

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΡΓΙΚΗΣ ΥΔΡΑΥΛΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΦΥΣΙΚΟΙ ΠΟΡΟΙ, ΓΕΩΠΕΡΙΒΑΛΛΟΝ, ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ & ΓΕΩΡΓΙΚΗ ΜΗΧΑΝΙΚΗ

Μεταπτυχιακή Διπλωματική Εργασία

Ανάλυση λειτουργίας αρδευτικού δικτύου υπό πίεση ελεύθερης ζήτησης, στην περιοχή Επιταλίου, του Νομού Ηλείας

Ζωή Α. Σκουρλέτου

<u>Επιβλέπων καθηγητής:</u> Νικόλαος Δέρκας, Καθηγητής ΓΠΑ

Αθήνα 2023

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΡΓΙΚΗΣ ΥΔΡΑΥΛΙΚΗΣ

Μεταπτυχιακή Διπλωματική Εργασία

Ανάλυση λειτουργίας αρδευτικού δικτύου υπό πίεση ελεύθερης ζήτησης, στην περιοχή Επιταλίου, του Νομού Ηλείας

"Performance analysis of on-demand pressurized irrigation networks: case study in Epitalio, Greece"

Ζωή Α. Σκουρλέτου

Εξεταστική Επιτροπή: Νικόλαος Δέρκας, Καθηγητής ΓΠΑ (επιβλέπων) Ιωάννης Αργυροκαστρίτης, Καθηγητής ΓΠΑ Αγγελική Στεφοπούλου, Δρ., Επιστημονική συνεργάτιδα ΓΠΑ

Ανάλυση λειτουργίας αρδευτικού δικτύου υπό πίεση ελεύθερης ζήτησης, στην περιοχή Επιταλίου, του Νομού Ηλείας

ΠΜΣ Φυσικοί Πόροι, Γεωπεριβάλλον, Γεωπληροφορική & Γεωργική Μηχανική Τμήμα Αξιοποίησης Φυσικών Πόρων & Γεωργικής Μηχανικής Εργαστήριο Γεωργικής Υδραυλικής

ΠΕΡΙΛΗΨΗ

Στην παρούσα εργασία εξετάζεται η εφαρμογή ανάλυσης απόδοσης σε συλλογικά δίκτυα άρδευσης υπό πίεση, ως μέσα ελέγχου για τη σωστή λειτουργία τους.

Για τον σκοπό αυτό, έγινε ανάλυση απόδοσης υφιστάμενης συλλογικής άρδευσης υπό πίεση σε υποδίκτυο που λειτουργεί με ελεύθερη ζήτηση, το οποίο βρίσκεται στον Νομό Ηλείας (Ελλάδα).

Η μελέτη πραγματοποιείται με την εφαρμογή της μεθοδολογίας με τη χρήση ενός καθιερωμένου μοντέλου για την ανάλυση της υδραυλικής επάρκειας συστημάτων υπό πίεση, το μοντέλο COPAM (Combined Optimization and Performance Analysis Model), καθώς και το μοντέλο Nireus.

Αυτά τα μοντέλα παρέχουν μια γενική αξιολόγηση των δικτύων, σχετικά με την λειτουργική του επάρκεια και, επιπλέον, αξιολογεί την υδραυλική συμπεριφορά σε επίπεδο δικτύου και σε επίπεδο υδροστομίων.

Επιστημονική περιοχή: Υδραυλική

Λέξεις κλειδιά: Συλλογικά δίκτυα ελεύθερης ζήτησης, αρδευτικά δίκτυα, δίκτυα υπό πίεση, υδραυλική ανάλυση λειτουργίας, μοντέλο προσομοίωσης, ανάλυση απόδοσης, γραμμικές απώλειες, δείκτες αξιολόγησης, COPAM, NIREUS.

Performance analysis of on-demand pressurized irrigation networks: case study in Epitalio, Greece

MSc Natural Resources, Geoenvironment, Geoinformatics & Agricultural Engineering Department of Natural Resources Utilization & Agricultural Engineering Laboratory of Agricultural Hydraulics

ABSTRACT

In this study, the implementation of performance analysis in collective pressurized irrigation networks is examined, as a means of testing for their proper operation.

For this purpose, a performance analysis of existing collective irrigation under pressure in a sub-network operating on demand, located in the Prefecture of Ilia (Greece), was performed.

The study is carried out by applying the methodology using an established model for the analysis of the hydraulic adequacy of pressurized systems, the COPAM model (Combined Optimization and Performance Analysis Model), as well as the Nireus Model.

These models provide a general assessment of the networks, regarding their response to demand and, in addition, evaluate the hydraulic behavior at the network level and at the hydrands level.

Scientific area: Hydraulics

Keywords: Collective irrigation networks on-demand, irrigation networks, pressurized networks, hydraulic operation analysis, simulation model, performance analysis, friction loss, performance indicators, COPAM, NIREUS.

Ευχαριστίες

Στο σημείο αυτό, επιθυμώ να εκφράσω την ευγνωμοσύνη και τις ευχαριστίες μου στους ανθρώπους που συνέβαλαν, ο καθένας τους με έναν καθοριστικά μοναδικό τρόπο, στην ολοκλήρωση της παρούσας μελέτης και του μεταπτυχιακού προγράμματος.

Αρχικά, οφείλω τα πάντα στον Καθηγητή του Τμήματος Αξιοποίησης Φυσικών Πόρων και Γεωργικής Μηχανικής του Γ.Π.Α., κ. Νικόλαο Δέρκα, επιβλέποντα της μεταπτυχιακής μου διατριβής.

Ο καθηγητής μου με στήριξε σε όλη τη διάρκεια της μαθητείας μου. Αναγνωρίζοντας τα ενδιαφέροντά μου, μου ανέθεσε το συγκεκριμένο θέμα, μου παρείχε βοήθεια και με ενθάρρυνε όποτε απαιτήθηκε. Μου έδειξε εμπιστοσύνη και μου άνοιξε τον δρόμο της ουσιαστικής γνώσης και της εργασίας του επαγγελματία γεωπόνου. Με τη συνεργασία και τις συμβουλές του κατάφερα, όχι μόνο να διεκπεραιώσω τις μεταπτυχιακές σπουδές μου, αλλά να χτίσω και τον επαγγελματισμό μου. Στη δύσκολη στιγμή που η Μελέτη έμεινε στάσιμη, με παρακίνησε να μην ολιγωρήσω, αλλά να συνεχίσω. Με δίδαξε πώς να επιμένω και να προσπαθώ σκληρά. Η ολοκλήρωση της μελέτης αυτής έγινε δυνατή χάρη στην πολύτιμη επιστημονική του καθοδήγηση και την αμέριστη ηθική του συμπαράσταση.

Επίσης, ευχαριστώ θερμά τον Καθηγητή του Τμήματος Αξιοποίησης Φυσικών Πόρων και Γεωργικής Μηχανικής του Γ.Π.Α., κ. Ιωάννη Αργυροκαστρίτη, για τη συμμετοχή του στην τριμελή επιτροπή και την αξιολόγηση της διατριβής μου, για τις πολύτιμες γνώσεις που μου προσέφερε κατά τη διάρκεια του μεταπτυχιακού προγράμματος, για το αδιάλειπτο ενδιαφέρον του για την πρόοδό μου και τη συνολική συμμετοχή του στην ολοκλήρωση των υποχρεώσεών μου.

Ομοίως, ευχαριστώ θερμά την επιστημονική συνεργάτιδα του Γ.Π.Α., Δρ. Αγγελική Στεφοπούλου, διότι αφιέρωσε αδιαμαρτύρητα τον πολύτιμο χρόνο της, βοηθώντας με να μελετήσουμε και να συζητήσουμε το πρόγραμμα Nireus που ήταν απαραίτητο για την εκπόνηση της διατριβής, καθώς και για την αξιολόγησή της.

Επιθυμώ να ευχαριστήσω, επιπλέον, το Υπουργείο Αγροτικής Ανάπτυξης και Τροφίμων, το Τμήμα Εγγειοβελτιωτικών Έργων, για τις μελέτες και τις μετρήσεις που παρείχαν και χρησιμοποιήθηκαν στην Μελέτη.

Ευχαριστώ τους φίλους και συναδέλφους Αντώνιο Μαυροειδή, Βασιλική Παχή και Αλέξανδρο Ταταρίδα που συμπαρίστανται με αγάπη σε κάθε μου βήμα.

Τέλος, θέλω να αφιερώσω τη μεταπτυχιακή διατριβή, στην οικογένειά μου και, κυρίως, στη μνήμη του αλησμόνητου πατέρα μου, Αριστόδημου Σκουρλέτου, του πρώτου και σημαντικότερου Γεωπόνου στη ζωή μου.

Γιατί αυτός, από τα παιδικά μου κιόλας χρόνια, στάλαξε μέσα μου την αγάπη και το ενδιαφέρον για τη γη και την αγροτική παραγωγή, μου δίδαξε εμπειρικά την αξία του γεωργού και της παραγωγής. Διατηρώ ακόμη ζωντανή στη μνήμη μου την αξέχαστη, την πρώτη βόλτα μας στα λαχίδια που είχε στον Παραδοσιακό Ελαιώνα της Άμφισσας. Με κρατούσε διαρκώς από το χέρι βγαίνοντας από το αυτοκίνητο, αλλά με άφησε όταν μπήκαμε στο χωράφι λέγοντάς μου: «Αυτός είναι ο πραγματικός θησαυρός του ανθρώπου. Χρειάζεται όμως την προστασία και τη φροντίδα μας. Σήμερα τη δική μου, αύριο τη δική σου». Τον θυμάμαι να περπατά αγέρωχα κι ανάλαφρα ανάμεσα στα δένδρα, να θωπεύει τους κορμούς και το φύλλωμα, να τα εξετάζει για τυχόν προβλήματα, να μυρίζει απολαυστικά τον αέρα και το χώμα που μάζευε στη χούφτα του. Το χαμόγελο είναι διαρκώς ζωγραφισμένο στα χείλη του, το πρόσωπό του φωτεινό, μιλάει ακατάπαυστα και με ενθουσιασμό για τις εργασίες που απαιτούνται για τη συντήρηση των δένδρων και την καλή παραγωγή ελαιολάδου, και τότε νομίζω πως κατάλαβα πώς είναι ένας πραγματικά ευτυχισμένος άνθρωπος.

Επιθυμούσε να παραλάβω τη σκυτάλη από τα χέρια του, σπουδάζοντας στη δική του Σχολή, στο Γεωπονικό Πανεπιστήμιο Αθηνών, το οποίο αγαπούσε και σεβόταν απεριόριστα, διότι υπήρξε και ο δικός του σπουδαιότερος σταθμός ζωής, ενώ με στήριξε στα πρώτα αβέβαια βήματα της επαγγελματικής μου ζωής ως γεωπόνου.

Δυστυχώς, ο πολυαγαπημένος μου πατέρας δεν ευτύχισε να με δει να ολοκληρώνω τις μεταπτυχιακές μου σπουδές. Ελπίζω όμως, από εκεί που βρίσκεται να μας βλέπει όλους και να νιώθει το ίδιο ευτυχισμένος και ευγνώμων όσο κι εγώ.

Με την άδειά μου, η παρούσα μεταπτυχιακή εργασία ελέγχθηκε από λογισμικό ανίχνευσης κειμενικής ομοιότητας που διαθέτει το Πανεπιστήμιο

Περιεχόμενα

ΠΕΡΙΛΗΨΗ	1
A B S T R A C T	2
Ευχαριστίες	3
Περιεχόμενα	5
Σχήματα	6
Εικόνες	7
Πίνακες	8
Χάρτες	8
Κεφάλαιο 1: Εισαγωγή	9
1.1 Αντικείμενο και Στόχοι της Μελέτης	9
1.2 Περίγραμμα Ενοτήτων της Διατριβής	10
Κεφάλαιο 2: Επισκόπηση εννοιών και μεθόδων	11
2.1 Συλλογικά αρδευτικά δίκτυα	11
2.2 Σχεδιασμός συλλογικού αρδευτικού δικτύου υπό πίεση	12
2.3 Ανάλυση λειτουργίας ενός συλλογικού αρδευτικού δικτύου	21
2.4 Προγράμματα λογισμικού για την υδραυλική ανάλυση συλλογικών αρδευτικών δικτύων.	33
Κεφάλαιο 3: Εφαρμογή σε υφιστάμενο ελληνικό δίκτυο	49
3.1 Σύντομη περιγραφή περιοχής μελέτης	49
3.2 Το δίκτυο - Τεχνικά χαρακτηριστικά του δικτύου	56
3.3 Μελέτη εφαρμογής	59
Κεφάλαιο 4: Ανάλυση αποτελεσμάτων των δύο λογισμικών	74
4.1 Αποτελέσματα COPAM	74
4.2 Αποτελέσματα Nireus	77
Κεφάλαιο 5: Συμπεράσματα	83
6. Βιβλιογραφία	84

Σχήματα

Σχήμα 2.1: Παροχή σχεδιασμού των αγωγών σε σχέση με την εξοπλισμένη έκταση21
Σχήμα 2. 2. : Αναγκαίο φορτίο στην κεφαλή για την παροχή αιχμής (Δέρκας 2001) 22
Σχήμα 2. 3: Χαρακτηριστικές καμπύλες δικτύου για τρεις συνδυασμούς ανοικτών υδροστομίων (Δέρκας 2001)23
Σχήμα 2.4: Ακραία σημεία (Zr, Qr) των χαρακτηριστικών καμπυλών ενός δικτύου (Δέρκας 2001)
Σχήμα 2.5: Χαρακτηριστικές καμπύλες με δείκτες (Ci) (Δέρκας 2001)25
Σχήμα 2.6: Ολοκληρωμένη ανάλυση ενός συλλογικού αρδευτικού δικτύου (Στεφοπούλου 2013)
Σχήμα 2.7: Παραδείγματα κανόνων αρίθμησης σύμφωνα με το εγχειρίδιο χρήσης του COPAM (Lamaddalena and Sagardoy 2000)
Σχήμα 3.1: Σκαρίφημα αρδευτικού δικτύου Επιταλίου. Γενική διάταξη61

Σχήμα 3.2: Σκαρίφημα	δικτύου με αρίθμηση	κατά COPAM	65

Σχήμα 4.1: Χαρακτηριστικές καμπύλες με δείκτες C10, C20, C30, C40, C50, C60, C70, C80, C90 και σημείο λειτουργίας "set point" (QClément =559L/s, Ζκεφ= 84,46 m)
Σχήμα 4.2: Χαρακτηριστικές καμπύλες με δείκτες C10, C20, C30, C40, C50, C60, C70, C80, C90 και σημείο λειτουργίας "set point" (Qσχεδιασμού AE1 =414L/s, Ζκεφ= 84,46 m)
Σχήμα 4.3: Περίσσεια - έλλειμμα φορτίου των υδροστομίων (για συνθήκες λειτουργίας Qσχεδιασμού AE1 =414L/s, Ζκεφ=84,46m)76
Σχήμα 4.4: Δείκτης αξιοπιστίας του κάθε υδροστομίου (για συνθήκες λειτουργίας Qσχεδιασμού ΑΕ1 =414L/s, Ζκεφ=84,46m)76
Σχήμα 4. 5: Χαρακτηριστικές καμπύλες με δείκτες C10, C20, C50, C60, C70, C90 και σημείο λειτουργίας "Control point" (Qσχεδιασμού ΑΕ1 =414L/s, Ζκεφ= 84,46 m) 80
Σχήμα 4. 6: Δείκτης αξιοπιστίας του κάθε υδροστομίου - αντιστοίχιση Κόμβων και Αρίθμησης (για συνθήκες λειτουργίας Qσχεδιασμού ΑΕ1 =414L/s, Ζκεφ=84,46m) 81

Εικόνες

Εικόνα 2.1: Εκκίνηση προγράμματος COPAM34
Εικόνα 2.2: Περιβάλλον εργασίας του COPAM - Επιλογές του μενού Graph
Εικόνα 2.3: Περιβάλλον εργασίας του COPAM – Επιλογές του μενού Edit
Εικόνα 2.4: Πεδίο καταχώρησης των ονομαστικών παροχών των υδροστομίων 36
Εικόνα 2.5: Πεδίο καταχώρησης των χαρακτηριστικών στοιχείων των αγωγών37
Εικόνα 2.6: Πεδίο καταχώρησης των χαρακτηριστικών στοιχείων του δικτύου
Εικόνα 2.7: Πεδίο καταχώρησης των τιμών των παραμέτρων της ανάλυσης (α) του μοντέλου χαρακτηριστικών καμπυλών, (β) του μοντέλου (AKLA)
Εικόνα 2.8: Εκκίνηση προγράμματος Nireus42
Εικόνα 2.9: Πεδίο καταχώρησης των χαρακτηριστικών στοιχείων του δικτύου43
Εικόνα 2.10: Πεδίο καταχώρησης δεδομένων προσομοίωσης44
Εικόνα 2.11: Επιλογή εξίσωσης για τον υπολογισμό γραμμικών απωλειών
Εικόνα 2.12: Εισαγωγή συντελεστών τραχύτητας45
Εικόνα 2.13: Παρουσίαση της τοπολογίας του δικτύου σε δενδρώδη διάταξη45
Εικόνα 2.14: Ανάλυση σε επίπεδο δικτύου46
Εικόνα 2.15: Εισαγωγή δεδομένων για την ανάλυση σε επίπεδο υδροστομίου47

Εικόνα 3. 1: Δεδομένα εισόδου στο μοντέλο χαρακτηριστικών καμπυλών (Characteristic Curves Model)	. 72
Εικόνα 3.2: Δεδομένα εισόδου στο μοντέλο AKLA (Akla Model)	. 73

Πίνακες

Πίνακας 2.1: Συνάρτηση κατανομής της τυποποιημένης κανονικής. Ποιότητα λειτουργίας του δικτύου Pq. (Lamaddalena and Sagardoy 2000)	18
Πίνακας 2. 2: Συντελεστές ισοδύναμης τραχύτητας Κ και γ Bazin (m0.5) (Lamaddalena and Sagardoy 2000)	41
Πίνακας 2.3: Copam vs Nireus	48
Πίνακας 3.1: Χαρακτηριστικά Μετεωρολογικού Σταθμού Πύργου	49
Πίνακας 3.2: Θερμοκρασία αέρος - Σταθμός Πύργος	50
Πίνακας 3.3: Βροχοπτώσεις - Σταθμός Πύργος	51
Πίνακας 3.4: Κλίμακα κατάταξης κατά GRACANIN	52
Πίνακας 3.5: Χαρακτηρισμός Κλίματος κατά LANG και GRACANIN - Πύργος	52
Πίνακας 3.6: Χαρακτηρισμός κλίματος κατά Thornthwaite	53
Πίνακας 3.7: Πίνακας Υπολογισμού Παραμέτρων για την ταξινόμηση του κλίματος THORNTHWAITE - Πύργος	53
Πίνακας 3.10: Χαρακτηριστικά Επιταλίου	55
Πίνακας 3.11: Κατανομή έκτασης	55
Πίνακας 3.12: Συγκεντρωτικός πίνακας σωληνώσεων	57
Πίνακας 3.13: Συγκεντρωτικός Πίνακας αποτελεσμάτων Υ.Π.Γ	58
Πίνακας 3.14: Χαρακτηριστικά λειτουργίας δικτύου	59
Πίνακας 3.15: Χαρακτηριστικά αγωγών δικτύουθ	60
Πίνακας 3.16: Χαρακτηριστικά αρδευτικού δικτύου Επιταλίου	62
Πίνακας 3.17: Input file για το COPAM του δικτύουθ	66
Πίνακας 3.18: Πίνακας Input file Nireusθ	69

Πίνακας 4. 1: Παρουσίαση αποτελεσμάτων από την ανάλυση σε επίπεδο δικτύου (φορτίο στην κεφαλή για διάφορες παροχές κεφαλής και χαρακτηριστικές καμπύλες)) 77
Πίνακας 4. 2: Παρουσίαση αποτελεσμάτων από την ανάλυση σε επίπεδο δικτύου, Χαρακτηριστικών Καμπυλών με δείκτες C10, C20, C50, C60, C70, C90	79
Πίνακας 4. 3: Παρουσίαση αποτελεσμάτων της ανάλυσης σε επίπεδο υδροστομίου. Συντελεστής Hashimoto για κάθε υδροστόμιο	82

Χάρτες

Χάρτης 3.1: Τοποθεσία Επιταλίου56

Κεφάλαιο 1: Εισαγωγή

1.1 Αντικείμενο και Στόχοι της Μελέτης

Η συνεχής ανάπτυξη του ανθρώπινου πολιτισμού οδηγεί τις κοινωνίες διαρκώς στη δημιουργία νέων έργων υποδομής αλλά και στη βελτιστοποίηση των ήδη υπαρχόντων.

Οι ανθρώπινες κοινωνίες, ιστορικά, άνθισαν κατά μήκος της ακτογραμμής αλλά και γύρω από ποτάμια, λίμνες, δηλαδή τους κύριους υδάτινους δρόμους εξαιτίας των ωφελειών που προσφέρει το *γλυκό νερό* στον άνθρωπο.

Το γλυκό νερό είναι ένας ανανεώσιμος πόρος, απαραίτητος για τον άνθρωπο αλλά και για τον πρωτογενή τομέα, και πιο συγκεκριμένα, τη γεωργία.

Για τον λόγο αυτό, τα εγγειοβελτιωτικά έργα είναι καθοριστικής σημασίας.

Τα πρώτα πραγματοποιήθηκαν στο τέλος του 19^{ου} αιώνα (Αντιπλημμυρικά έργα Αχελώου και έναρξη αποξήρανσης της λίμνης Κωπαΐδας, η οποία τελικά ολοκληρώθηκε στις αρχές του 20^{ου} αιώνα), ενώ κατά τη δεκαετία του '60 έγιναν τα πρώτα σύγχρονα έργα (επιφανειακά δίκτυα) και μερικά δίκτυα υπό πίεση για να ελεγχθεί η αποτελεσματικότητα της ελεύθερης ζήτησης. Στη συνέχεια, από το 1970, τα περισσότερα δίκτυα είναι υπό πίεση ελεύθερης ζήτησης.

Σήμερα, η πλειοψηφία των έργων αυτών διαφοροποιείται σημαντικά από εκείνη που είχε προβλεφθεί κατά τη μελέτη τους.

Προβλήματα που παρουσιάζουν τα δίκτυα:

- 1. Πεπαλαιωμένα
- 2. Χαμηλή, έως και ανύπαρκτη συντήρηση
- 3. Μεγάλες καταναλώσεις και απώλειες νερού
- 4. Ανεξέλεγκτες επεμβάσεις από την πλευρά των χρηστών
- 5. Έλλειψη ελέγχου και διαχείρισης από τους αρμοδίους φορείς που μειώνουν δραματικά την ποιότητα λειτουργίας τους.

Αποτέλεσμα αυτών των συνθηκών είναι τα δίκτυα αυτά να αδυνατούν να εξυπηρετήσουν τους χρήστες, να αυξάνεται σημαντικά το ενεργειακό τους κόστος (στις περιπτώσεις άντλησης) και να επιβαρύνονται οι υπόγειοι υδροφόροι, εξαιτίας της υπεράντλησης και της προκύπτουσας υφαλμύρινσης. Παράλληλα, οι αγρότες, λόγω της έλλειψης σχεδιασμού και καθοδήγησης, αρδεύουν εμπειρικά, και, για να νιώθουν ασφάλεια, τείνουν να αυξάνουν τις ποσότητες του νερού άρδευσης, κάτι που με τη σειρά του επιφέρει μη αποτελεσματική χρήση του αρδευτικού νερού, διάβρωση σε περίπτωση επικλινών εδαφών και απώλειες στην παραγωγή.

Για την αποτελεσματική αντιμετώπιση των προβλημάτων αυτών χρειάζεται σωστή διαχείριση του δικτύου και εμπεριστατωμένη αξιολόγηση της λειτουργικής του κατάστασης.

Η παρούσα μελέτη βασιζόμενη σε εργαλεία ανάλυσης που προσφέρει η επιστήμη στο έργο υπογειοποίησης των επιφανειακών δικτύων, αναφέρεται στην κατασκευή νέου σωληνωτού αρδευτικού δικτύου στην περιοχή του ΤΟΕΒ Επιταλίου, του Νομού Ηλείας.

Το επιφανειακό αρδευτικό δίκτυο της περιοχής θα υπογειοποιηθεί και το νέο δίκτυο θα τροφοδοτείται με νερό μέσω ενός αντλιοστασίου (AE1).

Στα πλαίσια της μελέτης, θα γίνει ανάλυση της υδραυλικής συμπεριφοράς του έργου και σύγκριση δύο λογισμικών υδραυλικής ανάλυσης και απόδοσης (COPAM & NIREUS) των συστημάτων άρδευσης υπό πίεση που λειτουργούν με ελεύθερη ζήτηση.

1.2 Περίγραμμα Ενοτήτων της Διατριβής

Για την παρουσίαση των λογισμικών της ανάλυσης του αρδευτικού δικτύου, καθώς και για τη σύγκρισή τους, η εργασία οργανώθηκε σε πέντε επιμέρους κεφάλαια, τα οποία συνοψίζονται στη συνέχεια διαδοχικά.

1º Κεφάλαιο

Το κεφάλαιο αυτό είναι το εισαγωγικό και σε αυτό αναλύονται οι λόγοι εκπόνησης της μελέτης.

2° Κεφάλαιο

Δίνονται οι βασικές έννοιες και μέθοδοι των συλλογικών αρδευτικών δικτύων, του σχεδιασμού και της ανάλυσής τους. Επίσης, παρουσιάζονται τα δύο λογισμικά που θα συγκριθούν στην παρούσα μελέτη.

3° Κεφάλαιο

Περιλαμβάνει την εφαρμογή της ανάλυσης σε υφιστάμενο ελληνικό δίκτυο, παρουσιάζοντας παράλληλα στοιχεία για το συγκεκριμένο δίκτυο και την ευρύτερη περιοχή μελέτης.

4° Κεφάλαιο

Παρουσιάζει και συγκρίνει τα αποτελέσματα των δύο μελετώμενων λογισμικών.

5° Κεφάλαιο

Αποτελεί το τελευταίο κεφάλαιο στο οποίο συνοψίζονται και σχολιάζονται τα βασικά συμπεράσματα της εργασίας, ενώ διατυπώνονται και προτάσεις για περαιτέρω έρευνα.

Κεφάλαιο 2: Επισκόπηση εννοιών και μεθόδων

2.1 Συλλογικά αρδευτικά δίκτυα

Τα συλλογικά αρδευτικά δίκτυα είναι υδραυλικά συστήματα που έχουν ως σκοπό να μεταφέρουν το νερό από το σημείο της υδροληψίας (φυσική ή τεχνητή λίμνη, εκτροπή ποταμού, γεώτρηση), στην αρδευτική περίμετρο και να το διανέμουν στις διάφορες αρδευτικές μονάδες. (Τσακίρης & Δέρκας 2006)

Είναι μέρος της ευρύτερης κατηγορίας, των εγγειοβελτιωτικών έργων αποσκοπούν στην εξασφάλιση και την εξοικονόμηση του νερού για την κάλυψη των αρδευτικών αναγκών των καλλιεργειών και, ταυτόχρονα, στην ορθολογική διαχείριση των εδαφοϋδατικών πόρων αλλά και στη μέριμνα για την ποιότητα του αρδευτικού νερού και την προστασία του εδάφους.

Από την εμφάνισή τους έως και τα μέσα του 20^{ου} αιώνα, τα δίκτυα αυτά ήταν δίκτυα ανοιχτών διωρύγων, στα οποία το νερό έφθανε από την υδροληψία μέχρι τα αγροτεμάχια με τη δύναμη της βαρύτητας, ενώ η εφαρμογή τους γινόταν με επιφανειακές μεθόδους (άρδευση με αυλάκια, λωρίδες ή λεκάνες κατάκλισης). Μετά το 1970, υπήρξε στροφή προς τα δίκτυα κλειστών αγωγών υπό πίεση, είτε αντικαθιστώντας τα ήδη υπάρχοντα ανοιχτών αγωγών είτε κατασκευάζοντας νέα, επιτρέποντας ταυτόχρονα να αναπτυχθούν νέες μέθοδοι άρδευσης (π.χ. καταιονισμός, μικροάρδευση).

Τα δίκτυα υπό πίεση είναι συστήματα αγωγών με ακτινωτή διάταξη (σε αντίθεση με τα κλειστά δίκτυα ύδρευσης) που μεταφέρουν το νερό από το σημείο υδροδότησης με άντληση ή βαρύτητα (όταν η τοπογραφία το επιτρέπει) υπό πίεση μέχρι τα σημεία διανομής του νερού κοντά στις αρδευτικές μονάδες. Στα σημεία διανομής υπάρχουν οι υδροληψίες που φέρουν συνήθως 1 έως 4 υδροστόμια (σε ορισμένους τύπους υδροληψιών έως και 6). Τα υδροστόμια επιτρέπουν στους χρήστες να συνδέουν τα ατομικά τους συστήματα άρδευσης και να αρδεύουν τα αγροτεμάχιά τους με καταιονισμό ή μικροάρδευση. Βασικό πλεονέκτημα του συστήματος είναι η δυνατότητα χρήσης όλων των σύγχρονων μεθόδων άρδευσης, ενώ μειονέκτημα αποτελεί το υψηλό κόστος λειτουργίας κυρίως λόγω του ενεργειακού κόστους. (Τσακίρης & Δέρκας 2006)

Επιπλέον, τα συλλογικά αρδευτικά δίκτυα υπό πίεση επιτρέπουν την οργάνωση των αρδεύσεων με πιο ορθολογικό τρόπο, αυξάνουν την αποδοτικότητα χρήσης του νερού, δεδομένου ότι οι απώλειες είναι συνήθως μικρότερες, βελτιώνουν την ομοιομορφία εφαρμογής στον αγρό και, τέλος, δίνουν τη δυνατότητα χρέωσης του αρδευτικού νερού με βάση τον καταναλωμένο όγκο και όχι την αρδευόμενη επιφάνεια, κάτι που στην Ελλάδα τουλάχιστον δεν λειτουργεί ευρέως, πλην ελαχίστων εξαιρέσεων. Λόγω των σημαντικών πλεονεκτημάτων που παρουσιάζουν σε σχέση με τις ανοιχτές διώρυγες, τα δίκτυα υπό πίεση επικράτησαν τελικά και αναπτύχθηκαν ιδιαίτερα κατά τη διάρκεια των τελευταίων δεκαετιών.

Ως προς τον τρόπο διανομής του αρδευτικού νερού, τα συλλογικά δίκτυα υπό πίεση, λειτουργούν με μια από τις ακόλουθες μεθόδους:

- Με ελεύθερη ζήτηση
- Με διανομή εκ περιτροπής (πρόγραμμα)
- Με περιορισμένη ζήτηση.

Στη μέθοδο της ελεύθερης ζήτησης, οι χρήστες είναι εκείνοι που καθορίζουν τον χρόνο και τη διάρκεια άρδευσης του αγροτεμαχίου τους.

Στη μέθοδο της εκ περιτροπής διανομής, δίνεται σε κάθε κλάδο ή σε κάθε υδροληψία η ειδική συνεχής παροχή που αντιστοιχεί στην επιφάνεια που αρδεύει και ο χρήστης πρέπει κατά την περίοδο της διάθεσης του νερού να αρδεύει συνεχώς, προκειμένου να καλύψει τις ανάγκες των καλλιεργειών του.

Τέλος, η μέθοδος διανομής με περιορισμένη ζήτηση, παρέχει στον χρήστη ελευθερία μεταξύ αυτής της ελεύθερης ζήτησης και του προγράμματος (Dercas 1989) (κάθε υδροστόμιο μπορεί να χρησιμοποιηθεί κατά τη βούληση του χρήστη, κάτω όμως από ορισμένες προϋποθέσεις, π.χ. όχι όλες τις ημέρες ή όχι όταν το γειτονικό υδροστόμιο είναι σε λειτουργία κ.λπ.).

Από τις τρεις αυτές μεθόδους διανομής, αυτή που είναι η πλέον χαρακτηριστική για τα δίκτυα υπό πίεση και η οποία αναπτύχθηκε μαζί με αυτά, είναι αυτή της ελεύθερης ζήτησης. Όπως έχει ήδη αναφερθεί, στη μέθοδο αυτή οι αγρότες μπορούν να χρησιμοποιούν το υδροστόμιό τους όποτε θέλουν και για όσο χρόνο απαιτείται. Το γεγονός αυτό τους δίνει ιδιαίτερη ελευθερία, τους βοηθά στην καλύτερη οργάνωση των εργασιών τους και στην αποτελεσματικότερη χρήση του νερού. (Τσακίρης & Δέρκας 2006)

Βέβαια, για να είναι αποτελεσματική η άρδευση, απαραίτητη προϋπόθεση είναι οι χρήστες να γνωρίζουν και να τηρούν τις αρχές της άρδευσης (συχνότητα και δόση άρδευσης) και να μην αρδεύουν εμπειρικά.

2.2 Σχεδιασμός συλλογικού αρδευτικού δικτύου υπό πίεση

Οι μελέτες των αρδευτικών δικτύων είναι πολύπλοκες και χρονοβόρες και εκτελούνται από επιτελεία πολλών ειδικοτήτων (μηχανικών, γεωπόνων, οικονομολόγων κ.λπ.). Τα αναγκαία στοιχεία για τη σύνταξη των μελετών των συλλογικών αρδευτικών δικτύων αφορούν στο φυσικό περιβάλλον (τοπογραφία, γεωλογία, εδαφολογία, εδαφο-μηχανική, μετεωρολογία,

υδρολογία και υδρογεωλογία), στο κτηματολόγιο της περιοχής, όπως επίσης και στην οικονομο-τεχνική κατάσταση των γεωργικών εκμεταλλεύσεων (διαθέσιμοι οικονομικοί πόροι, εξοπλισμός, χρησιμοποιούμενη τεχνολογία), στις κοινωνικές συνθήκες στην ευρύτερη περιοχή του έργου (ηλιακή πυραμίδα, μορφωτικό επίπεδο, διαθέσιμο εργατικό δυναμικό κ.λπ.).

Οι παράμετροι που εμπλέκονται στη σχεδίαση ενός αρδευτικού δικτύου υπό πίεση που λειτουργεί με ελεύθερη ζήτηση μπορούν να ομαδοποιηθούν σε δύο ξεχωριστές κατηγορίες (Clément & Galand 1979) τις παραμέτρους πλαισίου (paramètres de context) και τις παραμέτρους απόφασης (paramètres de décision).

Οι παράμετροι πλαισίου είναι αποτέλεσμα της επίδρασης του κλίματος, του τύπου εδάφους, καθώς και των υδροτεχνικών και αγρονομικών χαρακτηριστικών της αρδευτικής περιμέτρου. Το κοινό χαρακτηριστικό και είναι ÓTI λαμβάνουν παραπάνω παραμέτρων συγκεκριμένες και προκαθορισμένες τιμές και, κατά συνέπεια, ο μελετητής δεν μπορεί να επέμβει στον καθορισμό των τιμών τους.

Οι παράμετροι απόφασης, δεν είναι προκαθορισμένες. Αντίθετα, αποτελούν επιλογή του μελετητή και μάλιστα, συχνά, χωρίς να υπάρχει σαφής τεκμηρίωση της επιλογής αυτής (Bethery et al 1981). Οι παράμετροι αυτοί αφορούν στην ποιότητα των παρεχόμενων υπηρεσιών (ποιότητα λειτουργίας του δικτύου, χρονική απόδοση του δικτύου) και στη σχεδίαση του δικτύου (πυκνότητα εγκατεστημένων υδροστομίων, εγκατεστημένη παροχή στα υδροστόμια, μελλοντικά υδροστόμια, κ.α.).

Οι φάσεις σχεδιασμού ενός αρδευτικού δικτύου υπό πίεση ελεύθερης ζήτησης είναι οι ακόλουθες:

- 1. Προσδιορισμός των αρδευτικών αναγκών
- 2. Οριοθέτηση της αρδευτικής περιμέτρου
- 3. Χάραξη του δικτύου
- 4. Υπολογισμός των παροχών σχεδιασμού των αγωγών
- 5. Οικονομική βελτιστοποίηση των διαμέτρων των αγωγών και του έργου κεφαλής.

2.2.1 Προσδιορισμός αρδευτικών αναγκών

Ο προσδιορισμός των αρδευτικών αναγκών των καλλιεργειών αποτελεί ίσως την πιο δύσκολη φάση της μελέτης ενός αρδευτικού δικτύου. Η δυσκολία της έγκειται στο γεγονός ότι κατά το στάδιο αυτό πρέπει να γίνει εκτίμηση της κατανομής των καλλιεργειών για την προβλεπόμενη διάρκεια ζωής του έργου, έτσι ώστε στη συνέχεια να υπολογιστούν οι ανάγκες τους σε αρδευτικό νερό.

Απαραίτητη για τον υπολογισμό αυτών των αναγκών είναι η ύπαρξη ενός μητρώου τιμών μετεωρολογικών παραμέτρων μιας μεγάλης χρονικής περιόδου (της μεγαλύτερης που διαθέτουμε για την περιοχή μελέτης) όπως θερμοκρασίας, ηλιακής ακτινοβολίας, σχετικής υγρασίας και ταχύτητας του ανέμου, βροχοπτώσεις, καθώς και τιμών σχετικών με τις υδατικές απώλειες του συστήματος μεταφοράς και διανομής και των μεθόδων άρδευσης.

Η φάση αυτή της μελέτης οδηγεί συχνά σε αστοχίες, διότι πρακτικά είναι δύσκολο έως και αδύνατο να εκτιμηθεί έστω και με σχετική ακρίβεια η κατανομή των καλλιεργειών στον χρονικό ορίζοντα της κατανομής της ζωής του έργου (30-40 έτη).

Στον ελληνικό χώρο, τα αρδευτικά δίκτυα Αλφειού και Πηνειού, Ηλείας αποτελούν δυο χαρακτηριστικά παραδείγματα του βαθμού αστοχίας στην εκτίμηση της μελλοντικής κατανομής των καλλιεργειών. Σύμφωνα με τα στοιχεία της απογραφής καλλιεργειών που πραγματοποιήθηκε το 1995, 23 χρόνια δηλαδή μετά την ολοκλήρωση των έργων του Αλφειού (1972) και 15 χρόνια μετά την ολοκλήρωση των έργων του Αλφειού (1972) και 15 χρόνια μετά την ολοκλήρωση των έργων του Αλφειού (1972) και 15 χρόνια μετά την ολοκλήρωση των έργων του Πηνειού (1980), οι αρδεύσεις είχαν αναπτυχθεί σημαντικά λιγότερο από αυτό που είχε προβλεφθεί κατά τη μελέτη για χρονικό ορίζοντα 10 ετών μετά την έναρξη λειτουργίας των δικτύων (1982 και 1990, αντίστοιχα). Συγχρόνως, σημαντικές αποκλίσεις υπήρχαν στις εκτάσεις που καταλαμβάνουν οι διάφορες καλλιέργειες (Karantounias G. et Dercas N. 1999).

Λόγω των αντικειμενικών δυσκολιών εκτίμησης της κατανομής των καλλιεργειών που θα αναπτυχθεί στη διάρκεια ζωής ενός εγγειοβελτιωτικού έργου, ορισμένοι οργανισμοί μελέτης, σχεδιασμού και διαχείρισης συλλογικών αρδευτικών δικτύων όπως η Société du Canal de Provence (Γαλλία), υιοθετούν μια διαφορετική προσέγγιση. Δέχονται ότι μια προσέγγιση για χρονικό ορίζοντα 30-40 ετών είναι πολύ παρακινδυνευμένη και κάνουν αντί αυτής εκτίμηση της κατανομής των καλλιεργειών για τρεις χρονικούς ορίζοντες: 1-5 έτη, 6-10 έτη, 11-15 έτη. Το έργο θα κατασκευαστεί για την αρχική κατανομή των καλλιεργειών (1-5 έτη) αλλά με πρόβλεψη για περαιτέρω ενισχύσεις (π.χ. στο αντλιοστάσιο κεφαλής μπορεί να μην τοποθετηθούν εξ αρχής όλες οι αντλίες, αλλά το κτίριο θα έχει τις τελικές του διαστάσεις) και στη συνέχεια θα υπάρχει παρακολούθηση του έργου προκειμένου να ενισχύεται στην κατάλληλη χρονική στιγμή. Αυτό που επιδιώκεται είναι η δυνατότητα προσαρμογής του έργου στη ζήτηση για να μην παρατηρείται το φαινόμενο της υπο-αξιοποίησης των επενδυμένων κεφαλαίων (είναι συχνό φαινόμενο το ποσοστό των αρδεύσεων να μην ξεπερνά το 60-65% της εξοπλισμένης έκτασης).

Στο σημείο αυτό, θα πρέπει να τονισθεί ότι η προσέγγιση της Société du Canal de Provence προϋποθέτει σοβαρή παρακολούθηση της λειτουργίας του δικτύου, έγκαιρο εντοπισμό των προβλημάτων και μηχανισμούς γρήγορης μελέτης και ανάθεσης των έργων ενίσχυσης.

2.2.2 Υπολογισμός των παροχών σχεδιασμού σε δίκτυα με ελεύθερη ζήτηση

Στα δίκτυα που λειτουργούν με ελεύθερη ζήτηση, όπως τα συλλογικά δίκτυα υπό πίεση, η χαρακτηριστική παροχή των υδροστομίων (ονομαστική παροχή d (L/s)) είναι κατά πολύ μεγαλύτερη από την αντίστοιχη ειδική συνεχή παροχή S_a*q₀ (L/s), την απαραίτητη δηλαδή παροχή για την κάλυψη των αναγκών των καλλιεργειών της αρδευτικής μονάδας (S_a) κατά την περίοδο αιχμής σε 24ωρη βάση. Αυτό έχει ως συνέπεια την πολύ μικρότερη των 24 ωρών διάρκεια της άρδευσης, καθώς και την πολύ μικρή πιθανότητα ταυτόχρονης λειτουργίας όλων των υδροστομίων του δικτύου (R).

Στην περίπτωση που όλα τα υδροστόμια είναι συγχρόνως εν χρήσει, θα χρειαζόταν παροχή ίση με *R* · *d* για την κάλυψη της ζήτησης. Επειδή όμως όπως αναφέραμε αυτή η πιθανότητα της ταυτόχρονης λειτουργίας όλων των υδροστομίων είναι πολύ μικρή, δεν θα ήταν λογικό να γίνει διαστασιολόγηση του δικτύου με βάση μια παροχή αιχμής ίσης με το άθροισμα των ονομαστικών παροχών των υδροστομίων του, η οποία θα προέβλεπε μεγάλες διαμέτρους των σωληνώσεων μεταφοράς.

Αντιθέτως, η παροχή *Q* για την οποία πρέπει να σχεδιαστεί ένα δίκτυο ελεύθερης ζήτησης παίρνει τέτοια τιμή ώστε:

$$S \cdot q_0 \le Q \le R \cdot d$$

Όπου:

- 1. *S*, η συνολική αρδευόμενη έκταση του δικτύου (ha).
- 2. q₀, η ειδική συνεχής παροχή (L/s/ha)
- Q, η παροχή για την οποία σχεδιάζεται ένα δίκτυο ελεύθερης ζήτησης (L/s)
- 4. *R*, πιθανότητα λειτουργίας υδροστομίου
- 5. d, ονομαστική παροχή υδροστομίου

Οι λόγοι που παρουσιάστηκαν παραπάνω οδήγησαν στη χρήση πιθανολογικών προσεγγίσεων για τον υπολογισμό των παροχών στα τμήματα αγωγών αλλά και στην κεφαλή ενός συλλογικού αρδευτικού δικτύου ελεύθερης ζήτησης.

Η μέθοδος που χρησιμοποιείται περισσότερο είναι η πιθανολογική προσέγγιση που αναπτύχθηκε από τον Γάλλο μηχανικό René Clément (Clément 1955) και για τον λόγο αυτό είναι γνωστή ως μέθοδος Clément.

Περιλαμβάνει δυο στατιστικά μοντέλα, γνωστά ως πρώτος και δεύτερος τύπος του Clément, τα οποία παρουσιάζονται στη συνέχεια.

Ο πρώτος τύπος του Clément (πρώτος νόμος της ζήτησης)

Σκοπός του μοντέλου είναι ο υπολογισμός των παροχών σχεδιασμού για τη διαστασιολόγηση του δικτύου, την περίοδο αιχμής (μήνες μεγίστων αναγκών).

Σύμφωνα με τον Clément είναι δυνατό κατά την περίοδο αιχμής Τ, το δίκτυο να μην χρησιμοποιείται συνεχώς αλλά μόνο για κάποιο χρόνο (συνήθως 16 ή 18 ώρες μέσα στο 24ωρο). Εισάγει έτσι τον χρόνο πραγματικής λειτουργίας Τ' του δικτύου που ισούται με $T' = r \cdot T$, ορίζοντας το r ως συντελεστή χρησιμοποίησης του δικτύου.

Παράλληλα, ο Clément για να αναπτύξει το μοντέλο του έκανε επιπλέον τις εξής δυο υποθέσεις: Πρώτον ότι όλα τα υδροστόμια του δικτύου είναι όμοια μεταξύ τους αποτελώντας ένα πληθυσμό R ομοιογενών υδροστομίων, και δεύτερον ότι η πιθανότητα λειτουργίας κάθε υδροστομίου ρ είναι σταθερή και δεν εξαρτάται από την προηγούμενη κατάσταση του υδροστομίου ούτε από τη συμπεριφορά των χρηστών.

Η πιθανότητα λειτουργίας κάθε υδροστομίου p, ορίζεται ως:

$$p = \frac{t}{T'} = \frac{M \dot{\varepsilon} \sigma o \varsigma \, \chi \rho \dot{\delta} v o \varsigma \, \lambda \varepsilon i \tau o \upsilon \rho \gamma i \alpha \varsigma \, \kappa \dot{\alpha} \theta \varepsilon \, \upsilon \delta \rho o \sigma \tau o \mu \dot{i} o \upsilon}{\Pi \rho \alpha \gamma \mu \alpha \tau i \kappa \dot{\delta} \varsigma \, \chi \rho \dot{\delta} v o \varsigma \, \lambda \varepsilon i \tau o \upsilon \rho \gamma i \alpha \varsigma \, \tau o \upsilon \, \delta i \kappa \tau \dot{\upsilon} o \upsilon}$$
(2.1)

Ο μέσος χρόνος λειτουργίας κάθε υδροστομίου t, αντιστοιχεί στον χρόνο που πρέπει να παραμείνει το υδροστόμιο ανοιχτό για να παρέχει την αναγκαία ποσότητα νερού στις καλλιέργειες και ισούται με:

$$t = \frac{q_0 \cdot S \cdot T}{R \cdot d} \tag{2.2}$$

Συνεπώς, η τιμή της ρ δίνεται από την παρακάτω σχέση:

$$p = \frac{t}{T'} = \frac{t}{r \cdot T} = \frac{q_0 \cdot S \cdot T}{R \cdot d} \cdot \frac{1}{r \cdot T} \to p = \frac{q_0 \cdot S}{r \cdot R \cdot d}$$
(2.3)

- 1. q₀, ειδική συνεχής παροχή
- 2. *S*, αρδευόμενη επιφάνεια
- 3. *R*, συνολικός αριθμός εγκατεστημένων υδροστομίων
- 4. d, ονομαστική παροχή υδροστομίου

Η τιμή αυτή είναι σταθερή και αντιστοιχεί στην πιθανότητα να βρεθεί ένα υδροστόμιο ανοιχτό (σε λειτουργία) ενώ η q = 1 – p αντιστοιχεί στην πιθανότητα να βρεθεί κλειστό (εκτός λειτουργίας).

Με βάση όσα αναφέρθησαν παραπάνω, ο αριθμός των υδροστομίων που είναι σε λειτουργία μπορεί να θεωρηθεί ως μια τυχαία μεταβλητή που ακολουθεί διωνυμική κατανομή με μέση τιμή

$$\mu = R \cdot p \tag{2.4}$$

και τυπική απόκλιση

$$\sigma = \sqrt{R \cdot p \cdot (1 - p)} \tag{2.5}$$

Συνεπώς, η αθροιστική πιθανότητα της ταυτόχρονης λειτουργίας ενός αριθμού υδροστομίων μικρότερου ή ίσου του N (N<R) επί του συνόλου R εγκατεστημένων υπολογίζεται ως:

$$P_q = \sum_{x=0}^{N} \binom{R}{x} p^x (1-p)^{R-x}$$
(2.6)

όπου

$$\binom{R}{x} = \frac{R!}{x!(R-x)!}$$
 (2.7)

Όταν ο αριθμός των υδροστομίων R είναι αρκετά μεγάλος και η τιμή της p δεν είναι πλησίον του 0 και του 1, η διωνυμική κατανομή τείνει στην κανονική κατανομή Laplace-Gauss. Τότε, η αθροιστική πιθανότητα P_q ενός μέγιστου αριθμού x υδροστομίων συγχρόνως λειτουργούντων (με -∞ < x < N) ισούται με:

$$P_q = \int_{-\infty}^{U(P_q)} \frac{1}{\sqrt{2\pi}} e^{\frac{-u^2}{2}} du$$
 (2.8)

όπου U είναι η τυποποιημένη μεταβλητή της κανονικής κατανομής και δίνεται από τη σχέση:

$$U = \frac{x - \mu}{\sigma} = \frac{x - R \cdot p}{\sqrt{R \cdot p \cdot (1 - p)}}$$
(2.9)

¹ Η αθροιστική αυτή πιθανότητα P_q εκφράζει, σύμφωνα με τον Clément, την ποιότητα λειτουργίας του δικτύου.

Στον Πίνακα 2.1 δίνονται οι τιμές της ανηγμένης μεταβλητής U(P_q) για προκαθορισμένες τιμές ποιότητας λειτουργίας P_q.

Pq	U(Pq)
0.90	1.285
0.91	1.345
0.92	1.405
0.93	1.475
0.94	1.555
0.95	1.645
0.96	1.755
0.97	1.885
0.98	2.055
0.99	2.324

Πίνακας 2.1: Συνάρτηση κατανομής της τυποποιημένης κανονικής. Ποιότητα λειτουργίας του δικτύου Pq. (Lamaddalena and Sagardoy 2000)

Για δεδομένη ποιότητα λειτουργίας του δικτύου και συνεπώς της τιμής της U(Pq), ο μέγιστος αριθμός συγχρόνως λειτουργούντων υδροστομίων N(x = N) δίνεται από τη σχέση:

$$N = R \cdot p + U(P_q)\sqrt{R \cdot p \cdot q}$$
(2.10)

Επομένως, θεωρώντας ότι όλα τα υδροστόμια είναι ομοιογενή και έχουν την ίδια ονομαστική παροχή d, η συνολική παροχή για να λειτουργούν ταυτόχρονα Ν υδροστόμια (κατάντη) είναι ίση με:

$$Q = N \cdot d \rightarrow$$

$$Q = R \cdot p \cdot d + U(P_q)\sqrt{R \cdot p \cdot q \cdot d^2}$$
(2.11)

Η εξίσωση 2.10 αποτελεί τον πρώτο νόμο της ζήτησης ή πρώτο τύπο του Clément. (Clément 1955)

Στην περίπτωση ετερογενών υδροστομίων (με διαφορετικές ονομαστικές παροχές και πιθανότητα λειτουργίας), αυτά χωρίζονται σε (i) ομοιογενείς κατηγορίες και η παραπάνω σχέση μετασχηματίζεται ως εξής:

$$Q = \sum_{i} R_{i} \cdot p_{i} \cdot d_{i} + U(P_{q}) \sqrt{\sum_{i} R_{i} \cdot p_{i} \cdot d_{i}^{2}}$$
(2.12)

Τέλος, αν θεωρήσουμε το κάθε υδροστόμιο "j" ξεχωριστά με παροχή d_i και πιθανότητα p_j και q_j=1-p_j αντίστοιχα, καταλήγουμε στη γενικευμένη μορφή του τύπου του Clément:

$$Q = \sum_{j=1}^{j=R} p_j \cdot d_j + U(P_q) \sqrt{\sum_{j=1}^{j=R} p_j \cdot q_j \cdot d_j^2}$$
(2.13)

Ο δεύτερος τύπος του Clément

Λαμβάνοντας υπόψη τους περιορισμούς που τέθηκαν για τον σχηματισμό του πρώτου μοντέλου, ο Clément ανέπτυξε ένα δεύτερο μοντέλο υπολογισμού των παροχών στα αρδευτικά συστήματα που λειτουργούν με ελεύθερη ζήτηση (Clément 1966). Το μοντέλο αυτό βασίζεται στη Μαρκοβιανή θεωρία των διαδικασιών γέννησης και θανάτου. Πιο συγκεκριμένα, ο δεύτερος νόμος του Clément περιγράφει τη λειτουργία ενός δικτύου ως μια αλυσίδα MARKOV, μια στοχαστική διαδικασία γέννησης και θανάτου: μόνιμη, ασυνεχή και ομοιογενή μέσα στον χρόνο.

Για την ανάπτυξη του μοντέλου έγιναν παράλληλα οι εξής υποθέσεις:

Ο αριθμός των υδροστομίων είναι R. Ο αριθμός των ανοικτών υδροστομίων είναι N ≤ R.

Όλα τα υδροστόμια είναι όμοια.

Οι διάρκειες άρδευσης των υδροστομίων είναι ανεξάρτητες.

Οι διάρκειες λειτουργίας των υδροστομίων ακολουθούν την ίδια κατανομή με μέση τιμή ίση με τη μέση διάρκεια άρδευσης.

Το δίκτυο λειτουργεί μόνο ένα μέρος του συνολικού χρόνου της περιόδου αιχμής.

Με βάση τις νέες αρχές λειτουργίας του δικτύου, ο Clément εισήγαγε μια νέα έννοια, αυτή του κορεσμού, εκφρασμένη μέσω της πιθανότητας μη ικανοποίησης της ζήτησης στην περίπτωση που το σύστημα είναι κορεσμένο.

Η πιθανότητα αυτή δίνεται από τη σχέση:

$$P_{SAT} = \frac{1}{\sqrt{R \cdot p \cdot (1-p)}} \cdot \frac{\Psi(U')}{\Pi(U')}$$
(2.14)

όπου

$$U' = \frac{N - R \cdot p}{\sqrt{R \cdot p \cdot (1 - p)}}$$
(2.15)

η ανηγμένη μεταβλητή της κανονικής κατανομής και Ψ(U') και Π(U') η συνάρτηση πυκνότητας και κατανομής της, αντίστοιχα (Clément 1966) (Lamaddalena 1997).

Θέτοντας

$$F(U') = \frac{\Psi(U')}{\Pi(U')}$$
(2.16)

η εξίσωση 2.14 μετασχηματίζεται σε

$$P_{SAT} = \frac{1}{\sqrt{R \cdot p \cdot (1-p)}} \cdot F(U')$$
(2.17)

Υπολογίζοντας την τιμή της p από την εξίσωση 2.3 και έχοντας γνωστή την τιμή της P_{SAT} (προτείνεται συνήθως P_{SAT}=0,01), προσδιορίζεται η τιμή της F(U') ως συνάρτηση της U', προσδιορίζεται η αντίστοιχη τιμή της U' και χρησιμοποιώντας την 2.15 υπολογίζεται τελικά ο αριθμός των υδροστομίων που λειτουργούν ταυτόχρονα στο δίκτυο:

$$N = R \cdot p + U' \sqrt{R \cdot p \cdot q} \tag{2.18}$$

Η εξίσωση αυτή αποτελεί τον δεύτερο τύπο του Clément.

Όπως παρατηρούμε, η μορφή της είναι παραπλήσια εκείνης του πρώτου τύπου του Clément (Εξίσωση 2.10). Διαφέρουν ωστόσο σημαντικά, καθώς στην περίπτωση αυτή η ανηγμένη μεταβλητή U' δεν αποτελεί μια σταθερά που εξαρτάται αποκλειστικά και μόνον από την επιλεγμένη αθροιστική πιθανότητα (που αντιστοιχεί στην ποιότητα λειτουργίας του δικτύου), αλλά είναι συνάρτηση της πιθανότητας κορεσμού του δικτύου P_{SAT}, της πιθανότητας λειτουργίας των υδροστομίων (p) και του αριθμού των υδροστομίων του δικτύου (R), (Dercas 1989) (Lamaddalena and Sagardoy 2000). Επιπλέον, η παράμετρος p, στον δεύτερο νόμο προσεγγιστικά μόνο εξομοιώθηκε με την πιθανότητα λειτουργίας των υδροστομίων (Dercas 1989).

Πρέπει να σημειωθεί ότι μόνον ο πρώτος τύπος χρησιμοποιείται, επειδή η εφαρμογή του είναι σχετικώς ευκολότερη από αυτήν του δεύτερου τύπου.

Η εφαρμογή του τύπου Clément γίνεται κατά τη συνήθη μέθοδο που προβλέπει εφαρμογή του νόμου της ζήτησης σε κάθε αγωγό του δικτύου. Σημειώνεται ότι η πρακτική αυτή οδηγεί σε παροχές για τις οποίες δεν ισχύει ο νόμος της συνέχειας σε έναν κόμβο, κάτι που όμως δεν αποτελεί πρόβλημα καθώς ο στόχος του νόμου δεν είναι να προσδιορίσει τις παροχές μιας μόνιμης κατάστασης ενός δικτύου, αλλά την παροχή αιχμής στους αγωγούς με τη χρήση των νόμων των πιθανοτήτων.

Ο τύπος του Clément δεν μπορεί να εφαρμοστεί, όταν ο αριθμός των κατάντη υδροστομίων είναι πολύ μικρός. Αυτό συμβαίνει επειδή για να επιτευχθεί ο νόμος της ελεύθερης ζήτησης έγινε η προσέγγιση του δυωνυμικού νόμου από τον κανονικό.

Για να αντιμετωπιστεί το πρόβλημα αυτό στα άκρα των δικτύων, η συνήθης πρακτική είναι η άθροιση της παροχής Q_{0i} ενός αριθμού n_p ακραίων υδροστομίων $\sum_{i=1}^{n_p} Q_{0i}$ (6≤ n_p ≤12 ανάλογα με τον μελετητή) και η χρησιμοποίηση της $\sum_{i=1}^{n_p} Q_{0i}$ ως παροχής μελέτης για τη διαστασιολόγηση των αγωγών που τροφοδοτούν τα ανωτέρω υδροστόμια. Στη συνέχεια, όταν ο αριθμός των κατάντη υδροστομίων R' καταστεί μεγαλύτερος από n_p (R'> n_p) εφαρμόζεται η

σχέση του Clément και υπολογίζεται η παροχή $Q_{R'(CLEM)}$. Αν $Q_{R'(CLEM)} > \sum_{i=1}^{n_p} Q_{0i}$ επιλέγεται $Q_{R'(CLEM)}$ ως παροχή σχεδιασμού του εξεταζόμενου αγωγού. Στην αντίθετη περίπτωση, χρησιμοποιείται η $\sum_{i=1}^{n_p} Q_{0i}$. Η μέθοδος αυτή χρησιμοποιείται και για τους ανάντη υπάρχοντες αγωγούς (Τσακίρης & Δέρκας 2006).

Στο Σχήμα 2.1 παρουσιάζεται η μεταβολή της παροχής σχεδιασμού των αγωγών (παροχή αιχμής) σε συνάρτηση με την εξοπλισμένη κατάντη έκταση.

Σχήμα 2.1: Παροχή σχεδιασμού των αγωγών σε σχέση με την εξοπλισμένη έκταση του δικτύου (δίκτυο με ελεύθερη ζήτηση) (Δέρκας 1991)

2.3 Ανάλυση λειτουργίας ενός συλλογικού αρδευτικού δικτύου

Η ανάλυση των αρδευτικών δικτύων αποτελεί τη διαδικασία χρήσης μοντέλων προσομοίωσης των συστημάτων αυτών, με σκοπό την αξιολόγηση της επάρκειάς τους σε διάφορες συνθήκες λειτουργίας (πίεσης και παροχής στην κεφαλή), τον προσδιορισμό των αιτιών που προκαλούν εμφάνιση ανεπαρκειών και την πρόταση κατάλληλων ενισχύσεων.

Η αναγκαιότητά της πηγάζει από το γεγονός ότι οι συνθήκες λειτουργίας αλλάζουν και διαφοροποιούνται κατά τη διάρκεια ζωής του έργου σε σχέση με εκείνες που είχαν αρχικά υποτεθεί κατά το στάδιο σχεδιασμού.

Δεδομένου ότι η προσέγγιση λειτουργίας του δικτύου αναφέρεται σε ένα συγκεκριμένο σημείο λειτουργίας (Q_c= Q_{αιχμή} κεφαλής, Ζκεφαλής / βέλτιστο ή επιβεβλημένο) και ότι δεν είναι γνωστό ποια θα είναι η συμπεριφορά του για τα άλλα σημεία λειτουργίας του διαγράμματος Z=f(Q), φρόνιμο είναι να διερευνηθεί τι συμβαίνει στα άλλα σημεία του διαγράμματος Z=f(Q), κυρίως για τις παροχές που παρουσιάζονται με μεγαλύτερη συχνότητα.

Σχήμα 2. 2. : Αναγκαίο φορτίο στην κεφαλή για την παροχή αιχμής (Δέρκας 2001)

Η διερεύνηση της υδραυλικής συμπεριφοράς των δικτύων είναι ιδιαίτερα δύσκολη στην περίπτωση που λειτουργούν με ελεύθερη ζήτηση. Εφόσον οι χρήστες είναι εκείνοι που ρυθμίζουν τις αρδεύσεις τους δεν είναι δυνατό να προσδιοριστεί εκ των προτέρων ο αριθμός και η θέση υδροστομίων που είναι σε ταυτόχρονη λειτουργία και, συνεπώς, οι παροχές που θα ζητηθούν και το αναγκαίο φορτίο στην κεφαλή.

Αποτέλεσμα αυτής της σύνθετης λειτουργίας είναι ο σχηματισμός ενός μεγάλου αριθμού πιθανών τυχαίων συνδυασμών ανοιχτών υδροστομίων. Ένας συνδυασμός ανοιχτών υδροστομίων (r) είναι ένα σύνολο ανοιχτών υδροστομίων για τα οποία η συνολική τους παροχή αντιστοιχεί σε μια δεδομένη τιμή παροχής στην κεφαλή του δικτύου (Lamaddalena and Sagardoy 2000).

Μέσα στα πλαίσια της ανάλυσης του δικτύου μελετώνται ξεχωριστά αλλά και στα πλαίσια της αλληλεξάρτησής τους οι τρεις συνιστώσες του αρδευτικού δικτύου:

- Οι παροχές που εκφράζουν τη συμπεριφορά των αγροτών (χρήστες)
- Η ανταπόκριση του δικτύου (δίκτυο των αγωγών)
- Η συμπεριφορά του αντλιοστασίου (έργο κεφαλής).

Η ανάλυση της λειτουργίας του δικτύου πραγματοποιείται σε δύο επίπεδα, σε επίπεδο δικτύου και σε επίπεδο υδροστομίου, χρησιμοποιώντας τα αντίστοιχα μοντέλα. Η ανάλυση σε επίπεδο δικτύου παρέχει πληροφορίες για τη γενική απόδοση του δικτύου, ενώ η ανάλυση σε επίπεδο υδροστομίου δίνει πιο ακριβείς πληροφορίες που επιτρέπουν τον εντοπισμό των υδροστομίων που παρουσιάζουν προβλήματα, της θέσης τους και του μεγέθους ελλείμματος φορτίου – πίεσης που εμφανίζουν, όπως και τους αγωγούς που είναι σε κατάσταση κορεσμού.

2.3.1 Ανάλυση σε επίπεδο δικτύου

Η ανάλυση της λειτουργίας του δικτύου (συστήματος αγωγών) γίνεται με τη μέθοδο των χαρακτηριστικών καμπυλών. Η μέθοδος αυτή περιλαμβάνει τη χάραξη της χαρακτηριστικής (ή των χαρακτηριστικών) Z= f(Q), προκειμένου να είναι δυνατό να προσδιορίζεται άμεσα το φορτίο που πρέπει να είναι διαθέσιμο στην κεφαλή, ώστε να ικανοποιηθεί μια ζήτηση Q₀ που θα παρουσιαστεί (Δέρκας 1991).

Ας υποθέσουμε ότι σε ένα δίκτυο ανοίγει ένας αριθμός υδροστομίων. Για να αρχίσει να υπάρχει παροχέτευση νερού, θα πρέπει το φορτίο στην κεφαλή του δικτύου να είναι μεγαλύτερο από το γεωμετρικό ύψος του χαμηλότερου υδροστομίου Z₁ προσαυξημένο κατά τις απώλειες φορτίου μέχρι το συγκεκριμένο υδροστόμιο. Το μέγεθος Z₁ είναι καθορισμένο και είναι το αρχικό σημείο της χαρακτηριστικής καμπύλης Z=f(Q) του δικτύου για το συγκεκριμένο συνδυασμό ανοικτών υδροστομίων (Καμπύλη 1, Σχήμα 2.3).

Σχήμα 2. 3: Χαρακτηριστικές καμπύλες δικτύου για τρεις συνδυασμούς ανοικτών υδροστομίων (Δέρκας 2001)

Αυξάνοντας το φορτίο στην κεφαλή, η παροχή του προαναφερθέντος υδροστομίου αρχίζει να αυξάνει και αρχίζουν να παροχετεύουν νερό και άλλα υδροστόμια. Με την αύξηση του φορτίου στην κεφαλή, η παροχή των υδροστομίων αρχίζει να αυξάνει μέχρι του σημείου όπου θα επιτευχθεί στο ένα μετά το άλλο υδροστόμιο η ονομαστική παροχή και θα επέμβουν οι περιοριστές παροχής. Η μεγαλύτερη λοιπόν παροχή (για συγκεκριμένο συνδυασμό ανοικτών υδροστομίων) είναι Q₂ (Σχήμα 2.3), όπου όλα τα ανοικτά υδροστόμια λειτουργούν με την ονομαστική παροχή τους. Το αντίστοιχο πιεζομετρικό φορτίο στην κεφαλή του δικτύου είναι Z₂, ίσο με το γεωμετρικό ύψος του πιο δυσμενώς υδραυλικά υδροστομίου, προσαυξημένου κατά την απαραίτητη πίεση λειτουργίας και τις απώλειες φορτίου.

Εάν το φορτίο στην κεφαλή του δικτύου αυξηθεί πέραν του Z₂, η παροχή θα παραμείνει Q₂ (μέσα στα πλαίσια ακρίβειας λειτουργίας των περιοριστών παροχής), διότι θα έχουν επέμβει σε όλα τα υδροστόμια οι περιοριστές παροχής και δεν θα επιτρέπουν να αυξηθεί η παροχή πέραν της ονομαστικής τιμής της.

Η επιτευχθείσα καμπύλη (1) (Σχήμα 2.3) είναι η χαρακτηριστική καμπύλη του δικτύου για τον προαναφερθέντα συνδυασμό ανοικτών υδροστομίων (r=1). Εάν ο συνδυασμός των ανοικτών υδροστομίων είναι διαφορετικός (r=2), θα επιτευχθεί μια άλλη χαρακτηριστική καμπύλη (Καμπύλη 2, Σχήμα 2.3). Γίνεται φανερό ότι οι χαρακτηριστικές καμπύλες για το συγκεκριμένο δίκτυο θα είναι τόσες όσοι οι συνδυασμοί των ανοικτών υδροστομίων και πως κάθε χαρακτηριστική καμπύλη εξαρτάται από τα ανοιχτά υδροστόμια στο δίκτυο (τον αριθμό τους, τη θέση και την ονομαστική τους παροχή).

Προκειμένου να διαχειριστούμε την πληροφορία που παίρνουμε από τον μεγάλο αριθμό χαρακτηριστικών καμπυλών του δικτύου κρατάμε μόνο τα ζεύγη (Zr, Qr) όλων των συνδυασμών ανοικτών υδροστομίων. Τα ζεύγη αυτά παρουσιάζονται στο διάγραμμα Z=f(Q) (Σχήμα 2.4) με τη μορφή ενός σμήνους σημείων τα οποία μπορούν να αναλυθούν με στατιστικές μεθόδους.

Σχήμα 2.4: Ακραία σημεία (Zr, Qr) των χαρακτηριστικών καμπυλών ενός δικτύου (Δέρκας 2001)

Χαρακτηριστικές καμπύλες με δείκτες (Τύπου Ι)

Οι χαρακτηριστικές καμπύλες με δείκτες (C_i) προκύπτουν από τις χαρακτηριστικές καμπύλες του δικτύου μετά από στατιστική επεξεργασία. Οι δείκτες αντιπροσωπεύουν το ποσοστό (%) των συνδυασμών ανοιχτών υδροστομίων οι οποίοι δεν παρουσιάζουν λειτουργικές αστοχίες.

Πιο συγκεκριμένα, τα ζεύγη (Z_r, Q_r) για όλους τους συνδυασμούς r των ανοιχτών υδροστομίων (Σχήμα 2.5) αναλύονται στατιστικά και προσδιορίζονται τα πιεζομετρικά φορτία στην κεφαλή του δικτύου που επιτρέπουν την ικανοποίηση του 10, 20,...,90% των συνδυασμών ανοιχτών υδροστομίων που απαιτούν παροχή Q_i στην κεφαλή του δικτύου.

Σχήμα 2.5: Χαρακτηριστικές καμπύλες με δείκτες (C_i) (Δέρκας 2001)

Το μοντέλο των χαρακτηριστικών καμπυλών με δείκτες προτάθηκε από τους Labye et al. το 1975 (Labye et. al 1975). Μερικά χρόνια αργότερα, το μοντέλο υλοποιήθηκε από το CEMAGREF (CEMAGREF 1983; Bethery et al 1981; Bethery 1990) με τη δημιουργία του λογισμικού ICARE. Αργότερα, το μοντέλο ενσωματώθηκε στο λογισμικό COPAM που διατίθεται από τον FAO (Lamaddalena and Sagardoy 2000) και χρησιμοποιήθηκε στην ανάλυση δικτύων ελεύθερης ζήτησης στην Ιταλία, τη Γαλλία και την Ισπανία.

Η εμπειρία έχει δείξει ότι στα συλλογικά αρδευτικά δίκτυα που λειτουργούν με καθεστώς ελεύθερης ζήτησης, και έχουν σχεδιαστεί με τη μέθοδο Clément για τον υπολογισμό των παροχών και την ασυνεχή μέθοδο του Labye για την οικονομική βελτιστοποίηση των διαμέτρων, παρουσιάζουν το σημείο της βέλτιστης λειτουργίας τους (Z_{opt}, Q_{Clém}) κοντά στη χαρακτηριστική καμπύλη C₅₀, όπου το δίκτυο δεν παρουσιάζει σημαντικά προβλήματα στη λειτουργία του (Bethery 1990; Stefopoulou A and Dercas N. 2011).

Στο σημείο αυτό θα πρέπει να αποσαφηνιστεί ότι η χαρακτηριστική καμπύλη C₅₀ δεν αποτελεί χαμηλό ποσοστό ικανοποίησης, μιας και κατά τη δημιουργία των χαρακτηριστικών καμπυλών με δείκτες, όπως αναφέρθηκε και προηγουμένως, χρησιμοποιήθηκε ένα αυστηρό κριτήριο. Συγκεκριμένα, κάθε συνδυασμός ανοιχτών υδροστομίων που παρουσιάζει έστω και μικρό έλλειμμα φορτίου θεωρείται ανεπιτυχής (CEMAGREF 1983). Κοντά στην C₅₀ υπάρχουν μερικές αστοχίες για ένα μικρό αριθμό υδροστομίων, για τα οποία το φορτίο πίεσης είναι μικρότερο από το ονομαστικό τους, αλλά η διαφορά φορτίου είναι μικρή και έτσι δεν γίνεται αντιληπτή από τον χρήστη κατά τη διάρκεια της άρδευσης (Tiercelin 2006).

Εκτός από τον τύπο Ι που είναι και ο συνήθως χρησιμοποιούμενος, υπάρχουν και άλλοι δύο τύποι χαρακτηριστικών καμπυλών με δείκτες που σύμφωνα με αυτά που γνωρίζουμε μέχρι στιγμής δεν έχουν χρησιμοποιηθεί.

2.3.2 Ανάλυση σε επίπεδο υδροστομίου

Η ανάλυση σε επίπεδο υδροστομίου επιτρέπει την ανάλυση των φορτίων πίεσης (και των παροχών) στα υδροστόμια υπό διαφορετικές συνθήκες λειτουργίας/καθεστώτα ζήτησης. Συγκρίνοντας τα φορτία αυτά με την ελάχιστη πίεση που απαιτείται για να εξασφαλιστεί η επιθυμητή λειτουργία του δικτύου, προσδιορίζονται τα υδροστόμια που παρουσιάζουν έλλειμμα παροχής και πίεσης και λαμβάνεται τελικά ένα μέτρο της υδραυλικής τους απόδοσης.

Για την ανάλυση σε επίπεδο υδροστομίου καθορίζονται οι ανάντη συνθήκες (πιεζομετρικό φορτίο Ζ και παροχή Q στην κεφαλή) και προσομοιώνεται ένας αριθμός καθεστώτων ζήτησης με αθροιστική παροχή κεφαλής Q (συνήθως η παροχή αυτή είναι η παροχή αιχμής).

Για τη δημιουργία αυτών των καθεστώτων ζήτησης που είναι αποτέλεσμα της πολλαπλής γέννησης ενός αριθμού υδροστομίων συγχρόνως λειτουργούντων (συνδυασμός), χρησιμοποιείται μια γεννήτρια τυχαίων αριθμών, η οποία είναι ενσωματωμένη σε κάποιο λογισμικό - μοντέλο.

Τα μοντέλα που υλοποιούν ανάλυση λειτουργίας σε επίπεδο υδροστομίου, υποθέτουν καθεστώς μόνιμης ροής (CEMAGREF 1983; Lamaddalena and Sagardoy 2000; Στεφοπούλου 2013) ή καθεστώς μη μόνιμης ροής (Rosseman 2000; Lamaddalena and Perreira 2007; Estrada et al. 2009)

Τα μοντέλα μη μόνιμης ροής είναι καταλληλότερα για δίκτυα που δεν διαθέτουν περιοριστές παροχής και ρυθμιστές πίεσης.

Το μοντέλο AKLA που ενσωματώνεται στο λογισμικό COPAM (Lamaddalena and Sagardoy 2000) υπολογίζει τις μόνιμες ροές (permanent regimes) για έναν

επιλεγμένο αριθμό παροχών στην κεφαλή του δικτύου και για ένα μεγάλο² αριθμό τυχαίων συνδυασμών ανοιχτών - κλειστών υδροστομίων. Πιο συγκεκριμένα, με τη βοήθεια μιας γεννήτριας τυχαίων αριθμών (που ακολουθεί συνάρτηση ομοιόμορφης κατανομής) υπολογίζεται ο αριθμός (πρακτικά προκαθορισμένος) των υδροστομίων που λειτουργούν συγχρόνως K_r,

$$K_r = \frac{Q_r}{d} \tag{2.19}$$

όπου Q_r (L/s) είναι η εξεταζόμενη παροχή στην κεφαλή του δικτύου και d (L/s) είναι η ονομαστική παροχή των υδροστομίων (περίπτωση δικτύου με υδροστόμια της ίδιας παροχής). Είναι προφανές ότι η αθροιστική παροχή των υδροστομίων που ανοίγουν συνολικά σε κάθε προσομοίωση και λειτουργούν ταυτόχρονα ισούται με την εξεταζόμενη παροχή Q_r κεφαλή του δικτύου.

Για κάθε προσομοίωση προκύπτουν οι παροχές και οι πιέσεις των υδροστομίων για το συγκεκριμένο συνδυασμό ανοικτών - κλειστών υδροστομίων. Οι παροχές αυτές μπορεί να είναι ίσες ή μικρότερες της ονομαστικής τους παροχής και αντίστοιχα οι πιέσεις (ανάντη του ρυθμιστή πίεσης) μπορούν να είναι μεγαλύτερες, ίσες ή μικρότερες της ονομαστικής πίεσης.

Για κάθε παραγόμενο συνδυασμό r, ένα υδροστόμιο j, θεωρείται ότι ικανοποιείται όταν επαληθεύεται η ακόλουθη σχέση:

$$H_{j,r} \ge H_{min} \tag{2.20}$$

όπου *H_{j,r}* (m) το φορτίο του υδροστομίου j για το συγκεκριμένο συνδυασμό ανοιχτών - κλειστών υδροστομίων r και *H_{min}*(m) το απαιτούμενο φορτίο πίεσης για την κατάλληλη λειτουργία του συγκεκριμένου υδροστομίου.

Το σχετικό έλλειμμα πίεσης σε κάθε υδροστόμιο ορίζεται ως:

$$\Delta H_{j,r} = \frac{H_{j,r} - H_{min}}{H_{min}} \tag{2.21}$$

Ο μεγάλος αριθμός προσομοιώσεων που πραγματοποιείται, δίνει τη δυνατότητα στατιστικής επεξεργασίας των αποτελεσμάτων και σαν αποτέλεσμα μπορεί να υπολογιστεί η πιθανότητα αποτυχίας κάθε υδροστομίου ως προς την πίεση και την παροχή, όπως επίσης και το μέγεθος αυτής της αποτυχίας.

Τέλος, ένα ακόμη έμμεσο αποτέλεσμα της διαδικασίας της ανάλυσης σε επίπεδο υδροστομίου, αλλά ιδιαίτερα σημαντικό, είναι ο υπολογισμός των απωλειών ενέργειας. Ο προσδιορισμός των απωλειών ενέργειας οδηγεί στον εντοπισμό των υποδιαστασιολογημένων αγωγών (αγωγοί οι οποίοι λόγω της

² Βάσει της ανάλυσης ενός μεγάλου αριθμού αρδευτικών δικτύων, ο αριθμός των συνδυασμών που πρέπει να ελεγχθούν, πρέπει να είναι μεγαλύτερος από τον αριθμό των υδροστομίων του δικτύου (C>R όταν R<200) και μικρότερος όταν R>600 (Lamaddalena and Sagardoy 2000).

ανάπτυξης των αρδεύσεων στην περίμετρο έχουν οδηγηθεί σε κορεσμό) που χρήζουν επεμβάσεως ενίσχυσης ή ανάταξης.

<u>Δείκτης αξιοπιστίας</u>

Στα πλαίσια της ανάλυσης σε επίπεδο υδροστομίου χρησιμοποιείται συχνά ο δείκτης αξιοπιστίας του Hashimoto (Hashimoto 1980) (Hashimoto et al. 1982). Ο δείκτης αυτός περιγράφει πόσο συχνά το σύστημα αποτυγχάνει, και, πιο συγκεκριμένα, προσδιορίζει πόσο πιθανό είναι ένα υδροστόμιο να έχει το ονομαστικό του φορτίο πίεσης, ειδικά κατά τις περιόδους αιχμής.

Για να εκφραστεί μαθηματικά αυτό το κριτήριο (επιτυχίας - αποτυχίας), γίνεται η υπόθεση ότι η λειτουργία ενός δικτύου περιγράφεται από μια σταθερή (stationary) στοχαστική διαδικασία (Lamaddalena and Sagardoy 2000). Αυτό σημαίνει ότι οι κατανομές πιθανοτήτων που περιγράφουν τις χρονοσειρές (στη συγκεκριμένη περίπτωση τις χρονοσειρές φορτίων πίεσης και παροχής στα υδροστόμια) δεν αλλάζουν με τον χρόνο. Η παραδοχή αυτή είναι μια γενική προσέγγιση της λειτουργίας ενός δικτύου, ωστόσο, στις περιόδους αιχμής, οπότε η ζήτηση αυξάνεται, η παραπάνω παραδοχή μπορεί να θεωρεί λογική.

Αν X_t η τυχαία μεταβλητή που αντιπροσωπεύει την κατάσταση του συστήματος τη χρονική στιγμή t, οι πιθανές τιμές της X_t, χωρίζονται σε δύο σύνολα. Στο σύνολο S που αποτελεί το σύνολο των ικανοποιητικών αποτελεσμάτων (επιτυχία) και στο σύνολο F που αποτελεί το σύνολο των μη ικανοποιητικών (αποτυχία). Τότε, η αξιοπιστία ενός συστήματος θα περιγράφεται από την πιθανότητα α, όπου:

$$\alpha = Prob[X_t \in S] \tag{2.22}$$

Από την παραπάνω εξίσωση προκύπτει η σχέση υπολογισμού του δείκτη αξιοπιστίας α_j, για κάθε υδροστόμιο j.

$$\alpha_j = \frac{\sum_{r=1}^{C} Ih_{j,r} Ip_{j,r}}{\sum_{r=1}^{C} Ih_{j,r}}$$
(2.23)

όπου:

 $Ih_{j,r} = 1$, εάν το υδροστόμιο j είναι ανοιχτό στη συγκεκριμένη προσομοίωση r

 $Ih_{j,r} = 0$, εάν το υδροστόμιο j είναι κλειστό στη συγκεκριμένη προσομοίωση r

 $Ip_{j,r} = 1$, εάν το φορτίο πίεσης στο υδροστόμιο j το οποίο είναι ανοιχτό στην προσομοίωση r είναι μεγαλύτερο από το ελάχιστο απαιτούμενο φορτίο πίεσης

 $Ip_{j,r} = 0$, εάν το φορτίο πίεσης στο υδροστόμιο j το οποίο είναι ανοιχτό στην προσομοίωση r είναι μικρότερο από το ελάχιστο απαιτούμενο φορτίο πίεσης

C = ο συνολικός αριθμός προσομοιώσεων που υλοποιήθηκαν.

Νέος Δείκτης αξιοπιστίας

Παρόλο που ο δείκτης αξιοπιστίας του Hashimoto, είναι ένας δείκτης εύκολος στην χρήση, που δίνει εύληπτα αποτελέσματα, παρουσιάζει μειονεκτήματα από πλευράς ευαισθησίας, μιας και αδυνατεί να αναδείξει την έκταση του ελλείμματος ή της περίσσειας φορτίου.

Για τον λόγο αυτό, στην εργασία ανάδειξης του προγράμματος Nireus (Στεφοπούλου 2013; Stefopoulou A. and Dercas N. 2017), προτάθηκε ένας νέος δείκτης, στον οποίο, η λειτουργική επάρκεια ενός υδροστομίου δεν χαρακτηρίζεται μόνο από μια διττή κατάσταση (0 για έλλειμμα φορτίου και 1 για επάρκεια ή πλεόνασμα φορτίου πίεσης). Αντίθετα, ο νέος δείκτης λαμβάνει υπόψη του το πηλίκο του πραγματικού φορτίου πίεσης στο υδροστόμιο σε κάθε προσομοίωση (H_{j,r}) προς το ονομαστικό φορτίο πίεσης του υδροστομίου (H_{nom}). Ο προτεινόμενος δείκτης που περιγράφει την συμπεριφορά της λειτουργίας ενός υδροστομίου είναι ο εξής:

$$b_j = \frac{\sum_{r=1}^{C} Ih_{j,r} \left(\frac{H_{j,r}}{H_{nom}}\right)}{\sum_{r=1}^{C} Ih_{j,r}}$$
(2.24)

όπου:

Ih_{j,r} = 1, εάν το υδροστόμιο j, είναι ανοιχτό στο συγκεκριμένο συνδυασμό ανοιχτών - κλειστών υδροστομίων r.

H_{j,r}, είναι το επιτυγχανόμενο φορτίο πίεσης στο υδροστόμιο για τον συγκεκριμένο συνδυασμό ανοιχτών - κλειστών υδροστομίων r.

H_{nom}, είναι το ονομαστικό φορτίο πίεσης του υδροστομίου j.

C είναι ο συνολικός αριθμός των προσομοιώσεων που πραγματοποιήθηκαν.

Για την εφαρμογή του δείκτη υιοθετήθηκε ο περιορισμός:

Εάν
$$\left(\frac{H_{j,r}}{H_{nom}}\right) < K$$
, τότε $\left(\frac{H_{j,r}}{H_{nom}}\right) = 0$

όπου:

K, είναι το κατώτατο όριο λειτουργίας - απόδοσης του συστήματος άρδευσης, και προσδιορίζεται ανάλογα με το σύστημα άρδευσης.

Σε αντίθεση με τον συντελεστή Hashimoto, ο οποίος παίρνει τιμές στο διάστημα [0,1], ο νέος δείκτης μπορεί να εμφανίσει και τιμές μεγαλύτερες της μονάδας στην περίπτωση πλεονάζοντος φορτίου στο υδροστόμιο j.

Ο δείκτης που προτάθηκε είναι εύκολος στη χρήση και δίνει εύληπτα αποτελέσματα. Επιπλέον, έχει στόχο από τη μια να παρουσιάσει το εύρος του ελλείμματος ή του πλεονάσματος φορτίου και από την άλλη να αναδείξει τις

περιπτώσεις υδροστομίων με οριακό πλεόνασμα φορτίου, τα οποία παρουσιάζουν αυξημένη πιθανότητα αστοχίας.

Ο δείκτης αξιοπιστίας του Hashimoto παρουσιάζει το πλεονέκτημα ότι παίρνει τιμές μεταξύ του μηδέν και της μονάδας, ωστόσο αδυνατεί να παρουσιάσει την έκταση του ελλείμματος ή του πλεονάσματος φορτίου, κάτι που αναδεικνύεται με τη χρήση του παραπάνω δείκτη.

Οι δείκτες θα πρέπει να χρησιμοποιούνται συμπληρωματικά ώστε να παρέχουν μια ολοκληρωμένη εικόνα της συμπεριφοράς των υδροστομίων.

2.3.3 Ολοκληρωμένη ανάλυση

Ο όρος ολοκληρωμένη ανάλυση του δικτύου αναφέρεται στη συνολική εξέταση των τριών συνιστωσών (έργο κεφαλής, δίκτυο σωληνώσεων και χρήστες) ενός συλλογικού αρδευτικού δικτύου που λειτουργεί με ελεύθερη ζήτηση.

Όλα όσα έχουν αναφερθεί έως τώρα και σχετίζονται είτε με τον σχεδιασμό είτε με την ανάλυση της λειτουργίας ενός αρδευτικού δικτύου, καθιστούν προφανή την αναγκαιότητα μιας τέτοιας συνδυαστικής ανάλυσης. Η συμπεριφορά των χρηστών εκφρασμένης μέσω της ζητούμενης στην κεφαλή παροχής, η ανταπόκριση του δικτύου σε αυτήν τη ζήτηση και η λειτουργία του αντλιοστασίου βάσει των χαρακτηριστικών του, όντας σε πλήρη αλληλεξάρτηση μεταξύ τους, θα πρέπει να ελέγχονται και να αναλύονται σφαιρικά, έτσι ώστε ο μελετητής ή ο διαχειριστής του δικτύου να προβεί στις κατάλληλες ρυθμιστικές ενέργειες.

Για την ολοκληρωμένη ανάλυση ενός συλλογικού αρδευτικού δικτύου που λειτουργεί με ελεύθερη ζήτηση δημιουργείται ένα διάγραμμα (Bethery et al 1981) στο οποίο αποτυπώνονται και οι τρεις συνιστώσες του δικτύου. Ένα τέτοιο διάγραμμα παρουσιάζεται στο Σχήμα 2.6.

Σχήμα 2.6: Ολοκληρωμένη ανάλυση ενός συλλογικού αρδευτικού δικτύου (Στεφοπούλου 2013)

Στο διάγραμμα αυτό, η συμπεριφορά των αγροτών περιγράφεται από τις δύο καμπύλες συχνότητας εμφάνισης των παροχών για ολόκληρη την καλλιεργητική περίοδο και την περίοδο αιχμής. Αντίστοιχα, οι χαρακτηριστικές καμπύλες με δείκτες του δικτύου εκφράζουν την ανταπόκριση του συστήματος των αγωγών και οι χαρακτηριστικές καμπύλες του αντλιοστασίου εκφράζουν τη συμπεριφορά του έργου κεφαλής.

Στο παράδειγμα που παρουσιάζεται στο παραπάνω διάγραμμα, το σύστημα λειτουργεί ικανοποιητικά, καθώς όπως παρατηρούμε οι παροχές που συνήθως καλούνται, επιτρέπουν ένα βαθμό ικανοποίησης των συνδυασμών ανοικτών υδροστομίων > 90% και μόνο όταν καλείται η παροχή αιχμής Q_c το ποσοστό ικανοποίησης πέφτει στο επίπεδο 50% (με την λειτουργία τεσσάρων αντλιών). Αλλά ακόμη και σε αυτήν την περίπτωση μερικά μόνο υδροστόμια θα έχουν κάποια προβλήματα στην παρεχόμενη πίεση και παροχή στο υδροστόμιο, μιας και όπως έχει ήδη αναφερθεί για τη δημιουργία των χαρακτηριστικών καμπυλών με δείκτες έχουμε ήδη τοποθετηθεί στην πλευρά της ασφάλειας θεωρώντας ότι ένα και μόνον υδροστόμιο που δεν ικανοποιείται αρκεί για να χαρακτηρίσει τον συγκεκριμένο συνδυασμό ανοιχτών υδροστομίων ανεπιτυχή.

Σε άλλες όμως περιπτώσεις δικτύων με προβληματική λειτουργία, η μορφή του αντίστοιχου διαγράμματος θα καταδείξει τους βέλτιστους τρόπους επέμβασης, ώστε να αντιμετωπιστούν οι ανεπάρκειες του δικτύου. Οι τρόποι μπορεί να περιλαμβάνουν μια απλή αλλαγή στον τρόπο διανομής (π.χ. εγκατάσταση προγράμματος), για να μειωθούν οι μέγιστες ζητούμενες παροχές, η προσθήκη μιας αντλίας ή ακόμη και συνδυαστικές ενέργειες όπως προσθήκη επιπλέον αντλιών με ταυτόχρονη ενίσχυση του δικτύου ώστε να επιτευχθεί η μείωση του απαραίτητου φορτίου για ορισμένη παροχή και ποσοστό ικανοποίησης, ανά περίπτωση.

Γίνεται επομένως αντιληπτό, πόσο σημαντικά χρήσιμη είναι η ολοκληρωμένη ανάλυση ενός συλλογικού αρδευτικού δικτύου, για τον ορθό έλεγχο και τη διαχείριση της λειτουργίας του, ενώ ταυτόχρονα διαφαίνεται ο υψηλός βαθμός συσχέτισης των τριών συνιστωσών του που δεν αφήνει περιθώρια για μονόπλευρη θεώρησή τους.

2.3.4 Σημασία της ανάλυσης

Η αποκτηθείσα εμπειρία σε υπάρχοντα αρδευτικά δίκτυα έχει αποδείξει ότι η διαδικασία της ανάλυσης είναι εξαιρετικά σημαντική, διότι μπορεί να συμβάλλει με ουσιαστικό τρόπο στην ορθή διαχείριση και λειτουργία των συστημάτων αυτών που θα έχει ως αποτέλεσμα την παροχή υψηλής ποιότητας υπηρεσιών στους χρήστες.

Το χαρακτηριστικό που αποδίδει κατά κύριο λόγο αυτή την αξία στη διαδικασία της ανάλυσης είναι η δυνατότητα προσομοίωσης διαφορετικών συνθηκών λειτουργίας ενός δικτύου που προσφέρουν τα χρησιμοποιούμενα στην ανάλυση μοντέλα.

Η χρησιμότητα της ανάλυσης δεν περιορίζεται μόνο στο στάδιο λειτουργίας ή στο στάδιο σχεδιασμού του δικτύου.

Στην περίπτωση που το δίκτυο βρίσκεται στη φάση της μελέτης, διακρίνουμε δύο υποπεριπτώσεις: (1) το δίκτυο να πρόκειται να κατασκευαστεί εξ ολοκλήρου από την αρχή, και (2) το δίκτυο να πρόκειται να κατασκευαστεί σταδιακά με τη λογική των προοδευτικών ενισχύσεων, ώστε να επιτυγχάνεται καλύτερη προσαρμογή του έργου στις εξελισσόμενες ανάγκες της αρδευτικής περιμέτρου.

Όταν το δίκτυο πρόκειται να κατασκευαστεί εξ ολοκλήρου από την αρχή και υπάρχει ταμιευτήρας από τον οποίο θα τροφοδοτείται, η βελτιστοποίηση των διαμέτρων θα γίνει για τη στάθμη που επιβάλλει ο υφιστάμενος ταμιευτήρας, και θα πρέπει να καθοριστεί η χαρακτηριστική καμπύλη του δικτύου, προκειμένου να εξεταστεί η συμπεριφορά του συστήματος για διάφορες παροχής στην κεφαλή. Αντίστοιχα, εάν το δίκτυο θα τροφοδοτηθεί από ταμιευτήρα που πρόκειται να κατασκευαστεί, η επιλογή της θέσης και του αντίστοιχου φορτίου του ταμιευτήρα θα πρέπει να ελαχιστοποιεί το κόστος του ταμιευτήρα και το κόστος του δικτύου. Τέλος, εάν το δίκτυο πρόκειται να τροφοδοτηθεί από αντλιοστάσιο, θα πρέπει να προσδιοριστεί η χαρακτηριστική καμπύλη του δικτύου, προκειμένου να καθοριστούν τα απαιτούμενα χαρακτηριστικά του αντλιοστασίου.

Όταν το υπό μελέτη δίκτυο πρόκειται να κατασκευαστεί με τη λογική των προοδευτικών ενισχύσεων, η ανάλυση του δικτύου συμβάλλει στο να προβλεφθεί ποιοι αγωγοί και με ποια προτεραιότητα θα πρέπει να ενισχυθούν, ποιες ενισχύσεις αντλιοστασίων θα πρέπει να πραγματοποιηθούν όπως και αν θα πρέπει να γίνει (και σε ποια σημεία) εγκατάσταση νέων αντλιών, ώστε να ανταποκριθεί το μελλοντικό δίκτυο στην εξελισσόμενη ζήτηση και να αποφευχθούν βασικά λάθη σχεδιασμού.

Στην περίπτωση που το δίκτυο είναι στη φάση λειτουργίας, η ανάλυση της υδραυλικής του επάρκειας θα επιτρέψει να αξιολογηθεί η λειτουργική του κατάσταση και να εντοπιστούν τα υδροστόμια που παρουσιάζουν ανεπάρκειες πίεσης και παροχής, η συχνότητα και το μέγεθος αυτών των ανεπαρκειών, καθώς και οι υποδιαστασιολογημένοι αγωγοί του δικτύου. Η εκτίμηση της υπάρχουσας κατάστασης και η σύγκρισή της με τις αρχικές προβλέψεις και παραδοχές θα αναδείξουν τελικά τις όποιες αποκλίσεις, υποδεικνύοντας λύσεις ανάταξης.

Συνοψίζοντας, θα λέγαμε ότι πριν την κατασκευή του δικτύου οι προσομοιώσεις διαφόρων πιθανών συνθηκών λειτουργίας του συστήματος κατά τη διάρκεια

ζωής του έργου με τη χρήση μοντέλων επιτρέπουν τον εντοπισμό αποτυχιών που μπορεί να συμβούν. Στην περίπτωση ανίχνευσης αποτυχιών, ο σχεδιασμός θα πρέπει να βελτιωθεί με επαρκείς τεχνικές. Αντίστοιχα, μετά την κατασκευή και κατά τη λειτουργία του δικτύου, τα χρησιμοποιούμενα μοντέλα προσομοιώνουν τη λειτουργία του δικτύου υπό πραγματικές συνθήκες (απαραίτητη προϋπόθεση η ύπαρξη έγκυρων δεδομένων εισόδου), επιτρέποντας τον εντοπισμό των προβληματικών υδροστομίων, τον προσδιορισμό των απωλειών ανά τρέχον μέτρο και, κατ' επέκταση, τον εντοπισμό των αγωγών που βρίσκονται σε κατάσταση κορεσμού. Δεδομένης μιας τέτοιας κατάστασης, οι διαχειριστές του δικτύου θα πρέπει να προβούν σε κατάλληλες και έγκυρες επεμβάσεις.

Στο πλαίσιο, επομένως, μιας ορθολογικότερης διαχείρισης όχι μόνο των συλλογικών αρδευτικών δικτύων αλλά γενικότερα των υδατικών πόρων, ο ρόλος της ανάλυσης είναι ιδιαίτερα σημαντικός, επειδή μπορεί και ενσωματώνει τις δυο βασικές παραμέτρους της διαχείρισης, την παρακολούθηση και την πρόβλεψη.

2.4 Προγράμματα λογισμικού για την υδραυλική ανάλυση συλλογικών αρδευτικών δικτύων

2.4.1 Λογισμικό COPAM

Το λογισμικό COPAM (Combined Optimization and Performance Analysis Model) αναπτύχθηκε από τον Nicola Lamaddalena (Lamaddalena 1997) και αργότερα δημιουργήθηκε πλήρης οδηγός από τον FAO (Food and Agriculture Organization) (Lamaddalena and Sagardoy 2000) σε συνεργασία με το CIHEAM – IAMB (Centre International de Hautes Etudes Agronomiques Méditerranéennes – Mediterranean Agronomic Institute of Bari).

Λειτουργεί σε περιβάλλον Windows και είναι ένα ηλεκτρονικό εργαλείο που επιτρέπει τη διάγνωση της απόδοσης των συστημάτων άρδευσης υπό πίεση, τα οποία λειτουργούν με ελεύθερη ζήτηση, αλλά παρέχει επίσης νέα και αναθεωρημένα κριτήρια για τον σχεδιασμό τέτοιων αρδευτικών δικτύων. Υπολογίζει τις παροχές, κάνει οικονομικές βελτιστοποιήσεις των διαμέτρων των αγωγών του δικτύου και ανάλυση της λειτουργίας του, τόσο σε επίπεδο δικτύου όσο και σε επίπεδο υδροστομίου.

Εικόνα 2.1: Εκκίνηση προγράμματος COPAM

Πιο συγκεκριμένα, το COPAM μπορεί να διαστασιολογήσει και να αναλύσει μόνο δίκτυα που τροφοδοτούνται από ταμιευτήρα και όχι από αντλιοστάσιο και από την ανάλυσή του, επιτυγχάνονται:

- 1. Υπολογισμός των παροχών σχεδιασμού (Discharges Computation) με δύο μεθοδολογίες:
 - i. Μέθοδος Clément (1^{ος} και 2^{ος} νόμος)
 - ii. Τυχαία Μέθοδος (Random) (τυχαίο άνοιγμα των υδροστομίων, βάσει γεννήτριας τυχαίων αριθμών).
- Βελτιστοποίηση των διαμέτρων των αγωγών σύμφωνα με την ασυνεχή μέθοδο του Labye (Pipe size computation → Optimization).
- 3. Ανάλυση Απόδοσης Αρδευτικού Δικτύου (Analysis) με δυο μεθόδους:
 - i. Μέθοδος χαρακτηριστικών καμπυλών (Configuration)
 - ii. Μέθοδος υδροστομίων (Hydrants-1).

Οι χαρακτηριστικές καμπύλες δημιουργούνται με τη χρήση του αντίστοιχου μοντέλου (Characteristic Curves Model) και παρέχουν γενικές πληροφορίες για την απόδοση του αρδευτικού δικτύου, αναπαριστώντας το ποσοστό των συνδυασμών ανοιχτών υδροστομίων που ικανοποιούνται.

Η μεταφορά της ανάλυσης σε επίπεδο υδροστομίου πραγματοποιείται μέσω του μοντέλου AKLA (Lamaddalena 1997; Lamaddalena and Sagardoy 2000). Η λειτουργία του βασίζεται στον έλεγχο του φορτίου πίεσης σε κάθε υδροστόμιο υπό διαφορετικές συνθήκες λειτουργίας και στη σύγκρισή του με την ελάχιστη πίεση που απαιτείται σε αυτά. Δίνει πληροφορίες οι οποίες επιτρέπουν τον
προσδιορισμό των υδροστομίων που παρουσιάζουν ανεπάρκεια φορτίου πίεσης, της θέσης τους και του μεγέθους ελλείμματος αυτού, του δείκτη αξιοπιστίας τους, καθώς και του ποσοστού των υδροστομίων που παρουσιάζουν μειωμένο φορτίο πίεσης.

Η λειτουργία της ανάλυσης δίνει ως παράγωγα γραφικά αποτελέσματα (Μενού Graph – Σχήμα) και συγκεκριμένα προκύπτουν τα διαγράμματα των χαρακτηριστικών καμπυλών με δείκτες του εξεταζόμενου δικτύου (Characteristic curves), του σχετικού ελλείμματος – περίσσειας φορτίου πίεσης (Hydrants deficit), του δείκτη αξιοπιστίας για κάθε υδροστόμιο (Hydrants reliability), όπως επίσης και του ποσοστού των υδροστομίων που παρουσιάζουν μειωμένο φορτίο πίεσης (PUH curves).

Στα πλαίσια αυτής της μελέτης θα αναλυθεί η λειτουργία υπάρχοντος δικτύου, και το πρόγραμμα θα χρησιμοποιηθεί για λόγους ολοκληρωμένης εποπτείας και σύγκρισης των εξεταζόμενων περιπτώσεων και όχι σχεδιασμού.

COPAN	A - (new file)				- 8 ×
File Edit	Graph ?				
Dischar	Hydrants deficit Hydrants deficit (envelope curves) Hydrants reliability	Bazin	- Analysis		
Ra	PUH curves (one elevation) PUH curves (all elevations)	Optimization	Configurations	Hydrants - 1	Ľ
	Characteristic curves				
1					

Εικόνα 2.2: Περιβάλλον εργασίας του COPAM - Επιλογές του μενού Graph

«Input file» (αρχείο εισόδου)

Δημιουργείται για την έναρξη των λειτουργιών του προγράμματος με όλα τα δεδομένα του αρδευτικού δικτύου.

«Edit» (πτυσσόμενο μενού)

Δίνει τη δυνατότητα καταχώρησης (ή τροποποίησης, σε περίπτωση υπάρχοντος αρχείου) των δεδομένων του αρχείου εισόδου.

S C	OPAM - (new file)				_ 8 ×
File	Edit Graph ? Hydrants discharge	Ad Borin			
Di	Network layout List of pipes Description	Pipe size computation Optimization	Analysis Configurations	Hydrants - 1	1

Εικόνα 2.3: Περιβάλλον εργασίας του COPAM – Επιλογές του μενού Edit

«Hydrants discharge» (παροχή υδροστομίων)

Αφορά στην καταχώριση των ονομαστικών παροχών των διαθέσιμων υδροστομίων του δικτύου, οι οποίες μπορεί να είναι περισσότερες από μια. Αυτές εισάγονται σε μονάδες «L/s», κατά αύξουσα σειρά μεγέθους.

COPAM - (new file)	- 8 ×
File Edit Graph 7	
📔 🗅 🖆 📴 🕼 66° Bazin 🖃	
Discharge Computation Pipe size computation Analysis Random Climent Optimization Edit hydrants discharge X	
🔧 έναρξη 🔜 COPAM - (new file) 📃 Edit hydrants discharge EN 🔇 🥹	

Εικόνα 2.4: Πεδίο καταχώρησης των ονομαστικών παροχών των υδροστομίων

«List of pipes» (Λίστα αγωγών)

Αφορά στην καταχώρηση των εξωτερικών στοιχείων των αγωγών του δικτύου. Πιο συγκεκριμένα, δίνονται εξωτερικές διάμετροι των αγωγών (mm) σε αύξουσα σειρά, το πάχος των τοιχωμάτων (mm), ο συντελεστής τραχύτητας γ Bazin (m^{0.5}) και το μοναδιαίο κόστος του σωλήνα (€/m μήκους) για την οικονομική βελτιστοποίηση του δικτύου.

Αν το πάχος των αγωγών οριστεί μηδέν (0 mm), θα πρέπει να εισαχθούν οι εσωτερικές διάμετροι.

COPAM - (new file)	🛃 Edit list of pi	pes			- 🗆 ×	_ 8 ×
File Edit Graph ?	File Edit Data					
	Diameter - ND (mm)	Thickness (mm)	Gamma Bazin (m* 0.5)	Unitary cost	-	
Discharge Computation Pi	90	0.00	0.06	0.00€		
	110	0.00	0.06	0.00 €		
	125	0.00	0.06	0.00€		
	160	0.00	0.06	0.00€		
	179	0.00	0.06	0.00€		
	225	0.00	0.06	0.00€		
	280	0.00	0.06	0.00€		
	315	0.00	0.06	0.00€		
	355	0.00	0.06	0.00€		
	400	0.00	30.0	0.00 E	-	
	+ Add	- Delet	te 才 Inse	ert 📔 Ex	t	
🔧 έναρξη 📄 🚮 COPAM - (new file)	Edit hydrants	discharge				EN 🧿 🕲

Εικόνα 2.5: Πεδίο καταχώρησης των χαρακτηριστικών στοιχείων των αγωγών

"Network Layout" (Διάταξη Δικτύου)

Αφορά στην καταχώρηση των στοιχείων που περιγράφουν τη μορφή και το μέγεθος του αρδευτικού δικτύου, την αρδευόμενη έκταση και τη μορφή του εδάφους της περιοχής (Εικόνα 2.6).

Πιο συγκεκριμένα, εισάγονται:

- 1. Η αρίθμηση του ανάντη κόμβου (initial node)
- 2. Η αρίθμηση του κατάντη κόμβου (final node)
- 3. Η αρδευόμενη έκταση του εκάστοτε υδροστομίου (ha). Αν δεν υφίσταται υδροστόμιο στον κόμβο, η έκταση ισούται με 0
- 4. Η παροχή του υδροστομίου του κόμβου (L/s)
- 5. Το μήκος του τμήματος του αγωγού (m)
- 6. Το υψόμετρο του εδάφους του κατάντη κόμβου.
- 7. Η ονομαστική διάμετρος του τμήματος (mm)
- 8. Η απαιτούμενη πίεση στον κατάντη κόμβο (m).

Section Number	n Initial r node	Final node	Area (ha)	Hydrant disch. (I/s)	Section length (m)	Land elevation (m a.s.l.)	Diameter (mm)	Hmin hydrants (m)
mputation 1	0	1	0.00	0.0	153.00	35.00	700	0.00
Clime 2	1	2	0.00	0.0	187.00	34.00	700	0.00
3	2	3	0.00	0.0	366.00	41.02	700	0.00
4	3	4	0.00	0.0	131.00	36.00	500	0.00
5	4	5	0.00	0.0	43.50	34.00	500	0.00
6	5	6	0.00	0.0	165.00	32.83	500	0.00
7	6	7	0.00	0.0	465.00	26.45	500	0.00
8	7	8	0.00	0.0	491.00	19.36	500	0.00
9	8	9	0.00	0.0	0.50	19.36	450	0.00
	1		1		1			
+ Ac	d Node	- Canc Node	e 才 In	is Node		🥬 Eind	section	Exit

Εικόνα 2.6: Πεδίο καταχώρησης των χαρακτηριστικών στοιχείων του δικτύου

Ο τρόπος αρίθμησης του δικτύου, κατά το λογισμικό του COPAM, ακολουθεί συγκεκριμένους κανόνες (ιδιαίτερα περίπλοκους) για να λειτουργήσει. Σύμφωνα με το εγχειρίδιο χρήσης του COPAM (Lamaddalena and Sagardoy 2000) οι κύριοι κανόνες είναι οι εξής:

- Η αρίθμηση ξεκινά από το αντλιοστάσιο του δικτύου (πηγή), όπου είναι ο ανάντη κόμβος και έχει πάντα τον αριθμό 0.
- 2. Οι υπόλοιποι κόμβοι αριθμούνται διαδοχικά από ανάντη προς κατάντη.
- 3. Ο αριθμός του κατάντη κόμβου είναι και ο αριθμός του τμήματος (section).
- 4. Οι τερματικοί κόμβοι πρέπει να εξυπηρετούν υδροστόμιο.
- 5. Από έναν ανάντη κόμβο μπορούν να ξεκινούν μέχρι δύο τμήματα, αλλιώς δημιουργείται ένα φανταστικό τμήμα αγωγού με ελάχιστο μήκος (L=1m) και ένας επιπρόσθετος κόμβος με διαδοχικό αριθμό.
- 6. Κανένα υδροστόμιο δεν επιτρέπεται να βρίσκεται σε κόμβο με τρία ενωμένα τμήματα. Σε αυτή την περίπτωση πρέπει να προστεθεί ένας επιπλέον κόμβος με διαδοχικό αριθμό.
- 7. Αν υφίσταται υδροληψία με δύο ή παραπάνω υδροστόμια στο δίκτυο, δημιουργείται ένα φανταστικό τμήμα αγωγού με ελάχιστο μήκος (L=1m).
- 8. Αν κατά μήκος ενός αγωγού υφίστανται δύο διάμετροι, εισάγεται κόμβος στο σημείο αλλαγής των διαμέτρων και θεωρούνται δύο ξεχωριστοί αγωγοί, με χαρακτηριστικά το μήκος και τη διάμετρό τους.

Είναι επομένως κατανοητό ότι η αρίθμηση του δικτύου κατά COPAM γίνεται βάσει των κόμβων και των υδροστομίων και όχι βάσει των υδροληψιών, όπως συνηθίζεται.

Σχήμα 2.7: Παραδείγματα κανόνων αρίθμησης σύμφωνα με το εγχειρίδιο χρήσης του COPAM (Lamaddalena and Sagardoy 2000)

Η εκτέλεση της ανάλυσης, είτε με τη μέθοδο των χαρακτηριστικών καμπυλών σε επίπεδο δικτύου είτε με τη χρήση του μοντέλου AKLA σε επίπεδο υδροστομίου, απαιτεί εισαγωγή των τιμών των παραμέτρων:

- Upstream piezometric elevation (m.a.s.l.). Πιεζομετρικό φορτίο στην κεφαλή του δικτύου Ζ_{κεφ} (m)
- Upstream discharge (I/s). Παροχή στην κεφαλή του δικτύου Q_{Clément} (I/s). Η Παροχή αυτή για δίκτυα λειτουργούντα με ελεύθερη ζήτηση είναι η παροχή Clément
- Minimum head at hydrants (m).
 Απαιτούμενο φορτίο στα υδροστόμια (m)
- 4. Number of regimes to generate for each discharge.

Αριθμός τυχαίων κατανομών ανοιχτών υδροστομίων που θα παραχθούν από το πρόγραμμα για κάθε εξεταζόμενη τιμή παροχής της κεφαλής. Το πρόγραμμα δέχεται αριθμούς πολλαπλάσιους του 10.

Εικόνα 2.7: Πεδίο καταχώρησης των τιμών των παραμέτρων της ανάλυσης (α) του μοντέλου χαρακτηριστικών καμπυλών, (β) του μοντέλου (AKLA)

Τέλος, είναι αναγκαίο να επισημανθεί ότι κάθε λειτουργία που εκτελείται από το λογισμικό COPAM και αφορά στον υπολογισμό αρδευτικών δικτύων, βασίζεται σε κάποιες παραδοχές σε σχέση με τις γραμμικές και τις τοπικές απώλειες φορτίου στο δίκτυο, την τραχύτητα των αγωγών και το εύρος των επιτρεπόμενων ταχυτήτων σε αυτούς.

(α) Γραμμικές απώλειες φορτίου

Το λογισμικό COPAM χρησιμοποιεί την ακόλουθη τροποποιημένη εξίσωση για τον υπολογισμό των γραμμικών απωλειών:

$$h_f = 0.000857(1 + 2\gamma D^{-0.5})^2 Q^2 D^{-0.5} L$$
(2.25)

Όπου:

γ: ο συντελεστής τραχύτητας του Bazin (m^{0.5})

D: η παροχή του αγωγού (m³/s)

L: το μήκος του αγωγού (m)

(β) Τοπικές απώλειες φορτίου

Οι τοπικές απώλειες θεωρούνται αμελητέες σε σχέση με τις γραμμικές και δεν συμπεριλαμβάνονται στο πρόγραμμα.

(γ) Τραχύτητα αγωγών

Για την τραχύτητα των σωλήνων, το λογισμικό COPAM λαμβάνει υπόψη του τον συντελεστή τραχύτητας γ Bazin (m^{0.5}), ο οποίος εξαρτάται από το υλικό του αγωγού και την μέθοδο κατασκευής του (Πίνακας 2.1) (Lamaddalena and Sagardoy 2000)

ΤΥΠΟΣ ΣΩΛΗΝΩΝ	ΙΣΟΔΥΝΑΜΗ ΑΠΟΛΥΤΗ ΤΡΑΧΥΤΗΤΑ Κ	ΣΥΝΤΕΛΕΣΤΗΣ ΤΡΑΧΥΤΗΤΑΣ ΒΑΖΙΝ γ
	(mm)	(m^0.5)
 Τεχνικά λειασμένοι (γυαλί, ορείχαλκος, χαλκός, ρητίνη) 	0 - 0.02	
2. Χαλυβδοσωλήνες:		
Νέοι με επάλειψη φυγοκέντρισης	0.05	
Με εμβάπτιση σε άσφαλτο	0.1 - 0.15	≤ 0.06
Σε χρήση, ελαφρώς οξειδωμένοι	0.2 - 0.4	0.10
Με επάλειψη ασφάλτου με το χέρι	0.5 - 0.6	0.16
Με διάχυτη κονδύλωση	1-3	0.23
Επάλλειψη με τσιμεντοκονία με φυγοκέντριση	0.05 - 0.15	≤ 0.06
3. Συγκολλημένη λαμαρίνα		
Σε καλές συνθήκες	0.2 - 0.3	0.10
Σε χρήση, με επιφανειακή μεμβράνη	0.4 - 1.0	0.16
4. Χυτοσιδηροί		
Επάλλειψη με τσιμεντοκονία με φυγοκέντριση	0.1	≤ 0.06
Νέοι, με επίστρωση ασφάλτου	0.15	0.06
Νέοι χωρίς επίστρωση	0.2 - 0.4	0.10
Με ελαφριά επιφανειακή μεμβράνη	0.4 - 1.0	0.16
Σε χρήση, μερικά οξειδωμένη	1.0 - 2.0	0.23
Πολύ οξειδωμένη	3.0 - 5.0	0.36
5. Τσιμεντοσωλήνες		
Αμιαντοτοιμέντο	0.1	≤ 0.06
Νέο οπλισμένο σκυρόδεμα απόλυτα λείο	0.1 - 0.15	0.06
Οπλισμένο σκορόδεμα λείο μετά πολλά γρόνια	2.0	0.23

Πίνακας 2.2: Συντελεστές ισοδύναμης τραχύτητας Κ και γ Bazin (m^{0.5}) (Lamaddalena and Sagardoy 2000)

Το συγκεκριμένο λογισμικό, λοιπόν, είναι φανερό ότι έχει μια πολύπλοκη λειτουργία στην εισαγωγή στοιχείων και στο περιβάλλον χρήστη. Επιπλέον, λόγω του τρόπου εισαγωγής στοιχείων που περιγράφηκε ανωτέρω, με την προσθήκη μικρών υποθετικών αγωγών, εξαιτίας των περιορισμών στον αριθμό των υδροστομίων της κάθε υδροληψίας, το τελικό δίκτυο που ελέγχεται μπορεί να διαφέρει σημαντικά από το αρχικό.

2.4.2 Λογισμικό Nireus

To Movτέλο Nireus δημιουργήθηκε (Stefopoulou A. and Dercas N. 2017), για την ανάλυση της λειτουργίας των συλλογικών αρδευτικών δικτύων που λειτουργούν με ελεύθερη ζήτηση, και τις ανάγκες διαχείρισης των έργων αυτών.

Οι αναλύσεις που επιτυγχάνονται από το Nireus γίνονται σε επίπεδο δικτύου και σε επίπεδο υδροστομίου.

Τα αποτελέσματα των αναλύσεων του Nireus είναι Διαγράμματα, Πίνακες, καθώς επίσης και το Σκαρίφημα του ίδιου του δικτύου.

Εικόνα 2.8: Εκκίνηση προγράμματος Nireus

Η καταχώρηση των στοιχείων του δικτύου γίνεται όπως φαίνεται στην Εικόνα 2.9. Τα δεδομένα που χρειάζονται για την ανάλυση του δικτύου είναι:

- 1. Αριθμός Αρχικού Κόμβου Αγωγού
- 2. Αριθμός Τελικού Κόμβου Αγωγού
- 3. Μήκος Αγωγού (m)
- 4. Διάμετρος Αγωγού (m)
- 5. Ελάχιστο απαιτούμενο πιεζομετρικό φορτίο υδροστομίου (m)
- 6. Παροχή υδροστομίου (l/s) (σε έναν κόμβο μπορεί να υπάρχουν περισσότερα από ένα υδροστόμια)
- 7. Αρδευόμενη έκταση (ha).

Το πρόγραμμα αυτό προσφέρει τη δυνατότητα αντιγραφής και επικόλλησης, από αρχείο xls, γεγονός που διευκολύνει τη διαδικασία, αφού τα συλλογικά δίκτυα έχουν μεγάλο όγκο δεδομένων εισόδου σε αντίθεση με άλλα λογισμικά ανάλυσης που δεν διαθέτουν τέτοια λειτουργία και καταλήγουν να είναι χρονοβόρα.

13 to at		1.	11		7001	-												
	0000	11	11		~	0											_	_
NIRRIIS Views Network View Graph View Treeview Top	ology *	Section #	Uphil N	lode I	Node d	Altitude of lownhill node (m)	Section Length (m)	Internal Diameter (m)	q (1) (R/sec)	q (2) (k/sec)	q (3) (M/sec)	q (4) (N/sec)	Si : [1] [[ha] [t	Si S 2) (3 18) (ha	i 5 1 (4 3) (h	ii h [] (n a) (n	r n)	
Show Networ B Steady Flow Relative I	r Topology effot § MBR/IN VO.4 Fér Edit Vew Character	the Curves 1	eb	-	New Netwo Copy Paste	rk												
		00		1			- 3											
	S MIRRIS Views Network View			Section II	Uphil Node	Downhill Node	Altitude of downhill node (m)	Section Length (m)	Internal Diameter (m)	q (1) (M/sec)	g (2) (Il/sec)	q(7) (1/sec)	q (4) (Il/sec	i (1)	5i (2) (ha)	Si (J)	51 (4) (ha)	2
	Trenview Topology			1	1	0	96,2	1	0.25	0	0	0	0	0	0	0	0	0
	Share Network Topolo	99		2	0	2	96,2	150	0,25	10	0	0	0	0	0	0	0	0
and Floor Other	if Steary run			3	2	3	95.0	462	0.25	10	0	0	0	2.2	0	0	0	20
netal Friction L				4	3	4	96.3	162	0.25	10	0	0	0	22	0	0	U	20
(n)				5	4	5	97,5	110	0.25	10	0	0	0	22	0	0	0	20
				6	5	6	98,4	80	0.25	10	D	U	0	22	U	U	0	20
				7	6	7	101,1	112	0.25	0	0	0	0	0	0	0	0	0
dc.				8	7	8	100	250	0.25	0	0	0	0	0	0	0	0	U
				9	8	9	100,1	13	0,7	0	0	0	0	0	0	0	0	0
				10	9	10	90.0	63	0.10	10	0	0	0	22	0	0	0	20
				11	10	11	98	50	0,18	10	0	0	0	22	0	0	0	20
				12	11	12	96,8	00	0,10	0	0	0	0	0	0	0	0	0
				13	12	13	56	30	0,34	10	0	0	0	2,2	0	0	0	20
	(interview) and the later of the later of the			14	10	14	95.7	30	0,14	10	0	0	0	2.2	0	0	0	20
	Steady Flow Other			15	14	15	95.3	63	0.14	10	0	0	0	22	0	U	U	20
	General Friction Loss Netw	ion:	-	16	15	16	95,2	25	0.14	10	0	0	0	2.2	0	0	0	20
	10 (84)			17	16	17	95	40	8.14	18	0	U	0	22	0	0	0	20
				18	8	18	100.3	315	0.25	0	0	0	0	0	0	0	0	0
lide		_		19	18	19	102	413	0.2	10	U	0	0	22	0	0	0	20
Ide	96 (20	19	20	103	173	0.2	10	0	0	0	2,2	0	0	0	20
lide	qc (11	1.44	20	21	102,0	43	0.2	10	0	0	0	22	0	0	0	20
lide	q; (-		41			101.1		0.18	10	0	0	0	2.2	0	0	0	20
lide	q: (-	-	20	7	22	0.00.0	1.0										
lide	q: (22 23	7	22	103	123	0.14	10	0	0	0	22	0	0	0	20
lide	96 (_		20 22 23 24	7 22 23	22 20 24	103	123	0,14	10	0	0	0	22	0 0	0	0	20 20
lide		_		27 22 23 24 25	7 22 23 9	22 2) 24 25	103 103 103.8 99.5	123 75 63	0,14 0,11 0,11	10 10 10	0	0	0	22 22 22	0	0	0	20 20 20

Εικόνα 2.9: Πεδίο καταχώρησης των χαρακτηριστικών στοιχείων του δικτύου

Μετά την εισαγωγή δεδομένων γίνεται η επιλογή του επιπέδου ανάλυσης. Στην αναπτυσσόμενη λίστα (dropdown menu) υπάρχουν δύο επιλογές:

- Characteristic Curves: για ανάλυση σε επίπεδο δικτύου
- Steady Flow: για ανάλυση σε επίπεδο υδροστομίου

Στο ίδιο παράθυρο θα γίνει η εισαγωγή του αριθμού των προσομοιώσεων, της ειδικής συνεχούς παροχής και του χρονικού συντελεστή απόδοσης του δικτύου r' (Εικόνα 2.10).

■ NIRRIIS Views		Section		aracteristic Curves adv Flow	Altitude of	Section	Internal	a (1)	a [2]	a (3)	g (4)	Si	Si	Si	Si	hr
Network View Graph View		#	UN	Node Node	downhill node (m)	Length (m)	Diameter (m)	(R/sec)	(k/sec)	(it/sec)	(It/sec)	(1) (ha)	(2) (ha)	(3) (ha)	(4) (ha)	(m)
Treeview Topology		1	1	0	96,2	1	0.25	0	0	0	0	0	0	0	0	0
Show Network: Topology		2	0	2	96,2	150	0,25	10	0	0	0	0	0	0	0	0
		3	2		05.0	100	25	10	0	0	0	2,2	0	0	0	20
		4	3	Δοιθιι	ήc		25	10	0	0	0	2,2	0	0	0	20
		5	4	Αριομι	~		25	10	0	0	0	2,2	0	0	0	20
		6	5	ποοσο	ແດແຜ່ດອ	EGNV	25	10	0	0	0	2,2	0	0	0	20
		7	6	npooo	μοιωσι		25	0	0	0	0	0	0	0	0	0
		8	7	8	100	250	0.25	0	0	0	0	0	0	0	0	0
		9	8	9	100,1	13	0.2	0	0	0	0	0	0	0	0	0
		10	9	10	98.8	63	0,18	10	0	0	0	2,2	0	0	0	20
		11	10	11	98	50	0,18	10	0	0	0	2,2	0	0	0	20
		12	11	12	96,8	83	0,18	0	0	0	0	0	0	0	0	0
		13	12	13	96	30	0,14	10	0	0	0	2,2	0	0	0	20
Iteadu Flow Other		14	13	14	95,7	30	0,14	10	0	0	0	2,2	0	0	0	20
eneral Friction Loss Network		15	14	15	95,3	63	0,14	10	0	0	0	2,2	0	0	0	20
h (in)		16	15	16	95,2	35	0,14	10	U	U	0	2,2	0	U	U	20
		17	15	17	95	40	0,14	10	U	U	0	2,2	0	0	0	20
qc i'		18	8	18	100,3	310	0,25	10	0	0	0	0	0	0	0	0
0,45 0,75		10	10	19	102	410	0.2	10	0	0	0	2,2	0	0	0	20
		20	13	20	103	173	0.2	10	0	0	0	2.2	0	0	0	20
		61	100	121	196.0	40	1019	10	0	0	0	2.6	0	0	0	20
	ιδική	συν	EVI	ής παρο	$v \dot{n} (a)$	KOI	0.16	10	0	0	0	2.2	0	0	0	20
	loung	000	CVI	15 nupo		Kut	0.11	10	0	0	0	22	0	0	0	20
	υντελι	εσт	ńc	απόδοσ	пс тоц		0.11	10	0	0	0	2.2	0	0	0	20
			.12				0.11	10	0	0	0	6,6	0	0	0	20

Εικόνα 2.10: Πεδίο καταχώρησης δεδομένων προσομοίωσης

To Nireus δίνει τη δυνατότητα επιλογής της εξίσωσης που θα επιλεγεί για τις γραμμικές απώλειες. Οι εξισώσεις που διαθέτει είναι:

- 1. Darcy Weibach με Colebrook White (DW CW)
- 2. Darcy Weibach $\mu\epsilon$ Swamee Jain (DW SJ)
- 3. Hazen Williams (HW)
- 4. Darcy με την παράμετρο γ' του Bazin (Darcy Bazin)
- 5. Calmon και Lechapt (Calmon Lechapt)
- 6. Valiantzas (Valiantzas)

00000		200		 Image: Image: Ima											
NIRRIIS Views Network View Graph View	Section	Uphill Node	Downhill Node	Altitude of downhill node (m)	Section Length (m)	Internal Diameter (m)	q (1) (it/sec)	q (2) (It/sec)	q (3) (It/sec)	q (4) (it/sec)	Si (1) (ha)	Si (2) (ha)	Si (3) (ha)	Si (4) (ha)	h (n
Treeview Topology	1	1	0	314	0,1	0,4	0	0	0	0	0	0	0	0	0
Show Network Topology	2	0	2	288	100	0,4	0	0	0	0	0	0	0	0	0
a steady riow	3	2	3	290	14,81	0,35	6	0	0	0	7,25	0	0	0	20
	4	3	4	300	210	0,3	6	0	0	0	7,25	0	0	0	20
	5	4	5	304	150	0,3	0	0	0	0	0	0	0	0	0
	6	5	6	292	250	0,12	6	0	0	0	4,9	0	0	0	2
teady Flow Other	7	5	7	292	150	0,3	0	0	0	0	0	0	0	0	0
eneral Friction Loss Network	8	7	8	281	200	0,1	6	0	0	0	6,7	0	0	0	20
Friction Formula:	9	7	9	276	200	0,3	0	0	0	0	0	0	0	0	0
DW-Swammee and Jain B	10	9	10	272	200	0,2	0	0	0	0	0	0	0	0	0
Bazin tt	11	10	11	264	265	0,1	6	0	0	0	7,2	0	0	0	2
Hazen Williams	12	10	12	262	150	0,2	6	0	0	0	0	0	0	0	0
✓ Valiantzas	13	12	13	252	150	0,2	6	0	0	0	6,1	0	0	0	2
Coefficients	14	13	14	246	210	0,175	0	0	0	0	0	0	0	0	0
1				42	140	0,175	6	0	0	0	4,9	0	0	0	20
Επιλονή εξίσα	onc vo	QUUIK	ιών	37	300	0,15	6	0	0	0	6,3	0	0	0	20
Littlepipeque		42	175	0,1	6	0	0	0	6,4	0	0	0	2		
απωλειών				28	225	0,1	6	0	0	0	5,7	0	0	0	21
				32	360	0.12	6	0	0	0	62	0	0	0	2

Εικόνα 2.11: Επιλογή εξίσωσης για τον υπολογισμό γραμμικών απωλειών

Στη συνέχεια, πρέπει να γίνει εισαγωγή της τραχύτητας που αντιστοιχεί σε κάθε διάμετρο που χρησιμοποιείται στο δίκτυο, ανάλογα με την εξίσωση γραμμικών απωλειών που έχει επιλεχθεί.

		a/a	Diameter	Eq. Roughness e	Bazin y	Hazan-Williams C	Calmon-Lechapt: L	Calmnon-Lecha M
			0,1			150		
			0,12			150		
			0,15			150		
			0,175			150		
teady Flow Other			0,2			150		
ieneral Friction Loss Network			0,25			150		
Friction Formula:			0,3			140		
DW-Swammee and Jain B			0,35			140		
Bazin tt	•		0,4			100		
Hazen Williams O Calmon-Lechapt D	*							
Valiantzas								
Coefficients								
Equivalent Roughness (m):	<				ili.i			
Kinematic Viscosity (m2/sec								
Hazen-Williams C:								
y Bazin:								OK

Εικόνα 2.12: Εισαγωγή συντελεστών τραχύτητας

Στο σημείο αυτό τα απαραίτητα δεδομένα έχουν εισαχθεί και ο χρήστης μπορεί να τρέξει το μοντέλο. Μπορεί όμως, πριν από αυτό, να ελέγξει αν έχει γίνει σωστά η εισαγωγή, με την επιλογή "Show network topology". Σε αυτήν την περίπτωση, παρουσιάζεται το δίκτυο που θα εξετασθεί σε δενδρώδη διάταξη, σύμφωνα με την αρίθμηση που έχει δοθεί στους κόμβους. Με την παρουσίαση αυτή, γίνεται ευκολότερα εντοπισμός λαθών στην αρίθμηση που θα είχαν σαν αποτέλεσμα την εμφάνιση ασυνεχειών στο δίκτυο ή την λανθασμένη σύνδεση αγωγών και κατά συνέπεια την αδυναμία εφαρμογής του μοντέλου ανάλυσης λειτουργίας συλλογικών αρδευτικών δικτύων ελεύθερης ζήτησης. (Εικόνα 2.13)

Εικόνα 2.13: Παρουσίαση της τοπολογίας του δικτύου σε δενδρώδη διάταξη

Όπως φαίνεται στην Εικόνα 2.14, για να υπολογιστούν οι Χαρακτηριστικές καμπύλες πρέπει να εισαχθεί ένας αριθμός παροχών στην κεφαλή του δικτύου, μικρότερος ή ίσος με την αθροιστική παροχή του. Από την αναπτυσσόμενη λίστα γίνεται η επιλογή "Characteristic curves" και μπορεί να γίνει η εκκίνηση του μοντέλου. Όσο περισσότερες παροχές εισαχθούν προς εξέταση, τόσο μεγαλύτερη ακρίβεια θα έχουν οι χαρακτηριστικές καμπύλες κατά τη χάραξή τους.

dit View Cha	racteristic Curves He	elp	_	10													
VIRRIIS Views Network View	000		Section	Uphil Node	bic Curves Downhill Node	dow bill node	Section Length (m)	Internal Diameter (m)	q (1) (It/sec)	q (2) (It/sec)	q (3) (N/sec)	q (4) (Il/sec)	Si(1) (ha)	Si (2) (ha)	Si (3) (ha)	Si (4) (ha)	hr (m)
Εκκίν	ηση του	μον	τέλα	ου για		Επι	λογή	"Chara	acter	istic		0 0 0	0 0 7,25	0 0 0 0	0 0 0	0 0 0	0 0 20
χαρα	πολογισμ κτηριστικ	ιο τ κών	ων καμ	πύλων	, –	3 Cui 3 292	250	0,12	6	0	0	0 0 0	7,25 0 4,9	0 0 0	0 0 0 0	0 0 0	20 0 20
με δε	ίκτες					292 281	150 200	0.3	0	0	0	0	0 6.7	0	0	0	0 20
		T	10	9	10	276	200	0.3	0	0	0	0	0	0	0	0	0
	11 10 1 12 10 1					264	150	0,1	6	0	0	0	0	0	0	0	0
du Flow				12	13	262	210	0,2	0	0	0	0	6,1 0	0	0	0	0
stal Friction Loss	Network		15	14	15 16	242 237	300	0,175	6	0	0	0	4,9 6,3	0	0	0	20 20
1	Add Delete		17	16 16	17	242 228	175 225	0,1	6	0	0	0	6,4 5,7	0	0	0	20
		N	19 20	14 19	19 20	232 222	360 300	0,12	6	0	0	0	6,2 6,5	0	0	0	20 20
	Προσθήι	kn л	αορ	γών π	000	265 258	225 150	0,2	6	0	0	0	5 5,3	0	0	0	20 20
	εξέταση	στη	V KE	φαλή	του	243 236	325 175	0,2 0,175	6	0	0	0	5,5 0	72,5 0	0	0	20 0
	δικτύου					231 224	325 350	0,12	6	0	0	0	3,8 7,6	0	0	0	20 20
						230	105	0,15	C	0	0	0	7	44	0	0	20

Εικόνα 2.14: Ανάλυση σε επίπεδο δικτύου

Η ανάλυση σε επίπεδο υδροστομίου, επιτυγχάνεται μετά από έναν σημαντικό αριθμό προσομοιώσεων για διαφόρους τυχαίους συνδυασμούς ανοιχτών – κλειστών υδροστομίων (παροχές, πιέσεις). Με αυτόν τον τρόπο αξιολογείται η ποιότητα λειτουργίας ενός συλλογικού αρδευτικού δικτύου ελεύθερης ζήτησης.

Σε κάθε προσομοίωση προκύπτουν οι παροχές και οι πιέσεις των υδροστομίων για τον συγκεκριμένο συνδυασμό ανοιχτών – κλειστών υδροστομίων, οι οποίες μπορεί να είναι μικρότερες ή ίσες της ονομαστικής παροχής. Μετά από έναν σημαντικό αριθμό προσομοιώσεων, τα αποτελέσματα που προκύπτουν μπορούν να επεξεργαστούν στατιστικά και να προκύψει η πιθανότητα αποτυχίας ενός υδροστομίου να δώσει το ονομαστικό φορτίο πίεσης, αλλά και η έκταση της αποτυχίας του.

Για την υλοποίηση της παραπάνω ανάλυσης, γίνεται η επιλογή "Steady Flow" από το αναδυόμενο παράθυρο, έπειτα εισαγωγή του διαθέσιμου πιεζομετρικού φορτίου στην κεφαλή και τέλος η εκκίνηση του μοντέλου. (Εικόνα 2.15)

S NIRRIIS v0.4																	- 7 🛛
File Edit View Charac	teristic Curves Help																
899220	000	200	Steady Fi	0111	· 🗇												
NIRRIIS Views Network View Graph View	Runsulation	Sectio	n Uphill Node	Dollard Node	Altitude of downhill node (m)	Section Length (m)	Internal Diameter (m)	q (1) (R/sec)	q (2) (R/sec)	q (3) (It/sec)	q (4) (R/sec)	Si (1) (ha)	Si (2) (ha)	Si (3) (ha)	Si (4) (ha)	hr (m)	
T T T T				0	6.2	1	0.25	0	0	0	0	0	0	0	0	0	
Errivo		ουπέλ	011	2		4 ((C+-				0	0	0	0	0	0	0	
LKKUVI	ση του μ	OVIEN	00	3	επιλογ	η "Ste	ady FI	OW"		0	0	2,2	0	0	0	20	
νια τοι	υπολογ	ισμό τ	ων	4	-		-			0	0	2,2	0	0	0	20	
100.00		topo .		5	97,5	118	0.25	10	0	0	0	2,2	0	0	0	20	
μόνιμα	νώος νω			6	98,4	80	0,25	10	0	0	0	2,2	0	0	0	20	
				7	101,1	112	0,25	0	0	0	0	0	0	0	0	0	
		8	7	8	100	250	0,25	0	0	0	0	0	0	0	0	0	
		9	8	9	100,1	13	0,2	0	0	0	0	0	0	0	0	0	
		10	9	10	98,8	63	0,18	10	0	0	0	2,2	0	0	0	20	
		11	10	11	98	50	0,18	10	0	0	0	2,2	0	0	0	20	
		12	11	12	96,8	83	0,18	0	0	0	0	0	0	0	0	0	
		13	12	13	96	30	0,14	10	0	0	0	2,2	0	0	0	20	
Chards Elevel Other		14	13	14	95,7	30	0,14	10	0	0	0	2,2	0	0	0	20	
General Friction Loss N	letwork	15	14	15	95,3	63	0,14	10	0	0	0	2,2	0	0	0	20	
h (in)		16	15	16	95,2	35	0,14	10	0	0	0	2,2	0	0	0	20	
314		17	16	17	95	40	0,14	10	0	0	0	2,2	0	0	0	20	
	/	18	8	18	100,3	315	0,25	0	0	0	0	0	0	0	0	0	
0.45 0.75		19	18	19	102	413	0,2	10	0	0	0	2,2	0	0	0	20	
		20	19	20	103	173	0.2	10	0	0	0	2,2	0	0	0	20	
		21	20	21	102,8	43	0,2	10	0	0	0	2,2	0	0	0	20	
		22	7	22	101,1	1	0,18	10	0	0	0	2,2	0	0	0	20	
				23	103	123	0.14	10	0	0	0	2.2	0	0	0	20	
Ι Πιεζο	μετρικό	φορτία	D	24	103,8	75	0,11	10	0	0	0	2,2	0	0	0	20	
9			,	25	99.5	63	0,11	10	0	0	0	2,2	0	0	0	20	
	κεφαλή τ	του δι	κτυου														

Εικόνα 2.15: Εισαγωγή δεδομένων για την ανάλυση σε επίπεδο υδροστομίου

2.4.3 COPAM vs Nireus

Τα δύο αυτά προγράμματα έχουν δημιουργηθεί σε διαφορετικές περιόδους, βάσει των αναγκών των χρηστών.

Το COPAM δημιουργήθηκε το 1988, σε περιβάλλον xp, με δυσκολία στην εισαγωγή των δεδομένων. Στο πρόγραμμα δεν υπάρχει δυνατότητα αντιγραφής και επικόλλησης. Έχει αυστηρότητα στην αρίθμηση, η οποία όμως μπορεί να οδηγήσει και σε μεταβολές του αρχικού δικτύου. Εκτός από τις αναλύσεις σε επίπεδο δικτύου και υδροστομίου, μπορεί να κάνει και διαστασιολόγηση.

Το Nireus δημιουργήθηκε το 2009, παρουσιάστηκε το 2013. Λειτουργεί σε πιο φιλικό περιβάλλον για τον χρήστη, με ευκολία εισαγωγής πολυπληθών δεδομένων. Στο πρόγραμμα υπάρχει δυνατότητα αντιγραφής και επικόλλησης. Δεν έχει αυστηρά κριτήρια αρίθμησης, γεγονός που αφήνει το δίκτυο αμετάβλητο κατά την μελέτη και ανάλυσή του. Υπάρχουν πολλές επιλογές στον χρήστη για εξισώσεις απωλειών. Δίνεται η επιλογή επανέλεγχου του δικτύου με σκαρίφημα που εξάγεται μετά την εισαγωγή των δεδομένων. Το πρόγραμμα περιορίζεται μόνο στην ανάλυση σε επίπεδο δικτύου και υδροστομίου.

	COPAM	Nireus
Περιβάλλον χρήστη	-	+
Αρίθμηση δικτύου	-	+
Χρόνος Εισαγωγής	-	+
Επανέλεγχος	+	+
Διαγράμματα	+	+
Πίνακες	-	+
Εξισώσεις Απωλειών	-	+
Διαστασιολόγηση	+	-

Πίνακας 2.3: Copam vs Nireus

Κεφάλαιο 3: Εφαρμογή σε υφιστάμενο ελληνικό δίκτυο

3.1 Σύντομη περιγραφή περιοχής μελέτης

3.1.1 Γενικά στοιχεία

Η περιοχή του έργου αποτελεί, κατά κύριο λόγο, πεδινό τμήμα του Νομού Ηλείας που εκτείνεται βόρεια από τη Γαστούνη και την περιοχή της, έως και νότια το Επιτάλιο και την περιοχή του, ευρίσκεται στην Πελοπόννησο και ανήκει διοικητικά στην Περιφέρεια Δυτικής Ελλάδας.

Ο ΤΟΕΒ που θα μας απασχολήσει σε αυτή τη μελέτη είναι ο ΤΟΕΒ Επιταλίου, και η έκταση που καλύπτει είναι 4.000 στρέμματα.

Η έκταση που αφορά η μελέτη είναι εξ ολοκλήρου πεδινή.

Το υδρογραφικό δίκτυο του έργου βασίζεται κυρίως στον ποταμό Αλφειό. Ο Αλφειός δέχεται στον ρου του τους παραπόταμους Λάδωνα, Ερύμανθο, Ενιπέα, Διάγοντα και Σελινούντα.

3.1.2 Κλίμα – Μετεωρολογικά στοιχεία

Το κλίμα της περιοχής είναι θαλάσσιο μεσογειακό, που κύριο χαρακτηριστικό του είναι η γλυκύτητα και η ηπιότητα. Η ψυχρή εποχή είναι ήπια, και σε αυτό συντελεί η συχνή άφιξη στην περιοχή των θερμών και υγρών ΝΔ αερίων μαζών. Επίσης, η περιοχή αυτή προστατεύεται από τους ψυχρούς ανέμους της κεντρικής και ανατολικής Ευρώπης με το τείχος που σχηματίζει ο ορεινός όγκος που βρίσκεται ανατολικά της.

Στη μελέτη χρησιμοποιήθηκαν τα δεδομένα του μετεωρολογικού σταθμού Πύργου.

Τα χαρακτηριστικά του σταθμού - από την ΕΜΥ είναι όπως ακολούθως:

Όνομα Σταθμού	ΠΥΡΓΟΣ
Κωδικός Σταθμού	16707
Γεωγρ. μήκος Σταθμού	21,42625°
Γεωγρ. πλάτος Σταθμού	37,67725°
Περίοδος Λειτουργίας	1975 - σήμερα

Πίνακας 3.1: Χαρακτηριστικά Μετεωρολογικού Σταθμού Πύργου

Για την ευρύτερη περιοχή του Πύργου, η θερμοκρασία αέρα κυμαίνεται από 9,68°C τον Ιανουάριο (ψυχρότερος μήνας) μέχρι 26,52°C τον Ιούλιο (θερμότερος μήνας). Το μέσο ετήσιο εύρος θερμοκρασίας είναι 16,84°C, και ημερήσια ετήσια θερμοκρασία είναι 17,57°C.

Η θερμοκρασία σπάνια κατέρχεται υπό το μηδέν τον χειμώνα, και μόνο στην εσωτερική πεδινή περιοχή υπερβαίνει τους 40°C το καλοκαίρι.

Μήνας	Μέση	Μέση Μέγιστη	Μέση Ελάχιστη	Απολύτως Μέγιστη	Απολύτως Ελάχιστη	Μέση απολύτως Μέγιστη	Μέση απολύτ Ελάχιστη
ΙΑΝΟΥΑΡΙΟΣ	9,68	14,71	4,89	21,20	-5,20	18,56	-2,07
ΦΕΒΡΟΥΑΡΙΟΣ	10,13	15,04	5,04	25,00	-5,40	19,84	-1,70
ΜΑΡΤΙΟΣ	12,15	17,17	6,28	28,80	-3,40	22,82	-0,25
ΑΠΡΙΛΙΟΣ	15,18	19,94	8,73	29,20	-1,60	26,10	3,38
ΜΑΙΟΣ	19,84	24,86	12,32	36,40	4,40	31,27	7,23
ΙΟΥΝΙΟΣ	24,09	29,13	15,28	37,40	7,40	34,71	11,07
ΙΟΥΛΙΟΣ	26,52	31,91	17,27	42,40	10,40	37,15	13,90
ΑΥΓΟΥΣΤΟΣ	26,42	32,21	17,67	41,00	12,20	36,94	14,16
ΣΕΠΤΕΜΒΡΙΟΣ	23,03	28,96	15,44	38,00	8,00	33,57	10,70
ΟΚΤΩΒΡΙΟΣ	18,69	24,82	12,41	36,80	1,80	30,24	6,39
ΝΟΕΜΒΡΙΟΣ	14,18	19,55	9,40	31,00	-2,00	24,59	2,33
ΔΕΚΕΜΒΡΙΟΣ	10,99	15,82	6,56	23,00	-3,20	20,28	-0,50
ΕΤΟΣ	17,57	22,84	10,94	42,40	-5,40	28,01	5,39

Πίνακας 3.2: Θερμοκρασία αέρος - Σταθμός Πύργος

Οι βροχές είναι άφθονες από τον Οκτώβριο έως τον Μάρτιο. Στην ευρύτερη περιοχή του Αρδευτικού δικτύου Αλφειού το ετήσιο ύψος βροχής ανέρχεται σε 920mm. Το ύψος βροχής κατά την αρδευτική περίοδο είναι 145mm. Από τα παραπάνω στοιχεία γίνεται φανερό ότι το 16% της ετήσιας βροχόπτωσης κατακρημνίζεται κατά την αρδευτική περίοδο (Απρίλιο - Σεπτέμβριο), ποσοστό το οποίο δεν είναι επαρκές για τις εντατικές καλλιέργειες του αραβόσιτου, των κηπευτικών (καρπούζι - πεπόνι), του βαμβακιού και λοιπών καλλιεργειών.

Κατά τους υπόλοιπους μήνες (Οκτώβριο έως Μάρτιο), τα ύψη βροχής είναι υπερδιπλάσια από αυτά που σημειώνονται στις ανατολικές περιοχές της Πελοποννήσου.

Παρακάτω παρατίθεται πίνακας βροχοπτώσεων:

ce min ava pilva	
ΙΑΝΟΥΑΡΙΟΣ	137,25
ΦΕΒΡΟΥΑΡΙΟΣ	105,93
ΜΑΡΤΙΟΣ	68,8
ΑΠΡΙΛΙΟΣ	59,49
ΜΑΙΟΣ	23,44
ΙΟΥΝΙΟΣ	7,09
ΙΟΥΛΙΟΣ	3,99
ΑΥΓΟΥΣΤΟΣ	12,61
ΣΕΠΤΕΜΒΡΙΟΣ	38,37
ΟΚΤΩΒΡΙΟΣ	101,5
ΝΟΕΜΒΡΙΟΣ	187,75
ΔΕΚΕΜΒΡΙΟΣ	173,65
Σε mm κατά εποχή	
ΧΕΙΜΩΝΑΣ	416,83
ANOIEH	151,74
KAAOKAIPI	23,69
ΦΟΙΝΟΠΩΡΟ	327,63

Πίνακας 3.3: Βροχοπτώσεις - Σταθμός Πύργος

A. ΜΕΘΟΔΟΣ ΤΩΝ LANG-GRACANIN (Bilandžija et al. 2019)

Για τον χαρακτηρισμό του κλίματος στην υπό μελέτη περιοχή χρησιμοποιήθηκε η μέθοδος των Lang – Gracanin. Κατά τη μέθοδο αυτή, ο χαρακτηρισμός του κλίματος σε μια περιοχή γίνεται με βάση τον συντελεστή ξηρασίας Lang, ο οποίος εκφράζει τον λόγο της μέσης μηνιαίας βροχόπτωσης σε χιλιοστά προς την αντίστοιχη μέση μηνιαία θερμοκρασία σε βαθμούς Κελσίου. Για τον προσδιορισμό της υγρής και ξηρής περιόδου του έτους και τον εν γένει χαρακτηρισμό του κλίματος, χρησιμοποιούμε τον βροχομετρικό συντελεστή LANG, που δίνεται από τον παρακάτω τύπο:

C = P / T

όπου είναι:

- C = βροχομετρικός συντελεστής LANG
- T = μέση μηνιαία θερμοκρασία σε °C
- P = μέση μηνιαία βροχόπτωση σε mm

και την κλίμακα κατάταξης κλίματος κατά GRACANIN, που σε συνδυασμό με τον βροχομετρικό συντελεστή LANG, μας δίνει τον χαρακτηρισμό του κλίματος.

Με βάση τους πίνακες 3.5 και 3.6 είναι φανερό ότι η ξηρή και υπέρξηρη περίοδος είναι διάρκειας έξι μηνών από τον Απρίλιο έως και τον Οκτώβριο και για το αρδευτικό δίκτυο και συνεπώς δεν μπορεί να γίνεται λόγος για

εκμετάλλευση του Επιταλίου με ανοιξιάτικες και εαρινές καλλιέργειες χωρίς τη χορήγηση συμπληρωματικών ποσοτήτων αρδευτικού νερού.

Συντελεστής LANG	Χαρακτηρισμός κλίματος
< 2.0	Υπέρξηρο
2.0 - 3.5	Ξηρό
3.5 - 5.0	Υπόξηρο
5.0 - 8.3	Ύφυγρο
8.3 - 15.0	Υγρό
>15.0	Υπέρυγρο

Πίνακας 3.4: Κλίμακα κατάταξης κατά GRACANIN

Πίνακας 3.5: Χαρακτηρισμός Κλίματος κατά LANG και GRACANIN - Πύργος

Μήνες	Μἑσο ὑψος βροχής σε mm	Μέση θερμοκρασία σε ο C	Συντελεστής LANG	Χαρακτ.κλίμ. Κατά Gracanin
Ιανουάριος	113,09	9,68	11,69	Υγρό
Φεβρουάριος	84,82	10,13	8,37	Υγρό
Μάρτιος	68,38	12,15	5,63	Υφυγρο
Απρίλιος	45,82	15,18	3,02	Ξηρό
Μάιος	23,54	19,84	1,19	Υπέρξηρο
Ιούνιος	5,79	24,09	0,24	Υπέρξηρο
Ιούλιος	5,04	26,52	0,19	Υπέρξηρο
Αύγουστος	8,52	26,42	0,32	Υπέρξηρο
Σεπτέμβριος	35,58	23,03	1,55	Υπέρξηρο
Οκτώβριος	98,11	18,69	5,25	Υφυγρο
Νοἑμβριος	155,31	14,18	10,95	Υγρό
Δεκέμβριος	152,74	10,99	13,90	Υγρό
Έτους	66,39	17,57	5,19	Υφυγρο

B. ΜΕΘΟΔΟΣ KATA THORNTHWAITE (Thornthwaite 1948)

Ένας άλλος τρόπος ταξινόμησης του κλίματος είναι η μέθοδος κατά Thornthwaite, που εισήγαγε την έννοια της δυναμικής εξατμισοδιαπνοής, η οποία με επάρκεια νερού και βλάστησης θεωρείται σαν μια ισοδύναμη κλιματική παράμετρος με τη θερμοκρασία και τη βροχόπτωση. Σύμφωνα με αυτή τη μέθοδο, από τη σύγκριση της βροχόπτωσης μιας περιοχής με τις ανάγκες της σε νερό διαπιστώνεται η εποχική περίσσεια ή το έλλειμμα νερού της περιοχής. Με τον τρόπο αυτό καθίσταται δυνατός ο καθορισμός του τύπου του κλίματος της περιοχής σε ό,τι αφορά την υγρότητα ή την ξηρότητα. Στην περιοχή μελέτης είναι φανερό από τον πίνακα 3.7 ότι από τον Απρίλιο μέχρι και τον Αύγουστο, οι καλλιέργειες της περιοχής χρήζουν συμπληρωματικής άρδευσης, καθώς το κλίμα χαρακτηρίζεται ως ξηρό.

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΚΛΙΜΑΤΟΣ ΚΑΤΆ THORNTHWAITE	ΜΗΝΙΑΙΟΣ ΔΕΙΚΤΗΣ ΥΓΡΑΣΙΑΣ Iu=100*((P/PE-1)
Α=ΔΙΑΒΡΟΧΟ	>100
Β2=ΥΓΡΟ	0-100
C1=ΗΜΙΥΓΡΟ ΠΡΟΣ ΞΗΡΟ	0 ἑως -20
D=HMIEHPO	- 20 ἑως -40
E=EHPO	< - 40

Πίνακας 3.6: Χαρακτηρισμός κλίματος κατά Thornthwaite

Πίνακας 3.7: Πίνακας	Υπολογισμού Παραμέτρων	΄ για την	ταξινόμηση	του κλίματος
-	THORNTHWAITE - Πι	ίργος		

ΜΗΝΕΣ	MEΣH MHNIAIA ΘΕΡΜ. tn	ΜΗΝΙΑΙΟΣ ΘΕΡΜΙΚΟΣ ΔΕΙΚΤΗΣ Ι	PE=ΔΥΝΑΜΙΚΗ ΕΞΑΤΜΙΣΟΔΙΑ ΠΝΟΗ (((10*t)/I)^a)*1,6	ΜΕΣΟ ΥΨΟΣ ΒΡΟΧΗΣ Ρ(mm)	P/PE	ΜΗΝΙΑΙΟΣ ΔΕΙΚΤΗΣ ΥΓΡΑΣΙΑΣ Iu=100*((P/PE- 1)	ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΚΛΙΜΑΤΟΣ ΚΑΤΆ THORNTHWAITE
IANOYAP	9,68	2,72	7054,084084	137,25	3,854081	285,4081	Α=ΔΙΑΒΡΟΧΟ
ΦΕΒΡ	10,13	2,91	232134,2223	105,93	3,045567	204,5567	Α=ΔΙΑΒΡΟΧΟ
MAPT	12,15	3,83	5380585,443	68,80	2,171529	117,1529	Α=ΔΙΑΒΡΟΧΟ
АПР	15,18	5,37	92400249,5	59,49	2,105559	110,5559	Α=ΔΙΑΒΡΟΧΟ
ΜΑΪΟΣ	19,84	8,06	1090225218	23,44	0,952096	-4,79036	C1=ΗΜΙΥΓΡΟ ΠΡΟΣ ΞΗΡΟ
IOYN	24,09	10,81	12876840673	7,09	0,318154	-68,1846	E=ΞHPO
ΙΟΥΛ	26,52	12,50	1,90206E+11	3,99	0,187954	-81,2046	E=EHPO
ΑΥΓΟ	26,42	12,43	4,10713E+12	12,61	0,59353	-40,647	E=ΞHPO
ΣΕΠΤ	23,03	10,10	1,81204E+14	38,37	1,682657	68,26565	ВЗ=ҮГРО
ΟΚΤΩΒ	18,69	7,36	1,39546E+16	101,50	3,998238	299,8238	Α=ΔΙΑΒΡΟΧΟ
NOEMB	14,18	4,85	2,04264E+18	187,75	6,41743	541,743	Α=ΔΙΑΒΡΟΧΟ
	10,99	3,30	3,43624E+20	173,65	5,206359	420,6359	Α=ΔΙΑΒΡΟΧΟ
SUM	210,89	84,2395461	3,4568E+20	919,8877	30,53315	1853,315	Α=ΔΙΑΒΡΟΧΟ
ΜΕΣΟΣ	17,574	7,01996217	2,88067E+19	76,65731	2,544429	154,4429	Α=ΔΙΑΒΡΟΧΟ

Οι κλιματικές συνθήκες της ευρύτερης περιοχής χαρακτηρίζονται ως εξαιρετικά ευνοϊκές για τη γεωργική παραγωγή. (ΥΠΟΥΡΓΕΙΟ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΡΟΦΙΜΩΝ - ΔΝΣΗ ΕΓΓΕΙΩΝ ΒΕΛΤΙΩΣΕΩΝ & ΕΔΑΦΟΫΔΑΤΙΚΩΝ ΠΟΡΩΝ ΥΠΑΑΤ 2010)

3.1.3 Υλοποιηθέντα εγγειοβελτιωτικά έργα

Το αρδευτικό νερό των δικτύων της πεδιάδας του Αλφειού παρέχεται από το Φράγμα εκτροπής Φλόκα, από το οποίο μέσω κεντρικής Διώρυγας με κατεύθυνση δυτική τροφοδοτούνται αρχικά τα δίκτυα δικαιοδοσίας του ΤΟΕΒ Πελοπίου. Περίπου 2 χλμ δυτικά της περιοχής του οικισμού Βαρβάσαινα εκκινεί Δευτερεύουσα Διώρυγα με κατεύθυνση αρχικά νότια και μετά ανατολική που τροφοδοτεί τα δίκτυα δικαιοδοσίας του ΤΟΕΒ Επιταλίου, το μεγαλύτερο τμήμα των οποίων λειτουργεί με καταιονισμό. Η κύρια Διώρυγα από το φράγμα συνεχίζει δυτικά και τροφοδοτεί αρχικά το δίκτυο δικαιοδοσίας του ΤΟΕΒ Α΄ Πύργου και εν συνεχεία του ΤΟΕΒ Β΄ Πύργου. Το πέρας της Διώρυγας βρίσκεται στην περιοχή του οικισμού Λεβεντοχώρι.

Η μελέτη θα ασχοληθεί με το τμήμα του ΤΟΕΒ Επιταλίου, όπου υπάρχουν ανοιχτοί αγωγοί (ο ΤΟΕΒ, διαθέτει και υπόγειο δίκτυο).

3.1.4 Γεωμορφολογία

Η περιοχή μελέτης καλύπτεται, σχεδόν στο σύνολό της, από πετρώματα από νεογενείς σχηματισμούς που ανήκουν στο Ανώτερο Πλειόκαινο.

Συγκεκριμένα το Ανώτερο Πλειόκαινο περιλαμβάνει:

Τη βαθμίδα του Βούναργου, που χαρακτηρίζεται από άρρυθμες εναλλαγές ασβεστιτικών άμμων, αργίλων και ψαμμιτών, και παρουσιάζει συνολικό πάχος περίπου 450 m.

Τη βαθμίδα του Λάλα, που αποτελείται από κροκαλοπαγή, τα οποία είναι ποτάμιες αποθέσεις διακλαδιζόμενων ποταμών.

Τη βαθμίδα Τζόγια όπου τα ιζήματά της είναι κυρίως άμμοι με διασταυρούμενη στρώση και κόκκους ελαφρά στρογγυλεμένους.

Τη βαθμίδα Κατακόλου όπου ο παράκτιος ασβεστόλιθος είναι πλούσιος σε πανίδα θαλάσσιων οστράκων. Στον ασβεστόλιθο αυτό παρεμβάλλεται επίσης και ασβεστιτικός ψαμμίτης, στα κατώτερα τμήματα του οποίου υπάρχουν στρώματα κροκαλοπαγών.

Τη βαθμίδα του Αγίου Ανδρέα, του οποίου ο παράκτιος ασβεστόλιθος συνίσταται από άφθονα θραύσματα οστράκων, που μαρτυρούν ότι ο σχηματισμός αυτός δημιουργήθηκε στον πυθμένα της θάλασσας. Η επιφάνειά τους βρίσκεται 6 m πάνω από την επιφάνεια της θάλασσας. Τα όστρακα είναι πιο πρόσφατα από αυτά του ασβεστόλιθου του Κατακόλου και συχνά διατηρούν ακόμα το χρώμα τους.

Στην περιοχή του Επιταλίου το μητρικό υλικό προέρχεται από Λιμναίες και Ποτάμιο αλλουβιακές αποθέσεις.

3.1.5 Γεωργία

Η μελετώμενη έκταση είναι πεδινή, επίπεδη, χαμηλού υψομέτρου. Εξάλλου, στην έκταση του Επιταλίου λειτουργεί ήδη το αρδευτικό δίκτυο με βαρύτητα.

Τοποθεσία:	ΕΠΙΤΑΛΙΟ
Γεωγραφικό Πλάτος:	37,62
Γεωγραφικό Μήκος:	21,49
Υψόμετρο:	40

Πίνακας 3.8: Χαρακτηριστικά Επιταλίου

Ο ευρύτερος χώρος είναι καθαρά γεωργοκτηνοτροφικός. Η περιοχή του έργου είναι καθαρά γεωργική χωρίς δάση και βοσκοτόπους.

Οι καλλιεργούμενες εκτάσεις (αγραναπαύσεις, οπωρώνες, σταφιδάμπελοι) της ευρύτερης περιοχής των έργων παρουσιάζονται στον παρακάτω πίνακα:

FIAU	
EIΔH	ΕΠΤΑΛΙΟ (στρ)
Σύνολο εκτάσεων αροτραίων καλλιεργειών	5478
Αρδευόμενες	5016
Αροτραίες καλλιέργειες	5478
Έκταση Κηπευτικών	743
Δενδρώδεις Καλλιέργειες	3982
Άμπελοι – Σταφιδάμπελοι	573
Αγρανάπαυση 1 – 5 ετών (1 ^η εγγραφή)	326

Πίνακας 3.9: Κατανομή έκτασης

3.2 Το δίκτυο - Τεχνικά χαρακτηριστικά του δικτύου

Η μελέτη θα ασχοληθεί με το τμήμα του ΤΟΕΒ Επιταλίου, όπου υπάρχουν καναλλέτα (διαθέτει και υπόγειο δίκτυο), στον Αλφειό.

Χάρτης 3.1: Τοποθεσία Επιταλίου

Λόγω παλαιότητας του συστήματος άρδευσης με καναλλέτα, και μη σωστής και επαρκούς συντήρησης, υπάρχουν πολλές εκτάσεις που δεν αρδεύονται. Με την υπογειοποίηση του δικτύου θα υπάρξει πλήρης αποκατάσταση των αρδεύσεων.

Η περιοχή του Επιταλίου που πρόκειται να αρδεύεται από το αντλιοστάσιο ΑΕ1 και η καθαρή αρδευόμενη έκταση θα είναι 3.640 στρέμματα.

Το δίκτυο διανομής αποτελείται από σωλήνες PVC 12,5 atm για διαμέτρους έως Φ 400 και από χαλυβδοσωλήνες για μεγαλύτερες διαμέτρους.

DN	Dεσ	Κόστος	Xluud
mm	mm	€	TAIKO
90	76,60	14,50	HDPE, 3ης γενιάς, 12.5 atm
110	93,80	18,41	HDPE, 3ης γενιάς, 12.5 atm
125	106,60	20,64	HDPE, 3ης γενιάς, 12.5 atm
140	119,40	23,87	HDPE, 3ης γενιάς, 12.5 atm
160	136,40	27,19	HDPE, 3ης γενιάς, 12.5 atm
200	170,60	37,83	HDPE, 3ης γενιάς, 12.5 atm
225	191,80	43,24	HDPE, 3ης γενιάς, 12.5 atm
250	213,20	48,66	HDPE, 3ης γενιάς, 12.5 atm
280	238,80	69,16	HDPE, 3ης γενιάς, 12.5 atm
315	268,60	79,75	HDPE, 3ης γενιάς, 12.5 atm
355	302,80	95,45	HDPE, 3ης γενιάς, 12.5 atm
400	341,20	121,24	HDPE, 3ης γενιάς, 12.5 atm
450	445,60	140,51	Χαλυβδοσωλήνας
500	495,20	169,54	Χαλυβδοσωλήνας
600	595,40	222,14	Χαλυβδοσωλήνας
700	695,20	288,13	Χαλυβδοσωλήνας
800	793,80	385,41	Χαλυβδοσωλήνας
900	894,40	454,64	Χαλυβδοσωλήνας
1000	994,00	552,34	Χαλυβδοσωλήνας

Πίνακας 3.10: Συγκεντρωτικός πίνακας σωληνώσεων

Η μικτή έκταση της περιοχής του δικτύου είναι 4.450,00 στρ. και η καθαρή αρδευόμενη έκταση είναι 3.643,20 στρ. (3.640,00). Το σύνολο των αρδευτικών μονάδων και των αντίστοιχων υδροληψιών που εγκαθίστανται στο δίκτυο είναι 92, ενώ η μέση επιφάνεια αρδευτικής μονάδας είναι ίση με 39,60 στρ.

Η παροχή σχεδιασμού κατά Clément του δικτύου σύμφωνα με τις παραδοχές των προηγούμενων παραγράφων είναι:

$$Q = R \cdot p \cdot d + U(P_q) \sqrt{R \cdot p \cdot q \cdot d^2} \xrightarrow{p = \frac{S_i \cdot v}{r \cdot d} = \frac{40 \cdot 0,0973}{0,75 \cdot 9} = 0.577}$$

$$Q = 92 \cdot 0,577 \cdot 9 + 1,645 \sqrt{92 \cdot 0,577 \cdot 0,568 \cdot 9^2} \rightarrow$$

$$Q = 559,00 \text{ l/s}$$

Σύμφωνα με την παραπάνω εξίσωση, η παροχή σχεδιασμού, κατά Clément, του δικτύου και το Α/Σ ΑΕ1 είναι ίση με 559,00 l/sec και αντιστοιχεί στην ταυτόχρονη λειτουργία 92 υδροληψιών. Ωστόσο όπως αναφέρθηκε και σε ανωτέρω παράγραφο της παρούσας η τελική διαστασιολόγηση τόσο του αντλιοστασίου του δικτύου όσο και των κυρίων κλάδων αυτού έγινε με την παραδοχή της ταυτόχρονης λειτουργίας τουλάχιστον των μισών εγκατεστημένων υδροληψιών του δικτύου κατάντη του σημείου ελέγχου. Επομένως, η τελική παροχή σχεδιασμού του δικτύου στην κεφαλή αυτού είναι ίση με 414,0 l/s η οποία αντιστοιχεί στην ταυτόχρονη λειτουργία 46 υδροληψιών. Οι εγκατεστημένες υδροληψίες του δικτύου ανέρχονται στα 92 τεμάχια, Το συνολικό μήκος του δικτύου ανέρχεται στα 21.060,9m εκ των οποίων τα 20.394,4m αντιστοιχούν σε σωληνώσεις μικρής διαμέτρου (D<=400mm), δηλαδή σε αγωγούς HDPE, 3ης γενιάς, 12.5atm και τα υπόλοιπα 666,4m αντιστοιχούν σε αγωγούς μεγαλύτερης διαμέτρου (D>400mm), δηλαδή σε χαλυβδοσωλήνες. Η ονομαστική διάμετρος του αγωγού κεφαλής του δικτύου για το σενάριο υπολογισμού βάσει των παροχών Clement είναι ίση με D600.

Στον πίνακα που ακολουθεί παρουσιάζονται συγκεντρωτικά για το υπό μελέτη δίκτυο ως εξής:

- 1. Παροχή σχεδιασμού αντλιοστασίου
- 2. Υψόμετρο πιεζομετρικής γραμμής αντλιοστασίου βάσει υπολογισμών
- 3. Επιλεχθέν υψόμετρο πιεζομετρικής γραμμής αντλιοστασίου
- 4. Διάμετρος αγωγού κεφαλής δικτύου

	Πα Αντλιο	ροχή στασίου	Σενάριο Υπολογισμού: (HDPE- ΧΑΛΥΒΔΟΣΩΛΗΝΕΣ)								
Δίκτυο Μελέτης	Q (I/s)	Q (m³/h)	Ү.П.Г. (m)	Επιλεχθέν Υ.Π.Γ. (m)	Dmax (mm)						
ΤΟΕΒ Επιταλίου											
Δίκτυο Επιταλίου: Α/Σ ΑΕ1	414,0	1490,4	84,95	84,95	600						

Αποτελέσματα:

Το δίκτυο αρδεύει καθαρή έκταση 3.640στρ. η οποία εξυπηρετείται από 92 υδροληψίες μονού στομίου. Η παροχή σχεδιασμού του αντλιοστασίου ΑΕ1 είναι ίση με 414,0l/s. Το απαιτούμενο υψόμετρο της Πιεζομετρικής Γραμμής στο αντλιοστάσιο ΑΕ1 είναι +84,95m ενώ ο αγωγός κεφαλής του δικτύου είναι χαλυβδοσωλήνας διαμέτρου D600.

Το συνολικό μήκος του δικτύου είναι 21.060,9m αντιστοιχούν σε αγωγούς HDPE και 666,4m σε χαλυβδοσωλήνες.

Με τις προτεινόμενες διαμέτρους η περίσσεια πίεσης σε όλες τις θέσεις είναι ίση ή μεγαλύτερη από την απαιτούμενη ανάντη των υδροληψιών (5atm).

3.3 Μελέτη εφαρμογής

3.3.1 Εισαγωγή

Για τη μελέτη αυτή, το δίκτυο αναπαραστάθηκε μέσω μαθηματικού ομοιώματος του λογισμικού COPAM και του λογισμικού Nireus, ώστε τελικά να γίνει ανάλυσή του σε επίπεδο δικτύου και σε επίπεδο υδροστομίου.

3.3.2 Δεδομένα αρδευτικού δικτύου

Τα χαρακτηριστικά λειτουργίας του παραπάνω δικτύου, που χρησιμοποιήθηκαν στα δύο λογισμικά παρουσιάζονται στον Πίνακα:

Σύστημα διανομής	Ελεύθερη ζήτηση
Συνολική έκταση	4.450 στρ.
Καθαρή αρδεύσιμη έκταση	3.643,2 отр.
Θεωρητική ειδική παροχή άρδευσης q₀	0,0973 L/s/σтр.
Απόδοση χρονικής χρησιμοποιήσεως (ανά 24ωρο) r	0,75
Παροχή Clement στην κεφαλή του δικτύου	559 L/s
Πιεζομετρικό φορτίο στην κεφαλή του δικτύου Ζκεφ	84,46 m
Αριθμός εγκατεστημένων υδροστομίων R	92
Ονομαστική παροχή άρδευσης για κάθε υδροστόμιο d₀	9 L/s
Εξυπηρετούμενη από κάθε υδροστόμιο αρδευτική έκταση	39,6 отр.
Πιθανότητα λειτουργίας κάθε υδροστομίου p (24ωρη λειτουργία)	0,577
Πιθανότητα μη λειτουργίας κάθε υδροστομίου 1-p	0,423
Βαθμός ελευθερίας 1/p	2,31

Πίνακας 3.12: Χαρακτηριστικά λειτουργίας δικτύου

Ένα ακόμη από τα βασικά χαρακτηριστικά του δικτύου είναι το μέγεθος που σχετίζεται με τις απώλειες φορτίου στους αγωγούς. Όπως αναφέρθηκε, το λογισμικό COPAM για τον υπολογισμό των απωλειών φορτίου χρησιμοποιεί την Εξίσωση 2.2 (Lamaddalena and Sagardoy 2000) με μοναδικό άγνωστο την παράμετρο γ.

Ο υπολογισμός των άγνωστων τιμών του συντελεστή γ για τα δυο υλικά των αγωγών έγινε μέσω μιας διαδικασίας trial and error. Πιο συγκεκριμένα, υπολογίστηκαν οι απώλειας φορτίου (για διάφορες διαμέτρους και παροχές) χρησιμοποιώντας αρχικά την εξίσωση Darcy-Weisbach,

$$\Delta h = f \frac{L}{D} \frac{V^2}{2g} \tag{3.1}$$

Όπου: D: η εσωτερική διάμετρος του αγωγού (m)

V: η ταχύτητα του νερού (m/s)

g: η επιτάχυνση του νερού (m/s²)

f: ο συντελεστής τριβών²

Ο συντελεστής τριβών f δίνεται από την εμπειρική εξίσωση f=1/(-log10(K/(3.7*D)+5.74/Re^{0.9}))² όπου Κ: η ισοδύναμη απόλυτη τραχύτητα της εσωτερικής επιφάνειας του αγωγού (mm)

και στη συνέχεια χρησιμοποιώντας την εξίσωση 2.25 μεταβάλλοντας κάθε φορά την τιμή της παραμέτρου γ. Οι τιμές του γ οι οποίες ελαχιστοποιούσαν την διαφορά μεταξύ των υπολογισμένων τιμών των απωλειών από τις δυο εξισώσεις ήταν εκείνες που τελικά υιοθετήθηκαν ως χαρακτηριστικές των υλικών των αγωγών.

Στον Πίνακα 3.16 δίνονται συνοπτικά οι τιμές του συντελεστή γ του Bazin που υπολογίστηκαν για διάφορες ονομαστικές διαμέτρους (Nominal Diameter, ND) αγωγών για σωλήνες από χάλυβα και από PVC.

Nominal Diameter (mm)	Diameter (m)	γ Bazin (m ^{0.5})	Thickness	Υλικό Αγωγού
110	0,1068	0,06	3,2	PVC
125	0,1213	0,06	3,7	PVC
140	0,1359	0,06	4,1	PVC
160	0,1553	0,06	4,7	PVC
200	0,1941	0,06	5,9	PVC
225	0,2184	0,06	6,6	PVC
250	0,2427	0,06	7,3	PVC
280	0,2718	0,06	8,2	PVC
315	0,3058	0,06	9,2	PVC
355	0,3446	0,06	10,4	PVC
400	0,3883	0,06	11,7	PVC
450	0,45	0,23	0	X/Σ
500	0,5	0,23	0	X/Σ
600	0,6	0,23	0	X/Σ

Πίνακας 3.13: Χαρακτηριστικά αγωγών δικτύου

Στη συνέχεια δίνεται ένα σκαρίφημα του εν λόγω δικτύου όπου παρουσιάζεται η γενική του διάταξη ενώ στον πίνακα που ακολουθεί δίνονται συγκεντρωτικά στοιχεία όπως η αρχική αρίθμηση των αγωγών, το μήκος τους, η διάμετρος, το υψόμετρο εδάφους στους κόμβους και η παροχή.

Σχήμα 3.1: Σκαρίφημα αρδευτικού δικτύου Επιταλίου. Γενική διάταξη

Στον Πίνακα 3.17 δίνονται τα χαρακτηριστικά των αγωγών του αρδευτικού δικτύου του Επιταλίου (Αρίθμηση Κόμβων, Μήκος Αγωγών, Υψόμετρο Αγωγών, Διάμετρος Αγωγών)

α/α	Αγωγός	Ανάντη Κόμβος	Κατάντη Κόμβος	Μήκος Αγωγού (m)	Υψόμετρο (m)	Διάμετρος Αγωγού (mm)
1	AE1 - K01	AE1	K01	28,5	4,9	600
2	K01 - K02	K01	K02	141,95	4,78	500
3	K02 - Y02	K02	Y02	150	4,76	500
4	Y02 - K03	Y02	K03	10	4,76	500
5	K03 - K04	K03	K04	131	4,74	450
6	K04 - K05	K04	K05	205	5,44	450
7	K05 - Y12	K05	Y12	158	5,2	315
8	Y12 - Y13	Y12	Y13	60	5,12	315
9	Y13 - Y14	Y13	Y14	200	4,86	315
10	Y14 - Y15	Y14	Y15	100	4,82	315
11	Y15 - Y16	Y15	Y16	202	4,65	315
12	Y16 - Y17	Y16	Y17	75	4,58	315
13	Y17 - Y18	Y17	Y18	125	4,53	315
14	Y18 - Y19	Y18	Y19	115	5,03	315
15	Y19 - Y20	Y19	Y20	65	5,18	315
16	Y20 - Y21	Y20	Y21	185	5,28	280
17	Y21 - Y22	Y21	Y22	25	5,3	280
18	Y22 - K10	Y22	K10	281	5,37	250
19	K10 - K11	K10	K11	107	5,69	250
20	K11 - K12	K11	K12	160	5,56	250
21	K12 - K13	K12	K13	148	5,41	225
22	K13 - K14	K13	K14	114	4,86	225
23	K14 - K15	K14	K15	133	4,85	200
24	K15 - Y29	K15	Y29	326	3,27	140
25	K05 - Y30	K05	Y30	50	5,07	400
26	Y30 - K06	Y30	K06	123	4,17	400
27	K06 - K07	K06	K07	153	3,22	400
28	K07 - Y46	K07	Y46	200	3,2	315
29	Y46 - K08	Y46	K08	29	3,2	315
30	K08 - Y59	K08	Y56	185	3,48	315
31	Y59 - K09	Y56	K09	72	3,59	315
32	K09 - Y57	K09	Y57	118	2,93	280
33	Y57 - K20	Y57	K20	323	3,32	250
34	K20 - K21	K20	K21	337,5	3,15	250
35	K21 - Y61	K21	Y61	104	3,08	225
36	Y61 - Y62	Y61	Y62	250	2,78	200
37	Y62 - Y63	Y62	Y63	300	2,95	160
38	Y63 - 356	Y63	356	70	2,88	160
39	356 - Y64	356	Y64	250	2,65	140
40	K01 - K22	K01	K22	14,56	4,88	355
41	K22- Y75	K22	Y75	154	4,51	315
42	Y75 - Y76	Y75	Y76	359	3,85	315

Πίνακας 3.14: Χαρακτηριστικά αρδευτικού δικτύου Επιταλίου

43	Y76 - K24	Y76	K24	69,5	3,72	315
44	K24 - K25	K24	K25	136,5	2,43	315
45	K25 - Y79	K25	Y79	44,5	2,52	280
46	Y79 - K26	Y79	K26	210	2,96	250
47	K26 - Y80	K26	Y80	5	2,96	225
48	Y80 - Y82	Y80	Y82	245	2,4	225
49	Y82 - Y83	Y82	Y83	251	1,94	200
50	Y83 - K27	Y83	K27	5	1,94	160
51	K27 - Y85	K27	Y85	222,95	1,81	160
52	Y85 - Y86	Y85	Y86	202,05	2,7	110
53	K07 - Y36	K07	Y36	118	4,6	315
54	Y36 - Y37	Y36	Y37	200	4,77	280
55	Y37 - Y38	Y37	Y38	221	4,97	280
56	Y38 - Y39	Y38	Y39	222	4,56	250
57	Y39 - Y40	Y39	Y40	170,31	4,75	225
58	Y40 - K16	Y40	K16	93,69	4,57	225
59	K16 - Y42	K16	Y42	91	4,41	200
60	Y42 - 248	Y42	248	150	4,11	200
61	248 - Y43	248	Y43	52	4	160
62	Y43 - K17	Y43	K17	317,5	3,63	160
63	K17 - Y44	K17	Y44	175	3,82	125
64	K08 - Y47	K08	Y47	117	3,07	280
65	Y47 - Y48	Y47	Y48	150	3,83	280
66	Y48 - K18	Y48	K18	168,71	3,5	250
67	K18 - Y50	K18	Y50	154,79	4,18	225
68	Y50 - K19	Y50	K19	172,48	4,12	225
69	K19 - Y52	K19	Y52	288,2	4,4	200
70	Y52 - Y53	Y52	Y53	201,83	4,31	200
71	Y53 - Y54	Y53	Y54	230,49	3,32	160
72	Y54 - Y55	Y54	Y55	169	3	125
73	K22 - Y67	K22	Y67	116	5,83	280
74	Y67 - Y68	Y67	Y68	200	6,37	250
75	Y68 - Y69	Y68	Y69	150	4,47	225
76	Y69 - Y70	Y69	Y70	220	4,5	225
77	Y70 - Y71	Y70	Y71	280	4,69	200
78	Y71 - K23	Y71	K23	152	5,99	160
79	K23 - Y72	K23	Y72	192,5	5,08	160
80	Y72 - Y73	Y72	Y73	297	4,45	110
81	K24 - Y87	K24	Y87	317	2,76	225
82	Y87 - Y88	Y87	Y88	292,55	2,65	225
83	Y88 - Y89	Y88	Y89	257,45	2,61	200
84	Y89 - Y90	Y89	Y90	275	2,63	160
85	Y90 - Y91	Y90	Y91	225	2,29	160
86	Y91 - Y92	Y91	Y92	150	2,01	110
87	K06 - Y31	K06	Y31	167	4,74	225
88	Y31 - Y32	Y31	Y32	260	4,94	200

89	Y32 - Y33	Y32	Y33	275	4,95	160
90	Y33 - Y34	Y33	Y34	200	4,9	160
91	Y34 - Y35	Y34	Y35	269	4,41	110
92	K03 - Y03	K03	Y03	143	4,66	225
93	Y03 - Y04	Y03	Y04	250	4,78	200
94	Y04 - Y05	Y04	Y05	240	4,91	160
95	Y05 - Y06	Y05	Y06	250	4,84	160
96	Y06 - Y07	Y06	Y07	220	5,09	110
97	K04 - Y08	K04	Y08	193	4,15	200
98	Y08 - Y09	Y08	Y09	293	4,57	160
99	Y09 - Y10	Y09	Y10	250	4,83	160
100	Y10 - Y11	Y10	Y11	256	4,94	110
101	K09 - Y65	K09	Y65	100	4,05	160
102	Y65 - Y66	Y65	Y66	276	3	110
103	K25 - K28	K25	K28	174	2,17	160
104	K28 - Y78	K28	Y78	136	2,22	110
105	K21 - Y59	K21	Y59	253	2,9	160
106	Y59 - Y60	Y59	Y60	15	2,89	110
107	K02 - Y01	K02	Y01	156	5,04	110
108	K10 - Y23	K10	Y23	140,13	5,1	110
109	K11 - Y24	K11	Y24	150	5,04	110
110	K12 - Y25	K12	Y25	125	4,95	110
111	K13 - Y26	K13	Y26	130	4,31	110
112	K14 - Y27	K14	Y27	130	4,7	125
113	K15 - Y28	K15	Y28	106	4,25	125
114	K16 - Y41	K16	Y41	303	4,41	110
115	K17 - Y45	K17	Y45	105	3,6	110
116	K18 - Y49	K18	Y49	125	3,34	110
117	K19 - Y51	K19	Y51	73	3,64	110
118	K20 - Y58	K20	Y58	105	2,98	110
119	K23 - Y74	K23	Y74	249	6,05	110
120	K26 - Y81	K26	Y81	178	1,72	110
121	K27 - Y24	K27	Y84	214	2,5	110
122	K28 - Y77	K28	Y77	186	4,08	110

3.3.3 Δημιουργία input file

Ο υπολογισμός των παροχών στους αγωγούς του δικτύου, όπως και κάθε άλλη δυνατότητα που προσφέρει το λογισμικό COPAM, προϋποθέτει τη δημιουργία input file και την εισαγωγή των δεδομένων του δικτύου σε αυτό.

Σύμφωνα με την ανάλυση που προηγήθηκε στο Κεφάλαιο 2 σχετικά με την προετοιμασία για τη δημιουργία των input files, πρώτο και σημαντικό βήμα της

διαδικασίας αποτελεί η αρίθμησης του δικτύου με βάση τους κανόνες του λογισμικού. Ακολουθώντας τους κανόνες αυτούς προέκυψε η νέα αρίθμηση, η οποία στο εξής θα είναι αντιπροσωπευτική του δικτύου.

Στο Σχήμα 3.2 δίνεται ένα σκαρίφημα του δικτύου με την νέα αρίθμηση.

Στην συνέχεια εισήχθησαν στα αντίστοιχα πεδία του προγράμματος όλα τα δεδομένα του δικτύου (παροχή υδροστομίων, χαρακτηριστικά αγωγών κλπ) με τον τρόπο που περιγράφηκε κατά την παρουσίαση του COPAM και τελικά προέκυψε το input file που παρουσιάζεται στον Πίνακα 3.18.

Στο σημείο αυτό θα πρέπει να επισημανθεί ο βαθμός σημαντικότητας της παραπάνω διαδικασίας καθώς η σωστή εισαγωγή των στοιχείων στο πρόγραμμα εξασφαλίζει όχι μόνο την αποφυγή εμφάνισης σφαλμάτων αλλά και την εξαγωγή ασφαλών αποτελεσμάτων που οδηγούν στην ορθή ανάλυση λειτουργίας του εξεταζόμενου δικτύου.

Σχήμα 3.2: Σκαρίφημα δικτύου με αρίθμηση κατά COPAM

Στον Πίνακα 3.20 παρατίθενται τα στοιχεία του δικτύου όπως εισήχθησαν στο πρόγραμμα COPAM (Input file). Η εισαγωγή δεδομένων έγινε σύμφωνα με το Κεφάλαιο 2.4.1., στο οποίο αναλύθηκε το Λογισμικό COPAM.

α/α	Ανάντη Κόμβος	Κατάντη Κόμβος	Αρδευόμενη Έκταση (ha)	Παροχή Υδροστομίου (I/s)	Μήκος Αγωγού (m)	Υψόμετρο (m)	Διάμετρος Αγωγού (mm)	Απαιτούμενο φορτίο κατάντη κόμβου (m)
1	0	1	0,00	0	28,50	4,90	600	10
2	1	2	0,00	0	141,95	4,78	500	10
3	2	3	3,96	9	150,00	4,76	500	50
4	3	4	0,00	0	10,00	4,76	500	10
5	4	5	0,00	0	131,00	4,74	450	10
6	5	6	0,00	0	205,00	5,44	450	10
7	6	7	3,96	9	158,00	5,20	315	50
8	7	8	3,96	9	60,00	5,12	315	50
9	8	9	3,96	9	200,00	4,86	315	50
10	9	10	3,96	9	100,00	4,82	315	50
11	10	11	3,96	9	202,00	4,65	315	50
12	11	12	3,96	9	75,00	4,58	315	50
13	12	13	3,96	9	125,00	4,53	315	50
14	13	14	3,96	9	115,00	5,03	315	50
15	14	15	3,96	9	65,00	5,18	315	50
16	15	16	3,96	9	185,00	5,28	280	50
17	16	17	3,96	9	25,00	5,30	280	50
18	17	18	0,00	0	281,00	5,37	250	10
19	18	19	0,00	0	107,00	5,69	250	10
20	19	20	0,00	0	160,00 5,56		250	10
21	20	21	0,00	0	148,00	5,41	225	10
22	21	22	0,00	0	114,00	4,86	225	10
23	22	23	0,00	0	133,00	4,85	200	10
24	23	24	3,96	9	326,00	3,27	140	50
25	6	25	3,96	9	50,00	5,07	400	50
26	25	26	0,00	0	123,00	4,17	400	10
27	26	27	0,00	0	153,00	3,22	400	10
28	27	28	3,96	9	200,00	3,20	315	50
29	28	29	0,00	0	29,00	3,20	315	10
30	29	30	3,96	9	185,00	3,48	315	50
31	30	31	0,00	0	72,00	3,59	315	10
32	31	32	3,96	9	118,00	2,93	280	50
33	32	33	0,00	0	323,00	3,32	250	10
34	33	34	0,00	0	337,50	3,15	250	10
35	34	35	3,96	9	104,00	3,08	225	50
36	35	36	3,96	9	250,00	2,78	200	50

Πίνακας 3.15: Input file για το COPAM του δικτύου

37	36	37	3,96	9	300,00	2,95	160	50
38	37	38	0,00	0	70,00	2,88	160	10
39	38	39	3,96	9	250,00	2,65	140	50
40	1	40	0,00	0	14,56	4,88	355	10
41	40	41	3,96	9	154,00	4,51	315	50
42	41	42	3,96	9	359,00	3,85	315	50
43	42	43	0,00	0	69,50	3,72	315	10
44	43	44	0,00	0	136,50	2,43	315	10
45	44	45	3,96	9	44,50	2,52	280	50
46	45	46	0,00	0	210,00	2,96	250	10
47	46	47	3,96	9	5,00	2,96	225	50
48	47	48	3,96	9	245,00	2,40	225	50
49	48	49	3,96	9	251,00	1,94	200	50
50	49	50	0,00	0	5,00	1,94	160	10
51	50	51	3,96	9	222,95	1,81	160	50
52	51	52	3,96	9	202,05	2,70	110	50
53	27	53	3,96	9	118,00	4,60	315	50
54	53	54	3,96	9	200,00	4,77	280	50
55	54	55	3,96	9	221,00	4,97	280	50
56	55	56	3,96	9	222,00	4,56	250	50
57	56	57	3,96	9	170,31	4,75	225	50
58	57	58	0,00	0	93,69	4,57	225	10
59	58	59	3,96	9	91,00	4,41	200	50
60	59	60	0,00	0	150,00	4,11	200	10
61	60	61	3,96	9	52,00	4,00	160	50
62	61	62	0,00	0	317,50	3,63	160	10
63	62	63	3,96	9	175,00	3,82	125	50
64	29	64	3,96	9	117,00	3,07	280	50
65	64	65	3,96	9	150,00	3,83	280	50
66	65	66	0,00	0	168,71	3,50	250	10
67	66	67	3,96	9	154,79	4,18	225	50
68	67	68	0,00	0	172,48	4,12	225	10
69	68	69	3,96	9	288,20	4,40	200	50
70	69	70	3,96	9	201,83	4,31	200	50
71	70	71	3,96	9	230,49	3,32	160	50
72	71	72	3,96	9	169,00	3,00	125	50
73	40	73	3,96	9	116,00	5,83	280	50
74	73	74	3,96	9	200,00	6,37	250	50
75	74	75	3,96	9	150,00	4,47	225	50
76	75	76	3,96	9	220,00	4,50	225	50
77	76	77	3,96	9	280,00	4,69	200	50
78	77	78	0,00	0	152,00	5,99	160	10
79	78	79	3,96	9	192,50	5,08	160	50
80	79	80	3,96	9	297,00	4,45	110	50
81	43	81	3,96	9	317,00	2,76	225	50
82	81	82	3,96	9	292,55	2,65	225	50

83	82	83	3,96	9	257,45	2,61	200	50
84	83	84	3,96	9	275,00	2,63	160	50
85	84	85	3,96	9	225,00	2,29	160	50
86	85	86	3,96	9	150,00	2,01	110	50
87	26	87	3,96	9	167,00	4,74	225	50
88	87	88	3,96	9	260,00	4,94	200	50
89	88	89	3,96	9	275,00	4,95	160	50
90	89	90	3,96	9	200,00	4,90	160	50
91	90	91	3,96	9	269,00	4,41	110	50
92	4	92	3,96	9	143,00	4,66	225	50
93	92	93	3,96	9	250,00	4,78	200	50
94	93	94	3,96	9	240,00	4,91	160	50
95	94	95	3,96	9	250,00	4,84	160	50
96	95	96	3,96	9	220,00	5,09	110	50
97	5	97	3,96	9	193,00	4,15	200	50
98	97	98	3,96	9	293,00	4,57	160	50
99	98	99	3,96	9	250,00	4,83	160	50
100	99	100	3,96	9	256,00	4,94	110	50
101	31	101	3,96	9	100,00	4,05	160	50
102	101	102	3,96	9	276,00	3,00	110	50
103	44	103	0,00	0	174,00	2,17	160	10
104	103	104	3,96	9	136,00	2,22	110	50
105	34	105	3,96	9	253,00	2,90	160	50
106	105	106	3,96	9	15,00	2,89	110	50
107	2	107	3,96	9	156,00	5,04	110	50
108	18	108	3,96	9	140,13	5,10	110	50
109	19	109	3,96	9	150,00	5,04	110	50
110	20	110	3,96	9	125,00	4,95	110	50
111	21	111	3,96	9	130,00	4,31	110	50
112	22	112	3,96	9	130,00	4,70	125	50
113	23	113	3,96	9	106,00	4,25	125	50
114	58	114	3,96	9	303,00	4,41	110	50
115	62	115	3,96	9	105,00	3,60	110	50
116	66	116	3,96	9	125,00	3,34	110	50
117	68	117	3,96	9	73,00	3,64	110	50
118	33	118	3,96	9	105,00	2,98	110	50
119	78	119	3,96	9	249,00	6,05	110	50
120	46	120	3,96	9	178,00	1,72	110	50
121	50	121	3,96	9	214,00	2,50	110	50
122	103	122	3,96	9	186,00	4,08	110	50

Στον Πίνακα 3.21 παρατίθενται τα στοιχεία του δικτύου όπως εισήχθησαν στο πρόγραμμα Nireus (Input file). Η εισαγωγή δεδομένων έγινε σύμφωνα με το Κεφάλαιο 2.4.2., στο οποίο αναλύθηκε το Λογισμικό Nireus.

Η αρίθμηση των κόμβων παρέμεινε ίδια με το Input file του λογισμικού Copam, για να αποφευχθούν λάθη κατά την σύγκριση των αποτελεσμάτων των δύο λογισμικών.

	Δίκτυο για εισαγωγή στο NIREUS													
Section #	Uphill Node	Downhill node	Altitude	Length	Diameter	q 1	q ₂	q ₃	q ₄	Si ₁	Si ₂	Si ₃	Si ₄	hr
1	1	0	4,9	28,5	0,600	0	0	0	0	0	0	0	0	10
2	0	2	4,78	141,95	0,500	0	0	0	0	0	0	0	0	10
3	2	3	4,76	150	0,500	9	0	0	0	3,96	0	0	0	50
4	3	4	4,76	10	0,500	0	0	0	0	0	0	0	0	10
5	4	5	4,74	131	0,450	0	0	0	0	0	0	0	0	10
6	5	6	5,44	205	0,450	0	0	0	0	0	0	0	0	10
7	6	7	5,2	158	0,306	9	0	0	0	3,96	0	0	0	50
8	7	8	5,12	60	0,306	9	0	0	0	3,96	0	0	0	50
9	8	9	4,86	200	0,306	9	0	0	0	3,96	0	0	0	50
10	9	10	4,82	100	0,306	9	0	0	0	3,96	0	0	0	50
11	10	11	4,65	202	0,306	9	0	0	0	3,96	0	0	0	50
12	11	12	4,58	75	0,306	9	0	0	0	3,96	0	0	0	50
13	12	13	4,53	125	0,306	9	0	0	0	3,96	0	0	0	50
14	13	14	5,03	115	0,306	9	0	0	0	3,96	0	0	0	50
15	14	15	5,18	65	0,306	9	0	0	0	3,96	0	0	0	50
16	15	16	5,28	185	0,272	9	0	0	0	3,96	0	0	0	50
17	16	17	5,3	25	0,272	9	0	0	0	3,96	0	0	0	50
18	17	18	5,37	281	0,243	0	0	0	0	0	0	0	0	10
19	18	19	5,69	107	0,243	0	0	0	0	0	0	0	0	10
20	19	20	5,56	160	0,243	0	0	0	0	0	0	0	0	10
21	20	21	5,41	148	0,218	0	0	0	0	0	0	0	0	10
22	21	22	4,86	114	0,218	0	0	0	0	0	0	0	0	10
23	22	23	4,85	133	0,219	0	0	0	0	0	0	0	0	10
24	23	24	3,27	326	0,136	9	0	0	0	3,96	0	0	0	50
25	6	25	5,07	50	0,388	9	0	0	0	3,96	0	0	0	50
26	25	26	4,17	123	0,388	0	0	0	0	0	0	0	0	10
27	26	27	3,22	153	0,388	0	0	0	0	0	0	0	0	10
28	27	28	3,2	200	0,306	9	0	0	0	3,96	0	0	0	50
29	28	29	3,2	29	0,306	0	0	0	0	0	0	0	0	10
30	29	30	3,48	185	0,306	9	0	0	0	3,96	0	0	0	50
31	30	31	3,59	12	0,306	0	0	0	0	0	0	0	0	10
32	31	32	2,93	118	0,272	9	0	0	0	3,96	0	0	0	50
33	32	33	3,32	323	0,243	0	0	0	0	0	0	0	0	10
34	24	34	3,10	337,5	0.243	0	0	0	0	2.06	0	0	0	50
30	34	30	3,00	250	0,210	9	0	0	0	3,90	0	0	0	50
27	30	30	2,70	200	0,219	9	0	0	0	3,90	0	0	0	50
31	30	30	2,90	70	0,155	9	0	0	0	3,90	0	0	0	10
30	38	30	2,00	250	0,100	0	0	0	0	3.06	0	0	0	50
39	1	10	2,00	14.56	0.245	9	0	0	0	0,90	0	0	0	10
40	40	40	4,00	14,00	0,345	0	0	0	0	3.06	0	0	0	50
41	40	41	3.95	350	0,300	9	0	0	0	3,90	0	0	0	50
42	41	42	3,00	60 5	0,300	9	0	0	0	0,90	0	0	0	10
40	42	40	2.42	136.5	0,300	0	0	0	0	0	0	0	0	10
44	43	44	2,43	130,5	0,300	0	0	0	0	0	0	0	0	10

Πίνακας 3.16: Πίνακας Input file Nireus

45	44	45	2,52	44,5	0,272	9	0	0	0	3,96	0	0	0	50
46	45	46	2,96	210	0,243	0	0	0	0	0	0	0	0	10
47	46	47	2,96	5	0,218	9	0	0	0	3,96	0	0	0	50
48	47	48	2,4	245	0,218	9	0	0	0	3,96	0	0	0	50
49	48	49	1,94	251	0,219	9	0	0	0	3,96	0	0	0	50
50	49	50	1,94	5	0,155	0	0	0	0	0	0	0	0	10
51	50	51	1,81	222,95	0,155	9	0	0	0	3,96	0	0	0	50
52	51	52	2,7	202,05	0,107	9	0	0	0	3,96	0	0	0	50
53	27	53	4,6	118	0,306	9	0	0	0	3,96	0	0	0	50
54	53	54	4,77	200	0,272	9	0	0	0	3,96	0	0	0	50
55	54	55	4.97	221	0.272	9	0	0	0	3.96	0	0	0	50
56	55	56	4.56	222	0.243	9	0	0	0	3.96	0	0	0	50
57	56	57	4.75	170.31	0.218	9	0	0	0	3.96	0	0	0	50
58	57	58	4.57	93.69	0.218	0	0	0	0	0	0	0	0	10
59	58	59	4.41	91	0.219	9	0	0	0	3.96	0	0	0	50
60	59	60	4 11	150	0.219	0	0	0	0	0	0	0	0	10
61	60	61	4	52	0.155	9	0	0	0	3.96	0	0	0	50
62	61	62	3.63	317.5	0 155	0	0	0	0	0	0	0	0	10
63	62	63	3.82	175	0.121	9	0	0	0	3 96	0	0	0	50
64	20	64	3.07	117	0.272	g	0	0	0	3.96	0	0	0	50
65	64	65	3.83	150	0.272	0	0	0	0	3.96	0	0	0	50
66	65	66	3.5	168 71	0.272	0	0	0	0	0,30	0	0	0	10
67	66	67	/ 18	154 70	0,243	0	0	0	0	3.06	0	0	0	50
69	67	69	4,10	172.49	0,210	9	0	0	0	3,90	0	0	0	10
60	69	60	4,12	172,40	0,210	0	0	0	0	2.06	0	0	0	50
09	00	70	4,4	200,2	0,219	9	0	0	0	3,90	0	0	0	50
70	09	70	4,31	201,63	0,219	9	0	0	0	3,90	0	0	0	50
71	70	71	3,32	230,49	0,155	9	0	0	0	3,96	0	0	0	50
72	71	72	3	169	0,121	9	0	0	0	3,96	0	0	0	50
73	40	73	5,83	116	0,272	9	0	0	0	3,96	0	0	0	50
74	73	74	6,37	200	0,243	9	0	0	0	3,96	0	0	0	50
75	74	75	4,47	150	0,218	9	0	0	0	3,96	0	0	0	50
76	75	76	4,5	220	0,218	9	0	0	0	3,96	0	0	0	50
70	76	70	4,69	280	0,219	9	0	0	0	3,96	0	0	0	50
78	70	78	5,99	152	0,155	0	0	0	0	0	0	0	0	10
79	78	79	5,08	192,5	0,155	9	0	0	0	3,96	0	0	0	50
80	79	80	4,45	297	0,107	9	0	0	0	3,96	0	0	0	50
81	43	81	2,76	317	0,218	9	0	0	0	3,96	0	0	0	50
82	81	82	2,65	292,55	0,218	9	0	0	0	3,96	0	0	0	50
83	82	83	2,61	257,45	0,219	9	0	0	0	3,96	0	0	0	50
84	83	84	2,63	275	0,155	9	0	0	0	3,96	0	0	0	50
85	84	85	2,29	225	0,155	9	0	0	0	3,96	0	0	0	50
86	85	86	2,01	150	0,107	9	0	0	0	3,96	0	0	0	50
87	26	87	4,74	167	0,218	9	0	0	0	3,96	0	0	0	50
88	87	88	4,94	260	0,219	9	0	0	0	3,96	0	0	0	50
89	88	89	4,95	275	0,155	9	0	0	0	3,96	0	0	0	50
90	89	90	4,9	200	0,155	9	0	0	0	3,96	0	0	0	50
91	90	91	4,41	269	0,107	9	0	0	0	3,96	0	0	0	50
92	4	92	4,66	143	0,218	9	0	0	0	3,96	0	0	0	50
93	92	93	4,78	250	0,219	9	0	0	0	3,96	0	0	0	50
94	93	94	4,91	240	0,155	9	0	0	0	3,96	0	0	0	50
95	94	95	4,84	250	0,155	9	0	0	0	3,96	0	0	0	50
96	95	96	5,09	220	0,107	9	0	0	0	3,96	0	0	0	50
97	5	97	4,15	193	0,219	9	0	0	0	3,96	0	0	0	50
98	97	98	4,57	293	0,155	9	0	0	0	3,96	0	0	0	50
99	98	99	4,83	250	0,155	9	0	0	0	3,96	0	0	0	50
100	99	100	4,94	256	0,107	9	0	0	0	3,96	0	0	0	50
-----	-----	-----	------	--------	-------	---	---	---	---	------	---	---	---	----
101	31	101	4,05	100	0,155	9	0	0	0	3,96	0	0	0	50
102	101	102	3	276	0,107	9	0	0	0	3,96	0	0	0	50
103	44	103	2,17	174	0,155	0	0	0	0	0	0	0	0	10
104	103	104	2,22	136	0,107	9	0	0	0	3,96	0	0	0	50
105	34	105	2,9	253	0,155	9	0	0	0	3,96	0	0	0	50
106	105	106	2,89	15	0,107	9	0	0	0	3,96	0	0	0	50
107	2	107	5,04	156	0,107	9	0	0	0	3,96	0	0	0	50
108	18	108	5,1	140,13	0,107	9	0	0	0	3,96	0	0	0	50
109	19	109	5,04	150	0,107	9	0	0	0	3,96	0	0	0	50
110	20	110	4,95	125	0,107	9	0	0	0	3,96	0	0	0	50
111	21	111	4,31	130	0,107	9	0	0	0	3,96	0	0	0	50
112	22	112	4,7	130	0,121	9	0	0	0	3,96	0	0	0	50
113	23	113	4,25	106	0,121	9	0	0	0	3,96	0	0	0	50
114	58	114	4,41	303	0,107	9	0	0	0	3,96	0	0	0	50
115	62	115	3,6	105	0,107	9	0	0	0	3,96	0	0	0	50
116	66	116	3,34	125	0,107	9	0	0	0	3,96	0	0	0	50
117	68	117	3,64	73	0,107	9	0	0	0	3,96	0	0	0	50
118	33	118	2,98	105	0,107	9	0	0	0	3,96	0	0	0	50
119	78	119	6,05	249	0,107	9	0	0	0	3,96	0	0	0	50
120	46	120	1,72	178	0,107	9	0	0	0	3,96	0	0	0	50
121	50	121	2,5	214	0,107	9	0	0	0	3,96	0	0	0	50
122	103	122	4,08	186	0,107	9	0	0	0	3,96	0	0	0	50

3.3.4 Ανάλυση της λειτουργίας σε επίπεδο δικτύου

Για την εκτίμηση της λειτουργικής κατάστασης του δικτύου υπολογίστηκαν μέσω προσομοίωσης οι χαρακτηριστικές καμπύλες με δείκτες, για διάφορες τιμες στην κεφαλή (100, 200, 300, 400, 500, 546³ L/s). Το πλήθος των προσομοιώσεων επιλέχθηκε να είναι N=120, αριθμό ικανό για να προσομοιώσει την υδραυλική λειτουργία του δικτύου, ενώ παράλληλα υπακούει στον περιορισμό του λογισμικού, σύμφωνα με τον οποίο ο αριθμός προσομοιώσεων που επιλέγεται πρέπει να είναι πολλαπλάσιος του 10.

Στο περιβάλλον του λουγισμικού COPAM, επιλέχθηκε να γίνει ανάλυση μέσω του μοντέλου των χαρακτηριστικών καμπυλών (Characteristic Curves Model).

Στην Εικόνα 3.1 που ακολουθεί, δίνονται οι τιμές του μοντέλου που εισήχθησαν στο πρόγραμμα για την εκτέλεση της ανάλυσης και την δημιουργία των χαρακτηριστικών καμπυλών.

³ Η τιμή αυτή αντιστοιχεί στην αθροιστική παροχή των 92 υδροστομίων

low regimes	Upstream discharge to tes
Several - random generation	50
	100
utput file	300
	500
cildocume~illuserill6808~ Browse	700
	800
vrite regimes on file	828
cidocume~1)user1)6909~ Browco	0 🗸
et point data Jpstream piezometric 84.46 elevation (m a.s.l.)	Minimum head at hydrants

Εικόνα 3. 1: Δεδομένα εισόδου στο μοντέλο χαρακτηριστικών καμπυλών (Characteristic Curves Model)

Όπως παρατηρούμε, μια από τις παραμέτρους αφορά στο σημείο λειτουργίας ου δικτύου (set point) και αντιστοιχεί στην παροχή σχεδιασμού του Υπουργείο Αγροτικής Ανάπτυξης στην κεφαλή (414L/s) και στο αντίστοιχο πιεζομετρικό φορτίο (84,46m). Δίνονται ακόμη και η ελάχιστη πίεση υδροληψίας (6m), το πλήθος των προσομοιώσεων (N=100) και οι διάφορες τιμές παροχής στην κεφαλή, για τις οποίες θα υπολογιστεί η κατανομή των αναγκαίων φορτίων για να λειτουργήσουν ικανοποιητικά οι συνδυασμοί ανοικτών υδροστομίων που προκαλούν παροχή στην κεφαλή ίση με καθεμία από αυτές.

Αντίστοιχα θα μπορούν να υπολογιστούν τα φορτία που επιτρέπουν να υπάρχει ικανοποίηση στο 75%, 90% κλπ, των συνδυασμών ανοικτών υδροστομίων που καλούν παροχή ίση με τις εξεταζόμενες.

3.3.5 Ανάλυση της λειτουργίας σε επίπεδο υδροστομίου

Όπως έχει ήδη αναφερθεί οι χαρακτηριστικές καμπύλες με δείκτες δημιουργούνται ακλουθώντας την αρχή ότι ένας συνδυασμός θεωρείται ανεπιτυχής ακόμη και όταν ένα μόνο από τα υδροστόμιά του έχει φορτίο μικρότερο από το ελάχιστο απαιτούμενο. Συνεπώς, το μοντέλο των χαρακτηριστικών καμπυλών με δείκτες δεν παρέχει αρκετές πληροφορίες για την τοπική υδραυλική συμπεριφορά του δικτύου.

Για μια πιο ενδελεχή εικόνα της λειτουργίας του δικτύου, ελέγχοντας την συμπεριφορά του κάθε υδροστομίου αυτήν την φορά, χρησιμοποιήθηκε το μοντέλο AKLA του COPAM (Akla Model). Με το μοντέλο αυτό εκτιμήθηκε μέσω προσομοίωσης η σχετική περίσσεια - έλλειμμα φορτίου και ο δείκτης αξιοπιστίας σε κάθε υδροστόμιο.

Στο παρακάτω σχήμα παρουσιάζονται τα πεδία εισαγωγής των τιμών των παραμέτρων του μοντέλου.

Options	Elevation-Discharge	Set point	1
-	[=		 Several flow regimes - random
C ELLOND			
Flow re	egimes		Write regimes on file
Sev	eral - random generation		c:\docume~1\user1\6808~ Brows
C Sev	eral - read from file		
			Number of regimes to generate
Output	filoc		for each discharge
Rels	tive pressure deficits		100
	anom edick oni 4 hyd		
1.46	obaut_covex_ebie united [Bt0	wse	
Perc	centage unsatisfied hydrants		
c:\c	locume~1\user1\6808~ Bro	wee	
	610		
Minimu	ım head at hydrants (m)		
C Cor	istant 51.7		
	iahle		

Εικόνα 3.2: Δεδομένα εισόδου στο μοντέλο AKLA (Akla Model)

Το ελάχιστο φορτίο στην υδροληψία, ο αριθμός των προσομοιώσεων και το σημείο λειτουργίας (Qclément, Zκεφ) συνιστούν τις βασικές παραμέτρους της ανάλυσης σε επίπεδο υδροστομίου για τις οποίες δόθηκαν οι τιμές που εμφανίζονται στο παραπάνω σχήμα ενώ μεταξύ των δυο επιλογών για τον τρόπο με τον οποίο το λογισμικό μέσω μιας εσωτερικής διαδικασίας δημιουργεί τα διάφορα «καθεστώτα ροής», επιλέχτηκε η παραγωγή τυχαίων αριθμών που ακολουθούν κανονική κατανομή.

Τα παράγωγα διαγράμματα αυτού του μοντέλου όπως θα δούμε και στην συνέχεια θα μας επιτρέψουν την ανάλυση του φορτίου σε κάθε υδροστόμιο υπό διαφορετικές συνθήκες λειτουργίας.

Κεφάλαιο 4: Ανάλυση αποτελεσμάτων των δύο λογισμικών

4.1 Αποτελέσματα COPAM

4.1.1 Χαρακτηριστικές Καμπύλες με το Λογισμικό Copam

Οι χαρακτηριστικές καμπύλες του δικτύου που προέκυψαν παρουσιάζονται στο παρακάτω σχήμα (Σχήμα 4.1).

Configuration Analysis

Σχήμα 4.1: Χαρακτηριστικές καμπύλες με δείκτες C₁₀, C₂₀, C₃₀, C₄₀, C₅₀, C₆₀, C₇₀, C₈₀, C₉₀ και σημείο λειτουργίας "set point" (Q_{Clément} =559L/s, Z_{κεφ}= 84,46 m)

Παρατηρούμε ότι το σημείο λειτουργίας (set point) του δικτύου που αντιστοιχεί σε παροχή Clément Q=559L/s και φορτίο πίεσης κεφαλής Ζ_{κεφ}= 84,46m, βρίσκεται υψηλότερα από την χαρακτηριστική καμπύλη με ποσοστό 90%.

Σύμφωνα με την μελέτη του Υπουργείου, όπως αναφέρεται και στο Κεφάλαιο 3.2, το δίκτυο το Επιταλίου δημιουργήθηκε για να λειτουργήσει με παροχή Q_{λειτουργίας} = 414L/s, χαμηλότερη δηλαδή από την παροχή, Q_{Clément}.

Configuration Analysis

Σχήμα 4.2: Χαρακτηριστικές καμπύλες με δείκτες C₁₀, C₂₀, C₃₀, C₄₀, C₅₀, C₆₀, C₇₀, C₈₀, C₉₀ και σημείο λειτουργίας "set point" (Q_{σχεδιασμού AE1} =414L/s, Z_{κεφ}= 84,46 m)

Στο σχήμα 4.2 Παρατηρούμε ότι το σημείο λειτουργίας (set point) του δικτύου που αντιστοιχεί σε παροχή Q_{λειτουργίας}=414L/s και φορτίο πίεσης κεφαλής Z_{κεφ}=84,46m, βρίσκεται και πάλι, υψηλότερα από την χαρακτηριστική καμπύλη με ποσοστό 90%.

Τα ποσοστά αυτά καταδεικνύουν μια ιδιαιτέρως καλή λειτουργική κατάσταση του δικτύου δεδομένου ότι σε δίκτυα που έχουν σχεδιαστεί σύμφωνα με τη μέθοδο Clément και Labye το σημείο λειτουργίας (Q_{Clément}, Z_{κεφ}) αναμένεται να βρίσκεται κοντά στην χαρακτηριστική 50% (Tiercelin 2006).

4.1.2 Ανάλυση σε επίπεδο υδροστομίου με το Λογισμικό Copam

Μια πλησιέστερη εικόνα της λειτουργίας του δικτύου ελήφθη μέσω της ανάλυσης σε επίπεδο υδροστομίου και πιο συγκεκριμένα μέσω των παραγόμενων διαγραμμάτων περίσσειας - ελλείμματος φορτίου (Σχήμα 4.3.) και δείκτη αξιοπιστίας (Σχήμα 4.4).

Σχήμα 4.3: Περίσσεια - έλλειμμα φορτίου των υδροστομίων (για συνθήκες λειτουργίας Q_{σχεδιασμού AE1} =414L/s, Ζκεφ=84,46m)

Hydrants Analysis (reliability)

Σχήμα 4.4: Δείκτης αξιοπιστίας του κάθε υδροστομίου (για συνθήκες λειτουργίας Q_{σχεδιασμού ΑΕ1} =414L/s, Ζκεφ=84,46m)

Από την ανάλυση των παραπάνω σχημάτων προκύπτει ότι για το σύνολο των εξεταζόμενων συνδυασμών, όλα τα υδροστόμια μπορούν να λειτουργούν εναρμονισμένα μεταξύ τους.

Όπως ήταν αναμενόμενο το διάγραμμα του δείκτη αξιοπιστίας των υδροστομίων (Σχήμα 4.4.) έρχεται σε συμφωνία με το αντίστοιχο της περίσσειας – ελλείμματος (Σχήμα 4.3). Τα υδροστόμια του δικτύου έχουν δείκτη αξιοπιστίας ίσο με 1 και όπως φαίνεται και στο Σχήμα 4.3, δεν υπάρχει υδροστόμιο που να μην λειτουργεί καλά.

4.2 Αποτελέσματα Nireus

4.2.1 Ανάλυση σε επίπεδο δικτύου με το Λογισμικό Nireus

Στην περίπτωση ανάλυσης σε επίπεδο δικτύου, τα αποτελέσματα που προκύπτουν από το τρέξιμο του μοντέλου είναι το πιεζομετρικό φορτίο στην κεφαλή του δικτύου που προκύπτει σε καθεμία από τις προσομοιώσεις και για κάθε μια από τις εξεταζόμενες παροχές στην κεφαλή του δικτύου (Πίνακας 4.1). Οι τιμές του πιεζομετρικού φορτίου χρησιμοποιούνται για τον προσδιορισμό των ποσοστημορίων (quantiles) στην συνέχεια, προκειμένου να χαραχθούν οι χαρακτηριστικές καμπύλες με δείκτες (Πίνακας 4.2)

	Q (I/s) = 50	Q (I/s) = 100	Q (I/s) = 300	Q (I/s) = 500	Q (I/s) = 700	Q (I/s) = 800	Q (I/s) = 828
	57,0379	58,0439	62,0619	68,5424	80,0718	87,8568	92,8613
	57,2584	58,3258	62,1886	68,6937	80,4028	87,9959	92,8613
	57,2584	58,3851	62,2674	69,5161	81,2673	88,2768	92,8613
	57,3723	58,4047	62,3669	69,8277	81,2942	88,2954	92,8613
	57,6210	58,5749	62,3892	69,9517	81,4665	88,5771	92,8613
	57,6867	58,6317	62,5961	70,0412	81,5725	88,6263	92,8613
	57,7839	58,6544	62,6692	70,1717	81,6223	88,6420	92,8613
	57,7839	58,7011	62,7331	70,3686	81,6482	88,7673	92,8613
	57,8065	58,7229	62,7675	70,3863	81,6612	88,7673	92,8613
C ₁₀	57,8165	58,7409	62,7810	70,5208	81,7693	88,8398	92,8613
	57,8709	58,7703	63,0536	70,6909	81,7752	88,8682	92,8613
	57,8893	58,7771	63,0562	70,7636	81,9086	88,8832	92,8613
	57,9007	58,7954	63,0639	70,8191	82,1914	89,0029	92,8613
	57,9277	58,8085	63,0770	70,8818	82,1989	89,0417	92,8613
	57,9324	58,8229	63,0952	70,9758	82,2050	89,0852	92,8613
	57,9438	58,8295	63,1610	71,0841	82,2173	89,3652	92,8613
	58,0135	58,8580	63,1893	71,1634	82,2456	89,3829	92,8613
	58,0614	58,8719	63,1900	71,2733	82,3032	89,3840	92,8613
	58,0615	58,9591	63,2126	71,5564	82,3200	89,4702	92,8613

Πίνακας 4. 1: Παρουσίαση αποτελεσμάτων από την ανάλυση σε επίπεδο δικτύου (φορτίο στην κεφαλή για διάφορες παροχές κεφαλής και χαρακτηριστικές καμπύλες)

C ₂₀	58,1504	58,9752	63,2866	71,7115	82,5954	89,4960	92,8613
	58,1777	59,0918	63,2926	71,7240	82,6213	89,5433	92,8613
	58,2108	59,2188	63,3317	71,7290	82,7271	89,5909	92,8613
	58,2554	59,2480	63,4596	71,8178	82,7933	89,5969	92,8613
	58,2921	59,2789	63,4994	71,9643	82,8518	89,6185	92,8613
	58,3847	59,2876	63,6606	72,0028	82,9861	89,6264	92,8613
	58,3876	59,3386	63,8292	72,0147	83,0271	89,7008	92,8613
	58,3876	59,4274	63,8909	72,1228	83,0602	89,7008	92,8613
	58,4017	59,4283	63,9413	72,1642	83,3254	89,7008	92,8613
	58,4047	59,5007	64,0365	72,1677	83,3413	89,7008	92,8613
C ₃₀	58,4047	59,5077	64,0383	72,2599	83,3476	89,7008	92,8613
	58,4088	59,5243	64,1094	72,3702	83,3599	89,7008	92,8613
	58,4599	59,5420	64,1401	72,4530	83,3788	89,7008	92,8613
	58,4858	59,5420	64,1836	72,4822	83,3947	89,7316	92,8613
	58,5089	59,5716	64,1965	72,5059	83,4608	89,7704	92,8613
	58,5096	59,5716	64,3183	72,5251	83,4882	89,7704	92,8613
	58,5280	59,5932	64,3698	72,5529	83,4990	89,7704	92,8613
	58,5554	59,6191	64,3835	72,6132	83,5620	89,8486	92,8613
	58,5938	59,6387	64,6093	72,6494	83,6617	89,8547	92,8613
	58,6278	59,6552	64,7254	72,6545	83,7067	89,8833	92,8613
C ₄₀	58,6446	59,7236	64,7402	72,6581	83,7681	90,0068	92,8613
	58,6610	59,7374	64,7650	72,7372	83,8421	90,0068	92,8613
	58,6610	59,7431	64,7839	72,8640	83,9625	90,0892	92,8613
	58,6990	59,8474	64,8282	72,8669	83,9966	90,0903	92,8613
	58,7176	59,8888	64,8406	72,9322	84,0452	90,1550	92,8613
	58,7211	59,8932	64,8661	72,9524	84,0521	90,2359	92,8613
	58,7308	59,9062	64,9248	72,9954	84,0898	90,3274	92,8613
	58,7441	60,0336	64,9616	73,1463	84,1754	90,3471	92,8613
	58,7692	60,0498	64,9645	73,1570	84,2172	90,3471	92,8613
	58,7714	60,0499	64,9759	73,2079	84,2349	90,3902	92,8613
C ₅₀	58,7884	60,0893	64,9767	73,2770	84,3282	90,3906	92,8613
	58,8067	60,1315	65,0292	73,2979	84,3587	90,3970	92,8613
	58,8247	60,3328	65,0358	73,3125	84,3796	90,5445	92,8613
	58,8776	60,5404	65,0473	73,3347	84,3834	90,5713	92,8613
_	58,9149	60,6755	65,1095	73,3717	84,3858	90,5772	92,8613
	58,9610	60,6755	65,1421	/3,46//	84,4489	90,5772	92,8613
	59,1969	60,7396	65,1541	73,5178	84,4679	90,5973	92,8613
	59,3069	60,7986	65,1563	73,7051	84,5067	90,6009	92,8613
	59,3079	60,9009	65,1894	73,7380	84,6511	90,6021	92,8613
C	59,3321	61,9868	65,1903	73,7500	04,0021	90,6735	92,0013
C 60	59,3321	61,0021	65,1949	73,7952	64,7075	90,7229	92,0013
	59,3491	61,0077	65 22170	73,9075	04,7409	90,7229	92,0013
	59,5005	61,0114	65 2222	73,9144	04,9009	90,7355	92,0013
	50 5116	61.0706	65 3107	73 0/56	8/ 0052	90,7391	92,0013
	59,5116	61,0700	65 3600	73,9450	85.0126	90,7381	92,0013
	59 5116	61 0822	65 30/8	74 0004	85 0/17	90,7301	92,0013
	59,5116	61 1011	65 4184	74 0550	85 0758	90,8333	92,8613
	59 5116	61 1475	65 4573	74 1061	85 1326	90.8587	92 8613
	59 5199	61 1488	65 4623	74 1328	85 1338	90,9360	92 8613
C-70	59.6096	61,1627	65.5129	74,1894	85,1341	90.9488	92.8613
-70	59 6833	61 2033	65 5229	74 2051	85 2329	90.9488	92 8613
	59,7226	61,2109	65.5265	74,2814	85,3006	90,9649	92,8613
	59,7442	61,2764	65,5515	74,2903	85,3214	90,9649	92,8613

	59,9176	61,2807	65,8304	74,3428	85,3768	90,9737	92,8613
	60,0044	61,3082	65,9130	74,4250	85,3930	90,9737	92,8613
	60,4192	61,3240	66,0122	74,4427	85,3933	90,9737	92,8613
	60,4266	61,3301	66,1061	74,4445	85,4978	91,0172	92,8613
	60,4627	61,3402	66,1080	74,4460	85,5193	91,0942	92,8613
	60,4724	61,3861	66,1786	74,5676	85,6299	91,1978	92,8613
C ₈₀	60,5070	61,4726	66,3350	74,7528	85,6797	91,1986	92,8613
	60,6935	61,5085	66,4974	74,8263	85,6982	91,2082	92,8613
	60,7157	61,5141	66,5826	74,8324	85,7521	91,2151	92,8613
	60,7432	61,5258	66,5997	75,0258	85,7863	91,3110	92,8613
	60,7759	61,5279	66,6571	75,0338	85,8869	91,3325	92,8613
	60,8048	61,5304	66,6718	75,0590	85,9002	91,3325	92,8613
	60,8053	61,5522	66,7102	75,2285	86,0842	91,3325	92,8613
	60,9263	61,6571	66,8722	75,3504	86,1718	91,3371	92,8613
	60,9358	61,6582	66,8818	75,4170	86,2724	91,3725	92,8613
	60,9358	61,7765	67,0436	75,6158	86,4821	91,4368	92,8613
C ₉₀	60,9358	62,5067	67,1200	75,8259	86,5515	91,4368	92,8613
	60,9358	62,6947	67,1428	75,8842	86,6824	91,4368	92,8613
	60,9486	62,7235	67,4116	75,8862	86,9713	91,4580	92,8613
	60,9490	62,8077	67,4164	76,0980	86,9980	91,5345	92,8613
	60,9490	63,2643	67,4428	76,1753	87,1503	91,9376	92,8613
	60,9660	63,3015	67,5957	76,4678	87,3139	91,9709	92,8613
	60,9660	63,3343	68,0379	76,4783	87,5505	92,0744	92,8613
	61,1623	63,3988	68,0732	76,7623	87,6030	92,2097	92,8613
	61,1623	63,7635	68,1004	77,8071	87,6398	92,2129	92,8613
	63,0969	63,8352	68,2273	77,8355	87,7860	92,6156	92,8613

4.2.2 Χαρακτηριστικές Καμπύλες με το Λογισμικό Nireus

Πίνακας 4. 2: Παρουσίαση αποτελεσμάτων από την ανάλυση σε επίπεδο δικτύου, Χαρακτηριστικών Καμπυλών με δείκτες C₁₀, C₂₀, C₅₀, C₆₀, C₇₀, C₉₀

	Q (I/s) = 50	Q (I/s) = 100	Q (I/s) = 300	Q (I/s) = 500	Q (I/s) = 700	Q (I/s) = 800	Q (I/s) = 828
C ₁₀	57,82	58,74	62,78	70,52	81,77	88,84	92,86
C ₂₀	58,15	58,98	63,29	71,71	82,60	89,50	92,86
C ₃₀	58,40	59,51	64,04	72,26	83,35	89,70	92,86
C ₄₀	58,64	59,72	64,74	72,66	83,77	90,01	92,86
C 50	58,79	60,09	64,98	73,28	84,33	90,39	92,86
C ₆₀	59,33	61,00	65,19	73,80	84,71	90,72	92,86
C ₇₀	59,61	61,16	65,51	74,19	85,13	90,95	92,86
C 80	60,51	61,47	66,33	74,75	85,68	91,20	92,86
C ₉₀	60,94	62,51	67,12	75,83	86,55	91,44	92,86

Από τον παραπάνω πίνακα, με τον προσδιορισμό των ποσοστημορίων προκύπτει το διάγραμμα των χαρακτηριστικών καμπυλών με δείκτες, που είναι της μορφής που φαίνεται στην συνέχεια. Σημειώνεται ότι από το πρόγραμμα δίνεται η δυνατότητα να εμφανιστούνε όλες (C₁₀, C₂₀, …, C₉₀) ή κάποιες από τις χαρακτηριστικές καμπύλες με δείκτες ανάλογα με τον σκοπό της ανάλυσης που υλοποιείται (Σχήμα 4.5)

Σχήμα 4. 5: Χαρακτηριστικές καμπύλες με δείκτες C_{10} , C_{20} , C_{50} , C_{60} , C_{70} , C_{90} και σημείο λειτουργίας "Control point" ($Q_{σχεδιασμού} A_{E1} = 414L/s$, $Z_{κεφ} = 84,46 m$)

Παρατηρούμε ότι το σημείο λειτουργίας (Control point) του δικτύου που αντιστοιχεί σε παροχή σχεδιασμού Q = 414L/s και φορτίο πίεσης κεφαλής Ζ_{κεφ} = 84,46m, ξεπερνά την χαρακτηριστική καμπύλη με ποσοστό 90%. Αυτό δηλώνει ότι το πάνω από το 90% των εξεταζόμενων συνδυασμών ανοικτών υδροστομίων ικανοποιείται πλήρως.

Τα ποσοστά αυτά καταδεικνύουν μια απόλυτα καλή λειτουργική κατάσταση του δικτύου δεδομένου ότι σύμφωνα με την βιβλιογραφία, σε δίκτυα που έχουν σχεδιαστεί σύμφωνα με τη μέθοδο Clément και Labye το σημείο λειτουργίας (Q, *Ζ*_{κεφ}) αναμένεται να βρίσκεται κοντά στην χαρακτηριστική 50% (Tiercelin 2006).

4.2.3 Ανάλυση σε επίπεδο υδροστομίου με το Λογισμικό Nireus

Σχήμα 4. 6: Δείκτης αξιοπιστίας του κάθε υδροστομίου - αντιστοίχιση Κόμβων και Αρίθμησης (για συνθήκες λειτουργίας Q_{σχεδιασμού AE1} =414L/s, Ζκεφ=84,46m)

Από την ανάλυση του παραπάνω σχήματος (Σχήμα 4.6) προκύπτει ότι για το σύνολο των εξεταζόμενων συνδυασμών, δεν υπάρχουν υδροστόμια που να είναι υποκείμενα σε αποτυχία.

Downhill	Hashimoto's Reliability Indicator	Downhill	Hashimoto's Reliability Indicator	Downhill	Hashimoto's Reliability Indicator
0		28	1		
2		29		57	1
3	1	30	1	58	
4		31		59	1
5		32	1	60	
6		33		61	1
7	1	34		62	
8	1	35	1	63	1
9	1	36	1	64	1
10	1	37	1	65	1
11	1	38		66	
12	1	39	1	67	1
13	1	40		68	
14	1	41	1	69	1
15	1	42	1		
16	1	43		77	1
17	1	44		78	
18		45	1	79	1
		46			
23		47	1	102	1
24	1	48	1	103	
25	1	49	1	104	1
26		50			
27		51	1	122	1

Πίνακας 4. 3: Παρου	σίαση αποτελεσμάτων	΄ της ανάλυσης ά	σε επίπεδο υδρα	στομίου.
Σι	ιντελεστής Hashimoto	για κάθε υδροσ	τόμιο	

Ο δείκτης αξιοπιστίας όλων των υδροστομίων είναι ίσος με 1 όπως φαίνεται στον Πίνακα 4.3. Η μέτρηση αυτή επιβεβαιώνει την καλή λειτουργία του δικτύου, όπως φαίνεται από τις Χαρακτηριστικές Καμπύλες του Σχήματος 4.6.

4.3 Σύγκριση αποτελεσμάτων των δύο λογισμικών

Τα δύο λογισμικά Copam και Nireus, δίνουν παρόμοια αποτελέσματα. Η μορφή των δύο δεσμών Χ.Κ. είναι παρόμοια και οι τιμές παροχών και φορτίου στην κεφαλή, παραπλήσιες. Χαρακτηριστικό είναι ότι και στις δύο περιπτώσεις το απαιτούμενο φορτίο στην κεφαλή για την αθροιστική παροχή κεφαλής (828L/s) είναι ~93m.

Επίσης για το μελετώμενο φορτίο στην κεφαλή (84,46m) η παροχή που μπορεί να εξυπηρετήσει το δίκτυο με συνθήκες λειτουργίας χωρίς ιδιαίτερα προβλήματα (C₅₀) είναι ~690L/s, σύμφωνα και με τα δύο λογισμικά (Σχήματα 4.2 και 4.5).

Κεφάλαιο 5: Συμπεράσματα

Η μελέτη και ανάλυση της λειτουργίας των συλλογικών αρδευτικών δικτύων που λειτουργούν υπό πίεση με ελεύθερη ζήτηση, επιτρέπει να εντοπιστούν και να εκτιμηθούν τα μεγέθη των προβλημάτων που εμφανίζουν.

Στην παρούσα μελέτη, έγινε ανάλυση του αρδευτικού δικτύου του Επιταλίου με δύο λογισμικά.

Τα λογισμικά αυτά, COPAM και Nireus, έδειξαν παρεμφερή αποτελέσματα σε επίπεδο δικτύου και επίπεδο υδροστομίου του δικτύου που μελετήθηκε.

Σε επίπεδο δικτύου, αναμένεται μια λειτουργική κατάσταση, που σύμφωνα με την βιβλιογραφία εκτιμάται παραπάνω από αποδοτική (το set point στο λογισμικό COPAM και το Control point στο λογισμικό Nireus είναι πιο υψηλά από την καμπύλη C₉₀).

Σε επίπεδο υδροστομίου, βεβαιώνεται η πάρα πολύ καλή λειτουργία του δικτύου δεδομένου ότι κανένα υδροστόμιο δεν αστοχεί για την παροχή 414L/s (αντιστοιχεί στα μισά υδροστόμια σε λειτουργία) που αξιολογήθηκε. Για όλα τα υδροστόμια η αξιοπιστία Hasimoto είναι στο 100%.

Είναι γνωστό από την βιβλιογραφία (Tiercelin, 2006), ένα δίκτυο του οποίου το σημείο λειτουργίας βρίσκεται κοντά στην C₅₀, δεν παρουσιάζει ιδιαίτερες αστοχίες που να προβληματίζει τους χρήστες. Το δίκτυο του Επιταλίου με την υπάρχουσα διαστασιολόγηση θα έχει σημείο λειτουργίας σαφώς άνω της C₉₀, συνεπώς θα έχει λειτουργία που θα ικανοποιεί πλήρως τους χρήστες.

Επίσης από την ανάλυση συνάγεται ότι το δίκτυο του Επιταλίου δύναται με μικρότερο αντλιοστάσιο (φορτίο στην κεφαλή ~76m αντί 84m) να παρέχει την Q_{Clément} =559L/s. Είναι λοιπόν σαφές ότι το δίκτυο του Επιταλίου με τον υπάρχοντα σχεδιασμό είναι υπεδιαστασιολημένο.

Έχοντας τα παραπάνω αποτελέσματα και την γνώση λειτουργίας των δικτύων στο πεδίο η παρούσα μελέτη θα μπορούσε να χρησιμοποιηθεί ως έναρξη μιας εκ νέου διαστασιολόγησης και βελτιστοποίησης του παρόντος δικτύου.

Έτσι, το Υπουργείο Αγροτικής Ανάπτυξης και Τροφίμων θα καταφέρει να επιτύχει μείωση της ενέργειας και του κόστους λειτουργίας του. Το γεγονός αυτό είναι ιδιαίτερα σημαντικό σήμερα που το κόστος ενέργειας έχει ιδιαίτερα αυξηθεί.

6. Βιβλιογραφία

Bethery et al. «Analyse des défaillances et étude du renforcement des réseaux d'irrigation par aspersion.» *XIe Cong CIID*, 1981: 36, 297-324.

Bethery. *Réseaux collectifs ramifiés sous pression, Calcul et fonctionnement, Études hydraulique agricol.* France: 1990, 1990.

Bilandžija et al. «Đurđevački pijesci – geneza, stanje i perspek-tive. Hrvatska Akademija znanosti i u umjetnosti, Zavod za znanstvenoistraživački i umjetnički rad Koprivničko-križevačke županije u Križevcima, Znanstveno vijeće za poljoprivredu i šumarstvo, Znanstveno vijeć.» *Agroklimatski pokazatelji kao indikator klimat-skih promjena na području Đurđevačkih pijesa-ka.* Zagreb-Križevci, 2019. 29-30, 127-148.

C.T.G.R.E.F. « Lois de probabilité des débits de pointe d'un réseau d'irrigationcollectif par aspersion. Loi de Clément. Vérification à partir d'enregistrements.» *Note Technique*, Septembre 1974: 15.

CEMAGREF. Calcul des réseaux ramifiés sous pression. France: Antony, 1983.

Clément & Galand. «Irrigation par aspersion et réseaux collectives dedistribution sous pression.» Editions Eyrolles, 1979.

Clément, R. 1955.—. «Calcul des débits dans les réseaux d'irrigation fonctionnant à la demande.» *La HouilleBlanche, Société Hydrotechnique de France*, 1966: 553-576.

Dercas, N. «"Contribution au calcul des réseaux sous pression à la demande libre et restreinte. Proposition d'un modèle de simulation".» Montpellier II, France: o Université des Sciences et Techniques du Languedoc, 1989.

Estrada et al. «Improved Pressurized Pipe Network Hydraulic Solver for Applications in Irrigation Systems.» *J. Irrig. Drain. Eng*, 2009: 135(4), 421-430.

Hashimoto et al. «Reliability, resilience and vulnerability criteria for water resources system performance evaluation.» *Water Resour Res*, 1982: 18(1):14–20.

Hashimoto. «Robustness, Reliability, Resiliency and Vulnerability Criteria for Planning Water Resources Systems.» New York: Cornell University, 1980.

Karantounias G. et Dercas N. «"Problèmes de fonctionnement et de gestion des réseaux d'irrigation en Grèce - Étude de deux cas typiques".» *ICID Journal "Irrigation and Drainage"*, No 2 vol 48 1999: 11-32.

Labye et. al. Utilisation des caractéristiques. Moscou: Congres de la ICID, 1975.

Lamaddalena and Perreira. «Pressure-driven modelling for the performance analysis of irrigation systems operating on demand.» *Water, Manag*, 2007: 90, 36-44.

Lamaddalena and Sagardoy. *Performance analysis of on-demand pressurized irrigation systems.* Rome: FSO, 2000.

Lamaddalena. «Integrated simulation modeling for design and performance analysis of on-demand pressurized irrigation systems.» Lisbon: Technical University of Lisbon, 1997.

Rosseman, L.A. *EPANET User Manual. US Environmental Protection Agency, Drinking Water Research Division.* Cincinnati: Risk Reduction Engineering Laboratory, 2000.

Stefopoulou A. & Dercas N. «"Performance Analysis of Large Pressurized Irrigation Networks: Effect of Head Losses Evaluation".» *VI EWRA International Symposium "Water Engineering and Management in a Changing Environment".* Catania, Italy, 2011.

Stefopoulou A. and Dercas N. «NIREUS: A new software for the analysis of on-demand pressurized collective irrigation networks.» *Computers and Electronics in Agriculture.*, 2017: 58-69.

Thornthwaite, C.W. «An approach toward a rational classification of climate.» *Geographical Review*, 1948: 55-94.

Tiercelin, J.R. Traité d' irrigation. Paris: Tec & Doc Lavoisier, 2006.

Δέρκας. Μαθηματικά ομοιώματα για την ανάταξη και τον εκσυγχρονισμό των συλλογικών δικτύων υπί πίεση. Σημειώσεις Μαθημάτων. Αθήνα: Γεωπονικό Πανεπιστήμιο Αθηνών, 2001.

Δέρκας. «"Διερεύνηση προσαρμογής του μοντέλου Clément στην πραγματική λειτουργία ενός δικτύου υπό πίεση ελεύθερης ζήτησης".» *Τεχνικά Χρονικά-Α, Επιστημονική Έκδοση ΤΕΕ*, 1991: 7-36.

Στεφοπούλου. «Ανάπτυξη ομοιώματος προσομοίωσης για την ανάλυση της λειτουργίας αρδευτικών δικτύων υπό πίεση ελεύθερης ζήτησης.» Αθήνα: ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, 2013.

Τσακίρης & Δέρκας. «Υδραυλικά Εργα, Σχεδιασμός και Διαχείριση, Τόμος ΙΙ, Εγγειοβελτιωτικά Έργα», Κεφ. 8 «Συλλογικά Αρδευτικά Δίκτυα». Αθήνα: Συμμετρία, 2006.

ΥΠΟΥΡΓΕΙΟ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΡΟΦΙΜΩΝ - Δ/ΝΣΗ ΕΓΓΕΙΩΝ ΒΕΛΤΙΩΣΕΩΝ & ΕΔΑΦΟϔΔΑΤΙΚΩΝ ΠΟΡΩΝ ΥΠΑΑΤ. «ΓΕΩΡΓΟΤΕΧΝΙΚΗ -ΓΕΩΡΓΟΟΙΚΟΝΟΜΙΚΗ ΜΕΛΕΤΗ.», 2010.