sampling sites covered by those stripes were recognized and by 

employing GIS operations and Focal Statistics, the mean value within a circle 

of 7 cells around it for each input cell location was calculated. This radius was 

the most adequate among several trials. Then, by applying the Con and IsNull 

functions were replaced only the cells that had no values. In cases where part 

of sampled lakes was cloud covered, the SetNull and IsNull functions were 

combined with the Cloud mask calculated in earlier stages to remove the 

cloud biased pixels.  
 

2.1.2.4 Statistical methods of analysis 

2.1.2.4.1 Basic statistics and PCA 

Basic statistical analysis among the Chl-a datasets of 2013, 2014, 2015, 

2016 and 2018 was carried out including the calculation of mean, median, 

standard deviation and min-max. Based on the available lake characteristics 

(Table 2.1.2.-1) a Factor Analysis was used with the Varimax-Rotated 

Principal Component Analysis (PCA) for factor extraction method to interpret 

the major patterns of Chl-a variation within the whole dataset.  

Furthermore, PCA ‘s basic aim was to explore and indicate the presence 

of inter-correlations among Chl-a concentrations, lakes’ characteristics, 

climatic type, WFD typology and season’s sampling and further indicate 

which of them are the most significant parameters affecting Chl-a 

https://smbyc.github.io/CloudMasking
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concentrations in studied lakes. The seasons are defined as: summer (June, 

July, and August), autumn (September, October and November) and spring 

(March, April, and May). Chl-a concentrations’ distribution was grouped and 

categorized by the most significant variables/criteria that PCA indicated, by 

using box-plots diagrams. PCA was performed in SPSS Statistical Package (v. 

24.0). 
 

 

2.1.2.4.2 Developing Relationships between Landsat and 

Chlorophyll-a Data 

There are several band combinations and transformations proposed in 

the relevant literature for establishing relationships between the Landsat 

reflectance data (independent) and Chl-a, log (Chl-a) and ln (Chl-a) data 

(Markogianni et al., 2018). Matthews (2011) reported that the wavelength 

areas where water reflects and scatters the majority of the entering solar 

radiation are those that are mostly used for the monitoring of water quality 

constituents. These wavelengths incorporate the water-leaving reflectance in 

visible and NIR wavelengths of the electromagnetic spectrum. Thus, to 

compare Chl-a concentrations and EO data, visible (blue, green and red), NIR 

and SWIR bands were used while aerosol, cirrus, panchromatic and TIRS 

spectral bands were excluded. In addition, Landsat band ratios, additions, 

subtractions, log and ln-transformations were added to the analysis to 

establish accurate and reliable estimation algorithms. Based on the respective 

literature, more than 75 available band transformations/combinations were 

developed, also including spectral indices such as Enhanced Vegetation Index 

(EVI; Liu and Huete, 1995), Normalized Vegetation Index (NRVI; Baret and 

Guyot, 1991), Normalized Difference Water Index (NDWI; McFeeters 1996), 

Modified Normalized Difference Water Index (MNDWI; Xu 2006), Green 

Normalized Difference Vegetation Index (GNDVI; Gitelson et al., 1996), 

Normalized Difference Vegetation Index (NDVI; Rouse et al., 1974) and SABI 

(Surface Algal Bloom Index; Alawadi 2010).  

As a first step, the main objective was to distinguish the highest 

important predictors among the aforementioned band 

transformations/combinations by conducting a correlation analysis among 

them and the Chl-a, log(Chl-a) and ln (Chl-a) concentrations. Taking into 

account only the significant at the 0.01 level correlations, a threshold value of 

Spearman r was set to ±0.4 (moderate relationship; Dancey and Reidy, 2007). 

Variables that presented an r value equal or higher than the aforementioned, 

were selected. Then, those variables/predictors were further inserted -

combined in various ways-in numerous stepwise MLRs while examining for 

statistical performance and residuals. Further criteria consisting multi-

collinearity, tolerance factor and variance inflation factor (VIF) were applied 



and checked to a subset of optimal models in order to further compare them 

and select the simplest models with higher accuracy (higher R2). To develop a 

robust Chl-a algorithm, stepwise MLR analyses have been evaluated in the 

context of 2 scenarios, as also illustrated in Figure 2.1.2-2: 

1st scenario: Basic aim of this scenario was the exploration of the potential 

of stepwise MLR analysis to establish robust Chl-a quantitative algorithms. 

The training dataset was randomly established and included the 80% of the 

whole available dataset (481 out of 565 Chl-a measurements, regardless of 

lake characteristics; Figure 2.1.2-2). This methodology is widely used in 

remote sensing of inland water quality and attempted to develop an 

algorithm that can be applied in multiple types of lakes. 

2nd scenario: This scenario aimed at exploring different remote sensing 

derived Chl-a algorithms for various types of lakes according to the most 

significant lake characteristics as resulted by PCA of Chl-a values, lakes’ 

climatic type, WFD typology and season’s sampling. PCA-indicated 

parameters were combined in all possible ways, forming the various 

modelling cases examined to highlight the most optimal model. In this 

scenario, the various training datasets were subsets of the whole dataset of in-

situ Chl-a values, defined by the respective combination of the PCA derived 

criteria. Each training dataset was then used in a separate MLR analysis 

(Figure 2.1.2-2). As an additional criterion, a confined time window of ±5 days 

was used, defined as the difference between field measurements and satellite 

overpass. Kloiber et al. (2002) observed that in-situ measurements within one 

day off the satellite image date resulted in the best calibrations, but larger 

number of ground observations with the longer time difference balances some 

of the loss of accuracy. Hence, since the available dataset of in-situ Chl-a 

measurements is quite large, the ±5 days window was determined presuming 

that during this period the water quality usually does not exhibit large and 

rapid water quality fluctuations.  

During the analyses which included both scenarios mentioned above, it 

was ensured that the separate training and validation datasets contained 

representative samples of the data, 80% and 20%, respectively of the initial 

dataset. Training datasets of both scenarios comprised the in-situ Chl-a 

measurements of 2013-2016. 
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Figure 2.1.2-2. Flowchart summarizing the methodology followed in this study. 

 

2.1.2.5 Validation approach 

The qualitative capability of the derived algorithms was evaluated by 

regression analysis in two ways. Algorithms derived from the MLR based on 

the 1st scenario (random dataset), were applied in Landsat images associated 

with the respective validation dataset (20%) and in images of the year 2018 

(Figure 2.1.2-2). The algorithms resulted from the 2nd scenario’s training 

datasets (criteria), were applied in available Landsat imageries concerning the 

Chl-a of each respective validation dataset (20%) and the in-situ Chl-a values 

of 2018. After applying several models on the available images, the optimal 

ones were verified based on Spearman’s r correlation coefficient, mean 

residual value (e) and RMSE (Root-Mean-Square Error) statistical indices 

(Figure 2.1.2-2).  
 



2.1.3 Results 

2.1.3.1 Statistical Analyses 

Total measurements of in-situ Chl-a concentrations of years 2013-2016 

and 2018 are 702, including all sampling campaigns in all lakes, while the 

most measurements presented in 2015 (Table 2.1.3-1). Sampling campaigns of 

2014 indicated the highest range in Chl-a values (1026.7 μg/l) while in the rest 

of years the annual ranges are significantly lower. Minimum Chl-a value is 

0.22 μg/l for years 2013 and 2014 whereas this value is increasing over the 

years. Despite this fact though, mean Chl-a value is remaining similar 

between different years, indicating no special deterioration trend in Greek 

lakes’ water quality. Furthermore, datasets of all years are skewed right with 

low values while the kurtosis of all years is described as leptokurtic (fat tails). 
 

Table 2.1.3-1. Descriptive statistics-Summary table of in-situ Chlorophyll-a of years 2013-

2016 and 2018. 

 Chl-a 

(μg/l)-

2013 

Chl-a 

(μg/l)-

2014 

Chl-a 

(μg/l)-

2015 

Chl-a 

(μg/l)-

2016 

Chl-a 

(μg/l)-

2018 

Chl-a 

(μg/l)-

all 

N 157 155 172 82 136 702 

Minimum .22 .22 .36 .45 .58 .22 

Maximum 263.9 1026.9 286.96 292.7 361.7 1026.9 

Mean 24.44 29.13 23.06 27.99 27.03 26.06 

Std. 

Deviation 

46.94 101.82 46.27 45.34 55.92 64.31 

Skewness 3.05 7.7 3.24 3.23 3.83 7.87 

Kurtosis 9.7 67.8 11.7 14.1 16.9 97.5 

 

 

Performance of Factor Analysis (using as extraction method the 

Principal Component Analysis - PCA) included five (5) variables/criteria, e.g. 

sampling’s season, in-situ Chl-a concentrations, lakes’ nature 

(natural/artificial), WFD typology and climatic type. Factor Analysis was 

implemented to obtain an indication of underlying common factors 

(components) that explain the interrelationships among those aforementioned 

variables. The analysis initially extracts 5 components (Table 2.1.3-2). Finally, 

only the first three components with eigenvalues higher than 1 are retained 

(as those which represents a real underlying factor) in the extraction sums of 

squared loadings. The percentage of the total variance explained by the three 

components (calculated after the implementation of the varimax rotation 
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method) is 35.4 %, 21.9% and 20.8%, respectively and cumulatively those first 

three explain the 78% of the total variance.  

Based on rotated component matrix’s results (Table 2.1.3-3), 

communalities of studied variables are further discussed. Thus, the 53% of 

Chl-a’s variance is explained by the second component which also explains 

the 57% of the sampling’s season variance. The first component explains the 

10% of Chl-a variance which also explains the 81.5% of the variance of lakes’ 

characteristics (natural/artificial) and the 79% of the variance of the lakes’ 

WFD typology. The third component explains only 5% of the Chl-a variance 

and 90% of the climatic types’ variance. Considering those results, the 

variables that mostly contribute and affect the variance of Chl-a 

concentrations are the lakes’ characteristics (natural/artificial) and WFD 

typology followed by the samplings’ season. 

 

Table 2.1.3-2. Total variance explained, initial eigenvalues and extracted components. 

Compon

ent 

Initial Eigenvalues 
Extraction Sums of 

Squared Loadings 

Rotation Sums of Squared 

Loadings 

Total 

% of 

Varianc

e 

Cumulativ

e % 
Total 

% of 

Varian

ce 

Cumulativ

e % 
Total 

% of 

Variance 

Cumulative 

% 

1 1.78 35.5 35.6 1.78 35.6 35.6 1.8 35.4 35.4 

2 1.12 22.4 57.9 1.12 22.4 57.9 1.1 21.9 57.4 

3 1.01 20.2 78.1 1.01 20.2 78.1 1.04 20.8 78.12 

4 .79 15.9 93.98       

5 .30 6.02 100       

 

Table 2.1.3-3. Rotated component matrix (Rotation Method: Varimax with Kaiser 

Normalization, Rotation converged in 5 iterations); (*Percentages of the variables total 

communalities explained by each component). 

ITEM 

Component    

PCA 

Score 

1 

PCA 

Score 

2 

PCA 

Score 

3 

Communa

lities (1) 

1* 

 
Communa

lities (2) 

2* Commu

nalities 

(3) 

3* 

Sampling’s season .25 .75 .26 0.06 6 0.56 56 0.07 7 

Chl-a (μg/l) -.31 .73 -.23 0.096 9.6 0.53 53 0.053 5.3 

Natural/Artificial .9 -.03 .06 0.81 81 0.0009 0.09 0.004 0.4 

Köppen/ Climate type -.08 .02 .95 0.006 0.6 0.0004 0.04 0.9 90 

WFD Typology .89 .01 -.15 0.79 79 0.0001 0.01 0.023 2.3 

 

Concentrations of Chl-a of natural lakes were found notably higher in 

comparison to artificial while the highest measured values are detected in 

artificial lakes during the summer and autumn months (outlier values) while 

in natural during autumn (Figure 2.1.3-1a).  In general, seasonality of Chl-a 



concentrations is more evident in natural rather than in artificial lakes. The 

highest discrepancies are detected at natural lakes (Zazari and Voulkaria 

lakes, 07/2014) followed by autumn sampling campaigns (eg Zazari lake, 

09/2014).  

Measured Chl-a concentrations in both artificial and natural lakes 

present a greater range during summer while most outliers of artificial lakes 

are illustrated also during summer (Kerkini-08/2014; 08/2016 and Karla 

reservoirs, 07/2014) and autumn seasons (Kerkini reservoir, 10/2015). Spring 

also presents significant differences between natural and artificial lakes where 

median value of the latter is evidently decreased.  

The same Chl-a pattern is illustrated in a different way by the second 

boxplot (Figure 2.1.3-1b). As far as the Chl-a distribution based on the lakes’ 

typology is concerned, the highest values are detected at natural GR-VSNL 

and GR-SNL shallow (Zazari lake) and very shallow lakes (Voulkaria lake). 

These cases are followed by the values measured in deep natural lakes GR-

DNL (Yliki lake), while the lowest Chl-a values were detected in artificial 

shallow reservoirs (Pournari II and Stratos reservoirs). 

 

Figure 2.1.3-1. Boxplots presenting basic descriptive statistics (median, percentiles, min-

max, outliers and extremes) of chlorophyll-a concentrations of years 2013-2016 and 2018 

(a) grouped by the lakes’ characteristics and categorized by the sampling’s season and 

(b) grouped by the lakes’ WFD typology and categorized by lakes’ mean depth. Mean 

depth classification is based on WFD typology characteristics as explained in Table 2.1.2-

1. 
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2.1.3.2 Relationships between Landsat and Chlorophyll-a Data 

Blue, Green, Red, NIR and SWIR Landsat 8 and Landsat 7 ETM+ bands 

and more than 75 different band transformations and indices were used for 

investigating the most suitable relationship to estimate Chl-a concentrations 

throughout 50 Greek lakes. 

Correlation analysis among all available variables and Chl-a, log(Chl-a) 

and ln (Chl-a) concentrations resulted in Spearman r values that ranged from -

0.6 to +0.6. Based on the correlation matrix, the highest important predictors 

that met the criterion of the set threshold value of Spearman (r) ±0.40 in 

relation to log(chl-a) are the following: Blue/Green, Green/Blue, Blue/Red, 

Red/Blue, Red/ Green, Red/SWIR1, Log(Blue/Green), Log(Blue/Red), 

LogBlue/LogGreen, LogBlue/LogRed, (Blue-Red)/Green, LnBlue/LnGreen, 

LnBlue/LnRed, LnGreen /LnBlue, LnRed/LnBlue, LnRed /LnSWIR1 and 

LnRed /LnSWIR2. Those variables/predictors were further inserted in several 

combinations in numerous stepwise linear regressions. As the number of the 

generated models is quite large, hereby are included only the most significant 

models from a statistical point of view. 

Based on the 1st scenario, MLR analysis among the indicated variables 

generated several models with good performance. Based on tests on statistical 

significance of the bi coefficient of the independent factors (t-test with p 

values less than 0.05) and on tests for multicollinearity (Variance Inflation 

Factor-VIF with values higher than 1 and less than 10 and Tolerance higher 

than 0.1) the following model was finally selected as satisfactory (Equation 

2.1.3-1; Table 2.1.3-4). 
 

log 𝐶ℎ𝑙𝑎 = 3.599 − 0.63 ∗ (
𝑏𝑙𝑢𝑒

𝑟𝑒𝑑
) − 2.183 ∗ (

ln 𝑟𝑒𝑑

ln 𝑠𝑤𝑖𝑟2
)   (2.1.3-1) 

Table 2.1.3-4. Regression analysis statistics and models’ summary among reflectance 

values and log-chlorophyll-a concentrations (dependent variable). 

Scenario

/Model R R2 

Adjusted 

R2 

Std. Error of 

the Estimate 

Durbin-

Watson 

1A .654 .427 .425 .525 1.95 

Predictors: (Constant), BLUE/RED, LNRED/LNSWIR2 

 

Descriptive statistics results obtained for the training and validation 

datasets (regarding logchl-a) suggested that there is no discrepancy in the 

mean (training: 0.8; validation: 0.79) and standard deviation (training: 0.69; 

validation: 0.68) values, between the two groups. To ensure statistically 

significant results, an independent t-test for the mean values was also 

implemented. Based on these results (t-value 0.276, p= 0.783), it is assumed 

that there is no difference in the group means. 



Random selection of Chl-a measurements, and MLR analysis (1st 

scenario, 1A model) yielded a model accompanied by a value of coefficient of 

determination equal to 0.43, including the band ratios lnred/lnswir2 and 

blue/red (Table 2.1.3-4).  The standard error of the estimate is equal to 0.53 

and the collinearity statistics were considered acceptable.  

Concerning the 2nd scenario, MLR analysis conducted among the 

selected predictors and the various combinations of the criteria (Table 2.1.3-5) 

indicated by the PCA, generated several models. Examination though of 

aforementioned statistical indices highlighted two (2) models (Table 2.1.3.2-6; 

Equations 2.1.3-2 and 2.1.3-3). It should also be noted that the various criteria 

combinations always included in the examined dataset the values with Chl-a 

concentrations lower than 500 μg/l (based on the normal Q-Q Plot of Chl-a 

concentrations and outliers analysis) and mean depth higher than 5 m to 

surely avoid the bottom reflectance noise (McKinna and Werdell, 2018). The 

criterion of the time window of ±5 days, was applied in cases with statistically 

significant results to examine and explore any further improvement. The 13th 

criterion case (Table 2.1.3.2-7) aimed to establish accurate algorithms 

considering only the mean depth differentiation of the lakes by including the 

shallow reservoirs (<15 m) as well as shallow (3-9 m) and some deep (>9 m) 

natural lakes. 

 

Table 2.1.3-5. Description of cases including all possible combinations of criteria applied. 

The criteria were selected according to PCA results. 

No of case 

regarding 

the criteria 

application 

Combination of criteria 

1 Mean depth > 5 m, natural lakes, all seasons 

2 Mean depth > 5 m, artificial lakes, all seasons 

3 Mean depth > 5 m, natural lakes, season spring 

4 Mean depth > 5 m, natural lakes, season autumn 

5 Mean depth > 5 m, natural lakes, season summer 

6 Mean depth > 5 m, artificial lakes, season spring 

7 Mean depth > 5 m, artificial lakes, season autumn 

8 Mean depth > 5 m, artificial lakes, season summer 

9 Mean depth > 5 m, season spring 

10 Mean depth > 5 m, season autumn 

11 Mean depth > 5 m, season summer 

12 
Mean depth > 5 m, date difference (sampling/satellite): ±5 

days 

13 > 3 m mean depth <15 m 

 

 



Markogianni V. Water Quality Assessment in Greek Lakes by Using Remote Sensing and Statistical Modelling 

101 | P a g e  

 

Table 2.1.3-6. Regression analysis statistics and models’ summary among reflectance 

values and log-chlorophyll-a concentrations (dependent variable).  

 

Scenario

/Model R R2 

Adjusted 

R2 

Std. Error 

of the 

Estimate 

Durbin-

Watson 

2A .776 .602 .587 .432 1.666 

2B .757 .574 .563 .291 2.034 

 

 

The 2A regression model is the following: 

log 𝐶ℎ𝑙𝑎 = 4.443 − 1.421 ∗ (
𝑏𝑙𝑢𝑒

𝑔𝑟𝑒𝑒𝑛
) − 3.454 ∗ (

ln 𝑟𝑒𝑑

ln 𝑠𝑤𝑖𝑟2
) + 1.304 ∗ (

𝑟𝑒𝑑

𝑔𝑟𝑒𝑒𝑛
)  

 (2.1.3-2) 

 with 85 number of selected cases; based on the criteria: Chl-a 

concentration <500 μg/l, mean depth > 5 m, natural lakes, all seasons. 

 

The equation of the 2B regression model is: 

log 𝐶ℎ𝑙𝑎 = 2.919 − 2.011 ∗ (
ln 𝑟𝑒𝑑

ln 𝑠𝑤𝑖𝑟1
) + 1.449 ∗ (

𝑟𝑒𝑑

𝑔𝑟𝑒𝑒𝑛
) − 1.441 ∗ (

ln 𝑟𝑒𝑑

ln 𝑏𝑙𝑢𝑒
) 

 (2.1.3-3) 

with 125 number of selected cases and developed based on the following 

criteria: Chl-a concentration <500 μg/l, mean depth > 5 m, artificial lakes, all 

seasons and date difference between sampling and satellite overpass ±5 days. 

The optimal Chl-a models developed based on the 2nd scenario 

incorporated the band ratios lnred/lnswir2, blue/green, lnred/lnblue, 

red/green and lnred/lnswir1 while the coefficient of determination was equal 

to 0.57 (2B) and 0.6 (2A) and the standard error of the estimate 0.29 (2B) and 

0.4 (2A). Collinearity statistics (Tolerance and VIF) of the coefficients were 

also considered acceptable. In general, the highest beta coefficient values 

accompany the band ratios red/green, blue/red and blue/green while Durbin-

Watson’s statistic test indicates an absence of autocorrelation especially in the 

residuals of models developed in the 2nd scenario. 
 

2.1.3.3 Regression models’ validation 

Developed regression models were validated for both scenarios while 

validation datasets were different for each model. Concerning the 1st 

scenario’s analysis (1A), the model was applied in Landsat 8 and 7 ETM+ 

images connected to the remaining 20% of the respective validation dataset 

(47 measurements; first validation) and then for the second validation by 



using images and all available Chl-a measurements of the year 2018 (N= 71; 

Table 2.1.3-7). Models 2A and 2B were validated based on the 20% of 

remaining datasets characterized by the set criteria (2A, N=20 measurements; 

2B, N=29; Table 2.1.3-7) and subsequently the in-situ Chl-a values of 2018 were 

used for the 2nd validation process (2A, N=23; 2B, N=40). More specifically, 

2A model was validated by using the measurements concerning the natural 

lakes while for the validation of 2B model, measurements of artificial lakes 

with sampling/satellite date difference of ±5 days, regardless the sampling’s 

season were used. It should also be noted that validation results have been 

enhanced by extracting outlier values, concerning the residuals between in-

situ and satellite values. 
 

Table 2.1.3-7. Statistical indices used to validate the selected algorithms (**. Correlation 

significant at the 0.01 level (2-tailed) and *. at the 0.05 level (2-tailed), respectively). 

 1st validation (20%) 2nd validation (2018 data) 

Scenario/ 

Models 

Spear

man r  

Avera

ge in-

situ 

Chl-a 

(μg/l) 

Avera

ge 

satelli

te 

Chl-a 

(μg/l) 

Aver

age 

resid

uals 

(μg/l)  

RMS

E 

(μg/l) Spearma

n r  

Avera

ge in-

situ 

Chl-a 

(μg/l) 

Avera

ge 

satelli

te 

Chl-a 

(μg/l) 

Avera

ge 

residu

als 

(μg/l) 

RMSE 

(μg/l) 

1A 

Training 

dataset 

N=481 

.688** 

N=47 
2.9 4.3 -1.3 3.96 

.758** 

N=71 
4.8 5.01 -0.19 4.6 

2A 

Training 

dataset 

N=85 

.782** 

N=20 
10.9 9.7 1.3 5.6 

.697** 

N=23 
5.6 6.9 -1.3 4.2 

2B 

Training 

dataset 

N=125 

.622** 

N=29 
2.3 2 0.3 1.53 

.593** 

N=40 
3 2.5 0.5 2.3 

 

 

The 1st scenario yielded a model (1A) that even though is characterized 

by a quite low coefficient of determination (0.43), is accompanied by two 

validation processes with high Spearman (r) values (0.69 and 0.76, 

respectively, significant at the 0.01 level) and quite large validation datasets 

(N=47 and 71). Additionally, the differences among the mean in-situ and 

satellite derived values in both validations are not high (Figure 2.1.3-2a), 

while mean residual (Figure 2.1-5) and RMSE values are quite satisfactory for 

both validation processes (particularly of 2018 dataset; RMSE 1st 

Validation:3.96 μg/l; RMSE 2nd Validation: 4.6 μg/l; Table 2.1.3-7). Hence, this 

specific model could be included as one of the proposed Chl-a quantitative 
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algorithms; however it is inferior compared to special natural and artificial 

models.  

Hence, concerning the models resulted from the 2nd scenario and their 

validations, 2A and 2B models are those that are mostly proposed. Model 2A 

is derived from a regression analysis with R2 equal to 0.6 and Spearman 

values equal to 0.78 (first validation) and 0.7 (second validation), respectively. 

Mean in-situ and satellite Chl-a values are similar (Figure 2.1.3-2b) while 

RMSE values are quite low, 5.6 μg/l (first validation) and 4.2 μg/l for the 

second validation, respectively. Likewise, 2B Model, demonstrated high 

enough Spearman values (0.62 and 0.59), low average residuals (Figure 2.1.3-

3), low RMSE values (1.53 and 2.3 μg/l) and is also accompanied by one of the 

largest validation datasets (2018 dataset; N=40).  

Furthermore, Chl-a maps of selected lakes were created after the 

application of the resulted algorithms (Figure 2.1.3-4). Landsat 8 OLI satellite 

image of 11/08/2013 was used in order to produce the satellite derived spatial 

distribution of Chl-a values of this day while the respective in-situ values of 

those lakes have been sampled with -2 and +5-days difference from the 

aforementioned date. Application of 1A model resulted in Chl-a 

concentrations that range from 0.18 to 58.9 μg/l and from 0.71 to 61.7 μg/l for 

artificial and natural lakes, respectively (Figure 2.1.3-4a). Application of 2A 

model in natural lakes yielded Chl-a values ranging between 2.75 and 70.8 

μg/l (Figure 2.1.3-4b) while 2B model resulted in Chl-a values varying from to 

0.019 to 12.6 μg/l (Figure 2.1.3-4c), as far as the artificial lakes are concerned. 

1A model yielded quite higher Chl-a values in relation to 2B model, 

concerning the artificial lakes, while in natural lakes the satellite derived Chl-a 

values from 1A model are slightly lower than those produced by the 2A 

model. Moreover, it should be noted that in situ values concern point samples 

whereas satellite derived values relate to the spatially distributed Chl-a 

concentrations along the lakes’ surfaces. 

Summarizing the information derived from the validation process, the 

most optimal Chl-a assessment model throughout the WFD Greek lakes when 

no information is available about their characteristics is 1A. When the studied 

lakes are natural, the Chl-a model becomes more complex (2A) incorporating 

three band ratios and when artificial lakes are the case, then model 2B is 

proposed with the condition that the date difference between field 

measurements and satellite overpass ranges from -5 to +5 days.  
 



Figure 2.1.3-2. Spatial distribution per lake of mean in-situ Chl-a concentrations and 

mean satellite derived Chl-a concentrations based on the application of the a)1A Model, 

b)2A Model and c)2B Model, on the validation datasets including the 20% of the initial 

dataset). 

 

a 

b 
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Figure 2.1.3-3. Boxplots presenting basic descriptive statistics of residuals per model. 

 



 

Figure 2.1.3-4. Satellite-derived Chl-a maps (on 11/08/2013) of selected lakes after the 

application of 1A (a), 2A (b) and 2B (c) models (WGS_1984, UTM Zone 34 N Coordinate 

system). 
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2.1.4 Discussion 

WFD application in Greece concerning Lake Waterbodies yielded so far, 

a significant Chl-a dataset including years 2013-2016 and 2018. Statistical 

analyses of Chl-a measurements indicated that natural lakes presented 

notably higher concentrations in relation to artificial. Those results indicate a 

degraded water quality of natural lakes comparing to artificial with some 

lakes being characterized as vulnerable to eutrophication. Dense algal blooms, 

provoking high turbidity, are a frequent indicator of lake eutrophication 

(Schindler et al., 2008).  Independent studies on natural lakes have 

demonstrated a strong correlation between Chl-a and total phosphorus 

concentrations (Sakamoto, 1966; Jones and Bachmann, 1976; Canfield 1979). 

Canfield (1979) predicted total phosphorus concentrations and trophic states 

(by measuring Chl-a and Secchi depths) in natural and artificial lakes through 

the development of empirical phosphorus models. Canfield (1979) concluded 

that while total phosphorus concentrations can be predicted equally well in 

natural and artificial lakes, prediction of lake trophic state was less reliable in 

artificial lakes. Relationships between Chl-a concentrations to total 

phosphorus and Secchi disc transparency were less precise in artificial lakes 

than natural lakes while this difference was attributed to non-algal turbidities. 

Non-algal turbidities were detected in the artificial lakes and recorded as 

important water clarity determinants for many of this type’s lakes (Canfield 

and Bachmann, 1981). Based on this hypothesis, phosphorus concentrations in 

studied lakes may be examined to ascertain the drivers of decreased water 

clarity and levels of Chl-a concentrations in both types of Greek lakes. 

Harmonization of Landsat 7 ETM+ and 8 OLI images yielded three Chl-a 

qualitative models including the ratios blue to green and red, red to green and 

blue, and the ln transformed bands SWIR1 and SWIR2. According to Barrett 

and Frazier (2016) ratios between either chlorophyll absorption bands (red 

and blue) or chlorophyll reflectance bands (green and NIR) with either of the 

two SWIR bands are highlighting the spectrum’s part influenced by 

chlorophyll. Thus, modelled values are better correlated with actual in-situ 

ones.  

MLR analysis using the total amount of the available Chl-a dataset 

resulted to a quite reliable assessment model (R=0.65). Next, it was explored 

what are the most significant parameters affecting the variance of Chl-a 

concentrations in studied lakes and the outcome implied the lakes’ 

characteristics (natural/artificial) and WFD typology followed by the 

samplings’ season. The final models were separately developed for natural 

(R=0.78) and artificial lakes (R=0.76), with the latter being accompanied by a 

date difference between in-situ and satellite data ranging ±5 days. Those 

models were proven to be better -based on statistical indices concerning the 

validation process - in relation to the one yielded from the total amount of the 



dataset. This superiority highlights the significance of the information 

acquisition concerning the studied areas.   

Results of this study are in accordance with others similar studies 

exploring properties of inland waters using either Landsat or other EO 

spaceborne sensors. Gholizadeh et al. (2016) have conducted a detailed review 

on water quality parameters that are widely estimated using remote sensing 

techniques. As authors noted, most Chl-a assessment models use a 

wavelength near 675 nm and 700 nm. Many researchers have developed 

empirical Chl-a algorithms using various but basically common image bands; 

Nas et al. (2007) used the visible near-infrared (VNIR) and the shortwave 

infrared (SWIR) of Terra/ASTER for Chl-a mapping, presenting a R2 value 

0.86. Zhang and Han (2015) used the coastal, blue, red and green Landsat 8 

OLI bands to map Chl-a concentrations in Laizhou Bay while Kim et al. (2014) 

utilized the blue, NIR and the ratio blue to red Landsat 8 OLI bands to 

measure Chl-a in the Fjord of Svalbard, in arctic sea with R2 value 0.6. Lim 

and Choi (2015) also used Landsat-8/OLI in order to monitor water quality of 

Nakdong River in Korea and presented high correlations among Chl-a and 

OLI bands especially the green and NIR bands and the band ratio NIR to 

green (Pearson’s correlation coefficient of -0.7, 0.71 and -0.64, respectively). 

Bonansea et al. (2018) tried to generate a different Chl-a model for different 

Landsat sensors (5 TM, 7 ETM+ and 8 OLI) in the largest artificial reservoir in 

Cόrdoba province (Rio Tercero, Argentina). Overall, they observed that each 

Landsat sensor can be used to estimate Chl-a in the reservoir while the best 

model for TM sensor included a combination of green, red and NIR band, and 

the ratio green/red (R2 = 0.92) and for ETM+ sensor (R2 = 0.91) the green and 

SWIR-1 bands and the ratio red/green. 

While several satellite sensors can be used for Chl-a determination, 

mapping Chl-a in Case 2 waters is a complicated task since the optical 

properties are measured based on a compound of dissolved organic matter, 

dead organic and inorganic particulate matter and phytoplankton (Chl-a). 

Therefore, Chl-a determination is characterized by less accuracy as these 

constituents are not statistically correlated. Taking this shortcoming into 

account, we tried to use spectral band ratios which decrease irradiance and 

atmospheric biases in the sensor’s signal (Dekker and Peters, 1993) and more 

than one band, since then the scattering and absorption of Chl-a are better 

studied (Dekker et al., 1991).  Furthermore, according to Kloiber et al. (2002), 

all significant band combinations for chlorophyll include at least one of the 

short-wave infrared bands, thus SWIR bands were incorporated into this 

study’s analysis in order to produce optimal assessment Chl-a models.  

A major difference in relation to aforementioned studies is that the study 

area used in the present study incorporates 50 different lake systems 

throughout Greece covering a broad geographic area and a wide range of 

limnological conditions, while the majority of the respective literature focuses 



Markogianni V. Water Quality Assessment in Greek Lakes by Using Remote Sensing and Statistical Modelling 

109 | P a g e  

 

on regional scales and discrete inland water bodies. Large spatial scales 

require greater computational potential; thus, the release of the Google Earth 

Engine platform dramatically increased the scale at which earth observation 

research can take place (Topp et al., 2020). An example of extended study area 

is the research by Lin et al. (2018) who combined in-situ Chl-a data from 1157 

lakes (2007) with Landsat data and developed a well-validated lake national 

model (RMSE = 34.9 μg/L), by using machine learning algorithms built into 

Google Earth Engine. Another example regarding Greece is the study by 

Kontopoulou et al. (2017) who used Landsat 8 images and WFD Chl-a and 

turbidity datasets concerning 11 lakes for years 2013-2015. They conducted 

regression analysis by using Matlab scripts and also examined the effect of the 

time difference between satellite and field data. In that study, an R2 of 0.78 

(log Chl-a, n=168) was reported for a time window 0-15 days, while R2 

reached 0.8 (n=39) for a narrower three-day time difference. 

Since Chl-a concentrations in lakes cannot be accurately determined due 

to aforementioned restrictions, we consider that the proposed empirical 

models are reliable and should be applicable to most natural and artificial 

lakes within Greece. One limitation of empirical models is their restriction to 

confident assessments only within the range and setting of the input data. 

This restriction limits their application across spatiotemporal domains (Topp 

et al., 2020), risk which to a large extent is restrained since training datasets of 

this study include the majority of Greek lakes and three sampling seasons.  

However, the general applicability and potential limitations of this approach 

have not been thoroughly addressed, hence further improvement will be 

explored as soon as the latest WFD datasets are released.  

Furthermore, clearly, there are some factors that should be taken into 

consideration in this study, affecting the accuracy of Chl-a quantification in 

Greek studied lakes. 

1. An uncertainty of accuracy regarding the location of sampling 

points. Sampling in lakes requires special attention as winds and 

other external factors (e.g. season, lake depth and changes in water 

level, ease of proximity) contribute to potential transpositions of 

sampling sites.  

2. The implementation of the DOS1 atmospheric correction method 

has not been validated in order to assure that atmosphere biases 

have been completely removed. However, this method is widely 

used by the EO community and has proven useful when no 

atmospheric measurements are available. 

3. Optimal models have been applied to lake surfaces accrued from 

lake shapefiles, acquired from the Environment and Energy 

Ministry’s website. Since no classification between land and water 



has been conducted, there is the possibility that some pixels, 

covering land, hinder Chl-a quantification with high accuracy. 

All in all, it should be noted that EO is recommended to be combined 

with conventional in-situ water sampling in order to achieve high assessment 

accuracy. Such a synergistic approach in conjunction with cooperation among 

government and scientists contribute to increased data retrieval, obtained 

knowledge of the lakes’ water quality and by extension to better protection 

and pollution mitigation measures.  
 

2.1.5 Conclusions 

In this study a methodological framework has been proposed for 

quantifying Chl-a pigments using Earth Observation (EO) data from Landsat 

7 ETM+ and 8 OLI sensors. Its practical use is evaluated in a total of 50 lake 

water bodies (natural and artificial) during 2013-2018, consisting the National 

Lake Network Monitoring of Greece in the context of Water Framework 

Directive (WFD). 

Use of geoinformation technologies, such as of EO and GIS, in 

combination with conventional field surveying and spatial data analysis 

methods are the most efficient ways forward for monitoring water quality 

parameters in lakes. Application of WFD in Greece has resulted in a 

significant dataset of various water quality parameters concerning, in this 

case, 50 lake water bodies with different morphological characteristics and 

other properties. The integration of spectral information from two Landsat 

sensors and statistical analyses employing principle component analysis and 

stepwise MLR analyses yielded statistically significant results. Optimal 

models were developed in this study, separately for natural and artificial 

lakes, and increased the feasibility of Chl-a assessment with high accuracy. 

The majority of the respective literature focuses on discrete inland water 

bodies reporting the most accurate and statistically significant models. 

Monitoring of water quality in large spatial scales though, as in this study, 

may result in sustainable water resources management even though the 

models may be statistically weaker. 

Since Chl-a is the major indicator of trophic state, considered as one of 

the top water pollution indices related to eutrophication, this study supports 

WFD application concerning the perpetual water quality monitoring of Greek 

lakes. WFD application throughout Europe aims at the monitoring of 

hydromorphological, physicochemical and biological data to assess ecological 

status of surface waters. Those data include optically active constituents of 

water that interact with light (e.g. Chl-a) and can be measured using remote 

sensing and also others that lack optical properties. Some examples are pH, 

dissolved oxygen and nutrient concentrations. Monitoring of those properties, 

characterized by low signal noise ratio, by using geoinformation technologies- 
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in particular EO and GIS- is a challenging task and has motivated us to 

pursue it in the near future, exploiting the WFD monitoring results.  
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Preamble 

Given the great importance of lakes in Earth’s environment and human life, 

continuous water quality (WQ) monitoring within the frame of the Water 

Framework Directive (WFD) is the most crucial aspect for lake management. 

In this study, Earth Observation (EO) data from Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) 

sensors have been combined with co-orbital in-situ measurements from 50 

lakes located in Greece with the main objective of delivering robust WQ 

assessment models. Subsequently, trophic status classification was conducted 

herein, calculating Carlson’s Trophic State Index (TSI) initially throughout all 

lakes and then oriented toward natural-only and artificial-only lakes. All in 

all, the study findings provide important support toward the perpetual WQ 

monitoring and trophic status prediction of Greek lakes and, by extension, 

their sustainable management, particularly in cases when ground truth data is 

limited. 

 

2.2.1 Introduction 

Surface freshwater is one of the most essential resources for the 

terrestrial ecosystem and the predominant source of drinking water on Earth 

(Whyte et al., 2018). Over the past few decades, climate change and human 

activities have deteriorated water quality (WQ) (Michalak 2016). Some factors 

responsible for it include rapid development, as well as changes in land 

use/land cover (LULC) patterns, industrialization, and urbanization (El-Alem 

et al., 2012). The close proximity of water reservoirs to settlements may reduce 

the price of water to consumers. However, it may also prevent the sustainable 

management of water resources against deteriorating activities and 

inappropriate disposal of urban sewage generated within drainage basins 

(Alparslan et al., 2009). 
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Deterioration of lake systems’ WQ has resulted in many lake 

eutrophication problems; therefore, environmental scientists have tried to 

monitor, manage, and limit it for more than two decades (Shafique et al., 

2003). WQ monitoring is the most crucial aspect for lake management 

(Bonansea et al., 2018) and particularly includes the monitoring of certain WQ 

properties through in-situ sampling and field work. The aforementioned WQ 

properties include Chl-a concentration, total suspended matter (TSM), Secchi 

depth (SD), and nutrient concentrations (Moore et al., 2014). 

However, conventional WQ measurements and in-situ sampling are 

laborious, costly and time consuming (El-Alem et al., 2012). Moreover, those 

techniques are characterized by limited ability to provide a synoptic 

spatiotemporal view of WQ (Giardino et al., 2001; He et al., 2008) since the 

condition of an entire water body cannot be fully represented. Furthermore, 

patchy distribution of nutrients, algal blooms, and TSM define those methods 

as unsuitable for monitoring a large number of water bodies at a regional or 

national scale (Dekker et al., 1991; Poor 2010). 

Recent developments in geoinformation technologies and in particular 

of Remote Sensing (RS) and Geographical Information Systems (GIS), 

concerning pollution loads and WQ, offer a number of advantages that 

practically address the limitations of traditional water sampling (Brivio et al., 

2001; Pozdnyakov et al., 2005; Tyler et al., 2006). Among the key advantages 

of RS is the ability to cover large areas (Chatziantoniou et al., 2017) and to 

collect spectral information at variable spatial scales and at dramatically lower 

cost compared to field measurements (Haddad and Harris, 1985). 

According to Morel and Gordon (1980), there are three well-documented 

methodologies to estimate the concentration of WQ elements in inland 

waters: empirical, semi-empirical, and physical or analytical methodology. 

Empirical methods attempt to establish relationships between in-situ water 

quality measurements and water leaving radiance measured by the sensor 

without the precondition of prior understanding of the complex water and 

light interactions. Those relationships imply effective data improvement but 

limited transferability (Austin and Petzold, 1981). Moreover, empirical 

methods incorporate machine learning techniques, which are differentiated 

by their robust ability to handle complicated non-linear relationships, typical 

of WQ remote sensing data (Sagan et al., 2020; Topp et al., 2020). Machine 

learning algorithms include artificial neural networks (ANN), genetic 

algorithms (GA), support vector machines (SVM), random forest regression 

trees, and empirical orthogonal functions (Topp et al., 2020). On the other 

hand, through semi-empirical techniques, spectral and physical knowledge 

are combined and then correlated to the in-situ concentrations. Regarding 

physical or analytical approaches, the acquisition of certain biogeochemical 

parameter values (e.g., Chl-a, CDOM) is required, as well as inherent and 



apparent optical properties, and are based on radiative transfer within the 

water column. Then, the in-situ concentrations are assessed by modeling the 

reflectance of surface water. Although analytical methods, including fuzzy 

logic and Principal Component Analysis (PCA), have already been 

extensively used, empirical and semi-empirical predicting models are still 

widely utilized (Gholizadeh et al., 2016). Analytical methods’ complexity in 

terms of their theory and calculation difficulties (Gholizadeh et al., 2016) and 

the non-availability of required detailed spectral information of the optically 

active water constituents (optical properties, radiometric quantities) have 

contributed to the maintenance and development of empirical models. This 

trend is further observed especially in cases where machine learning models 

are utilized, as most of them reduce overall error and maximize model fit 

(Topp et al., 2020). However, it should be noted that empirical algorithms are 

more specific to certain water types, regional or optical (Odermatt et al., 2012). 

The classification of waters in Case 1 (oceanic) and Case 2 (coastal 

regions, rivers, and lakes, refined by (Gordon and Morel, 1983), is 

characterized by great importance when remote sensing techniques are 

utilized to monitor their WQ. The distinction between the two cases has some 

significant effects on the interpretation and modeling of optical data. In 

particular, according to this classification scheme, the optical properties of 

Case 1 waters are determined by phytoplankton and co-varying substances, 

while Chl-a is considered a proxy of phytoplankton concentration. This 

assumption has facilitated the implementation of large-scale optical models 

and the development of Chl-a predicting algorithms for Case 1 waters. On the 

other hand, single variable models should be abandoned when Case 2 waters 

should be studied. It is, on the whole, acknowledged that Case 2 waters are 

more complex than Case 1 concerning their composition and optical 

properties. Monitoring the WQ of Case 2 waters is a more sophisticated task 

since phytoplankton, suspended material, yellow substances, and perhaps 

bottom reflectance vary independently of each other. The main difficulty lies 

in the fact that the alterations in optical signal and the concentrations of the 

dissolved constituents are often so small that they hinder the ability to extract 

reliable information or the optical signal may be affected in a similar way by 

more than one substance, which results in an inability to discriminate the 

different materials (Gholizadeh et al., 2016). Moreover, of principal value is 

the choice of the appropriate wavelengths, as well as their number in a Case 2 

adopted algorithm. Hence, given the difficulty that WQ monitoring of Case 2 

waters constitutes a multi-variable, non-linear problem, it is more realistic to 

establish a series of algorithms rather than a single all-purpose one. In this 

way, more than one algorithm will attempt to capture and solve the problem 

for all variables and over several and different ranges of concentrations 

(IOCCG 2000). 



Markogianni V. Water Quality Assessment in Greek Lakes by Using Remote Sensing and Statistical Modelling 

119 | P a g e  

 

In parallel, the Case 1/Case 2 classification can substantially improve 

remote sensing products when associated with individual optical water types 

(OWTs). In particular, coastal regions and inland waters are characterized by 

such optical diversity that any further information about their variability in 

IOPs and biogeochemical significance would be particularly valuable. Some 

OWTs can be hypereutrophic waters, turbid waters with high organic content, 

sediment-laden waters, CDOM-rich waters, or even very clear blue waters. 

Several hierarchical, partitional, and hybrid clustering techniques have been 

utilized to further discriminate distinct OWTs within and between Case 1 and 

Case 2 waters (Spyrakos et al., 2018). After all, a reliable OWT classification 

optimizes the selection of the finest constituent algorithms when simpler 

approaches cannot yield reliable results.  

Inland waters, and especially lakes, are small water bodies that are not 

detected by current ocean color satellites, and even though this lack prevents 

the monitoring and estimation of their WQ components, it has been 

replenished by the use of Landsat sensors. A recent review of state-of-the-art 

RS-based approaches by (Gholizadeh et al., 2016) underpins the use of 

Landsat sensors, TM (Thematic Mapper), MSS (Multi-Spectral Scanner), ETM 

(Enhanced Thematic Mapper), and OLI (Operational Land Imager) as fairly 

successful choices to assess the important WQ parameters, including Chl-a, 

SDD, TP, and trophic status (Alparslan et al., 2009; Allan et al., 2011; Giardino 

et al., 2014; Kim et al., 2014; Markogianni et al., 2014; Markogianni et al., 2018; 

Markogianni et al., 2020). 

RS has been widely demonstrated as an effective solution for detecting 

the relationship between algae concentration and corresponding nutrients 

(Hans et al., 2002). Nitrogen (N) and phosphorus (P) are vital micronutrients 

for algae, while P (existing either in a particulate or dissolved phase) is the 

key limiting nutrient responsible for eutrophication in most lakes (Correll 

1999). In general, special attention should be paid depending on which 

nutrient is growth limiting, as in one water body the correlation with Chl-a 

might be with N, while in a different water body the correlation might be 

with P (Sagan et al., 2020). Total phosphorus (TP) estimation via RS has been 

explored due to its high correlation with optically active constituents (Kutser 

et al., 1995; Wang et al., 2004; Wu et al., 2010) since it cannot be measured 

directly using optical RS instruments. The chlorophyll-a (Chl-a) and TP 

relationship has been investigated in individual lakes (Smith 1982; Malve and 

Qian, 2006), and it is well documented to be accompanied by a strong and 

positive correlation among lakes (Healey and Hendzel 1979; Busse et al., 

2006). He et al. (2008) performed routine WQ monitoring on the slightly-

polluted Guanting Reservoir in China using Landsat-5 TM and retrieved WQ 

data with eight variables, namely algae, turbidity, concentrations of chemical 

oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH3–N), 



nitrate nitrogen (NO3–N), total phosphorus (TP), and dissolved phosphorus 

(DP). Their results indicated a statistically significant correlation (10–30% 

mean relative error) among all estimated parameters and reflectance 

regression algorithms. Landsat-5 TM data was also used by (Akbar et al., 

2010), who predicted TP among other water quality components of different 

sources across Alberta and managed to classify lakes into four trophic states 

indicating low to very high productivity. In another study, Song et al. (2006) 

established both a regression model and an empirical neural network to 

simulate the relationship between TP and Landsat TM radiances for Chagan 

Lake, China. As TP is highly correlated to Chl-a concentration, and TSM 

usually reflects TP loading, TP is also closely related to Secchi depth (SD) with 

an exponential equation according to Carlson’s findings (Carlson 1977). Based 

on the same rationale, (Song et al., 2012) estimated TP empirically through 

associated Chl-a, TSM, and Secchi depth across three reservoirs in Indiana, 

US, with R2 values between in-situ and spectral data ranging from 0.55 to 0.72. 

Water clarity, commonly reflected by SD, is reduced by the increased 

presence of suspended sediment, organic matter, and zooplankton (Carlson 

1977). The stimulating production of algae in a lake usually originates from 

increased nutrients, in particular, phosphorus (Busse et al., 2006). As the algae 

and suspended inorganic matter increase in a lake, the depth to which light 

can penetrate (Fuller et al., 2004) is reduced. Therefore, SD is often used as a 

trophic state indicator (Carlson 1977). In general, there are two methodologies 

followed to retrieve SDT based on remote sensing data. Empirical approach 

estimating SD through regression analysis and semi-analytical approach 

retrieving SD based on an underwater visibility theory (Jiang et al., 2019). 

Regarding empirical models, reflectance at the red spectrum has been almost 

globally used to retrieve water clarity (Baban 1993; Nelson et al., 2003; Wu et 

al., 2008; McCullough et al., 2012; Hicks et al., 2013) since increased brightness 

is accompanied by decreased water clarity (Matthews 2011). Moreover, 

further studies have also documented the usefulness of spectral response of 

the blue, green, and near-infrared spectral bands in combination with in-situ 

measurements of SD and Chl-a concentrations in predicting water clarity for 

inland lakes (Olmanson et al., 2001; Fuller et al., 2004). It should also be noted 

that semi-analytical methods are superior to empirical ones mainly 

concerning the reliability of results and the fact that no in-situ data are 

required afterwards for recalibrating the retrieval algorithm. On the other 

hand, those approaches require the utilization of a spectroradiometer and the 

collection of in-situ measured Rrs spectra including the radiance of skylight, 

radiance from a standard gray board, and the total upwelling radiance from 

the water (Jiang et al., 2019). 

Since water clarity has long been proven to interact with nutrient 

availability and Chl-a concentrations within lakes (Carlson 1977; Megard et 

al., 1980), remote sensing studies frequently use it to assess overall lake 
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trophic status (oligotrophic, mesotrophic, or eutrophic) (Peckham et al., 2006; 

Olmanson et al., 2008). WQ monitoring programs (such as WFD) have been 

implemented worldwide to acquire large datasets of several WQ parameters, 

while several methods (such as cluster and discriminant analysis) have been 

efficiently utilized to manage those complex data and interpret the 

underlying patterns of trophic status. However, these methods need 

continuous in-situ measurements, while the classical and most widely used 

method to characterize a lake’s trophic status is Carlson’s Trophic State Index 

(TSI) (Carlson 1977). This approach includes equations employing Secchi 

depth, Chl-a, and TP measurements (Nauman 1929). 

The hereby adopted methodological scheme includes the 

implementation of stepwise multiple regression (MLR) analyses among in-situ 

measurements and satellite data. In-situ data concern Secchi depths and TP 

concentrations along 50 lakes, included in the National Lake Monitoring of 

Greece (WFD), and since the majority of those data were recorded during 

2013–2015, images of sensors Landsat 7 ETM+ and Landsat 8 were the 

exclusive choice for the implementation of this research. According to a 

previous study conducted by the authors (Markogianni et al., 2020), a 

principal component analysis (PCA) indicated that the variance of Chl-a 

concentrations of the same lakes was affected by whether the lakes were 

natural or artificial, while the rest of the tested parameters were the climatic 

type, WFD typology, and the sampling season. Hence, based on those PCA’s 

results, hereby MLR analyses concerned: (a) all in-situ measurements of TP 

and Secchi depth during 2015–2016 and 2013–2016, respectively, and (b) in-

situ TP and Secchi depth datasets of the same years, including natural-only 

and artificial-only lakes. Correlation analyses were additionally conducted to 

explore and detect the existing interrelationships among TP, Chl-a 

concentrations, and SD of monitored lakes and improve the effectiveness of 

the WQ assessment models by indicating further significant predictors. 

Subsequently, Chl-a regression models developed by Markogianni et al. 

(2020), and hereby established TP and Secchi depth’s models were utilized to 

calculate the water trophic index of the studied lakes. 

In purview of the above and taking advantage of the large in-situ dataset 

derived from the application of National Lake Monitoring in Greece (WFD), 

the present study aims to: (1) explore the complicated relationships among 

TP, Chl-a concentrations, and Secchi depth measurements throughout 50 

lakes, substantially representing Case 2 waters, (2) generate accurate 

quantitative TP and Secchi depth models by incorporating satellite images 

with concurrent in-situ measurements, and (3) derive the Carlson Trophic 

Index for assessing water trophic state spatially over all monitored 

waterbodies. 

 



2.2.2 Study area 

The study area includes 50 lakes, natural and artificial (Figure 2.2.2-1; 

Table 2.2.2-1). These waterbodies comprise the National Monitoring Network 

of Waters in Greece, which is implemented by the Goulandris Natural History 

Museum, Greek Biotope/Wetland Centre (EKBY). More information about the 

general characteristics of the monitored lakes can be found at the study 

conducted by Markogianni et al. (2020) or more detailed data can be retrieved 

from the EKBY’s site (Goulandris Natural History Museum, Greek 

Biotope/Wetland Centre; http://biodiversity-info.gr/index.php/el/lakes-

data#!IMGP4731; accessed date 5 February 2020). 

 

Figure 2.2.2-1. National Lake Monitoring Network in Greece (numbers of sampling 

stations coincide with the numbers presented in Table 2.2.2-1). 

 

http://biodiversity-info.gr/index.php/el/lakes-data#!IMGP4731
http://biodiversity-info.gr/index.php/el/lakes-data#!IMGP4731
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Table 2.2.2-1. Main characteristics of the lakes included in the National Lake Monitoring 

Network in Greece (WFD) (Mavromati et al., 2018; Markogianni et al., 2020). 

No 
National Name 

Station 

Surface 

(km2) 

(N)atural/ 

(A)rtificial 

Mean 

depth 

(m) 

No 
National Name 

Station 

Surface 

(km2) 

(N)atural/ 

(A)rtificial 

Mean 

depth 

(m) 

1 Lake Ladona - A - 28 Lake Petron 11.91 N 3.1 

2 Lake Pineiou 19.64 A 15.1 29 Lake Zazari 2.98 N 3.95 

3 Lake Stymfalia - N 1.31 30 Lake Cheimaditida 9.82 N 1.01 

4 Lake Feneou 0.47 A 10.5 31 Lake Kastorias 30.87 N 3.7 

5 Lake Kremaston 68.43 A 47.2 32 Lake Sfikias 3.96 A 23.2 

6 Lake Kastrakiou 25.58 A 33.2 33 Lake Asomaton 2.46 A 20.8 

7 Lake Stratou 7.02 A 9.6 34 Lake Polyfytou 63.49 A 22.4 

8 Lake Tavropou 21.46 A 15.0 35 
Lake Mikri Prespa 

A 
- N 3.95 

9 Lake Lysimacheia 10.87 N 3.5 36 
Lake Mikri Prespa 

B 
 N - 

10 Lake Ozeros 10.57 N 3.8 37 
Lake Megali 

Prespa A 
- N 17 

11 Lake Trichonida 93.53 N 29.6 38 
Lake Megali 

Prespa B 
 N - 

12 Lake Amvrakia 13.14 N 23.4 39 Lake Doirani 1 33.25 N 4.6 

13 Lake Voulkaria 7.38 N 0.96 40 Lake Doirani 2  N - 

14 Lake Saltini - N - 41 Lake Pikrolimni 6.30 N 1.2 

15 Lake Mornou 17.50 A 38.5 42 Lake Koroneia - N 3.8 

16 Lake Evinou 2.68 A 31.5 43 Lake Volvi 70.36 N 12.3 

17 Lake Pigon Aoou 11.44 A 20.8 44 Lake Kerkini - A 2.19 

18 Lake Pournariou 19.28 A 29.8 45 Lake Leukogeion 0.83 A 4.05 

19 Lake Pamvotida 21.82 N 5.3 46 Lake Ismarida - N 0.9 

20 Lake Pournariou II 0.56 A 11.7 47 Lake Platanovrysis 2.99 A 26.4 

21 Lake Marathona 2.17 A 15.8 48 Lake Thisavrou 13.43 A 38.4 

22 Lake Dystos - N - 49 Lake Gratinis 0.80 A 14.2 

23 Lake Yliki 19.96 N 20.1 50 Lake N. Adrianis - A - 

24 Lake Paralimni 9.96 N 2.99 51 Lake Kourna - N 15 

25 Lake Karlas - A 0.9 52 Lake Bramianou - A 10.1 

26 Lake Smokovou - A - 53 Lake Faneromenis 0.33 A 9.98 

27 Lake Vegoritida 47.67 N 26.52  

 

 



2.2.3 Materials and Methods 

2.2.3.1 Data acquisition 

2.2.3.1.1 In-situ data  

Data used in this study were collected in the framework of the Greek 

Water Monitoring Network for lakes (WFD). All data is freely accessible and 

was downloaded from the EKBY’s site (Goulandris Natural History Museum, 

Greek Biotope/Wetland Centre (http://biodiversity-info.gr/index.php/el/lakes-

data#!IMGP4731; in Greek). The network incorporates 50 lakes, natural and 

reservoirs. At the majority of the lakes, only one sampling station is detected, 

except for trans-boundary lakes (Megali Prespa, Mikri Prespa, and Doirani), 

where two sampling stations are located (Table 2.2.2-1; Figure 2.2.2-1). From 

the total of 53 sampling sites, there are 27 surveillance and 26 operational 

ones. Surveillance stations operate in water bodies of good status, for a certain 

period of time (one year in every monitoring cycle), while operational stations 

are monitored on a monthly or seasonal basis, in water bodies which fail to 

achieve good status (Markogianni et al., 2020). The selected data used herein 

includes the Secchi depth measurements in several dates from 2013 up to 2018 

and TP concentrations from 2015 up to 2018 throughout the monitored lake 

stations. Secchi depth measurements were conducted with a Secchi disk, 

measuring the transparency of water while in-situ Chl-a data was already 

available in the framework of our last study (Markogianni et al., 2020). 

Particularly, Chl-a concentrations were measured from 2013 to 2018 and 

determined spectrophotometrically (Method 10200 H; APHA 1989). TP 

concentrations include all inorganic, organic and dissolved forms of 

phosphorus and the available dataset incorporates measurements analyzed 

during the years 2015, 2016 and 2018. During years 2013 & 2014 (i.e. since the 

beginning of the WFD), analysis of orthophosphates resulted in low 

concentrations, lower than the quantitation limit (LOQ) of the respective 

adopted method, hence no measurement was available during this period. 

Therefore, the following years (i.e. 2015, 2016, 2018) analyses of 

orthophosphates were replaced by Total phosphorus ones, which resulted in 

the acquirement of actual measurements during this period. 

Further investigation of in-situ data included a seasonal statistical 

analysis by incorporating dates of same season of all lakes during the 

monitored years. The seasons were determined as: summer (June, July, and 

August), autumn (September, October and November), winter (December, 

January and February) and spring (March, April, and May) while more 

information about the sampling periods, sampling and analysis 

methodologies can also be found in EKVY’ site.  

Exploratory statistics among the Secchi depth measurements of 2013, 

2014, 2015, 2016 and 2018 and TP concentrations of 2015, 2016 and 2018 were 

http://biodiversity-info.gr/index.php/el/lakes-data#!IMGP4731
http://biodiversity-info.gr/index.php/el/lakes-data#!IMGP4731
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calculated incorporating the estimation of mean, median, standard deviation 

and min-max. Skewness, Kurtosis and the Kolmogorov-Smirnov and Shapiro-

Wilk tests were conducted to explore the data normality. Furthermore, SPSS 

Statistical Package (v. 24.0) was used to group and categorize the under 

studied WQ parameters based on the sampling’s season, year and whether 

the lakes are natural or artificial. Moreover, correlation matrix among 

simultaneous in-situ measurements of TP, Chl-a and Secchi depths was 

conducted to explore their existent interrelationships and further contribute to 

indicating the most significant predictors. 

 

 2.2.3.2 Exploratory Statistical Analyses 

Secchi depths throughout the monitored Greek lakes were measured 

during the years 2013, 2014, 2015, 2016 and 2018 (Table 2.2.3-1). Minimum 

values ranged from 0.03 (2014, 2015) to 0.2 m (2013) while maximum ones 

from 11 (2015) up to 15.5 m (2018). Mean values of Secchi depth are similar 

during all years and equal to around 3.2 m. Secchi depths are presented 

higher in artificial than in natural lakes while the highest values are observed 

during summer months for both natural and artificial lakes (Figure 2.2.3-1a). 

The temporal distribution of Secchi depths was categorized on the criterion of 

whether the lakes are artificial or natural; values are also higher in artificial 

lakes during all sampling years with some exceptions (e.g. Trichonida Lake; 

Figure 2.2.3-1b). 

Table 2.2.3-1. Summary of descriptive statistics of in-situ Secchi depth values during 

years 2013-2016 and 2018. 

Secchi depth (m) 

in Year:  
N Min Max Mean 

Std. 

Deviation 
Skewness Kurtosis 

2013 134 .20 14.0 3.1 2.8 1.5 3.3 

2014 125 .030 14.0 3.8 3.1 .9 .2 

2015 140 .030 11.0 3.2 2.6 .8 -.2 

2016 64 .050 15.0 3.03 3.2 1.7 3.1 

2018 314 .100 15.5 3.04 2.7 1.4 2.4 

all years 777 .03 15.5 3.2 2.8 1.3 1.7 



 

 

Figure 2.2.3.2-1. Boxplots presenting basic statistics of Secchi depths (a) grouped by the 

lake’s nature and categorized by the sampling season, and (b) grouped by sampling year 

and categorized by the lake’s nature. 

 

Total measurements of TP concentrations are 370, including years 2015, 

2016 and 2018 (Table 2.2.3-2). Minimum TP values are similar during all years 

(around 0.01 mg/l) while maximum values are increasing during the years. 

Same tendency is reflected based on average values with the mean TP value 

of 2018 to be double compared to the respective value of 2016. Higher TP 

concentrations are detected in natural lakes, particularly during autumn 

sampling months while water sampling analysis in summer revealed the 

highest TP concentrations in artificial lakes (Figure 2.2.3-2a). As far as the 

yearly distribution of TP concentrations in Greek lakes is concerned, it is 

confirmed that natural lakes are more affected by TP pollution sources than 

the artificial ones with an increasing tendency throughout the years (Figure 

2.2.3-2b). 

Table 2.2.3-2. Summary of descriptive statistics of in-situ TP concentrations during 

years 2015-2016 and 2018. 

Total phosphorus (mg/l) in 

Year: 
N Min Max Mean Std. Deviation Skewness Kurtosis 

2015 169 .01 4.2 .14 .56 6.7 45.4 

2016 69 .02 5.1 .23 .8 5.5 29.9 

2018 132 .02 13.3 .48 1.8 4.9 25.98 

all years 370 .01 13.3 .28 1.2 6.9 54.2 

a b 
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Figure 2.2.3-2. Boxplots presenting basic statistics of TP concentrations (a) grouped 

by the lake’s nature and categorized by the sampling season, and (b) grouped by 

sampling year and categorized by the lake’s nature (top and bottom panels illustrate 

the range of in-situ TP measurements in a logarithmic scale divided in 0-0.8 mg/l 

and 1-15 mg/l extents, respectively). 

 

2.2.3.3 EO Data Acquisition & Pre-Processing 

Landsat 8 OLI and Landsat 7 ETM+ images used herein covered the 50 

monitored lakes throughout Greece. These data had been previously acquired 

in the framework of our previous study (Markogianni et al., 2020). In 

particular, a 2013–2016 and 2018 time series of 296 Landsat images— with a 

a 



mean time window between the satellite overpass and the in-situ 

measurements equal to 4 days—were downloaded from the USGS (United 

States Geological Survey) Data Centre (https://earthexplorer.usgs.gov/ 

(accessed date 5 February 2020)) for Chl-a estimations. More specifically, total 

in-situ Chl-a data include 702 measurements, and the time window between 

sampling and satellite dates ranges from -21 to 17 days. Moreover, since not 

all monitored WQ parameters were sampled on simultaneous dates, Secchi 

depth data were aligned with a total of 304 images (2013–2018) and the TP 

concentrations with 122 images (2015–2018), including some newly 

downloaded extra images. Secchi depth measurements are equal to 578, and 

the time window difference ranges between -16 to 19 days with a mean time 

gap of approximately 4 days.  

As far as the TP measurements are concerned, 268 total values were 

recorded during the years 2015, 2016, and 2018, accompanied by satellite 

images with overpass dates ranging from 21 to 14 days before and after the 

field work, respectively and the mean time gap is equal to 4 days. Moreover, 

it should be noted that the majority of the satellite images have been used for 

the monitoring of more than one of the studied WQ parameters, and the 

statistical analysis eventually included those that met certain criteria (e.g., 

images that portrayed lakes with mean depth higher than 5 m; images of 

dates coincident with sampling dates of all the three parameters Chl-a; TP; 

Secchi depth for the TSI calculation, etc.).  

Concerning the great time window between sampling and satellite dates 

in some cases, it should be noted that only a few images are temporally far 

from the field work’s date. It has been proven that a time-window up to ±7 

days yields reasonable results and is not considered a problem when lake 

water quality, especially in non-tidal systems, is monitored (Kloiber et al., 

2002; Hellweger et al., 2004; Chu et al., 2018). Therefore, concerning the Chl-a 

training dataset (general model), only 15.4% of records surpassed the ±7 days’ 

time gap. The respective percentages for Secchi depth and TP training 

datasets are 13.2% and 15%, while 50% and 71% of those records, respectively, 

constitute artificial lakes that have been separately elaborated in a restricted 

time gap of ±5 days. The percentages are similarly low concerning the 

development of WQ models for natural lakes. The Chl-a natural model was 

developed by employing 12 out of 85 records (14.1%) with a date difference 

higher than ±7 days from the satellite overpass, while the Secchi natural 

model included 5 out of 65 (7.7%) records characterized by the same time 

window. As far as the TP natural model is concerned, only 2 out of 29 

measurements have been aligned with images acquired at dates greater than 

±7 days from the sampling date. Given the low percentage rates of those 

records utilized in the development of WQ models, it is assumed that their 

effect is insignificant on the models’ performance and prediction accuracy.  



Markogianni V. Water Quality Assessment in Greek Lakes by Using Remote Sensing and Statistical Modelling 

129 | P a g e  

 

The pre-processing steps that were adopted herein are identical to the 

ones described in our earlier study (Markogianni et al., 2020). More 

particularly, semi-automatic classification plugin (SCP) of the free and open-

source cross-platform desktop geographic information system Q-GIS v. 3.6.3-

Noosa was employed to perform: (a) conversion of images from digital 

numbers (DN) to top-of-atmosphere reflectance (TOA), (b) atmospheric 

correction by using the DOS1 method (applied to all bands except for thermal 

ones), and (c) the creation of a band stack set for each image. The band stack 

set of L7 ETM+ includes bands B1 (blue), B2 (green), B3 (red), B4 (NIR), B5 

(SWIR1), and B7 (SWIR2), while L8 incorporates bands B2 (blue), B3 (green), 

B4 (red), B5 (NIR), B6 (SWIR1), and B7 (SWIR2).  

Since 2003, sensor ETM+ has acquired and delivered data with gaps 

caused by Scan Line Corrector (SLC) failure. In order to retrieve the data that 

concurred with those line gaps, several calculations were conducted by 

employing focal statistics through ArcMap. Those line gaps are 

approximately 205 m in length on the vertical axis, and in combination with 

the spatial resolution of the Landsat sensor (30 m), the mean value within a 

circle of 7 cells was determined among several trials as the most optimal 

neighborhood to include the coincident sampling station everywhere within 

this line. Through the focal statistics tool, an output raster (focal raster) for 

each input one (satellite band) was calculated, and then the Con and IsNull 

functions were applied (Equation (2.2.3-1)) in order only the no-values cells to 

be replaced while the rest preserved their values. 
 

Con (IsNull(Satellite band with gaps), (focalRaster), (Satellite band with 

gaps))         (2.2.3-1) 
 

The implementation of the DOS1 atmospheric correction method was 

not validated in order to ensure that atmosphere biases were completely 

removed. However, this method is widely used by the EO community 

(Barrett and Frazier 2016; Japitana and Burce 2019) and proved useful when 

no atmospheric measurements are available and correcting historical imagery. 

In the framework of the effort of (Doña et al., 2014) to develop WQ empirical 

algorithms across certain Spanish lakes and ponds, they evaluated three 

different atmospheric correction methods (DOS; ATCOR3; MODTRAN5). 

Those methods were applied to Landsat 7 ETM+ bands, and the results 

indicated that the DOS method performed better than the others, reporting 

the lowest errors.  

Moreover, to further ensure the use of only cloud-free pixels over the 

sampled lakes, the Cloud Masking QGIS plugin 

(https://smbyc.github.io/CloudMasking; accessed date 10 March 2020) was 

used. By using this tool, clouds, cloud shadow, cirrus, aerosols, and ice/snow 



were masked for all Landsat images using the combination of the Fmask and 

Blue Band processes. 

2.2.3.4 Statistical approach 

2.2.3.4.1 Establishment of relationships between Landsat data, Secchi 

depths and TP  

The hereby available in-situ data include Secchi depth and TP lake 

measurements, recorded in the framework of the WFD application in Greece 

during the years 2013-2016 and 2018. Especially in-situ data of 2018 was used 

as an independent validation dataset for both of the WQ elements. Visible 

(blue, green and red), NIR and SWIR spectral bands, combined with their 

ratios, additions, subtractions, ln- and log-transformations were employed in 

multiple combinations including also transformations from the respective 

scientific literature (Table 2.2.3-3) with basic aim to explore and develop 

statistically significant relationships between them and in-situ Secchi depths 

and TP measurements of coincident dates. Figure 2.2.3-3 illustrates the 

discrete methodological steps followed herein regarding the two in-situ 

datasets indicated by numbers (1) and (2) for Secchi depths and TP values, 

respectively.  

 

Figure 2.2.3-3. Flow diagram describing the methodology followed regarding the WQ 

models’ establishment and validation. 



Markogianni V. Water Quality Assessment in Greek Lakes by Using Remote Sensing and Statistical Modelling 

131 | P a g e  

 

As far as the Secchi depth dataset (1) is concerned, a correlation analysis 

between several band transformations and Secchi depths’ measurements, as 

well as log, ln and SQRT Secchi depths was conducted, including previously 

published band combinations (Table 2.2.3-3). In those independent variables, 

in-situ Chl-a was also included as this parameter has been previously proved 

to affect lake water clarity (Song et al., 2012). Correlation analysis results and 

the selection of certain significant predictors of Secchi depth was determined 

based on specific rules. Setting initially a threshold value of the significant 

correlations at the 0.01 level and a Spearman value equal or higher than ±0.4 

(which indicates moderate relationship according to Dancey and Reidy (2007), 

resulted in the distinction of the initial wide group of Secchi depth’s 

predictors. Furthermore, those predictors were also enriched and confirmed 

based on the results of the predictor importance chart (IBM SPSS software 

Statistics v. 23.0, Armonk, NY, USA). This chart indicates the relative 

importance of each predictor in estimating a model while the predictor 

importance relates to the importance of each predictor in making a prediction, 

not whether or not the prediction is accurate.  

Additional criteria including multi-collinearity and values of tolerance 

factor, variance inflation factor (VIF) and R2 were also applied to explore 

statistical performance and residuals and resulted in a subset of the initial 

predictors. According to Markogianni et al. (2020), a factor analysis was 

implemented to obtain an indication of underlying common factors 

(components) that explain the interrelationships among Chl-a concentrations, 

lake nature (natural/artificial), sampling season and climatic type. The rotated 

component matrix results indicated that the lake characteristics 

(natural/artificial), followed by the sampling season were the variables that 

mostly affect the variance of Chl-a concentrations in the same -as in this work- 

studied lakes during the same period (2013-2018).  

In the effort of the authors (Markogianni et al., 2020) to further enhance 

the efficiency of Chl-a regression models, a confined time window of ±5 days 

between field measurements and satellite overpass was used, in cases with 

statistically significant results. Those results were indeed further improved 

when artificial lakes were the case, regardless of the sampling season. Hence, 

since a) the herein research concerns the same lakes being monitored during 

the same period and b) the ultimate goal is the assessment of their trophic 

status, it was decided to conduct MLR analyses based on the same rationale 

as in (Markogianni et al., 2020). Consequently, the two basic scenarios 

employed, concern: Case A) MLR analysis among attributes originating from 

a randomly- developed training dataset.  

Total Secchi depth measurements were divided in training and 

validation datasets including 80% (228 out of 286 Secchi depth measurements) 

and 20% of the entire dataset, respectively. This analysis constitutes an effort 



to develop a Secchi depth quantitative model for lakes when no information is 

available (e.g. regardless the sampling season, natural/artificial etc.), and, 

Case B) MLRs analysis focused separately on attributes concerning natural-

only or artificial-only lakes, with the latter being accompanied by a time 

window of ±5 days between sampling and satellite date as proposed by 

(Markogianni et al., 2020). Furthermore, the addition of Chl-a values in the 

possible Secchi depth’s predictors had as a result to further shorten the initial 

total in-situ dataset, as only the records of dates characterized by 

simultaneous sampling of Secchi depths and Chl-a were included in the 

analysis. 

The same methodology was also adopted in the TP concentrations (2 in 

Figure 2.2.3-3). In-situ dataset of TP is narrower than the one concerning 

Secchi depths, as it includes only values sampled during the years 2015 and 

2016 (dataset of 2018 was utilized as an independent validation dataset). 

Correlation analysis was also conducted among satellite band transformations 

(Table 2.2.3-3) and in-situ TP values while in-situ Chl-a concentrations, Secchi 

depths and their logarithmic transformations were also included since they 

have been proven to interact and affect TP concentrations in lakes (Kutser et 

al., 1995; Wang et al., 2004; Wu et al., 2010). Due to fewer TP available 

measurements, the threshold value of Spearman r was set to 0.3 to avoid the 

loss of possible significant TP predictors and the proposed TP predictors were 

also confirmed by the significance predictor chart. Hence, according to Figure 

2.2.3-3, multiple datasets with simultaneous measurements of all the three 

parameters or combinations of them were established and constituted the 

randomly made datasets (Case A). Those multiple datasets were further 

divided in training (80% of each total records) and validation ones (the rest 

20%). Then, concerning MLRs analyses of B case (Figure 2.2.3-3), the 

aforementioned datasets were further divided in cases including natural-only 

and artificial-only lakes (with data acquisition time window of ±5 days), while 

they were additionally separated in training (80%) and validation (20%) 

datasets, respectively.  

Training datasets regarding the in-situ Secchi depths and TP include 

measurements of 2013-2016 and 2015-2016, respectively. It should also be 

noted that training and validation datasets contained lakes with mean depth 

higher than 5 m to surely avoid the bottom reflectance noise (McKinna and 

Werdell, 2018). In particular McKinna and Werdell (2018) recommended that 

any pixel with a water-column depth of 5 m or less should be characterized as 

optically shallow and omitted from the analysis in order to avoid any 

unwanted optically shallow effects apparent in satellite -derived products; 

WQ models and their efficiency in our case. Final results of the MLRs should 

be the development of rigorous quantitative algorithms regarding: a) Secchi 

depth and TP for all the lakes, b) Secchi depth and TP for natural lakes, c) 

Secchi depth and TP for artificial lakes. 
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Table 2.2.3-3. Published band combinations utilized in remotely estimating TP and Secchi 

depth values.  

 

Reference Parameters Band combinations and sensors 

Lim and Choi, 

2015 
TP Blue, Green, Red, NIR, NIR/Green (L8) 

Song et al., 

2006; Song et 

al., 2012 

TP Blue, Green, Red, and NIR (L5) 

Wu et al., 2010 Ln (TP) Blue, Red/Green, Blue/Red (L5) 

Alparslan et 

al., 2009 
TP 

Blue, 

Green, Red, NIR, SWIR1 and SWIR2 (L5) 

Baban 1993 
(1) TP 

(2) Secchi depth 

(1) Red, 

Green, Red/Blue, (Green + Red)/2, Green2, (Blue 

+ Green)/2 (L5) 

(2) Red/Blue, Red2, Blue, (Blue+Green)/2, (Blue + 

Red)/2 (L5) 

Isenstein and 

Park, 2014 

(1) SQRT (TP) 

(2) Secchi depth     

(1) Red, SWIR2 (L7 ETM+) 

(2) LOGRed, LOGSWIR2 (L7 ETM+) 

Chen and 

Quan, 2012 
Phosphorus Blue, Green, Red, NIR (L5) 

Huang et al., 

2015 
LOG (P) NIR/Visible light (GOCI) 

Moses et al., 

2014 

(1) Phosphates 

(2) TP 

(1) Red, MIR 

(2) Red IRS P6 (LISS III) 

Shafique et al., 

2003 
TP LOG (Green/Red to NIR), (CASI) 

Allan et al., 

2011 

(1) Secchi depth (m) 

(2) LN Secchi depth 

(1) Blue/Red, (Blue-Red)/Green, LN [(Blue-

Red)/Green] (L7 ETM+) 

(2) NIR, (Blue-Red)/Green, LN Red 

Brezonik et al., 

2005 
LN Secchi depth Blue, Blue/Red (L5) 

Choubey 1998 Secchi depth Blue, Green, Red (IRS-1A) 

Zhou et al., 

2021 
Secchi Depth  

Green, Red, Blue, Vegetation red edge (B5), 

Water Vapour (Sentinel 2) 

Ohammad and 

Alsahli, 2021 
Secchi depth Green, Blue (MODIS-Aqua) 

Kratzer et al., 

2019 
Secchi depth Blue, Red (MERIS) 

 

 

2.2.3.5 Validation approach 

WQ quantitative models were validated in two ways. The basic 

statistical metric selected to verify efficiency is the Spearman’s (r) correlation 

coefficient which was selected based on the Kolmogorov-Smirnov and 

Shapiro-Wilk tests of normality. Additionally, the mean error (e) and the 

Root-Mean-Square Error (RMSE) indices were also applied. Initially, each 



validation dataset, including the 20% of the total values during years 2013-

2016 for Secchi depths and 2015-2016 for TP, respectively, constituted the first 

validation process (the rest 80% were used as training datasets). Then those 

values were linked with the respective images in order to acquire the 

predicted parameters’ values and further assure the good performance of the 

selected models. The second validation process included the utilization of the 

independent in-situ datasets sampled during the year 2018 (Figure 2.2.3-3). 
 

2.2.3.6 Carlson’s Trophic State Index (TSI) and validation 

Carlson’s Trophic State Index (TSI) is the most widely used tool for 

characterizing a lake’s health or its trophic state while the latter is defined as 

the biological reaction of water bodies to nutrient additions (Nauman 1929). 

Carlson’s method (Carlson 1977) uses Secchi depth in meter, a logarithmic 

transformation (Ln) of chlorophyll-a concentration in microgram per liter, and 

total phosphorus measurements in microgram per liter while it concerns an 

index represented as a numerical scale to categorize lakes into classes related 

to their trophic status.  

Equations (2.2.3-2), (2.2.3-3) and (2.2.3-4), derived from Carlson (1977), have 

been widely used to compute the TSIs according to TP, Chl-a and SD, 

respectively, while an average (Equation 2.2.3-5) is estimated to produce the 

final trophic state as follows: 

 

𝑇𝑆𝐼(𝑇𝑃) = 10 ∗ [6 −
𝐿𝑁(

48

𝑇𝑃
)

𝐿𝑁(2)
]      (2.2.3-2) 

 

𝑇𝑆𝐼(𝐶ℎ𝑙𝑎) = 10 ∗ [6 − (2.04 − (0.68 ∗
ln(𝐶ℎ𝑙𝑎)

𝐿𝑁(2)
))]   (2.2.3-3) 

 

𝑇𝑆𝐼(𝑆𝐷𝑇) = 10 ∗ [6 − (
𝐿𝑁(𝑆𝐷𝑇)

𝐿𝑁(2)
)]     (2.2.3-4) 

 

𝑇𝑆𝐼(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) = [𝑇𝑆𝐼(𝑇𝑃) + 𝑇𝑆𝐼(𝐶ℎ𝑙𝑎) + 𝑇𝑆𝐼(𝑆𝐷𝑇)]/3  (2.2.3-5) 

 

 

The trophic status classification system categorizes lakes as oligotrophic 

(TSI value<30), mesotrophic (TSI value 40–50), eutrophic (TSI value 60-70), 

and hypereutrophic (TSI value>70; Table 2.2.3-4) and since the scale of the 

index is arithmetic, it can describe trophic changes and a larger number of 

transitional individual lake classes (e.g. oligotrophic-mesotrophic, 

mesotrophic-eutrophic).  
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Table 2.2.3-4. Carlson’s trophic state index values and classification of lakes 

(Carlson 1977; Prasad and Siddaraju, 2012). 

TSI 

values 

 

Trophic 

Status 

Attributes 

 

< 40 

< 30 Oligotrophic Transparent water 

30-40 Oligotrophic-Mesotrophic 
 

 

41-50 

41-48 Mesotrophic 
Higher turbidity, higher algae abundance and 

macrophytes 

49-50 Mesotrophic-Eutrophic  

51-70 

51-60 Mesotrophic-Eutrophic   

61-70 Eutrophic Usually blue-green algae blooms 

>70 Hypereutrophic Extreme blue-green algae blooms 

 

 

Based on these equations, the in-situ TSI for all the cases accompanied by 

available simultaneous in-situ measurements of TP, Chl-a and Secchi depths 

were also calculated. In the framework of the study conducted by 

Markogianni et al. (2020), through the harmonization of Landsat 7 ETM+ and 

8 OLI images, three Chl-a quantitative models were developed including the 

ratios of blue to green and red, red to green and blue, and the ln-transformed 

bands SWIR1 and SWIR2. Those models were established based on the same 

period and same lakes as the ones developed herein; equation 2.2.3-6 concerns 

the calculation of Chl-a concentrations across all lakes while equations 2.2.3-7 

and 2.2.3-8 regard the Chl-a assessment of natural-only and artificial-only 

lakes, respectively. Hence, taking into consideration those Chl-a models, we 

calculated TSI (Chl-a; Eq. 2.2.3-3) by using the equation being established 

regardless the lake characteristics (Equation 2.2.3-6), TSI (Chl-a) of natural 

lakes by employing the respective equation (Equation 2.2.3- 7) and TSI (Chl-a) 

of reservoirs by using the Chl-a equation respectively developed (Equation 

2.2.3-8). Then we used the hereby developed models concerning the TP and 

Secchi depths for the calculation of satellite derived TSI (TP; Eq. 2) and TSI 

(SDT; Eq. 2.2.3-4), respectively. After implementing equations (2.2.3-2), (2.2.3-

3), (2.2.3-4) and (2.2.3-5), satellite-derived TSI values have been calculated and 

trophic state classification has been conducted initially for the cases 

concerning all the lakes and then separately for the natural-only and artificial-

only cases (by using the independent models). Validation of satellite TSI was 

carried out based on statistical analysis and the resulted deviation from the 

respective in-situ TSI values. 

 



   𝑙𝑜𝑔𝐶ℎ𝑙𝑎 = 3.599 − 0.63 ∗ (
𝑏𝑙𝑢𝑒

𝑟𝑒𝑑
) − 2.183 ∗ (

𝑙𝑛𝑟𝑒𝑑

𝑙𝑛𝑠𝑤𝑖𝑟2
)  (2.2.3-6) 

 

𝑙𝑜𝑔𝐶ℎ𝑙𝑎 = 4.443 − 1.421 ∗ (
𝑏𝑙𝑢𝑒

𝑔𝑟𝑒𝑒𝑛
) − 3.454 ∗ (

𝑙𝑛𝑟𝑒𝑑

𝑙𝑛𝑠𝑤𝑖𝑟2
) + 1.304 ∗ (

𝑟𝑒𝑑

𝑔𝑟𝑒𝑒𝑛
)(2.2.3-7) 

𝑙𝑜𝑔𝐶ℎ𝑙𝑎 = 2.919 − 2.011 ∗ (
𝑙𝑛𝑟𝑒𝑑

𝑙𝑛𝑠𝑤𝑖𝑟1
) + 1.449 ∗ (

𝑟𝑒𝑑

𝑔𝑟𝑒𝑒𝑛
) − 1.441 ∗ (

𝑙𝑛𝑟𝑒𝑑

𝑙𝑛𝑏𝑙𝑢𝑒
)(2.2.3-8) 

 

2.2.4 Results 

2.2.4.1 Secchi depth and Total phosphorus Quantitative models for 

Greek lakes 

2.2.4.1.1 Secchi depth models 

Spearman r values that resulted from the correlation analysis among all 

available band transformations and Secchi depth values, log, ln and SQRT 

Secchi depth values ranged from -0.56 to +0.56. In total 74 band 

transformations have been elaborated in correlation analysis and those 

parameters are provided in the Appendix (Table 1). Correlation matrix in 

combination with the predictor importance chart (IBM SPSS software 

Statistics v. 23.0, Armonk, NY, USA) indicated the highest important 

predictors. Values of importance for the same variables varied depending on 

the dependent parameter (Secchi, SQRTSecchi etc.), some variables were 

common for all the Secchi transformations (Table 2.2.4-1) whereas each Secchi 

transformation (e.g. SQRT, LOG, LN) indicated also some different variables 

that were important concerning their prediction. Those variables/predictors 

were further inserted in several combinations in numerous stepwise linear 

regressions. Application of multi-collinearity tests (i.e. Variance Inflation 

Factor-VIF with values higher than 1 and less than 10 and Tolerance higher 

than 0.1) and R2 values indicated the optimal Secchi quantitative models 

which included as dependent variables the ln-, log- and SQRT Secchi 

transformations, with the latter proven to be the most satisfactory (Equation 

2.2.4-1; Table 2.2.4-2). The selected SQRT(Secchi)general model incorporated 

ratios of bands blue, red and green from the visible spectrum and the second 

band from the short-wave infrared part of spectrum while collinearity 

statistics suggested an absence of autocorrelation. 

Table 2.2.4-1. Common variables with the highest value of importance concerning 

the prediction of Secchi, SQRTSecchi and LOG/LN Secchi, derived from the 

predictor importance chart.  

 
Value of Importance 

Variable Secchi SQRT(Secchi) LOG-LN(Secchi) 

Green/SWIR1 0.014 0.008 0.011 

LOG(Blue/Red) 0.033 0.044 0.041 
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(Blue -Red)/ (Blue + Red) 0.034 0.045 0.042 

LN Green/LN Blue 0.035 0.041 0.045 

Red / Blue 0.035 0.045 0.046 

LOG Blue /LOG Green 0.037 0.043 0.047 

LN((Blue-SWIR2)/(Green-SWIR1)) 0.039 0.032 0.038 

(Blue -Red)/ Green 0.046 0.054 0.050 

Blue + Red + Red /Blue 0.046 0.050 0.047 

Green/Blue 0.052 0.052 0.058 

(Blue -Green)/ (Blue +Green) 0.056 0.055 0.059 

LOG (Blue /Green) 0.056 0.055 0.059 

 

Table 2.2.4-2. Regression analysis statistics and Secchigeneral model’s summary. 

Model R R2 
Adjusted 

R2 

Std. Error of the 

Estimate 

Durbin-

Watson 

Secchigeneral 0.74 0.54 0.54 0.46 2.24 

Predictors: (Constant), Blue+Red+Red/Blue, LN Green/LN SWIR2 

 

 

 

 

Figure 2.2.4-1. Scatter plots between in-situ and estimated SQRT Secchi depths derived 

from a) General model, b) model established for natural lakes and c) model established for 

reservoirs (lines set at confidence intervals 95%). 

 



To ensure that further independent special models are essential to be 

developed for natural and artificial lakes to gain higher accuracy, the 

Secchigeneral model (Equation 2.2.4-1) was also separately applied to natural-

only and artificial-only lakes. Even though some statistical indices were 

acceptable, special models for the different type of lakes proved to perform 

better compared to the general one, particularly concerning artificial lakes. 

Statistical and verification results derived from the application of the general 

model to natural and artificial lakes are presented at the validation section.  

 

𝑆𝑄𝑅𝑇(𝑆𝑒𝑐𝑐ℎ𝑖)𝑔𝑒𝑛𝑒𝑟𝑎𝑙 = 1.215 − 2.479 ∗ (𝑏𝑙𝑢𝑒 + 𝑟𝑒𝑑 +
𝑟𝑒𝑑

𝑏𝑙𝑢𝑒
) + 3.394 ∗ (

𝑙𝑛𝑔𝑟𝑒𝑒𝑛

𝑙𝑛𝑠𝑤𝑖𝑟2
) 

(2.2.4-1) 

 

Subsequently, after the conduction of multiple MLR analyses employing 

separately natural-only and artificial-only lakes, the SQRT Secchi 

transformation proved as well to perform better in both cases and reflected 

adequate and reliable Secchi depths. It should be noted that autonomous 

elaboration of natural and artificial lakes signified the log-chl-a 

transformation as a Secchi predictor accompanied by high beta coefficient, 

especially for natural lakes (Table 2.2.4-3). Hence, the models that met the 

aforementioned criteria and were finally selected to calculate Secchi depth in 

natural (Equation 2.2.4-2) and artificial (Equation 2.2.4-3) lakes, included 

except for the logchl-a, visible bands as well: red, green and blue while 

equation 2.2.4-3 (artificial lakes) incorporated additionally the SWIR1 band. 

 

𝑆𝑄𝑅𝑇(𝑆𝑒𝑐𝑐ℎ𝑖)𝑛𝑎𝑡𝑢𝑟𝑎𝑙 = 1.172 − (1.003 ∗ 𝑙𝑜𝑔𝑐ℎ𝑙 − 𝑎) − (1.031 ∗ 𝑙𝑜𝑔𝑟𝑒𝑑)  (2.2.4-

2) 

 

𝑆𝑄𝑅𝑇(𝑆𝑒𝑐𝑐ℎ𝑖)𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 = 3.927 − 1.365 ∗ (
𝑔𝑟𝑒𝑒𝑛

𝑏𝑙𝑢𝑒
) − 0.318 ∗ (

𝑟𝑒𝑑

𝑠𝑤𝑖𝑟1
) − 0.361 ∗

𝑙𝑜𝑔𝑐ℎ𝑙 − 𝑎            (2.2.4-3) 

 

Table 2.2.4-3. Regression analysis statistics and Secchinatural and Secchiartificial models’ 

summaries. 

Scenario/Model R R2 
Adjusted 

R2 

Std. Error of the 

Estimate 

Durbin-

Watson 

Secchi natural 0.78 0.6 0.59 0.55 2.14 

Secchi artificial 0.73 0.53 0.51 0.37 2.12 

Predictors natural: (Constant), Log Chl-a, Log Red 

Predictors artificial: Green/Blue, Red/SWIR1, Log Chl-a 
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2.2.4.1.2 Total phosphorus models 

The correlation matrix among all variables including all the lakes with 

mean depth higher than 5 meters resulted in slightly weaker correlations than 

those regarding Secchi depths. In this case, Spearman threshold value was 

reduced to ±0.3 to discriminate and incorporate more phosphorus 

variables/predictors. In total 69 band transformations have been elaborated in 

correlation analysis and those parameters are provided in the Appendix 

(Table 2). Furthermore, coefficient of determination among phosphorus, 

chlorophyll-a and Secchi depths were very high with values equal to 0.85 and 

-0.84, respectively. Optimal predictors with Spearman values higher than ±0.3 

were further enriched and confirmed based on the calculation of their 

significance according to the significance predictor chart. Final selected 

predictors (Table 2.2.4-4) were inserted in manifold stepwise MLRs. The 

insertion of Chl-a and Secchi depth data as independent variable in MLRs, 

improved the results and yielded some statistically acceptable models 

employing some of those predictors.  

 

Table 2.2.4-4. Common variables with the highest value of importance concerning the 

prediction of TP and LOG/LN TP, derived from the predictor importance chart. 

 
Value of Importance 

Variable TP LOG-LN (TP) 

Red/SWIR1 0.2672 0.3283 

Green/SWIR1 0.2296 0.2973 

LN Green /LNSWIR1 0.1308 
 

Green / Red 0.1249 0.1525 

LOG Chl-a 0.0953 0.1848 

LOG (Red / Green) 0.0776 
 

LN Red /LN Green 0.0344 
 

LN Secchi 
 

0.1315 

 

Among the most optimal models, Equation 2.2.4-4 is the one selected for 

TP quantification in Greek lakes, employing except for the Chl-a, the band 

ratio of Ln-Red and Ln-SWIR1 bands. Both predictors are accompanied by 

equally high beta coefficient values while Durbin-Watson’s statistic test is 

fully acceptable (Table 2.2.4-5). 
 

𝐿𝑜𝑔𝑇𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑙 = −1.425 + 0.452 ∗ 𝑙𝑜𝑔𝐶ℎ𝑙𝑎 − 0.573 ∗ (
𝑙𝑛𝑟𝑒𝑑

𝑙𝑛𝑠𝑤𝑖𝑟1
)  (2.2.4-4) 

Table 2.2.4-5. Regression analysis statistics and TPgeneral model’s summary. 

Model R R2 
Adjusted 

R2 

Std. Error of 

the Estimate 

Durbin-

Watson 

LogTPgeneral 0.85 0.73 0.71 0.18 2.34 

Predictors: (Constant), LogChl-a, LN Red/LN SWIR1 



 

Figure 2.2.4-2. Scatter plots between in-situ and estimated LOG TP values derived from a) 

General model, b) model established for natural lakes (lines set at confidence intervals 95%). 

 

MLRs that concerned artificial lakes, resulted in weak models 

characterized by poor statistical performance -R2 values ranged from 0.13 up 

to 0.3- while TP models concerning the natural lakes managed to deliver 

highly acceptable results based on given statistical indices. Since no special 

model was delivered for TP quantification in artificial lakes, the LogTPgeneral 

model’s further efficiency was explored by applying it on natural and 

artificial lakes (dataset of 2018) while the results are presented in the 

validation section. Concerning natural lakes, the log Secchi proved to be a 

strong TP predictor, followed by the band ratio of green and red (Equation 

2.2.4-5). The best quantitative TPnatural model is characterized by high 

Pearson’s and coefficient of determination values while no autocorrelation 

problem is detected (Table 2.2.4-6). 

𝐿𝑜𝑔𝑇𝑃𝑛𝑎𝑡𝑢𝑟𝑎𝑙 = −0.633 − (0.704 ∗ 𝑙𝑜𝑔𝑆𝑒𝑐𝑐ℎ𝑖) − 0.392 ∗ (
𝑔𝑟𝑒𝑒𝑛

𝑟𝑒𝑑
) (2.2.4-5) 

Table 2.2.4-6. Regression analysis statistics and TPnatural model’s summary. 

Model R R2 Adjusted R2 
Std. Error of 

the Estimate 

Durbin-

Watson 

LogTPnatural 0.91 0.82 0.81 0.17 1.9 

Predictors: (Constant), LogSecchi, Green/Red 

 

2.2.4.2 Models’ validation  

This section presents the results of the analysis concerning the 

evaluation of the general models’ (Secchigeneral, TPgeneral) performance after their 

application separately on natural-only and artificial-only lakes. Since those 
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two general models were developed based on data of 2013-2016, their 

validation was conducted based only on data of 2018. Regarding the 

Spearman value, all correlations selected and presented are significant at the 

0.01 level.  
 

2.2.4.2.1 Secchi depth models 

Secchigeneral model was developed based on 228 cases and validated twice 

based on 55 and 105 cases, respectively while RMSE values are similar, equal 

to 1.6 m (1st validation) and 1.7 m (2018 validation), respectively (Table 2.2.4-

7). Application of Secchigeneral model on natural lakes resulted in acceptable 

and reliable results and similar values regarding the examined statistical 

indices as those derived by the Secchinatural model. Nevertheless, Spearman 

and RMSE values of Secchinatural model (2018 data) are better than the general’s 

one, hence Secchinatural is selected as the most optimum to quantify Secchi 

depths in natural lakes.  

As far as the artificial lakes are concerned, Secchiartificial model is selected 

compared to the Secchigeneral, since both average residuals and the RMSE 

values are lower (-0.2 compared to 0.5 m and RMSE 1.4 m compared to 1.7 m). 

Table 2.2.4-7. Statistical indices used to validate the Secchi selected algorithms 

(**correlation significant at the 0.01 level (two-tailed). RMSE—root-mean-square error. * 

Values concern Secchi depths in m). 

 1st validation (20%) 2nd validation (2018 data) 

Models 
Spearma

n r  

Averag

e in-

situ*  

Averag

e 

satellite

*  

Average 

residual

s (m) 

RMSE 

(Secchi; 

m) 

Spearman 

r  

Average 

in-situ*  

Avera

ge 

satellit

e*  

Average 

residual

s (m)  

RMSE (Secchi; 

m) 

Secchigeneral 

Training 

dataset  

N=228 

.78** 

N=55 
4.45 4.7 -0.24 1.6 

.58** 

N=105 
4.2 3.8 0.4 1.7 

Secchigeneral 

applied on 

natural 

 

     
.65** 

N=42 
3.8 3.6 0.15 1.7 

Secchigeneral 

applied on 

artificial 

     
.51** 

N=48 
4 3.5 0.5 1.7 

Secchi natural 

Training 

dataset 

N=65 

.95** 

N=24 
3.1 3.3 -0.21 1.1 

.73** 

N=24 
3.2 3.5 -0.3 1.1 

Secchi artificial 

Training 

dataset 

N=111 

.62** 

N=23 
3.9 4.2 -0.24 0.89 

.56** 

N=39 
4.7 4.8 -0.2 1.4 



2.2.4.2.2 Total phosphorus models 

LogTPgeneral model performed well concerning both validation 

procedures (Table 2.2.4-8). High Spearman values derived from datasets of 12 

and 31 cases respectively, and similar average in-situ and satellite TP values 

characterize both validations. RMSE is 0.008 mg/l (1st validation) and 0.03 

mg/l (validation of 2018). Application of the LogTPgeneral model on artificial 

lakes yielded as well acceptable results since RMSE equals to 0.03 mg/l.  

Concerning the application of the general model on natural lakes, it is 

clear that the special developed model for natural lakes is superior since the 

values of average residuals and RMSE are quite lower (-0.003 compared to 

0.01 mg/l; RMSE=0.03 compared to 0.08 mg/l). Moreover, higher Spearman 

value (0.68) and larger size of the validation dataset (n=47) indicate as well the 

advantage of this model in assessment of TP concentrations in natural lakes. 

 

Table 2.2.4-8. Statistical indices used to validate the TP selected algorithms (**correlation 

significant at the 0.01 level (two-tailed). RMSE—root-mean-square error. *All values 

concern TP in mg/l. 

 1st validation (20%) 2nd validation (2018 data) 

Models 
Spear

man r  

Average 

in-situ*  

Averag

e 

satellite

*  

Average 

residual

s (mg/l) 

RMSE 

(TP; 

mg/l) 

Spear

man r  

Averag

e in-

situ*  

Average 

satellite*  

Average 

residuals 

(mg/l) 

RMSE 

(TP; mg/l) 

LogTPgeneral 

Training 

dataset  

N=46 

.71** 

N=12 
0.02 0.02 0.001 0.008 

.81** 

N=31 
0.08 0.08 0.002 0.03 

LogTPgeneral 

applied on 

natural 

 

     
.55** 

N=38 
0.09 0.08 0.01 0.08 

LogTPgeneral 

applied on 

artificial 

     
.86** 

N=11 
0.06 0.07 -0.02 0.03 

LogTPnatural 

Training 

dataset 

N=29 

.93** 

N=7 
0.034 0.04 -0.008 0.02 

.68** 

N=47 
0.07 0.08 -0.003 0.03 

 

Furthermore, Chl-a, Secchi depth and TP maps of selected lakes were 

created after application of the Chl-a (Figure 2.2.4-3) algorithms derived by 

Markogianni et al. (2020) and the herein developed Secchi (Figure 2.2.4-4) and 

TP algorithms (Figure 2.2.4-5). The Landsat 8 OLI satellite image of 11 August 

2013 was used in order to produce the satellite-derived spatial distribution of 

the studied WQ parameters of this day, while the respective in situ values of 
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those lakes were sampled with -2 and +5 days (Chl-a) and -5 and +5 days 

(Secchi depth) of difference from the aforementioned date while there is no 

available in situ data for their TP concentrations.  

Application of the Secchi general model resulted in Secchi depth values 

ranging from 0.000002 to 8.2 m and from 0.000005 to 30.2 m for natural and 

artificial lakes, respectively (Figure 2.2.4-4a). Application of the Secchi natural 

model in natural lakes, yielded Secchi depths ranging between 0.000001 and 

7.8 m (Figure 2.2.4-4b), while the Secchi artificial model resulted in Secchi 

depth’s values varying from to 0.05 to 8.4 m (Figure 2.2.4-4c), as far as the 

artificial lakes are concerned. Secchi general model (Equation 2.2.4-1) was 

applied by using the aforementioned band combinations while Secchi natural 

(Equation 2.2.4-2) and Secchi artificial (Equation 2.2.4-3) models were applied 

including the respective Chl-a equations specially designed for the natural 

(Equation 2.2.3-7; Markogianni et al., 2020) and artificial (Equation 2.2.3-8; 

Markogianni et al., 2020) lakes, respectively.  

Concerning the application of TP general model which also includes 

Chl-a, Equation 2.2.4-4 was used whereas TP model of natural lakes employed 

the Secchi natural model in order to be applied. TP general model resulted in 

values ranging from 0.0008 to 0.85 mg/l and from 0.002 to 0.12 mg/l for 

natural and artificial lakes, respectively (Figure 2.2.4-5a). Values of specially 

designed TP model for natural lakes vary from 0.016 to 19 mg/l while only a 

few values are higher than 0.2 mg/l (Figure 2.2.4-5b). Furthermore, since the 

variance of TP estimated values is small, it was decided to present those 

values by grouping them in classes as stretching values resulted in low 

quality of results’ presentation. Furthermore, it should be noted that all 

parameters’ values have been converted in actual units e.g. Chl-a in μg/l, 

Secchi depth in meters and TP in mg/l to facilitate the understanding and the 

comparison among the concentrations. 



 

Figure 2.2.4-3. Satellite-derived Chl-a maps (on 11 August 2013) of selected lakes 

after the application of General-(a), Natural (b), and Artificial (c) models 

(WGS_1984, UTM Zone 34 N Coordinate system), derived by Markogianni et al. 

(2020). 
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Figure 2.2.4-4. Satellite-derived Secchi maps (on 11 August 2013) of selected lakes 

after the application of Secchi General-(a), Secchi Natural (b), and Secchi Artificial 

(c) models (WGS_1984, UTM Zone 34 N Coordinate system). 



Figure 2.2.4-5. Satellite-derived TP maps (on 11 August 2013) of selected lakes after 

the application of TP General-(a), and TP natural (b) models (WGS_1984, UTM Zone 

34 N Coordinate system). 
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2.2.4.3 Satellite derived assessment of trophic status of Greek lakes 

based on Carlson’s Trophic State Index 

2.2.4.3.1 Evaluation of the lake trophic status’s assessment based on 

the whole dataset 

Calculation of both types of TSI using in-situ only data and models 

based on satellite data concerns the attributes that were accompanied by 

available simultaneous in-situ measurements of TP and Chl-a concentrations 

and Secchi depth measurements (176 total cases). Since in-situ available TP 

data are those analyzed during the years 2015-2016 and 2018, both calculated 

TSIs concern the same period. Furthermore, the application of equations 

(2.2.3-2), (2.2.3-3), (2.2.3-4) and (2.2.3-5) concerning both the in-situ only data 

and the models resulted in categorizing the under-study attributes (and by 

extension the lakes) in 5 classes regarding their trophic status (Table 2.2.4-9). 

The main difference is that in-situ measurements indicated 1 eutrophic case 

and none hypereutrophic while remote sensing detected 2 hypereutrophic 

cases and none eutrophic. In both analyses, cases that are characterized as 

oligotrophic are the majority of the entire dataset and cases with a tendency to 

mesotrophy and mesotrophic ones occupy the next positions. 

 

Table 2.2.4-9. In-situ and satellite derived TSIs’ s frequencies and percentages of all cases. 

WHOLE DATASET 
TSI (in-situ) TSI (satellite) TSI (in-situ) TSI (satellite) 

Frequency Valid Percent 

1 (Oligotrophic) 92 124 52.3 70.5 

2 (Oligotrophic-

Mesotrophic) 
42 30 23.9 17 

3 (Mesotrophic) 26 15 14.8 8.5 

4 (Mesotrophic-

Eutrophic) 
15 5 8.5 2.8 

5 (Eutrophic)  1 - 0.6 - 

6 (Hypereutrophic) - 2  1.1 

Total 176 176 100.0 100.0 

 



 

Figure 2.2.4-6. Scatter plot between in-situ and satellite-derived TSI values, based on 

the whole dataset (lines set at confidence intervals 95%). 

 

Further statistical analysis suggested that 103 out of 176 attributes (58.5 

%) were identically classified based on the two TSI calculations while 50 cases 

out of 73 that were classified differently, were allied to the right previous or 

next class (-1, +1) in relation to the in-situ results. Furthermore, attributes that 

were misclassified in 3 or 4 classes away from the in-situ ones are in total 8, 

which correspond to a 4.5 % of the misclassified dataset. Considering the 

mean depth of the lakes (Figure 2.2.4-7a), it is proven that cases concerning 

deeper lakes (> 5 m) were more successfully classified than the shallow ones 

verifying the effect of the bottom reflectance as an obstacle in the remote 

sensing elaboration. Records belonging to natural lakes were the majority of 

those that were either identically (56 out of 112) or by-one-class misclassified 

(40 out of 112; Figure 2.2.4-7b).  

Concerning the sampling season (Figure 2.2.4-7c), results of summer 

months resulted in 68 attributes that were identically classified by both TSI 

calculations, while 40 out of 120 were misclassified in the previous or next 

trophic status class. All records regarding spring- monitored lakes were 

identically classified while remote sensing concerning autumn season 

indicated a slight weakness in properly classifying the trophic status of lakes 

compared to summer. The total number of 176 attributes is divided in 49 

sampled in autumn, 7 sampled in spring and 120 cases sampled in summer 

months. Those sampling dates are accompanied by 26 images during autumn, 

6 images during spring and 51 images during summer months. 
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Figure 2.2.4-7. Count of satellite-classified/misclassified cases concerning all 

monitored lakes grouped by (a) the lake’s mean depth, (b) lakes’ nature and (c) 

sampling season. Numbers from -4 up to 3 represent the class deviation between the 

satellite and in-situ derived TSIs while 0 indicates no differentiation. Positive and 

negative signs represent the direction of the deviation from oligotrophy to hyper-

eutrophy and vice versa, respectively based on the corresponding in-situ TSI value 

(reference value). 

 

2.2.4.3.2 Evaluation of the lake trophic status assessment concerning 

natural and artificial lakes 

The calculation of in-situ TSI values of records belonging to natural lakes 

categorized them in 5 trophic status classes (1-5), while satellite TSI resulted 

in 6 classes (1-6), characterizing 5 cases as hypereutrophic (Table 2.2.4-10; 

Figure 2.2.4-8). Furthermore, the majority of those attributes were 

characterized as oligotrophic and oligotrophic-mesotrophic based on both 

calculations while one case was classified as eutrophic by both calculations.  

Table 2.2.4-10. In-situ and satellite derived TSIs’ s frequencies and percentages of cases 

belonging to natural lakes. 

NATURAL LAKES 

TSI (in-

situ) 
TSI (satellite) TSI (in-situ) TSI (satellite) 

Frequency Valid Percent 

1 (Oligotrophic) 50 59 44.6 52.7 

2 (Oligotrophic-Mesotrophic) 35 29 31.3 25.9 

3 (Mesotrophic) 14 11 12.5 9.8 

4 (Mesotrophic-Eutrophic) 12 7 10.7 6.3 

5 (Eutrophic)  1 1 0.9 0.9 

6 (Hypereutrophic) - 5 - 4.5 

Total 112 112 100.0 100.0 

 



 

Figure 2.2.4-8. Scatter plot between in-situ and satellite-derived TSI values, of 

natural lakes (lines set at confidence intervals 95%). 

From the total of 112 records concerning the natural lakes, 66 of them 

were identically classified in the same class while the 46 that presented 

differences concern mostly cases that were misclassified by only one class (30 

out of 46). Furthermore 6 cases out of 46 were misclassified by three or four 

classes away from the respective in-situ ones. Trophic status classification of 

deep natural lakes (average depth> 5 m) was in particular successful since 22 

out of 27 cases were identically classified according to both TSI calculations 

and the rest of 5 cases were misclassified by only one class deviation (Figure 

2.2.4-9a). Trophic status classification of shallower natural lakes was also 

satisfactory since 44 out of 85 cases have no difference regarding their 

classification, 25 were misclassified by only one class deviation while 10 cases 

were misclassified by 2-classes from the respective in-situ ones.  

As far as the water sampling seasons are concerned (Figure 2.2.4-9b), 

calculation of satellite derived average TSI during summer months was also 

proved successful since 52 out of 80 cases presented no difference compared 

to respective in-situ TSI while 18 presented misclassifications by one category 

deviation. Furthermore, all of 5 cases concerning spring-monitored lakes were 

identically classified based on both in-situ and satellite TSI values. The 

calculation of TSI throughout the natural lakes was based on the acquirement 

of 19 images while 4 and 36 images were used for calculating the spring and 

summer TSI, respectively including 5 and 80 attributes.  
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Figure 2.2.4-9. Count of satellite-classified/misclassified cases belonging to natural 

lakes grouped by (a) the lake’s mean depth and (b) sampling season. Numbers from 

-4 up to 3 represent the class deviation between the satellite and in-situ derived TSIs 

while 0 indicates no differentiation. Positive and negative signs represent the 

direction of the deviation from oligotrophy to hyper-eutrophy and vice versa, 

respectively based on the corresponding in-situ TSI value (reference value). 

 

As far as the artificial lakes are concerned, both in-situ and satellite TSI 

calculations resulted in similar trophic status classifications and identical 

classes (1-4; Table 2.2.4-11). The majority of records concerning the artificial 

lakes are characterized as oligotrophic and oligotrophic-mesotrophic while 3 

cases were classified as mesotrophic-eutrophic based on both TSI values (in-

situ only, models). 
 

Table 2.2.4-11. In-situ and satellite derived TSIs’ s frequencies and percentages of cases 

belonging to artificial lakes. 

ARTIFICIAL LAKES 
TSI (in-situ) TSI (satellite) TSI (in-situ) TSI (satellite) 

Frequency Valid Percent 

1 (Oligotrophic) 42 48 65.6 75 

2 (Oligotrophic-

Mesotrophic) 
7 9 10.9 14.1 

3 (Mesotrophic) 12 4 18.8 6.3 

4 (Mesotrophic-

Eutrophic) 
3 3 4.7 4.7 

Total 64 64 100.0 100.0 

 



 

Figure 2.2.4-10. Scatter plot between in-situ and satellite-derived TSI values, of 

artificial lakes (lines set at confidence intervals 95%). 

 

Regarding the trophic status misclassifications of artificial lakes, only 21 

out of 64 records were misclassified and particularly 12 out of 21 were 

classified in categories that deviated only 1 class away from the respective in-

situ ones. Observing artificial lakes based on their mean depth (Figure 2.2.4-

11a), it is proven that attributes regarding deeper artificial lakes were 

successfully classified concerning their trophic status since 33 out of 35 

presented no classification differentiation and two (2) of them were 

misclassified in classes that deviated 3 and 2 classes from the in-situ ones, 

respectively. Additionally, cases belonging to shallower artificial lakes were 

also satisfactory classified as 10 out of 29 showed no differentiation and 12 

were misclassified by one class difference.  

Observing classification of artificial lakes based on the sampling season 

(Figure 2.2.4-11b), it is clear that not only summer trophic status classifications 

are successful (26 out of 40 cases presented no differentiation) but also TSI 

calculations during spring and autumn seasons managed to classify records 

with high accuracy. TSI classification throughout the artificial lakes during 

autumn was conducted by using 15 Landsat images, while 2 and 28 images 

were used for spring and summer seasons, respectively. 
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Figure 2.2.4-11. Count of satellite-classified/misclassified cases belonging to artificial 

lakes grouped by (a) the lake’s mean depth and (b) sampling season. Numbers from 

-3 up to 3 represent the class deviation between the satellite and in-situ derived TSIs 

while 0 indicates no differentiation. Positive and negative signs represent the 

direction of the deviation from oligotrophy to hyper-eutrophy and vice versa, 

respectively based on the corresponding in-situ TSI value (reference value). 

 

2.2.5 Discussion 

Increasing human activities and industrialization have dramatically 

degraded lake water quality (Zheng et al., 2021). Therefore, implementation of 

WFD in Greece, as well as in other European countries, has as a main aim to 

ensure sustainable management of lakes. Use of geoinformation technologies 

- and in particular of RS and GIS - with conventional in-situ water samplings 

have been proven as the most efficient, cheap and reliable tool to monitor WQ 

parameters in lakes. WFD has been implemented in Greece at least the last 

seven years while numerous in-situ measurements of WQ elements provide 

valuable means to scientists and public authorities to assess and monitor 

Greek lake WQ. In particular in-situ measurements of Secchi depths and TP 

concentrations combined with Landsat data have been utilized in this study 

framework to assess trophic status of monitored Greek lakes.  
 

The significance of lakes’ nature concerning the constituents’ variance 

Exploratory statistical analysis of the available datasets indicated higher 

Secchi depth values in artificial rather than in natural lakes during all 

sampling years (2013-2018) whereas the highest TP concentrations were 

detected in natural lakes, illustrating accumulating TP loadings and an 

increasing tendency throughout the years (2015-2018). Moreover, 



Markogianni et al. (2020) reported that natural lakes presented also notably 

higher Chl-a concentrations in relation to reservoirs. The present study 

findings are also in accordance with those reported in other similar studies. 

For example, (Søballe et al., 1992) documented that chlorophyll-a 

concentrations tend to be lower in reservoirs than in natural lakes because 

higher inorganic turbidity and high flushing rates (low hydraulic residence 

times) in reservoirs limit the development of phytoplankton biomass. In this 

way, higher Secchi depth values in artificial lakes indicate clearer water. This 

is once again interpreted by a higher presence of non-algal turbidities in this 

type of lakes compared to natural (Canfield and Bachmann, 1981). 

Concerning the TP values, it should be noted that artificial lakes lose nutrients 

(in particular P) through settling in a downstream direction. The sampling 

station’s location plays a major role in WQ monitoring. One of the main 

differences between artificial and natural lakes is that artificial 

characteristically exhibit a trophic gradient (Søballe et al., 1992) as it may 

grade from eutrophic (in its upper reaches) to oligotrophic (close to the dam) 

(Virginia 2007). 

Correlation matrix among in-situ measurements of monitored WQ 

parameters throughout all lakes resulted in high and positive correlation 

between TP and Chl-a (0.85) and high negative relationship between Secchi 

depth with TP and Chl-a with values of coefficient of determination equal to -

0.84 and -0.83, respectively. This finding agrees with results reported in other 

studies studying natural and artificial lakes around the world e.g. (Canfield 

and Bachmann, 1981; Canfield and Hodgson, 1983). For most lakes, 

chlorophyll a was highly correlated with SD, phosphorus was directly 

correlated with chlorophyll a and inversely correlated with SD. This is mainly 

due to the fact that increases in nutrient concentrations (in particular TP) 

result directly in higher algal growth (Chl-a concentration) and decreased 

water transparency (Secchi depth) (Virginia 2007). Additional explanation to 

the fact that Secchi depth is decreased with increasing TP concentration, was 

given by (Heiskary and Wilson, 2005), who proved that a proportion of 

phosphorus may be linked to suspended particles resulted from soil erosion 

and carried through river’s downslope. 

 

MLR analysis and resulted proxies of studied WQ parameters 

MLRs analyses among in-situ Sechi depth measurements and Landsat 7 

ETM+ and 8 OLI data yielded three (3) optimal Secchi estimation models 

concerning the assessment of Secchi depth of all lakes (Secchigeneral), natural 

(Secchinatural) and artificial (Secchiartificial) ones. The Secchigeneral model 

incorporated a combination of bands blue, red, green and SWIR2 while 

models developed for natural and artificial lakes were accompanied by the 

insertion of logchl-a as a significant Secchi predictor. The Secchigeneral model 
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was also independently applied to natural and artificial lakes to further 

explore its effectiveness regarding the nature of lakes. The abovementioned 

model proved to perform better concerning the natural lakes than the 

reservoirs since water transparency in artificial lakes is notably influenced by 

non-algal sources of turbidity. This rationale is equally supported by (Lind 

1986), who documented that the use of Chl-a to estimate Secchi depth is 

inappropriate for waters where even moderate amounts of non-algal turbidity 

are present. On the other, (Lorenzen 1980) proposed to take into consideration 

this type of turbidity when reservoirs are evaluated. However, many 

scientists argue that Secchi depth data are calibrated for each lake or reservoir, 

hence they may be used for WQ monitoring. Numerous algorithms have been 

developed for Secchi depth assessment. Relevant literature is enriched with 

studies that demonstrated strong relationships between Landsat data and in-

situ Secchi depths by employing mostly the blue, green, red, NIR bands and 

their ratios of the visible spectrum (Allee and Johnson, 1999; Olmanson et al., 

2001; Giardino et al., 2001; Olmanson et al., 2008) while in the framework of 

this paper we also tried and managed to combine other water quality 

indicators and remotely sensed spectral reflectance. Even more models based 

on Landsat series data have been empirically developed to map SD for inland 

and coastal waters (Olmanson et al., 2008; Doña et al., 2014; Page et al., 2019). 

However, in contrast to our work, those studies utilized calibration and 

validation datasets sampled from one, two or a few lakes within a small 

geographical region, failing to generate a uniform model for the systematic 

assessment of SD at a greater scale (Zhang et al., 2021). On the other hand, 

Zhang et al. (2021) constructed a general SD power function model (based on 

red band) established on extensive in-situ SD and Landsat reflectance from 

225 China lakes, exploring SD spatial variation from 1986 to 2018. This study 

in agreement to ours, not only performed regression-related efforts but also 

confirmed that Landsat series data can result in an accurate long-term 

estimation of the SD. Another effort to develop a 20-year water clarity census 

on a broad regional and spatial scale has been conducted by Olmanson et al. 

(2001) who studied over 10500 lakes of Minnesota state. In particular, a 

regression model incorporating the blue and red bands of several Landsat 

series (4 MSS, 7 ETM+, 5 TM) demonstrated that satellite imagery is an 

accurate method to assess water clarity over a long period of time. Moreover, 

one of the latest studies that developed a unified model mapping global lake 

clarity using Landsat imagery was conducted by (Dekker et al., 1996). In the 

framework of this research, the combination of trained in-situ SD data (3586 

data points; 2235 lakes across the world) and match-up Landsat images (TOA; 

L5-TM; L7-ETM+; L8-OLI) were used to establish various regression models. 

The proposed model based on the blue/green and red/blue bands 

demonstrated its applicability to monitor SD in inland bodies across the globe 



and its stability to variations in time and space of the optical properties of 

lakes.  

MLRs analyses among TP concentrations and Landsat band 

transformations yielded statistically weak models whereas further insertion of 

in-situ Chl-a and Secchi depth data improved the results. A general TP 

assessment model with application on all lakes was produced including the 

logarithmic transformation of Chl-a and the band ratio of Ln-Red and Ln-

SWIR1 bands with reliable values of tested statistical indices. The fact that 

none statistically acceptable model was generated for artificial lakes may 

partly be attributed to the time lag that has been observed for phytoplankton 

to consume TP in this type of lakes. This fact makes the relationship between 

TP and Chl-a or SD more complicated (Song et al., 2012) in reservoirs and 

further limnological research is needed to additionally penetrate into the 

functions of those lakes’ system. On the other hand, as far as the natural lakes 

are concerned, Secchi depth proved to be a strong TP predictor. The TP model 

developed for natural lakes incorporated also the ratio of green and red bands 

and was accompanied by a high value of coefficient of determination. The 

weakness of MLRs to produce an optimal TP model for artificial lakes urged 

us to further explore the efficiency of the TP general model on artificial and 

natural lakes as well. Application of the TPgeneral model on artificial lakes (2018 

data) yielded acceptable results, fact that characterizes it as reliable enough to 

be used at this type of lakes. On the other hand, special developed TP model 

for natural lakes was superior compared to the general one based on basic 

statistical indices (Spearman and RMSE values).  

Uusitalo et al. (2000) suggested that TP could not be assessed using RS 

techniques because it represents dissolved constituents and it is characterized 

by weak optical characteristics and low signal noise ratio. Nevertheless, it has 

been investigated based on its high correlation with optically active 

constituents (Song et al., 2006; Busse et al., 2006) such as phytoplankton 

(Baban 1993) and Secchi depth (Ritchie et al., 1990). Furthermore, data from 

Landsat series, among many other satellite sensors, has been widely used for 

TP assessment in inland waters and especially lakes (Kutser et al., 1995; Wu et 

al., 2010). Lim and Choi (2015) selected a MLR model (R=0.57) using blue, 

green, red and NIR Landsat 8 bands to estimate TP among other WQPs in 

Nakdong River with weak accuracy. Further TP studies have detected similar 

correlations between the NIR band and the 3 visible bands (blue, green, and 

red) and Chl-a (Lathrop 1993; Lillesand and Kiefer 2000). Another research 

that utilized SWIR data for the assessment of phosphate concentrations in 

Akkulam–Veli Lake, Kerala, India is the one conducted by (Moses et al., 2014). 

They produced an equation (R2= 0.5) accompanied except for the red band 

also by the MIR (middle infrared; band that followingly was replaced by the 

SWIR) (Buiteveld et al., 1994).  
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The contribution of SWIR bands in WQ monitoring of Case 2 waters 

The results accrued by the herein MLRs analyses and the observed 

weight of SWIR bands regarding the calculation of Secchi depth and TP 

concentrations constitute a topic that needs further exploration and 

explanation. The main interpretation is based on the fact that lakes belong to 

Case 2 waters which are optically complex. Since those waters are influenced 

also by inorganic and yellow substances- except for phytoplankton and 

related particles- it is well recognized that sediment reflectance exceeds the 

absorptive properties in the NIR and SWIR wavelengths (IOCCG 2000; Ouma 

et al., 2020) and the standard algorithms in use today in Case 1 waters 

(especially for chlorophyll retrieval from satellite data), break down (IOCCG 

2000). Furthermore, according to Moses et al. (2014), in cases where there is 

even a small quantity of impurities, significant changes are caused in the 

refractive index of a substance with substances containing more polarizer 

groups. Hence, since, for example, TP is a pollutant with more polarity, it 

changes the refractive index of water which in turns changes the reflectance of 

NIR and MIR in water. In accordance with this theory, there are several 

studies that have widely used SWIR bands concerning the monitoring of WQ 

elements in Case 2 waters. Barrett and Frazier (2016) studied WQ of lakes in 

eastern Oklahoma and indicated the existence of a relationship between SWIR 

reflection and algae/plant production by including at least one of the short-

wave infrared bands (SWIR) in all of their significant band combinations for 

chlorophyll-a. The SWIR band of a Sentinel 2A/MSI image was proven once 

again important for Chl-a estimation (R2 = 0.7) in Chebara Dam (Kenya) 

(Kontopoulou et al., 2017) and in particular a second-order polynomial fit was 

found to be suitable using the reflectance from the difference between the 

green (B3) and the SWIR-1 (B11) band. Furthermore, Tripathi and Patil (2004) 

studied 11 representative lakes of Greece (included in our dataset) regarding 

their Chl-a concentrations and managed to establish high correlations 

between the red and SWIR bands of Landsat 8 images. He et al. (2008) also 

generated a Chl-a three-variable predictive model employing green and 

SWIR-1 bands and the ratio red/green using EMT+ sensor (R2 =0.91) in Río 

Tercero reservoir (Argentina).  

 

Lakes’ TSI classification and exploration of the factors affecting its accuracy 

In the framework of this study, assessment models of the studied WQPs 

(TP, Secchi depth) were developed. Then, the Carlson’s Trophic State Index 

(TSI) was applied to assess the trophic status initially of all studied lakes and 

afterwards separately of natural and artificial ones. TSI can be successfully 

monitored for lakes using satellite techniques and this methodology has been 

documented in numerous studies (Papoutsa et al., 2014; Membrillo-Abad et 



al., 2016; Rivani and Wicaksono, 2018). Trophic status classification based on 

satellite-derived TSI of all the cases was coincident with the respective in-situ 

at a percentage of 58.5 % while the 28.5 % of the misclassified cases concerned 

a deviation at only one (1) trophic class. Satellite TSI calculation 

independently of cases regarding natural and artificial lakes yielded results 

that were highly coincident with the in-situ derived classes (58.9% and 67.2 %, 

respectively). Considering the mean depth and the nature of the lakes, deeper 

(> 5 m) and natural lakes were more successfully classified compared to 

shallow and artificial ones. Deeper lakes are less affected by the bottom 

reflectance, fact that is once more verified based on the hereby findings. Light 

bottom reflection in shallow waters may be a result of the above-water 

remotely sensed reflectance spectra, hence it cannot be very reliable. 

Therefore, the estimation of WQPs in shallow waters should be validated 

using in-situ data (Chen et al., 2007).  

Concerning the higher TSI misclassification in artificial lakes, it should 

be noted that TP and Secchi depth are far more variable in reservoirs than in 

natural lakes (Canfield and Bachmann, 1981). Most models are developed 

with the assumption that phosphorus is the primary factor limiting algal 

growth (Kimmel et al., 1990). Nevertheless, there are other nutrients, such as 

nitrogen, or other factors (e.g. incident light) that may also limit algal 

production, particularly in reservoirs (Virginia, 2007). The above-mentioned 

rationales in combination with the fact that in this study TP concentration of 

artificial lakes has been assessed based on the TPgeneral model, may partly 

explain the fact that TSI evaluation is less robust in those impoundments. 

A significant aspect concerning the contribution of the present study lies 

in the fact that the study area includes 50 different lake systems of varied 

chemistry, trophic level, from different regions of Greece and WQ elements 

collected over different seasons. WQ assessment models have been developed 

concerning a wide range of limnological conditions with emphasis on 

whether the lakes are natural or artificial, deep (> 5 m mean depth) or 

shallow. WQ empirical models are priceless means for trophic status 

classification for the majority of Greek lakes, especially when in-situ data are 

limited. In addition to their proven predictive performance, it should be noted 

that- based on the validation processes- they exhibited spatial and temporal 

stability to variations of the optical properties of the lakes. Furthermore, 

according to (Loveland and Dwyer 2012), Landsat OLI and ETM+ have 

similar wavelength ranges and based on the results yielded by (Song et al., 

2012), excellent consistency was also found between those sensors in the blue, 

green, red and NIR regions. Hence, the hereby developed models also 

accommodates the spectral configuration differences among the used Landsat 

sensors. However, those empirical models are accompanied by several 

restrictions such as the accuracy of sampling points’ geolocation and the 

incorporation of many sampling seasons, while the latter plays a crucial role 



Markogianni V. Water Quality Assessment in Greek Lakes by Using Remote Sensing and Statistical Modelling 

159 | P a g e  

 

on TP loadings and Secchi depth values. Moreover, an additional and deeper 

limnological research is needed mostly oriented towards the primary limiting 

factors of Chl-a production and the predominant sources of turbidity 

(algal/non-algal), particularly in reservoirs. A wider limnological research 

would provide valuable information about the lake-wide stratification effects, 

water movement and other ecosystem-interaction effects on lake water 

quality, especially for the areas than cannot be accessed and sampled. 
 

2.2.6 Conclusions  

This study developed an approach of modelling Greek lakes’ water 

quality by combining EO data (Landsat 7 ETM+ and 8 OLI) with in-situ 

measurements of TP and Secchi depths derived from the application of WFD 

in Greece. Furthermore, based on our previous study (Markogianni et al., 

2020) and the derived Chl-a empirical models, WQ assessment models 

developed herein contribute to the evaluation of the trophic status of all 

monitored lakes (N=50; National Lake Monitoring Network), by applying the 

Carlson’s trophic index. 

Stepwise MLR analyses incorporated, except for Landsat reflectance 

bands, in-situ measurements of water constituents that according to the 

relevant literature play a role as a proxy of other WQ parameters. Even 

though estimation of non-optically active constituents of WQ remains a 

complex challenge for remote sensing, those enhanced analyses managed to 

explore and highlight the most significant predictors of TP and Secchi depth’s 

values of all lakes but also separately of artificial and natural ones. 

According to recent respective literature, even though physical and bio-

optical models are considered more robust, they require deep knowledge, 

collection and parameterization of certain spectral features. Furthermore, 

even deep learning approaches (belonging to empirical/non-linear methods) 

still hide issues regarding the appropriate balance between the depth of 

network and the computational efficiency (Sagan et al., 2020). On the other 

hand, empirical methods (mostly linear approaches) have the benefit of being 

easy to implement and straightforward for data processing and in some cases 

as in (Brewin et al., 2015) proved to outperform a range of bio-optical 

methods when applied to regional datasets. Based on this perspective, 

empirical separate models’ development (general, natural, artificial) for the 

assessment of certain WQ parameters (TP, Secchi depth) provides a great 

opportunity to water resources managers to gain information at any time 

about the trophic status of any lake in Greece. A reliable prediction of lake 

trophic status, as the one proposed herein, will further support the 

monitoring of eutrophication and the drivers of its dynamics, especially 



nowadays that lakes are undergone the dual influence of human activities 

and climate change. 

 Current approaches for modelling WQ elements in lakes have limited 

transferability (in space and time). The hereby delivered WQ models may be 

applicable and deliver fairly acceptable results in lakes outside Greece. 

However, even though there is a strong possibility those models to be 

effective only within the borders of Greece, eutrophication has been evolved 

into such a growing public concern that its investigation and monitoring is 

considered essential and important even at a country level. In this way, this 

study supports the aims of WFD and facilitates the continuous water quality 

monitoring of Greek lakes.  

The present study can be extended in different directions; the ultimate 

goal is the development of a robust tool monitoring WQ parameters in 

various scales and of a direct and reliable assessment of trophic status for all 

Greek lakes. However, future work initially includes the harmonization of 

Sentinel and Landsat images with main aims the investigation of the 

performance of the hereby developed models if combined with Sentinel 

images and the minimization of the large time windows (>±7 days) between 

in-situ and satellite data. Moreover, based on the continuous operation of 

WFD in Greece, at least until 2023, ongoing quality control tests will be 

conducted to further improve those models’ efficiency. Furthermore, since the 

DOS1 atmospheric correction method has not been validated, one more key 

priority future action is the application of alternative atmospheric correction 

methods with principle goal the exploration of their wider effect on models’ 

predictive ability. Additional to hereby utilized methodology, and given the 

nature of the available data which is non-parametric, authors intend to 

employ in the near future non-linear methods. Those methods offer, 

according to literature, great potential for WQ parameter estimation and a 

sensitivity analysis among several empirical methods would contribute to 

better understanding of WQ constituents’ behavior and possibly to their more 

accurate assessment. The authors hope that successfully accomplishing all the 

aforementioned research tasks, on condition the continuous updating of wide 

WQ datasets, will provide the best opportunity for researchers and public 

authorities to guide and eventually manage to take sustainably public safety 

decisions and effective protection measures. 
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2.3 Landsat-based Lake Water Quality Monitoring: How 

Transferable are the WQ Algorithms to Sentinel 2 images?  
 

2.3.1 Introduction 

This chapter’s section basic aim is to explore initially whether Landsat-

based empirical WQ algorithms can be efficiently applied to Sentinel 2 images 

and then whether the combined use of multi-sensor data improves the 

algorithms’ prediction accuracy. Furthermore, independently from whether 

there is some improvement or not, the ultimate goal of this combined 

approach is to decide whether multi-sensor images could be used with at least 

equally reliable results as those accrued from only-one sensor’s utilization. 

In previous chapters, the methodology regarding the development of 

WQ models has been fully described. In particular, image data from Landsat 7 

ETM+ and 8 OLI were combined with simultaneous in-situ WQ data during 

2013-2016 while afterwards the implementation of MLR analyses resulted in 

the generation of quantitative models of Chl-a, Secchi disk depths and Total 

Phosphorus concentrations of 50 Greek lake water bodies. Proposed WQ 

models have been developed separately for natural-only and artificial-only 

lakes while in-situ dataset of year 2018 was used to further validate their 

efficiency. In this dissertation, Landsat 7 ETM+ and 8 OLI sensors have been 

incorporated in an effort to increase the temporal range of available and 

useful data, since the majority of in-situ measurements were recorded during 

2013-2015 and together the sensors provide four (4) satellite images for every 

32 days (Pedreros-Guarda et al., 2021). However, we investigated whether 

there is a possibility to arise issues from the combined use of different 

Landsat sensors. Based on relevant literature review, Landsat 7 ETM+ and 

Landsat 8 OLI images have similar spatial resolution (30 m), are statistically 

comparable and homogeneous over WQ sample sites (Wang et al., 2020) 

while both have similar spectral band placements (Table 2.3.2-1) for the Blue 

(ETM+ band 1, 0.45–0.52 μm; 8 OLI band 2, 0.45– 0.51 μm) and Green bands 

(ETM+ band 2, 0.52–0.60 μm; 8 OLI band 3: 0.53–0.59 μm). Differences are 

particularly observed in the NIR (ETM+ Band 4, 0.76–0.90 μm; 8 OLI Band 5, 

0.85–0.88 μm) and to a lesser extent in Red bands (ETM+ Band 3, 0.63–0.69 

μm; 8 OLI Band 4, 0.64–0.67 μm) (Deutsch et al., 2018). Furthermore, an effort 

trying to assess CDOM concentrations and water clarity in oligotrophic lakes 

and reservoirs of Minnesota (Olmanson et al. 2016) by using Landsat 7 ETM+ 

and 8 OLI sensors, indicated once again that are generally comparable. 

The successful launch of Sentinel 2 in June 2015 and the simultaneous 

provision of image data with those of Landsat 8 OLI offered great 

opportunities for long term high-frequency WQ monitoring (Mandanici and 

Bitelli, 2016) through building time-series.  The Sentinel-2 mission carries two 



satellites, Sentinel-2A and Sentinel-2B. They are both equipped with identical 

Multispectral Instruments (MSI) capable of acquiring data at 13 bands at 

different spatial resolutions (between 10 m and 60 m) while the revisit 

frequency of each satellite is 10 days. 

According to Deutsch et al. (2018) the transferability of WQ algorithms 

across sensors remains poorly examined, while a number of conceptual and 

technical challenges may accrue originating from their orbital, spatial and 

spectral differences. Towards this direction, Sentinel 2 images of 2018 with 

concurrent dates with those of field measurements were utilized to facilitate a 

WQ models’ efficiency evaluation and comparison with respective Landsat’s 

validation results.  

Additionally, another effort has been made to improve WQ models’ 

quantification capability through the combined use of Landsat (7 ETM+, 8 

OLI) and Sentinel 2 images, while the selection of each image for each case 

was based on the acquisition date depending on the corresponding sampling 

one. In this way, when Sentinel 2 sensor is combined especially with the 

Landsat 8 OLI, the revisit time is significantly reduced to 2-3 days globally (Li 

et al., 2021). Mandanici and Bitelli (2016) highlighted some potentials and 

challenges deriving from the joint use of Landsat and Sentinel 2 sensors; they 

observed a significant match between the corresponding spectral bands, 

however differences in the recorded radiometric values were also present. 

What is important though, concerning those differences, is the application 

and the approach adopted to implement multi-sensor time series analyses. On 

one hand, may empirical approaches based on multispectral indices be more 

affected by the problem (Werff and Meer, 2016) but when methods and 

processing are applied separately on every image and the training is also 

independent, as in our case, results are less affected (Mandanici and Bitelli, 

2015; 2016). The independent elaboration of Landsat and Sentinel 2 images in 

the framework of this study, did not require the implementation of a 

resampling procedure, which is essential mostly in change detection analyses, 

based on the different spatial resolution of the two sensors (Landsat 30 vs. 

Sentinel 10 m). 
 

2.3.2 Methodology 

2.3.2.1 In-situ/Remote-sensing data and pre-processing 

The selected in-situ data used herein includes Chlorophyll-a, Secchi 

depth measurements and TP concentrations of 2018 in different dates 

throughout the monitored lake stations (surveillance and operational). The 

available in-situ WQ dataset includes 136 Chl-a measurements, 218 Secchi disk 

depth values and 88 TP concentrations which are freely accessible and were 

downloaded from the EKBY’s site (Goulandris Natural History Museum, 
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Greek Biotope/Wetland Centre (http://biodiversity-info.gr/index.php/el/lakes-

data#!IMGP4731; in Greek). 

Forty-nine (49) Landsat 7 ETM+ and 8 OLI images of 2018 were already 

downloaded from the USGS (United States Geological Survey) Data Centre 

(https://earthexplorer.usgs.gov/) in the context of our previous study 

(Markogianni et al., 2022). Moreover, forty-four (44) Sentinel 2 images of 2018, 

with concurrent dates to sampling ones, up to ± 7 days, were also 

downloaded from the Copernicus open access hub 

(https://scihub.copernicus.eu/dhus/#/home). Some Landsat and Sentinel 2 

images have been used twofold or more depending on the studied WQ 

element (Figure 2.3.2-1) and the sampling date connected to more than one 

parameter.  The majority of in-situ WQ data and by extension of satellite 

images, are detected during summer months whereas Secchi depths were 

measured during the whole year (Figure 2.3.2-1). The selection of the Sentinel 

2 imagery was based on the tiling grid which is available by the ESA 

(https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products) as a 

KML file, providing unique IDs for each tile (100*100 km2 ortho-images in 

UTM/WGS84 projection).  

What is important concerning the pre-processing process is that images 

from both sensors underwent the same process, to minimise possible 

discrepancies originating from the correction (Mandanici and Bitelli, 2016). 

Hence, Sentinel 2 images were subjected to the same pre-processing 

procedure as the Landsat ones (fully described by Markogianni et al., 2022) 

and more particularly, they were imported in the semi-automatic 

classification plugin (SCP) of the free and open-source cross-platform desktop 

Quantum Geographic Information System (Q-GIS), v. 3.6.3-Noosa to perform: 

(a) conversion of images from digital numbers (DN) to top-of-atmosphere 

reflectance (TOA), (b) atmospheric correction by using the DOS1 method 

(applied to all bands except for thermal ones), and (c) the creation of a band 

stack set for each image. The band stack set and and bandwidths of each 

satellite sensor is presented in Table 2.3.2-1. 
 

 

 

 

 

 

 

 

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus/#/home


Table 2.3.2-1. Band stack sets and bandwidths (BW) of Landsat 7 ETM+, 8 OLI and Sentinel 2 

sensors. 

 

 

Figure 2.3.2-1. Number of Landsat 7 ETM+/8 OLI and Sentinel 2 images of 2018, grouped by 

studied WQ element. 

Sensor Blue 
BW 

(μm) 
Green 

BW 

(μm) 
Red 

BW 

(μm) 
NIR 

BW 

(μm) 
SWIR1 

BW 

(μm) 
SWIR2 

BW 

(μm) 

L7 ETM+ B1 

0.441-

0.514 
B2 

0.51

9-

0.60

1 

B3 

0.63

1-

0.69

2 

B4 

0.772

-

0.898 
B5 

1.54

7-

1.74

9 

B7 
2.064-

2.345 

L8 OLI B2 

0.452-

0.512 
B3 

0.53

3-

0.59

0 

B4 

0.63

6-

0.67

3 

B5 

0.851

-

0.879 
B6 

1.56

6-

1.65

1 

B7 
2.107-

2.294 

Sentinel 

2 
B02 

0.458-

0.523 
B03 

0.54

3-

0.57

8 

B04 

0.65

0-

0.68

0 

B0

8 

0.785

-

0.899 
B11 

1.56

5-

1.65

5 

B12 
2.100-

2.280 
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2.3.2.2 Comparison of sensors’ performance and validation 

WQ models developed by Markogianni et al., 2020 (Chl-a); 2022 (Secchi 

depth; TP) were initially applied to Landsat 7+ETM/ 8 OLI and then to 

Sentinel 2 images of 2018, based on the corresponding in-situ dataset. 

Application of WQ models includes Chl-a models (General- Equation 2.3.2-1; 

Natural- model-Equation 2.3.2-2; Artificial model -Equation 2.3.2-3), Secchi 

depth models (General-Equation 2.3.2-4; Natural model- Equation 2.3.2-5; 

Artificial model -Equation 2.3.2-6) and TP models (General-Equation 2.3.2-7; 

Natural model -Equation 2.3.2-8). Concerning the total phosphorus WQ 

element, it should be noted that no statistically strong model was delivered 

for TP quantification in artificial lakes (Markogianni et al., 2022). 

 

log 𝐶ℎ𝑙𝑎 = 3.599 − 0.63 ∗ (
𝑏𝑙𝑢𝑒

𝑟𝑒𝑑
) − 2.183 ∗ (

ln 𝑟𝑒𝑑

ln 𝑠𝑤𝑖𝑟2
)     (2.3.2-1) 

 

log 𝐶ℎ𝑙𝑎 = 4.443 − 1.421 ∗ (
𝑏𝑙𝑢𝑒

𝑔𝑟𝑒𝑒𝑛
) − 3.454 ∗ (

ln 𝑟𝑒𝑑

ln 𝑠𝑤𝑖𝑟2
) + 1.304 ∗ (

𝑟𝑒𝑑

𝑔𝑟𝑒𝑒𝑛
)(2.3.2-2) 

 

log 𝐶ℎ𝑙𝑎 = 2.919 − 2.011 ∗ (
ln 𝑟𝑒𝑑

ln 𝑠𝑤𝑖𝑟1
) + 1.449 ∗ (

𝑟𝑒𝑑

𝑔𝑟𝑒𝑒𝑛
) − 1.441 ∗ (

ln 𝑟𝑒𝑑

ln 𝑏𝑙𝑢𝑒
)(2.3.2-3) 

  

𝑆𝑄𝑅𝑇(𝑆𝑒𝑐𝑐ℎ𝑖)𝑔𝑒𝑛𝑒𝑟𝑎𝑙 = 1.215 − 2.479 ∗ (𝑏𝑙𝑢𝑒 + 𝑟𝑒𝑑 +
𝑟𝑒𝑑

𝑏𝑙𝑢𝑒
) + 3.394 ∗ (

𝑙𝑛𝑔𝑟𝑒𝑒𝑛

𝑙𝑛𝑠𝑤𝑖𝑟2

 (2.3.2-4) 

 

𝑆𝑄𝑅𝑇(𝑆𝑒𝑐𝑐ℎ𝑖)𝑛𝑎𝑡𝑢𝑟𝑎𝑙 = 1.172 − (1.003 ∗ 𝑙𝑜𝑔𝑐ℎ𝑙 − 𝑎) − (1.031 ∗ 𝑙𝑜𝑔𝑟𝑒𝑑)(2.3.2-5) 

 

𝑆𝑄𝑅𝑇(𝑆𝑒𝑐𝑐ℎ𝑖)𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 = 3.927 − 1.365 ∗ (
𝑔𝑟𝑒𝑒𝑛

𝑏𝑙𝑢𝑒
) − 0.318 ∗ (

𝑟𝑒𝑑

𝑠𝑤𝑖𝑟1
) − 0.361 ∗

𝑙𝑜𝑔𝑐ℎ𝑙𝑎         (2.3.2-6) 

 

𝐿𝑜𝑔𝑇𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑙 = −1.425 + 0.452 ∗ 𝑙𝑜𝑔𝐶ℎ𝑙𝑎 − 0.573 ∗ (
𝑙𝑛𝑟𝑒𝑑

𝑙𝑛𝑠𝑤𝑖𝑟1
) (2.3.2-7) 

 

𝐿𝑜𝑔𝑇𝑃𝑛𝑎𝑡𝑢𝑟𝑎𝑙 = −0.633 − (0.704 ∗ 𝑙𝑜𝑔𝑆𝑒𝑐𝑐ℎ𝑖) − 0.392 ∗ (
𝑔𝑟𝑒𝑒𝑛

𝑟𝑒𝑑
) (2.3.2-8) 

 

 

All in-situ datasets (general, natural, artificial) concern lakes with mean 

depth higher than 5 meters to surely avoid the bottom reflectance noise 



(McKinna and Werdell, 2018), but in case of TP, where in situ data are fewer 

than those concerning Secchi depths and Chl-a concentrations, the 

aforementioned depth criterion was set to 3.5 m. Additionally, in another 

effort to improve WQ models’ quantification capability, we established a 

combined use of Landsat (7 ETM+, 8 OLI) and Sentinel 2 images. WQ models 

were once again applied to multi-sensor images while the selection of each 

image was based on the smallest time window between the satellite 

acquisition and in-situ date. In cases where this difference was the same for 

Landsat and Sentinel sensors, the Landsat image was selected as the WQ 

models are Landsat-developed and was hypothesized to be more effective 

compared to ones employing Sentinel images. A resampling procedure has 

not been performed since each satellite image was separately elaborated 

depending on the best matching date. Furthermore, the WQ models’ 

performance- depending on the sensor used- was based on the Spearman’s (r) 

correlation coefficient and the error metrics Mean Error (ME), Mean Absolute 

Percentage Error (MAPE), Root Mean Squared Error (RMSE) and Normalized 

Root Mean Squared Error (NRMSE). MAPE metric is calculated based on the 

following equation (2.3.2-9): 

 

𝑴𝑨𝑷𝑬 =
1

𝑛
∑

|𝑦′−𝑦|

𝑦
∗ 100%

𝑡=𝑛

𝑡=1
   (2.3.2-9) 

 

where y’ is forecasted value, y is the true value and n is the total number of 

values in the dataset. Furthermore, Lewis (1982) created a table (Table 2.3.2-2) 

containing typical MAPE values and their interpretation concerning the 

forecasting potential. MAPE’s greatest disadvantage is that the absolute 

percentage error distribution -characterised by having only positive values 

with no upper bound-usually has a right or positive skew brought about by 

the presence of outlier values to this side of the distribution (Moreno et al., 

2013). Hence, if the denominator is extremely small or large, the MAPE value 

adopts the same behaviour. 
 
 

Table 2.3.2-2. Typical MAPE values and interpretation (Lewis, 1982, p. 40). 
 

MAPE Interpretation 

<10 Highly accurate forecasting 

10-20 Good forecasting 

20-50 Reasonable forecasting 

>50 Inaccurate forecasting 
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In view of the aforementioned limitation of MAPE, NRMSE is used 

additionally and comparatively; NRMSE (Equation 2.3.2-10) is an extension of 

RMSE and often utilized to compare different datasets or predictive models of 

different scales (e.g. different units as in our case) while it has been calculated 

by using the range of the true values (difference of minimum and maximum 

values; Equation 2.3.2-10). Furthermore, it takes values 0-1.  

Low values of all error metrics (ME, MAPE, RMSE and NRMSE) indicate the 

good performance of models.  

 

𝑵𝑹𝑴𝑺𝑬 =
𝑅𝑀𝑆𝐸

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
   (2.3.2-10) 

 

 

2.3.3 Results 

2.3.3.1 Chlorophyll-a 

Application of Chl-ageneral model in Landsat-only and Sentinel-only 

images yielded similar results with a light superiority of Landsat-employing 

model based on ME (mean error) and RMSE values (Table 2.3.3-1). Median 

MAPE value of Sentinel-2 model touched the upper threshold for reasonable 

forecasting (50 %; Lewis, 1982) while the corresponding value of Landsat 

model slightly surpassed it. Combined utilization of Landsat and Sentinel 2 

images has not indicated any further improvement of Chl-ageneral model since 

all RMSE, NRMSE and MAPE values were higher than those accrued from 

one-sensor based applications (Figure 2.3.3-1; Figure 2.3.3-2).  

As far as the Chl-anatural model is concerned (Table 2.3.3-2), results are 

different. Sentinel-2 model is superior to the corresponding Landsat one 

based on RMSE, NRMSE and median MAPE values. Only the value of ME 

resulting from the utilization of Landsat images is significantly lower 

compared to Sentinel (-0.12 vs. 2.9 μg/l). Furthermore, application of Chl-

anatural model in joined Landsat and Sentinel 2 images has not managed to 

increase its performance since almost all values of error metrics are higher 

than those resulted from the independently employment of either Landsat or 

Sentinel 2 data.  

Concerning the Chl-aartificial model (Table 2.3.3-3), values of ME and 

RMSE are lower with Landsat-employed data (Figure 2.3.3-1), indicating a 

better performance of this model compared to that employing Sentinel 2 or 

mixed satellite data. 

Regarding general and natural models’ applications, all correlations 

among in-situ and satellite-derived values were statistically significant with 

Sentinel 2 data presenting the highest values (general: r=0.71; natural: r=0.72), 

followed by Landsat (general: r=0.6; natural: r=0.697) and mixed satellites 



(general: r=0.54; natural: r=0.64). Values of coefficient of correlation were 

similar for all applications in artificial lakes. 
 

Table 2.3.3-1. Values of error metrics regarding the sensor-based applications of Chl-a general 

model (Underlined value indicates the lowest value among all three cases; ** Correlation is 

significant at the 0.01 level (2-tailed). 

Chl-ageneral 

model 
N 

SPEARMAN 

r 

Average 

In 

Situ  

Chl-a 

(μg/L) 

Average 

Satellite  

Chl-a 

(μg/L) 

ME 

(μg/L) 

RMSE 

(Chl-a; 

μg/L) 

NRMSE 

MEDIAN 

MAPE 

(%) 

Landsat 7 

ETM+/8 OLI 
74 0.601** 7.9 5.5 2.5 14.6 0.149 54.5 

SENTINEL 2 67 0.711** 8.3 4.6 3.7 14.9 0.152 50 

MIXED 

SATELLITES 
67 0.54** 8.3 4.9 3.4 15.9 0.162 57.8 

 

 

Table 2.3.3-2. Values of error metrics regarding the sensor-based applications of Chl-a natural 

model (** Correlation is significant at the 0.01 level (2-tailed). 

Chl-anatural 

model 
N 

SPEARMAN 

r 

Average 

In 

Situ  

Chl-a 

(μg/L) 

Average 

Satellite  

Chl-a 

(μg/L) 

ME 

(μg/L) 

RMSE 

(Chl-a; 

μg/L) 

NRMSE 

MEDIAN 

MAPE 

(%) 

Landsat 7 

ETM+/8 OLI 
28 0.697** 13.9 14 -0.12 21.5 0.22 57.9 

SENTINEL 2 26 0.72** 14.7 11.8 2.9 16.4 0.17 42 

MIXED 

SATELLITES 
26 0.64** 14.7 12.1 2.6 24.1 0.25 52.4 

 

Table 2.3.3-3. Values of error metrics regarding the sensor-based applications of Chl-a 

artificial model (Underlined value indicates the lowest value among all three cases; ** 

Correlation is significant at the 0.01 level (2-tailed). 

Chl-aartificial 

model 
N 

SPEARMAN 

r 

Average 

In 

Situ  

Chl-a 

(μg/L) 

Average 

Satellite  

Chl-a 

(μg/L) 

ME 

(μg/L) 

RMSE 

(Chl-

a; 

μg/L) 

NRMSE 

MEDIAN 

MAPE 

(%) 

Landsat 7 

ETM+/8 OLI 
41 0.59** 4.2 2.5 0.95 3.7 0.18 49 

SENTINEL 2 33 0.57** 4.6 2.03 2.6 7.74 0.17 41.8 

MIXED 

SATELLITES 
40 0.57** 4.3 2.3 2.1 7.3 0.16 53.5 
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Figure 2.3.3-1. Stacked bars illustrating RMSE values of Chl-a concentrations (μg/l) per 

satellite sensor. 

 

 

 
Figure 2.3.3-2. NRMSE and median MAPE (%) values per satellite sensor grouped by Chl-a 

models. (Red reference line to right Y axis is set to 50 %, upper threshold value for reasonable 

forecasting; Lewis, 1982). 

 



2.3.3.2 Secchi depth 

In general, application of Secchigeneral model on Landsat only images 

indicated better performance compared to Sentinel 2 data (Table 2.3.3-4). 

Moreover, the performance of general model is improved when mixed 

satellite data is used. In particular, the high decrease of ME value (0.25 vs 0.7 

m) and the similar values of RMSE (Figure 2.3.3-3) to those of only-Landsat 

employed data prove that the combination of mixed satellite data yields 

reliable Secchi depth values.  

Secchinatural model (Table 2.3.3-5) employing Landsat-only images was 

proven once again better based on RMSE value. On the other hand, the ME 

value is significantly lower when is accompanied by Sentinel 2 data, (0.1 vs 

0.6 m). However, it should be noted that those differences are not significant. 

Results yielded from multi sensor images are similar to those of Landsat data 

except for the median MAPE value which seems to increase (38.7 vs. 30.2 %) 

with the combined satellite sensors.  

Application of Secchiartificial model (Table 2.3.3-6) indicated a light 

superiority when is accompanied by Sentinel 2 data but no great differences 

are noticed. Similar but lower values of RMSE, NRMSE and median MAPE 

indicated that the Landsat-developed Secchi artificial model can perform 

satisfactorily and quantify reliable Secchi depth values in reservoirs based on 

Sentinel-2 reflectance data. Secchiartificial model performs equally well even 

when employing multi sensor data. Similar values of most of metrics but 

significantly lower value of ME (0.01 m) implied the suitability of this model 

even with combined satellite data.  

Concerning the values of coefficient correlation, all correlations among 

satellite and in-situ data were statistically significant ranging from 0.54 (mixed 

satellites; general model) to 0.73 (Landsat; natural model).  
 

Table 2.3.3-4. Values of error metrics regarding the sensor-based applications of Secchigeneral 

model (Underlined value indicates the lowest value among all three cases; ** Correlation is 

significant at the 0.01 level (2-tailed). 

Secchigeneral 

model 
N 

SPEARMAN 

r 

Average 

In 

Situ  

SECCHI 

(m) 

Average 

Satellite  

SECCHI 

(m) 

ME (m) 

RMSE 

(SECCHI; 

m) 

NRMSE 

MEDIAN 

MAPE 

(%) 

Landsat 7 

ETM+/8 OLI 
115 0.57** 4.5 3.8 0.702 2.512 0.165 34.1 

SENTINEL 2 111 0.57** 4.64 5.24 -0.699 4.368 0.287 43.9 

MIXED 

SATELLITES 
111 0.54** 4.5 4.3 0.252 2.375 0.156 35.2 
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Table 2.3.3-5. Values of error metrics regarding the sensor-based applications of Secchinatural 

model (Underlined value indicates the lowest value among all three cases; ** Correlation is 

significant at the 0.01 level (2-tailed). 

Secchinatural 

model 
N 

SPEARMAN 

r 

Average 

In 

Situ  

SECCHI 

(m) 

Average 

Satellite  

SECCHI 

(m) 

ME (m) 

RMSE 

(SECCHI; 

m) 

NRMSE 

MEDIAN 

MAPE 

(%) 

Landsat 7 

ETM+/8 OLI 
28 0.73** 4.24 3.6 0.63 2.765 0.182 30.2 

SENTINEL 2 28 0.56** 4.24 4.1 0.103 2.929 0.193 41.2 

MIXED 

SATELLITES 
28 0.66** 4.24 3.7 0.495 2.844 0.187 38.7 

 

Table 2.3.3-6. Values of error metrics regarding the sensor-based applications of Secchiartificial 

model (Underlined value indicates the lowest value among all three cases; ** Correlation is 

significant at the 0.01 level (2-tailed). 

Secchiartificial 

model 
N 

SPEARMAN 

r 

Average 

In 

Situ  

SECCHI 

(m) 

Average 

Satellite  

SECCHI 

(m) 

ME (m) 

RMSE 

(SECCHI; 

m) 

NRMSE 

MEDIAN 

MAPE 

(%) 

Landsat 7 

ETM+/8 OLI 40 0.56** 4.85 4.8 -0.071 1.612 0.183 24.7 

SENTINEL 2 36 0.63** 4.47 4.32 0.149 1.458 0.159 24.22 

MIXED 

SATELLITES 43 0.58** 4.6 4.6 0.008 1.528 0.166 25.1 

 

 

Figure 2.3.3-3. Stacked bars illustrating RMSE values of Secchi disk depths (m) per satellite 

sensor. 



 
Figure 2.3.3-4. NRMSE and median MAPE (%) values per satellite sensor grouped by Secchi 

depth models. (Red reference line to right Y axis is set to 50 %, upper threshold value for 

reasonable forecasting; Lewis, 1982). 

 

 

2.3.3.3 Total phosphorus 

Application of TPgeneral model in Landsat-only images demonstrated a 

clear superiority compared to the Sentinel 2-based employment (Table 2.3.3-

7). All of the studied error metrics’ values accrued from the Landsat used data 

are lower in comparison with those of the corresponding Sentinel 2. 

Furthermore, the combined adoption of multi sensor images has not revealed 

any further improvement while the majority of resulted statistical indices are 

similar to those resulted by the use of Sentinel 2 data.  

Application of special TP model on only natural lakes (Table 2.3.3-8) 

yielded different results. Value of RMSE is lower when mixed satellite data 

are employed whereas ME value is significantly lower after the employment 

of Sentinel 2 images (Figure 2.3.3-5; green line). The employment of mixed 

satellite images indicated the natural model’s suitability even when used in 

combination with Landsat and Sentinel 2 satellite data, based on RMSE 

metric.  

Correlations among satellite derived and in-situ TP concentrations 

revealed in general strong relationships while Spearman values ranged from 

0.67 (Landsat; natural model) to 0.75 (Sentinel 2; general model). 
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Table 2.3.3-7. Values of error metrics regarding the sensor-based applications of TPgeneral 

model (Underlined value indicates the lowest value among all three cases; ** Correlation is 

significant at the 0.01 level (2-tailed). 

TPgeneral 

model 
N 

SPEARMAN 

r 

Average 

In 

Situ  

TP 

(mg/l) 

Average 

Satellite  

TP 

(mg/l) 

ME 

(mg/l) 

RMSE 

(TP; 

mg/l) 

NRMSE 

MEDIAN 

MAPE 

(%) 

Landsat 7 

ETM+/8 OLI 
33 0.71** 0.075 0.077 -0.0014 0.028 0.139 21.7 

SENTINEL 2 30 0.75** 0.08 0.07 0.0047 0.032 0.156 23.6 

MIXED 

SATELLITES 
30 0.73** 0.08 0.076 0.0016 0.0295 0.145 24.7 

 

Table 2.3.3-8. Values of error metrics regarding the sensor-based applications of TPnatural 

model (** Correlation is significant at the 0.01 level (2-tailed). 

TPnatural 

model 
N 

SPEARMA

N r 

Average 

In 

Situ  

TP 

(mg/l) 

Average 

Satellite  

TP 

(mg/l) 

ME (mg/l) 

RMSE 

(TP; 

mg/l) 

NRMSE 

MEDIAN 

MAPE  

(%) 

Landsat 7 

ETM+/8 OLI 55 0.67** 0.07 0.076 -0.0051 0.0312 0.148 38.2 

SENTINEL 2 49 0.7** 0.07 0.07 0.0005 0.0308 0.146 26.3 

MIXED 

SATELLITE

S 49 0.69** 0.07 0.071 -0.0007 0.0300 0.142 26.3 

 



 
Figure 2.3.3-5. NRMSE and median MAPE (%) values per satellite sensor grouped by TP 

models. (Red reference line to right Y axis is set to 50 %, upper threshold value for reasonable 

forecasting; Lewis, 1982). 

 

 

Concerning the overall efficiency of WQ models based on MAPE values, 

it is observed that Chl-a models are characterized by less quantification 

accuracy compared to respective Secchi and TP (Figure 2.3.3-6). Most of Chl-a 

models touch and even surpass the threshold MAPE value of 50% indicating 

marginally reasonable forecasting. Secchi and TP models achieved better 

results providing more superior forecasting. 
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Figure 2.3.3-6. Median MAPE (%) values per WQ quantitative model grouped by WQ 

parameters. (Red reference line to Y axis is set to 50 %, upper threshold value for reasonable 

forecasting; Lewis, 1982). 

 

 

2.3.4 Discussion 

Main objective of this chapter section was to explore initially whether 

Landsat-based empirical WQ algorithms can be efficiently applied to Sentinel 

2 images and then whether the combined use of multi-sensor data improves 

the algorithms’ prediction accuracy. Furthermore, independently from 

whether there is some improvement or not, the ultimate goal of this combined 

approach was to decide whether multi-sensor images could be used with at 

least equally reliable results as those accrued from only-one sensor’s 

utilization. 

As far as the general models of all WQ elements (Chl-a, Secchi depth and 

TP) is concerned, all models were more efficient and accurate when were 

accompanied by Landsat images while no improvement was observed by 

using multi sensor images with the exception of Secchigeneral model. Natural 

models, though, demonstrated a different behavior. More particularly, Chl-a 

and TP natural models presented lower values of error metrics when 

employing Sentinel 2 images and only Secchi natural model performed better 

with Landsat data. Combined utilization of Landsat and Sentinel 2 images did 

not provide any improvement to corresponding Chl-a and Secchi models 

whereas the multi sensor images resulted in TP concentrations with equally 



reliable outcomes as those employing Sentinel 2. Regarding the artificial 

algorithms, performance of Chl-a model was similar either by exploiting 

Landsat or Sentinel 2 data while Secchi model achieved slightly better 

efficiency with Sentinel 2 images.  

The shortcoming of Sentinel 2 images to reach Landsat’ performance in 

most of cases can probably be attributed to two reasons: first of all, hereby 

utilized WQ empirical models were developed based on Landsat-7 ETM+ and 

8 OLI images; hence it is expected to be affected by the corresponding spectral 

configuration and perform better when employing Landsat rather than 

Sentinel 2 reflectance.  

Furthermore, according to Mandanici and Bitelli (2016) who compared 

reflectance and index values of Landsat 8 OLI and Sentinel 2 imagery for a 

combined use, confirmed that MSI band 8A (vegetation red edge) is the 

optimal option from the radiometric point of view when Sentinel-2 images are 

associated with Landsat 8 ones. Instead, MSI band 8 (NIR) is highly 

recommended for a joint use with older Landsat series, such as Landsat 5. In 

the framework of this study though, the match of the Sentinel 2 B08 (NIR) 

band to bands B4 (L7 ETM+) and B5 (L8 OLI), may constituted an obstacle in 

achieving better and more accurate WQ quantifications when employing 

Sentinel 2 data. Further sources of different results between Landsat and 

Sentinel 2 images are the residual effects of water specular reflections, derived 

from the different azimuth and elevation of the sensors. 

Similar works (Werff and Meer, 2016) having studied the potential 

combined usage of Landsat and Sentinel 2 images, indicated that by visual 

inspection satellite products of Landsat and Sentinel 2 sensors are similar; 

when however, reflectance values are compared there are differences which 

should in each case be evaluated (Mandanici and Bitelli, 2016). 

Furthermore, the largely worse performance of Chl-a models compared 

to rest of WQ elements emphasizes once again the complexity that mapping 

of Chl-a in Case 2 waters (coastal and/or inland waters) hides. As optical 

properties are measured based on a compound of dissolved organic matter, 

dead organic and inorganic particulate matter, and phytoplankton (Chl-a), 

Chl-a determination is characterized by less accuracy since these constituents 

are not statistically correlated (Markogianni et al., 2020). 

All in all, it is proven that hereby WQ models are proposed to employ 

principally Landsat images; however, the employment of Sentinel 2 data 

potentially produces reliable results with some (not significant) deviations, 

from reference in-situ data, regarding the assessment of lake WQ. 
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3. Atmospheric correction analysis of lake 

WQ models by employing surface 

reflectance embedded in GEE platform  

 

3.1  Introduction 

Nowadays, the World’s lakes’ greatest threat is common; the so-called 

eutrophication, which is greatly connected to the increase of nutrients, mainly 

phosphorus and nitrogen (Pedreros-Guarda et al., 2021). 

Water quality is the most significant indicator of a water body’s state, 

while its assessment requires the continuous monitoring of mainly physico-

chemical and biological elements (Fatima, 2018). Traditionally, WQ estimation 

is conducted based on in-situ sampling and laboratory analysis (Li et al., 

2016). However, those methods are time- and labor-intensive particularly 

when large-scale investigations are the case (Zhang et al., 2014). Today, 

through the evolution of Remote Sensing (RS) techniques, satellite images 

offer valuable information facilitating the assessment of different WQ 

components, such as the total suspended matter (TSM) and colored dissolved 

organic matter (CDOM) content, the Secchi depth (SD), and the chlorophyll-a 

concentration (Brezonik et al., 2015; Sagan et al., 2020; Markogianni et al., 

2020; Zhang et al., 2021; Song et al., 2022; Markogianni et al., 2022). 

Furthermore, due to their wide coverage, RS expedites the regional and large-

scale WQ monitoring (Gholizadeh et al., 2016; Topp et al., 2020; Pizani and 

Maillard, 2022).  

However, computing WQ properties from RS images may also become 

time-demanding and sophisticated because of the processing data chain 

particularly a great-scale WQ assessment and high-frequency time series 

demand (Kumar and Mutanga, 2018). Today, platforms for big EO Data 

Management and Analysis have emerged as computational solutions that 

provide functionalities for big EO data management, storage and access 

including processing without downloading big amounts of EO data sets and 

provision of images of certain pre- processing levels (Gomes et al., 2020). 

Gomes et al. (2020) overviewed and compared seven platforms among certain 

functionalities: Google Earth Engine (GEE), Sentinel Hub (SH), Open Data 

Cube (ODC), System for Earth Observation Data Access, Processing and 

Analysis for Land Monitoring (SEPAL), open EO, JEODPP and pipsCloud 

while the reviewed functionalities are the following: data abstraction, 

processing abstraction, physical infrastructure abstraction, open governance, 

reproducibility of science, infrastructure replicability, processing scalability, 

storage scalability, data access interoperability and extensibility. Based initial 
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on this survey and then on researches conducted by Maciel et al. (2021), Zhao 

et al. (2022) and Pizani and Maillard (2022), it was concluded that GEE 

outperforms among the available cloud computing systems as it proven the 

most significant cloud processing platform for the remote sensing community 

due to its ease of use and maturity. 

Google Earth Engine (GEE) platform has changed the traditional RS data 

processing mode (Li et al., 2022) as it consists of a multi-petabyte analysis-

ready data catalog while allowing users to compute massive-scale analysis 

and accomplish multiple RS and geospatial tasks at remarkable speeds and 

scales (Gorelick et al., 2017). The data repository of GEE includes publicly 

available geospatial datasets, along with observations from a variety of 

satellite and aerial imaging systems in both optical and non-optical 

wavelengths, environmental variables, weather forecasts, land cover and 

other datasets (Gorelick et al., 2017).   In addition to this, several involved 

operators such as the United State Geological Survey (USGS), National 

Aeronautics and Space Administration (NASA), and European Space Agency 

(ESA) -among others- are collaborating with Google Inc. and have made 

satellite data available online through the Google Earth Engine (GEE) cloud 

platform (Wang et al., 2020). The satellite data catalog is updated on a daily 

basis with around 6000 new image scenes.  

Recent studies have recorded applications of WQ monitoring based on 

Google Earth Engine (Jia et al., 2019; Zong et al., 2019; Maeda et al., 2019; 

Wang et al., 2020; Weber et al., 2020; Lobo et al., 2021; Somasundaram et al., 

2021; Bioresita et al., 2021; Vaičiūtė et al., 2021; Kislik et al., 2022; Wen et al., 

2022).  

Based on all of the above, this effort will employ GEE-retrieved 

reflectance values to assess WQ elements in 50 Greek natural and artificial 

lakes, constituting the National Lake Monitoring Network in Greece for the 

WFD.  

The hereby adopted methodological scheme includes the exploration of 

the performance of published empirically-developed WQ quantitative models 

of Chl-a (Markogianni et al., 2020), Secchi depth and Total phosphorus 

(Markogianni et al., 2022) when employing GEE-retrieved reflectance values 

subjected to different atmospheric correction (AC) methods. Precise AC is 

important for applications where small differences in surface reflectance (SR) 

are significant, such as retrieval of WQ parameters (Nazeer et al., 2014; 

Warren et al., 2019; Pahlevan et al., 2021). Furthermore, it enables direct 

comparison between different image dates and different sensors. AC methods 

fall into two types, namely physical (e.g. FLAASH, ATCOR, 6S) and image-

based methods (e.g. DOS). Physical methods use a radiative transfer model to 

estimate SR while image-based methods obtain relevant parameters from the 

image (Nazeer et al., 2014).  



In this study, in-situ measurements of Chl-a, Secchi depth and Total 

phosphorus of 2018 have been paired twice with concurrent satellite 

reflectance values derived from combined Landsat 7 +ETM/ 8 OLI (first 

dataset) and Sentinel 2 MSI (second dataset) images.  The two-fold match 

concern initially the reflectance derived from manually downloaded and pre-

processed images with the DOS1 method and then the GEE- derived 

reflectance (from the exact same satellite images) subjected to LaSRC (Landsat 

8 OLI), LEDAPS (Landsat 7 ETM+) and Sen2Cor (Sentinel 2) correction 

algorithms. The aforementioned reflectance values were extracted from the 

points were WFD sampling sites are located. Linear regression analysis 

among the resulted WQ values was then conducted to highlight and 

potentially harmonize inherent differences primarily between the differently 

pre-processed reflectance values and afterwards among the different sensors 

used.  

As it is already mentioned, used sensors in this research are the Landsat 

7ETM+/8 OLI and Sentinel 2. Landsat (30 m spatial resolution) and Sentinel-2 

(10–60 m spatial resolution) missions provide fine-scale spatial data and have 

been reported to be suitable for the quantification of multiple WQ indices in 

freshwater lakes and reservoirs (Bresciani et al., 2018; Markogianni et al., 

2018; Pahlevan et al., 2020; Bramich et al., 2021; Zhou et al., 2021; Zhang et al., 

2021; Song et al., 2022). Landsat sensors’ temporal resolution is 16 days while 

Landsat 7 ETM+ and 8 OLI together, provide one (1) satellite image for every 

8 days (Pedreros-Guarda et al., 2021).  The Sentinel-2 mission carries two 

satellites—Sentinel-2A and Sentinel-2B—equipped with identical 

Multispectral Instruments (MSI)-, the revisit frequency of each satellite is 10 

days while the combined revisit equals to 5 days. 

However, those sensors differ in their orbital spatial, and spectral 

configuration, resulting in affecting the recorded radiometric values; hence 

sensor-based datasets have been processed independently to be less 

influenced (Mandanici and Bitelli, 2015). Moreover, available in-situ WQ data 

of years 2019 and 2020 have been paired with concurrent GEE-derived 

reflectance values to further validate and certify the strength and the 

suitability of the WQ universal models for estimating Chl-a, Secchi depth and 

Total phosphorus concentrations of optically-diverse inland waters at a 

national scale (Greece). 

In purview of the above, present study’s specific objectives are to: (1) test 

the spatiotemporal performance of empirically-developed WQ models when 

employing GEE-retrieved reflectance that is pre-processed with different 

correction methods; (2) highlight the differences and harmonize them by 

developing corrected WQ models; (3) develop sensor-specific corrected WQ 

monitoring algorithms individually for Landsat and Sentinel 2 sensors and (4) 

map WQ elements across Greek studied lakes, through GEE cloud-based 

platform.  
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3.2 Methodology 

3.2.1 In-situ data 

In-situ dataset used in this study concern the freely accessible data 

collected in the context of the Greek Water Monitoring Network for lakes 

(WFD) by the staff of the Goulandris Natural History Museum, Greek 

Biotope/Wetland Centre.  Water samples have been collected along 50 lakes, 

natural and artificial, from 53 sites (27 surveillance; 26 operational) (Figure 

3.2.1-1). In particular, herein used data include measured values of Chl-a and 

Total phosphorus concentrations and Secchi depth measurements on several 

dates during the years 2018, 2019 and 2020. 



 

Figure 3.2.1-1. National Lake Monitoring Network in Greece (numbers of sampling stations 

coincide with the numbers presented in Table 2.2.2-1). 

 

3.2.2 Satellite imagery selection and pre-processing 

Acquired SR products from the GEE repository included Sentinel-2 MSI 

(Level-2A SR data) and Landsat 7 +ETM /8 OLI multispectral images 

(Collection 1 Level 1-precision and terrain correction- Tier 1; SR data). In this 

study, the time window for satellite acquisition from GEE, was set to ± 7 days 

in relation to the sampling date as in Wen et al. (2022). GEE-derived 

reflectance values have undergone different AC algorithms; more particularly 
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Landsat 8 OLI and Landsat 7 +ETM images are corrected using the Land 

Surface Reflectance Code (LaSRC) and the Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) methods, respectively. LaSRC AC is performed 

using a radiative transfer model, auxiliary atmospheric data from MODIS and 

utilizes the coastal aerosol band for aerosol inversion tests. LEDAPS 

algorithm calculates the radiative transfer for atmospheric data from MODIS 

and NCEP (Ermida et al., 2020). Sentinel-2 products were processed with the 

Sentinel 2 Correction (Sen2Cor) algorithm.  Sen2Cor algorithm is a 

combination of state-of-the-art techniques for performing AC together with a 

scene classification algorithm, which allows detection of clouds, snow and 

cloud shadows and generation of a classification map. This map consists of 3 

different classes for clouds (including cirrus), 6 different classifications for 

shadows, cloud shadows, vegetation, not vegetated, water and snow (ESA, 

Sentinel Online, accessed on 10/07/2022). Then, SR values of several dates 

during the years 2018, 2019 and 2020 were extracted through the GEE 

platform at the points where the sampling stations are located, initially from 

Landsat (8 OLI, 7+ETM) and then from Sentinel 2 MSI images (Figure 3.2.2-1). 

Since the reflectance fraction in GEE is scaled by 10000, values were divided 

by 10000 to obtain 0-1 reflectance values from the respective cells. SR 

extraction from images in GEE platform was accomplished by the staff of GIS 

Research Unit of Agricultural University of Athens.  

Concerning the manual pre-processing of satellite images, Landsat 7 

ETM+ and 8 OLI images of 2018 were downloaded from the USGS (United 

States Geological Survey) Data Centre (https://earthexplorer.usgs.gov/) in the 

context of the study conducted by Markogianni et al. (2022).  Moreover, 

Sentinel 2 images of 2018, were as well downloaded from the Copernicus 

open access hub (https://scihub.copernicus.eu/dhus/#/home), in the context of 

the previous chapter, studying the transferability/performance of Landsat-

based WQ models to Sentinel 2 ones. Manually downloaded Sentinel 2 and 

Landsat  images have been subjected to the same pre-processing procedure, 

as described in Markogianni et al. (2022) and more particularly, they were 

imported in the semi-automatic classification plugin (SCP) of the free and 

open-source cross-platform desktop Quantum Geographic Information 

System (Q-GIS), v. 3.6.3-Noosa to perform: (a) conversion of images from 

digital numbers (DN) to top-of-atmosphere reflectance (TOA), (b) AC by 

using the DOS1 method (Chavez J., 1988; applied to all bands except for 

thermal ones), and (c) the creation of a band stack set for each image. DOS1 

method minimizes the additive effect of the atmosphere caused by haze. The 

main assumption is that dark objects represent 1% of reflectance while they 

are identified by an area with clear water in deep lakes or by the histogram 

method, which selects the DN of haze from the DN frequency histogram of an 

image (El Alem et al., 2021). The selection of DOS method was based on the 

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus/#/home


studies of Nazeer et al. (2014) and Doña et al. (2014), who evaluated 5 (6S, 

FLAASH, ATCOR, DOS and ELM) and 3 (DOS; ATCOR3; MODTRAN5) 

different AC methods, respectively. Nazeer et al. (2014) overviewed those 

methods over sand, artificial surface, grass and water while they concluded 

that DOS performed well over water, it showed higher differences than the 

physical methods and is proposed as a good choice for SR estimation of dark 

surfaces such as water. Doña et al. (2014), evaluated the aforementioned 

methods across certain Spanish lakes and ponds and concluded that DOS 

performed better than the others, reporting the lowest errors.  

 

 

Figure 3.2.2-1. Flowchart of research methodology steps (harmonization and validation 

processes). Different shades of grey color [also distinguished with numbers (1) and (2)] 

represent the distinctive image datasets that are differently pre-processed (DOS1-manually 

and LaSRC; LEDAPS; Sen2Cor-GEE) and employed in WQ models. Different years of in-situ 

datasets are highlighted with distinct colors. 

 
 
 

3.2.3 Harmonization among SR products subjected to different 

atmospheric correction methods 

In the context of this study, the WQ models developed by Markogianni 

et al. (2020; Chl-a); and Markogianni et al. (2022; Secchi depth; TP) were 

initially applied to manually-downloaded and DOS1-pre-processed Landsat 

7+ETM/ 8 OLI and Sentinel 2 images of 2018 (Figure 3.2.2-1). Then, WQ 

models employed GEE-derived SR values originating from the same images, 



Markogianni V. Water Quality Assessment in Greek Lakes by Using Remote Sensing and Statistical Modelling 

193 | P a g e  

 

but undergone different AC methods (Figure 3.2.2-1). Application of WQ 

models includes Chl-a models (General- Equation 3.2.3-1; Natural- model-

Equation 3.2.3-2; Artificial model -Equation 3.2.3-3), Secchi depth models 

(General-Equation 3.2.3-4; Natural model- Equation 3.2.3-5; Artificial model -

Equation 3.2.3- 6) and TP models (General-Equation 3.2.3-7; Natural model -

Equation 3.2.3-8). The basic goal of this elaboration is the exploration and 

establishment of relationships between same-located lake WQ values which 

originate from different AC methods and sensors. Linear regression analyses 

incorporate WQ values accrued by the employment of a) manually DOS1 

corrected reflectance (dependent variable) and b) LaSRC, LEDAPS and 

Sen2Cor-corrected reflectance in GEE (independent variable) at 

corresponding locations. The development of linear equations should 

facilitate the normalization of the WQ models’ results to acceptable and 

comparable values when employing different-from-DOS1 corrected 

reflectance values for each WQ model, its specifications (general model, 

natural-only, artificial-only; Figure 3.2.2-1) ans each sensor. This 

normalization was based on the dataset of 2018 (Figure 3.2.2-1) while the 

analysis yielded 192 and 210 match-up points of in-situ data and Landsat 7 

+ETM/8 OLI and Sentinel 2 images embedded in GEE platform, respectively. 

Furthermore, the possible detection of strong relationships would indicate the 

suitability of WQ models to employ images not only subjected to 

aforementioned AC methods except for DOS but also of Sentinel 2 sensor. 

Regression analysis concern all cases presented in Table 3.2.3-1. 

 

log 𝐶ℎ𝑙𝑎 = 3.599 − 0.63 ∗ (
𝑏𝑙𝑢𝑒

𝑟𝑒𝑑
) − 2.183 ∗ (

ln 𝑟𝑒𝑑

ln 𝑠𝑤𝑖𝑟2
)    (3.2.3-1) 

 

log 𝐶ℎ𝑙𝑎 = 4.443 − 1.421 ∗ (
𝑏𝑙𝑢𝑒

𝑔𝑟𝑒𝑒𝑛
) − 3.454 ∗ (

ln 𝑟𝑒𝑑

ln 𝑠𝑤𝑖𝑟2
) + 1.304 ∗ (

𝑟𝑒𝑑

𝑔𝑟𝑒𝑒𝑛
)(3.2.3-2) 

 

log 𝐶ℎ𝑙𝑎 = 2.919 − 2.011 ∗ (
ln 𝑟𝑒𝑑

ln 𝑠𝑤𝑖𝑟1
) + 1.449 ∗ (

𝑟𝑒𝑑

𝑔𝑟𝑒𝑒𝑛
) − 1.441 ∗ (

ln 𝑟𝑒𝑑

ln 𝑏𝑙𝑢𝑒
)(3.2.3-3) 

 

𝑆𝑄𝑅𝑇(𝑆𝑒𝑐𝑐ℎ𝑖)𝑔𝑒𝑛𝑒𝑟𝑎𝑙 = 1.215 − 2.479 ∗ (𝑏𝑙𝑢𝑒 + 𝑟𝑒𝑑 +
𝑟𝑒𝑑

𝑏𝑙𝑢𝑒
) + 3.394 ∗

(
𝑙𝑛𝑔𝑟𝑒𝑒𝑛

𝑙𝑛𝑠𝑤𝑖𝑟2
)(3.2.3-4) 

 

𝑆𝑄𝑅𝑇(𝑆𝑒𝑐𝑐ℎ𝑖)𝑛𝑎𝑡𝑢𝑟𝑎𝑙 = 1.172 − (1.003 ∗ 𝑙𝑜𝑔𝑐ℎ𝑙 − 𝑎) − (1.031 ∗ 𝑙𝑜𝑔𝑟𝑒𝑑)(3.2.3-5) 

𝑆𝑄𝑅𝑇(𝑆𝑒𝑐𝑐ℎ𝑖)𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 = 3.927 − 1.365 ∗ (
𝑔𝑟𝑒𝑒𝑛

𝑏𝑙𝑢𝑒
) − 0.318 ∗ (

𝑟𝑒𝑑

𝑠𝑤𝑖𝑟1
) − 0.361 ∗

𝑙𝑜𝑔𝑐ℎ𝑙𝑎                                                        (3.2.3-6) 



𝐿𝑜𝑔𝑇𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑙 = −1.425 + 0.452 ∗ 𝑙𝑜𝑔𝐶ℎ𝑙𝑎 − 0.573 ∗ (
𝑙𝑛𝑟𝑒𝑑

𝑙𝑛𝑠𝑤𝑖𝑟1
) (3.2.3-7) 

 

𝐿𝑜𝑔𝑇𝑃𝑛𝑎𝑡𝑢𝑟𝑎𝑙 = −0.633 − (0.704 ∗ 𝑙𝑜𝑔𝑆𝑒𝑐𝑐ℎ𝑖) − 0.392 ∗ (
𝑔𝑟𝑒𝑒𝑛

𝑟𝑒𝑑
) (3.2.3-8) 

 
 
Table 3.2.3-1. WQ models involved in regression analysis (2018 dataset) for harmonization of 

different reflectance values emerged from different pre-processing methods and satellite 

sensors. 

 

Equation Models and preconditions Sensor 

3.2.3-1 
Chl-a_general; mean 

depth> 5m 

Landsat 7+ETM/8 OLI; 

Sentinel2 

3.2.3-2 
Chl-a_natural; mean 

depth> 5m 

Landsat 7+ETM/8 OLI; 

Sentinel2 

3.2.3-3 

Chl-a_artificial; mean 

depth> 5m; date 

difference 

(sampling/satellite): +-5 

days 

Landsat 7+ETM/8 OLI; 

Sentinel2 

3.2.3-4 
Secchi_general; mean 

depth> 5m 

Landsat 7+ETM/8 OLI; 

Sentinel2 

3.2.3-5 
Secchi_natural; mean 

depth> 5m 

Landsat 7+ETM/8 OLI; 

Sentinel2 

3.2.3-6 

Secchi_artificial; mean 

depth> 5m; date 

difference 

(sampling/satellite): +-5 

days 

Landsat 7+ETM/8 OLI; 

Sentinel2 

3.2.3-7 
TP_general; mean depth> 

3.5 m 

Landsat 7+ETM/8 OLI; 

Sentinel2 

3.2.3-8 
TP_natural; mean depth> 

3.5 m 

Landsat 7+ETM/8 OLI; 

Sentinel2 

3.2.3-7 

TP_artificial; Application of 

TP general model on 

artificial lakes: 

mean depth> 3.5; date 

difference 

(sampling/satellite): +-5 

days (where was possible) 

Landsat 7+ETM/8 OLI; 

Sentinel2 
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Since dataset of 2018 was used for the development of the linear 

equations e.g. the corrected WQ models, in-situ datasets of 2019 and 2020 

were used for their validation (Figure 3.2.2-1). In particular, as far as the year 

2019 is concerned, 239 pairs of in-situ measurements and Landsat 7 +ETM/ 8 

OLI values of reflectance (GEE) were created, accompanied by 242 pairs with 

Sentinel 2 images. Concerning the year of 2020, the paired reflectance of 

Landsat 7+ETM/ 8 OLI and Sentinel 2 (GEE) with in-situ data were 220 and 

286, respectively. Further validation of initial and corrected WQ models’ 

performance (Equations 3.2.3-1 to 3.2.3-8) for years 2019 and 2020 was based 

on the error metrics MAPE, RMSE and NRMSE. Additionally, MAPE values 

are interpreted according to Lewis (1982) concerning their forecasting 

potential (Table 2.3.2-2). 
 

3.3 Results 

3.3.1 Harmonization among SR values subjected to different AC 

processors   

After the application of WQ models, initially by employing DOS1-

corrected reflectance and then GEE-derived reflectance values connected to 

2018 in-situ values, linear regression analyses were conducted among the 

resulted values, concerning all the three WQ elements (Chl-a, Secchi depth, 

TP) and utilized satellite sensors (integrated Landsat 7 +ETM/8 OLI images; 

Sentinel 2). The aforementioned statistical analyses yielded linear equations 

(Table 3.3.1-1) accompanied by high coefficient of determination (R2) values 

except for Chl-aartificial model based on Landsat reflectance and Chl-ageneral, Chl-

aartificial and Secchigeneral models based on Sentinel 2 reflectance.  

Application of Chl-ageneral model on Landsat images indicated a 

superiority concerning the ME value when the LaSRC and LEDAPS 

correction methods are used (compared to DOS1) even though both values of 

RMSE are similar. On the other hand, the Chl-anatural model employing LaSRC 

and LEDAPS corrected data performs worse than the respective DOS1 one, 

based on values of both ME and RMSE. Chl-aartificial model performs equally 

well with all AC methods.  

Regarding the Secchi depths, the general model (DOS1; Table 3.3.1-1) 

presents a lower ME value and a similar RMSE to the respective employing 

the corrected reflectance retrieved from the GEE platform. The Secchinatural 

model, using LaSRC and LEDAPS correction methods, introduces a lower ME 

value but similar RMSE with the respective using DOS-1 corrected data. 

Moreover, Secchiartificial model applied on Landsat images performs better with 

DOS1-corrected reflectance.  



Based on the given statistics, all models predicting total phosphorus by 

using Landsat images are achieving better results when they employ DOS1 

corrected reflectance values.  

As far as the application of WQ models on Sentinel 2 images is 

concerned, Chl-a models present a similar pattern to Landsat-based analysis. 

More particularly, only the Chl-ageneral model performs better with Sen2Cor-

corrected reflectance whereas natural-only and artificial-only models are 

more successful when they employ DOS1 reflectance data. The same behavior 

is observed with Secchi models, where the general one presents better results 

with Sen2Cor methodwhereas natural and artificial ones perform better when 

employing the DOS1 corrected reflectance. Finally, the performance of TPgeneral 

model is comparable with both types of corrected reflectance (Sen2Cor, 

DOS1) while the TPnatural model offers better results when exploits the DOS1 

correction method.  
 

Table 3.3.1-1. Regression analysis basic statistics between the resulted values after the two-

fold employment of SR (DOS1- and LaSRC; LEDAPS; Sen2Cor-corrected reflectance in GEE) 

in WQ models (developed by Markogianni et al., 2020; 2022) concerning datasets of year 2018. 

(Different reflectance products are referred as DOS1 and as GEE reflect. for LaSRC; LEDAPS 

and Sen2Cor correction methods. The units of ME and RMSE are μg/l, meters and mg/l for 

Chlorophyll-a, Secchi depth and Total phosphorus, respectively).  

No. 
WQ 

element 
ME RMSE 

Equation 

(corrected WQ 

models) 

N R R2 

Std. 

Error of 

the 

Estimate 

Dur

bin

-

Wa

tso

n 

Sensor 

1a 

Chl-

a_general 

(DOS1) 

13.

8 
49.6 

LogChl-

a_general=0.22

1+0.61*(logChl-

a_general_GEE) 

115 
0.8

8 

0.7

8 
0.19 

1.9

9 

Lan
d

sat 

 

1b 

Chl-

a_general 

(GEE 

reflect.) 

2.9 49.1 

2a 

Chl-

a_natural 

(DOS1) 

1.8 20.7 LogChl-

a_natural= - 

0.109+(0.747*lo

gchl-

a_natural_GEE) 

26 
0.8

7 

0.7

6 
0.23 

2.0

3 

2b 

Chl-

a_natural 

(GEE 

reflect.) 

-

23.

9 

51.1      
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3a 

Chl-

a_artificial 

(DOS1) 

1.3

7 
4.04 LogChl-

a_artificial= 

0.279+(0.209*lo

gchl-

a_artificial_GEE

) 

33 
0.3

9 

0.1

5 
0.28 

1.6

8 

3b 

Chl-

a_artificial 

(GEE 

reflect.) 

1.9 4.3 

4a 
Secchi_gen

eral (DOS1) 

0.5

2 
2.32 SQRTSecchi_ge

neral= 

0.671+(0.737* 

SQRTSecchi_ge

neral_GEE) 

95 
0.9

1 

0.8

3 
0.25 

1.9

9 

Lan
d

sat 

 

4b 

Secchi_gen

eral (GEE 

reflect.) 

1.1

5 
2.5 

5a 
Secchi_nat

ural (DOS1) 
0.7 

2.87 

 

SQRTSecchi_nat

ural= 

0.079+(0.875* 

SQRTSecchi_nat

ural_GEE) 

26 
0.9

7 

0.9

4 
0.14 

2.3

2 

5b 

Secchi_nat

ural (GEE 

reflect.) 

-

0.0

52 

2.64 

6a 
Secchi_artif

icial (DOS1) 

-

0.0

6 

1.37 SQRTSecchi_arti

ficial= 

1.391+(0.475* 

SQRTSecchi_arti

ficial_GEE) 

33 
0.8

8 

0.7

8 
0.15 

1.7

2 

6b 

Secchi_artif

icial (GEE 

reflect.) 

1.7

5 
2.41 

7a 
TP_general 

(DOS1) 

-

0.0

03 

0.029 LogTP_general= 

-0.127+(0.925* 

LOGTP_general

_GEE) 

28 
0.9

9 

0.9

8 
0.03 

2.2

5 

7b 

TP_general 

(GEE 

reflect.) 

-

0.0

14 

0.034 

8a 
TP_natural 

(DOS1) 

-

0.0

03 

0.028 LogTP_natural= 

-0.177+(0.796* 

LOGTP_natural

_GEE) 

40 
0.9

6 

0.9

3 
0.08 

1.8

3 

8b 

TP_natural 

(GEE 

reflect.) 

0.0

07 
0.031 

9a 

Application 

of TP 

general 

model on 

artificial 

-

0.0

15 

0.026 

LogTP_artificial

= -

0.143+(0.905* 

LOGTP_artificial

11 
0.9

9 

0.9

8 
0.04 

1.8

9 



lakes 

(DOS1) 

_GEE) 

9b 

Application 

of TP 

general 

model on 

artificial 

lakes (GEE 

reflect.) 

-

0.0

23 

0.039 

10a 

Chl-

a_general 

(DOS1) 

2.7

7 
11.5 LogChl-

a_general= 

0.338+(0.329*lo

gchl-

a_general_GEE) 

64 0.6 
0.3

6 
0.43 

2.1

8 

Sen
tin

el 2
 

 

10b 

Chl-

a_general 

(GEE 

reflect.) 

0.5

6 
7.6 

11a 

Chl-

a_natural 

(DOS1) 

2.1 13.2 LogChl-

a_natural= 

0.125+(0.549*lo

gchl-

a_natural_GEE) 

23 
0.8

2 

0.6

8 
0.28 

0.7

4 

11b 

Chl-

a_natural 

(GEE 

reflect.) 

-

28.

9 

73.5 

12a 

Chl-

a_artificial 

(DOS1) 

2.6 7.7 LogChl-

a_artificial= 

0.06+(0.299*log

chl-

a_artificial_GEE

) 

33 
0.3

8 

0.1

5 
0.62 1.9 

12b 

Chl-

a_artificial 

(GEE 

reflect.) 

-

10.

2 

75.9 

13a 
Secchi_gen

eral (DOS1) 

-

0.7

8 

4.5 SQRTSecchi_ge

neral= 

1.646+(0.291* 

SQRTSecchi_ge

neral_GEE) 

103 
0.4

2 

0.1

7 
0.65 

1.8

6 

13b 

Secchi_gen

eral (GEE 

reflect.) 

-0.2 2.9 

14a 
Secchi_nat

ural (DOS1) 

-

0.1

3 

2.9 

SQRTSecchi_nat

ural= 

0.233+(0.841* 

SQRTSecchi_nat

ural_GEE) 

24 
0.9

7 

0.9

5 
0.13 

1.4

4 

14b Secchi_nat

ural (GEE 

-

0.6
2.8 



Markogianni V. Water Quality Assessment in Greek Lakes by Using Remote Sensing and Statistical Modelling 

199 | P a g e  

 

reflect.) 8 

15a 
Secchi_artif

icial (DOS1) 

0.1

5 
1.46 SQRTSecchi_arti

ficial= 

1.490+(0.399* 

SQRTSecchi_arti

ficial_GEE) 

36 
0.7

9 

0.6

2 
0.24 

1.8

9 
15b 

Secchi_artif

icial (GEE 

reflect.) 

1.9

8 
2.59 

16a 
TP_general 

(DOS1) 

0.0

06 
0.033 LogTP_general= 

-0.086+(0.963* 

LOGTP_general

_GEE) 

27 
0.9

9 

0.9

8 
0.04 

1.8

4 

Sen
tin

el 2
 

 

16b 

TP_general 

(GEE 

reflect.) 

-

0.0

03 

0.033 

17a 
TP_natural 

(DOS1) 

-

0.0

01 

0.032 LogTP_natural= 

-0.178+(0.742* 

LOGTP_natural

_GEE) 

42 
0.9

3 

0.8

7 
0.11 

2.3

7 

17b 

TP_natural 

(GEE 

reflect.) 

0.0

2 
0.04 

18a 

Application 

of TP 

general 

model on 

artificial 

lakes (2 

RECORDS) 

(DOS1) 

-

0.0

16 

 

No linear regression analysis between TP values (accrued from 

the application of general model to artificial lakes) derived both 

from GEE and manual analysis (2018 dataset) due to few 

records 

 

18b Application 

of TP 

general 

model on 

artificial 

lakes (2 

RECORDS) 

(GEE 

Reflect.) 

-

0.0

11 

 

 

3.3.2 Validation of initial and corrected lake WQ models employing 

LaSRC, LEDAPS and Sen2Cor corrected reflectance values retrieved 

from the GEE platform 

WQ models of Chl-a, Secchi depth and TP, developed by Markogianni et 

al. (2020); (2022), initially employed reflectance values from images in 



GEEand were matched with corresponding in-situ datasets of 2019 and 2020 

for both satellite sensors (mixed Landsat 7+ETM/8 OLI and Sentinel 2 images). 

Then, initial WQ models incorporated the developed corrected WQ models 

(Table 3.3.1-1) (noted as *_cor in Tables 3.3.1-2; 3.3.1-3; 3.3.1-4) and once again 

employed the same GEE-derived reflectance values of Landsat and Sentinel 2 

images with basic aim the exploration of any further enhancement of each 

WQ element’s quantification.  

 

3.3.2.1 Chl-a models 

Employment of GEE-retrieved reflectance values of Landsat and 

Sentinel images of 2019 in Chl-ageneral models (1a;4a; Table 3.3.1-2) yielded 

similar results based on ME and RMSE values while the employment of 

Sentinel reflectance resulted in lower MAPE values (122.3 vs 221.7).  

Considering the corresponding corrected equations (1b; 4b), Landsat-

employing model resulted in lower ME value (1.5 vs 3.7 μg/l) and slightly 

lower RMSE value (16.4 vs 16.8) compared to Sentinel-employing model. In 

general, the application of the corrected equations (1b; 4b) did not contribute 

to any further enhancement of Chl-a prediction (general model).  

Regarding the Chl-anatural models, initial model employing Sentinel 

images (5a) performed better compared to Landsat (2a), while the corrected 

models (2b;5b) improved greatly the Chl-a prediction in natural-only lakes, 

especially regarding the Landsat-based model, and according to ME, RMSE 

and MAPE values (Table 3.3.1-2).  

Chl-aartificial model achieved better results utilizing Landsat reflectance (3a 

vs. 12a), especially based on ME value, while no improvement was observed 

concerning the corrected models (3b; 6b), except for the MAPE value 

connected to Sentinel reflectance.  
 

Table 3.3.1-2. Basic statistical error metrics evaluating the Chl-a models’ performance in 

conjunction with in-situ WQ datasets of 2019. (The units of ME and RMSE are μg/l, NRMSE 

has no units while MAPE has percentage units). 

 

No. Model ME RMSE NRMSE MAPE Sensor 

1a Chl-a_general -1.34 16.4 0.11 221.7 

Landsat 

 

1b Chl-a_general_cor 1.5 16.4 0.11 169.5 

2a Chl-a_natural -13.6 29.1 0.2 350.5 

2b Chl-a_natural_cor 4.6 25.4 0.2 98.9 

3a Chl-a_artificial 0.81 4.6 0.17 79.3 



Markogianni V. Water Quality Assessment in Greek Lakes by Using Remote Sensing and Statistical Modelling 

201 | P a g e  

 

3b Chl-a_artificial_cor 1.71 4.9 0.18 87.5 

4a Chl-a_general 1.65 15.4 0.11 122.3 

Sentinel 

2 

4b Chl-a_general_cor 3.7 16.8 0.12 116.8 

5a Chl-a_natural -3.6 14.98 0.11 177.7 

5b Chl-a_natural_cor 7.4 25.4 0.18 84.9 

6a Chl-a_artificial 1.9 4.5 0.17 82.7 

6b Chl-a_artificial_cor 2.4 4.99 0.19 65.5 

 

3.3.2.2 Secchi Disk models 

Secchigeneral models (Table 3.3.1-3; 1a; 4a) performed, in general, better 

than Chl-a ones and especially when employing Landsat data (1a) compared 

to Sentinel ones (4a). The Secchi corrected model enhanced in a great extent 

the assessment of Secchi depths by using Landsat images (1b) while the 

respective model employing Sentinel reflectance (4b) presented only a slight 

refinement (except for MAPE values in both cases).  

Secchinatural models performed adequately regarding the prediction of 

Secchi depths while both the corrected models (2b; 5b) enhanced further their 

initial performance, especially the Sentinel-employing model (Table 3.3.1-3).  

Secchiartificial models performed almost similarly regarding the sensor 

used (3a; 6a) yielding Secchi Depth values with adequate accuracy in relation 

to in-situ ones, while the corrected models (3b; 6b), further improved the 

Secchi prediction based on ME and RMSE values (Table 3.3.1-3).  
 

 
Table 3.3.1-3. Basic statistical error metrics evaluating the Secchi Disk models’ performance in 

conjunction with in-situ WQ datasets of 2019. (The units of ME and RMSE are meters, NRMSE 

has no units while MAPE has percentage units). 

 

No. Model ME RMSE NRMSE MAPE Sensor 

1a Secchi_general 1.27 2.4 0.19 46.5 

Landsat 

1b Secchi_general_cor 0.65 2.2 0.17 52.7 

2a Secchi_natural -0.53 1.83 0.15 56.2 

2b Secchi_natural_cor 0.31 1.9 0.16 43.3 

3a Secchi_artificial 1.55 2.5 0.3 51.7 

3b Secchi_artificial_cor -0.2 2.01 0.24 83.2 

4a Secchi_general -0.3 3.8 0.3 80.8 Sentinel 



4b Secchi_general_cor -0.58 2.6 0.2 132.7 2 

5a Secchi_natural -1.16 3.4 0.27 57.4 

5b Secchi_natural_cor -0.49 2.7 0.22 48.7 

6a Secchi_artificial 1.31 2.4 0.29 60.2 

6b Secchi_artificial_cor -0.13 2.1 0.25 83.9 

 

 

3.3.2.3 TP models 

TPgeneral initial model performed slightly better with Sentinel images 

(Table 3.3.3-4; 4a) compared to Landsat (Table 3.3.3-4; 1a), while the corrected 

ones (Table 3.3.3-4; 1b; 4b) did not manage to improve the TP prediction with 

the exception of MAPE value.  

TPnatural model employing Sentinel data (Table 3.3.3-4; 5a) performed 

better compared to Landsat (Table 3.3.3-4; 2a) while the corrected models 

(Table 3.3.3-4; 2b; 5b) have not offered any significant differentiation.  

Application of TPgeneral model on artificial lakes sampled on 2019, 

presented better results when employing Landsat reflectance (3a; Table 3.3.3-

4) rather than Sentinel. The corrected TP model (3b) improved slightly the 

performance of the initial one whereas no corrected TP model has been built 

for Sentinel data, due to existence of few records. 

The application of all WQ models (including the corrected) on Landsat 

and Sentinel images of 2020 illustrated similar results with those accrued from 

the dataset of 2019; hence the corresponding statistical error metrics, are 

presented in the Appendix (Table 3).  
 
Table 3.3.3-4. Basic statistical error metrics evaluating the TP models’ performance in 

conjunction with in-situ WQ datasets of 2019. (The units of ME and RMSE are mg/l, NRMSE 

has no units while MAPE has percentage units). 

 

No. Model ME RMSE NRMSE MAPE Sensor 

1a TP_general 0.07 0.34 0.15 53.8 

Landsat 

1b TP_general_cor 0.08 0.36 0.16 47.5 

2a TP_natural 0.05 0.26 0.11 58.3 

2b TP_natural_cor 0.04 0.27 0.12 71.1 

3a 

Application of TP 

general model on 

artificial lakes 

-0.01 0.04 0.21 44.4 
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3b 

Application of TP 

general model on 

artificial lakes_cor 

-0.002 0.035 0.19 37.5 

4a TP_general 0.03 0.19 0.15 45.2 

Sentinel 

2 

4b TP_general_cor 0.039 0.19 0.15 41.2 

5a TP_natural 0.03 0.14 0.12 54.7 

5b TP_natural_cor 0.01 0.15 0.12 74.7 

6 

Application of TP 

general model on 

artificial lakes 

0.002 0.01 0.37 27.5 

 

 

3.3.2.4 All WQ models 

Observing basic statistical indices and in particular values of ME per 

model, clustered by year and utilized satellite sensor, it can be concluded that 

Chl-a models resulted in higher divergences from in-situ values compared to 

Secchi and TP models (Figure 3.3.1-1a). Based on negative residual values, it 

seems that Chl-ageneral model employing Landsat reflectance overestimates Chl-

a concentrations while the same applies for Chl-anatural models for both sensors 

but in greater extent for Landsat.  

Secchi models have the same behavior based on the sampling year 

(except for Secchinatural_cor model employing Sentinel data) but present 

differences based on the utilized sensor. Secchigeneral and Secchigeneral_cor models 

using Landsat data seems to underestimate Secchi depths whilst respective 

models employing Sentinel 2 data overestimate those measurements. TP 

models in general indicated low residual values (Figure 3.3.1-1a).  

The highest RMSE values are also accrued from the application of Chl-a 

models, followed by Secchi and TP models (Figure 3.3.1-1b). Distribution of 

RMSE values per WQ model is similar between the two years except for the 

value resulted after applying the Chl-anatural model on Landsat images of 2020. 

Additionally, Landsat-based Chl-a models suggest higher RMSE values 

compared to the respective Sentinel. 

Examining the MAPE values derived from all WQ models and taking into 

consideration the threshold value of 50 (reasonable forecasting; Lewis 1982; 

Table 2.3.2-2), it can be concluded that mostly Secchi models, followed by the 

respective TP can be characterized as efficient enough to quantify each 

corresponding WQ element (Figure 3.3.1-1c). Concerning the application of 

Chl-ageneral models and the corresponding corrected ones, it can be declared 

that even though there has been an enhancement in models’ performance, 



MAPE values are still quite high independently from sensor or year (Figure 

3.3.1-1c). Chl-aartificial models do not indicate any improvement concerning the 

year of 2020, but Sentinel-based model applied on 2019 dataset performs 

better than Landsat one (Figure 3.3.1-1c).  

Even though Secchigeneral models have not been upgraded, the initial 

uncorrected ones presented highly acceptable MAPE values, indicating a 

good forecasting performance. In addition to Secchi models, Secchinatural 

models, after the fine tuning, have resulted in highly acceptable MAPE 

values. Secchiartificial models were not particularly enhanced but MAPE values 

accrued from the initial equations can guarantee a satisfactory Secchi 

quantification.  

TPgeneral models have been improved based on both years and utilized 

sensors and particularly the employment of 2019 dataset resulted in valuable 

outcomes (for both sensors). TPnatural models were also not improved and 

concerning the initial models, only that employing Sentinel 2 reflectance of 

2020, is considered reliable to use. As far as the application of TPgeneral model 

on artificial lakes is considered, no safe conclusion can be drawn due to the 

existence of few available records. Despite this, Landsat-based models 

presented an improved performance for both studied years. Concerning the 

NRMSE metric, values’ distribution is presented per WQ model clustered by 

satellite sensor and year (Figure 3.3.1-2). Thus, values range from 0.1 to 1.3, 

while both of them are observed in 2020 employing Landsat data in Chl-ageneral 

and Chl-anatural model, respectively. In general, low values close to 0 indicate 

the good performance of each respective WQ model while the median and 

average values of the whole dataset equal to 0.18 and 0.21, respectively. 

Average NRMSE values per satellite sensor revealed a light superiority 

of models employing Landsat compared to Sentinel 2 reflectance (0.21 vs. 

0.23) while the utilization of satellite and in-situ dataset of 2019 presented 

better performance than this of 2020 (0.18 vs. 0.24).  
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Figure 3.3.1-1. Distribution of (a) ME, (b) RMSE and (c) MAPE values per WQ model clustered by satellite sensor and year of sampling. (Red reference line to Y axis is set to 

50, upper threshold value for reasonable forecasting. 

b 

c 



Markogianni V. Water Quality Assessment in Greek Lakes by Using Remote Sensing and Statistical Modelling 

207 | P a g e  

 

 
 
 

 
 

Figure 3.3.1-2. Distribution of NRMSE values per WQ model clustered by satellite sensor and grouped by year of sampling. (Red reference line to Y axis is set to 0.3 as an 
indicative low value).



3.4 Discussion 

This study is perhaps the first attempt to facilitate the quantification of 

spatiotemporal lake WQ across the Greek Lake Monitoring Network of WFD, 

by using multi-sensor reflectance values retrieved from GEE platform. 

Landsat (7 ETM+/8 OLI) and Sentinel 2 reflectance values in GEE were 

matched with concurrent WQ in-situ data of 2018 while the same pairs were 

created with reflectance derived from manually pre-processed respective 

images. 

Published Landsat- based empirical WQ models of Chl-a (Markogianni et al., 

2020), Secchi depth and Total Phosphorus (Markogianni et al., 2022) were 

applied twice employing two (2) different-atmospherically corrected 

reflectance values (DOS1 and other AC methods embedded in GEE) while 

linear regression analysis among resulted WQ values, separately for each 

sensor, yielded WQ-corrected linear equations accompanied by strong 

associations. Double employment (2018) of differently atmospheric corrected 

reflectance values in WQ models indicated the DOS1 as the most effective 

method for the quantification of lake WQ elements in almost all cases and for 

all sensors (Landsat/Sentinel 2); the only exceptions were the Chl-ageneral and 

Secchinatural models employing Landsat data, where LaSRC and LEDAPS 

methods were proved better and Chl-ageneral and Secchigeneral models employing 

Sentinel 2 data (Table 3.4-1; 2018 dataset), indicating their better performance 

after the application of Sen2Cor method. Results from several studies agree 

with the superiority of DOS method regarding the WQ monitoring of inland 

waters (Nazeer et al., 2014; Doña et al. 2014; El Alem et al., 2021; Abdelal et al. 

2022). In particular, Abdelal et al. (2022) studied the extraction of WQ 

parameters in King Talal reservoir (Jordan) by testing several atmospheric 

correction methods, including DOS, in Landsat 8 and Sentinel 2 images. 

According to their atmospheric correction analysis, the DOS algorithm was 

the most successful in representing the Sentinel-2 satellite image while they 

recorded that it can be applied on images of both satellite sensors with not 

much accuracy loss which is not the case for the rest correction techniques 

examined (dark spectrum fitting -DSF-, atmospheric and topographic 

correction -ATCOR-, and exponential extrapolation -EXP). Furthermore, El 

Alem et al. (2021) compared image-based and physical correction models for 

retrieving suspended particulate matter (SPM) concentrations in lakes (United 

States and Canada) using Landsat imagery. Based on the results, image-based 

models, particularly the COST and DOS, are more appropriate than physical 

models for retrieving SPM concentrations in inland waters if the inputs of the 

physical atmospheric parameters are not well controlled. The basic 

assumption concerning the physical methods is that they usually use two or 

more NIR (or SWIR) wavebands, where the marine signal is assumed to be 

zero (open ocean waters). However, the signal in the NIR (or SWIR) is not 
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negligible in Case-2 waters, due to the concentrations of particulate matter in 

inland water bodies, and, consequently, maritime correction over inland 

water causes low or even negative water reflectance in the visible bands. As a 

consequence, reflectance over inland water bodies is assessed based on 

assumptions including 0 water-leaving radiance in the NIR (or SWIR) and 

aerosol origin/type models, resulting to the confusion of this natural optical–

physical relationship (in terms of reflectance) of WQ parameters across the 

electromagnetic spectrum (El Alem et al., 2021). 

Addittionally, cases of 2018 dataset where low values of coefficient of 

determination among same-located WQ values were observed, concern 

mainly Chl-a models (general and artificial) employing Sentinel 2 reflectance. 

On one hand it is well known that mapping Chl-a in Case 2 waters is a 

complicated task and characterized by less accuracy since the optical 

properties are measured based on a compound of dissolved organic matter, 

dead organic-inorganic particulate matter, and phytoplankton (Chl-a; 

Markogianni et al., 2020). On the other hand, hereby utilized WQ empirical 

models have been developed based on Landsat-7 ETM+ and 8 OLI images 

which were atmospherically corrected with the DOS1 method; hence it is 

expected to be affected not only by this factor but also by the corresponding 

spectral composition and eventually perform better when employing Landsat 

rather than Sentinel 2 reflectance, as it is hereby observed (Table 3.4-1; 

datasets of 2019 and 2020). Major exceptions constitute the Chl-anatural, TPgeneral 

and TPartificial models which seem to present more reliable results, for both 

validation years, with Sentinel 2 images.  

Concerning the question whether the corrected WQ models contribute to 

the improvement of WQ elements’ quantification, the answer is, in general, 

positive. In particularly, regarding Chl-a models, Chl-anatural model is 

presented widely enhanced for both satellite sensors and validation years 

(except for Sentinel 2 in 2020). Secchi models (general, natural, artificial) 

illustrated the greatest improvement, compared to Chl-a and TP models, with 

the exception of general and artificial-only models employing Sentinel 2 

images in 2020. TP models also provided refined values based on in-situ 

datasets, except for the natural-only ones.  
 

 

 

 

 

 

 



Table 3.4-1. Summarized results indicating the best performance of empirical WQ models 

employing a) different AC processors (2018 dataset) and b) GEE-derived reflectance values 

(2019, 2020) and exploration of the correction necessity via the application of the sensor-

specific models. (x symbol denotes the best performance among the sensors used; NO* 

denotes that only reduced MAPE values were observed while YES* denotes increased MAPE 

values). 

2018 
Chl-

ageneral 

Chl-

anatural 

Chl-

aartificial 
Secchigeneral Secchinatural Secchiartificial TPgeneral TPnatural TPartificial 

Landsat 
LaSRC, 

LEDAPS 
DOS1 ALL DOS1 

LaSRC, 

LEDAPS 
DOS1 DOS1 DOS1 DOS1 

Sentinel 2 Sen2Cor DOS1 DOS1 Sen2Cor DOS1 DOS1 ALL DOS1 DOS1 

2019 
Chl-

ageneral 

Chl-

anatural 

Chl-

aartificial 
Secchigeneral Secchinatural Secchiartificial TPgeneral TPnatural TPartificial 

Landsat X  X X X X   X 

Sentinel 2 X X     X X  

ENHANCEMENT 

Landsat NO* YES NO YES YES YES*  YES NO YES 

Sentinel 2 NO YES NO* YES YES YES*  YES NO 
NO 

MODEL 

2020 
Chl-

ageneral 

Chl-

anatural 

Chl-

aartificial 
Secchigeneral Secchinatural Secchiartificial TPgeneral TPnatural TPartificial 

Landsat X  X X X X X  X 

Sentinel 2  X     X X  

ENHANCEMENT 

Landsat NO YES NO YES* YES YES* YES NO YES 

Sentinel 2 NO* NO* NO* NO YES NO YES NO 
NO 

MODEL 

 

Chl-ageneral model employing Landsat reflectance yielded for both 

validation years, an average RMSE of 12.21 μg/l whereas the corresponding 

value related to Sentinel 2 data equals to 14.9 μg/l. The Chl-anatural corrected 

model is proposed to be utilized in conjunction with Landsat data while the 

average RMSE value is 17.45 μg/l. The Chl-aartificial model (without correction) 

presented lower RMSE values, 5.4 and 5.7 μg/l for Landsat and Sentinel 2 

reflectance, respectively.  

To our knowledge, there are a few recent studies trying to estimate Chl-a 

concentrations at a large regional scale with GEE. Lin et al. (2018) combined in 
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situ Chl-a data from 1157 lakes (2007) with Landsat data and developed a 

well-validated lake national model (RMSE = 34.9 μg/L), by using machine 

learning algorithms built into the GEE. Wang et al. (2020) used GEE to 

automatically form match-up points from multi-sensor satellite observations 

with ground WQ samples and then an SVM was developed to map Chl-a 

concentrations across 12 lakes in the tri-state region of Kentucky, Indiana and 

Ohio (USA). Furthermore, RMSE of Chl-a of the SVM model trained by 

Landsat 8 OLI imagery was 4.42 μg/L. Kislik et al. (2022) analyzed four 

spectral indices - Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Chlorophyll Index (NDCI), B8AB4, and B3B2 - to 

retrieve chlorophyll-a data for algal bloom identification in two highly 

dynamic freshwater reservoirs by using  Sentinel 2-MSI in GEE. Among the 

results, NDCI most accurately identified chlorophyll-a across all study sites 

(highest adjusted R2 = 0.84, lowest RMSE = 0.02 μg/l), followed by NDVI. A 

few studies have also been conducted to estuarine and marine environments. 

Li et al. (2022) extracted Chl-a concentrations of SeaWiFS and Terra/Aqua 

MODIS embedded in GEE across the Yellow Sea to examine their relationship 

to green tide while Bioresita et al. (2021) used Sentinel 2 images through the 

GEE platform to monitor Chl-a concentrations in the Kali Porong Estuary 

(Indonesia) employing certain estimation formulas. 

Except for GEE utilization, other studies of remotely estimation of Chl-a 

concentrations have yielded comparable and even higher RMSE values than 

ours; Bonansea et al. (2018) presented an RMSE of 18.47 μg/l in the largest 

artificial reservoir in Córdoba province (Rio Tercero, Argentina) while Doña 

et al. (2014) showed an RMSE of 40 μg/l across certain Spanish lakes and 

ponds. Additionally, Zhang et al. (2020) developed an SVM model on Landsat 

8 OLI images to estimate the Chl-a concentrations of multiple lakes in China, 

while they reported an RMSE of 22.64 μg/L. 

As far as the Secchi models are concerned, all of corrected ones 

presented enhanced results; Secchigeneral yielded average 2-year RMSE values 

of 2.22 m (Landsat) and 2.7 m (Sentinel 2), Secchinatural model 1.95 m (Landsat) 

and 2.95 m (Sentinel 2) while the respective RMSE values resulted from the 

Secchiartificial model equal to 1.91 m (Landsat) and 2.05 m (Sentinel 2). One of 

the few studies that combined the derivation of Secchi depth in reservoirs and 

GEE, was conducted by Somasundaram et al. (2021) while the resulted RMSE 

value is particularly low and equals to 32.6 cm. Considering the high 

difference between this RMSE value and the hereby derived one, it should be 

noticed that Somasundaram et al. (2021) applied a Zsd (Secchi Disk depth) 

model consisted of a combination of the Normalized Difference Chlorophyll 

Index (NDCI) and a mechanistic model for the derivation of the absorption 

coefficient and backscattering. According to literature (IOCCG, 2006) those 

models depict more applicability and reliable results compared to those 



utilizing the relationship between WQ parameters and in-situ measurements. 

Furthermore, Zhang et al. (2021) documented the most recent Secchi Disk 

estimation models used in previous studies since 1993, based on remote 

sensing techniques. Referring to the comparison of their performance, the 

average RMSE value among those studies is 1.13 m while the highest (1.7 m) 

has been recorded by Allan et al. (2011). 

Considering the performance of TP models, it is evident that only the 

TPgeneral model needs the corrected version while the specially developed 

model for natural-only lakes stands efficiently without correction. Corrected 

TPgeneral model yielded RMSE values of 0.23 mg/l (Landsat) and 0.14 mg/l 

(Sentinel 2), TPnatural model 0.18 mg/l (Landsat) and 0.11 mg/l (Sentinel 2) while 

the application of TPgeneral model on artificial lakes- illustrated only in Landsat 

images- resulted in an RMSE value of 0.02 mg/l. During a thorough literature 

review, none recent study was detected utilizing GEE for the quantification of 

total phosphorus concentrations in lakes. Nevertheless, a survey was 

conducted to record RMSE values of remotely-sensed phosphorus 

concentrations to compare with hereby results. Zeng et al. (2022) developed a 

novel-semi-analytical algorithm in the eutrophic Lake Taihu, China and the 

validation showed satisfactory performance (RMSE=0.01 mg/l). Lim and Choi 

(2015), who also constructed multiple regression equations to retrieve total 

phosphorus concentrations in Nakdong river Korea, reported a TP regression 

model accompanied by an RMSE value of 0.01 mg/l. Lastly, Song et al. (2012) 

established a hybrid model combining genetic algorithms and partial least 

square (GA-PLS) to estimate remotely TP concentrations in 3 central Indiana 

reservoirs and RMSE values ranged from 0.009 to 0.03 mg/l, depending on in-

situ datasets. 

Taking into consideration the hereby-developed WQ models’ 

evaluation, it is proven that GEE public data is sufficient for mapping Chl-a, 

Secchi depth and TP concentrations in a large geographical region and 

particularly at a national scale (Greece). Even though the WQ models were 

developed based on multiple linear regression analyses (MLRs) and Landsat 7 

+ETM and 8 OLI images, their efficiency was indicated when were applied in 

GEE images, despite the pre-processing differentiation. 
 

3.5 Conclusions 

Estimation of important WQ elements in lakes across Greece employing 

satellite data embedded in the GEE platform, facilitates the monitoring and 

the estimation of their trophic status at a national scale. Hereby derived 

results indicated that WQ models, empirically developed, are applicable to 

both archived and future Landsat and Sentinel 2 image data despite the 

different pre-processing methodologies applied. Further, the aforementioned 
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models were trained based on a big dataset collected over different lakes with 

various optical properties and covering a long enough period of time. 

Efficient application of empirical WQ models in GEE platform exempt 

users from the complicated AC of raw image products, key procedure for 

achieving stable performance. The hereby results confirm the spatio-temporal 

stability of the models while when combined with GEE-retrieved SR, offer 

scientists and Greek competent authorities the opportunity to exploit this 

massive warehouse of data for map long-term trend in WQ of lakes and 

identify the underlying factors and possible pollutant threats. 
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4. Operational Development of Techniques 

for Characterizing Water Quality of 

oligotrophic Case-2 waters  
 

4.1  Analysis on the WQ models’ Performance in 

Oligotrophic Case-2 waters 

4.1.1 Introduction 

The classification of waters in Case 1 (oceanic) and Case 2 (coastal 

regions, rivers, and lakes), refined by Gordon and Morel (1983), is 

characterized by great importance when RS techniques are utilized to monitor 

their WQ and/or trophic status. The distinction between the two cases has 

some significant effects on the interpretation and modelling of optical data. In 

particular, according to this classification scheme, the optical properties of 

Case 1 waters are determined by phytoplankton and co-varying substances, 

while Chl-a is considered a proxy of phytoplankton concentration. This 

assumption has facilitated the implementation of large-scale optical models 

and the development of Chl-a predicting algorithms for Case 1 waters 

(Markogianni et al., 2022).  

It is, however, acknowledged that Case 2 waters are more complex than 

Case 1 concerning their composition and optical properties. Hence, satellite 

ocean color algorithms, primarily developed for ocean, cannot be always 

applied to lakes due to, except for optical complexity, atmospheric conditions, 

altitudes and land proximity (IOCCG, 2018; Seegers et al., 2021). One of the 

main factors hindering accurate WQ monitoring in Case 2 waters is the fact 

that suspended material, yellow substances, and perhaps bottom reflectance 

vary independently of each other. Moreover, alterations in optical signal and 

the concentrations of the dissolved constituents are often so small that they 

hinder the ability to extract reliable information (Gholizadeh et al., 2016).  

Hence, given the difficulty that WQ monitoring of Case 2 waters 

constitutes a multi-variable, non-linear problem, it is more realistic to 

establish a series of algorithms rather than a single all-purpose one. In this 

way, more than one algorithm contributes to capturing and solving the 

problem for all variables and over several and different ranges of 

concentrations (IOCCG, 2000). Those different ranges of concentrations 

correspond to classes of trophic status. Carlson (1977) developed a method of 

trophic status classification considering Chl-a and phosphorus concentrations 

and Secchi disk depths (ZSD). Ranges of those WQ elements were associated 

with three (3) main trophic classes: oligotrophic, mesotrophic and eutrophic 
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(McCullough, 2012) including also transitional categories (e.g. ultra-

oligotrophic, hypertrophic; Watanabe et al., 2020).  

Based on this rationale, very clear lakes are classified as oligotrophic 

Case-2 rather than Case-1 (Gons et al., 2008) since they typically receive 

significant levels of terrigenous input (Gons and Auer, 2004), while dissolved 

organic carbon (DOC), in this type of lakes, has an exceptionally powerful 

influence on water clarity (Gunn et al., 2001). Hence, there is a need for 

further algorithm development, especially for oligotrophic water bodies, 

while, of principal value is the choice of the appropriate wavelengths.  

On one hand, red/NIR bands are usually utilized for the assessment of 

Chl-a concentrations in Case-2 waters (O'Reilly and Werdell, 2019; Seegers et 

al. 2021); however, AC algorithms need to further improve to replicate the 

spectral shape in the NIR bands so that the NIR-red band ratio algorithms can 

be used in such turbid waters (Warren et al., 2019). On the other hand, 

escpecially for clear waters, the use of blue-green ratio has been reported as 

the most effective for the monitoring of WQ elements (Binding et al. 2019; 

O'Reilly and Werdell, 2019, Warren et al., 2019) since their turbidities are non-

algal and inorganic (Warren et al., 2019) 

In purview of the above, hereby-developed lake WQ quantitative 

models (Chl-a, Secchi depth and Total phosphorus), based on wide 

concentration ranges, were applied to Landsat 8 OLI images illustrating two 

(2) Greek oligotrophic lakes. Basic aims of this effort are to explore the 

efficiency of the aforementioned WQ models in monitoring Trichonis and 

Amvrakia lakes’ trophic status and reach final conclusions concerning 

whether there is indeed a need for the development of special algorithms 

exclusively oriented to oligotrophic waterbodies. 
 

4.1.2 Methodology 

4.1.2.1 Study areas 

Trichonis Lake (Figure 4.1.2-1) is the largest natural freshwater body in 

Greece and it receives pollutants from numerous anthropogenic activities, 

especially from intensive agricultural practices, urban sewages, stock grazing 

land and small industries. Even though large quantities of fertilizers are 

applied in the lake’s catchment, the trophic status of the lake is oligotrophic to 

oligomesotrophic (Koussouris 1993; Zacharias et al., 2002; Bertahas et al., 

2006). Trichonis Lake is a deep freshwater body which has a surface area of 97 

km2, a maximum depth of 58 m and a potential water volume of 

approximately 2.8x109 m3 (Figure 4.1.2-1; Dimitriou et al., 2001).  

Lake Amvrakia (Figure 4.1.2-1) belongs to the European Ecological 

Network Natura 2000, has a surface area of 14 km2 and a maximum water 

depth of 50 m. Lake Amvrakia is characterized by strong water level 



fluctuations due to high evaporation rates, especially during the summer, and 

the irrigation of the surrounding agricultural area. These alterations usually 

lead to the drainage of the shallower northern part (Figure 4.1.2-1) of the 

basin in certain periods and, consequently, to the fluctuation of the surface 

area of the lake (Zotos et al., 2021).  
 
 

 
 

Figure 4.1.2-1. Sampling stations in Trichonis and Amvrakia lakes. 

 
 

 

4.1.2.2 Water sampling, in-situ data and Chemical analyses  

Water samplings were conducted by HCMR staff in the framework of a 

research project studying water quality of lakes and rivers located in the 

western part of central Greece. A total of twenty-two (22) and eleven (11) 

water samples were collected across the surfaces (5-10 cm) of lake Trichonis 

and Amvrakia, respectively while a GPS (Global Position System) was 

utilized to record the coordinate data of each station. Water was collected 

with NIO samplers of 1.5-l capacity in 29-30/10/2013 (Trichonis), 31/10/2013 

(Amvrakia), 30/08/2014 (Trichonis) and 31/08/2014 (Amvrakia). Following 

collection, the water samples for nutrient analysis were preserved by the 

addition of HgCl2 and on return to the HCMR laboratories were filtered and 

analyzed for total phosphorus concentrations. Samples were filtered through 

0.45 μm cellulose acetate filters that had been precleaned with 10% 

hydrochloric acid (pH = 2) followed by rinsing with Milli-Q water.  
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A specific quantity of water samples for chlorophyll-a (usually 1 L) was 

filtered through Whatman GF/F filters immediately after collection. These 

filters were maintained in a dry and dark environment at −15 °C and then 

transferred to HCMR laboratories for further analysis.  

In-situ data utilized in the framework of this study includes Chl-a and 

TP concentrations. However, since Secchi disk measurements have not been 

conducted in none of the studied lakes, an effort has been made to estimate 

Secchi depths from turbidity data based on the following regression model 

(Rasmussen et al., 2009; Equation 4.1.2-1): 

 

𝑆𝑒𝑐𝑐ℎ𝑖 𝐷𝑒𝑝𝑡ℎ = 11.123 ∗ 𝑇𝐵𝐷𝑌−0.637    (4.1.2-1) 

 

where Secchi Depth is in feet and TBDY is turbidity in FNU. This equation 

includes a bias correction factor of 1.01 while more information can be found 

in http://pubs.usgs.gov/tm/tm3c4/. Furthermore, it should ne noted that 

turbidity measurements were conducted only in water sampling of 2013, thus 

Secchi depth values concern only this year. Turbidity was measured with the 

HACH 2100Q IS Portable Turbimeter. 

Concentrations of TP were determined in the soluble fraction using the 

photometer Merck Nova 400. The Chl-a concentrations were determined with 

a TURNER 00-AU- 10U fluorometer according to the method of Holm-

Hansen et al. (1965), modified by Welschmeyer (1994). 

 

 

Trophic status classification 

In order to classify the water quality of Trichonis and Amvrakia lakes, 

the EPA (Environmental Protection Agency) classification system was used 

(EPA, 2000).  According to this scheme, the classification of lakes into seven 

quality classes (Table 4.1.2-1) is based on the total phosphorus concentration, 

water transparency and trophic index (Trophic State Index—TSI). Trophic 

index TSI is calculated for each classification quality parameter as follows 

(Carlson and Simpson, 1996): 

 

𝑇𝑆𝐼 (𝑆𝐷) = 60 − 14.41 ∗ 𝐿𝑁(𝑆𝐷)     (4.1.2-2) 

 

𝑇𝑆𝐼 (𝐶ℎ𝑙𝑎) = 9.81 ∗ 𝐿𝑁(𝐶ℎ𝑙𝑎) + 30.6    (4.1.2-3) 

 

𝑇𝑆𝐼(𝑇𝑃) = 14.42 ∗ 𝐿𝑁(𝑇𝑃) + 4.15     (4.1.2-4) 

 

where SD is the Secchi disk (m) and Chl-a and TP (μg/l) are the concentrations 

of chlorophyll-a and total phosphorus, respectively. In the context of this 

study, there are no available data of Secchi disk therefore, this water quality 

http://pubs.usgs.gov/tm/tm3c4/


classification effort is based only on TP and Chl-a values, aiming to better 

understanding of the prevailing conditions during the sampling periods and 

afterwards to ascertain lakes’ oligotrophic nature. 

 

Table 4.1.2-1. Proposed lake WQ classification system by United States EPA (Carlson and 

Simpson, 1996). 

 

TSI average SD (m) TP (μg/l) Chl-a (μg/l) Trophic status-Attributes 

< 30 > 8 < 6 < 0.94 
Oligotrophic-Clear water, oxygen throughout the 

year in the hypolimnion 

30 - 40 8 - 4 6 - 12 0.94 – 2.6 

Oligotrophic -A lake will still exhibit 

oligotrophy, but some shallower lakes will 

become anoxic during the summer 

40 - 50 4 - 2 12 - 24 2.6 – 6.4 

Mesotrophic-Water moderately clear, but 

increasing probability of anoxia during the 

summer 

50 - 60 2 - 1 24 - 48 6.4 - 20 

Eutrophic-Lower boundary of classical eutrophy: 

Decreased transparency, warm-water fisheries 

only 

60 - 70 0.5 - 1 48 - 96 20 - 56 
Eutrophic-Dominance of blue-green algae, algal 

scum probable, extensive macrophyte problems 

> 70 < 0.25 > 96 > 56 
Hypereutrophic, Heavy algal blooms possible 

throughout the summer, often hypereutrophic 

 

 

4.1.2.3 Satellite data and pre-processing 

Two Landsat 8 OLI images (Path 184, Row 33) illustrating Trichonis and 

Amvrakia lakes of 30 October 2013 and 30 August 2014 were used for this 

study. The satellite images were acquired from the USGS (United States 

Geological Survey) Data Centre (http://glovis.usgs.gov/) while image 

processing was completed in ENVI software (EXELIS Visual Information 

Solutions, Version 5.1).  

Each band for both Landsat 8 OLI images was radiometrically and 

geometrically corrected (using GCP). After assessing geometric accuracy 

based on Global Position System measurements (coordinate data) taken in the 

study areas, the geometrical accuracy was determined to be less than one half 

pixel (<15 m). Finally, each band was converted to top-of-atmosphere (TOA) 

reflectance with sun angle correction using radiometric calibration coefficients 

provided in the metadata file to normalize the images for comparison 

http://glovis.usgs.gov/
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between different days. For atmospheric correction, dark object subtraction 

(DOS) technique was used, which takes the minimum value in each band and 

removes it from each pixel (Lathrop et al. 1992; Keiner and Yan 1998; Vincent 

et al., 2004).  
 

4.1.2.4 Application of WQ models in Landsat 8 OLI images and 

performance evaluation 

Hereby used WQ models concern quantitative Chl-a models developed 

by Markogianni et al. (2020) and Secchi depth and TP models developed by 

Markogianni et al. (2022). Application of WQ models includes Chl-a models 

(General- Equation 4.1.2-5; Natural- model-Equation 4.1.2-6), Secchi depth 

models (General-Equation 4.1.2-7; Natural model- Equation 4.1.2-8) and TP 

models (General-Equation 4.1.2-9; Natural model -Equation 4.1.2-10). 

Secchigeneral and Secchinatural models have been applied only in Landsat 8 OLI 

image of 2013 while the same applies for TPnatural model (Equation 4.1.2-10) 

since it employs Secchi depth data. 
 
 

log 𝐶ℎ𝑙𝑎 = 3.599 − 0.63 ∗ (
𝑏𝑙𝑢𝑒

𝑟𝑒𝑑
) − 2.183 ∗ (

ln 𝑟𝑒𝑑

ln 𝑠𝑤𝑖𝑟2
)    (4.1.2-5) 

 

log 𝐶ℎ𝑙𝑎 = 4.443 − 1.421 ∗ (
𝑏𝑙𝑢𝑒

𝑔𝑟𝑒𝑒𝑛
) − 3.454 ∗ (

ln 𝑟𝑒𝑑

ln 𝑠𝑤𝑖𝑟2
) + 1.304 ∗ (

𝑟𝑒𝑑

𝑔𝑟𝑒𝑒𝑛
)(4.1.2-6) 

 

𝑆𝑄𝑅𝑇(𝑆𝑒𝑐𝑐ℎ𝑖)𝑔𝑒𝑛𝑒𝑟𝑎𝑙 = 1.215 − 2.479 ∗ (𝑏𝑙𝑢𝑒 + 𝑟𝑒𝑑 +
𝑟𝑒𝑑

𝑏𝑙𝑢𝑒
) + 3.394 ∗ (

𝑙𝑛𝑔𝑟𝑒𝑒𝑛

𝑙𝑛𝑠𝑤𝑖𝑟2
) 

(4.1.2-7) 

 

𝑆𝑄𝑅𝑇(𝑆𝑒𝑐𝑐ℎ𝑖)𝑛𝑎𝑡𝑢𝑟𝑎𝑙 = 1.172 − (1.003 ∗ 𝑙𝑜𝑔𝑐ℎ𝑙 − 𝑎) − (1.031 ∗ 𝑙𝑜𝑔𝑟𝑒𝑑)(4.1.2-8) 

 

𝐿𝑜𝑔𝑇𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑙 = −1.425 + 0.452 ∗ 𝑙𝑜𝑔𝐶ℎ𝑙𝑎 − 0.573 ∗ (
𝑙𝑛𝑟𝑒𝑑

𝑙𝑛𝑠𝑤𝑖𝑟1
)  (4.1.2-9) 

 

𝐿𝑜𝑔𝑇𝑃𝑛𝑎𝑡𝑢𝑟𝑎𝑙 = −0.633 − (0.704 ∗ 𝑙𝑜𝑔𝑆𝑒𝑐𝑐ℎ𝑖) − 0.392 ∗ (
𝑔𝑟𝑒𝑒𝑛

𝑟𝑒𝑑
)   (4.1.2-10) 

 
    

After the models’ application, satellite-derived values of Chl-a and TP 

(general) concentrations of 2013 and 2014 and Secchi depth and TP (natural) 

of 2013, acquired from both Trichonis and Amvrakia lakes, were compared 



with the corresponding in-situ values. WQ models’ performance was based on 

the Spearman’s (r) correlation coefficient and the error metrics Mean Absolute 

Percentage Error (MAPE), Root Mean Squared Error (RMSE) and Normalized 

Root Mean Squared Error (NRMSE).  
 
  

     

4.1.3 Results 

4.1.3.1 Trophic status classification 

Considering the concentrations of total phosphorus and Chl-a and the 

estimated average Trophic Index (TSI) of both the sampling campaigns, 

Amvrakia Lake is characterized as oligotrophic to oligomesotrophic for both 

years (Table 4.1.3-1) due to increased TP concentrations. Furthermore, 

according to Markogianni et al. (2018), Trichonis lake was also classified as 

oligotrophic to oligomesotrophic in 2013 and oligotrophic in 2014. 
 
 

Table 4.1.3-1. EPA classification system and estimated TSI for Amvrakia Lake. 

 
avg Chl-a (μg/l) TSI (Chl-a) 

TP 
(μg/l) TSI (TP) 

TSI 
average  

Classification 

2013 0.77 27.99 21.00 48.05 38 
Oligotrophic to 

oligomesotrophic 

2014 0.43 22.4 32.45 54.33 38.4 
Oligotrophic to 

oligomesotrophic 

 

4.1.3.2 WQ models’ application in Trichonis and Amvrakia lakes 

Application of WQ models in Trichonis and Amvrakia lakes indicated 

their bad performance concerning all WQ elements. Even though the 

correlations between in-situ and satellite Chl-a (general and natural) data were 

statistically significant (Table 4.1.3-2), the values of error metrics NRMSE and 

median MAPE are particularly high (indicating inaccurate forecasting). 

Median MAPE was selected as it is considered more resilient to outliers than 

MAPE. Relatively better performance was presented by TP models based on 

RMSE, NRMSE and MAPE metrics; however, no correlation was detected 

among satellite and in-situ data. Secchi models’ performance was also poor 

but, in this point, it should be noted that in-situ Secchi values have emerged 

via the transformation of turbidity values; factor that has surely affected their 

effectiveness and contributed to statistical insignificant correlations. 
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Table 4.1.3-2. Error metrics’ values after the WQ models’ application to Landsat 8 OLI images 

(** Correlation is significant at the 0.01 level (2-tailed). 

WQ model 
Units 

avg 

in-situ 

avg 

satellite ME RMSE NRMSE 

median 

MAPE 

Spearman 

r 

Chl-ageneral μg/l 0.66 2.25 -1.6 1.9 1.6 256.8 0.513** 

Chl-anatural μg/l 0.66 1.84 -1.19 1.8 1.5 176.6 0.44** 

TPgeneral mg/l 0.031 0.02 0.012 0.022 0.32 54.7 -0.16 

TPnatural 

(2013) 
mg/l 0.035 0.033 0.002 0.024 0.34 37.9 -0.17 

Secchigeneral 

(2013) 
m 3.31 6.43 -3.12 3.35 0.79 93.6 0.099 

Secchinatural 

(2013) 
m 3.31 8.26 -4.95 5.1 1.2 143.4 0.08 

 

 

4.1.4 Discussion 

Landsat 7 ETM+/8 OLI-developed WQ models have been established on 

the basis of in-situ data, sampled from 50 different lake water bodies across 

Greece. Chl-a, Secchi and TP quantitative models have been built based on a 

wide range of concentrations (Markogianni et al., 2020; 2022) representing 

almost all trophic status classes. In the framework of this work, an effort has 

been made to apply those WQ models and explore their performance in a 

distinct category of Case-2 waters, e.g. oligotrophic lakes. Trichonis and 

Amvrakia lakes are classified as oligotrophic based on both the recorded 

literature and the hereby trophic status classification, which relied on two (2) 

field trips in 2013 and 2014. Furthermore, trophic status of both lakes has been 

assessed by utilizing in-situ data from numerous sampling stations across 

each studied lake. 

Application of WQ models in oligotrophic Trichonis and Amvrakia 

lakes was ineffective while particularly low and homogeneous measured Chl-

a concentrations indicated lakes where the greatest optical contribution 

originates from non-algae particles. Considering the relevant literature there 

are a plethora of studies with similar to hereby results. Seegers et al. (2021) 

evaluated the Cyanobacteria Index (CI)-based Chl-a algorithm (ChlT16) by 

using MERIS radiometric time series (2002-2012) for over 2300 waterbodies 

(United States) and more than 5000 in Alaska while they tried to derive a new 

CI-to-Chl-a relationship (ChlBS). According to their results, the ChlBS algorithm 

performed best in the >7 μg/l range, while underachieved at the lowest 

chlorophyll concentrations (oligotrophic-mesotrophic). Seegers et al. (2021) 

attributed the bad performance mainly to the need of ρs(λ) signal in the NIR 

to overcome the absorption of pure water in that range of low concentrations 

and afterwards to the fact that satellite instrument performance in the NIR 



may confound meaningful retrievals. Moreover, Gilerson et al. (2010) 

reported that Chl algorithms using the red/NIR surpassed blue-green band 

ratio algorithms at concentrations higher than 5 μg/l while Binding et al. 

(2019) also found that the MCI (Maximum Chlorophyll Index) and CI 

performed better than band-ratio approaches for Chl-a concentrations higher 

than 10 μg/l. 

Another study was conducted by Gons and Auer (2004) who attempted 

to use spectral reflectance R (0, λ) for Chl-a retrieval in the Keweenaw Bay 

(Lake Superior). Measured spectra were typical of oligotrophic lacustrine 

waters while strong absorption by water was observed in the red region 

which hindered the accurate detection of Chl-a absorption. Ultimately, they 

also indicated the need of algorithm development for oligotrophic 

waterbodies.  

Considering the utilized bands for Chl-a retrieval in oligotrophic lakes, 

Gons et al. (2008) implied that Chl-a mapping in oligotrophic areas of the 

Great Lakes (north America) remains problematic for the current generation 

of satellite sensors, in particular MERIS and MODIS. More specifically, they 

proposed the existence of more and narrower bands in the red-NIR spectral 

region in the case where the adequate performance of their empirically 

developed algorithm- employing blue-to-green bands- was coincidental. 

O'Reilly and Werdell (2019) also suggested an approach using a blue-green 

band ratio algorithm in oligotrophic systems and a red/NIR method in lakes 

with concentrations ranging 3–155 μg/L. 

Considering the contribution of machine learning methods in trophic 

status classification of diverse water bodies, Watanabe et al. (2020) tested 

Artificial Neural Network (ANN), Random Forest (RF) and Support Vector 

Machine (SVM) algorithms in four (4) reservoirs in Brazil based on in-situ 

reflectance measurements while all of them exhibited the poorest modelling 

for oligotrophic samples. 

As far as the calculation of Secchi depths in Trichonis and Amvrakia 

lakes is concerned, no safe conclusions can be drawn in the context of this 

study, due to absence of available data. However, according to literature, the 

Secchi depth monitoring seems also problematic in lakes with fewer particles 

dissolved in water. More particularly, established relationships between 

trophic status and Secchi depths of Maine lakes indicated more accurate 

estimates -in relation to observed conditions- for eutrophic and mesotrophic 

(on average within 1 m) than for oligotrophic (on average deviated higher 

than 1 m) lakes (Maine Pearl, 2011). According to Lathrop (1992), increased 

turbidity and phytoplankton connected with higher chlorophyll-a 

concentrations, result in escalating energy received by the satellite; thus, red 

band is a less accurate predictor of Secchi depth in clear waters (McCullough, 

2012). McCullough (2012) also highlights that the longer red band may reach 

the bottom before the deepest SDD is attained, yielding ambiguous results. 
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Therefore, based on the hereby utilized Secchinatural model which employs Chl-

a concentrations and the red band, inaccurate results are anticipated 

concerning Secchi depths in Trichonis and Amvrakia lakes. 

Concerning TP estimation in hereby studied lakes, results were proven 

better compared to Chl-a and Secchi depth except for the absence of a 

statistically significant correlation between predicted and observed values. 

Despite the oligotrophic character of Trichonis and Amvrakia lakes, measured 

TP concentrations for both years characterize them as marginally eutrophic 

(EPA, 2000). Regardless of the high measured concentrations which 

theoretically would contribute to a better prediction, TP cannot be assessed 

remotely because is characterized by weak optical characteristics and a low 

signal noise ratio (Markogianni et al., 2022). However, TP is highly correlated 

with optically active constituents while the hereby applied TP models also 

employ Chl-a concentrations (general model) and Secchi depths (natural 

model). The involvement initially of Chl-a values (which are exceptionally 

low) and afterwards of Secchi depths which originated from the Turbidity 

transformations hindered the achievement of a higher accuracy due to 

reasons extensively described above. 

Poor performance of WQ models could further be attributed to other 

sources of inaccuracy such as the employment of multiple laboratory 

techniques and the lack of knowledge about regional phytoplankton 

community composition. Some algorithms were proven to present sensitivity 

to community composition (diatom- or cyanobacteria dominated sampling 

stations; Binding et al., 2019); hence more research is required involving 

known Chl-a distributions, particles and CDOM before the establishment of 

special algorithms, exclusively oriented to oligotrophic lakes.  
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4.2.1 Introduction  

Water resources are essential for the survival of all living organisms. 

Part of those resources is stored in lakes and reservoirs, and is used to satisfy 

environmental and human requirements. Unfortunately, in many cases WQ is 

chemically deteriorated, and water managers/ scientists need new means for 

efficient monitoring (Seegers et al., 2021). 

The continuous monitoring of large water bodies is a complex task, since 

it demands frequent and detailed data collection and interpretation efforts. 

Only frequent fieldworks can fully attain the spatial and temporal variance of 

WQ key indicators. This requires a compromise concerning the number of 

sampling stations while keeping maintainance costs reasonable (Lyu et al., 

2022).  

Satellite remote sensing (RS) is a powerful supportive tool for assessing 

of spatial and temporal variations in WQ (Lyu et al., 2022). RS technologies 

enable researchers to acquire a unique, holistic perspective of the ecosystems. 

From the vantage point of space, satellite data become an invaluable tool in 

support of wetland management. This is of especial importance in the context 

of the increasingly strict environmental regulations approved by governments 

worldwide (e.g. Water Framework Directive and the European Marine 

Strategy Framework Directive) (Pizani and Maillard, 2022).  

Since the European Commission Water Framework Directive (EC, 2000) 

was promulgated, Member States have started to develop lake ecological 

status assessment systems, and finished setting TP and Chl-a as reference 

conditions for European lakes in different lake types and ecoregions 

(Nikolaidis et al., 2022). In particular, the use of multi-spectral sensors makes 

possible to measure many of the parameters required by law (Gholizadeh et 

al., 2016). Apart from the law-required components, the major factors which 

can influence the quality of inland water bodies are the suspended sediments 

(turbidity), phytoplankton and cyanobacteria (i.e., chlorophylls, carotenoids), 

dissolved organic matter (DOM), organic and inorganic nutrients, pesticides, 

metals, thermal releases, macrophytic algae, pathogens and oils. The above-

mentioned factors affect the optical properties of waters (except for nutrients) 

thus they directly change the signal acquired by optical sensors over water 

bodies (Gholizadeh et al., 2016, Pizani and Maillard, 2022). The parameters 

which can be directly quantified using RS techniques are the suspended 

particulate matter (SPM), which is placed in suspension by wind-wave 

stirring of shallow waters and can be a tracer for inflowing pollutants 

(Eleveld, 2012), the phytoplankton mainly as Chlorophyll-a (chl-a) or 

phycocyanin (PC), that can be used to indicate the trophic level, to evaluate 

the presence of potentially toxic algal blooms and as a proxy of 

phytoplankton biomass (Randolph et al., 2008; Ruiz-Verdu et al., 2008), the 

coloured DOM (CDOM), which  is investigated because of its role in 



protecting aquatic biota from ultraviolet solar radiation and its influence on 

specifically heterotrophic bacterial productivity in the water column, 

indicative of the shift from net autotrophy to net heterotrophy (Kutser et al., 

2005; Giardino et al., 2014).  

A number of satellite sensors have been used for the study of surface 

WQ (Kutser et al., 2009; Yacobi et al., 2011; Matthews, 2011; Odermatt et al., 

2012a). Matthews (2011) and Kutser (2012) have provided a detailed review of 

RS instruments which can be used to assess WQ in inland and near-coastal 

waters. Medium spatial resolution multi-spectral sensor such as Advanced 

Land Imager (ALI) (30 m), Advanced Land Observation Satellite (ALOS) (10 

m), SPOT-5 (10 m) and Landsat provide images in the visible and near-

infrared wavelengths; compared to the higher spatial resolution sensors, these 

sensors are characterized by a higher radiometric performance which 

contributes to a more accurate assessment of the concentrations of quality 

parameters over water. On May 30, 2013, data from the Landsat-8 satellite 

(launched on 11 February, 2013) became available allowing the continuance of 

studies on WQ of lakes (Giardino et al., 2014). 

Although Landsat sensors were not designed for aquatic applications 

(Kutser, 2012; McCullough et al., 2012a), we find numerous examples of 

applications of Landsat images for estimating and/or monitoring lake WQ. 

Several studies have proposed reliable algorithms between Landsat data and 

WQ parameters, including chlorophyll; phytoplankton and PC concentrations 

(Brezonik et al., 2005; Karakaya et al., 2011; Tebbs et al., 2013), water clarity 

(Hadjimitsis et al., 2006; Guan et al., 2011; Zhao et al., 2011), CDOM (Brezonik 

et al., 2005; Zhu et al., 2014; Brezonik et al., 2015), blooms of cyanobacteria 

(Vincent et al., 2004), macrophyte (Albright and Ode, 2011) and total 

suspended sediments (TSS; Zhou et al., 2006; Guang et al., 2006; Onderka and 

Pekarova, 2008; Bonansea et al., 2013). Few studies, though, have attempted to 

monitor and model nutrient data, since those data do not have optical 

properties and the regression models usually yield statistically insignificant 

results (Gholizadeh et al., 2016). In particular, Chen and Quan (2012) used 

Landsat TM imagery to predict nitrogen and phosphorus concentrations in 

Tiahu Lake, China with some successful results for phosphorus and less 

successful results for nitrogen. In general, the aforementioned studies 

considerably increase knowledge of WQ and most of their developed 

algorithms are commonly based on empirical relationships using classical 

simple linear regression models between remotely sensed reflectance values 

and measurements collected simultaneously in the field.  

In contrast to the clear oceanic waters (Case-1 waters), retrieval 

problems of some WQ parameters have arisen for coastal and inland waters 

(Case-2 waters) (Gons et al., 2008). Monitoring of WQ parameters in Case 2 

waters is not an easy task due to runoff and discharges from rivers/streams, 

which add to the complexity of the water constituent retrieval process. 
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Inflows from streams introduce different organic/ inorganic particles (e.g. 

TSS). As opposed to particles, Chl-a and particularly CDOM are absorbing 

components of water with CDOM absorbing the highest in short wavelengths 

(350–440 nm) and Chl-a representing two absorption peaks in the blue and the 

red regions of the spectrum (Pahlevan and Schott, 2013). Whereas Chl-a in 

Case-1 waters can be accurately estimated on the basis of the pigment's 

absorption peak in the blue, in oligotrophic Case-2 waters, estimation on the 

basis of the Chl-a absorption peak in the red can be no alternative due to the 

overwhelming absorption by water of the red and near-infrared (NIR) 

wavelength bands (Gons et al., 2008).  

Moreover, findings from numerous published studies have indicated 

biological and chemical WQ parameters such as Chl-a can be measured using 

spectral indices. However, these indices appear to be less reliable in diverse 

water bodies e.g Case 2 waters (lakes, ponds, rivers and streams in coastal 

regions) (Yang et al., 2017). A variety of spectral indices derived from RS data 

based on empirical or semi-empirical relationships have been developed for 

transforming spectral data into WQ parameters. Water indices’ usefulness has 

been demonstrated in different studies for drought monitoring and early 

warning assessment (Memon et al., 2015; Bohn et al., 2017). Nevertheless, the 

vegetation indices and reflectance (individual bands and band ratios) values’ 

application is highly encouraged for the estimation of WQ parameters (i.e. 

chlorophyll-a, transparency) in lakes (Bonansea et al., 2015; Doña et al., 2015; 

Bohn et al., 2017). These indices may involve three (Yang et al., 2010; Song et 

al., 2013; Sun et al., 2014; Huang et al., 2014) and four spectral bands (Le et al., 

2009). The majority, though, of spectral indices are based on reflectance ratios 

of two spectral bands (near infrared and red) for operational purpose. A band 

ratio between the near infrared (NIR, ~0.7 μm) and Red (~0.6 μm) has 

frequently been used to estimate Chl-a in waters due to a positive reflectivity 

of Chl-a in the NIR and an inverse behavior in the red while NIR and red 

bands are involved in most indices (Yang et al., 2017). 

As well, lake water clarity can be estimated more accurately in eutrophic 

and mesotrophic than oligotrophic lakes, due to the absence of suspended 

particles in oligotrophic lakes that are evident by satellite sensors 

(McCullough, 2012). In oligotrophic lakes, water clarity is primarily controlled 

by the concentration of coloured dissolved organic matter (CDOM) (Gunn et 

al., 2001; Giardino et al., 2014), which, in turn, affects a wide range of 

chemical, physical and biological processes. These include thermal structure, 

light transmission for photosynthesis, attenuation of damaging levels of 

ultraviolet light, vertical distribution of plants and animals, as well as the 

form and availability of toxic metals (Gunn et al., 2001).  

This study presents the analysis of L8 OLI imagery in combination with 

simultaneous field data to conduct basic spatial assessment of various WQ 

https://www.sciencedirect.com/science/article/pii/S2352938516300593#t0005


parameters in a natural lake, characterized by particularly low concentration 

values and the absence of strong spatial and temporal variability. The main 

objective is to develop quantification algorithms and determine Chl-a 

concentration, CDOM absorption at 420 and 440 nm (acdom(420); acdom(440)) and 

nutrient concentrations in the deep oligotrophic Lake Trichonida (Greece), 

using MLR analysis. Selected optimal algorithms were applied to another L8 

image of different date but with available in-situ Chl-a, nutrient and CDOM 

absorption data, to validate the results while satellite derived values were 

compared to in-situ ones.  
 

4.2.2 Methodology 

4.2.2.1 Study area 

Trichonis Lake (Figure 4.2.2-1) is the largest natural freshwater body in 

Greece while a more detailed description can be found at 4.1.2 Chapter (Study 

areas). A significant hydrogeologic aspect of Trichonis lake’s catchment is that 

groundwater inflows to the lake during the dry periods are considerably high, 

which enhances the water abstraction potential for anthropogenic activities 

(Zacharias et al., 2003). Trichonis Lake’s catchment is a 399 km2 semi-

mountainous area in Western Greece (Figure 4.2.2-1). The regional climate is 

characterized as semi-arid to arid Mediterranean with an average annual 

rainfall of 936 mm and an average annual temperature of 17 0C which 

fluctuates by 19 0C annually (Zacharias et al., 2005). 
 

 

Figure 4.2.2-1. Trichonis Lake’s catchment and bathymetry and Chl-a, CDOM and nutrients’ 

sampling stations of 30-31/10/2013 and 30/08/2014. 
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4.2.2.2 Water sampling 

Regarding the date difference between satellite image and fieldwork, 

water samplings were conducted at the same date as the satellite overpass. A 

total of 22 water samples were collected across the lake Trichonis’s surface (5-

10 cm) with NIO samplers of 1.5 l capacity in 29-30/10/2013 and 30/08/2014. 

Following collection, the preservation of the water samples for nutrient and 

Chl-a analysis was conducted as previously described in 4.1.2 Chapter (Water 

sampling, in-situ data and trophic status classification subchapter).  

Water samples for CDOM absorption were filtered through 0.22 μm 

polycarbonate filter immediately after sampling. Filtered water was 

transferred into acid-cleaned (HCL 10%, 12 h) glass bottles and stored in the 

dark at ~-20 °C. Before measurement, the samples were allowed to stand until 

reaching room temperature. 

 

4.2.2.3 Chemical Analyses and EPA quality classification system 

Concentrations of nutrients (NO3−, NO2−, NH4+, and PO4 3 −) were 

determined in the soluble fraction using an ion analyser Metrohm, the 

automatic analyzer Radiometer and the photometer Merck Nova 400. The 

Chl-a concentrations were determined with a TURNER 00-AU- 10U 

fluorometer according to the method of Holm-Hansen et al. (1965), modified 

by Welschmeyer (1994). CDOM absorption spectra were obtained between 

250 and 700 nm at 1 nm increments using a dual beam UV-visible 

spectrophotometer (Perkin Elmer, Lambda 25) equipped with 5 cm quartz 

cells and referenced to Milli-Q water. A baseline correction was applied by 

subtracting the average sample absorbance between 690 and 700 nm from the 

entire spectrum. In addition, a blank scan containing Milli-Q water was 

subtracted from each spectrum. Absorption units were converted to 

absorption coefficients using the relationship (Eq. 4.2.2-1): 

 

𝑎(𝜆) = 2.303 ∗ 𝛢(𝜆)/𝑙      (4.2.2-1) 

where α(λ) = absorption coefficient (m-1), Α(λ) = absorbance, l = cell’s light 

pathlength (m). 

The EPA classification system was used for the WQ classification of 

Trichonis lake (EPA, 2000).  According to this scheme, total phosphorus (TP) 

concentration, water transparency and trophic index (Trophic State Index—

TSI) determine the classification of lakes into six quality classes (Table 4.2.2-1). 

Trophic index TSI is calculated for each quality parameter as follows (Carlson 

and Simpson, 1996): 

 

𝑇𝑆𝐼 (𝑆𝐷) = 60 − 14.41 ∗ 𝐿𝑁(𝑆𝐷)      (4.2.2-2) 



𝑇𝑆𝐼 (𝐶ℎ𝑙𝑎) = 9.81 ∗ 𝐿𝑁(𝐶ℎ𝑙𝑎) + 30.6     (4.2.2-3) 

 

𝑇𝑆𝐼(𝑇𝑃) = 14.42 ∗ 𝐿𝑁(𝑇𝑃) + 4.15      (4.2.2-4) 

 

where SD is the Secchi disk (m) and Chl-a and TP (μg/l) are the concentrations 

of Chl-a and TP, respectively. 
 
 
 

Table 4.2.2-1. Proposed lake WQ classification system by United States EPA (Environmental 

Protection Agency) (Carlson and Simpson, 1996). 
 

TSI average SD (m) TP (μg/l) Chl-a (μg/l) Trophic status-Attributes 

< 30 > 8 < 6 < 0.94 
Oligotrophic-Clear water, oxygen throughout the 

year in the hypolimnion 

30 - 40 8 - 4 6 - 12 0.94 – 2.6 

Oligotrophic -A lake will still exhibit 

oligotrophy, but some shallower lakes will 

become anoxic during the summer 

40 - 50 4 - 2 12 - 24 2.6 – 6.4 

Mesotrophic-Water moderately clear, but 

increasing probability of anoxia during the 

summer 

50 - 60 2 - 1 24 - 48 6.4 - 20 

Eutrophic-Lower boundary of classical eutrophy: 

Decreased transparency, warm-water fisheries 

only 

60 - 70 0.5 - 1 48 - 96 20 - 56 
Eutrophic-Dominance of blue-green algae, algal 

scum probable, extensive macrophyte problems 

> 70 < 0.25 > 96 > 56 
Hypereutrophic, Heavy algal blooms possible 

throughout the summer, often hypereutrophic 

 

4.2.2.4 Satellite Data and Pre-Processing 

L8 Operational Land Imager (OLI) images consist of 9 spectral bands 

with a medium spatial resolution (30 meters) for Bands 1 to 7 and 9. The ultra-

blue Band 1 is advantageous for coastal and aerosol research. Furthermore, 

Band 9 is expendient for cirrus cloud observation. The resolution for Band 8 

(panchromatic) is 15 meters (Table 4.2.2-2) (Barsi et al., 2014). Two L8 OLI 

images of Lake Trichonis (Path 184, Row 33) of 30 October 2013 (17:22:09Z) 

and 30 August 2014 (14:50:07Z) were used for this study. According to the 

large size of the Trichonis Lake, the number of sampling stations (22) were 

considered to be adequate for monitoring variability of CDOM, Chl-a and 

nutrient concentrations. The satellite images were acquired from the USGS 

(United States Geological Survey) Data Centre (http://glovis.usgs.gov/). The 
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image processing was completed in ENVI software (EXELIS Visual 

Information Solutions, Version 5.1) while further data elaboration and 

analysis were conducted in ESRI’s software (ArcGIS v. 10.1).  

The geometric accuracy for the two images was determined to be less 

than one half pixel (<15 m) based on Global Position System measurements 

(coordinate data) taken in the study area. Finally, each band was converted to 

top-of-atmosphere (TOA) reflectance with sun angle correction using 

radiometric calibration coefficients provided in the metadata file to normalize 

the images and facilitate the comparison between different days. For 

atmospheric correction, dark object subtraction (DOS) technique was used. 

The basic principle of this method is that within the image there are some 

pixels completely shadowed and their radiances received at the satellite 

originate entirely from atmospheric scattering (path radiance). This radiance 

value is then being subtracted from each pixel value in the image. The largest 

sources of errors for water constituents’ retrieval is usually attributed to the 

bio-optical model that relates water leaving radiance (or reflectance) to the 

constituents’ concentrations and to treatment of aerosol reflectance in the 

atmospheric correction procedure (Ruddick et al., 2000).   

Furthermore, based on the demonstrated water indices’ usefulness for 

the estimation of WQ parameters (i.e. chlorophyll-a, transparency) in lakes, 

several spectral (vegetation and water) indices were calculated (Table 4.2.2-3) 

to assess Chl-a concentrations.   

Table 4.2.2-2. Landsat 8 spectral bands, wavelengths and spatial resolution. 

Bands 
Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 1 - Ultra Blue 

(coastal/aerosol) 
0.435 - 0.451 30 

Band 2 - Blue 0.452 - 0.512 30 

Band 3 - Green 0.533 - 0.590 30 

Band 4 - Red 0.636 - 0.673 30 

Band 5 - NIR 0.851 - 0.879 30 

Band 6 - Shortwave 

Infrared (SWIR) 1 
1.566 - 1.651 30 

Band 7 - Shortwave 

Infrared (SWIR) 2 
2.107 - 2.294 30 

Band 8 - Panchromatic 0.503 - 0.676 15 

Band 9 - Cirrus 1.363 - 1.384 30 

Band 10 - Thermal 

Infrared (TIRS) 1 
10.60 - 11.19 100 * (30) 

Band 11- Thermal 

Infrared (TIRS) 2 
11.50 - 12.51 100 * (30) 

 



Table 4.2.2-3. Selected spectral indices calculated, according to literature. 

INDEX EQUATION Source 

Enhanced Vegetation Index 

(EVI) 

EVI = G * ((nir - red)/(nir + C1 

* red - C2 * blue + L_evi)) 
Liu and Huete, 1995 

Normalised Ratio Vegetation 

Index (NRVI) 

NRVI= (red/nir - 1)/(red/nir + 

1) 
Baret and Guyot, 1991 

Normalised Difference Water 

Index (NDWI) 

NDWI= (green - nir)/(green + 

nir) 
McFeeters, 1996 

Normalised Difference Water 

Index (NDWI2) 

NDWI2= (nir - swir2)/(nir + 

swir2) 
Gao, 1996 

Modified Normalised 

Difference Water Index 

(MNDWI) 

MNDWI= (green - 

swir2)/(green + swir2) 
Xu, 2006 

Green Normalised Difference 

Vegetation Index (GNDVI) 

GNDVI= (nir - green)/(nir + 

green) 
Gitelson et al., 1996 

 Normalised Difference 

Vegetation Index (NDVI) 
NDVI= (nir - red)/(nir + red) Rouse et al., 1974 

 

 

4.2.2.5 Development of Models Relating L8 and WQ Data 

MLR analysis was used in this study to develop relationships between 

remotely sensed reflectance data (independent) and Chl-a, log(Chl-a), spectral 

indices, CDOM and nutrient values (dependant). Initially, attempts were 

made to find combinations, transformations, or logarithmic transformations 

of L8 OLI bands which would provide more information about the under-

study parameters in the lake than only one band. Subsequently, pixel values 

of each transformed image were retrieved from those regions where the 22 

sampling stations are located. The transformed variables were denoted as 

log(Chl-a), Chl-a, ln(aCDOM(420)) and ln(acdom440). In addition to the above, the 

calculated vegetation and water indices (Table 4.2.2-3) were added to the 

analysis.  

The first criterion considered in order to select the best quantitative 

model was the predictor importance chart conducted in IBM SPSS software 

Statistics Base v. 23.0. The predictor importance chart contributes to indicating 

the relative importance of each predictor in estimating the model; it does not 

relate to model accuracy but to the importance of each predictor in making a 

prediction. Subsequently, after having selected the predictors with the highest 

importance for each WQ parameter, they were further imported in a series of 

stepwise and backward linear regressions. Criteria of multicollinearity and 

values of tolerance factor, variance inflation factor (VIF) and condition indices 

(CI) were applied to a subset of strategic models to further help compare 

them. Ultimate goal was to select more straightforward models versus models 

with higher accuracy (higher R) but more complexity to pick an optimal one 
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to assess WQ attributes across Trichonis Lake. Then, the optimal quantitative 

models developed based on field sampling of 30 August 2014 and satellite 

image L8 of the same date, were applied to the Landsat image of 30/10/2013 to 

assess and validate their efficiency by comparing the resulting estimates with 

the respective available in-situ measurements.  
 

 

4.2.3 Results 

4.2.3.1 Statistical Summary of Trichonis lake’s In-Situ Measurements 

and WQ Classification 

In-situ dataset of both sampling campaigns covered wide ranges of WQ 

key indicators: Chl-a, a aCDOM(420), aCDOM(440), TP, total nitrogen (TN), nitrate, 

nitrite, phosphate and ammonium concentrations. In-situ nitrate, nitrite, 

phosphate and TN concentrations of 2014 were measured as lower than the 

detection limit of the instrument used (photometer Merck Nova 400), hence 

no statistical elaboration was conducted. Data distributions for the rest 

parameters were skewed with mostly low values and without extremely high 

values or outliers (Table 4.2.3-1). In general, most values of all parameters of 

2013 were measured slightly higher than the values of 2014, without 

indicating great differences or existence of WQ deterioration in 2013. 

Chl-a concentrations ranged from 0.5 to 1.4 μg/l with mean value 1.07 

μg/l during the sampling campaign of 2013 and between 0.2 and 0.9 μg/l with 

average value 0.39 μg/l in 2014. Mean values of TP indicate the presence of 

similar conditions into the lake since those values for both years are equal to 

0.04 and 0.02 mg/l for 2013 and 2014, respectively (Figure 4.2.3-1, Figure 4.2.3-

2b).  

Ammonium concentrations demonstrated even more resembling values, 

which ranged from 0.02 to 0.06 mg/l in 2013 and from 0.01 to 0.09 mg/l in 

2014, with identical mean value equal to 0.03 mg/l. In general, concentrations 

of Chl-a and TP were measured slightly higher in 2013 than the values of 2014 

compared to ammonium concentrations (Figure 4.2.3-1, Figure 4.2.3-2a; 4.2.3-

2b). Those values though are slightly increased; thus, no WQ deterioration is 

indicated in 2013.  
 

 

 

 

 

 

 

 



Table 4.2.3-1. Descriptive statistics-Summary table of in-situ Chl-a, TP and ammonium 

concentrations and aCDOM (420), aCDOM (440) of 2013 and 2014. 

 

 

N 

Minimum Maximum Mean 
Std. 

Deviation 

Skewness 

Statistic Std. Error 

 2013 2014 2013 2014 2013 2014 2013 2014 2013 
201

4 

201

3 

201

4 

Chla 

(μg/l) 
22 .5 0.2 1.4 .88 1.07 .39 .22 .14 -.51 2.15 .49 .49 

acdom (420) 22 .1 .08 .4 .4 .19 .22 .09 .09 1.35 .46 .49 .49 

acdom (440) 22 .07 .06 .33 .38 .16 .18 .07 .09 1.34 .97 .49 .49 

TP (mg/l) 22 .03 .01 .08 .06 .04 .02 .013 .012 1.2 1.9 .49 .49 

NH4+ 

(mg/l) 
22 .02 .01 .06 .09 .03 .03 .01 .02 2.1 1.99 .49 .49 
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Figure 4.2.3-1. Frequency graphs presenting the distribution of the in-water constituents Chl-

a, TP and NH4+ for both years.  



 

Figure 4.2.3-2. Temporal boxplots presenting basic descriptive statistics (median, percentiles, 

min-max, outliers and extremes) over sampling season of (a) Chl-a and (b) TP concentrations. 

 

 In order to classify the WQ of Trichonis lake, the EPA classification 

system (EPA, 2000) was used; however, in the context of this study, there are 

no available data of Secchi disk. Therefore, it should be noted that this WQ 

classification effort is developed to better understand the prevailing 

conditions during the sampling periods and not to definitely classify the WQ 

of the Trichonis Lake. Considering the concentrations of TP and Chl-a and the 

estimated average TSI of both the sampling campaigns, Trichonis Lake is 

characterized as oligotrophic to oligomesotrophic in 2013 and oligotrophic in 

2014 (Table 4.2.3-2). 

 

 
Table 4.2.3-2. EPA lake WQ classification system and estimated TSI for Trichonis Lake. 

 

Date TSI (TP) 
TSI (Chl-

a) 

TSI 

average 
Classification 

2013 57.4 31.3 44.3 
oligotrophic to 

oligomesotrophic 

2014 47.35 21.4 34.4 oligotrophic 

 

 

4.2.3.2 MLR analysis and regression models 

MLR analysis concerning the in-situ data and L8 band combinations of 

2013 returned statistical insignificant results. Regarding the correlations 

accompanied by the highest values of correlation coefficient, correlation 

analysis was subsequently attempted between the in-situ data of 2013 and 

mean remote sensed values. Those values were retrieved from 90 m buffer 

zones that were created around each sampling station and were transformed 
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into surface reflectance. The retrieval of a mean reflectance value around each 

in-situ sampling site was considered more appropriate in order to reduce 

sensor and algorithm noise (Hu et al., 2001). Those results were equally 

statistically insignificant. Subsequently, in-situ data and band combinations of 

satellite image of 2014 were correlated. This correlation analysis, after having 

tested more than 45 band combinations, yielded more statistically acceptable 

results compared to data of 2013. 

Low and statistically insignificant relationships were detected 

particularly among reflectance values and TP concentrations while the most 

remarkable (but still statistical insignificant) results, are presented below 

(Table 4.2.3-3). TP quantitative model (1; Table 4.2.3-3) yielded R and R2 

values equal to 0.27 and 0.07, respectively while the predictors included are 

the subtraction between bands Green and Red and the natural logarithm of 

Red and Green ratio (Table 4.2.3-3). Then, using the backward linear 

regression, ln (Red/Green) was removed (Table 4.2.3-4) and quantitative 

model (2; Table 4.2.3-3) resulted in R and R2 values equal to 0.24 and 0.06, 

respectively while Durbin-Watson’s statistic indicates an absence of 

autocorrelation in the residuals (Table 4.2.3-3). Considering certain statistical 

indices (especially the value of R2), all predictive models of TP were rejected 

due to their low performance. 

Concerning the Chl-a regression model, coefficients Blue/ (Ultra 

Blue+Blue+Green) and (Ultra Blue+Blue)/2 were indicated by the predictor 

importance chart (Figure 4.2.3-3a) and were used presenting acceptable 

multicollinearity statistics with values of tolerance and VIF 0.96 and 1.04, 

respectively. 

Concerning the spatial distribution of spectral indices, measured from 

satellite image of 2014, slight differences and variance were also indicated 

(Table 4.2.3-5). Moreover, the highest value range is apparent in NDVI values 

(0.0227) while the lowest is in the EVI index. Regarding all indices, no great 

difference is detected in maximum and minimum values, indicating once 

again the high spatial homogeneity and the lack of variability that 

characterizes Trichonis Lake. For the logChl-a model, four (4) equations were 

evaluated, with the following independent variables: the EVI, NDWI, 

MNDWI and NDVI vegetation and water indices (Table 4.2.3-6). Chl-a can be 

measured initially by using vegetation indices and by extension based on the 

Green and SWIR bands of water indices (NDWI, MNDWI) due to Chl-a 

absorbance in violet-blue and orange-red wavelengths and its reflection in 

green/yellow light. Concerning the selected logChl-a quantitative model, 

vegetation and water spectral indices EVI, NDWI, MNDWI and NDVI were 

employed presenting marginally acceptable statistics (Table 4.2.3-7). 

MLR model involving Landsat 8 bands 2 (Blue), 3 (Green) and 4 (Red) 

proved to be the most suitable for predicting CDOM absorption at 420 nm in 



Trichonis Lake (Table 4.2.3-7). Correlation coefficient equals to 0.48 (training 

data) while Durbin-Watson value indicates independence of residuals. The 

optimal estimating model of ammonium concentration includes the bands 1 

(Ultra-Blue), 3 (Green), and 4 (Red) (Table 4.2.3-7; Figure 4.2.3-3b), while the 

value of the correlation coefficient is equal to 0.26 (training data). Collinearity 

statistics (Tolerance and VIF) of the coefficients are 1, excluding the possibility 

of multicollinearity.  
 
 

Table 4.2.3-3. Regression analysis statistics and models’ summary among reflectance 

values and total phosphorus concentrations (dependent variable). 

 

Model R 

R 

Squar

e 

Adjusted 

R Square 

Std. Error of 

the Estimate 

Change Statistics 

Durbin

-

Watson 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .268a .072 -.026 .0117 .072 .734 2 19 .49 1.611 

2 .239b .057 .010 .0115 -.015 .301 1 19 .59  

Dependent Variable: TP (mg/l) 

a. Predictors: (Constant), B3-B4, ln (B4/B3) 

b. Predictors: (Constant), B3-B4 

 

 
Table 4.2.3-4. Variables entered/removed from TP predictive models depending on the 

regression method used. 
 

Model 

Variables 

Entered 

Variables 

Removed Method 

1 B3-B4, ln (B4/B3) . Enter 

2 . ln (B4/B3) Backward (criterion: 

Probability of F-to-

remove >= .100). 

3 . B3-B4 Backward (criterion: 

Probability of F-to-

remove >= .100). 

a. Dependent Variable: TP (mg/l) 
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Figure 4.2.3-3. Predictor importance charts indicating the optimal factors for the 

assessment of Chlorophyll-a (a) and Ammonium concentrations (b). 

 

Table 4.2.3-5. Descriptive statistics-Summary tables of selected spectral indices 

calculated from satellite image of 2014. 

2014 N Range Min Max Mean Std. 

Deviation 

Skew-

ness 

Std. 

Error 

Kurto-

sis 

Std. 

Error 

EVI 22 0.0001 -0.002 -0.002 -0.002 0.0 0.17 0.49 1.32 0.95 

NRVI 22 0.0002 -1.002 -1.002 -1.002 0.0 -0.58 0.49 -0.3 0.95 

NDWI 22 0.0064 0.86 0.87 0.87 0.002 0.46 0.49 -0.6 0.95 

MNDWI 22 0.0021 0.94 0.94 0.94 0.0005 0.02 0.49 0.08 0.95 

GNDVI 22 0.0218 -0.424 -0.4 -0.42 0.006 0.72 0.49 -0.08 0.95 

NDVI 22 0.023 -0.29 -0.26 -0.28 0.006 0.797 0.491 0.46 0.953 

 

Table 4.2.3-6. Regression analysis statistics and models’ summary among multiple 

spectral indices and log-chlorophyll-a concentrations (dependent variable).  

Mod

el R 

R 

Squar

e 

Adjuste

d R 

Square 

Std. 

Error of 

the 

Estimat

e 

Change Statistics 

Durbin-

Watson 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 .578a .334 .126 .12 .334 1.608 5 16 .214  

2 .576b .332 .175 .12 -.002 .054 1 16 .819  

3 .493c .243 .117 .12 -.089 2.275 1 17 .150  

4 .473d .224 .142 .12 -.019 .449 1 18 .512 2.235 

a. Predictors: (Constant), NDVI, MNDWI, EVI, NDWI2, NRVI 

b. Predictors: (Constant), NDVI, MNDWI, EVI, NDWI2 



c. Predictors: (Constant), NDVI, EVI, NDWI2 

d. Predictors: (Constant), NDVI, NDWI2 

e. Dependent Variable: LOGCHL-A 

 

Table 4.2.3-7. Statistical summary and description of final water quality parameters’ 

models.  

Model R R2 

Std. 

Error 

of the 

Estima

te 

R2 

Chang

e 

Durbi

n-

Watso

n 

𝑎𝑐𝑑𝑜𝑚420 = −2.195 − (859.4 ∗ 𝐺𝑟𝑒𝑒𝑛) + (3426.1 ∗ 𝑅𝑒𝑑) − 497.51
∗ [(𝐵𝑙𝑢𝑒 + 𝑅𝑒𝑑)/2] 

0.48 0.23 0.08 0.23 1.75 

NH4+ = −0.32 + 0.14 ∗ [(𝑈𝑙𝑡𝑟𝑎 𝐵𝑙𝑢𝑒 − 𝑅𝑒𝑑)/(𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑)] 0.26 0.07 0.02 0.7 2.33 

𝐶𝐻𝐿 − 𝑎 = −38.62 + 92.05 ∗ [(𝐵𝑙𝑢𝑒/(𝑈𝑙𝑡𝑟𝑎 𝑏𝑙𝑢𝑒 + 𝐵𝑙𝑢𝑒 + 𝐺𝑟𝑒𝑒𝑛)]
+ 2239.7 ∗ [(𝑈𝑙𝑡𝑟𝑎 𝑏𝑙𝑢𝑒 + 𝐵𝑙𝑢𝑒)/2] 

0.44 0.19 0.13 0.19 2.5 

log 𝐶ℎ𝑙 − 𝑎 = −117.64 − (4894.002 ∗ EVI) − (313.07 ∗ NDWI)
+ (433.46 ∗ MNDWI) + (103.14 ∗ NDVI) 

0.58 0.33 0.12 -0.002 2.24 

 

 

4.2.3.3 Algorithm validation 

In order to explore the reliability of the final regression WQ models, 

regressions between L8 estimates of Chl-a, logchl-a, aCDOM(420) and ammonium 

concentrations in Trichonis Lake versus respective in-situ measurements of 

2013 were conducted. Several models (linear, logarithmic, quadratic, cubic, 

power and exponential) have been applied in order to detect the best 

potential agreement between the observed and satellite-estimated values with 

the cubic model presenting the highest correlation coefficients for all 

parameters, except for logChl-a where quadratic model was proven to yield 

slightly better results than the cubic one (Table 4.2.3-8). Nevertheless, the 

moderate fit between in-situ and predicted WQ parameters by each selected 

MLR indicated the moderate and low quantification capacity of these models.  

Besides, the highest correlation coefficient among all validation models, 

is associated with the ammonium concentration assessment model and it is 

equal to 0.7 (standard error of estimates 0.004 mg/l), then follows Chl-a cubic 

model with R equal to 0.5 and finally logchl-a predictive model (employing 

spectral indices) with similar values between cubic and quadratic models, 0.4 

and 0.41, respectively (Table 4.2.3-8). Following, correlation coefficient of 

aCDOM(420) was calculated 0.3 with standard error of estimates 0.17 m-1 (Table 

4.2.3-8). 
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Table 4.2.3-8. Regression analysis statistics and summary of WQ parameters’ regression 

models, used in validation process. (R2: the proportion of variance in the dependent 

variable which can be predicted from the independent variables, R: Correlation 

coefficient, Std. Error of the Estimate: measure of the accuracy of predictions). 

 

Chl-a (μg/l) R R2 Std. Error of the Estimate 

linear 0.200 0.040 0.220 

logarithmic 0.223 0.05 0.218 

quadratic 0.440 0.194 0.207 

cubic 0.447 0.199 0.207 

power 0.226 0.051 0.094 

exponential 0.202 0.041 0.095 

Chl-a (μg/l) 

(spectral indices) 
R R2 Std. Error of the Estimate 

Linear 0.34 0.11 0.02 

Logarithmic 0.30 0.09 0.02 

Quadratic 0.41 0.17 0.02 

Cubic 0.40 0.17 0.02 

Power 0.30 0.09 0.01 

Exponential 0.34 0.11 0.01 

acdom420 (m-1) R R2 Std. Error of the Estimate 

linear 0.11 0.012 0.162 

logarithmic 0.131 0.017 0.162 

quadratic 0.196 0.038 0.164 

cubic 0.258 0.067 0.166 

power 0.136 0.018 0.106 

exponential 0.118 0.014 0.106 

NH4+ (mg/l) R R2 Std. Error of the Estimate 

linear 0.325 0.106 0.005 

logarithmic 0.252 0.064 0.006 

quadratic 0.611 0.374 0.005 



cubic 0.689 0.474 0.004 

power 0.421 0.177 0.379 

exponential 0.505 0.255 0.360 

 

 

Spatial distribution of in-situ measurements of NH4+ (Figure 4.2.3-4a) 

and Chl-a concentration (Figure 4.2.3-5a, Figure 4.2.3-5a) was mapped 

through their spatial interpolation using the Spline method. Other 

interpolation methods, e.g., IDW (Inverse Distance Weighted) and natural 

neighbour were also tested, but Spline method generated the smoothest 

surfaces and representative values that were closer to the in-situ measured 

concentrations. The ammonium regression model was applied on the satellite 

image of 2013 and yielded concentrations ranging from 0 to 0.11 mg/l (Figure 

4.2.3-4b) in relation to in-situ ammonium distribution which ranged from 0 to 

0.08 mg/l (Figure 4.2.3-4a). Pixels having negative values were deleted and the 

few remained are illustrated with black colour.  

Furthermore, the application of the regression models on the satellite 

data of 2013 indicated some increasing or decreasing assessment trends 

compared to the respective in-situ data. In particular, Chl-a regression models 

overestimated the actual Chl-a concentrations with the main difference that 

the model retrieved from singe band combinations present a more fluctuated 

value distribution (Figures 4.2.3-5b) than the Chl-a retrieved from specific 

spectral indices (Figures 4.2.3-6b).  
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Figure 4.2.3-4. In-situ (a) and satellite derived (b) NH4+ (mg/l) of 2013 along the 

Trichonis Lake, after applying the satellite-regression algorithm. 



 

Figure 4.2.3-5. In-situ (a) and satellite derived (b) Chl-a (μg/l) spatial distribution of 

2013 along the Trichonis Lake, after applying the satellite-regression algorithm 

using L8 bands. 
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Figure 4.2.3-6. In-situ (a) and satellite derived (b) Chl-a (μg/l) spatial distribution of 

2013 along the Trichonis Lake, after applying the satellite-regression algorithm 

using spectral indices. 



4.2.4 Discussion 

Remote sensing provides suitable information concerning WQ and 

aquatic systems management. In this study, the feasibility of Landsat 8 OLI 

imagery in combination with in-situ WQ parameters’ concentrations to 

identify relevant algorithms for WQ assessment in an oligotrophic waterbody 

(Trichonis lake) was demonstrated limited. Water samples from Trichonis 

Lake were analyzed twice in 2013 and 2014 regarding concentrations of Chl-a, 

ammonium and CDOM concentration, which was determined as the 

absorption at 420 nm, aCDOM(420), extrapolated from the absorption spectra. 

According to literature and lab measurements, Trichonis Lake is not only 

characterized as an oligotrophic lake but also illustrates a relatively low 

quantitative, temporal and spatial variability.  

MLRs were conducted among available data and the majority of models 

were characterized by insignificant statistical correlations. Optimal models 

were selected based on statistical criteria but presented low coefficients and 

unsuccessful results.  The selected predictive model of Chl-a concentration 

involves the combination of Ultra-Blue (B1), Blue (B2) and Green (B3) OLI 

bands of L8 satellite sensor. These results are in accordance with those of 

Pahlevan et al. (2014), who attempted to map OLI’s spectroradiometric 

sensitivity to changes in optically active components (OACs), such as Chl-a, 

for a nominal solar zenith angle θs=40o, (solar zenith angle in our study equals 

to θs=35o). According to their results, the Blue band (B2) shows the highest 

sensitivity to changes in Chl-a, in particular on average for changes higher 

than 0.5 μg/l. This implies difficulties in detecting changes smaller than 0.5 

units of Chl-a on the focal plane using this single band. While the Ultra Blue 

(B1) and the green bands (B3), on average, exhibit similar sensitivity to the 

changes in Chl-a, the B1 band is slightly better for waters with low Chl-a 

concentrations. 

Addittionally, the logChl-a predictive model based on spectral indices 

incorporated OLI bands 2 (Blue), 3 (Green), 4 (Red), 5 (NIR) and 7 (SWIR2) 

with R equal to 0.58 (training data). Brezonik et al. (2005); Olmanson et al. 

(2008); Fadel et al. (2016) and Bohn et al. (2017) used similar bands for the 

estimation of Chl-a in lakes and reservoirs and more particular vegetation 

indices and bands TM and ETM 1 (Blue), 2 (Green) and 4 (NIR). Bohn et al. 

(2017) used the NDVI in Laguna Chascomús in relation to Chl-a estimation 

for its optical characteristics and because it is sensitive to the pigment 

absorption. NDVI has been found to be very sensitive to changes in the 

environment (Kahru et al., 1993; Bohn et al., 2017). Moreover, its use is more 

successful in zones with moderate wind speeds without developing waves, 

which is not the case in Trichonis Lake. Furthermore, water indices include 

SWIR band and according to Barrett and Frazier (2016) all significant band 
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combinations for chlorophyll included at least one of the short-wave infrared 

bands (SWIR), although most WQ studies to this point have not included 

SWIR bands. Ratios between either chlorophyll absorption bands (Red and 

Blue) or chlorophyll reflectance bands (Green and NIR) with either of the two 

SWIR bands are expected to emphasize the portion of the spectrum affected 

by chlorophyll, thereby making estimated values more readily correlated with 

actual sample values (Barrett and Frazier, 2016).  

As far as the utilized satellite sensor is concerned, Bonansea et al. (2018) 

tried to generate a different Chl-a model for different Landsat sensors (5 TM, 7 

ETM+ and 8 OLI). Although OLI sensor has better radiometric sensitivity and 

signal to noise ratio, they could not prove that OLI is better than TM and 

ETM+ sensors. Overall, they observed that each Landsat sensor can be used to 

estimate Chl-a in the reservoir while the best model for TM sensor included a 

combination of Green, Red and NIR band, and the ratio green/red (R2 = 0.92). 

A three-variable model using Green and SWIR-1 bands and the ratio 

red/green was the best model to predict Chl-a using EMT+ sensor (R2 = 0.91). 

Concerning the assessment of CDOM absorption via RS, Pahlevan et al. 

(2014) explored the detection limits associated with CDOM absorption at 440 

nm. While hereby study resulted in a predictive model for CDOM absorption 

at 420 nm combining the Blue, Green and Red bands, Pahlevan et al. (2014) 

found out that in waters with relatively low CDOM concentrations, 

(aCDOM(440)<0.5 m-1), the Blue and the Green bands exhibit the highest sensitivity 

whereas the Red band was found insensitive to the changes in CDOM 

absorption. In general, it was found that OLI is, on average, sensitive to 

changes in CDOM absorption larger than 0.1 m-1. Although actual retrievals 

can be improved by the use of multiple bands, the fact that in Trichonis lake 

detected changes in Chl-a concentrations and to a lesser extent in CDOM 

absorption are marginally equal to the aforementioned threshold values (0.5 

μg/l and 0.1 m-1, respectively), could be the main reason of not managing 

high-precision assessment results.   Furthermore, Pahlevan and Schott (2013) 

applied a physics-based approach to fully examine the potential of OLI in 

CDOM absorption mapping. Based on their observations they concluded that 

the disparity between the response functions of OLI is more noticeable in 

turbid waters than in clearer waters when mapping CDOM absorption.  

Development of reliable methods to retrieve CDOM information from 

spectral reflectance data is difficult. Indeed, among the major WQ variables 

measurable by remote sensing (e.g., suspended solids, chlorophyll, Secchi 

depth), for several reasons CDOM may be the most difficult to measure 

accurately in inland waters. CDOM absorbs but does not scatter or reflect 

light while it has no absorbance troughs or peaks, such as are found for plant 

pigments; instead light absorption by CDOM follows a simple quasi-



exponential decrease with increasing wavelength. There are no wavelength 

bands in the visible spectrum uniquely associated with CDOM that can be 

used for measurement purposes. Thus, measurement of low to moderate 

levels of CDOM in optically complex Case-2 waters is especially difficult 

because light scattering by these particles dominates their reflectance spectra 

(Brezonik and Olmanson, 2015). 

Predicting ammonium concentration in inland waters can be a hard task 

since very few studies have attempted to monitor data with non-optical 

properties, such as nutrient concentrations. Furthermore, not many previous 

studies have been able to provide total nitrogen models with statistically 

significant results or reasonable adjusted R2 values (Isenstein and Park, 2014). 

Hereby research resulted in the ammonium predictive model incorporating 

Ultra-Blue, Green and Red bands yielding a regression coefficient equal to 0.7, 

regarding the validation process. Similar results, concerning the utilized 

wavelengths, were presented by Dewidar and Khedr (2001) and Isenstein and 

Park (2014), who detected the strongest correlation among TN and Landsat 

TM bands 1 (Blue) and 2 (Green). Chen and Quan (2012) predicted TN 

concentrations with Landsat TM bands 1 (Blue), 2 (Green), 3 (Red), and 4 

(NIR), however these results were not very successful (R2 = 0.24). Effective 

and precise WQ determination is dependent on the satellite sensor used, the 

methodology followed and also on the nature of the waters studied (Case-1, 

Case-2). Based in these premises, Gons et al., (2008) attempted to estimate 

Chl-a concentration by using MERIS images and they concluded that the 

application of MERIS FLH algorithms in oligotrophic waters may indeed be 

precluded because of too low signal to noise ratio.  

All in all, in this study results showed that WQ monitoring of 

oligotrophic freshwater bodies through RS tools can be a really challenging 

task. Landsat 8 has been widely used in eutrophic lakes and even fewer 

studies have managed to estimate nutrients, particularly ammonium 

concentrations. Season of water samplings, lake trophic status and the spatial 

homogeneity may be the greatest limitations that prevented a better and more 

accurate prediction. 

 

5.2.5 Conclusions 

Hereby study explored the use of RS technology and specifically of 

Landsat 8 OLI sensor, to accurately quantify certain WQ parameters in 

Trichonis lake.  

According to the in-situ data analysis and their spatial distribution, it has 

been strongly ascertained that Trichonis Lake is characterized by particularly 

low concentrations and the lack of any spatial or temporal value 
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differentiation across the twenty-two sampling stations, case that inhibited a 

greater predictive potential.  

Furthermore, weak correlations were detected among in-situ and 

satellite data while those correlations, particularly in autumn and summer, 

may also be due to the lake turnover effect. When the equalization of the 

thermal gradient in the lake induces mixing of surface and bottom waters, 

remote monitoring is made difficult due to instability (Barrett and Frazier, 

2016). Moreover, the incorporation of the SWIR band into Chl-a estimation (in 

contrast to other studies) suggests that there may be a relationship between 

SWIR reflection and algae/plant production, which deserves further 

investigation.  

Additional water samplings should be made during different time 

periods concerning specific mixing boundaries (surface-bottom waters) in 

order to investigate whether the feasibility of remote monitoring increases. In 

case strong relationships are found, this may help improve prediction 

capabilities by providing researchers with bounded time periods (according 

to region) (Barrett and Frazier, 2016).  

Further research is required towards the investigation of more water 

parameters or using sensors of different spatial and geometrical analysis in 

order to be able to compare the outcomes among all different cases.  

Even though early results demonstrated the vulnerability of the Landsat 

8 imagery to precisely determine certain WQ components in an inland 

oligotrophic body, it is generally accepted that those models may initially 

increase the knowledge of Trichonis lake’s WQ and then be utilized as 

warning indicators of WQ deterioration.  
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5. General Conclusions and Limitations  

 

This chapter recapitulates the final key conclusions drawn in the framework 

of this PhD thesis, accompanied by the scientific contributions offered and 

limitations accrued per main objective pursued.  

 

Objective 1: Establish a methodological framework that aims to model WQ 

and trophic status of optically diverse Greek lakes (Case 2 waters) by 

assessing key WQ elements with fine spatial resolution (10-30 m) RS image 

data. Ultimate goal of this methodology is the accurate spatial assessement of 

WQ and trophic status over various types of lakes, thus acquiring the 

valuable information of their variability in near-real time. 

 

Conclusions:  

(a) WFD application in Greece concerning Lake Waterbodies yielded so 

far significant WQ datasets whose statistical elaboration indicated the 

great significance of lakes’ nature concerning the constituents’ 

variance. Furthermore, hereby developed WQ models initially 

accommodated the spectral configuration differences among the 

Landsat sensors (7 ETM+ and 8 OLI) and then managed to assess 

adequately WQ and trophic status of Greek lakes. Studied WQ 

parameters include Chl-a and TP concentrations and Secchi Disk 

depths while their employment into Carlson’s trophic state index (TSI) 

equation facilitated the lakes’ trophic status assessment. The most 

optimal Chl-a quantitative models include the ratios Blue to Green and 

Red, Red to Green and Blue, and the ln transformed bands SWIR1 and 

SWIR2. The Secchigeneral model incorporated a combination of bands 

Blue, Red, Green and SWIR2 while models developed for natural and 

artificial lakes were accompanied by the insertion of logchl-a as a 

significant Secchi predictor. The general TP assessment model includes 

the logarithmic transformation of Chl-a and the band ratio of Ln-Red 

and Ln-SWIR1 bands while the TPnatural model incorporates also the 

ratio of Green and Red bands. Based on those results, the background 

knowledge on whether a lake is natural or artificial proved to be 

valuable concerning the models’ predictions’s accuracy; hence, it was 

concluded that WQ and trophic status assessment of a) artificial and 

b) shallow (mean depth <5 m) lakes was less successful. 

Consequently, a deeper limnological research regarding the primary 

limiting factors of Chl-a production and the predominant sources of 
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turbidity (algal/non-algal), particularly in reservoirs, is considered 

essential. This prerequisite is further strengthened by the fact that none 

TP statistically acceptable model was generated for artificial lakes, 

partly attributed to the time lag that has been observed for 

phytoplankton to consume TP in this type of lakes.  

Above all, herewith delivered WQ models were proved capable of 

supporting perpetual lake WQ monitoring and sustainable 

management at a national scale, at near real time and at finer spatial 

resolution compared to similar, large-scale applications-based on EO 

techniques- offered worldwide. Furthermore, lake WQ monitoring can 

be more effectively pursued after obtaining the valuable information of 

spatial variability, while there is the possibility for WQ and trophic 

status classification no longer be controlled by only one (1) sampling 

station. WQ models can potentially be delivered to competent public 

authority which is responsible for WQ monitoring of Greek lakes; in 

this way there will be the opportunity to inspect lakes’ trophic status at 

times independently of the scheduled upcoming sampling campaigns. 

(b) Development of WQ models and their validation indicated the high 

contribution of SWIR bands in WQ monitoring of Case-2 waters, 

although they have not been widely used by other studies. It was 

proven that when Case 2 waters is the case, sediment reflectance 

exceeds the absorptive properties of water in the SWIR wavelengths, 

thus a common assumption made in Case 1 waters is abandoned. 

 

Scientific contribution: 

This is the first time, to the author’s knowledge, that 50 representative Greek 

lakes’ WQ has been modeled efficiently by using in-situ data and RS 

technology. Spatial distribution of lakes’ Chl-a, Secchi depth, TP values and 

by extension trophic status can by assessed and monitored continuously in 

near-real time and in fine spatial resolution, constituting a valuable lake 

management tool - at a country level- in the hands of scientists and competent 

authorities. 

Given the complexity that characterizes the mapping of WQ elements in Case 

2 waters (coastal, lakes, rivers) in combination with the wide study area 

which includes a broad range of limnological conditions, hereby delivered 

lake WQ models contribute essentially to sustainable water resources 

management of Greece. 

Limitations:  

(a) A more accurate lake WQ assessment was hindered by the intense 

optical diversity characterizing the under study Greek lakes. 

Considering the high number (50) of the studied lakes and the fact that 

their optical properties may vary resembling either to both Case 1 or 



Case 2 waters or classes within Case 2 waters, there has been an effort 

to distinguish distinct optical water types (OWTs) among them based 

on statistical analysis. However, hierarchical cluster analysis 

incorporating in-situ WQ constituents (concentrations of Chl-a, TP and 

Secchi depths) and Landsat response (respective reflectance at bands 

blue, green, red, NIR and SWIRS) did not manage to yield reliable 

results. Classification efforts employed datasets including all, average 

and median values of WQ data, and median values of WQ data 

grouped by seasonal sampling. The factor Season was considered since 

it affects indirectly the eutrophication degree of waterbodies, e.g. the 

growth of algae, the influx of nutrients caused by rainfall, the re-

suspension of suspended matter caused by wind and so on.  

(b) One more factor that has potentially prevented a better prediction of 

lakes’ WQ is the existence of an uncertainty of accuracy regarding the 

location of sampling stations. Water sampling in lakes requires special 

attention as winds and other external factors (e.g. season, lake depth 

and changes in water level, ease of proximity) contribute to potential 

transpositions even when revisiting the same sampling sites.  

(c) In addition to the aforementioned, the location of sampling stations 

plays a major role in WQ monitoring, particularly of artificial lakes.  

One of the main differences between artificial and natural lakes is that 

artificial characteristically exhibit a trophic gradient as it may grade 

from eutrophic (in its upper reaches) to oligotrophic (close to the dam). 

As reservoirs lose nutrients (in particular P) through settling in a 

downstream direction, utilized training in-situ data of a WQ model 

may not reflect the actual WQ conditions of an artificial lake. Based on 

this rationale, water samples from reservoirs is proposed to be 

collected from at least two (2) stations with optimal quantity the three 

(3) ones. The first one should be near to the point where each 

river/stream drains into the lake, the second one in the middle of the 

lake (as is now the case with the studied 50 lakes) and the third one 

close to the dam. 

(d) It is reported that water transparency in artificial lakes is notably 

influenced by non-algal sources of turbidity (Canfield and Bachmann, 

1981). Moreover, Lind (1986) documented that the use of Chl-a to 

estimate Secchi depth is inappropriate for waters where even moderate 

amounts of non-algal turbidity are present; this presumption surely 

affects hereby results, since the Secchiartificial model developed herein, 

employs the logarithmic transformation of Chl-a. 

(e) The implementation of the DOS1 atmospheric correction method has 

not been validated in order to assure that atmosphere biases have been 

completely removed. Given the high number of utilized satellite 

imageries, though and the absence of atmospheric measurements, this 
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method was considered as adequate since it is widely used by the EO 

community. 

(f) One more limitation concerning hereby attempted lake WQ monitoring 

through RS techniques, is the dependence on good climatic conditions. 

More particularly, a quite large number of satellite images with dates 

matching those of in-situ measurements, could not be used due to 

atmospheric effects. This fact induced the loss of a significant amount 

of field data, which otherwise could have contributed to the 

development of even stonger WQ models. 

(g) Employment of RS techniques is also restricted by the utilized sensor ‘s 

temporal resolution or revisit time. In the context of this thesis, this 

feature has surely prevented a more effective lake WQ monitoring for 

those cases when the frequency desired was greater than the revisit 

capacity of Landsat sensors. Hence, it is further suggested that the 

EKBY’s WQ monitoring field trips will be planned to coincide with the 

dates of Landsat and/or Sentinel 2 sensors overpass over the studied 

lakes. In this way, more in-situ data with matching satellite images can 

be employed in WQ models’ validation. 

(h) Concerning the distinction between land and water throughout the 

satellite imageries, no prior classification has been conducted. WQ 

models have been applied to lake surfaces accrued from lake 

shapefiles, hence there is the possibility that some pixels, while 

covering land, were defined as water; thus, may have prevented WQ 

parameters’ quantification with higher accuracy. 

 

 

Objective 2: Explore the spatio-temporal transferability of Landsat-developed 

WQ models across sensors; initially across Sentinel 2 and then across multi-

sensor image data (Landsat 7 ETM+, 8 OLI and Sentinel 2 MSI). The 

transferability was tested along the National Lake Network Monitoring of 

Greece (WFD) and concerns the sampling campaigns of 2018.  

 

Conclusion:  

In general, herewith developed WQ models are proposed to employ 

principally Landsat images; however, the employment of Sentinel 2 data 

potentially produces reliable enough results with some (not significant) 

deviations from both corresponding Landsat-derived and in-situ reference 

lake WQ. Furthermore, the employment of multi-sensor (Landsat/ Sentinel 2) 

image data offered some improvement on a case by case basis while joint use 

facilitates in those cases the performance of high-frequency time series 

analyses. This effort highlighted a match between the corresponding spectral 

bands of Landsat and Sentinel 2 sensors; however, the slight inferiority of 



Sentinel 2 images indicated the existence of differences in the final recorded 

radiometric values.  

 

Scientific contribution:  

As it has been already mentioned, the transferability of published WQ models 

across different sensors has been poorly examined, due to inherent differences 

(radiometrical, orbital, spatial, spectral). Towards strengthening the 

facilitation of WQ and trophic status monitoring across Greek lakes, 

employment of Sentinel 2 and multi-sensor image data (Landsat 7 ETM; 

Landsat 8; Sentinel 2 MSI) permits the integration among existing and 

historical missions while contributing to long-term time series data collection. 

In this way, the smoothly and well-operating performance of hereby WQ 

models will facilitate the multi-temporal lake WQ analyses, supporting 

further integrated lake management in the framework of national 

environmental policy. 

 

Limitation concerning the WQ models’ application on Sentinel-2 images: 

WQ empirical models were developed based on Landsat-7 ETM+ and 8 OLI 

images; hence it is expected to be affected by the corresponding spectral 

composition and perform better when employing Landsat rather than 

Sentinel 2 reflectance. 

 

Limitations concerning the combined use of Landsat and Sentinel-2 images:  

(a) Mandanici and Bitelli (2016) documented that Sentinel-2 MSI band 8A 

(vegetation red edge) is the optimal option from the radiometric point 

of view when Sentinel-2 images are associated with Landsat 8 ones. 

Instead, MSI band 8 (NIR) is highly recommended for a joint use with 

older Landsat series, such as Landsat 5. However, in this thesis, the 

utilization of the Sentinel 2 B08 (NIR) band to match with B4 (L7 

ETM+) and B5 (L8 OLI), may constituted an obstacle in achieving better 

and more accurate WQ quantifications when employing Sentinel 2 

data. 

(b) Another factor that plays a major role in the combination of Landsat 

and Sentinel 2 data are the residual effects of water specular reflections. 

Those are usually derived from the different zenith and azimuth angles 

and spacecraft altitude of the different sensors. 

 

Objective 3: 

An examination of the influence of different atmospheric correction methods 

to WQ models’ performance after employing differently-atmospherically 

corrected SR values. The harmonization between the different SR products is 

based on the development of corrected sensor-specific (Landsat/ Sentinel 2) 

WQ models by utilizing dataset of 2018. Analysis and validation processes are 
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performed across the National Lake Network Monitoring of Greece (WFD) 

and the comparison of results is based on the in-situ WQ data of years 2019 

and 2020.  

 

Conclusion: 

Double employment (dataset of 2018) of differently atmospheric corrected 

reflectance values (DOS1, LaSRC, LEDAPS and Sen2Cor) in WQ models 

indicated the DOS1 as the most effective method for the quantification of lake 

WQ elements in almost all cases and for all sensors (Landsat/Sentinel 2). In 

this way, empirically-developed WQ models, were proved to be applicable to 

both archived and future Landsat and Sentinel 2 image data embedded in 

GEE platform, exempting the user from the time-consuming pre-processing 

procedure. Furthermore, sensor-corrected models provided better assessment 

accuracy on a case by case basis depending on each water constituent’s 

behavior with Secchi models (general, natural, artificial) illustrating the 

highest improvement, followed by TP and Chl-a models. WQ models’ 

evaluation of years 2019 and 2020, indicated the sufficiency of GEE public 

data for mapping Chl-a, Secchi depth and TP concentrations in a large 

geographical region and particularly at a national scale (Greece).  

 

Scientific contribution:  

This is the first attempt, to the author’s knowledge, to facilitate the 

quantification of spatiotemporal lake WQ across the Greek Lake Monitoring 

Network of WFD, by using multi-sensor reflectance values retrieved from 

GEE platform. Moreover, this research demonstrated the WQ models’ 

temporal stability when employ SR retrieved from the GEE platform, offering 

scientists and Greek competent authorities the opportunity to exploit this 

massive warehouse of satellite data combined with the on-going WFD 

application.  

All in all, exploitation of GEE image data promotes the long-term, near real-

time, national-scale lake WQ and trophic status monitoring by mapping long-

term WQ trends in less time and fine spatial resolution. 

 

Limitations: Satellite imageries from Landsat and Sentinel 2 sensors, 

manually downloaded, have been subjected to different preprocessing 

procedures (DOS1) compared to corresponding, embedded in GEE platform 

(LaSRC, LEDAPS and Sen2Cor). Different atmospheric correction methods 

make harmonization of those differences essential to eventually generate 

reflectance values that can be comparable and combined. Otherwise, RS 

scientists are strongly recommended to apply the same AC algorithms as 

those adopted in GEE platform in cases where manually-derived satellite 

products need to be compared or/and combined with GEE-integrated images.  



Objective 4: Assess WQ models’ performance in a distinct category of 

optically complex Case-2 waters, oligotrophic Trichonis and Amvrakia lakes. 

 

Conclusion:  

Chl-a, Secchi and TP quantitative models have been empirically built based 

on a wide range of concentrations measured throughout 50 Greek lakes, 

representing almost all trophic status classes. However, their application in 

oligotrophic Trichonis and Amvrakia lakes was ineffective, confirming in 

absolute agreement with the relevant literature, the underachievement of 

universal WQ models at the lowest chlorophyll concentrations (oligotrophic 

waterbodies) and at cases where the optical contribution is non-algal and 

inorganic (e.g. sediments). In this way, the necessity of the development of 

special oligotrophic algorithms for a more efficient and comprehensive lake 

management is underlined. A more accurate WQ assessment in oligotrophic 

bodies requires more appropriate satellite bands (blue-to-green ratios), more 

and narrower wavelengths specifically in NIR spectrum, additional water 

samplings during different time periods and the refinement of AC processors. 

Additional to those implications, a preceding and thorough research on 

phytoplankton community composition, Chl-a distributions, particles and 

CDOM is required for a more accurate WQ monitoring of oligotrophic 

waterbodies along Greece. 

 

Scientific contribution:  

The unique contribution of this objective lies in fact of making the final 

decision on whether national WQ models support adequately the perpetual 

WQ monitoring of Greek oligotrophic lakes or special oligotrophic algorithms 

should be developed. Based on the above, this research facilitates the 

refinement of lake WQ monitoring in Greece by laying the foundation stone 

of further discriminating Case-2 Greek waterbodies into distinct optical water 

types (OWT). Hence, the increase of WQ assessment’s accuracy per OWT is 

promoted and in particular of oligotrophic lakes by providing the 

background knowledge required.   

 

Limitations:  

a) The extremely low measurements of Chl-a concentrations in Trichonis 

and Amvrakia lakes; those are usually connected with decreased 

turbidity (lack of suspended particles) and by extension with decreased 

energy received by the satellite sensor.  

b) Oligotrophic lake WQ monitoring by using Landsat (7 ETM+/8 OLI) 

sensors may be problematic. Sensors delivering images with more and 

narrower bands in the red-NIR spectral region may perform better in 

oligotrophic waterbodies. Furthermore, Chl-a and turbidity are 



Markogianni V. Water Quality Assessment in Greek Lakes by Using Remote Sensing and Statistical Modelling 

267 | P a g e  

 

documented to be better quantified with sensors having red-edge band 

(680-710 nm) such as Sentinel 2, Sentinel 3 and Rapideye (Pizani and 

Maillard, 2022). Additionally, the alternative proposed for oligotrophic 

waters is the development of blue-to-green ratio algorithms (O'Reilly 

and Werdell, 2019). 

c) Water samples initially from Trichonis/Amvrakia lakes and then 

throughout the WFD lake network have been collected by different 

institutions’s staff, more probably using different methodology. 

Furthermore, the determination of Chl-a and nutrients’ concentrations 

has been conducted employing different laboratory techniques, 

equipment and calibrations in different facilities, e.g. EKBY and 

HCMR. Those differences generate errors and biases concerning their 

intercomparison. 

 

Objective 5: Model WQ of oligotrophic Trichonis lake by assessing WQ key 

elements (Chl-a, nutrient concentrations and CDOM absorption at 420 nm) 

through satellite RS. Trichonis is the largest freshwater lake of Greece while 

the available in-situ and satellite data concern years 2013 and 2014.  

 

Conclusion: The ability of Landsat 8 OLI imagery was proven limited 

concerning the establishment of WQ models in the oligotrophic Trichonis 

lake. Furthermore, observed weak correlations among in-situ and satellite 

data, particularly in autumn and summer, may also be due to the lake 

turnover effect. When the equalization of the thermal gradient in the lake 

induces mixing of surface and bottom waters, remote monitoring is made 

difficult due to instability (Barrett and Frazier, 2016). Further research is 

required towards the investigation of more water parameters or using sensors 

of different spatial and geometrical analysis in order to be able to compare the 

outcomes among all different cases.  

 

Scientific contribution:  

Even though early results demonstrated the vulnerability of the Landsat 8 

imagery to precisely determine certain WQ components in an inland 

oligotrophic body, it is generally accepted that those models may initially 

increase the knowledge of Trichonis lake’s WQ and then be utilized as 

warning indicators of its WQ deterioration.  

 

Limitations:  

(b)The main factors disabling WQ assessment in Trichonis lake are the 

extremely low constituents’ concentrations and the lack of any value 

differentiation among the sampling stations. Water samplings have 



been conducted in autumn and summer seasons; additional water 

samplings should be made during different time periods concerning 

specific mixing boundaries (surface-bottom waters) in order to 

investigate whether the feasibility of remote monitoring increases. In 

case strong relationships are found, this may help improve prediction 

capabilities by providing researchers with bounded time periods.  

(c) Another significant factor is the lack of any prior knowledge about 

regional phytoplankton community composition, namely whether the 

sampling stations are diatom- or cyanobacteria- dominated. When 

assessing the retrieval accuracy of satellite observations, phytoplankton 

community composition should be considered as spatial and temporal 

variations in composition may result in uncertainty in the inference of 

bloom severity. Binding et al. (2019) documented that if satellite Chl-a 

algorithms are calibrated primarily on one-species-cyanobacteria-

dominated conditions, it may lead to significant uncertainty in derived 

phytoplankton biomass within mixed bloom assemblages or blooms 

dominated by other cyanobacteria. This may lead to potential 

misrepresentation of bloom severity while such uncertainty is 

particularly important for long term trend analysis. 
 

 

5.1  Future work 

Μonitoring of lake WQ is a key priority topic, in terms of national 

environmental policy, which, ideally, should operate continuously while 

yielding updated and accurate results. During the accomplishment of this 

PhD thesis arose obstacles and particular factors hindering the achievement of 

more precise outcomes; on the other hand, in this way future pathways were 

configured towards the direction of managing an ever-enhanced and 

succesful WQ assessment throughout Greek lakes based on EO applications. 

Overall, studies have concluded that there are atmospheric correction 

(AC) methods that perform better when employed for the assessment of 

certain WQ parameters compared to others. Since the DOS1 atmospheric 

correction method has not been validated in the context of this thesis, one of 

priority future actions is the application of alternative atmospheric correction 

methods with principle goal the exploration of their wider effect on WQ 

models’ predictive ability and the selection of the most optimal one. A robust 

statistical analysis of how effective a AC method is, requires ground truth Rrs 

values, collected using a hand-held or shipborne spectroradiometer, to 

compare and evaluate AC corrected pixels. With a much larger dataset of 

observations on the optical properties, it will be possible to separate the 

match-ups by water type, giving further information and possible targeting of 
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water bodies with specific AC processors. AC methods’ intercomparison will 

manage to imply the most optimal AC algorithm and even distinguish the 

most appropriate one not only for each WQ constituent but also for each 

OWT (optical water type).  

Based on the rationale of connecting suitable AC method with respective 

OWT, the classification of hereby-studied 50 lakes in distinct OWTs is 

considered necessary. In general, lakes and reservoirs may present WQ 

variability not only across the study area (Greece) but also among regions and 

within some water bodies. The aim of this classification is to ensure that every 

OWT will be linked to specific bio-optical conditions in order to reflect the 

dominance of individual or group WQ elements’ concentrations.  The most 

commonly used inland water OWT classification system has been developed 

by Spyrakos et al. (2018) and is based on freely shared in-situ lake 

hyperspectral data, across global range. More particularly, resampling of 

OWT classes spectra to Landsat and Sentinel 2 spectra- except for WQ 

constituents’ concentrations as was herewith performed- and the detection of 

their inter similarities would facilitate their OWT classification in an efficient 

and accurate manner. The use of OWTs contributes to the development of 

WQ algorithms for optically complex waters while in parallel helps to choose 

an efficient AC processor for a specific region of interest.  

Moreover, authors intend to expand their research horizons and 

experiment with non-linear methods concerning the WQ models’ 

development. Empirical methods and in particular machine learning 

techniques are able to handle complicated non-linear relationships which 

typically characterize the WQ remote sensing data. Considering the non-

parametric nature of the hereby-utilized data, a sensitivity analysis among 

artificial neural network, genetic algorithms and support vector machine 

might be valuable for a more accurate assessment of WQ constituents. 

Additionally, the indication of the most optimal non-linear method and its 

comparison with herewith WQ linear models would overall contribute to a 

deeper knowledge of WQ parameters’ behaviour. 

Concerning the hereby delivered lake WQ models, one of the most 

significant tasks that will definitely be accomplished in the near future, is 

their integration in the GEE platform. Separate Chl-a, Secchi and Total 

Phosphorus models developed for all, natural and artificial lakes 

accompanied by the respective TSI equations for the trophic state assessment 

will be unified in an automated tool for near real time, national-scale WQ and 

trophic status monitoring. 

As far as the utilized satellite sensors are concerned, most of the inland 

water applications developed for WQ monitoring and management have been 

established by using images from multispectral and medium to high spatial 

resolution satellites (e.g., Landsat, Sentinel-2-MSI). Nowadays, spaceborne 



hyperspectral sensors have been attracting a significant attention since they 

offer simultaneous collection of hundreds of narrow spectral bands, 

facilitating the retrieval of WQ parameters. Hence, experimentation with 

hyperspectral image data such as PRISMA, DESIS, HISUI and EnMAP 

constitutes one more future task which will be conducted concerning the WQ 

parameters’ estimation in Greek lakes. Especially EnMAP is proposed as a 

suitable choice for remote estimation of Case-2 WQ properties as it has a 

spatial resolution of 30 m, 4 days of minimum temporal resolution and its 

products consist of 224 bands.   

Above all, it should be emphasized that the most significant 

precondition in order all of the above-mentioned future tasks be successfully 

achieved, is the on-going operation of WFD in Greece. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


