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Abstract 

This research is designed to make a valuable contribution to the field of precision agriculture, by 
exploring the potential of state-of-the-art technologies and techniques for yield prediction in 
processing tomato crop. The core aim was to develop and evaluate a robust methodology 
incorporating cutting-edge technologies, remote sensing data, and sophisticated analytical 
techniques like machine learning and statistical analysis. The primary objective is to improve the 
accuracy and dependability of yield predictions at local and regional levels. This was achieved 
through a progressive approach implemented yearly, utilizing non-invasive methods to track the 
crop's biological cycle and refine predictive yield models. 

Over the course of this study, a progressive methodology was implemented to gather data and 
refine methodologies. It commenced with a systematic literature review focusing on yield 
predictions within precision agriculture, to offer an extensive overview of the latest advancements 
in this domain. Simultaneously, pilot activities were conducted over three years. Ten pilot fields 
were chosen to integrate proximal, aerial, and satellite measurements with yield assessments in the 
initial two years, primarily exploring the correlation between crop yield and NDVI (Normalized 
Difference Vegetation Index), a widely used indicator. This phase aimed to uncover similarities 
between satellite technology, UAS (Unmanned Aerial System), and proximal sensors concerning 
crop yield evaluation. Conducting an extensive comparison of satellite, airborne, and proximal 
technologies, their individual strengths, and limitations were emphasized within the precision 
agriculture context. 

During the second year, alongside the detailed investigation of specific fields using satellite, UAS, 
and proximal sensors at the field scale, an expanded study involved 108 fields at the regional scale, 
incorporating satellite data analysis. This phase aimed to assess NDVI and four additional 
vegetation indices (VIs) in predicting crop yield. Time series data comprising five VIs at a regional 
scale were deployed to explore the relationship between these indices and the critical phenological 
stages of the crop. Furthermore, machine learning techniques were applied to VI data collected 
through satellite images at different growth stages to evaluate their predictive performance for 
yield in industrial tomato fields. Specifically, AutoML algorithms and statistical analysis were 
utilized to gauge the correlation between yield and VIs retrieved from satellite datasets. The 
transformed data was utilized to train and test both statistical and machine learning algorithms, 
encompassing linear and nonlinear regression models, along with ensemble methods based on 
decision trees. The analysis encompassed various regression models such as ordinary least squares 
(OLS), Theil-Sen, and Huber, as well as tree-based methods, support vector machines (SVM), 
and automatic relevance determination (ARD). This broader scope aimed to deepen the 
understanding of crop yield estimation based on the findings from the initial systematic review. 

During the third year, a more intricate approach was adopted, focusing on the evaluation of 
spectral bands derived from satellite imagery. Each band's individual performance in predicting 
crop yield was assessed, allowing for a comprehensive evaluation of their unique contributions to 
overall yield estimation accuracy. This granular analysis provided deeper insights into the 
importance and impact of each spectral band in refining the precision of crop yield predictions. 
The performance of both statistical and machine learning models was assessed to gain profound 
insights into the most efficient growth stages and VIs for precise yield prediction. 

The findings of this study indicated substantial similarity between UAS and Sentinel-2 data, 
especially in the later stages of the crop's phenological cycle, implying a heightened agreement as 
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the crop matured. The study identified a moderate correlation between proximal sensor data and 
UAS/satellite datasets, with discrepancies attributed to variances in measurement wavelengths 
and the specific focus area of each platform. Regarding the relationship of the VI dynamics in 
relation to the crop's phenological cycle, the lowest mean values for all VIs were observed shortly 
after transplanting, marked by limited canopy cover and exposed soil between rows. Notably, as 
the season progressed, canopy cover percentage gradually increased, particularly at the midpoint 
of the season when processing tomato crop reached their peak vigor just before reallocating sugars 
to their fruits. 

Regarding yield prediction, the proximal sensor showed higher explanatory power during the initial 
canopy growth phase, while UAS and Sentinel platforms improved their performance as canopy 
coverage expanded. The satellite platform demonstrated superior performance during the crucial 
flowering stage, emphasizing its effectiveness in elucidating yield variability. The study employed 
basic statistics, notably the Pearson correlation coefficient, highlighting the VIs' optimal 
performance during specific growth stages. Additionally, machine learning algorithms were 
integrated to enhance yield prediction accuracy rigorously evaluated through regression analysis 
and a 5-fold cross-validation procedure. The research identified NDVI, RVI and SAVI as the most 
effective VIs for yield predictions, achieving high R² values and low RMSEs, particularly 90 days 
after transplanting. Ensembles comprising two regressors emerged as the optimal choice for 
enhanced predictive accuracy. Remarkably, band combinations of Band 4, Band 8, and Band 12 
stood out. The Red Edge/NIR bands displayed notable performance, especially within the 80 to 
90 days post-transplanting window, exhibiting the strongest correlation with yield. 

Overall, the findings suggest that UAS and satellite sensors demonstrate greater accuracy in 
predicting crop yield towards the end of the season and offer increased precision during the later 
stages of development. In contrast, proximal sensors showcase correlations at earlier stages of crop 
growth. Combining data from multiple sensors and growth stages can enhance prediction 
accuracy. Using VI and spectral band data in conjunction with machine learning techniques may 
represent a more effective and economically efficient method for predicting tomato yield. 
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Πρόβλεψη παραγωγής σε καλλιέργειες  βιομηχανικής τομάτας με  χρήση εφαρμογών γεωργίας ακριβείας 
 

Τμήμα Αξιοποίησης Φυσικών Πόρων & Γεωργικής Μηχανικής  

Εργαστήριο Γεωργικής Μηχανολογίας 

 

Περίληψη 

Αυτή η μελέτη έχει ως στόχο να συμβάλει στον τομέα της Γεωργίας Ακριβείας, εξερευνώντας τις 

δυνατότητες των προηγμένων τεχνολογιών και μεθόδων στην πρόβλεψη απόδοσης στην καλλιέργεια 

βιομηχανικής ντομάτας. Το κύριο εγχείρημα ήταν η ανάπτυξη και αξιολόγηση μιας αξιόπιστης 

μεθοδολογίας που ενσωματώνει προηγμένες τεχνολογίες, δεδομένα τηλεπισκόπησης και 

προηγμένες αναλυτικές τεχνικές, όπως η μηχανική μάθηση και η στατιστική ανάλυση. Ο κύριος 

στόχος είναι η βελτίωση της ακρίβειας και της αξιοπιστίας των προβλέψεων απόδοσης σε τοπικό και 

περιφερειακό επίπεδο. Αυτό επιτεύχθηκε μέσω μιας προοδευτικής προσέγγισης που εφαρμόστηκε 

ετησίως, χρησιμοποιώντας μη καταστροφικές μεθόδους για την παρακολούθηση του βιολογικού 

κύκλου της καλλιέργειας και τη βελτίωση των  μοντέλων πρόβλεψης παραγωγής.  

Κατά τη διάρκεια αυτής της μελέτης, εφαρμόστηκε μια προοδευτική μεθοδολογία για τη 

συγκέντρωση δεδομένων. Άρχισε με μια συστηματική βιβλιογραφική ανασκόπηση που εστίασε στην 

πρόβλεψη απόδοσης με μεθόδους Γεωργίας Ακριβείας, για να προσφέρει μια εκτενή επισκόπηση 

των τελευταίων εξελίξεων σε αυτόν τον τομέα. Ταυτόχρονα, πιλοτικές δραστηριότητες διεξήχθησαν 

για τρία χρόνια. Τα δύο πρώτα χρόνια επιλέχθηκαν δέκα πιλοτικά αγροτεμάχια για την ενσωμάτωση 

επίγειων, εναέριων και δορυφορικών δεδομένων και δειγματοληψίες παραγωγής, με κύριο στόχο να 

εξετάσουν τη συσχέτιση μεταξύ της απόδοσης της καλλιέργειας και του NDVI (Δείκτης Βλάστησης 

Κανονικοποιημένης Διαφοράς), ενός δείκτη που χρησιμοποιείται ευρέως. Αυτή η φάση είχε ως στόχο 

να εξερευνήσει τις ομοιότητες μεταξύ των δορυφόρων, των ΣμηΕΑ (Συστήματα μη Επανδρωμένων 

Αεροσκαφών) και των επίγειων αισθητήρων στην αξιολόγηση της απόδοσης της καλλιέργειας. Με 

την εκτεταμένη σύγκριση των δορυφόρων, ΣμηΕΑ και επίγειων αισθητήρων, δόθηκε ιδιαίτερη 

σημασία στα πλεονεκτήματα και περιορισμούς τους στο πλαίσιο της Γεωργίας Ακριβείας  (ΓΑ). 

Κατά τη δεύτερη χρονική περίοδο, εκτός από τα συγκεκριμένα αγροτεμάχια που υποβλήθηκαν σε 

λεπτομερή έρευνα με χρήση δορυφορικών, ΣμηΕΑ και επίγειων αισθητήρων, μια διευρυμένη μελέτη 

πραγματοποιήθηκε που περιλάμβανε 108 αγροτεμάχια σε περιφερειακή κλίμακα, ενσωματώνοντας 

την ανάλυση δορυφορικών δεδομένων. Αυτή η φάση είχε ως στόχο να αξιολογήσει όχι μόνο τον 

NDVI, αλλά και τέσσερις επιπλέον δείκτες βλάστησης στην πρόβλεψη της απόδοσης της 

καλλιέργειας. Χρησιμοποιήθηκαν χρονοσειρές δεδομένων που περιλάμβαναν πέντε δείκτες 

βλάστησης σε περιφερειακή κλίμακα για να εξετάσουν τη σχέση μεταξύ αυτών των δεικτών και των 

κρίσιμων φαινολογικών σταδίων της καλλιέργειας. Στο πλαίσιο αυτό πραγματοποιήθηκε η χρήση 

τεχνικών αυτοματοποιημένης μηχανικής μάθησης (AutoML) σε συνδυασμό με δεδομένα δεικτών 

βλάστησης που ανακτήθηκαν από δορυφορικά σύνολα δεδομένων για τη συσχέτιση τους με την 

απόδοση. Τα μετασχηματισμένα δεδομένα στη συνέχεια χρησιμοποιήθηκαν για την εκπαίδευση και 

τη δοκιμή αλγορίθμων στατιστικής και μηχανικής μάθησης, συμπεριλαμβανομένων μοντέλων 

γραμμικής και μη γραμμικής παλινδρόμησης και μεθόδων συνόλου που βασίζονται σε δέντρα 

αποφάσεων Στην ανάλυση χρησιμοποιήθηκαν η μέθοδος ελάχιστου τετραγώνου (OLS), μοντέλα 

παλινδρόμησης Theil-Sen και Huber και μέθοδοι που βασίζονται σε δέντρα. Συμπεριλήφθηκαν 

επίσης μηχανές διανυσμάτων υποστήριξης (SVM) και αυτόματος προσδιορισμός συνάφειας (ARD). 
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Αυτός οι ευρύτερες δραστηριότητες στόχευαν στην εμβάθυνση της κατανόησης στην εκτίμηση της 

απόδοσης των καλλιεργειών, λαμβάνοντας υπόψη τα ευρήματα από την αρχική συστηματική 

ανασκόπηση. 

Κατά το τρίτο έτος, υιοθετήθηκε μια πιο περίπλοκη προσέγγιση, με επίκεντρο την αξιολόγηση των 

φασματικών καναλιών από τον δορυφόρο Sentinel 2. Η ατομική απόδοση κάθε καναλιού στην 

πρόβλεψη της απόδοσης των καλλιεργειών αξιολογήθηκε, επιτρέποντας μια ολοκληρωμένη 

αξιολόγηση της μοναδικής συνεισφοράς τους στη συνολική ακρίβεια εκτίμησης της απόδοσης. Αυτή 

η ανάλυση παρείχε βαθύτερες γνώσεις σχετικά με τη σημασία και τον αντίκτυπο της κάθε 

φασματικής ζώνης στη βελτίωση της ακρίβειας των προβλέψεων απόδοσης των καλλιεργειών. Η 

αξιολόγηση την απόδοση τόσο των στατιστικών όσο και των μοντέλων μηχανικής μάθησης 

συνείσφερε στην απόκτηση βαθύτερης κατανόησης σχετικά με τα πιο αποτελεσματικά στάδια 

ανάπτυξης και τους δείκτες βλάστησης για την ακριβή πρόβλεψη της παραγωγής. 

Τα ευρήματα αυτής της μελέτης έδειξαν ουσιαστική ομοιότητα μεταξύ των δεδομένων ΣμηΕΑ και 

δορυφόρου, ειδικά στα μεταγενέστερα στάδια του φαινολογικού κύκλου της καλλιέργειας, 

υπονοώντας μια αυξημένη συμφωνία καθώς η καλλιέργεια ωρίμαζε. Η μελέτη εντόπισε μια μέτρια 

συσχέτιση μεταξύ των δεδομένων εγγύς αισθητήρα και των συνόλων δεδομένων ΣμηΕΑ 

/δορυφόρου, με αποκλίσεις που αποδίδονται σε διακυμάνσεις στα μήκη κύματος μέτρησης κάθε 

πλατφόρμας. Όσον αφορά στη σχέση της δυναμικής των δεικτών βλάστησης σε σχέση με τον 

φαινολογικό κύκλο της καλλιέργειας, οι χαμηλότερες μέσες τιμές για όλους τους δείκτες βλάστησης 

παρατηρήθηκαν λίγο μετά τη μεταφύτευση, οι οποίες οφείλονται στην περιορισμένη κάλυψη 

βλάστησης και το εκτεθειμένο έδαφος μεταξύ των σειρών. Ιδιαίτερα καθώς προχωρούσε η 

καλλιεργητική περίοδος, το ποσοστό φυτικής κάλυψης αυξήθηκε σταδιακά, ιδιαίτερα κατά τη μέση 

της περιόδου, όταν τα φυτά τομάτας έφτασαν στο μέγιστο της βλάστησης τους λίγο πριν 

ανακατανείμουν τα σάκχαρα στους καρπούς τους. 

Όσον αφορά στην πρόβλεψη απόδοσης, ο επίγειος αισθητήρας έδειξε υψηλότερη επεξηγητική ισχύ 

κατά την αρχική φάση ανάπτυξης φυλλώματος, ενώ τα δεδομένα από το ΣμηΕΑ και τον δορυφόρο  

βελτίωσαν την απόδοσή τους καθώς διευρύνθηκε η κάλυψη του φυλλώματος. Η δορυφορική 

πλατφόρμα επέδειξε ανώτερη απόδοση κατά το κρίσιμο στάδιο της ανθοφορίας, τονίζοντας την 

αποτελεσματικότητά της στην αποσαφήνιση της μεταβλητότητας της απόδοσης. Η μελέτη 

χρησιμοποίησε βασικές στατιστικές μεθόδους, ειδικότερα το συντελεστή συσχέτισης Pearson, 

επισημαίνοντας την βέλτιστη απόδοση των δεικτών βλάστησης σε συγκεκριμένα στάδια ανάπτυξης. 

Επιπλέον, ενσωματώθηκαν αλγόριθμοι μηχανικής μάθησης για τη βελτίωση της ακρίβειας 

πρόβλεψης απόδοσης, οι οποίοι αξιολογήθηκαν αυστηρά μέσω ανάλυσης παλινδρόμησης και μιας 

διαδικασίας διασταυρούμενης επικύρωσης. Η έρευνα ανέδειξε τους δείκτες RVI και SAVI ως τους πιο 

αποτελεσματικούς για τις προβλέψεις της απόδοσης, επιτυγχάνοντας υψηλές τιμές R² και χαμηλά 

RMSEs, ιδιαίτερα 90 ημέρες μετά τη μεταφύτευση. Οι συνδυασμοί μοντέλων ARD και SVR πέτυχαν 

σταθερή ικανοποιητική απόδοση, υπογραμμίζοντας την αποτελεσματικότητα του συνδυασμού 

διαφορετικών μοντέλων. Η χρήση των φασματικών καναλιών 8, 4 και 12 παρείχε αξιόλογα 

αποτελέσματα. Οι φασματικές ζώνες Red Edge/NIR εμφάνισαν αξιοσημείωτη απόδοση, ειδικά εντός 

του παραθύρου 80 έως 90 ημερών μετά τη μεταφύτευση, παρουσιάζοντας την ισχυρότερη συσχέτιση 

με την απόδοση. 
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Συνολικά, τα ευρήματα υποδηλώνουν ότι οι αισθητήρες ΣμηΕΑ και οι δορυφορικοί αισθητήρες 

επιδεικνύουν μεγαλύτερη ακρίβεια στην πρόβλεψη της απόδοσης των καλλιεργειών προς το τέλος 

της σεζόν και προσφέρουν αυξημένη ακρίβεια κατά τα τελευταία στάδια ανάπτυξης. Αντίθετα, οι 

επίγειοι αισθητήρες παρουσιάζουν συσχετίσεις σε προηγούμενα στάδια ανάπτυξης της 

καλλιέργειας. Ο συνδυασμός δεδομένων από πολλούς αισθητήρες και στάδια ανάπτυξης μπορεί να 

βελτιώσει την ακρίβεια πρόβλεψης. Η χρήση δεδομένων δεικτών βλάστησης και φασματικών 

καναλιών σε συνδυασμό με τεχνικές μηχανικής μάθησης συνιστά μια πιο αποτελεσματική και 

οικονομικά αποδοτική μέθοδο για την πρόβλεψη της παραγωγής βιομηχανικής ντομάτας. 
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Executive Summary  
Precision Agriculture (PA) is a management strategy that gathers, processes and analyzes 
temporal, spatial and individual data and combines it with other information to support 
management decisions according to estimated variability for improved resource use efficiency, 
productivity, quality, profitability and sustainability of agricultural production [1]. 

The initial chapter (Part 1) of this thesis provides an extensive overview on precision agriculture, 
breaking it down into four main sections: Problem Statement, Precision Agriculture: Past, Present 
and Future, Remote Sensing in PA, and Processing Tomato Crop. It commences by addressing the 
challenges prevalent in agriculture and then offers a historical overview of the PA philosophy and 
principles, emphasizing its benefits. This also encompasses drivers and limitations associated with 
the adoption of precision agriculture methods. Additionally, it outlines the historical progression of 
satellite, aerial, and proximal platforms in precision agriculture, before providing detailed insights 
into processing tomato crops. This involves an examination of the crop's breeding history, its 
management concerning water and nutrients, and a comprehensive overview of its phenological 
cycle. 

Part 2 provides an overview of the materials and methods with information on the systematic 
review conducted within the study and the selected study area for field and regional level 
measurements. A discussion of the platforms used is followed by an overview of data collection, 
preparation, and analysis. Within this study, data from three different sources (one proximal crop 
reflectance sensor, a UAS equipped with a multispectral camera, and Sentinel-2 imagery) were 
analysed over three seasons to assess the similarity of the data and their potential for predicting 
yield of processing tomato crop at field and regional level. A time-series VI dataset was utilized 
to meticulously track the phenological cycle of the crop and associate it not only with NDVI but 
also with four other Vegetation Indices (VIs). At both spatial levels, yield predictions were retrieved 
using VI and spectral band data from proximal and remote sensing, statistical analysis, and 
automated machine learning techniques (AutoML). To this end, multiple data processing 
techniques, alongside statistical and machine learning methods, including linear and nonlinear 
regression models, ensemble methods, and support vector machines, were employed to analyze 
the data and forecast crop yield.  

Part 3 presents the research findings of this study presenting an overview of recent trends in PA 
methodologies as documented in literature pertaining to yield prediction. Both descriptive analysis 
and regression analysis was conducted, seeking to establish correlations among different platforms 
based on Normalized Difference Vegetation Index (NDVI). Notably, at the field level, the UAS 
exhibited a robust correlation with satellite NDVI datasets, while the proximal sensor displayed a 
moderate relationship with them. Furthermore, the study detailed the annual dynamics of VIs for 
the crop, shedding light on biomass growth patterns across the season. It was also observed that 
crop yield demonstrated a moderate relationship with VI data, both at the regional and field 
levels. The accuracy of predictions notably increased during flowering stages, particularly evident 
in satellite data, showcasing the highest correlations. Leveraging machine learning techniques 
significantly enhanced prediction accuracy, offering valuable insights into the optimal timing for 
yield predictions. Lastly, the study explored the use of spectral band information in conjunction 
with machine learning at a regional level, providing additional insights into yield forecasting. 

Part 4 is the discussion and contributions of the whole research including the three research papers 
produced as part of this PhD thesis: The last two chapters, Part 5 and Part 6, build on each other 
and draw some conclusions on the above objectives and discuss areas for future research on the 
implementation of precision agriculture in yield predictions. 
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Part 1. Introduction 

1.1 Problem Statement 

Modern agriculture faces a diverse array of challenges, encompassing the far-reaching impacts of 
climate change [2], the decreasing availability of essential natural resources [3], transformations 
in dietary inclinations [4], apprehensions about safety and health [5], and the escalating demands 
placed on the agricultural sector due to the growing global population. These challenges are not 
only theoretical but also backed by empirical data. The World Health Organization [6], has 
estimated that a staggering 820 million people globally still lack sufficient access to food. 
Moreover, the Food and Agriculture Organization (FAO) anticipates a substantial 70% surge in 
food demand to cater to the projected global population of 9.1 billion by 2050 [7]. Climate change 
exacerbates the situation further by unleashing droughts, floods, and heatwaves that further strain 
food production across various regions [7]. Moreover, conventional agriculture has fallen short in 
terms of achieving optimal resources efficiency [8], by involving intensive use of agricultural inputs, 
such as fertilizers and pesticides. Typically, these inputs are applied uniformly across entire farms 
as a precautionary measure to avert potential nutritional deficiencies or yield losses. However, such 
practices come at a cost, causing numerous environmental problems including groundwater 
depletion, eutrophication, diminished surface water flows, excessive nitrogen use, soil erosion and 
loss of soil organic matter, and excessive pesticide use [9–20]. At the same time, they result in 
economic losses and heightened environmental impact [21]. 

In response to these challenges that are placing immense stress on the agricultural sector, there is 
an urgent need to enhance techniques that can increase crop production through increased 
efficiency of inputs use and reduced environmental losses [22]. Precision Agriculture is emerging 
as a sustainable strategy [22], with the ultimate objective of managing crop and soil variability to 
increase profitability and reduce environmental degradation [23]. Using PA, data are collected to 
assist farmers in making guided sub-field decisions, including applications of fertilizers and 
pesticides, distribution densities for seeds, irrigation application rates, and tillage regimes [24]. 
Decisions that are better than those that would be made with traditional/conventional agricultural 
practices can boost the efficient use of resources, reduce input costs, minimize environmental 
degradation, and improve yield and crop quality.  

1.2 Precision Agriculture: Past, Present and Future 

1.2.1 Definition of Precision Agriculture 

Precision agriculture (PA) is a strategic management methodology that leverages information 
technology to maximize efficiency, enhance productivity and profitability, and mitigate 
environmental consequences within specific geographical areas. The notion of tailoring agricultural 
practices to suit specific sites and conditions traces its roots back to Jethro Tull's proposal in 1731. 
Later in the 1990s, the PA concept emerged with the intention of improving productivity, 
profitability, and environmental sustainability. The definition of PA was initially surfaced in the 
USA in the 1997, when the House of Representatives defined it as "an integrated information- and 
production-based agricultural system designed to increase long-term, site-specific, and whole-farm 
production efficiency, productivity, and profitability while minimising unintended impacts on wildlife 
and the environment." This definition underscores the pivotal role of information technology within 
PA, driving enhancements in production and reducing environmental footprints across the entire 
agricultural spectrum, encompassing the entirety of the farm-to-fork supply chain.  

Since then, multiple definitions provided by researchers, practitioners, and policy makers have 
contributed to a progressive deepening of understanding concerning the constituent elements of 
the concept. The Lleida University Research Group in AgroICT and Precision Agriculture lists 27 

https://www.zotero.org/google-docs/?PAt0Lu
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definitions from the scientific literature and the Internet [25]. Similarly, Trivelli et al. [26] have 
presented key definitions, as illustrated in the following table (Table 2), which has been updated 
with more recent terminology. 

Table 2: Literature review, definitions and components of precision agriculture. Source: [26] 
Year Definition Authors Title and journal 

1999 

Precision agriculture is the application 
of technologies and principles to 
manage spatial and temporal 
variability associated with all aspects of 
agricultural production for the purpose 
of improving crop performance and 
environmental quality. Precision 
agriculture is technology enabled 

F.J. Pierce, P. Nowak, 
[27] 

Aspects of precision 
agriculture, Advances in 

Agronomy, Vol. 67, pp. 1-85 

2000 

Precision agriculture is a discipline that 
aims to increase efficiency in the 
management of agriculture. It is the 
development of new technologies, 
modification of old ones and 
integration of monitoring and 
computing at farm level 

H. Kirchmann, G. 
Thorvaldsson, [28] 

 

Challenging targets for 
future agriculture, European 
Journal of Agronomy, 12, pp. 

145–161 
 

2000 

Precision agriculture is “information 
intense” and could not be realized 
without the enormous advances in 
networking and computer processing 
power. precision agriculture, as a crop 
management concept, can meet much 
of the increasing environmental, 
economic, market and public pressures 
on arable agriculture. 

J.V. Stafford, [29] 

Implementing precision 
agriculture in the 21st 

century, Journal of 
Agricultural Engineering 
Research, 76, pp. 267-275 

2002 

Precision agriculture is conceptualized 
by a system approach to re-organize 
the total system of agriculture towards 
a low-input, high-efficiency, sustainable 
agriculture 

N. Zhang, M. Wang, 
N. Wang, [30] 

Precision agriculture – a 
worldwide overview, 

Computer and Electronics in 
Agriculture, 36, pp. 13-132 

2003 

Precision Agriculture can be defined as 
the management of spatial and 
temporal variability at a sub-field level 
to improve economic returns and 
reduce environmental impact 

Blackmore, S., 
Godwin, R., Fountas, 

S., [31] 

The analysis of spatial and 
temporal trends in yield map 

data over six years. 
Biosystems Engineering, 84 

(4), 455-466. 

2004 

Precision agriculture can help in 
managing crop production inputs in an 
environmentally friendly way. By using 
site-specific knowledge, PA can target 
rates of fertilizer, seed and chemicals 
for soil and other conditions 

R. Bongiovanni, J. 
Lowenberg-Deboer, 

[32] 

Precision agriculture and 
sustainability, Precision 

Agriculture, Vol. 5, pp. 359-
387 

2005 

One generic definition could be “that 
kind of agriculture that increases the 
number of (correct) decisions per unit 
area of land per unit time with 
associated net benefits” 

A. McBratney, B. 
Whelan, T. Ancev, 

[33] 

Future directions of precision 
agriculture, Precision 

Agriculture, 6, pp. 7-23, 
Springer Science + Business 

Media 

2012 

Precision Agriculture is a production 
system that involves crop management 
according to field variability and site-
specific conditions. Precision 
agricultural technologies are those 
technologies which, either used singly or 
in combination, as the means to realize 
precision agriculture 

Y. S. Tey, M. Brindal, 
[8] 

Factors influencing the 
adoption of precision 

agricultural technologies: a 
review for policy 

implications, Precision 
Agriculture, Vol. 13, pp. 713-

730 
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2015 

Precision Agriculture can be defined as 
the management of spatial and 
temporal variability in the fields using 
Information and Communications 
Technologies (ICT). Fountas, S., 

Aggelopoulou, K., & 
Gemtos, T. A 

[34] 

Crop Management for 
Improved Productivity and 
Reduced Environmental 

Impact or Improved 
Sustainability. Precision 

Agriculture. In Supply Chain 
Management for 

Sustainable Food Networks 
(pp. 41–65). Chichester, UK: 

John Wiley & Sons, Ltd. 
http://doi.org/10.1002/9781118

937495.ch2 

2021 

Precision Agriculture is a management 
strategy that gathers, processes and 
analyzes temporal, spatial and 
individual data and combines it with 
other information to support 
management decisions according to 
estimated variability for improved 
resource use efficiency, productivity, 
quality, profitability and sustainability 
of agricultural production 

International Society 
for Precision 

Agriculture (ISPA), 
[1] 

This definition was the 
consensus of 36 PA experts 
in the Codigital process and 
the result of 76 generations 

based on the edits and votes 
of all participants. 

 

It becomes increasingly evident over time that technology emerges as PA's pivotal and enabling 
aspect. The Precision Agriculture cycle (Figure 1) could be summarized in the four (4) key stages 
[25], which include: 

i. Visual observations or observations by means of sensors that allow the acquisition of 
georeferenced data (that is to say, with coordinates that will enable their perfect location 
on the plot). 

ii. Computerized systems for visualizing and processing data (GIS, geographic information 
systems). 

iii. Decision Support Systems for decision making.  

iv. Agricultural methodologies or machinery capable of carrying out agricultural operations 
in a specific way at each point of the plot, what is called VRT (Variable Rate Technology).  

The cycle commences with the collection of crop data and environmental information. This involves 
the use of sensors, visual observations, and traditional sampling methods, all georeferenced using 
Global Navigation Satellite Systems (GNSS). These data encompass various aspects such as crop 
geometry, biomass quantity, vigour, soil characteristics, and more. Once the data have been 
gathered, the next step is to extract valuable insights for farmers and technicians. One crucial 
piece of information obtained is whether the crop is exhibiting uniform and proper development 
across the entire field. This information plays a pivotal role in the decision-making phase. During 
this stage, agronomic management actions are determined, including what operations should be 
carried out and how they should be executed. The initial decision revolves around whether to 
maintain uniform field management or if variations in the field recommend differentiated 
approaches. This decision entails assessing whether specific resources, such as fertilizers, irrigation, 
plant protection, planting, etc., should be applied differently in various areas of the field, and if so, 
at what dosage. Currently, this decision-making stage represents one of the primary challenges in 
PA and requires ongoing research efforts.  
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Figure 1. PA cycle. Source: [25] 

 

Finally, action is taken in the field to apply the necessary resources or perform essential operations. 
In cases where differentiated actions are required, VRT may be employed, allowing machinery to 
adjust application doses according to the prescriptions developed during the decision-making 
phase. 

In summary, PA consists of performing the right operation in the right place, at the right time, in 
the appropriate manner and the right amount. 

1.2.2 Historical Evolution of Precision Agriculture 

The journey of Precision Agriculture (PA) has seen several significant milestones that have 
revolutionized the way we approach farming and land management (Table 3). The first 
applications around the world started in the 1980s, when soil scientists and agribusiness researchers 
in the United States and Europe started to develop equipment and methods for variable rate 
fertilizer application [35,36]. The first commercially successful grain yield monitors were introduced 
in 1992. The combination of GNSS-enabled soil sampling, variable rate fertilizer applications, and 
yield monitoring was the “classic precision agriculture” package in the 1990s and some adoption 
studies focus on whether that classic package has been adopted. Global Navigation Satellite 
Systems equipment guidance was commercialized in the late 1990s, first in Australia and shortly 
after in North America. The introduction of yield sensors and monitors in 1990s laid the foundation 
for strategies like Variable Rate Application (VRA) and selective harvesting, delivering significant 
benefits to farmers[37]. Soil sampling has also been also a very important PA application; together 
with sensing devices, such as Electromagnetic Induction (EC) measuring soil structure and water 
content and the Hydro-Nitrogen sensor, which senses the chlorophyll and automatically adjust the 
fertilizer dozes, [38]. Many technological innovations, such as GIS, miniaturized computer 
components, automatic control, in-field and remote sensing, mobile computing, advanced 
information processing, and information and communications technologies (ICT), have expanded 
the application of site-specific approaches while driving a new wave of increased agricultural 
productivity [39]. In recent years, technologies such as Internet of Things (IoT), Big Data analysis, 
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and artificial intelligence (AI) are being utilized to optimize agricultural operations and inputs 
aimed to enhance production and reduce inputs and yield losses[40]. 

Table 3. Key precision agriculture milestones. Source: [37] 

Year Technology or activity 
Company/organization, 

product name 
Reference 

1983 
Executive order that allowed 

civilian use of GPS US government 
Brustein, 2014 

Rip and Hasik, 2002 [41,42] 

1987 
Computer-controlled VRT 

fertilizer Soil Teq Mulla and Khosla, 2016, [36] 

1988 Handheld GNSS Magellan Smithsonian, 2018[43] 

1992 

First conference dedicated to 
precision agriculture research 

International Conference on 
Precision Agriculture 

Khosla, 2010, [44] 

Impact plate grain yield 
monitor 

Ag Leader, Yield Monitor 
2000 Ag Leader, 2018[45] 

1995 
First conference dedicated to 
precision agriculture industry InfoAg IPNI, 2010 

1997 

Auto guidance Beeline Rural Retailer, 2002 

On-the-go soil EC sensor Veris Lund, E., 2018 

Cotton yield monitor Micro-Trak, Zycom Vellidis et al., 2003[46] 

First ECPA conference in 
Europe 

John Stafford. and A. 
Werner 

John Stafford and A. Werner 
[47] 

2000 
End of GNSS selective 

availability US government 
Coalition to Save Our GPS, 

2012, [48] 

2002 
Integrated optical sensor and 

variable rate nitrogen 
applicator 

N-Tech Industries, 
Greenseeker 

Rutto and Arnall, 2017 [49] 

2003 On-the-go soil pH sensor 
Veris, Soil pH Manager 

(MSP) Lowenberg-DeBoer, 2003 [50] 

2006 
Automated sprayer boom 

section controllers 
Trimble, AgGPS EZ-Boom 

2010 Trimble, 2006 [51] 

2009 Planter row shutoffs Ag Leader, Sure Stop Ag Leader, 2018 [45] 

2017 
First fully autonomous field 

crop production 
Harper Adams University Hands Free Hectare, 2018[52] 

 

The history of PA has demonstrated that technological innovations have exerted a more profound 
influence compared to innovations in information analysis and decision support [36]. Initially, 
technologies like GNSS and yield monitors were perceived as valuable additions to existing farm 
equipment. Over time, these technologies became standard features on farm combines, making 
them equally prevalent among precision and conventional farming practitioners. The integration 
of GNSS into farm machinery paved the way for significant advancements in precision farming, 
including autosteer and variable rate fertilizer application (Figure 2). 

Conversely, information analysis and decision support systems for tasks like delineating 
management zones or providing variable rate recommendations have not been widely integrated 
into routine farm operations. Often, these functions are outsourced to crop retailers, consultants, 
or agribusiness service providers for a fee. However, there is a noticeable shift towards placing 
more emphasis on information analysis and decision support systems within PA. Large corporations 
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and researchers are increasingly focusing on big data challenges, which involve amalgamating 
spatially and temporally variable data from sources like yield monitors, soil fertility measurements, 
crop stress assessments, and climate data. This data is collected from numerous farming operations 
and used to identify and model relationships with soil and landscape characteristics that can inform 
precision farming decisions. 

 

 

Figure 2. i) Pierre Robert explaining his computerized farming by soil map database (1985) to Jim Anderson at the 
University of Minnesota, ii) First commercial unit (1980) of the Geonics EM-38 single dipole electromagnetic induction 
conductivity meter, iii) Variable rate herbicide applicator developed by Stafford and Miller (1993), iv) Soil organic 
matter sensor based on NIR reflectance (1991). Source: [36]. 

Future historians might reflect on the VRT equipment and services introduced in the early 1990s 
as an essential initial stride, albeit not the optimal solution for spatial management of crop inputs. 
Over time, we have seen a significant growth in the volume, diversity, and value of databases. 
Smart robots have been integrated, AI algorithms and simulation models have been refined, while 
the scale at which management decisions are being visualized and implemented has improved. 
This continuous progression has been steering us towards an increased dependence on predictive 
precision farming practices, providing robust solutions characterized by heightened autonomy and 
precision. The evolution from VRT to these significant advancements will serve as a continuous 
reminder that future waves of innovation will consistently bring about remarkable transformations 
in the field of PA. 

 

1.2.3 Why Precision Agriculture? 

Farmers are facing multiple challenges related to agricultural production. PA has the potential to 
offer many benefits, including increased efficiency and productivity, lower input costs and better 
environmental management, making it an attractive choice for modern farming. Essentially it aims 
to do more with less resources. 
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Enhanced Resource Utilization and Site-Specific Management 

PA revolutionizes how agricultural resources are managed. It is intrinsically linked to the spatial 
and temporal variability in yield and quality, recognizing that every field is unique and requires 
tailored management approaches. By utilizing data from remote sensing and on-site sensors, 
farmers can identify variations in soil composition, moisture levels, and other factors across their 
fields. This enables them to divide their fields into management zones, each receiving customized 
treatments based on its specific needs. This site-specific approach ensures that resources are 
allocated efficiently, leading to more balanced growth and yield across the entire field. For 
example, PA can optimise irrigation and fertilisation practises by making site-specific 
recommendations based on real-time soil moisture and nutrient data, improving water and nutrient 
use efficiency, and reducing the risk of over-irrigation and nutrient leaching [53]. PA can also 
improve pest and disease control by providing early warning of infestations and targeted 
treatments, reducing the use of pesticides and other inputs [54]. 

Nonetheless, gaining a deep understanding of field variability is of utmost importance. Several 
critical questions emerge to ascertain whether a uniform or differentiated management strategy 
is effective in agricultural production: Is the variation significant enough to warrant deviation from 
uniform management? Is the spatial variation stable over time? Does targeted management make 
economic and/or ecological sense?  

When commercial yield mapping initially emerged, there was an expectation that certain parts of 
a field would consistently yield well, while others would yield poorly [23,34]. This expectation was 
based on the assumption that permanent soil characteristics would exhibit consistent behaviour 
from year to year. However, contrary to these initial expectations, it became apparent that spatial 
trends in yield could vary significantly in time as well. As a result, numerous researchers dedicated 
their efforts to developing spatially and temporally trend maps over the years to depict these 
trends within agricultural fields accurately. Spatial databases have been generated using various 
GIS systems by integrating maps derived from remote sensing, soil sampling, yield monitoring, and 
various sensors. Advanced geostatistical methods are used to analyze the spatial and temporal 
variability [55]. Crop-modeling techniques have been incorporated to develop yield potential maps 
as a base for fertilizer prescription [56]. Technologies like GNSS, sensors, and data analytics have 
been deployed, so that farmers can precisely target the application of water, fertilizers, and 
pesticides. 

Furthermore, the level of variability plays a crucial role in determining the efficiency of PA. For 
instance, variability may be too small or randomly distributed so that spatial control is not feasible. 
Uniform cropping strategies exhibit optimal efficiency and cost-effectiveness when there is 
negligible variation between sites, thereby obviating the necessity for PA. VRT technology is not 
currently capable of dealing with highly variable sites, and the profitability of sites with low 
variability may not be sufficient to offset the costs of implementing PA. Note that environmental 
costs can be expressed in monetary terms, which could make low variability sites eligible for PA.  

In summary, the performance of PA depends on the significance and stability of variations within 
a field, and whether site-specific management proves economically and ecologically viable. Taking 
a strategic approach that entails careful planning and thoughtful implementation when employing 
PA practices and technologies, is essential for achieving high performance across diverse contexts. 

Profitability 

The introduction of precision farming marked a significant shift in agriculture, offering the promise 
of increased efficiency and reduced operational costs. PA aims to minimize operational costs by 
reducing the excessive use of inputs. With accurate data on soil conditions, nutrient levels, and pest 
presence, farmers can make precise decisions about the amount and timing of fertilizer and 
pesticide applications. This not only cuts down on expenses related to inputs but also decreases 
the environmental impact associated with excess chemical use. However, since the inception of 
precision farming, scientists, farmers, and practitioners alike have questioned its economic 
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feasibility [36]. While the concept held great potential, assessing the tangible economic benefits 
associated with PA technologies has proven to be a complex and challenging task [57], as several 
factors influence the investment value of PA. These factors include the current farm gross margin, 
the cost of PA equipment, the area and number of years over which the equipment is used, and 
the rate at which benefits from its adoption start to materialize[58]. Furthermore, an additional 
challenge in evaluating the profitability of PA technologies stems from the diverse range of 
agricultural contexts and practices. Farming operations vary widely in terms of scale, crops grown, 
environmental conditions, and available resources. Consequently, the economic impact of PA 
technologies can differ significantly from one farm to another.  

So far, some fundamental research studies have contributed valuable insights into the potential 
cost savings linked to the implementation of PA. For instance, in a review article conducted by 
Griffin and Lowenberg-DeBoer (2005), it was reported that approximately 68% of the 210 studies 
examined reported benefits from adopting various PA technologies [59]. Interestingly, about half 
(52%) of these studies reporting benefits were authored or co-authored by economists, underlining 
the significance of economic analysis in assessing the advantages of PA. The USDA’s (United 
States Department of Agriculture) October 2016 report highlighted that PA technologies 
significantly boosted net returns and operational profits [60]. On average, corn farms embracing 
PA observed operating profits $163 per hectare higher than those not adopting PA, especially on 
larger farms exceeding 1500 hectares, where computer mapping, guidance, and variable-rate 
equipment were most commonly adopted [60]. These profit margins could increase further, 
reaching up to $272 per hectare, depending on the crop. 

Heisel et al. (1996) and Timmermann et al. (2002) have demonstrated that making informed 
decisions about input applications, such as herbicides, could result in substantial cost reductions 
[61,62]. However, it is important to note that cost savings do not always immediately translate into 
profitability. In some cases, studies like those by Carr et al. (1991) and Biermachera et al. (2009) 
have indicated that there may be an insignificant difference in the return on investment between 
using PA technologies for fertilizer applications and traditional methods [63,64]. Furthermore, 
other studies [65,66] have suggested that applying soil sampling tests for soil fertility, a common 
practice in precision farming, may not consistently lead to increased profitability 

In conclusion, the economic feasibility and benefits of PA are complex and context dependent. 
While there is evidence of cost savings and improved resource management, the economic impact 
of PA technologies can vary widely across different farming scenarios. This underscores the 
importance of conducting comprehensive economic assessments tailored to specific agricultural 
contexts to determine the true profitability of precision farming practices. 

Innovative Technologies: Agriculture 4.0 and 5.0 

Precision Agriculture drives the adoption of cutting-edge technologies in the agricultural sector. 
Modern technologies such as the Internet of Things, Remote Sensing, Big Data and DSS are 
expected to leverage this development and introduce more robots and artificial intelligence in 
farming. The data gathered through these technologies goes beyond immediate decision-making, 
providing valuable insights into soil, climate, crop growth, and yield interactions. Researchers can 
use this data to refine farming practices and develop innovative technologies and contribute to 
the continuous enhancement of agricultural practices. These advancements offer detailed 
information on soil, crop status, and environmental conditions, facilitating precise phytosanitary 
product applications. This precision reduces herbicide and pesticide use, enhances water efficiency, 
and boosts crop yield and quality. 

One of the fundamental differences between traditional and modern farming is, apart from the 
mechanization level, the data collected directly from the crops. In traditional farms where growers 
judge by visual assessment, decisions are relative and subjective. Traditional farming relies on 
subjective visual assessments by growers for decision-making, while modern farming relies on 
quantitative data for making objective decisions. Sensors enable field data collection, but the 
integration of non-invasive technologies and real-time sensing from mobile platforms has 
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revolutionized data gathering. Remote sensing, particularly through artificial satellites, has been 
instrumental in advancing Smart Farming by providing widespread access to field data. Remote 
sensing technologies mounted on aircraft, drones, or satellites to collect data pertaining to various 
crop attributes. These include canopy coverage, leaf area index (LAI), and soil moisture, all of 
which provide precise spatial insights into crop health and performance. This data subsequently 
informs specific site-oriented management strategies. The core objective is to gather intricate 
information about Earth's surface characteristics and dynamics. Optical sensors, in particular, play 
a pivotal role in this process by utilizing the phenomenon of sunlight reflection from terrestrial 
objects. The functionality and effectiveness of these sensors are underpinned by a range of critical 
parameters including spatial resolution, radiometric resolution, spectral resolution, and temporal 
resolution. 

However, the complexity of data is also a serious challenge to cope with, as vital information may 
result in being masked by noise. A common way to manage field data displayed on maps and 
culminate with a practical solution is through the use of GIS. This suite of computer-based tools or 
data platforms enables the storage, analysis, manipulation, and mapping of georeferenced 
information of any kind. For PA applications, a specific GIS system named the Field-level 
Geographic Information System (FIS) was developed [67], but it was designed for older computer 
operating systems like Windows 3.1×, 95, 98, or NT [68]. A more updated version known as the 
Farm Management Information System (FMIS), as outlined by Burlacu et al. [69] is a 
management information system designed to assist farmers with various tasks, ranging from 
operational planning, implementation and documentation to the assessment of performed field 
work.  

Beyond remote sensing and GIS, PA entails the utilization of other information technologies. IoT, 
GNSS, DSS are instrumental in processing and mapping spatial relationships, aiding in 
management decisions informed by multiple layers of information.  

IoT is a fundamental driver behind the emergence of Agriculture 4.0, signifying a substantial 
transformation in agricultural practices [70]. It encompasses the utilization of sensors and various 
devices to transform every aspect and action within farming into valuable data. In fact, IoT 
technologies is one of the reasons why agriculture can generate such a big amount of valuable 
information, and the agriculture sector is expected to be highly influenced by the advances in these 
technologies [71]. One of the main advantages of IoT adoption in agriculture is that facilitates 
increased crop yields and cost reduction. Studies conducted by OnFarm, for instance, reveal that 
the utilization of IoT on an average farm result in a 1.75% boost in crop yields and substantial 
energy cost savings ranging from 17 to 32 dollars per hectare, while water use for irrigation falls 
by 8%[72]. Currently, an estimated 10% to 15% of U.S. farmers have embraced IoT solutions, 
covering an extensive agricultural expanse of approximately 1.2 billion hectares and spanning 
250,000 farms [73]. Projections suggest that, with the adoption of new techniques, IoT could 
increase agricultural productivity by a staggering 70% by 2050 [74]. This is particularly significant 
given the world's need to ramp up global food production by 60% by 2050 to accommodate a 
population expected to exceed nine billion [75]. 

Furthermore, the escalating expansion of databases in terms of volume, velocity, and variety has 
given rise to the concepts of " Big Data " and " Big Data analytics." These concepts have the 
potential to significantly amplify research and development efforts in the pursuit of smarter 
farming, thereby addressing the substantial challenge of producing higher-quality food on a larger 
scale and in a more sustainable manner. Even though the concept of Big Data is present in many 
economic sectors, its integration into agriculture remains a question [70]. Kunisch  concluded that 
Big Data finds application only in certain agricultural scenarios, contingent upon individual farm 
setups and their technology adoption levels [76]. Nevertheless, it is evident data was being 
increasingly applied in the agriculture sector. Kamilaris et al. [77] referenced 34 works illustrating 
the use of Big Data in agricultural applications, while Wolfert et al. [78] conducted a review on 
Big Data applications in Smart Farming. In line with this trend, the Consortium of International 
Agricultural Research Centers (CGIAR, Montpellier, France) established a Platform for Big Data 
in Agriculture, aiming to address agricultural development challenges more swiftly, effectively, and 
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on a larger scale using big data methodologies [79]. While Big Data's application in precision 
farming is currently in an early development stage, it can be inferred that Big Data will cause 
major changes in agricultural domain. 

Decision support systems (DSS) have also made significant strides by empowering farmers to 
make well-informed decisions regarding crucial aspects like planting, irrigation, fertilization, and 
pest management. They serve as valuable tools for farmers to manage their farms efficiently by 
collecting, processing, storing, and sharing data related to agricultural activities. These systems 
often utilize agronomic models and field data to foster effective long-term planning by identifying 
trends and patterns in field performance, thereby enabling farmers to make more informed 
decisions for the future. To be effective, agricultural DSS should meet criteria such as profitability, 
user-friendliness, credibility, adaptability, maintenance, and updates. Some level of user knowledge 
is also necessary for their utilization. These systems gather data from various sources, including 
weather stations, field sensors, image capture systems, and information technology tools like 
smartphones and provide information related to various agricultural tasks.  

Navarro-Hellín et al developed a DSS for citrus orchards that estimates weekly irrigation needs 
by considering climate and soil variables [80]. Lindsay Corporation, based in Omaha, Nebraska, 
USA, developed and received recognition for FieldNET Advisor™ [81,82] a DSS that offers 
irrigation management guidance to growers. Similarly, HydroLOGIC, designed for individual fields 
in Australia, integrates knowledge of crop physiology, agronomy, available water resources, soil 
properties, and climate to optimize cotton yield and water utilization[83]. In addition, web-based 
pest forecasting models and DSS are gaining popularity as well, with expectations of increased 
demand in the future. Damos and Karabatakis (2013) developed a web-based DSS that predicts 
pest population phenology during the growing season by considering region-specific average 
temperatures and climatic factors [84].  

For efficient fertilization management, DSS based on agricultural models have been developed. 
These systems calculate optimal fertilization rates and dosages based on extensive crop fertilization 
experiments, considering multiple factors influencing fertilizer decision-making[85]. For instance, 
the Nutrient Management Support System (NuMaSS) software evaluates soil characteristics 
related to organic matter, including carbon, nitrogen, phosphorus, moisture content, clay, and 
CaCO3, among others [86]. AgriSupport aids farmers in optimizing resource allocation according 
to their business prospects while effectively managing production risks, as detailed by Recio et al. 
in 2003[87]. PCYield, developed in collaboration with the United Soybean Board (USB), Weather 
Services International (WSI Corp.), and a network of agricultural providers, offers support for 
soybean cultivation decisions [88]. 

Automation also has brought about significant enhancements in the productivity of agricultural 
machinery by improving efficiency, reliability, and precision while reducing the reliance on human 
intervention [89]. The concept Agriculture 5.0 implies that farms are following PA principles and 
using equipment that involves unmanned operations and autonomous decision support systems, 
including the use of robots and some forms of AI [90]. AI systems are increasingly employed to 
assist in identifying diseases in plants, recognizing pests, and diagnosing issues related to poor 
plant nutrition on farms. AI sensors can detect and pinpoint weeds, subsequently determining the 
appropriate herbicides to apply within the correct buffer zone. This approach helps mitigate the 
risk of over-applying herbicides, which can lead to an excess of toxins in our food supply. 
Furthermore, the automation of agricultural robots is now considered essential for improving work 
efficiency and should include the potential for enhancing the quality of fresh produce, lowering 
production costs and reducing the drudgery of manual labour [91]. According to the Verified 
Market Intelligence report, agricultural robots will be capable of completing field tasks with greater 
efficiency as compared to the farmers [92]. A Forbes study [93] further highlights how farm robots 
contribute to the human labor force, enabling the harvesting of crops at a higher volume and a 
faster pace compared to human laborers. While there are instances where robots are not as fast 
as humans, the agricultural industry is actively developing robotic systems to assist farmers with 
repetitive tasks [94–96], driving the evolution of agriculture towards the emerging concept of 
Agriculture 5.0. As noted by Reddy et al. [97], the advent of robots in agriculture drastically 
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increased the productivity in several countries and reduced the farm operating costs. It is evident 
that the field of robotic innovations is experiencing exponential growth [98], which is bolstering the 
global agriculture and crop production market. Startups that leverage robotics and machine 
learning to address agricultural challenges gained momentum in 2014, aligning with the increasing 
interest in AI [99]. In fact, venture capital funding in AI has surged by 450% over the past five 
years [100]. Nonetheless, these technologies remain prohibitively expensive for many farmers, 
particularly those with smaller farm [101], as economies of scale make larger farms more profitable 
[102]. However, as technology costs continue to decrease over time, agricultural robots are poised 
to become a viable option in the future, serving as an alternative to achieve higher production 
levels [103,104]. 

In summary, PA not only improves productivity and efficiency but also encourages innovation, by 
presenting a wide-ranging suite of technologies that, when combined, significantly elevate 
agricultural practices, bolster economic viability, and reinforce environmental sustainability. The 
amalgamation of technologies such as GPS, remote sensing, IoT, GIS, AI, automation, and DSS 
within farming practices sets the stage for ongoing technological progress that not only benefits 
farmers but also enhances the agricultural industry as a whole. By focusing on precise resource 
management, effective data utilization, and ongoing innovation, PA stands as a transformative 
approach that empowers farmers to address the challenges posed by our rapidly evolving world. 

Improved Environmental Sustainability 

The agricultural sector plays a substantial role in climate change, accounting for approximately 
13.5% of the total global anthropogenic greenhouse gas (GHG) emissions [105]. PA offers 
substantial environmental benefits due to its targeted and resource-efficient approach. This 
method minimizes the usage of water, fertilizers, and pesticides, thereby reducing the potential for 
contamination of water bodies. Furthermore, PA practices aid in the mitigation of soil erosion and 
promote soil health. These sustainable land management practices contribute to the well-being of 
ecosystems and bolster long-term environmental sustainability. 

The alignment between PA and sustainable farming practices is a noteworthy aspect. Farmers 
actively engage in preserving ecosystems and ensuring the long-term sustainability of agricultural 
activities by optimizing the use of resources, reducing waste, and conserving natural resources. This 
approach ensures that agriculture can continue to meet the needs of future generations. 

Precision farming to reduce the risks of pesticide leaching to groundwater in sandy soils was first 
studied by Mulla et al. (1996) at a field site in Washington State [36]. Measured concentrations 
in carbofuran applied at 8.1 kg ha–1 i.e. were measured to a depth of 1.8 m at 57 locations 
throughout the field and this data wad used to calibrate the convective-dispersive equation for 
pore water velocity, dispersion coefficient, and retardation factor [106]. To date, numerous studies 
have highlighted the potential of PA technologies to reduce the environmental impacts associated 
with agriculture [107–110] PA technologies excel in precisely matching farm inputs with crop 
requirements, thereby avoiding over-application [111]. For instance, applying just the right amount 
of nitrogen to achieve maximum crop yield has the potential to decrease nitrate contamination in 
groundwater and the pollution of downstream water sources [63]. This is particularly critical as 
agricultural non-point source pollution significantly contributes to the contamination of numerous 
global waterways. 

In a study conducted [112], it was observed that among the 14 environmental aspects considered, 
agricultural inputs were the most influenced in all categories, while gaseous emissions of all types 
(with CO2 being the most affected) were the least affected aspects. An increase in soil biodiversity 
was also noted, likely because the rational use of inputs derived from the application of PA 
technologies reduces the impact on fauna and flora, thus contributing to biodiversity preservation. 

It is evident that PA significantly mitigates the environmental impact of agriculture, addressing 
concerns such as greenhouse gas emissions, water contamination, and soil health. Research 
highlights PA's potential to reduce pollution risks, especially in pesticide management and 
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groundwater protection, while promoting precise resource use. This approach benefits ecosystems 
and preserves biodiversity, reinforcing its role in sustainable farming and environmental 
stewardship. 

 

1.2.1 Precision Agriculture adoption: Key Factors 

The applicability of PA extends to diverse agricultural domains, ranging from crop cultivation and 
livestock management to fisheries and forestry. The adoption of PA has been steadily increasing 
in recent years, as demonstrated by a study conducted by Maloku et. al. [113].Their research 
revealed a consistent and notable increase in the number of scientific articles dedicated to PA 
between 1996 and 2018. By 2018, the total count of scientific articles in the field of precision 
agriculture had reached an impressive 272. Interestingly, the study also highlighted that Chinese 
and USA-based organizations exhibited a higher level of interest in publishing articles related to 
PA compared to organizations in other countries. However, the assimilation of PA practices in 
agriculture often faces a number of challenges contingent on the local context. 

The exploration of factors influencing the adoption of PA has yielded a substantial body of 
literature. Over the years, several studies have tried to provide a world-wide overview of PA 
adoption [30,59,114]. Zhang et al. (2002) focused mainly on the technical issues associated with 
PA adoption and cited several adoption studies from the United States, United Kingdom, and 
Australia [30]. They identified the following constraints to adoption: (i) the quantity of PA data 
exceeds the ability of farmers to analyze and use it for management, (ii) lack of scientifically 
validated procedures determining variable rate application of inputs, (iii) absence of evidence for 
the benefits of PA, (iv) labor intensive and costly data collection, and (v) need for improved 
technology transfer. Furthermore, Griffin and Lowenberg-DeBoer (2005) summarized the 
worldwide data on PA adoption, reviewed the studies of PA economics, and drew implications for 
Brazil[59]. They reported detailed US PA survey information and worldwide PA adoption in terms 
of the number of combine yield monitors used in the United States, Australia, South Africa, several 
Latin American countries, and nine western European countries. Likewise, several other studies 
have examined broad aggregate factors such as farmer age, farm size, subsidy payments, the cost 
and complexity of technology [115], level of farmer education and access to crop consultants [116] 
and their influence and relationship with the adoption rate of PA technologies.,  

Tey and Brindal ,(2012) found that the adoption of PA technologies is a result of multi-dimensional 
considerations and is positively associated with (i) socio-economic factors (farmers who are older 
and have higher education level), (ii) agro-ecological factors(farmers whose farm has better soil 
quality, is self-owned, and is large), (iii) institutional factors (farmers who face greater pressure 
for sustainability), (iv) informational factors(farmers who have hired consultants and agreed on 
the usefulness of extension services),(v) farmer perception (farmers who perceived that PA 
technologies would bring profitability), and (vi)technological factors (farmers who have used 
computers) [8]. Operator age has been identified as a significant explanatory factor, showing a 
negative correlation with the adoption of high-technological practices, such as computers [117]. 
This negative relationship is often attributed to older farmers having shorter planning horizons, 
reduced incentives for change, and limited exposure to Precision Agriculture technologies [118]. 
Conversely, younger farmers tend to have longer career horizons and a greater inclination toward 
technology adoption [119]. They may be more motivated to explore PA technologies compared to 
their older counterparts. Farming experience, on the other hand, quantifies the duration for which 
farmers have been engaged in agricultural production activities. Greater experience can lead to a 
better understanding of spatial variability in the field [120], and potentially enhance operational 
efficiency through experiential learning [121]. However, more experienced farmers may perceive a 
reduced need for the additional information provided by PA technologies and, therefore, opt not 
to adopt them [122]. Since the implementation of PA technologies demands substantial 
technological literacy, analytical skills, and knowledge-based interpretation, farmers with higher 
levels of formal education are more likely to possess the necessary human capital [119]. 
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Furthermore, the utilization of precision agriculture technologies raises concerns regarding 
potential adverse environmental impacts and effects on the livelihoods of small-scale farmers. 

Moreover the adoption of Precision Agriculture technologies tends to be more prevalent on large 
farms [8]. This pattern emerges because larger farms possess a greater capacity to absorb the 
associated costs and risks, while simultaneously being able to spread these factors over a larger 
productive area. Additionally, as arable land becomes increasingly scarce due to development, the 
pressure to transition to more productive agricultural practices intensifies. Under such 
circumstances, farmers who face this pressure are more inclined to adopt PA. Furthermore, the 
information required for implementing PA technologies is typically sourced from extension services 
or agricultural consultants. However, these public services are designed for mass consumption, 
which can limit the officials' focus and availability to provide tailored assistance to specific farms. 
Given the technical complexity of PATs, many farmers opt to hire the services of third parties, such 
as cropping consultants, to set up and utilize these technologies effectively. This tendency has been 
substantiated by the research conducted by Robertson et al. (2012) and Larson et al. 
(2008)[116,119]. Furthermore, computer technology plays an indispensable role in Precision 
Agriculture [118]. Consequently, the utilization of computers is often identified as a key indicator 
of the propensity to adopt PA technologies, as observed in several studies [24,122,123]. 

It is evident that extensive research has been conducted to identify factors influencing the adoption 
of PA by individual farmers [8,24,39,39,111,116,118–120,122–135].These studies have highlighted 
various statistically significant factors, including the age of the farm operator, education, years of 
farming experience, farm specialization, land tenure, farm size, full or part-time farming, debt-to-
asset ratio, use of a crop consultant, perceived profitability of PA, computer usage, and irrigation. 
It's important to note that most of these studies have been conducted in developed countries, with 
limited research focusing on PA adoption in the developing world. Mondal and Basu (2009) 
outlined the theoretical reasons why PA should be adopted by farmers in developing countries 
[136]. Say et al. (2018) added to the literature by documenting the beginnings of PA adoption in 
middle- and lower-income countries [137]. They confirm that guidance is the most commonly 
adopted PA technology in developing countries. 

PA is called to be the agriculture of the 21st century. Although the assimilation of precision 
agriculture technologies has progressed, its adoption is influenced by social, economic, and 
environmental implications. Therefore, it's crucial to acknowledge that significant transformations 
require time for widespread acceptance. Just as the adoption of tractors in agriculture took time 
to become the norm, the complete embrace of PA necessitates a gradual approach to realize its 
full potential throughout the agricultural sector. 

1.3 Remote Sensing in PA 

Remote sensing applications in agriculture rely on the interaction between electromagnetic 
radiation and soil or plant materials, with a focus on measuring reflected radiation rather than 
transmitted or absorbed radiation. These applications are often categorized based on the type of 
platform used for the sensors, which can be satellite-based, aerial, or ground-based. 

Various remote sensing platforms possess distinct advantages and limitations concerning factors 
like spatial and temporal resolutions, spectral characteristics, coverage area, revisit frequency, data 
availability, cost, and processing needs. Consequently, choosing the optimal remote sensing 
platform for a particular crop yield prediction task relies on multiple considerations including crop 
type, analysis scale, forecasting objectives, available resources, and user preferences.  

1.3.1 Satellite remote sensing  

Satellites serve as versatile tools with applications in diverse domains, ranging from geology and 
agriculture to climate and emergency response (Figure 3). For over four decades, satellites have 
also played a pivotal role in advancing PA applications. 
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Figure 3. An overview of spectral, spatial, temporal, and radiometric resolution of different optical satellite system. 
Source: [138] 

The evolution of satellite technology has been remarkable, with three generations of instruments 
shaping this progress. The first generation offered relatively low spatial resolutions, ranging from 
1 km to 100 m. In the second generation, this improved to 30–10 m, while the third generation 
reached new heights with very high spatial resolutions of 5–0.5 m and less, leading to more 
accurate feature recognition [138]. This journey commenced for agriculture with the launch of 
Landsat 1 in 1972 (Figure 4) by the National Aeronautics and Space Administration (NASA). This 
was equipped with a multispectral sensor and possessing a spatial resolution of 80 meters per 
pixel, observed at 18-day intervals. After Landsat 1, a series of Landsat satellites (Landsat 2–9) 
were launched to provide high quality images to researchers, land managers, and policy makers 
to help in the management of natural resources globally. Later, in 1984, the Landsat 5 Thematic 
Mapper was launched to collect higher resolution (30 m) images in more bands in visible and NIR 
region.  

Landsat imagery was investigated for diagnosis of agricultural problems by Robert (1982), but 
difficulties in processing satellite remote sensing data at that time prevented meaningful results 
[139]. Zheng and Schreier (1988) and Bhatti et al. (1991) were the first to use aerial and satellite 
imagery, respectively, for the specific purpose of estimating spatial patterns in soil fertility that 
could be used to guide variable rate fertilizer applications [140,141]. Zheng and Schreier (1988) 
found that potassium fertilizer recommendations for a bare field in British Columbia could be 
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reduced relative to uniform applications if rates were varied according to spatial patterns in soil 
organic matter content identified using color aerial photographs. Bhatti et al. (1991) found that 
spatial patterns in soil organic matter from Landsat satellite imagery for bare soil on a commercial 
farm in Washington State were strongly related to patterns in soil phosphorus and wheat yield. 
They proposed that areas with low organic matter content and low crop productivity “could be 
managed with customized fertilizer and tillage practices” for environmental protection.  

 

Figure 4. Visual presentation of i) Landsat 1-3, ii) Landsat 4-5, iii) Landsat 7, iv) Landsat 8, v) Landsat 9, Source: 
NASA. Source:  [142] 

 
Until launch of the commercial IKONOS satellite in 1999, there were few instances where satellite 
remote sensing was used for precision farming applications [143]. IKONOS, collected imageries 
at 1-m resolution in panchromatic image and 4-m spatial resolution in visible and NIR bands with 
a revisit period of up to five days [143]. Imageries collected from IKONOS have been used for 
multiple purposes in PA, including soil mapping, crop growth and yield prediction, nutrient 
management, and ET estimation [144,144–146]. In 2001, DigitalGlobe, Longmont, CO, USA 
launched a satellite named QuickBird with capabilities similar to IKONOS and a revisit frequency 
of 1–3 days. 

After remote sensing applications started to have a wide research impact, efforts were made to 
design satellite imaging systems with higher spatial resolution and quicker revisit cycles. For 
instance, GeoEye-1 (2008), Pleiades-1A (2011), Worldview-3 (2014), SkySat-2 (2014), and 
Superview-1 (2018), were launched and collected multispectral images at a high spatial resolution 
of ≤2 m with a daily or sub-daily revisit period. A significant milestone in this progression was the 
introduction of WorldView 3 in 2014. This sophisticated satellite boasts an exceptional resolution 
of merely 0.31 metre panchromatic and 1.24 metre in the eight VNIR bands, 3.7m in the eight 
SWIR bands and a 30 m resolution in the CAVIS (Clouds, Aerosols, Vapours, Ice and Snow) 
bands. Moreover, it operates at an impressively swift update rate ranging from 1 to 4 days.  In the 
same year the Copernicus Programme, led by the European Space Agency [147], marked a new 
era in open access Earth observation by launching the first Sentinel satellite, Sentinel-1A. 
Subsequently, the Copernicus Programme has successfully launched several satellite missions, 
including open-source satellites Sentinels-1, 2, 3, and 5. One significant contribution of the 
Copernicus Programme was the launch of the multispectral instruments aboard the Sentinel-2 
satellites. The Sentinel-2 constellation consists of twin satellites, Sentinel-2A and Sentinel-2B, each 
making distinctive contributions to Earth observation [148]. Sentinel-2A was launched on June 23, 
2015, with the first images received a few days later, marking a significant milestone in the 
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Copernicus Programme's ongoing mission to enhance our understanding of Earth's dynamics. It 
has multiple multispectral bands with a spatial resolution of 10 to 60 metres per pixel.  

Each satellite is equipped with optical sensors designed to measure features on the Earth's surface 
by detecting and recording sunlight reflected from objects (Figure 6). The effectiveness of these 
sensors is determined by several critical factors, including their spatial, radiometric, spectral, and 
temporal resolution[149].  

 

Figure 5. Visual presentation of i)Albedo (10cm), ii) WorldView-4 (30cm), iii) Worldview-3, iv) Satellogic (0.7m), 
v)IKONOS (0.82m), vi) Stereo Satellite, vii) GeoEye-1 (0.41m), viii) WorldView-2 (0.46m), ix) WorldView-1 (0.46m), x) 
Jilin-1 (1m), xi) SPOT-7 (1.5m), xii) SPOT-6 (1.5m), xiii) Pelican, xiv) SuperView-1 (0.5m), xv) QuickBird (0.61m), 
xvi)TerraSAR-X, xvii) TH-01 (2m), xviii) SkySat (50cm). Source: NASA, [150] 

 

Spatial resolution, a fundamental aspect of remote sensing, refers to the inherent capacity of a 
sensor to discern the smallest detectable ground object. This resolution is inextricably linked to pixel 
size and image coverage, both of which are influenced by the number of pixels within the sensor 
and its proximity to the Earth's surface. This interplay is exemplified by sensors like Landsat, 
characterized by 30-meter pixels, which encompass an expansive image area of 185 km × 185 km. 
Similarly, the SPOT sensor boasts 20-meter pixels and is capable of generating comprehensive 
images spanning 60 km × 60 km. Meanwhile, the deployment of UAS sensors at altitudes of up 
to 3 km yields resolutions as impressive as 1-2 meters and image coverage that extends across 
approximately 100 hectares. Pleiades-1A and Worldview-3 have been used for many PA 
applications requiring high spatial resolution imagery, including disease and crop water stress 
detection [151–153]. 

Radiometric resolution, another indispensable facet, quantifies the sensor's ability to capture the 
intensity of radiation emitted by a target within a specific waveband. This resolution translates 
into the number of discrete radiometric levels available for individual pixels to record this intensity. 
For instance, sensors with an 8-bit radiometric resolution offer 256 distinguishable intensity levels, 
rendering a gradation from the darkest (0) to the brightest (256). Conversely, sensors with a 10-
bit radiometric resolution extend this capacity to an impressive 1024 levels per image pixel, 
enabling finer distinctions in recorded intensities. 

Spectral resolution, an intricate dimension of remote sensing, dictates the number of distinct 
wavebands of data that a sensor can simultaneously capture at each pixel. This resolution is 
profoundly significant due to its connection with the reflectance profiles of objects under study. For 
instance, as a prime example, vegetation exhibits distinct reflectance behaviours in response to 
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different wavebands. Photosynthesizing plants, including a range of flora such as groundcovers 
and vines, exhibit reduced reflectance in blue and red wavelengths. This can be attributed to the 
absorption of incident energy by chlorophyll and related pigments for photosynthesis. Conversely, 
these plants reflect a notably higher proportion of light within green wavelengths, thereby 
manifesting their characteristic green appearance to the human eye. Interestingly, in the near-
infrared range (wavelengths exceeding 700 nm), photosynthetic plants display a substantial 
increase in reflected sunlight—over 65%—which, while unperceivable to the human eye, can be 
effectively detected using specialized instruments. This pronounced reflectance in the near-infrared 
range is intrinsically tied to leaf cell structure and moisture content, which profoundly influence this 
reflective behaviour. 

Temporal resolution, the final cornerstone, encapsulates the frequency with which a sensor can 
amass data over time. This temporal dimension holds particular significance in capturing dynamic 
and evolving phenomena. For instance, the progression of vegetation growth or the onset and 
progression of stress conditions in crops can be accurately tracked and monitored through sensors 
with varying temporal resolutions. 

Spatial and temporal resolution requirements vary widely for monitoring terrestrial, oceanic, and 
atmospheric features and processes (Table 4). Each application of remote sensing sensors has its 
own unique resolution requirements and, thus, there are trade-offs between spatial resolution and 
coverage, spectral bands and signal-to-noise ratios. For a comprehensive overview,  

 

Table 4. Spatiotemporal resolutions of the satellite sensors used for PA applications.Source: [154] 

Satellite Years Active 
Sensor 

(Spatial Resolution) 

Temporal 
Resolution 

Application in PA 

Landsat 1 1972–1978 MS (80 m) 18 days Crop growth [155] 

AVHRR 1979-present MS (1.1 km) 1 day 
Nutrient management 

[146] 

Landsat 5 1984–2013 
MS and Thermal (30 -

120 m) 

16 days 
Biomass [156]; crop yield 
[157]; crop growth [158] 

Landsat 7 1999-2022 
MS and Thermal (30 - 

60 m) 

Landsat 8 2013-present 
MS and Thermal (30 - 

100 m) 

SPOT 1 1986–1990 
MS (20 m) 2–6 days 

Water management 
[159] 

SPOT-2 1990–2009 

IRS 1A 1988–1996 MS (72 m) 22 days 
Water management, 
nutrient management 

[136] 

LiDAR 1995 VIS (10 cm) 1 N/A 
Topography, nutrient 
management [160] 

RadarSAT 1995–2013 C-band SAR (30 m) 1–6 days Crop growth [161] 

IKONOS 1999–2015 MS (1 to 4 m) 3 days 

Crop [162]; soil 
properties [163]; nutrient 
management[146]; ET 

estimation [144] 

EO-1 Hyperion 2000–2017 HS (30 m) 16 days Disease[164,165] 

Terra MODIS 1999-present, 1–2 days 
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Aqua MODIS 2002-present 
MS (Spectroradiometer; 

250–1000 m) 

 Crop yield [166]; crop 
growth [167] 

 

Terra-ASTER 2000-present 
MS and Thermal (15 m–
V, NIR, 30 m–SWIR, 90 

m–TIR) 
16 days 

Water management 
[168] 

QuickBird 2001–2014 MS (2.44 m) 1–3.5 days Disease [169] 

AQUA AMSR-
E 2002–2016 

MS (Microwave 
Radiometer; 5.4 km–56 

km) 
1–2 days 

Water management 
[170] 

Spot-5 2002–2015 
MS (V, NIR–10 m, 

SWIR–20 m) 
2–3 days Crop yield [][171] 

ResourceSat-1 2003–2013 
MS (5.6m–V, 23.5 m–

SWIR) 
5 days 

Nutrient management 
[172] 

KOMPSAT-2 2006-present MS (4 m) 5.5 days Crop yield [173] 

Radarsat-2  C-band SAR (1–100 m) 3 days LAI and biomass [174] 

RapidEye 2008-present MS (6.5 m) 1–5.5 days 

Water management 
[175]; crop yield [176]; 

crop growth and 
chlorophyll [177] 

GeoEye-1 2008-present MS (1.65 m) 
2.1–8.3 
days 

Nutrient management 
[178] 

WorldView-2 2009-present MS (1.4 m) 1.1 days Crop growth [[179] 

Pleiades-1A  
MS (2 m) 1 day Crop growth [180,181] 

Pleiades-1B 2012-present 

VIIRS Suomi-
NPP 2011-present MS (IR Radiometer, 375 

m and 750 m) 
16 days 

Crop management 
(NDVI[182] ) 

VIIRS-JPSS-1 2017-present 

KOMPSAT-3 2012-present MS (2.8 m) 1.4 days Crop growth[183] 

Spot-6 2012-present 
MS (2.5 - 20 m) 1-day Disease[184] 

Spot-7 2014-2023 

SkySat-1 2013-present 
MS (1 m) sub-daily Crop growth [185] 

SkySat-2 2014-present 

Worldview-3 2014-present SS (1.24 m) <1 day 
Crop growth[186]; weed 

management [102] 

Sentinel-1 2014-present C-band SAR (5–40 m) 1–3 days Crop growth[187] 

Sentinel-2 2015-present 
MS (10 m–V and NIR, 
20 m–Red edge and 
SWIR, 60 m–2 NIR) 

2–5 days 
Yield [188]; N 

management [189] 

KOMPSAT-3A 2015-present 
MS (V NIR–2.2 m, 

SWIR–5.5 m) 
1.4 days Disease [190] 

SMAP 2015-present 
L-band SAR (1–3 km) 

and radiometer (40 km) 2–3 days 
Crop yield [191]; water 

management [192] 
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TripleSat 2015-present MS (3.2 m) 1 day Soil properties[193] 

ECOSTRESS-
PHyTIR 2018-present Thermal (38 × 69 m) 1–5 days ET [194] 

Landsat 9 2021-present OLI-2(30 m) 16 days 
Water quality 

monitoring, crop status 

 

Several trends are apparent in satellite based remote sensing (Table 4). Firstly, the spatial 
resolution of imaging systems has improved from 80 m with Landsat to sub-metre resolution with 
GeoEye and WorldView. Secondly, the return visit frequency has improved from 18 days with 
Landsat to subdaily with SkySat. Thirdly, the number of spectral bands available for analysis has 
improved from four bands (bandwidths greater than 60 nm) with Landsat to eight or more bands 
(bandwidths greater than 40 nm) with WorldView. Hyperspectral imaging systems such as 
Hyperion on the National Aeronautics and Space Administration (NASA) earth observing 1 (EO 
1) satellite provided even greater spectral resolution, with imaging from 400 to 2500 nm in 10 nm 
increments. 

While these advancements in satellite systems mark substantial leaps forward, they have certain 
limitations, particularly concerning crop monitoring. Moran et al. in 1997 and Yao et al. in 2010 
succinctly outlined the primary hurdles associated with the utilization of satellite remote sensing in 
PA [195,196]. One of the significant limitations lies in the reliance on satellite imagery captured in 
the visible and near-infrared (NIR) bands, which are contingent upon cloud-free conditions for 
optimal functionality. These bands perform best when solar irradiance remains relatively consistent 
over time. In contrast, radar imagery obtained via satellites or aircraft remains unaffected by cloud 
cover, offering a more reliable alternative. Additional challenges entail the need to calibrate raw 
digital numbers to accurately represent surface reflectance, the correction of imagery to eliminate 
atmospheric interferences and accommodate off-nadir view angles, and the geo-rectification of 
pixels through the utilization of GPS-based ground control locations [143]. These intricacies 
underscore the complexities involved in harnessing satellite remote sensing for PA.  

On the other hand, satellite platforms enable the assessment of crop growth and yield potential 
on a large scale, providing valuable insights for agricultural management and planning. The ability 
to monitor crop health and productivity remotely allows for identifying regions with potential yield 
losses and implementing targeted interventions to mitigate risks. Secondly, satellite-based yield 
prediction offers a non-destructive and cost-effective approach that reduces the reliance on labour-
intensive field surveys, thereby increasing efficiency and reducing costs. Compared to the rest of 
the platforms, satellites can offer broad coverage, high temporal resolution, while being cost 
effective [197]. They can also be used in multisource data integration, such as the integration of 
optical and SAR remote sensing[154]. Additionally, satellite-based yield prediction has the 
potential to provide timely and up-to-date information, allowing for better decision-making and 
response to climate variability and extreme events. These advantages can explain why the majority 
of the studies incorporated satellite remote sensing approaches. 

In summation, the convergence of satellite-based observations, remote sensing technologies, and 
data-driven analytics has opened up new avenues for monitoring and managing agricultural 
landscapes at unprecedented levels of granularity. By harnessing the power of satellite data, 
researchers and practitioners can obtain real-time insights into various aspects of crop health, soil 
moisture, nutrient distribution, and environmental conditions. These insights, when coupled with 
advanced yield prediction models, enable farmers and stakeholders to make informed decisions 
that optimize resource allocation, minimize risks, and maximize overall crop yield. Moreover, VIs 
derived from satellite imagery have shown promise in capturing the spatiotemporal variations of 
crop health and productivity. 
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1.3.2 UAS Platforms 

As technology continues to advance, the utilization of unmanned aerial systems (UAS), commonly 
known as drones or unmanned aerial vehicles (UAVs), has gained remarkable traction for data 
collection and various applications in agriculture [198]. These versatile aerial platforms, 
encompassing both fixed-wing and rotary-wing aircraft, are equipped with a wide array of sensors 
for comprehensive monitoring and can operate autonomously or be controlled remotely.  

The history of unmanned aerial systems (UASs) has seen significant milestones. Formally, the 
drones’ chronicle starts in 1783 in France, where Montgolfier brothers made a public demonstration 
flight of a globe shaped balloon filled with smoke [198]. However, the forerunner of modern 
remote-controlled drones is considered the first radio-operated boat; a technological masterpiece 
shown by Nikola Tesla in Madison SquareGarden in 1898. The earliest unmanned radio-controlled 
aircraft made its appearance during World War I, known as the Curtiss N-9, which was invented 
by Cooper and Sperry in 1917. Around this time, Kettering conceptualized the "Kettering Bug," 
regarded as a predecessor to the modern cruise missile (Figure 7). The significant development of 
drones continued during World War II with the creation of the Radioplane OQ-2 in 1940, marking 
the first mass-produced drone in the United States. Subsequently, in 1945, an adapted version 
known as the OQ-3 was utilized for reconnaissance missions. Post-World War II, the United States 
introduced the Ryan Firebee, a series of target drones, which were noteworthy for being the first 
jet-propelled drones, primarily used for air-to-air combat training. In the mid-1950s, the 
Convertawings Quadrotor, the first four-rotor helicopter, was introduced, featuring an "H" 
configuration for its four rotors. Another pioneering moment in UAS history was the Mastiff, the 
first Israeli Military UAS equipped with live-streaming capabilities in 1973. Initially transmitting 
black-and-white video, it was later upgraded to a colored camera, ushering in a new era of drone 
applications, particularly for tracking humans or vehicles. In 1986, the RQ2 Pioneer UAS was 
employed by the US Navy to provide real-time battlefield imagery and perform various tasks, 
including reconnaissance and surveillance. The 1990s saw the recognition of the significance of 
UAS in warfare, leading to advancements in lightweight materials and communication technology. 
One standout development during this period was the remotely piloted aircraft RQ-1 Predator, 
initially equipped with a reconnaissance camera. In 2002, it was renamed "MQ-1," with "R" 
representing "Reconnaissance" and "M" indicating "Multi-role." These historical milestones 
demonstrate the evolution of UASs from early experimental designs to crucial tools in modern 
military operations. Yamaha developed probably the first UAS applied to agriculture in 1997 by 
using a rotary wing aircraft [199]. Using helicopters showed big advantages in field spraying due 
to their high maneuverability, reduced speed and velocity and the positive impact of the airflow 
from the rotor in spraying tasks. Nevertheless, in the 1990s, multiple countries limited or even 
banned aerial application of products such as pesticides or fertilizers. Moreover, in 2009 the 
European Union mostly prohibited aerial spraying of pesticides, which effectively ruined most 
commercial services of aerial application in all member states and overseas territories. 

 

Figure 6. i)Prototype Kettering Bug (circa 1918); ii)OQ-2 on display at the Aviation Unmanned Vehicle Museum, 
iii)BQM-34F Firebee II RATO launch, Tyndall AFB 1982 Source: Wikipedia 
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The technological progress of drones in recent years is undeniable. Initially designed primarily for 
military applications, these UASs have evolved significantly. As the landscape shifted towards 
commercial utilization, government agencies and private entities began testing and deploying 
drones for a wide array of purposes such as. environmental monitoring, response to humanitarian 
disasters, surveying and mapping, as well as engineering and construction 

In agriculture, drones provide crucial data for precision farming practices, optimizing crop yields 
and resource usage. A recent analysis and forecast report [200]conducted in the USA, using data 
spanning from 2014 to 2017, highlights the PA among primary application areas for unmanned 
aerial vehicles (UAVs). The PA application is expected to record a considerable Compound Annual 
Growth Rate (CAGR) of over 15% from 2023 to 2030 as drones are becoming one of the essential 
aspects of farm management [201]. Furthermore, the USA Federal Aviation Administration (FAA) 
forecast for the period 2019–2038, as provided by  Association for Unmanned Vehicle Systems 
International (AUVSI), ranks agriculture as the sixth most prominent sector in terms of the number 
of missions, accounting for 7% [202].The last decade UASs increasingly playing an active role in 
the field of agriculture (Figure 7). 

 

Figure 7: The number of studies in Web of Science on UAS/UAV applications in agriculture. Source: [193] 

Their  area of application is wide (Figure 8) including nutrients evaluation and health assessment, 
water stress analysis, yield and biomass estimate [203], soil monitoring, weeds detection[204–207], 
environmental monitoring, aerial spraying [208], mapping, greenhouses [209–212]. These devices 
offer valuable assistance to farmers in a wide range of tasks, such as crop planning, analysis, and 
field monitoring to assess crop growth and health [213].  

 

Figure 8: Share of UAS in specific tasks in agriculture and remote sensing platforms utilised in various aspects. Source:   
[198]. 
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Their distinguishing attributes  of UAS encompass high spatial ground resolution [214], ranging 
from 0.1 to 0.5 meters per pixel in lighter models, with some models achieving ultra-high resolutions 
as fine as 0.01 meters per pixel. Moreover, these autonomous platforms, whether under remote 
human control or autonomously operated, provide flexible and timely surveillance. These qualities 
make them particularly well-suited for medium to small crops, which typically span from 1 to 20 
hectares, especially in areas characterized by substantial heterogeneity [215] 

Nonetheless, it is imperative to underscore that UASs face certain limitations that warrant 
consideration. The effectiveness of UAS data collection hinges on the sensor technologies they 
employ. While UASs can capture ultra-high-resolution images nearly in real-time, they must adhere 
to flight permits and regulations, which can introduce inflexibility in flight scheduling and lead to 
higher operating costs. To operate aircraft, obtaining operational clearances from civil aviation 
authorities and ensuring the presence of qualified pilots are mandatory prerequisites. Furthermore, 
certain areas, including prisons, military installations, airports, and restricted or hazardous zones, 
are off-limits for UAS operations. Regulatory authorities offer pilots guidance through maps and 
lists to facilitate aerial activities within designated surveillance zones. Discussions and deliberations 
concerning UAS regulation have been actively conducted within organizations such as the 
European RPAS (Remotely Piloted Aerial System) Steering Group and the Federal Aviation 
Administration. Additional constraints are associated with payload weight, which encompasses the 
equipment required for specific tasks, and limited flight duration, typically falling under one hour 
due to battery capacity.  

The landscape of UASs encompasses a wide range of types varying in size, shape, configuration, 
and flight characteristics, adding complexity to their operation. The deployment of UASs on a 
commercial scale, including expenses related to equipment, data processing, and software, can be 
a substantial investment for small-scale farmers [216,217].  UAS surveys entail handling large data 
volumes and preprocessing, with generated datasets restricted to the user's collected information 
[218]. Consequently, deploying UASs on a commercial scale involves significant expenses, 
encompassing equipment, data processing, and software costs, which can be a substantial 
investment for small-scale farmers [216,217]. In addition, UASs are subject to certain constraints 
related to weather conditions. These constraints imply that UAS operations can be influenced or 
restricted by various atmospheric factors, such as wind, precipitation, and clouds (Figure 9). 
Despite these challenges, continuous advancements in low-cost sensor technologies and the 
potential for cost savings and benefits are anticipated to outweigh these initial costs in the future.  

 

Figure 9: An example of a partly cloudy day that is unfavorable for UAS flights. Source: Personal Archive 
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In summary, the growth in the development and utilization of UASs has facilitated the acquisition 
of high spatial, spectral, and temporal resolution data, essential for PA management at the field 
or farm level. Moreover, multispectral, high spatial resolution data collected through UASs can be 
integrated with existing satellite data, extending their applications to larger agricultural areas 
[219]. However, UASs grapple with limitations such as abbreviated flight times—typically less than 
30 minutes for rotorcraft and 60 minutes for fixed-wing aircraft—and the requirement for pilots to 
be duly licensed and adhere to guidelines delineated by national civil aviation authorities [220]. 
Privacy and data security concerns are additional considerations entwined with UAS use in 
agriculture. Despite these constraints, the growing utilization of UASs in agriculture remains 
inevitable due to their cost-effective data collection capabilities and efficient monitoring potential 
[221]. 

1.3.3 Proximal platforms 

Ground-based remote sensors have been in use for nearly three decades (Table 5). The shift from 
remote sensing to proximal sensing for crop status assessment was pioneered by Schepers, Francis, 
Vigil, and Below in 1992 [222]. They utilized a Minolta Soil Plant Analysis Development (SPAD) 
meter to measure leaf greenness (chlorophyll) in maize crops during the silking stage, varying the 
applied nitrogen (N) fertilizer rates. Their study revealed that SPAD meter readings of leaf 
reflectance at 650 and 940 nm correlated with the amount of applied N fertilizer and independent 
measurements of leaf N concentration. 

Table 5: Innovations in remote and proximal leaf sensing in precision agriculture. Source: [143] 

Year Innovation Reference 

1992 
SPAD meter (650, 940 nm) used to detect N 

deficiency in corn Schepers et al., 1992; [222] 

1995 Nitrogen sufficiency indices 
Blackmer & Schepers, 1995; 

[223] 

1996 
Optical sensor (671, 780 nm) used for on-the-go 
detection of variability in plant nitrogen stress Stone et al., 1996; [224] 

2002 

Yara N sensor 
Link et al., 2002, TopCon 

industries; [225] 

GreenSeeker (650, 770 nm) 
Raun et al., 2002, NTech 

industries 

CASI hyperspectral sensor-based index 
measurements of chlorophyll 

Haboudane et al., 
2002, 2004; [226,227] 

MSS remote sensing of ag fields with UAS Herwitz et al., 2004; [228] 

2003 Fluorescence sensing for N deficiencies Apostol et al., 2003; [229] 

2004 Crop Circle (590, 880 nm or 670, 730, 780 nm) 
Holland et al., 2004, 

Holland scientific; [230] 

 

Blackmer and Schepers (1995) introduced the concept of a nitrogen sufficiency index (NSI) to 
assess the degree of N stress in maize [223]. The NSI was defined as the ratio of SPAD meter 
greenness readings for crops in a given field location relative to SPAD readings for the same crop 
in a well-fertilised reference strip with no N deficiencies. NSI values less than 0.95 were used to 
indicate areas with N stress that required additional N fertiliser. Varvel, Schepers, and Francis 
(1997) showed that SPAD meters and NSI values could be used for in-season correction of N 
deficiency in maize [231]. Bausch and Duke (1996) showed that the SPAD meter could be replaced 
with a boom-mounted radiometer to estimate spatial patterns in NIR/G ratio and NSI across an 
irrigated maize field based on comparisons with a well-fertilised reference strip [232]. They 
observed that this approach could detect N deficiencies in the V6 growth, but results were 
confounded by interference with reflectance patterns from bare soil[233]. 

https://www.sciencedirect.com/science/article/pii/S1537511012001419#bib87
https://www.sciencedirect.com/science/article/pii/S1537511012001419#bib15
https://www.sciencedirect.com/science/article/pii/S1537511012001419#bib99
https://www.sciencedirect.com/science/article/pii/S1537511012001419#bib57
https://www.sciencedirect.com/science/article/pii/S1537511012001419#bib79
https://www.sciencedirect.com/science/article/pii/S1537511012001419#bib40
https://www.sciencedirect.com/science/article/pii/S1537511012001419#bib40
https://www.sciencedirect.com/science/article/pii/S1537511012001419#bib39
https://www.sciencedirect.com/science/article/pii/S1537511012001419#bib42
https://www.sciencedirect.com/science/article/pii/S1537511012001419#bib3
https://www.sciencedirect.com/science/article/pii/S1537511012001419#bib43
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Stone et al. (1996) measured spectral radiance in the red (671 nm) and NIR (780 nm) bands in 
wheat with a sensor mounted on a mobile lawn tractor [224]. They used these data to estimate a 
spectral index known as the plant nitrogen spectral index (PNSI), which was the absolute value of 
the inverse of NDVI. Results showed that PNSI was strongly correlated with crop N uptake. Sensor 
readings were used to vary N fertiliser rates using an algorithm that increased exponentially with 
PNSI values[234] . This was the beginning of technology to variably apply N fertiliser “on-the-go” 
in response to proximal crop sensing and was the basis for commercial development of the 
GreenSeeker NDVI active sensor marketed by NTech Industries, Ukiah, CA, USA in 2001. Raun 
et al. (2002) subsequently developed a seven-step response index (RI)-based algorithm to 
estimate crop N fertiliser needs for maize and wheat based on in-season sensing of crop 
reflectance relative to check plots with no added fertiliser and reference plots with sufficient 
fertiliser[235]. This algorithm accounted for both season-to-season temporal variability in crop 
growth using the concept of in-season estimated yield (INSEY) as well as within-field spatial 
variability in N supply. Algorithms for estimating potential crop yield and N uptake are available 
for many crops and locations around the world [236]. The RI is estimated as the ratio of NDVI 
values in the crop relative to those in a reference strip with sufficient fertiliser. 

Link, Panitzki, and Reusch (2002) and Reusch, Link, and Lammel (2002) created a passive sensor 
mounted on a tractor to assess crop nitrogen (N) status based on NDVI [225,237]. Initially called 
the Hydro-N sensor, it has since been rebranded as the Yara-N sensor by Yara in Oslo, Norway. 
Another version of the Yara-N sensor is available, incorporating active sensors, as developed by 
Link and Reusch (2006) [238]. These active sensors mitigate errors caused by varying cloud cover 
and enable tractor operators to work at night. 

Holland et al. (2004) introduced the Crop Circle sensor, which initially used green and near-
infrared (NIR) reflectance to estimate crop nitrogen (N) deficiencies [230]. They chose green 
reflectance over red based on research showing that, with a crop leaf area index (LAI) above 2.0, 
green NDVI becomes more sensitive to chlorophyll changes and potential yield, as demonstrated 
in prior studies [239–241]. This addressed limitations of the GreenSeeker sensor in advanced crop 
growth stages. Solari et al. (2008) found that N deficiencies could be more accurately predicted 
with a green chlorophyll index ((NIR880/VIS590) − 1) compared to green NDVI, using the Crop 
Circle sensor [242] . Sripada et al. (2008) showed that spectral index performance improved when 
using ratios with corresponding values from reference strips receiving sufficient N fertilizer [243]. 
Kitchen et al. (2010) and Scharf et al. (2011) demonstrated that Crop Circle sensor use allowed 
farmers to reduce N fertilizer, boosting crop yields and farm profitability [244,245]. 

One limitation of the chlorophyll meter, GreenSeeker, Yara N and Crop Circle sensors, however, 
is that they cannot directly estimate the amount of N fertiliser needed to overcome crop N stress 
[246].  To overcome this, scientists have conducted comparisons of sensor readings with readings 
in reference strips receiving sufficient N fertiliser [223,235,243,244]. They have used these data to 
develop N fertiliser response functions that relate sensor readings to the amount of N fertiliser 
needed to overcome crop N stress [245]. Even with this approach, reference strips with adequate 
fertiliser have to be strategically placed in representative soils and landscapes because yield 
response to N fertiliser exhibits significant spatial variability across production fields [247].  

Ground-based sensors encompass various instruments grouped by their functionalities and 
applications. These instruments include weather data recording through local meteorological 
stations and soil sensing. Soil sensing involves continuous real-time monitoring of spatial variations 
in soil properties using sensors mounted on tractors. The first application of this approach was for 
soil organic matter sensing based on reflectance from multiple light emitting diode (LED) sensors 
emitting radiation at 660 nm [143]. A major breakthrough in PA occurred when Carter, Rhoades, 
and Chesson (1993) introduced continuous real-time, non-contact proximal sensing of soil apparent 
electrical conductivity using non-invasive electromagnetic induction with the Geonics EM-38 
(Geonics Ltd., Mississauga, Ontario, Canada)[248]. 

Although ground-based sensors do provide some capabilities unavailable from other remote 
sensing platforms, there are some drawbacks to these types of sensors. Gathering data using 
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handheld sensors can be tedious and time consuming. Even if the sensors are mounted to vehicles, 
the data collection process is highly inefficient when used on larger fields. Some of these sensors 
are inflexible regarding the type of spectral data that can be collected. 

In contrast to the predominantly passive sensors carried by satellite or UAS, most ground-based 
sensors are active and are generally either handheld or mounted on various equipment. Active 
sensors produce their own light signal and measure the resulting reflectance while passive sensors 
only capture the reflectance from ambient sunlight [249]. These active ground-based sensors have 
some benefits unmatched by the other systems. In comparison to collecting data using other 
platforms, ground-based sensors tend to be less expensive, and since most of these sensors are 
active, they are not as restricted by weather conditions. Cloud cover does not affect the data since 
the sensors produce their own light [249]. Due to the close proximity at which the data are 
collected, there is less atmospheric interference leading to more accurate data as well as high 
spatial resolution. These ground-based sensors are also more suitable for some applications, 
particularly those using smaller fields.  

In summary, proximal sensors present distinct advantages in terms of precision and cost-
effectiveness in agriculture. Since most of these sensors are active, they are not as restricted by 
weather conditions Collecting data in close proximity minimizes atmospheric interference, resulting 
in highly accurate data with superior spatial resolution [249]. Nevertheless, r, they do have 
limitations related to coverage, data interpretation, maintenance requirements, and initial costs. 
Hence, careful assessment of individual needs and available resources is crucial when considering 
the implementation of remote sensor technology. 

1.3.4 Vegetation Indices 

Remote sensing refers to non-contact measurements of radiation reflected or emitted from 
agricultural fields. Canopy reflectance is used to identify biophysical and biochemical properties 
of the canopy. The spectral response of the vegetation is unique, as it reflects the plant’s health 
and nutritional status, and is highly dependent on solar radiation, soil properties, and available 
nutrients. VIs and soil properties can be calculated using optical sensors mounted on a UASs, 
satellites or ground vehicles. They are a numerical depiction of the relationship between various 
wavelengths of light reflected from the plant surface. More than one hundred VIs  have been 
derived from multispectral imagery to simplify the monitoring method [250]. Because of the 
significant correlation between N and absorption of chlorophyll in the visible and near infrared 
region, most of the VIs were calculated from bands in the visible and near infrared range [251,252].  

The most renowned and applied VI is the Normalized Difference Vegetation Index (NDVI), 
computed as the normalized difference between NIR and red reflectance, and generally used to 
assess vegetation greenness in space and time [253]. NDVI has been used to detect crop nutrient 
deficiencies, patterns in crop yield, insect and weed infestations, and crop diseases [36]. However, 
NDVI has several limitations, however, including potential interference from soil reflectance at low 
canopy densities and insensitivity to changes in leaf chlorophyll content in mature canopies with 
leaf area index values that exceed 2 or 3 [254]  As a result, there has been significant research 
effort devoted to finding broadband multispectral indices that can be used as an alternative to 
NDVI [241]. In general, there are three classes of broadband multispectral indices used in precision 
farming. These include soil-adjusted VIs, ratios of green and near-infrared reflectance bands, and 
ratios of red and near-infrared reflectance bands [255]. Soil-adjusted vegetation indices reduce 
reflectance from bare soil that interferes with the interpretation of reflectance from a growing 
crop before canopy closure. Red ratio indices typically are sensitive to absorption of radiation by 
leaf chlorophyll, while green ratio indices are sensitive to leaf pigments other than chlorophyll. In 
commonly used red and green ratio indices, either the red or green or the near-infrared reflectance 
can appear in the numerator of the ratio. 

Many broadband spectral indices (Table 6) other than NDVI are available for use in PA 
[243,256,257]. These indices reflect two historical trends in remote sensing for crop characteristics: 
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the prediction of reflectance ratios in the Red (R) and NIR bands versus ratios in the green (G) 
and NIR bands. The Normalised Red (NR) index focuses on the portion of the spectrum where 
chlorophyll strongly absorbs radiation. In contrast, the Normalised Green (NG) index focuses on 
the portion of the spectrum where pigments other than chlorophyll (carotenoids, anthocyanins, 
xanthophylls) absorb radiation. Similarly, there are two forms of the Ratio Vegetation Index (RVI), 
one that consists of the ratio of NIR to R reflectance, the other Green Ratio Vegetation Index 
(GRVI) that consists of the ratio of NIR to G reflectance. Two forms of the NDVI exist, one that 
involves NIR and R reflectance, the other Green Normalized Difference Vegetation Index 
(GNDVI) involves NIR and G reflectance. The Difference Vegetative Index (DVI) was developed 
using the difference between reflectance in the NIR and R bands to compensate for effects of soil 
reflectance (Tucker, 1979). Sripada et al. (2006) found that economically optimum N rate in corn 
was better correlated with green difference vegetation index (GDVI) (NIR − G) than DVI (NIR 
− R), and these indices that compensated for soil effects performed better than NIR and R ratio 
indices such as NDVI and RVI that did not compensate for soil effects. A wide range of other 
indices have been developed to compensate for soil effects, including Soil Adjusted Vegetation 
Index (SAVI), Green Soil Adjusted Vegetation Index (GSAVI), Optimised Soil Adjusted 
Vegetation Index (OSAVI), Green Optimised Soil Adjusted Vegetation Index (GOSAVI) and 
Modified Soil Adjusted Vegetation Index (MSAVI).  

Table 6. Multi-spectral VIs available for use in precision agriculture. Source: [143] 

Index Definition Reference 

NG G/ (NIR + R + G) Sripada et al., 2006[241] 

NR R/ (NIR + R + G) Sripada et al., 2006, [241] 

RVI NIR/R Jordan, 1969 [258] 

GRVI NIR/G Sripada et al., 2006, [241] 

DVI NIR - R Tucker, 1979[259] 

GDVI NIR - G Tucker, 1979, [259] 

NDVI (NIR - R)/ (NIR + R) Rouse et al., 1973 [260] 

GNDVI (NIR - G)/ (NIR + G) Gitelson et al., 1996, [239] 

SAVI 1.5*[(NIR - R)/ (NIR + R + 0.5)] Huete, 1988[261] 

GSAVI 1.5*[(NIR- G)/ (NIR + G + 0.5)] Sripada et al., 2006, [241] 

OSAVI (NIR - R)/ (NIR + R + 0.16) 
Rondeaux, Steven, & Baret, 

1996[262] 

GOSAVI (NIR G)/ (NIR + G + 0.16) Sripada et al., 2006, [241] 

MSAVI2 
0.5*[2*(NIR + 1) -SQRT ((2*NIR + 1) ^2 8*(NIR - 

R))] 
Qi, Chehbouni, Huete, Keer, 

& Sorooshian, 1994 

 

So far, a wide number of studies have demonstrated that spectral indices are effective in 
identifying spatial patterns of crop parameters, making them valuable tools for precision 
agriculture and crop management. These indices, with their unique focus on specific aspects of 
plant health and soil correction, play a pivotal role in PA for optimizing agricultural practices and 
decision-making. 
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1.4 Processing Tomato Crop 

The tomato, scientifically classified as Solanum lycopersicum L., belongs to the Solanum genus 
within the broader Solanaceae family. Although it is customarily considered a vegetable it is 
actually a fruit and more specifically a berry based on its plant parts. This misunderstanding was 
a question of debates during the 19th century in USA, with the special case of Nix vs. Hedden — 
149 U.S. 304 (1893). In 1887, Nix contested the decision of the tax collector of the port of New 
York to recover taxes on tomatoes imported from the West Indies in the spring of 1886, which the 
collector assessed as a vegetable. The court opined: “Botanically speaking, tomatoes are the fruit 
of a vine, just as are cucumbers, squashes, beans, and peas. But in the common language of the 
people, […] all these are vegetables which are grown in kitchen gardens, and which, whether eaten 
cooked or raw, are, like potatoes, carrots, parsnips, turnips, beets, cauliflower, cabbage, celery, and 
lettuce, usually served at dinner in, with, or after the soup, fish, or meats which constitute the 

principal part of the repast, and not, like fruits generally, as dessert” [263]. The name Lycopersicon, 
bestowed by Miller in 1788, is universally recognized and adopted by researchers studying 
tomatoes. 

1.4.1 History 

The history of tomato dates back to 700 A.D., in the tropical regions of South America (Peru, 
Bolivia, Ecuador) or Mexico, where wild plants can be still found. The word "tomato" itself is 
believed to have been derived from the Aztec Nahuatl word "tomatl" [264] that gave rise to the 
Spanish word “tomate”. It was first introduced in Europe from Spanish explorers in the early 16th 
century, and was cultivated in various European countries, including Portugal, Spain, Italy, France, 
England, and Belgium. It was initially used as a food by the Italians. Italy holds the distinction of 
providing the first recorded description of the tomato in 1554, affectionately referring to its fruit 
as "golden apples" (pomi d' oro), possibly because one variety of the plant bore fruits with a 
striking yellow hue. In the northern Europe, tomato was originally cultivated as an ornamental 
plant and was considered poisonous. However, this is partly true, since all the green parts of the 
plant contain the neurotoxin solanine. It’s cultivation in the USA began two centuries later.  

Tomatoes are divided in two categories, based on the direction of the production; the first is the 
fresh consumption and the second is the processed tomato, where the production is processed into 
other products. A pivotal moment in the history of tomato processing occurred in the early 1800s 
in the United States with the emergence of canning tomatoes as one of the earliest forms of 
tomato processing. However, a significant breakthrough came about in 1893, when John W. Gates, 
an innovative entrepreneur and inventor, introduced the pneumatic tomato-paste process. This 
groundbreaking innovation revolutionized the production of tomato paste, transforming it into a 
fundamental ingredient for various food products. 

The early 20th century witnessed a remarkable expansion in tomato cultivation, predominantly 
driven by the burgeoning canning industry's demand for tomato paste, as elaborated by Gould in 
2013 [265]. In Greece it was originally cultivated in the Dodecanese. In 1915, the production of 
tomato paste in a small pre-industrial technology plant in the village of Messaria in Santorini 
[266]. In just seven years, one of the first tomato canning factories in the Balkans was built, that 
was a state-of-the-art technology factory at that time. After 1945, there was a significant expansion 
in the tomato processing industry. Modern industrial processing units were created, and they had 
a daily processing capacity of 3,500 baskets of tomatoes, indicating the growing importance of 
tomato processing in the region.  

With the growth of the food industry and an increasing demand for convenient food products, 
tomato processing continued to evolve. This suggests that the tomato processing industry adapted 
to changing consumer preferences and technological advancements to meet the growing demand 
for tomato-based products. 
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1.4.2 Breeding 

Tomatoes intended for processing are primarily grown in fields, while fresh tomatoes can be 
cultivated either in fields or greenhouses, with or without temperature control. Over time, breeding 
objectives for tomatoes have evolved, with cultivars released and growing systems modified. 
Although three main objectives persist—adaptability to the environment, resistance to pests and 
diseases, and fruit yield and quality—tomato breeding has gone through four distinct phases: 
breeding for yield in the 1970s, for shelf-life in the 1980s, for taste in the 1990s, and more recently, 
for nutritional value [267–271]. 

 
Figure 10. Processing tomatoes grown in open fields. Source: Personal Archive  

Breeding efforts in tomato started more than 200 years ago [267]. Until the 1950s, tomato 
breeding developed multipurpose cultivars to meet several needs. Some interesting traits were 
introduced such as tolerances to abiotic stresses, broad adaptability to different environments and 
early fruit maturity. Subsequently, breeding objectives depended upon the method of production: 
open field vs greenhouse production, and whether the fruits are used fresh or processed [272,273]. 
Processing tomato needed the introduction of specific morphological and phenological traits such 
as: determinate growth habit, concentrated flowering and fruit set, canopy suitable for once-over 
machine harvest, easy separation of fruit from the vine (jointless characteristic) [272,274]. More 
specifically, varieties intended for processing should possess the following specific attributes [271]: 

• Concentrated Flowering and Fruiting: These varieties should exhibit a concentrated pattern 
of flowering and fruiting, which means that a significant number of flowers should develop 
into fruits in a relatively short time frame. This characteristic ensures efficient machine 
harvesting. 

• Determinate Growth Controlled by the sp. Gene: The plants should have a determinate 
growth habit controlled by the "spontaneous self-pruning" (sp.) gene. This genetic trait helps 
control the size and structure of the plant, making it more conducive to mechanical harvesting. 
The "spontaneous self-pruning" mutation (sp.), which emerged in 1914, allowed the 
development of bushy growth habit cultivars. This mutation also concentrated flowers and, 
consequently, fruits, contributing to fruit firmness and resistance to over-ripening. Cultivars 
with this mutation became the preferred choice for mechanical harvest. The "jointless" 
mutations (j and j2) are characterized by the absence of an abscission zone in the fruit pedicel, 
enabling harvest without calyx and pedicel, resulting in fruit free from any "green" parts [271]. 
The presence of a jointless pedicel, which means that there is no natural separation point 
between the fruit and the stem, is desirable for machine harvesting. This feature allows the 
fruit to be cleanly detached from the plant without leaving any "green" parts behind. 

• Elongated Fruit Shape: In general, varieties with elongated fruit shapes tend to suffer less 
damage during machine harvesting compared to round or irregularly shaped fruits. This 
attribute contributes to higher yield retention. 



Yield Prediction in processing tomato crop, through Precision Agriculture practices   

PhD Thesis Nicoleta K. Darra 

 

 

38(163) 

• Resistance to Cracking, Crushing and Puncture: Varieties should be resistant to fruit cracking, 
which can occur due to environmental factors or uneven ripening Processed tomatoes should 
also have fruits that are resistant to crushing and puncture. This ensures that the fruits remain 
intact during the mechanical harvesting process and maintain their quality for processing. 

• Uniform Fruit Set and Synchronous Maturity: Uniformity in fruit set and ripening is crucial for 
mechanical harvesting systems. Synchronous maturity, where fruits on the same plant ripen at 
the same time, is often a dominant or overdominant trait that is polygenically inherited. This 
trait is highly desirable for efficient machine harvesting because it minimizes the need for 
multiple passes through the field and ensures that the machine can efficiently collect fruits at 
the right stage of maturity. 

Moreover, also specific fruit quality traits are required, such as: low pH, high soluble solids, total 
solids and viscosity [265,267,275].  

A significant milestone in tomato cultivation has been the breeding of cultivars specifically 
designed for mechanical harvesting. The creation of VF 145, which was the first cultivar intended 
for mechanical harvesting and subsequently became a major player in the California processing 
tomato industry for over a decade, is a fascinating story (G. C. Hanna, unpublished) [272]. In the 
early stages, the concept of tomato harvesters didn't even exist, and there was no clear idea of 
how they might function. However, two critical needs were identified: the fruit needed greater 
firmness to withstand machine handling, and the plant had to have a very short fruit-set period to 
ensure a high percentage of ripe fruits at the same time. Hanna's vision for a machine-harvestable 
cultivar began to take shape in 1947 when he released a small determinate strain resulting from a 
cross between 'Gem' and 'San Marzano,' known as 'Red Top.' By using 'Gem' as a parent, he 
developed multiple small determinate strains. Unfortunately, these strains were more susceptible 
to verticillium wilt at the beginning of fruit ripening, leading to small clusters of sunburned fruit. 
The heavy concentration of fruit on these small plants created stress and increased their 
vulnerability to disease. To address this issue, a verticillium-resistant strain known as VR 11, 
developed at the USDA, was introduced to incorporate disease resistance.  

Efforts to develop tomato varieties specifically suited for machine harvesting have been extensively 
reviewed by Lukyanenko [276], indicating the importance of ongoing research and breeding to 
meet the demands of modern agricultural practices and processing industries. These efforts aim 
to optimize tomato varieties for efficient and cost-effective mechanical harvesting, ultimately 
benefiting both growers and consumers.  

1.4.3 Water and Nutrient management 

Irrigation and the absorption of essential nutrients are pivotal factors in the development of field 
crops, with processing tomatoes being a notable example.  

The way in which field crops like tomatoes absorb nitrogen and potassium undergoes a specific 
pattern throughout their growth cycle (Figure 11). Initially, the uptake of these two essential 
nutrients is relatively slow. However, as the plants progress through the flowering stages, their 
demand for nitrogen and potassium rapidly increases. This surge in nutrient uptake is particularly 
crucial during the flowering period, as it sets the stage for the development of healthy and 
productive tomato plants. 
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Figure 11. The uptake dynamics of the macro- and the secondary nutrients by a tomato plant. Source: [277] 

When it comes to potassium, its demand and absorption reach their peak during the phase when 
the fruits are forming and maturing (Figure 12). This nutrient plays a pivotal role in fruit 
development, contributing to the overall quality and yield of the crop. 

On the other hand, nitrogen uptake predominantly occurs after the formation of the first fruit. This 
timing is significant because it aligns with the period when the plant diverts its energy and resources 
towards producing and ripening the fruit, making nitrogen crucial for this phase of growth. 

In addition to nitrogen and potassium, other essential nutrients like phosphorus (P), calcium (Ca), 
and magnesium (Mg) are also vital for the overall health and productivity of the tomato plant. 
These nutrients are needed at a relatively consistent rate throughout the entire lifespan of the 
plant. Phosphorus is essential for root development and overall plant vitality, while calcium and 
magnesium are important for various physiological processes, such as cell structure and 
photosynthesis. Ensuring that these nutrients are supplied in adequate quantities and at the right 
times is crucial for optimizing the growth and yield of processing tomatoes. 

 

Figure 12. Daily uptake rates of plant nutrients by processing tomatoes yielding 127 ton/ha. Source: [278]  

A number of studies [279–284] provide further details and insights into the specific practices and 
strategies used in managing nutrient uptake in the context of this crop.  

When it comes to processing tomatoes, one distinctive characteristic is their substantial demand 
for water [285]. The reproductive phase of the plant, especially the critical flowering stage, is 
exceptionally sensitive to any form of water stress [286]. 
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The quantity of water required by the crop is contingent on several factors, including the plant's 
developmental stage, prevailing temperatures, the rate of evapotranspiration (Figure 13), soil type, 
and the quality of the water [287]. Interestingly, the irrigation schedule preceding the flowering 
and maturation of the initial fruits seems to have minimal influence on the crop's performance, as 
long as the soil moisture level at the time of planting is close to field capacity [288]. At this early 
stage of its growth, the plant's water demand remains relatively low due to its limited surface area 
for evaporation and its underdeveloped root system. Consequently, in most cases, the natural 
moisture content in the soil is sufficient to prevent any water-related stress that could adversely 
affect the crop. 

 

Figure 13. Evapotranspiration from four cultivars of bush tomato grown in the open field in California. Source: [289] 

During the initial stages of growth, processing tomato plants have relatively lower water 
requirements. Irrigation is typically managed to ensure that the soil remains consistently moist but 
not waterlogged. This helps establish a strong root system and promote healthy vegetative growth. 
As the tomato plants transition into the flowering and fruit-setting stage, their water needs begin 
to increase. This is a critical phase where adequate water availability is essential for successful 
pollination, fruit formation, and early fruit development. Evapotranspiration rates are relatively 
higher during this period. The fruit development stage is when processing tomatoes require the 
most water. As the fruit expands and matures, the water demand peaks. Proper and consistent 
irrigation is crucial to support fruit growth and prevent issues like blossom-end rot or fruit cracking. 
Towards the end of the growth cycle, as the fruit begins to ripen and mature, the water 
requirements start to decrease. It's important to gradually reduce irrigation to avoid over-watering, 
which can negatively impact fruit quality. Several studies [290–292] offer comprehensive insights 
and detailed information regarding the specific practices and strategies employed for managing 
nutrient uptake in the context of processing tomato cultivation. 

It's worth noting that land-levelling is also necessary for an even water distribution from either rain 
or irrigation water and diminishes the danger of waterlogging (Figure 14). When soil becomes 
waterlogged, it quickly and significantly transforms both the physical and biological conditions of 
the root environment for processing tomato plants. In reaction to this waterlogging, various 
physiological changes take place within the plant, profoundly influencing its growth and 
development. The primary consequence of soil flooding is a significant restriction in the diffusion 
of oxygen to the root zone, which has a pervasive impact on the plant's overall well-being. 
Additionally, it's important to highlight that drought conditions can also result in decreased crop 
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yields [293]. Drought-induced water scarcity can significantly impact the growth and productivity 
of the crops (Figure 14). 

 

Figure 14. i) Waterlogging and ii) Drought Events on Processing Tomato Crops. Source: Personal Archive 

In summary, achieving successful processing tomato cultivation necessitates precise nutrient and 
water management. The intricate relationship between nutrient absorption and plant development 
is closely tied to effective water management, especially during the sensitive flowering phase. 

1.4.4 Phenological cycle 

The phenological cycle of processing tomato is the sequence of developmental stages that the 
tomato plant goes through from seed to harvest. The phenological cycle can be divided into four 
main phases: germination, vegetative growth, reproductive growth, and ripening Figure 17. 

Germination 

Germination is the fundamental process of a seed sprouting and the subsequent emergence of a 
seedling. The successful germination of a seed is contingent on several factors, including 
temperature, moisture levels, and the availability of oxygen in the soil [294].  

Under ideal conditions, germination typically occurs within a span of 5 to 10 days. To further 
enhance the germination process, biostimulants like chitosan can be employed. These substances 
have the capacity to augment the overall seed vigor, accelerate the germination rate, and improve 
the quality of tomato seedlings. Tomato transplants for open-field production could be raised in a 
greenhouse or in tunnels if they are to be grown in a season when climatic conditions outside would 
not be favourable for growth. If they are to be produced when climatic conditions are suitable 
transplants could be grown outside in soil on raised, well-prepared beds. In a nursery sown in the 
ground in open field or tunnels, the row distances should be 8-12 cm.  

In recent years production of transplants has been more and more the province of specialized 
commercial nurseries. This is because hybrid varieties are now used extensively with fresh market 
tomatoes and also with processing tomatoes to a lesser extent. Many growers find it more 
convenient, safe and profitable to buy the ready plants from a specialist nursery (Figure 15). The 
principal advantage of the current hybrid cultivars has been more consistent performance, so that 
growers can get satisfactory yields when weather and cultural conditions are poor. There is 
evidence that the bigger the transplant the earlier the yield, but the more expensive the plants will 
be and more labour and skill needed to handle the plant [295]. Increasing the age of the transplant 
had an unfavourable effect on the subsequent yield. 
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Figure 15. Photographs depicting the transplanting of processing tomato hybrids in a pilot field. Source: Personal Archive 

Following germination and transplanting, vegetative growth proceeds at first alone and then 
coincident with reproductive growth. 

Vegetative development  

The vegetative growth phase represents a period of rapid development and expansion of plant 
organs, including roots, stems, leaves, and branches. In the context of tomato plants, vegetative 
development can also be associated with the rate of leaf appearance, which is closely linked to 
the appearance of trusses, given the species' sympodic nature, typically producing one inflorescence 
every three leaves [296].  

This growth phase typically extends for a duration of 40 to 60 days following germination [297]. 
The development of the first flower-trusses and fruit-set can be anticipated roughly 4-7 weeks after 
seeding or 2-3 weeks after transplanting in processing tomatoes, although the exact timing 
depends on the specific growing habits of the varieties. Indeterminate tomato types often initiate 
the first flower-truss after 7-11 leaves, while most determinate varieties tend to do so after 5-7 
leaves [298]. 

Numerous factors influence this stage, including light, temperature, water availability, nutrient 
supply, and plant density. Research conducted by Van der Ploeg and Heuvelink in 2005, the 
optimal temperature for the early vegetative growth of tomato plants is around 25°C [299]. De 
Koning's work in 1993 further highlighted the impact of temperature, indicating that the number 
of trusses per week increases by approximately 0.05 trusses per week for each degree Celsius rise 
in temperature [300]. His research also demonstrated a linear correlation between the leaf 
appearance rate and the average air temperature. This rate increased from 0.2 leaves per day at 
12°C, peaking at 0.5 leaves per day at 28°C, and then declining to zero at 48°C [301].  

Additionally, the work of Adams et al. in 2001 revealed that the optimal temperature range for 
vegetative development in tomatoes falls within 22°C to 26°C [302]. Similar temperature values 
were also observed for the early reproductive phase (progression to anthesis). Furthermore, the 
research indicated that the rate of truss appearance exhibited a linear increase from 0.11 to 0.17 
trusses per day as the average temperature rose from 17°C to 23°C. Simultaneously, there was a 
strong correlation between weekly "above-ground" fresh weight growth and the light received by 
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the crop each week[301]. However, the efficiency of light utilization (weight increase per unit of 
light) was notably higher during the initial phase of growth. 

It's interesting to note that many plants exhibit an optimal temperature for photosynthesis that 
closely aligns with their typical growth temperature, as suggested by Lambers et al. in 1998 [303]. 
For tomatoes, which thrive in temperatures between 22 and 30 °C, single-leaf photosynthesis 
operates optimally between 20 and 30 °C under normal CO2 levels; this range shifts to 25-30 °C 
under elevated CO2 [303–305]. In an experiment by Xu et al. in 1999, net photosynthesis increased 
from 18 to 23 °C but declined beyond 23 °C, with dark respiration increasing exponentially [306]. 
Ogweno et al.'s 2009 study exposed detached tomato leaves to temperatures of 15, 25, and 35 °C 
for 5 days, showing similar photosynthetic rates at 15 °C and 25 °C, with significantly lower rates 
at 35 °C [305]. Hu et al. (2006) found that decreased photosynthesis at 35 °C was due to impaired 
photosynthetic apparatus, not stomatal function [307]. The optimal temperature for photosynthesis 
in tomatoes at 350 ppm CO2 is reported to be between 22 °C and 30 °C, whereas low 
temperatures of 4-6 °C dramatically reduce photosynthesis, with photosynthesis ceasing at 1 °C 
[308,309]. 

Vegetative growth can be enhanced by using biostimulants,  which can increase the plant height, 
stem thickness, chlorophyll content, and water use efficiency of tomato plant [297]. The duration 
of the vegetative phase may be prolonged by deficiencies of inorganic nutrients in the rooting 
medium. 

It's essential to recognize that the majority of our knowledge concerning the vegetative growth of 
tomatoes is derived from studies involving greenhouse cultivars grown under controlled 
environmental conditions [298]. Consequently, the existing literature primarily pertains to tomatoes 
cultivated in greenhouses, and there is relatively less information available regarding tomatoes 
grown in open fields. Nonetheless, when summarizing these studies, we can distil that this phase is 
characterized by the rapid development of roots, stems, leaves, and branches, typically spanning 
a 40 to 60-day period post-germination. A multitude of factors, including light, temperature, water 
availability, nutrient supply, and plant density, come into play during this growth phase, with 
temperature emerging as a significant influencer. An optimal temperature range of 22-26°C is 
observed, affecting various facets of growth. Notably, photosynthesis is also temperature-sensitive, 
with an ideal range of 20-30°C under normal CO2 levels. 

Reproductive growth 

Reproductive growth marks the phase of a plant's life cycle that involves essential processes such 
as flower initiation, pollination, fertilization, and the fruit set. Various factors, including 
temperature, day length, light intensity, water availability, and the influence of plant hormones 
strongly influence this stage. Typically, the reproductive growth phase extends over a period of 20 
to 40 days [310]. 

The formation of flowers (Figure 16) is a prerequisite for the formation of fruits, and flowering 
delays can lead to fruit production delays. Flowering typically begins around 55 days after 
transplanting and continues until approximately 88 days after transplanting [311], depending on 
environmental conditions and cultivars. Variations in the rate of flower formation can have 
significant implications for fruit production at different stages of a crop's growth. Short-term spikes 
in yield may be linked to the emergence of an unusually high number of flowers within a single 
inflorescence, as noted by Hurd and Cooper in 1967 [312]. Alternatively, a rapid initiation of 
successive inflorescences can also contribute to increased yield. This phenomenon becomes 
particularly crucial when there's a demand for high yields early in a crop's lifecycle. However, it's 
essential to note that such abrupt increases in fruit production might trigger growth restrictions 
later on due to the competing demands of developing fruits, as discussed by Fisher in 1977 [313] 
and further elaborated on by Slack and Calvert in 1977 [314].  
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Figure 16. Formation of the first flowers in processing tomato crop.  Source: Personal Archive 

In both indeterminate and determinate tomato cultivars, the production of fruits can face 
limitations when flowers fail to develop into viable fruits. In some cases, flowers may cease their 
growth and wither prematurely before they even have a chance to open. In harsh environmental 
conditions, characterized by high temperatures and low levels of sunlight, it's possible for all the 
flowers on an inflorescence to be lost. When this occurs during the early stages of floral 
development, the inflorescence remains underdeveloped and appears as little more than a bulging 
piece of tissue emerging from the stem[315]. 

Heuvelink (2005) reported that flower fertilization in tomatoes is greatly reduced at temperatures 
outside the 5 to 37 °C range and that pollen tube growth rate is adequate within this temperature 
range[304]. A linear relation between flowering and air temperature has also been observed 
by Abreu et al. [316].  

In addition to temperature, irrigation another principal component of this stage. Studies have 
shown that the irrigation regimen significantly influences the number of flowers and fruit 
production [311]. A study conducted by Takahashi, Eguchi, and Yoneda in 1973 demonstrated that 
flower initiation was notably delayed when there were deficiencies in essential nutrients such as 
nitrogen, phosphorus, and potassium. Importantly, these delays in flower initiation due to nutrient 
shortages might indicate a broader deceleration in the overall growth and development of the 
entire plant, rather than having isolated effects specific to the flowering process [317]. 

Moving on to the fruit set stage, the first fruit buds become visible approximately 50 days after 
transplanting. In the process of pollination and fruit setting temperature plays a pivotal role, as 
highlighted in various scientific studies. The temperature range for fruit setting in tomatoes is 
narrow, with particular sensitivity to nighttime temperatures. A noteworthy study [281] 
demonstrated that the most critical stage for successful pollination appears to be meiosis, a process 
occurring approximately 9 days before the flowering stage. According to these authors, the optimal 
temperature range for effective pollination typically falls between 17 and 24 °C. High-temperature 
conditions may result in cone splitting, stigma exertion, and pollen sterility, with maximal daytime 
temperatures exceeding 32 °C and minimal nighttime temperatures above 21 °C significantly 
reducing fruit set [318,319]. Similarly, the research by Atherton and Harris (1986) suggests that 

https://journals.ashs.org/hortsci/view/journals/hortsci/47/8/article-p1038.xml#B1
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fruit pollination faces the risk of failure when temperatures exceed 40 °C [281]. However, 
differences may occur between heat-sensitive and heat-tolerant tomato cultivars. This underscores 
the crucial role of temperature in the pollination and fruit-setting process.  

Fruit growth and progression to maturity 

The fruit yield of a tomato plant depends on both the quantity and weight of individual fruits, 
making proper fruit set and development crucial for achieving high tomato yields. However, the 
market value of the fruits is determined by factors like fruit quality (such as size, shape, firmness, 
color, taste, and solids content) and market demand, which can vary with the season, especially 
for fresh market tomatoes. In practice, both the quantity and quality of fruit yield have been 
enhanced by manipulating the processes involved in fruit development, from pollination to 
maturity. While fruit quality has seen improvements through plant breeding, the quantity of fruit 
has been increased, particularly in greenhouses, by carefully controlling the growing environment 
to optimize growth processes. 

To attain fruit maturity, it's essential to accumulate a critical temperature sum during an individual 
fruit's growth period [296]. In the case of indeterminate greenhouse tomato varieties, the duration 
of fruit growth represents the time it takes for an individual fruit to progress from anthesis (the 
flowering stage) to optimal ripeness for hand harvesting within the same cohort. For indeterminate 
greenhouse cultivars, flower cluster formation and ripening continue over several months, even as 
the first fruits are being harvested. In contrast, semi determinate field-grown tomato varieties, 
typically harvested over 1 to 2 weeks, exhibit a distinct pattern where the time for an individual 
fruit to develop from anthesis to maturity (green-breaker stage) for the initial larger fruits closely 
aligns with the entire crop's duration from the first fruit setting to full crop maturation, usually 
taking only a few days [320]. 

Temperature is a pivotal factor influencing the duration of the tomato fruit growth period, as 
highlighted by De Koning's research [321]. His results showed this period to be 73 days at 17 °C 
and 42 days at 26 °C. Similar results were observed by Rylsky in 1979 [322]. and Verkerk in 1955 
found that the time interval from anthesis to harvest was 90 days at 13 °C, 53 days at 19 °C, and 
40 days at 26 °C. [315]. For this later phase, Adams et al. [302] dentified an optimal temperature 
of 22°C, while De Koning [301] suggested approximately 21°C as the optimum. 

Adams et al. (2001) and Adams and Valdez (2002) found that as tomato plants were grown at 
different temperatures (14, 18, 22, and 26 °C), the time required for fruit ripening varied: 95, 65, 
46, and 42 days, respectively[302,323]. Notably, elevated temperatures affected the later stages 
of fruit maturation more. Increasing temperatures from 18 to 25 °C for three weeks reduced the 
time to harvest by 8.7 to 11.2 days. Aikman (1996) proposed that the time from anthesis to maturity 
for tomato is 806 degree-days [324]. Using the 4 °C of De Koning (1994), this time translates to 
940 degree-days, whereas Scholberg et al. (1997) calculated 722 degree-days using a base 
temperature equal to 10 °C [301,325]. Beyond these differences in computing thermal units, it is 
also likely the cultivars may differ in the duration from anthesis to harvest maturity. 

The influence of the irrigation regimen appears to be less significant when compared to the choice 
of tomato variety [326]. In general, intensive irrigation applied during the fruit development and 
maturation phase is shown to have an unfavorable impact on several quality indicators, as 

reported in previous studies [288,327,328]. More recent research studies  have focused on assessing 
the effects of deficit irrigation on various aspects, including plant growth, physiological traits, yield, 
and water productivity, in the context of processing tomato cultivation [286,311,311,329,330]. 

Varieties with concentrated fruit set, especially processing tomatoes, can be artificially ripened by 
spraying the entire field with commercial ethephon. The amount of ethephon to be applied depends 
very much on temperatures prevailing at the time of application and during the following three 
days. This technique allows for the synchronized ripening of fruits, which can be advantageous for 
large-scale harvest and processing operations. 

https://journals.ashs.org/hortsci/view/journals/hortsci/47/8/article-p1038.xml#B64
https://journals.ashs.org/hortsci/view/journals/hortsci/47/8/article-p1038.xml#B21
https://journals.ashs.org/hortsci/view/journals/hortsci/47/8/article-p1038.xml#B52
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Summarising the results, optimal temperatures for this later fruit growth phase are around 21-
22°C, as observed in different studies, with temperature playing a critical role in determining the 
duration of the fruit growth period [321]. The warmer the temperature, the shorter the time it takes 
for tomatoes to reach maturity, while cooler temperatures prolong this period [322]. Variations in 
temperature can significantly impact the time required for fruit ripening, with elevated 
temperatures accelerating the process. An estimate of 806 degree-days was suggested for 
tomatoes to mature, based on a specific temperature threshold [324]. Some studies calculated a 
different value of 722 degree-days, accounting for variances among tomato cultivars [301,325]. 

 

 

Figure 17. Phenological stages of the processing tomato: i) Vegetative development, ii) Reproductive growth, iii) Fruit 
growth and progression to maturity. Source: Personal Archive 

Harvest  

Deciding when to terminate irrigation in processing tomatoes requires careful consideration. It 
involves assessing its potential impact on fruit quality, particularly the TSS content, as well as the 
risk of fruit rot. In cases where mechanical harvesters are used (Figure 18), the soil surface needs 
to be sufficiently dry for the harvester to function effectively. The period between the last sprinkler 
irrigation and harvest can range from 25 to 30 days in medium and heavy soils, depending on soil 
and climatic conditions. In very warm regions, irrigation may be extended up to 10-12 days before 
harvest. 

Under optimal climatic conditions, provided that plant diseases and pests have not significantly 
damaged the foliage, the ideal time to commence harvesting a tomato field is when approximately 
90% of the fruit has reached a red or pink coloration [295]. In most countries where processing 
tomatoes are grown, a single, comprehensive harvest is conducted. This process involves cutting 
the entire plant at ground level or manually uprooting it and shaking it to release the fruit. 
Subsequently, the fruit suitable for processing is collected either by hand or mechanically and 
placed into bins, gondolas, or tandem truck trailers for transportation to the processing facility. 
Modern tomato varieties intended for processing are well-suited for this method due to their highly 
concentrated fruit set and their capacity to retain ripe fruit on the vine without deterioration. These 
fruits can maintain their quality for 25-35 days after reaching full ripeness, making it possible to 
utilize 90-95% of the fruit harvested at once for processing. Furthermore, the fruit's consistency 
enables mechanical harvesting and bulk transportation with a load height of 1.0-1.5 meters without 
causing damage that would lead to rejection by the industry. Handpicking would require 3-5 labor 
hours per metric ton, while machine harvesting can be accomplished by a team of 6-15 individuals 
operating the harvester, with the capacity to harvest 20-30 tons per hour. 

4
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Figure 18. Mechanical harvesting and processing of tomato. Source: Personal Archive 

Fruit soluble solids content is also of tremendous importance to the processing tomato industry. 
Soluble solids encompass sugars and organic acids, and their ratio, combined with volatile aroma 
composition, defines the fruit's flavor. Organic acids also determine the pH of the final product. A 
pH above 4.5 can lead to the growth of microorganisms, spoiling the product. To address this 
issue, higher temperatures and extended processing times are necessary but also increase 
processing costs. Insoluble solids, consisting of cell wall components and proteins, influence fruit 
firmness and the viscosity of final products like tomato juice, ketchup, soups, and paste.  

The quality of the fruit delivered to the processing plant is usually outlined in the contractual 
agreement between the grower and the processor. Quality standards may encompass factors such 
as color, the percentage of green and pink fruit, the presence of dry or wet wounds, mold, foreign 
materials other than tomatoes, the presence of calyx on the fruit, over-ripeness, the presence of 
worms or worm-related damage, peelability, and TSS measurement in Brix (Figure 19). 

 

 

Figure 19. Quality standards measurements in processing tomato. Source: Personal Archive 

When cultivated under stressful conditions, Tomatoes tend to exhibit enhanced flavor, and their 
shelf life may show a slight improvement for the same underlying reasons. The more water is 
supplied to these plants, the higher the yield they typically produce, but this can come at the cost 
of a decrease in Total Soluble Solids (TSS). 
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1.4.5 Significance of Processing Tomato 

The tomato ranks as one of the most widely consumed vegetables globally, second only to potatoes 
and ahead of onions and considered among the most favored garden crops [331]. From 1961 until 

nowadays the European tomato yield increased by ∼ 250% (FAOSTAT, 2018)[332]. It is estimated 
that on average about half of the increase in crop productivity was due to cultivar improvement 
through breeding[333]. While tomatoes are grown in over 100 countries, more than 80% of the 
production is concentrated in the United States, China, Italy, Iran, Turkey, Spain, Brazil, Portugal, 
Greece, and Chile [334]. The majority of tomato production, about 90%, takes place in the 
northern hemisphere, primarily in regions like the Mediterranean, California, and China[334]. 
Interestingly, while Europe and the America were the dominant producers two decades ago, the 
landscape has shifted significantly, with Asia now taking the lead in the global tomato market. 
China holds the top spot, followed by India, the USA, Turkey, Egypt, Iran, Italy, Brazil, Spain, and 
Uzbekistan, in that order [331]. In Europe, countries with the highest tomato yields are often found 
in northern Europe, where the climate isn't particularly favorable for tomato cultivation, and the 
dedicated cultivation areas are relatively small [331]. These nations heavily rely on controlled 
greenhouse conditions for tomato production. When it comes to tomato consumption, three 
countries stand out as the leaders: Libya, Egypt, and Greece, with each exceeding 100 kg per 
capita per year[331]. Broadly speaking, the Mediterranean and Arabian countries exhibit the 
highest tomato consumption levels, with average figures ranging from 40 to 100 kg per capita per 
year[331]. 

In 2011, the world experienced a remarkable global production of nearly 160 million tons of 
tomatoes, ranking it as the seventh most significant crop species, trailing behind maize, rice, wheat, 
potatoes, soybeans, and cassava[331]. Out of 160 million tons total tomato production, about 40 
million tons are processed tomato production [335]. 

Tomato processing encompasses a wide range of methods, including canning, making tomato 
paste, producing tomato sauce and puree, drying tomatoes, and creating various tomato-based 
products. The processed tomato industry plays a vital role in providing consumers with year-round 
access to tomato products and contributes significantly to the global food supply chain. Being rich 
in antioxidants such as lycopene and carotenoids [336,337], the processing tomato fruit is a raw 
material in the production of ketchup, dried tomato fruits, and lycopene products[311]. In general, 
the quality of the tomato fruit can affect the quality of the final products. The quality of fruits is 
highly related to its maturity degree. For example, soluble solids content (SSC) is a key quality 
attribute that has an impact on the flavor, consistency, and taste of processed products. The level 
of titratable acid and lycopene can affect the acidity and color of processed products. Therefore, 
these are key indicators for assessing the quality of processing tomato[338]. Traditional testing 
methods to measure quality attributes such as SSC, titratable acid and lycopene require a 
destructive sampling procedure and a series of complex and time-consuming experimental 
operations, which makes it difficult in achieving a large-scale of fruit testing due to the high cost 
of labor-work and chemical usage [339]. Therefore, there is an increasing demand in the fruit 
industry to seek rapid and non-destructive testing solutions for nutritional quality determination 
and fruit maturity stage classification. 

Greece, despite its minor role in global tomato product production (1.2%), stands out as a 
remarkable exporter with a wide reach [340]. The tomato products are shipped to over 40 
countries, including Europe, the Middle East, the Far East, and the USA. In 2017, Greece achieved 
notable rankings globally, ranking 10th in paste exports, 4th in canned tomato exports, and 35th 
in sauce exports [340]. Their revenue from exports reached 13th place worldwide, with a turnover 
of USD 76 million (approximately EUR 62 million on average over the past five marketing years). 
This success underscores Greece's ability to effectively penetrate international markets, despite its 
relatively small share of global tomato product production [340].  

https://www.sciencedirect.com/science/article/pii/S0304423819306120?casa_token=ukpPIs_eTZoAAAAA:m_6eIA4Z8Xfc2FZ1AT7tfH954ezjjup4w_rr9xu2yAgDOMzQ6s0g5bG2LopPhwCsA01XR4GBlFk#bib0085
https://www.sciencedirect.com/topics/food-science/carotenoid
https://www.sciencedirect.com/topics/food-science/nutritive-value
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Figure 20. The exported quantities of Greek processing tomatoes on international markets over the past two decades. 
Source:  [340] 

The Greek tomato industry primarily focuses on exporting tomato pastes and canned tomatoes, 
while the export quantities of sauces and ketchup remain relatively small (Figure 21). In 2022, 
revenue generated from the external sales of tomato pastes amounted to approximately EUR 41 
million[341]. Additionally, the financial significance of canned tomato exports in Greece's foreign 
trade results has seen a substantial increase, rising from 28% in 2013 to over 44% in 2022, with an 
income of about EUR 37 million in 2022. In contrast, exports of sauces have shown little variation 
over the past decade, consistently contributing around 6% to the total income, resulting in an 
average annual turnover of approximately EUR 4.6 million over the past five years. 

 

Figure 21. The quantities of Greek tomato sauce, pastes, and canned tomatoes have been exported over the past 
decade. Source [341] 



Yield Prediction in processing tomato crop, through Precision Agriculture practices   

PhD Thesis Nicoleta K. Darra 

 

 

50(163) 

Overall, Greek exports of tomato products, which have increased significantly in quantity and value 
in recent years, generated an overall turnover of about EUR 83 million in 2022, of which 57% on 
European Union markets and 95% on the European continent as a whole (Figure 22). 

 

Figure 22. Revenue of Greek exports of tomato products over the past decade, according to category and region of 
destination. Source [341] 

According to the Figure 22, the export dynamics show a slight decline during the pre-pandemic 
period (2017-2019), but there was noticeable progress in the subsequent years. 

Overall, since its discovery in the 16th century and its initial steps into domestication and breeding, 
the tomato has evolved into one of the most, if not the most, crucial vegetable crops on a global 
scale [331]. The tomato isn't just a staple in the fresh produce market; it also plays a pivotal role 
in the processing industry, serving as the foundation for soups, paste, concentrate, juice, and 
ketchup. The profound significance of this fruit arises from its exceptional quality attributes, 
unmatched versatility, and far-reaching impact on the food industry and international trade. The 
tomato is a culinary cornerstone that has left an indelible mark on the global food industry. 
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Aim and Objectives 
 

This research is designed to make a valuable contribution to the field of precision agriculture, by 
exploring the potential of state-of-the-art technologies and techniques for yield prediction. The 
primary objective was to formulate and assess a comprehensive methodology that seamlessly 
integrates cutting-edge technologies, remote sensing data, and advanced analytical techniques, 
such as machine learning and statistical analysis, with the principal goal of enhancing the precision 
and reliability of yield predictions at both local and regional scales. To achieve this, a dynamic 
approach was adopted, progressing each year, which involved the utilization of non-destructive 
methods to monitor crop biological cycle and to refine the predictive models for yield estimations. 

The specific objectives of this study are as follows: 

1. To offer valuable insights into the deployment and integration of state-of-the-art precision 
agriculture methods and technologies, with a particular focus on their application in the 
field of crop yield prediction. This is accomplished through a systematic review of the 
existing literature, offering a comprehensive overview on the latest advancements in this 
field. 

2. To thoroughly compare satellite, UAS, and proximal technologies, placing specific 
emphasis on their unique strengths and limitations when applied in the context of precision 
agriculture. This is realized through field-scale measurements using these three platforms. 

3. To investigate the relationship between vegetation indices, the critical phenological stages 
of the crop. This involves deploying time series of five VIs at a regional scale. 

4. To evaluate the performance of both statistical and machine learning models, generating 
clear insights into the most effective growth stages and vegetation indices for accurate 
yield prediction. To this end, all platforms were deployed, along with yield measurements 
at both field and regional scales. 

The outcomes of this research yield benefits that extend beyond the academic community, offering 
valuable support to various audiences, including policymakers, researchers, agricultural 
practitioners, and those involved in decision-making related to resource allocation, food security, 
and sustainable agricultural development. 
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Part 2. Materials and Methods 

2.1 Workflow Overview 

This study followed a progressive trajectory in data collection and methodology (Figure 23). The 
research initiation involved a systematic literature review to explore the landscape of yield 
predictions within the framework of precision agriculture applications. Simultaneously, eight fields 
were selected for detailed investigation through pilot activities that incorporated proximal, aerial, 
and satellite measurements together with yield sampling. The primary focus of this phase was to 
examine the relationship between crop yield and NDVI (Normalized Difference Vegetation Index), 
a commonly used index. The investigation also aimed to identify similarities between satellite 
technology, UASs, and proximal sensors in the context of crop yield assessment. 

Moving into the second year, two distinct fields were individually investigated using satellite, UAS, 
and proximal sensors at the field level scale. Additionally, a total of 108 fields were included at the 
regional scale, incorporating satellite data for analysis and thus expanding the experiment's scope. 
This phase aimed to evaluate the effectiveness of not only NDVI but also four additional VIs in 
predicting crop yield. Furthermore, AutoML algorithms were deployed along with statistics to 
assess the correlation between yield and the retrieved VIs from the satellite dataset. The 
broadening of this study in terms of spatial scale, VIs and research methods, was intended to 
provide a more thorough understanding of crop yield estimation on the basis of the systematic 
review results. 

 
Figure 23. Workflow for assessing the effectiveness of Vis spectral bands to predict processing tomato through proximal 
aerial and satellite remote sensing. Source: Created by N. K. Darra 

During the third year of the study, a more intricate and detailed approach was adopted. Spectral 
bands derived from satellite imagery played a central role as they were individually assessed to 
determine their performance in predicting crop yield. This step enabled a comprehensive 
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evaluation of the unique contribution of each spectral band to the overall accuracy of crop yield 
estimation. This approach yielded a deeper understanding of the significance and influence of 
each individual spectral band in enhancing the precision of crop yield predictions.  

2.2 Systematic Review 

In this study, a systematic review of peer-reviewed articles on PA technology's application in yield 
prediction was conducted to identify the most common approaches used in yield prediction. A 
comprehensive search strategy was developed by utilizing Scopus “ www.scopus.com” and Web of 
Science (WoS) “ www.webofscience.com” search engines following the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) framework [342]. Specifically, the PRISMA 
Statement consists of a 27-item checklist and a four-phase flow diagram, aiming at helping authors 
improve the reporting of systematic reviews and meta-analyses [342]. To ensure the selection of 
pertinent research articles, the study's approach was designed based on specific research questions 
and the review's objectives. Recognizing that a simple search using "yield prediction" would yield 
numerous articles from various fields unrelated to the review's aim, a more focused approach was 
taken. Therefore, the research words [343–345] were also considered to narrow the focus from a 
main concept to the central idea. Specifically, the query used for encompassing all the works 
related to the topic without risking excluding any item is presented in (Table 7). 

Table 7. Search engines and queries that were used for the scope of this study. 

Search Engine Query 

Scopus 
TITLE-ABS-KEY (“yield forecasting” OR “yield prediction” OR “yield estimation” OR 

“crop modeling”) AND TITLE-ABS-KEY (“satellite” OR “UAV” OR “proximal” OR 
“remote sensing” OR “proximal sensing” OR “aerial”) 

WoS 

 
TS = (“yield forecasting” OR “yield prediction” OR “yield estimation” OR “crop 

modeling”) AND TS = (“satellite” OR “UAV” OR “proximal” OR “remote sensing” OR 
“proximal sensing” OR “aerial”) 

 

 

A filtering process was then implemented by utilizing exclusion criteria provided within the Scopus 
and WoS search engines, specifically focusing on document type, language, and publication year. 
Only open-access articles published in the English language were included, while review articles 
and conference papers were excluded. This selection was based on the belief that open-access 
publishing aligns with the principles of open science, promoting transparency and ensuring that 
research is readily accessible for comprehensive scrutiny, thus upholding the core principles of 
scientific integrity. Additionally, the study's timeframe gathered the entire literature for the period 
2002 to 2022. 

The initial search query yielded 725 records from Scopus and 704 from WoS, with publication 
details categorized into sections such as "Author, Title, Source," "Abstract, Keyword, Addresses," 
and "Cited, References, and Use." Furthermore, after eliminating duplicate and review articles from 
the two chosen databases, 864 articles were subjected to screening based on their titles and 
abstracts. 

2.2.1  Article Selection Criteria 

The articles initially retrieved were selected according to particular criteria, such as the remote 
sensing technology utilized and the method employed for yield prediction. Examining the abstracts 
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of these articles helped to identify pertinent keywords and facilitated the selection process. To 
maintain the review's relevance and focus, specific exclusion criteria were utilized.: 

• Records not pertinent to the research objective (e.g., satellite RNA in plant pathology) 
were excluded; 

• Articles falling within the agricultural sector but not directly related to crop yield prediction 
were also removed from consideration; 

• Publications that did not incorporate the use of satellites, airborne/UAS, or ground-based 
sensors for crop yield prediction were excluded; 

• Literature search for articles that are published between 1 January 2002 to 31 December 
2022; 

Articles were considered for inclusion only if they involved crop yield prediction, whether in absolute 
or relative terms, and provided performance metrics for assessment. To ensure uniformity and 
comparability, special emphasis was placed on the presence of evaluation metrics like the 
Coefficient of Determination (R2) and error metrics such as the Root Mean Square Error (RMSE). 
Studies lacking performance metrics were excluded to standardize the evaluation process. 

After applying all the exclusion criteria, a total of 456 full-text articles were examined for eligibility. 
Figure 24 illustrates the article selection and rejection process from the databases, following the 
PRISMA framework. 

 

Figure 24. Systematic review procedure for article selection. 

The eligibility process involved thoroughly analyzing the full articles to ensure that only the studies 
that met the necessary aforementioned criteria were included. As a result, a total of 269 studies 
were deemed suitable and incorporated into this comprehensive review. 

2.2.2  Scientific Studies Classification & Statistical Analysis 

The selected papers were tabulated and standardized to enable comparison and systematic 
evaluation by extracting the following variables from each study: 

• Study data: lead author, year, title, citations; 

• Experiment setup: study region, type of crop; 
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• Platform type: Satellite, Airborne/UAS measurements (Unmanned Aerial Systems—UAS 
or Manned Flight), Ground based measurements; 

• Method type: machine learning, statistical analysis, model-based approach, VIs; 

• Evaluation: performance measures (e.g., R2, RMSE, MAE). 
 

Subsequently, the actual data collected from the papers were subjected to statistical analysis using 
XLSTAT software version 2016 from Addinsoft (www.xlstat.com). This analysis involved 
determining the number of research articles produced annually and by type. Additionally, further 
analyses were conducted based on crop type, platform type, sensor type, and the method’s focus 
area for each year over the past two decades. 

2.3 Description of the study area  

The pilot research was conducted within the broader region of Thessaly and Central Greece, spanning from E:22°13'20" 
N:39°42'40" to E:24°6'40" N:38°10'40". Within this area, a total of 504.14 hectares of processing tomato fields were 
chosen as the pilot fields for the study 
Table 8. the boundaries of the pilot fields were digitally captured using georeferenced layers in 
KML format. An illustrative example of these vector layers, showing the field locations is 
demonstrated in Figure 25. 

 

Figure 25 The pilot fields’ position at the national level and a close-up at regional level. Created by N. K. Darra (ArcGIS, 
2023). 

These pilot fields encompassed three distinct hybrid varieties: Dexter, Faber, and Foster. Their sizes 
ranged from 1 to 14 hectares, with double rows planted at an average spacing of 0.4 to 0.6 meters, 
reflecting the prevalent extensive farming practices in the region. Planting dates for these pilot 
fields varied, occurring between mid-April and mid-May of each season, with harvesting completed 
across all fields by late August.  
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The study's framework, as summarized in  

Table 8, outlined the research activities over a span of three years. The first year, the study utilized 
satellite, UAS, and proximal sensor technology to extract the NDVI. A total of 8 fields, covering 
21 hectares, were assessed to evaluate the use of satellite and UAS data for yield prediction. In 
2021, a similar approach was applied, focusing on only 2 fields covering 6 hectares. During the 
same year, the research focus shifted primarily to satellite technology, with 108 fields totalling 410 
hectares being considered for the evaluation of NDVI and other four VIs.  

In the final year (2022), the study further broadened its scope to include an assessment of all 
spectral bands to refine yield prediction capabilities. The research concentrated on satellite data, 
incorporating thirteen spectral bands. A comprehensive evaluation was conducted, encompassing 
108 fields for the 2021 season and 44 fields for the 2022 season, all included in this evaluation to 
investigate the efficacy of these spectral bands for yield prediction. 

 
Table 8. Study’s framework 

Year Scale Technology or activity 
Vegetation 

Indices 
Number 
of Fields 

Total Area 
(ha) 

2020 Field level 

Satellite 

UAS 

Proximal Sensor 

NDVI 8 21 

2021 

Field level 

Satellite 

UAS 

Proximal Sensor 

NDVI 2 6.9 

Regional 
Level Satellite 

NDVI, RVI, WDVI, 
PVI, SAVI 

108 410 

2022 
Regional 

Level Satellite 
NDVI, RVI 

Bands 
44 22,24 

 

The sequential progression of the study's framework, was strategically designed to explore, refine 
and upscale yield prediction capabilities over a three-year span. 

2.4 Data collection and Preprocessing 

Data collection and preprocessing procedures involved the acquisition of satellite imagery data at 
5-day intervals. However, it's important to note that the sample size was not consistently uniform 
throughout the data collection process. This variability in sample size is attributed to the presence 
of total cloud cover, which occasionally hindered data collection efforts, as summarized in  

Table 9. 

 
Table 9. Acquisition dates of satellite data for the 2020 to 2023 growing season. 

MONTH ACQUISITION DATES 

2020 

MAY 03/05/20 13/05/20 18/05/20 
23/05/20 

Cloud Cover 
28/05/20 

Cloud Cover 
 

JUNE 02/06/20* 07/06/20 12/06/20 17/06/20* 
22/06/20 

Cloud Cover 
27/06/20 

JULY 02/07/20* 
07/07/20 

Cloud Cover 
12/07/20 17/07/20* 22/07/20 27/07/20 
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AUGUST 01/08/2020* 
06/08/20 

Cloud Cover 
11/08/20* 16/08/20 

21/08/20 
Partial cloud 

cover 

26/08/20 

2021 

APRIL Cloud Cover 

MAY 03/05/21 
Cloud Cover 

08/05/2021 
Cloud Cover 

13/05/21 18/05/21 23/05/21 28/05/21 

JUNE 02/06/21 07/06/21** 12/06/21 17/06/21 22/06/21* 27/06/21 

JULY 02/07/21 07/07/21* 12/07/21 17/07/21 22/07/21* 27/07/21 

AUGUST 01/08/2021 06/08/21* 11/08/21 16/08/21 21/08/21* 26/08/21 

2022 

APRIL 03/04/22 08/04/22 13/04/22 18/04/22 23/04/22 28/04/22 

MAY 03/05/22 
Cloud Cover 

08/05/22 
Partial cloud cover 

13/05/22 18/05/22 23/05/22 28/05/22 

JUNE 02/06/22 07/06/22 12/06/22 17/06/22 22/06/22 Cloud Cover 

JULY 02/07/22 07/07/22 12/07/22 17/07/22 22/07/22 Cloud Cover 

AUGUST Cloud Cover 06/08/22 11/08/22 
16/08/22 

Partial cloud 
cover 

21/08/22 
Cloud Cover 

26/08/22 
Partial cloud 

cover 

*UAS and proximal measurements 
** Due to weather conditions (increased wind) the UAS flight was not feasible  

 

The next phase of the data processing pipeline involved the establishment of a geodatabase 
structured at a 10x10 grid cell level, corresponding to the geometry of the satellite imagery for the 

2020 and 2021 pilot measurements. The satellite image grid (10x10) was extracted and used as a 
reference grid for all measurements to ensure that the vegetation indices are consistent and 
comparable across different satellite images and acquisitions. The grid (.shp) stored the average 
values of the VIs or NDVI for each sensor's observations within a particular cell, recorded for 
specific dates. 

2.4.1 UAS measurements  

For the years 2020 and 2021 remote assessments of processing tomato vigour were made using 
Phantom 4 Pro UAS (SZ DJI Technology Co., Ltd., Shenzhen, Guangdong, China) equipped with 
a Parrot Sequoia+ multispectral camera (Parrot SA, Paris, France) and associated 3-axis 
georeferencing metadata using the cameras integrated positioning system (Figure 26). The UAS 
used in this context incorporates a gimbal, which adjusts the camera's position relative to the 
vehicle to maintain the selected shooting angles during movement. It is equipped with a 
multispectral camera, GPS, and a barometric sensor for measuring altitude differences. Its 
telemetry system enables communication between the UAS and the operator via a specialized 
console, with a range of several kilometres. The multispectral camera is specifically designed for 
agricultural applications, capturing high-resolution images of reflected solar radiation in four 
wavelength bands (Red, Red Edge, Green, and NIR). This makes it suitable for studies related to 
plant resilience and other precision agriculture applications. The aerial UAS imagery was acquired 
around midday with nadir flights at 30 m above the ground The acquisition interval of the 
multispectral camera was set at 2 s, and the flight plan overlap, and side lap were 80% and 70%, 
respectively. 
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Figure 26. i) a Phantom 4 Pro UAS used to collect imagery, ii) Parrot Sequoia+ multispectral camera of the UAS, iii) 
On site data collection  

The multispectral images captured by the UAS were mosaicked using Pix4D software (Pix4D S.A., 
Prilly, Switzerland) through the ‘Ag Multispectral’ photogrammetric model pipeline. Radiometric 
calibration was applied to the generated orthomosaic using the reference images of a radiometric 
calibration target (Airinov Aircalib) acquired after each flight. Finally, the generated NDVI 
orthomosaic was masked to the boundaries of the fields and then scaled up to the same 10 x10 
reference (satellite) geometry grid, using a mean aggregation approach. 

2.4.1 Proximal sensing measurements  

The GreenSeeker hand-held optical sensor (N-Tech Industries, Ukiah, CA), was employed for 
instantaneous measurement of the NDVI. This sensor utilizes a self-illumination system in both red 

(656 nm) and near-infrared (774 nm) wavelengths. It includes a datalogger that records the 
geographic coordinates of the acquired values and generates a shapefile (shp). Proximal 
measurements were conducted three times throughout the growing season for two fields in both 
the 2020 and 2021 seasons (Figure 27).  

 

Figure 27 : GreenSeeker hand-held optical sensor. Source: Personal Archive 

To standardize the data, the geographic coordinates of all proximally acquired canopy reflectance 
data collected throughout the season were initially converted to projected coordinates (UTM Zone 
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34N). Subsequently, preprocessing steps involved cleaning and removing data points falling 

outside the field boundaries and eliminating outliers (values > ±2.5σ) following the methodology 
outlined by Taylor et al. in 2007 [346]. 

The point data were then interpolated to a common grid file corresponding to the field boundaries 
using a 1-m grid with block kriging on a 10x10-m block size and a local variogram, utilizing the 
Vesper software [347]. The resulting grids were converted to .tiff format in ArcMap v10.3 (ESRI, 
Redlands, CA, USA) and scaled up to 10 m x 10 m plots using the satellite geometry grid. This 
process ultimately generated a time series of NDVI maps with a spatial resolution of 10 m x 10 m, 
precisely aligned with the corresponding satellite imagery. 

2.4.2 Satellite imagery acquisition  

Remote assessments of field vigour were made using Sentinel-2 satellite imagery, that is a satellite 
mission developed by the ESA as part of the Copernicus program. Sentinel-2 comprises two 
identical satellites, Sentinel-2A and Sentinel-2B, equipped with multispectral imaging sensors 
capable of capturing high-resolution Earth surface imagery. These satellites follow sun-synchronous 
orbits, providing global coverage and revisiting the same area every five days. The MultiSpectral 
Instrument (MSI) on board captures data across 13 spectral bands, encompassing the visible to 
shortwave infrared region. These bands include red, green, blue, near-infrared, and others sensitive 
to various land features, including vegetation and water bodies. Spatial resolution ranges from 10 
meters for visible and near-infrared bands to 20 meters for red-edge and shortwave infrared 
bands. To maintain consistent resolution, a resampling approach using SNAP software (Sentinel 
Application Platform—ESA Sentinels Application Platform v6.0.4), was applied, resulting in a 
uniform 10-meter resolution for all bands in this study. For in-depth technical specifications on 
Sentinel-2 bands, reference can be made to the European Space Agency's documentation 
[European Space Agency, 2010]. 

For each observation date, 3 to 5 satellite images, depending on the fields’ locations, were acquired 
to cover the entire study area. The second step of data preprocessing involved mosaicking each 
survey date's images into a single raster dataset of the whole study area using ArcGIS software 
(Environmental Systems Research Institute, Redlands, CA, USA). 

In this study, Sentinel-2A&B imagery, obtained from the Copernicus Open Access Hub, was level 
2A imagery, indicating processing by suppliers using the Sen2Cor processor. This processing 
encompassed geometric, radiometric, and atmospheric corrections, rendering the imagery 
immediately usable. Atmospheric correction, a critical step, mitigates atmospheric effects and 
restores surface reflectance values. These corrections employ atmospheric models and ancillary 
data, such as meteorological information and aerosol optical thickness, to estimate and 
compensate for atmospheric influences on satellite measurements. 

Furthermore, the satellite image grid (10x10) was extracted and used as a reference grid for all 
measurements to ensure that the vegetation indices are consistent and comparable across different 
satellite images and acquisitions. 

In the final phase of the study, raw digital number values for each spectral band were extracted 
utilizing the Google Earth Engine (GEE) platform. This extraction process aimed to investigate 
potential correlations between these spectral bands and crop yield for the years 2021 and 2022. 
A total of thirteen distinct spectral bands were acquired as covariates for each observation date. 
The inclusion of these covariates was driven by the anticipation that they would contribute to 
enhancing the predictive capabilities of the study. By incorporating a broader range of spectral 
information, the research sought to gain a more comprehensive understanding of the relationships 
between the spectral characteristics of the crop fields and the resulting crop yield. This analysis 
allowed for a deeper exploration of the factors influencing agricultural productivity and provided 
valuable insights for the study's conclusion. 
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2.4.1 Yield measurements 

The yield quantity and quality were sampled manually before harvest for the 8 fields of 2020 and 
the two of 2021 growing season. A regular 10x10 reference -cell grid covering the entire area was 
laid out, using ArcMap v10.3 (ESRI, Redlands, CAUSA). To carry out the yield mapping, an NDVI 
map was generated for each field using UAS measurement data taken before the harvest. This 
NDVI map was then classified using the quantile method, which allowed for the visualization of 
low, medium, and high NDVI values within each field. This classification helped identify different 
levels of vegetation health and productivity across the fields. 

Using these classified NDVI maps as a reference, random points were selected for each of the 
three designated zones (Figure 28): 

a) Low Zone (L1, L2): Representing areas with lower NDVI values, indicating lower crop 
productivity. 

b) Medium Zone (M1, M2): Corresponding to areas with moderate NDVI values, 
suggesting intermediate crop productivity. 

c) High Zone (H1, H2): Encompassing areas with high NDVI values, indicating higher crop 
productivity. 

At each of these selected sampling points, a specific group of plants included two and a half 
meters along the planting lines was harvested. This group typically comprised four to six plants. 

 

 

Figure 28 Yield sampling points (L1, L2, M1, M2, H1, H2) for 2020 growing season. 

To ensure precise location accuracy in the field, a GPS device was employed. These type of devices 
allowed for the exact identification of the sampling points within the designated zones. Once the 
sampling points were accurately pinpointed, the next step involved the collection of tomato samples 
from the selected location points. This collection process was facilitated by using plastic bags to 
gather the harvested tomatoes. 

An electronic scale was used to weigh the gathered tomatoes after the collection. The process 
involved considering the green and red tomatoes separately and determining the total weight. This 
step was essential to accurately measure the yield of tomatoes obtained from each of the sampling 
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points. The recorded weights provided valuable data for assessing the crop yield in the various 
zones, allowing for an in-depth analysis of crop productivity across the field. The images below 
(Figure 29) show the manual collection of tomato samples. 

 

Figure 29. Yield sampling of processing tomatoes, i) separation and weighing of ripe and unripe tomatoes, ii) yield 
sampling along a length of 2,5 m, iii) the collected of the yield samples per pilot area. 

In the final step of the process, the number of plants per hectare was taken into account. This 
information served as a crucial factor for extrapolation, which involved making estimations and 
predictions based on the data collected from the sampling points. By upscaling the sampling 
measurements, the study aimed to assess the reliability and accuracy of the projected production 
across the entire field. This extrapolation allowed for making informed predictions about the overall 
crop yield, per pilot field. It provided insights into how the observed data from the sampled points 
could be scaled up to represent the entire hectare, thus helping in evaluating the reliability and 
robustness of the yield projections. It's noteworthy that in the case of 2022, each of the two fields 
included three different varieties. Consequently, six samples were gathered for each variety, 
resulting in a total of 18 samples per field. Finally, for the years 2021 and 2022 the actual yield of 
each pilot field within the satellite framework was recorded directly by the farmers under the 
supervision of agronomists, and the respective total yield values were included in the dataset 
(Table 10).  

Table 10. Summary of yield sampling strategy over the three years  

Year 
Technology or 

activity 
Vegetation 

Indices 
Number of 

Fields 
Total Area 

(ha) 
Yield Sampling 

2020 

Satellite 

UAS 

Proximal Sensor 

NDVI 8 21 
6 Yield samples per 

field 

2021 

Satellite 

UAS 

Proximal Sensor 

NDVI 2 6.9 18 samples per field 

Satellite 
NDVI, RVI, 
WDVI, PVI, 

SAVI 
108 410 Total yield per field 

2022 Satellite 
RVI, NDVI, 

All Bands 
44 22,24 Total yield per field 
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2.5 Vegetation indices and spectral bands 

To evaluate the satellite systems and their relationship to yield, five VIs, namely the NDVI, 
Weighted Difference Vegetation Index (WDVI), SAVI, RVI, and Perpendicular Vegetation Index 
(PVI), were calculated for each date via SNAP software (Sentinel Application Platform—ESA 
Sentinels Application Platform v6.0.4), which is provided free of charge and accessible to everyone 
as part of the European Copernicus project. Each index captures different aspects of plant vitality 
and environmental conditions, providing a comprehensive understanding of crop performance. 
These five VIs were chosen based on their well-established utility and effectiveness in assessing 
vegetation health and predicting crop yield. Particularly, WDVI and PVI, indices that correct for 
soil reflectance, show a more linear and less-scattered relation than NDVI and RVI [348]. The 
research findings [349] also highlight the sensitivity of different VIs to variations in green cover 
and their associated noise levels. Specifically, at a 40% green cover, the noise level of the NDVI 
is observed to be four times that of the WDVI and nearly ten times that of the SAVI. These noise 
levels correspond to vegetation estimation errors of approximately +/- 23% for NDVI, +/- 7% for 
WDVI, and +/- 2.5% for SAVI. Furthermore, the NDVI and WDVI were found to be significantly 
crucial for predicting tomato weight, while VIs one month prior to harvest were significant in 
predicting fruit quantity [350]. These indices have also been found, through the systematic review 
that generate high correlations with yield [351,352]  

As a result, VI raster datasets (10x10m) of the whole area were created by iterating the VI formulas 
over all satellite image pixels. Once the total number of images was determined, an additional 
manual filtering step was performed to ensure that each generated mosaic consisted solely of 
high-quality and cloud-free data from the pilot fields. Given the small size of the fields, pixels 
outside the pilot farm boundaries were also selected and masked. For each date, a mean VI value 
was extracted from each field using the zonal statistics tool of the ArcGIS software.  

For the VIs calculation, Bands 4 (B4) and 8 (B8) of Sentinel-2 were used, which correspond to the 
RED and NIR spectrum, respectively. The equations used for the estimation VIs are presented 
below (Table 11): 

Table 11 The selected VIs used in this study and their respective spectral equations. 

Index Equation Reference 

NDVI 
(𝑁𝐼𝑅 – 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 Rouse et al., [253]  

WDVI 

NIR−S*𝑅𝐸𝐷 
where S is the slope of the soil line 

from a plot of red versus near-
infrared. 

Clevers, [353,354] 

PVI 

(𝑁𝐼𝑅 − 𝑎 ∗ 𝑅𝐸𝐷 − 𝑏)

√(𝑎^2 +  1) 
 

where a is the slope of the ground 
line, and b is the ground line’s 

gradient. 

Richardson & Wiegand, [355] 

RVI NIR/RED Pearson & Miller, [356] 

SAVI 

(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿)
) ∗ (1 + 𝐿) 

where L is a soil adjustment factor 

Huete [261] 
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NDVI is the most commonly used vegetation index and has found various applications. The result 
of NDVI calculation is an image with a continuum of pixel values ranging from −1 to 1. The NDVI 
varies from a minimum at bare soil reflectance to a maximum for a fully developed canopy with 
a value slightly less than one [30]. Healthy photosynthetic vegetation is related to higher positive 
values; on the other hand, stressed vegetation or even bare soil is related to lower values, especially 
<0.2 [357,358]. In the processing tomato crop, NDVI values are reported to have good correlation 
with several vegetation parameters, including the ability to predict yield [359]. 

The same spectral bands were used for RVI (Ratio Vegetation Index or Simple Ratio vegetation 
index), which is recorded to improve both saturation in high vegetation and sensitivity to the soil 
in low vegetation compared with NDVI [360]. It was introduced by Pearson and Miller [356] and 
is based on the contrast between the visible red and far-infrared bands of electromagnetic 
radiation for the pixels corresponding to vegetation [356]. High values of the index are mainly 
attributed to healthy vegetation and result from the combination of its low reflectance value for 
the red and the high reflectance it presents in the near-infrared band. Its value range is from 0 to 
more than 30, with healthy vegetation usually presenting values of 2 to 8.  

Richardson and Wiegand [355] approached the problem of variable soil brightness by developing 
the PVI, which attempts to eliminate differences in soil background [355]. It can be computed as 
a spectral indicator of plant development or biomass accumulation and cannot be considered to 
be independent of soil brightness. While it is effective in removing soil brightness effects for bare 
soil, it quickly becomes more sensitive as the canopy develops. A PVI value of 0 indicates bare soil, 
whereas negative values indicate water and positive values indicate vegetation. It is less sensitive 
to the atmosphere but is considered sensitive to the reflectivity and brightness of the ground, 
especially in cases with low vegetation cover. 

The weakness PVI presents regarding the assumption that there will be only one soil type under 
vegetation is addressed by the SAVI proposed by Huete [261] and is a hybrid of NDVI and PVI. 
The originality of this index lies in establishing a simple model that permits an adequate description 
of the soil–vegetation system [361]. SAVI also attempts to eliminate soil background effects; 
however, it is much less sensitive to changes in the background caused by soil color or surface soil 
moisture content than the RVI [362]. Qi et al. [363] shoed that the adjustment factor (L) is not a 
constant but a function that varies inversely with the amount of vegetation present. Generally, it 
is best applied to soils with sparse vegetation, and its range of desired values is the same as that 
of NDVI [364]. 

The WDVI was introduced by Clevers et al. [353] in 1989. WDVI has been used to overcome high 
PVI values due to a bright soil background. This index is also based on distance, and it assumes 
that the ratio between NIR and the red reflectance of bare soil is constant [365]. The WDVI 
concept was developed in order to correct the influence of soil background, but it is quite sensitive 
to atmospheric conditions. It is mathematically simpler than the rest of the indicators but with an 
infinite range of desired values [354]. 

To conclude the study, raw digital number values for each band were extracted using the Google 
Earth Engine (GEE) to explore potential correlations with crop yield for the years 2021 and 2022. 
The Sentinel-2 imagery consists of a total of 13 spectral bands, encompassing a range from visible 
and near infrared (vis-NIR) to short-wave infrared (SWIR). Among these bands, there were four 
bands with a spatial resolution of 10 meters, namely B2 (490 nm), B3 (560 nm), B4 (665 nm), 
and B8 (842 nm). Additionally, there were six bands with a spatial resolution of 20 meters, 
including B5 (705 nm), B6 (740 nm), B7 (775 nm), and B8A (865 nm). The remaining bands 
consisted of two SWIR large bands, B11 (1610 nm) and B12 (2190 nm), as well as three bands with 
a resolution of 60 meters, namely B1 (443 nm), B9 (940 nm), and B10 (1380 nm). These spectral 
bands were extracted as covariates for each observation date, with the expectation that these 
would enhance the predictive capacity of the study at multi temporal level. 
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All the results were recorded in Excel spreadsheets with VIs and spectral band values for all the 
measurement dates acquired. 

2.6 Data Analysis  

Data analysis was carried out to assess the strength and significance of these relationships to 
determine the predictive capabilities of the proximal, UAS and satellite-based indices for 
processing tomato yield estimation. 

2.6.1 Statistical analysis 

Pearson’s correlation coefficient (r) and regression analyses, facilitated by the XLstat software (R 
Core Team, 2022), were conducted to explore the relationships between yield and Vegetation 
Index (VI) data obtained from all three sensors. The objective was to assess the efficiency of VIs 
predicting yield, and whether they demonstrated a consistent trend. In this analysis, correlation r-
values exceeding 0.50 were considered indicative of a moderate to strong relationship. 

Descriptive statistics, including mean and standard deviation, were computed for the NDVI data 
to provide a comprehensive overview of crop production.  

2.6.2 Regression Methods and AutoML Set Up 

Machine learning techniques have the potential to enhance the modeling capabilities of traditional 
statistical methods. Nevertheless, the vast array of machine learning algorithms available presents 
a substantial challenge when it comes to selecting the most suitable one. Furthermore, each of 
these algorithms involves various hyperparameters that require fine-tuning through trial and error. 
Consequently, there is no inherent knowledge regarding the optimal configuration, and these 
hyperparameters are not automatically optimized during the training process. For instance, 
hyperparameters include the number of trees in methods like Random Forests and AdaBoost, the 
choice of splitting criteria (e.g., Gini, entropy) for tree-based algorithms, and the handling of 
outliers in robust linear regression methods like Theil-Sen or Huber. 

AutoML is a field of research that has become increasingly popular over the last few years [366]. 
Different domains, such as image recognition [367] and time series processing [368], take 
advantage of this technique. Moreover, some specific subfields of AutoML, such as neural 
architecture search (NAS), have arisen to optimize the search for some specific hyperparameters 
in the design of neural architectures (e.g., number of layers, activation function, etc.). However, 
there are still some open concerns [369] because (i) finding the best hyperparameters can still be 
too computationally expensive and (ii) AutoML adds a new layer of complexity/abstraction that 
can make the interpretability of the model decisions harder. On the other hand, more studies are 
arising around this topic; therefore, agriculture, specifically yield prediction, should be used to 
evaluate the current state of the technologies implementing AutoML techniques.  

To improve the predictive power of our model, this study also evaluated several ensemble methods 
based on decision trees, such as AdaBoosting, Random Forests, and Extra Trees. These combine 
the predictions of multiple machine learning algorithms to make more accurate predictions than 
the individual models. All of these ensemble methods start with a decision tree and then use 
boosting or bootstrap aggregation to reduce its variance and bias (bagging). Ensemble models 
aim to improve the performance of machine learning models by combining several of them [370]. 
In the case of regression, the mean of the predictions of the models with the best performance is 
used as the final prediction (Figure 30). An ensemble can be composed of endless models, however 
the larger the amount, the higher the computational requirements. Therefore, in this study, 
ensembles of up to 3 regressors were evaluated. 



Yield Prediction in processing tomato crop, through Precision Agriculture practices   

PhD Thesis Nicoleta K. Darra 

 

 

65(163) 

 

Figure 30. The use of AutoML for selection of the best combination of inputs (vegetation index and growth stage) and 
creating an ensemble of regression models is proposed as the methodology. 

 
AutoML was studied in this study using linear and nonlinear regression algorithms, including 
ordinary least square, automatic relevance determination regression, Theil-Sen, and Huber 
regression models, as well as decision-tree-based algorithms: 

• Ordinary least squares (OLS): the most common estimation method for computing linear 
regression models, which can be found in related work, e.g., Prasetyo et al. [371]; 

• Automatic relevance determination (ARD) regression: compared to the OLS estimator, 
the coefficient weights are shifted slightly toward zeros, which stabilizes them [372]; 

• Theil-Sen estimator method: the most popular non-parametric technique for estimating a 
linear trend, making no assumptions about the underlying distribution of the input data 
[373]; 

• Huber regression: this model is aware of the possibility of outliers in a dataset and assigns 
them less weight than other samples, in contrast to Theil-Sen, which ignores them [374]; 

• Decision trees: this method uses a non-parametric learning approach. Its main advantage 
is that it can be visualized to better understand why the classifier made a particular 
decision. 

To improve the predictive power of the model, in this study, we also evaluated several ensemble 
methods based on decision trees, such as AdaBoost, Random Forests, and extra trees. These 
methods combine the predictions of multiple tree-based models to make more accurate predictions 
than the individual models. Specifically, these ensemble methods start with a decision tree and 
then use boosting or bootstrap aggregation to reduce its variance and bias (bagging). It is 
important to remark that these tree ensembles are different from the ensemble of models that are 
built on top of the system. This means that the final ensemble used to compute the regression can 
be composed of three tree ensembles (e.g., two random forests and one AdaBoost). 

• AdaBoost: The AdaBoost algorithm (adaptive boosting) uses an ensemble learning 
technique known as boosting, whereby a decision tree is retrained several times, with 
greater consideration given to data samples for which the regression is imprecise [375]; 

• Random Forest: A supervised learning approach using the ensemble learning method for 
regression. In this approach, numerous decision tree regressors are combined into a single 
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model trained for many data samples collected on the input characteristic (in this case, 
NDVI) using the bootstrap sampling method [376]; 

• Extremely Randomized Trees: Extra trees is similar to random forest in that it combines 
predictions from many decision trees, but instead of bootstrap sampling, it uses the entire 
original input sample [377]. 

The auto-sklearn framework [378] was used to implement the AutoML pipeline. This means that 
three main techniques were used. First, Bayesian optimization was used as the global optimization 
algorithm. Since finding the best regressor and its hyperparameters is a non-convex, 
computationally expensive problem, the Bayes theorem can be used to direct an efficient and 
effective search of an optimal hyperparameter configuration [379]. Secondly, a metalearning step 
was used to warm start the Bayesian optimization procedure, which resulted in a considerable 
boost in efficiency. In the case of auto-sklearn, the metalearning approach used an offline phase 
to learn the best initialization configurations along 140 datasets from the OpenML [380] 
repository. Thirdly, auto-sklearn implements an ensemble building technique whereby the most 
suitable models are combined to boost the prediction performance. 

2.6.3 Evaluation methodology 

The assessment involves evaluating the performance and accuracy of satellite-derived indices for 
predicting processing tomato yield. This evaluation is achieved by comparing the satellite-derived 
data with ground truth information collected during field surveys. The analysis takes into account 
factors such as spatial resolution, spectral characteristics, and temporal variability, allowing for a 
comprehensive examination of the agreement and discrepancies between and satellite data. 

To measure the prediction accuracy, two key metrics are employed: the R² and the RMSE. R² 
provides insights into the degree of correlation between predicted and observed values, while 
RMSE quantifies the error between them. Additionally, a 5-fold cross-validation procedure is 
implemented for each regression model to assess their generalization ability and ensure their 
robustness. To further enhance the precision of the final performance assessments, the experiments 
are conducted 20 times with different data splits. 

This approach ensures a comprehensive evaluation of the satellite-derived indices, their predictive 
accuracy, and their robustness, providing a well-rounded assessment of their suitability for 
processing tomato yield prediction. 
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Part. 3 Results  

3.1 Yield Estimation using Precision Agriculture – Systematic 
Review 

One of the key findings in the systematic review pertains to the annual publication count spanning 
from 2002 to 2022. Figure 31 provides insight into the changing patterns of research output in the 
field of yield prediction over this two-decade period. The findings of the study [381] indicating that 
during 2002 to 2012, the publication rate was low, with an average of roughly one paper per year. 
However, between 2013 from 2019 onwards, a rapid increase in publications is evident, confirming 
the growing interest among researchers, which also reflects the yield prediction used in the 
literature. This also aligns with similar systematic review for machine learning [382], that mark 
2019 as a year of with high research activity.  

 

Figure 31. Number of publications per year throughout the period 2002 to 2022. 

The higher number of articles in the last years can be explained by a confluence of factors such 
as technological advancements in ICT, augmented research funding, and an expanding 
understanding of remote sensing applications.  

3.1.1 Key contributor countries and crops 

This systematic review also provided insights into the geographical distribution of research and 
the key contributors in the field. The studies spanned across 55 countries, with China emerging as 
the most prevalent location, succeeded by the USA, India, Australia, and Brazil (Figure 32). While 
experiments in developing countries exist, they often focus on a single crop and are less abundant. 
In Europe, research efforts are geographically diverse, correlating somewhat with country size and 
production share, yet Eastern Europe exhibits a scarcity of studies. Notably, these findings pertain 
to the study areas within the articles, not necessarily the countries of authorship. 
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Figure 32. Top 10 countries in terms of publications 2002–2022. 

The selection of crops for yield estimation plays a pivotal role in remote sensing-based agriculture 
research. Through a comprehensive analysis of the available literature, this study has identified 
the most commonly investigated crops when using remote sensing techniques for yield estimation. 
The research covered a wide range of crops, encompassing 48 different types, further categorized 
into nine groups based on the classification provided by the Food and Agriculture Organization 
(FAO) [383] . Figure 33 provides an overview of the number of studies that encompass crops from 
each category, highlighting the prominent crops that have received extensive attention in the field 
of remote sensing-based yield estimation. It's important to note that several studies addressed 
multiple crops, which is why the total number of crops mentioned exceeds the number of studies 
analyzed. 

 

Figure 33 Categories of crops included in literature between 2002 and 2022. 

Figure 34 offers a more detailed breakdown of the number of studies corresponding to various 
crops. It's important to highlight that several studies investigated multiple crops, which accounts 
for the total number of crops being greater than the number of studies analyzed.  
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Figure 34. Number of studies per crop category and crop. 

Among these crops, wheat (including durum wheat), maize, and rice stand out as highly studied, 
not only within the cereal category but across all categories. Additionally, oilseed crops, with 
soybeans taking the lead, also garner significant attention in scientific publications. On the other 
hand, the categories of fruits and nuts, as well as vegetables and melons, appear to be the least 
explored in terms of research publications. It's worth noting that the "Grass crops" category 
encompasses various crops, including Bachiaria pastures, grassland, miscanthus, perennial 
bioenergy grass, and ryegrass. Similarly, the "tomato" category includes research related to 
processing tomato crops. 
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3.1.2 Trends in platforms and sensors used. 

The literature on remote sensing platforms for crop yield forecasting encompasses a wide range 
of options with unique strengths and drawbacks. These platforms vary in spatial and temporal 
resolution, spectral and radiometric capabilities, coverage area, revisit frequency, data availability, 
cost, and processing demand. Consequently, choosing the ideal remote sensing platform for a 
specific crop yield forecasting scenario relies on multiple factors such as crop type, analysis scale, 
forecasting objectives, available resources, and user preferences. 

The study's findings reveal that a wide range of remote sensing platforms were commonly 
employed for crop yield estimation, with many studies using multiple platforms concurrently. 
Notably, the majority of the reviewed studies (62%) relied on satellite-derived data to generate 
yield forecasts throughout the growing season. However, for small-scale investigations conducted 
on experimental plots, ground-based sensors (27%) or airborne/UAS sensors (30%) were more 
frequently utilized (as depicted in Figure 35). Despite the utilization of multiple platforms, satellites 
remained the predominant choice for crop yield estimation. This diverse utilization of remote 
sensing platforms highlights their versatility and their advantages in collecting crucial data for 
crop yield forecasting.  

 

Figure 35. Remote sensing platforms for yield forecasting used in the literature [381]. 

Figure 36 provides a visual representation of the satellite systems that are most commonly utilized 
for crop yield prediction. The most prevalent satellite system employed for this purpose is the 
Moderate Resolution Imaging Spectroradiometer (MODIS), followed by Sentinel-2, Landsat, and 
Satellite pour l’Observation de la Terre (SPOT). Additionally, Synthetic Aperture Radar (SAR) 
sensors, primarily Sentinel-1, have been extensively utilized. Moreover, airborne/UAS platforms 
have contributed significantly to yield predictions. Out of the 269 reviewed studies, 84 utilized 
airborne/UAS data for crop yield prediction, involving both manned and unmanned flights. These 
studies utilized multispectral cameras (45), RGB cameras (30), and hyperspectral data (15). 
Thermal and SAR sensors were less frequently employed. Notably, many studies employed more 
than one sensor, indicating the integration of multiple data sources to enhance the accuracy and 
comprehensiveness of crop yield prediction models. 



Yield Prediction in processing tomato crop, through Precision Agriculture practices   

PhD Thesis Nicoleta K. Darra 

 

 

71(163) 

 

Figure 36. i) Satellite platforms for yield forecasting used in the literature; ii) ground-based platforms for yield 
forecasting used in the literature; iii) airborne/ UAS platforms for yield forecasting used in the literature. Source.[381]. 

Ground-based sensors were classified based on their functionalities and applications. Canopy 
sensors and analyzers constituted instruments for Chlorophyll Measurement (SPAD), Crop Health, 
and Nutrient Management (such as GreenSeeker, NTech Industries, Ukiah, CA, USA, and 
CropCircle, Holland Scientific Inc., Lincoln, NA, USA), in addition to Spectral Analysis and Canopy 
Analysis sensors (like Spectroradiometer, spectrometers, Li-Cor 2000 Plant Canopy Analyzer from 
Li-Cor, Lincoln, NE, USA). Among these sensors, local meteorological stations emerged as the 
most prevalent, being featured in 39 studies. Canopy sensors also saw frequent utilization. 
Conversely, thermal sensors and LiDAR/Laser scanner data were the least employed within the 
spectrum of ground-based sensor categories. 

3.1.3 Trends in VIs and methods used 

As indicated by the study’s results (Figure 37), the NDVI emerges as the most prevalent vegetation 
index. This prominence is justified by its strong correlation with vital yield variables like above-
ground biomass, crop height, and LAI [9,384]. NDVI's extensive documentation in literature 
contributes to its reliability in estimating crop health and productivity, pivotal for accurate yield 
predictions [385]. Following NDVI is the Enhanced Vegetation Index (EVI), an enhanced version 
addressing some limitations of NDVI, especially in regions with dense vegetation or atmospheric 
interferences. Additionally, LAI and GNDVI find substantial application in studies. Each index 
offers distinct advantages and serves specific research or monitoring objectives. Researchers, 
agronomists, and environmental scientists rely on these indices to scrutinize vegetation dynamics, 
evaluate crop health, monitor alterations in land cover, and make informed management decisions. 
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Figure 37. Most widely used VIs for crop yield prediction [381]. 

Analyzing remote sensing products for yield prediction involves various methodologies 
encompassing ML, DL, statistical, and model-based approaches. These methods leverage remote 
sensing data's power to estimate and accurately predict crop yields. 

Based on the findings of this study (Figure 38), statistical analysis is the most prevalent method 
employed in the reviewed studies for crop yield prediction. ML and DL techniques are also widely 
utilized for yield estimation. In contrast, model-based approaches are less frequently used in these 
studies. Statistical analysis techniques often offer clear and interpretable relationships between 
variables, making them a popular choice for analyzing and understanding the impact of different 
factors on crop yields. On the other hand, machine learning and deep learning methods excel at 
capturing intricate patterns and relationships in large and high-dimensional datasets, which is 
particularly advantageous when dealing with remote sensing data. While model-based approaches 
are less common in this context, they provide valuable insights and predictions by simulating the 
entire crop growth process and its complex interactions with the environment from an ecological 
physiology perspective. 

 

Figure 38. Overview of the methodological approach in the studies considered [381]. 
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In essence, Statistical Analysis and Machine Learning methods stand out in crop yield estimation 
due to their adeptness in managing intricate nonlinear relationships within expansive datasets, 
encompassing known parametric structures and unobserved cross-sectional variations [386]. 
Additionally, the performance of Deep Learning methods may be inadequate due to the fact that 
they heavily rely on the quality of the extracted features [387]. Lastly, the limited adoption of 
model-based methods in crop yield prediction could be attributed to their substantial demands for 
data and computational resources, coupled with their comparatively lower flexibility when 
juxtaposed with other methodologies [388]. 

 

3.1.4 Accuracy Performance Per Crop Category 

Assessing accuracy performance per crop category is crucial for understanding the effectiveness 
of different methods and platforms in estimating yields for specific crops, aiding in informed 
decision-making and optimizing agricultural practices. Consequently, the highest performance 
measures (R2) obtained for each study were extracted and organized into tables based on crop 
categories. The following tables summarize crop-specific studies along with the methods and 
platforms used for yield prediction, as well as the corresponding R2 values.  

Table 12 summarizes the methods, platforms, and associated R2 values for the sugar, beverage, 
and spice crop category. The results show that a combination of statistical and machine learning 
methods has been used for yield prediction. For sugarcane, these methods, coupled with satellite 
data, have provided R2 values ranging from 0.53 to 0.94. For coriander and tea, statistical methods 
using satellite data yielded R2 values between 0.68 and 0.87. In the case of coffee tree crops, 
statistical and model-based techniques with satellite data achieved R2 values in the range of 0.64 
to 0.93. R2 

Table 12. Reported method, platform, and R2, for sugar, beverage, and spice crop category. 

Crop References Method Platform R2 

Sugarcane 

[389] Statistical Satellite × Proximal 0.53 

[390–393] Statistical Satellite 0.55 to 0.8 

[394], [395] ML, Statistical Satellite 0.87 to 0.94 

[396] ML Satellite 0.70 

[397] Model based Satellite 0.86 

Coriander [398] Statistical Satellite 0.81 to 0.87 

Tea [399] ML Satellite 0.68 to 0.71 

Coffee Tree 
[400] 

Statistical, Model 

based 
Satellite 0.64 to 0.69 

[401] ML, Statistical Satellite 0.88 to 0.93 

 

In Table 13, the reported methods, platforms, and corresponding R2 values for the Vegetables and 
Melons crop category are presented. These findings reveal a variety of methods applied for yield 
prediction in different vegetable crops. For Chinese cabbage and white radish, statistical methods 
using UAS platforms demonstrated R2 values between 0.66 and 0.90. In the case of carrots, 
statistical methods with satellite data resulted in R2 values ranging from 0.29 to 0.78. African 
eggplant, when studied with statistical methods in conjunction with UAS and proximal sensing, 
achieved R2 values between 0.54 and 0.87. For table beet, a statistical approach using UAS data 
provided an R2 of 0.89. For tomatoes, both processing and fresh fruits, a combination of statistical 
and machine learning methods with satellite and UAS platforms yielded R2 values in the range of 
0.69 to 0.90. 

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099238556&doi=10.3390%2frs13020232&partnerID=40&md5=8af028df62f599db0bca86dbb7b3a42f
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Table 13. Reported method, platform, and R2 for the Vegetables and Melons crop category. 

Crop Reference Method Platform R2 

Chinese Cabbage 
White Radish [402] Statistical UAS 0.66 to 0.90 

Carrot [403] Statistical Satellite 0.29 to 0.78 

African Eggplant [404] Statistical UAS × Proximal 0.54 to 0.87 

Table Beet [405] Statistical UAS 0.89 

Tomato 
[350] * Statistical Satellite 0.69 to 0.81 

[406]*, [407], 
[408] ML, Statistical UAS 0.70 to 0.90 

* Processing Tomato. 

Table 14 summarizes the methods, platforms, and R2 values for various oilseed crops. Notably, 
groundnut achieved an R2 of 0.96 using a combination of machine learning and statistical methods 
with satellite and proximal data. Sunflower performed well with an R2 of 0.90 using machine 
learning on satellite data. Olive tree and palm oil had high R2 values of 0.97 and 0.82, respectively, 
using statistical and machine learning methods on UAS and satellite platforms. Canola yielded 
good results with R2 values of 0.82 (UAS) and 0.86 (satellite) with statistical methods. Rapeseed 
showed promise with an R2 of 0.86 using a combination of model-based and statistical approaches 
with satellite and proximal data. Soybean demonstrated a wide range of R2 values from 0.49 to 
0.98, depending on the method and platform chosen. 

Table 14. Reported methods, platforms, and R2 for the Oilseed Crop category. 

Crop References Method Platform R2 

Groundnut 
[351] ML, Statistical Satellite × Proximal 0.96 

[409] ML/DL, Model 
based Satellite × Proximal 0.68 

Sunflower 

[410] ML Satellite 0.90 

[398] Statistical Satellite 0.56 

[411] ML/DL, Statistical UAS 0.43 

[412] Statistical Satellite 0.91 

Olive Tree [413] Statistical UAS 0.97 

Palm Oil [414] ML/DL Satellite 0.82 

Canola [415] Statistical UAS 0.82 

[416] Statistical Satellite 0.86 

Rapeseed 

[417] Statistical UAS × Proximal 0.81 

[418] Model based, 
Statistical Satellite × Proximal 0.86 

[419] Model based Satellite × Proximal 0.82 

[412] Statistical Satellite 0.97 

Soybean 

[420], [421], [422] ML/DL, Statistical Satellite 0.87 to 0.90 

 [412,423–429]  Statistical Satellite 0.49 to 0.98 

[430], [431]  ML/DL Satellite 0.85 

[432] ML Satellite 0.61 

[433], [434] ML, Statistical Satellite 0.86 to 0.90 

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141078656&doi=10.3390%2fland11101752&partnerID=40&md5=6f364659f530a35398661454d137ac8d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101762920&doi=10.12911%2f22998993%2f132436&partnerID=40&md5=17fc9d7abd8bee3aa530558b2f34d1d9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101762920&doi=10.12911%2f22998993%2f132436&partnerID=40&md5=17fc9d7abd8bee3aa530558b2f34d1d9
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[435], [436] ML/DL UAS 0.72 to 0.66 

[352] ML UAS 0.89 

[437] Statistical UAS 0.74 

[438] ML/DL Satellite × Proximal 0.85 

[439] ML, Statistical Satellite × Proximal 0.82 

[440] ML UAS × Proximal 0.97 

[441] ML/DL, Statistical Satellite × Proximal 0.67 

 

In the Fruits and Nuts category ( 

Table 15), orchard yield estimation has predominantly been conducted using proximal sensing and 
UAS sensing, or a combination of both along with satellite data. Notably, multiple methods and 
platforms have been applied for vineyard yield prediction, with ML and DL approaches, 
demonstrating high performance, with an R2 of 0.91 when using proximal data. Satellite and 
proximal data combinations also achieve strong results, with R2 values ranging from 0.42 to 0.87.  

 
Table 15. Reported methods, platforms, and R2 for the Fruits and Nuts crop category. 

Crop References Method Platform R2 

Vineyards 

[203,442]  Statistical Satellite × Proximal 0.42–0.87 

[443] ML Satellite × Proximal 0.79 

[444] ML/DL Proximal 0.91 

[445] ML, Statistical Proximal 0.86 

Almond 
[446] Statistical UAS 0.84 

[447] ML/DL, Statistical Satellite × UAS 0.71 

Apple [448] ML/DL UAS 0.88 

Jujube [436,449] Model based Satellite 0.62 to 0.78 

Mango 
[450] ML/DL, Statistical Satellite 0.77 

[451] ML, Statistical UAS 0.77 

 

Table 16 offers a comprehensive overview of yield prediction methods, platforms, and associated 
R2 values for a range of root tuber and other crops. Notably, for potato crops, the adoption of 
ML approaches, either with satellite or UAS data, demonstrates high performance, achieving R2 
values of up to 0.89. Cotton yield prediction, on the other hand, involves a spectrum of methods, 
including statistical, ML, and model-based approaches, often combining satellite, UAS, or proximal 
data sources. This results in a wide range of R2 values from 0.52 to 0.97, highlighting the versatility 
and effectiveness of different techniques. Other crops like sweet potato, cassava tuber, ramie, milk 
thistle, and various grasses also display varying levels of accuracy, depending on the methodology 
and data source used. 

Table 16. Reported methods, platforms, and R2 for the Root tuber and other crops category. 

Crop References Method Platform R2 

Potato 

[452] Statistical Satellite 0.65 

[453] ML, Statistical Satellite 0.89 

[454] ML Satellite × Proximal 0.86 

[384] ML UAS 0.83 

[455] ML, Statistical Proximal 0.72 

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076561476&doi=10.3390%2frs11232752&partnerID=40&md5=81b870558b7b9affd23b35ecdc8a0ce6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083725633&doi=10.1016%2fj.fcr.2020.107788&partnerID=40&md5=33c0021bc5279cd3127e8d4459fe7650
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132772400&doi=10.3390%2fagronomy12061464&partnerID=40&md5=ee4a894b5f251886586d3f92d489886f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085469848&doi=10.3390%2fs20102985&partnerID=40&md5=726fc7716066c975261fd6f2c333704f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085660567&doi=10.3390%2fijgi9060343&partnerID=40&md5=e7db3b9f60422058dcccfcc861f1b0e9
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[418] 
Model based, 

Statistical Satellite × Proximal 0.86 

Cotton 

[141,142] Statistical UAS 0.52 to 0.94 

[457] ML/DL UAS 0.85 

[458] 
ML/DL, 

Statistical Satellite 0.67 

[459] Model based Satellite × Proximal 0.96 

[460] Statistical UAS × Proximal 0.84 

[461] ML UAS × Proximal 0.93 

[462] 
ML/DL, 

Statistical 
UAS 0.97 

[463], [464] ML, Statistical UAS 0.77 to 0.91 

Sweet Potato [429] Statistical Satellite 0.68 

Cassava Tuber [465] Statistical UAS 0.87 

Ramie [466] Statistical UAS 0.66 

Milk Thistle [418] 
Model based, 

Statistical Satellite ×Proximal 0.86 

Grassland * [467] ML UAS 0.87 

[468] Statistical UAS 0.75 
Perennial Ryegrass 

* [469] ML UAS 0.93 

Perennial Bioenergy 
Grass * [470] Statistical Satellite 0.88 

Brachiaria Pastures 
* [471] ML Satellite × UAS 0.75 

Miscanthus * [472] 
ML, Statistical, 
Model based 

UAS 0.79 

* Grasses and other fodder crops. 

In the case of Leguminous crop category (Table 17), Alfa Alfa yield prediction benefits from 
statistical, ML, and DL methods, coupled with either satellite or UAS platforms, yielding R2 values 
ranging from 0.64 to 0.94. Red Clover exhibits impressive R2 values of 0.90, achieved through ML 
and DL techniques with UAS data. Chickpea yields are accurately estimated using ML methods 
combined with satellite and proximal data sources, achieving an R2 value of 0.92. Additionally, 
Snap Bean and Peas show high predictive accuracy, especially with ML and DL methods using 
UAS data, attaining R2 values of 0.98 and 0.95, respectively. Beans demonstrate the adaptability 
of statistical and ML techniques, whether with satellite or satellite-proximal data, resulting in R2 

values ranging from 0.54 to 0.84. Finally, Faba Bean benefits from a combination of ML and 
statistical methods with UAS data, achieving an R2 value of 0.72. These findings underscore the 
significance of tailored approaches for different leguminous crops to enhance yield prediction 
accuracy. 

Table 17. Reported methods, platforms, and R2 for the Leguminous crop category. 

Crop References Method Platform R2 

Alfa Alfa 

[473], [474] Statistical Satellite 0.72 to 0.94 

[475] ML/DL UAS 0.87 

[476] ML UAS 0.84 

[477] Statistical UAS 0.64 

[478] ML, Statistical Satellite 0.93 

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100743003&doi=10.1016%2fj.compag.2021.105999&partnerID=40&md5=2d8d89a75218ba7b753d2b3ca804e50e
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Red Clover [479] ML/DL UAS 0.90 

Chickpea [480] ML Satellite × Proximal 0.92 

Snap Bean * [481] ML/DL UAS 0.98 

Peas [473] Statistical Satellite 0.95 

Beans * 
[482] Statistical UAS × Proximal 0.70 

[483] ML Satellite 0.54 

[484] Statistical Satellite × Proximal 0.84 

Faba Bean [485] ML, Statistical UAS 0.72 
* Included in beans. 

The category of cereals encompasses a wide range of methods and platforms, prompting its 
separation into two tables: cereals (Table 18), and maize and wheat (Table 19). Table 18 shows 
that statistical methods with satellite data yield R2 values in the range of 0.25 to 0.97 for Sorghum 
and Rice, demonstrating the efficacy of this approach. Barley exhibits R2 values ranging from 0.70 
to 0.93 when employing statistical methods with satellite data and data from multiple platforms. 
For Oats, the use of statistical and machine learning techniques, along with data from various 
sources, results in R2 values of 0.68 to 0.929. Millet and Rice are also estimated using statistical 
and machine learning methods with satellite data, achieving R2 values between 0.40 and 0.95. 
The application of model-based techniques and a combination of statistical, machine learning, 
and model-based methods contributes to successful yield predictions. 

Table 18 Reported methods, platforms, and R2 for the cereal crop category. 

Crop Reference Method Platform R2 

Cereal  [486], [487] Statistical Satellite 0.71 

Barley 

[416],[488], [473] Statistical Satellite 0.86 to 0.93 

[489] Statistical 
Satellite × UAS 

× Proximal 
0.70 

[490],  
Model based, 

Statistical Satellite 0.6 to 0.77 

[492] ML/DL UAS × Proximal 0.93 

[493] ML x Statistical Satellite × Proximal 0.88 

[494] ML, Statistical, Model 
based Satellite 0.47 

Oats 
[489] Statistical Satellite × UAS × 

Proximal 0.79 

[492] ML/DL UAS × Proximal 0.929 

[495] Statistical Proximal 0.90 

Millet [429] Statistical Satellite 0.68 

[483] ML Satellite 0.40 

Sorghum 

[496], [474], 
[429] Statistical Satellite 0.25 to 0.81 

[497] ML/DL Satellite × Proximal 0.35 

[483] ML Satellite 0.44 

Rice 

[429,498–502] Statistical Satellite 0.56 to 0.97 

[503], [504], 
[505], [432] ML Satellite 0.43 to 0.95 

[506], [507] Model based Satellite 0.89 to 0.96 

[508] ML, Model based UAS × Proximal 0.75 

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113708895&doi=10.3390%2frs13163241&partnerID=40&md5=ef65383447e0fbcf148cd050a9b4ca8e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121590131&doi=10.1016%2fj.jag.2021.102623&partnerID=40&md5=188315b5c9ec489baf60eb487f311963
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893972669&doi=10.1080%2f01431161.2013.875629&partnerID=40&md5=5ddc3d7eb9d86277ac6a6b5afabc7141
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112308659&doi=10.3390%2frs13163101&partnerID=40&md5=4eafc53c384c057551fe73e701b2ce51
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111055152&doi=10.1016%2fj.agrformet.2021.108555&partnerID=40&md5=b9459a241cb19139b2e6314678439798
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085945599&doi=10.1590%2f1678-4499.20190387&partnerID=40&md5=127f97291e37bcfa2d40d686f827af72
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121722765&doi=10.3390%2fagronomy11122439&partnerID=40&md5=50ef3a73a7b30e6379abf0991e9c2265
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[509], [510] ML/DL, Statistical UAS × Proximal 0.22 0.51 

[511], [512] ML, Statistical UAS 0.76 to 0.8 

[513], [409] ML/DL, Model based Satellite × Proximal 0.75 to 0.86 

[514] Statistical, Model 
based 

Satellite 0.80 

[515] ML/DL Satellite 0.81 

[516] ML/DL UAS 0.84 

[517] Statistical UAS × Proximal 0.64 

[518] ML, Statistical UAS × Proximal 0.83 

[519] ML, Statistical Proximal 0.86 

[520] Statistical, Model 
based 

UAS 0.94 

[521], [522] Statistical Satellite × Proximal 0.66 to 0.90 

[523], [524], 
[525], [526] 

Statistical UAS 0.74 to 0.83  

 
In the table focusing on wheat and maize (Table 19), it becomes evident that these crops have 
received special attention in the literature. The number of research papers dedicated to studying 
wheat and maize yield prediction is higher compared to other cereals, indicating their prominence 
in agricultural research. Moreover, the utilization of diverse approaches in predicting the yields of 
wheat and maize is also noteworthy.  

Table 19. Reported methods, platforms, and R2 for wheat and maize. 

Crop References Method Platform R2 

Maize 

[527] Statistical Satellite × Proximal 0.87 

[528] Statistical UAS ×Proximal 0.83 

[529] Statistical UAS 0.74 

[425–
427,429,473,474,483,530–

537] 

Statistical Satellite 0.46 to 0.99 

[538], [539] Model based, 
ML/DL Satellite 0.85 

[540], [541], [542], [543] Model based Satellite 0.68 to 0.83  

[544] Model based UAS × Proximal 0.855  

[545] Model based Proximal 0.68 

[410], [546], [547], [548], 
[549], [550], [432] 

ML Satellite 0.43 to 0.92 

[551] ML, Statistical, 

Model based 
Satellite 0.59 

[433], [552], [553] ML, Statistical Satellite 0.48 to 0.91 

[554], [438] ML/DL Satellite × Proximal 0.75 to 0.85  

[422], [555], [441], [421], 
[420], [556], [557] 

ML/DL, Statistical Satellite 0.70 to 0.92 

[558], [559], [560], [561] ML/DL UAS 0.57 to 0.93  

[562], [563] ML, Statistical Satellite × Proximal 0.35 to 0.98 

[564] ML Proximal 0.7 

http://dx.doi.org/10.1016/j.rse.2020.112174
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097422776&doi=10.1016%2fj.eja.2020.126208&partnerID=40&md5=fc308827dece5a657e86ba23ab844a0f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129228444&doi=10.3390%2frs14091995&partnerID=40&md5=9172b92766088e6e8e6ed41fd24dd268
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083725633&doi=10.1016%2fj.fcr.2020.107788&partnerID=40&md5=33c0021bc5279cd3127e8d4459fe7650
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079678589&doi=10.3390%2fRS12010021&partnerID=40&md5=ab86d4c2397791b9006fe0ff599ba616
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090236695&doi=10.3390%2fs20185055&partnerID=40&md5=3cd0a487b5d0dee0366fd864a00ab313
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089478215&doi=10.3390%2fRS12152392&partnerID=40&md5=61aa9fbe9551e83f0e1f7eb669b87ad8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099751286&doi=10.3390%2frs13030356&partnerID=40&md5=d8e4b2b0cf1cffc7d9db75e2dd2c9ee1


Yield Prediction in processing tomato crop, through Precision Agriculture practices   

PhD Thesis Nicoleta K. Darra 

 

 

79(163) 

[565] Model based, ML Satellite × Proximal 0.58 

[566] Statistical, Model 
based UAS 0.81 

[409] ML/DL, Model 
based Satellite × Proximal 0.75 

[567] Statistical, Model 
based Satellite 0.73  

[568] ML, Model based Satellite 0.76  

[569] ML x Statistical UAS 0.80 

Wheat 

[474], [488], [570], [533], 
[571], [572], [573], [416], 
[574], [473], [575], [425], 
[576], [398], [577], [578], 

[427] 

Statistical Satellite 0.37 to 0.99 

[579] ML/DL, Model 
based Satellite 0.83  

[580] ML/DL Satellite 0.75  

[555], [581] ML/DL, Statistical Satellite 0.72 to 0.78 

[490], [582], [583], 
[584], [585] 

Model based, 
Statistical 

Satellite 0.48 to 0.86 

[586], [587], [494] ML, Model based Satellite 0.55 to 0.75 

[433], [588], [589] ML, Statistical Satellite 0.72 to 0.89 

[548], [590], [591], [432], 
[592], [593] 

ML Satellite 0.51 to 0.99 

[594], [595], [596], [597], 
[598], [599], [600], [491], 

[601], [602], [603] 

Model based Satellite 0.49 to 0.86 

[604], [605], [606], 
[607], [608], [609] 

ML/DL Satellite 0.79 to 0.93 

[610], [611] Model based, 
Statistical 

Proximal 0.698 to 0.77 

[612],[613] Statistical Proximal 0.46 to 0.48 

[614], [615] ML/DL Proximal 0.83 to 0.891 

[616] Model based Proximal 0.84 

[617] ML, Statistical UAS 0.81 

[618],[619], [620] ML/DL UAS 0.62 to 0.85 

[621] Statistical UAS 0.70  

[622], [623], [624], [625], 
[626] 

ML UAS 0.62 to 0.93 

[627], [628], [629] ML/DL, Statistical UAS 0.59 to 0.84 

[630], [631], [632] ML/DL, Statistical UAS × Proximal 0.83 to 0.93 

[633], [492], [634] Statistical UAS × Proximal 0.73 to 0.929   

[635] ML, Statistical UAS × Proximal 0.78 

[493], [636] ML, Statistical Satellite × Proximal 0.83 to 0.88 

[637], [638] ML/DL, Statistical Satellite × Proximal 0.68 to 0.91 

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091821827&doi=10.1016%2fj.jag.2019.101988&partnerID=40&md5=ddbfd1be55fa434fa62a04d6f36c5ecf
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893972669&doi=10.1080%2f01431161.2013.875629&partnerID=40&md5=5ddc3d7eb9d86277ac6a6b5afabc7141
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141870327&doi=10.3390%2fagriculture12101635&partnerID=40&md5=3338932f75754ca78e9019fc1f4be8d4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111055152&doi=10.1016%2fj.agrformet.2021.108555&partnerID=40&md5=b9459a241cb19139b2e6314678439798
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119934309&doi=10.3390%2frs13224680&partnerID=40&md5=46785a580b76965b067fb3d67243ac25
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121660616&doi=10.1016%2fj.jag.2021.102552&partnerID=40&md5=22b80f70a0c9ef0b6a3fa7a3dbefae19
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104227345&doi=10.1109%2fJSTARS.2021.3073149&partnerID=40&md5=4bfac4fb25d0fa8756b02fe1148e1c97
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85002644909&doi=10.3390%2frs8120972&partnerID=40&md5=162017019b27b5bd255f6221ad6acd18
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114781306&doi=10.1016%2fj.agrformet.2021.108629&partnerID=40&md5=e094f65031957af68e3586860e86631f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112308659&doi=10.3390%2frs13163101&partnerID=40&md5=4eafc53c384c057551fe73e701b2ce51
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088651359&doi=10.3390%2frs12142278&partnerID=40&md5=f58622f9ba8139ee1ab5312b80dec490
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109111450&doi=10.3390%2frs13132435&partnerID=40&md5=6a7b1672dda6f5f69cd2acee868877ae


Yield Prediction in processing tomato crop, through Precision Agriculture practices   

PhD Thesis Nicoleta K. Darra 

 

 

80(163) 

Model based 

[639] ML/DL, Statistical Satellite × Proximal 0.50 

[640], [641], [418], [642], 
[643] 

Statistical, Model 
based 

Satellite × Proximal 0.61 to 0.93 

[644] ML Satellite × Proximal 0.89 

[645], [646] ML/DL Satellite × Proximal 0.63 to 0.86 

[647] ML/DL, Statistical, 
Model based Satellite × Proximal 0.77 

[648] Model based Satellite × Proximal 0.49 

[649], [650] Statistical Satellite × Proximal 0.55 to 0.76  

[489] 
Statistical 

Satellite × UAS 

× Proximal 
0.79 

 

Both wheat and maize show a diverse range of techniques used for yield prediction. Statistical 
methods in conjunction with satellite, UAS, and proximal data provide R2 values ranging from 0.37 
to 0.99 for wheat, with similar statistics for maize in the range of 0.25 to 0.99. Model-based 
methods, machine learning, and deep learning techniques are also prevalent, further showcasing 
the variety of approaches utilized for yield estimation. The combination of satellite, proximal, and 
UAS data in different ways contributes to the overall accuracy, with R2 values reaching 0.86 for 
wheat and 0.98 for maize in various studies. This table illustrates the complexity and diversity of 
methods and platforms employed to predict wheat and maize crop yields accurately. 

 

3.2 Intercomparison of Proximal, UAS and Satellite Remote 
Sensing Platforms 

Over the initial two years of the study, an investigation was undertaken across ten distinct fields 
(eight in the first year and two in the second year) at field level scale. These designated areas 
functioned as reference fields, facilitating the comparison of NDVI datasets derived from proximal, 
UAS and Satellite imagery. The analysis conducted at the level of 10x10 meters.   

3.2.1 Descriptive Statistics 

The summary statistics derived from the UAS (Table 20) and Sentinel (Table 21) NDVI dataset 
provide valuable information about the overall condition and diversity of vegetation in a total of 
ten distinct fields during the 2020 and 2021 seasons. 

The mean NDVI values serve as a measure of the average vegetation health within each field.  
According to the results of descriptive statistics for the NDVI derived from UAS dataset (Table 
20), the fields F20_1, F20_6, F20_3, and F21_2 stand out with the highest mean NDVI values 
(0.76 and 0.81), signifying relatively healthy vegetation conditions. Conversely, fields F20_7 and 
F20_8 exhibit the lowest mean NDVI values, suggesting the presence of less healthy or sparse 
vegetation. The standard error for all fields is remarkably low (around 0.01), indicating a high 
level of accuracy and reliability in the mean NDVI estimations. The median values provide a 
measure of the central tendency, with F20_1 having the highest median NDVI (0.82) and F20_7 
the lowest (0.70). 

Standard deviation measures the spread or variability in NDVI values. Fields F20_4 and F20_5 
show the highest standard deviations, indicating a broader range of NDVI values and greater 

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084403703&doi=10.3390%2fRS12081232&partnerID=40&md5=ef560152366d67e78bcacfd03d9e3cd4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85116666111&doi=10.1016%2fj.jag.2021.102375&partnerID=40&md5=c51cb063bff600743180cc81d6fda5cf
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117326076&doi=10.1109%2fJSTARS.2021.3119398&partnerID=40&md5=e6a86fa13e611a963c63d040f5ce0144
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082298449&doi=10.3390%2frs12061024&partnerID=40&md5=3b9128e301ac437a4de2ac825956d6ce
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variability in vegetation health. This variability is further exemplified by the sample variance, which 
is higher in these fields. Positive kurtosis in F20_2 suggests a distribution with a peak, while 
negative kurtosis in F20_7 and F20_8 points to flatter distributions. Negative skewness in most 
fields signifies a left-skewed distribution with a longer tail on the left side, indicating an abundance 
of lower NDVI values. The range between minimum and maximum NDVI values ranging from 0.11 
to 0.93, indicating a broad spectrum of vegetation health throughout each season. Notably, the 
Field F20_7 boasts the lowest minimum NDVI (0.11), possibly indicating regions with very sparse 
or stressed vegetation. In contrast, F20_1 presents the highest maximum NDVI (0.89), highlighting 
areas with exceptionally healthy vegetation. 

Table 20. Descriptive statistics for the NDVI derived from UAS dataset for the 2020 and 2021 seasons. 

Field Mean 
St. 

Error Median 
Stand. 
Dev. 

Sample 
Var. Kurt. Skew. Range Min. Max. Count 

2020 

F20_1 
0.76 0.00 0.82 0.14 0.02 1.85 -1.77 0.69 0.20 0.89 

1643 

F20_2 
0.74 0.00 0.76 0.08 0.01 5.54 -1.84 0.57 0.28 0.86 

676 

F20_3 
0.77 0.00 0.78 0.08 0.01 1.00 -1.28 0.38 0.50 0.88 

1035 

F20_4 
0.67 0.01 0.79 0.22 0.05 -0.44 -1.06 0.69 0.17 0.86 

1164 

F20_5 
0.67 0.00 0.73 0.16 0.03 0.92 -1.30 0.75 0.11 0.86 

3120 

F20_6 
0.77 0.00 0.84 0.16 0.02 0.60 -1.39 0.72 0.20 0.91 

1446 

F20_7 
0.59 0.01 0.70 0.20 0.04 -0.39 -0.99 0.71 0.11 0.82 

1710 

F20_8 
0.62 0.01 0.70 0.19 0.03 -1.11 -0.62 0.67 0.21 0.89 

775 

2021 

F21_1 
0.62 0.00 0.72 0.18 0.03 -0.32 -1.08 0.68 0.15 0.83 

1460 

F21_2 
0.81 0.00 0.89 0.15 0.02 0.94 -1.44 0.70 0.24 

0.93 1312 

 

The satellite NDVI dataset reveals insights into vegetation health and variability across ten fields. 
F21_2 stands out with remarkably healthy vegetation (mean NDVI 0.77), while F20_7 shows less 
healthy vegetation (mean NDVI 0.56). F20_4 and F20_5 exhibit diverse vegetation conditions 
with high standard deviations, while F20_2 and F20_3 demonstrate more consistent health. Field 
F20_2 has a peaked distribution, while F20_7 shows a skewed distribution toward higher NDVI 
values. The range of NDVI values varies, with F20_5 and F21_2 having the widest range (0.73). 
F21_2 features the highest maximum NDVI (0.93), and F20_5 exhibits the lowest minimum (0.14), 
suggesting sparse or stressed vegetation. Higher variance values in F20_5 and F21_2 indicate 
greater variability in vegetation health. 
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Table 21. Descriptive statistics for the NDVI derived from Sentinel dataset for the 2020 and 2021 seasons. 

Sentinel Mean 
St. 

Error Median 
Stand. 
Dev. 

Sample 
Var. Kurt. Skew. Range Min. Max. Count 

2020 

F20_1 
0.71 0.00 0.75 0.14 0.02 0.14 -1.16 0.58 0.28 0.86 

1643 

F20_2 
0.71 0.01 0.77 0.13 0.02 2.63 -1.69 0.68 0.18 0.86 

676 

F20_3 
0.75 0.00 0.78 0.11 0.01 -0.73 -0.64 0.51 0.38 0.89 

1035 

F20_4 
0.67 0.01 0.81 0.23 0.05 -0.67 -0.96 0.68 0.20 0.89 

1164 

F20_5 
0.61 0.00 0.67 0.20 0.04 -0.61 -0.79 0.73 0.14 0.87 

3120 

F20_6 
0.77 0.00 0.83 0.15 0.02 0.57 -1.39 0.66 0.25 0.91 

1446 

F20_7 
0.56 0.01 0.66 0.22 0.05 -1.19 -0.55 0.67 0.16 0.83 

1710 

F20_8 
0.62 0.01 0.67 0.16 0.03 -1.15 -0.43 0.58 0.29 0.87 

775 

2021 

F21_1 
0.65 0.00 0.72 0.14 0.02 0.02 -1.12 0.61 0.26 0.87 

1460 

F21_2 
0.77 0.01 0.86 0.18 0.03 0.31 -1.31 0.73 0.20 0.93 

1312 

 

The results of the descriptive statistics noteworthy resemblance in average NDVI values when 
comparing these two remote sensing techniques—UAS and Sentinel-2. In the majority of cases, the 
UAS multispectral data produces higher mean NDVI values, probably due to superior spatial 
resolution. 

3.2.1 Regression Analysis 

Below the Figure 39 presents the relationship between the UAS and satellite datasets for all the 
fields encompassing all the associated measurements recorded on multiple dates. The spectrum of 
R2 values spans from 0.98 to 0.99, signifying a robust and substantial correlation between the 
measurements. This high degree of correlation underscores the consistency and reliability of the 
relationship between the two datasets, affirming their close alignment across various data points 
and dates. The intercept is omitted, as both datasets are expected to have a natural zero baseline 
when there is no vegetation. 
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Figure 39. Regressive plots depicting the UAS and satellite NDVI datasets for the 2020 and 2021 seasons. 
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Below the 

 

Figure 40 and Figure 41Figure 39 present the relationship between the proximal, UAS and satellite 
datasets for all the fields encompassing all the associated measurements recorded on multiple 
dates. The spectrum of R2 values spans from 0.66 to 0.70, signifying a moderate correlation 
between the measurements. This substantial correlation highlights the robust and dependable 
nature of the connection between the two datasets, confirming their close alignment across a 
diverse array of data points and temporal observations.  
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Figure 40 Regressive plots depicting the proximal, UAS, and Satellite NDVI datasets for the 2020 season. 

Unlike the UAS and Sentinel datasets. the intercept was retained in the analysis, as it significantly 
deviated from zero. This outcome is expected, considering that the proximal sensor primarily 
concentrates on monitoring vegetation growth exclusively. In contrast, the UAS and Sentinel 
sensors encompass the influence of soil reflectance and atmospheric conditions in their 
measurements. Consequently, this discrepancy justifies the observation that proximal sensor values 
commence at approximately 0.3 and do not dip lower in comparison to the values of the UAS and 
Sentinel datasets. 
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Figure 41. Regressive plots depicting the proximal, UAS, and satellite NDVI datasets for the 2021 season. 

Given the robust correlation between UAS and Sentinel NDVI datasets, individual plots per field 
are presented below (Figure 42). These plots depict the regression relationships between UAS and 
Satellite NDVI datasets for each specific field in the year 2020. 
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Figure 42. Regression plots of UAS and Satellite NDVI datasets by field in 2020. 

Figure 43 illustrate the relationship between the UAS and satellite datasets across the two fields 
for 2021 season. 
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Figure 43. Regression plots of UAS and Satellite NDVI datasets by field in 2021. 

The figure below (Figure 44)presents the correlation between the UAS and satellite datasets for 
one specific field per growth stage depicts the correlation between the UAS and satellite datasets 
for one specific field at each growth stage. Notably, the values show a linear progression from the 
canopy growth stage, with a steady increase observed until reaching maturity. This linear trend 
highlights the evolving relationship between the datasets as the crop grows and matures. 

 

Figure 44 An example of correlation between the UAS and satellite datasets for one specific field per growth stage 

Overall, the values of R2 ranged from 0.97 to 0.99, providing robust confirmation of Sentinel-2's 
effectiveness in characterizing vegetation and evaluating plant health, with values similar to UAS 
data concerning the NDVI trends (R2). This was apparent to the analysis conducted by field but 
also to the total datasets of each season. This consistency was evident not only in the field-specific 
analysis but also across the complete datasets for each season. Furthermore, both datasets exhibit 
a clear and linear increase in their values per growth stage. 
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3.3 Phenological stages of the processing tomato crop 

A noteworthy byproduct of this study was the establishment of a connection between the 
phenological stages of the processing tomato crop and the corresponding VI values. This linkage 
offers valuable insights into the plant's growth and development throughout its various growth 
stages, enhancing our understanding of the crop's behavior in relation to remote sensing data. 

3.3.1 Field level approach 

In the second year, NDVI values were continuously recorded throughout the growing season for 
the two respective fields included in the study, relying on satellite time series data. Each of the 
fields under investigation was planted with three different varieties of processing tomatoes. The 
provided figures illustrate the yearly patterns of NDVI for these two fields. Even though all three 
tomato varieties were initially planted in the same field, Figure 45 reveals variations in the vigor 
curves of these varieties. Specifically, the Dexter variety exhibits rapid growth, and the decline in 
its curve after 100 days signifies the timing of its harvest. Conversely, the other varieties continue 
to grow, with a noticeable downward trend beyond 110 days. 

 
Figure 45: F21_1: NDVI dynamics curves for varieties i) Dexter (red), ii) Faber (green) and iii) Foster (blue), 

In the context of Figure 46, depicting the second field, the robustness curves of the different 
varieties also show disparities within the initial 95 days. Notably, the Dexter variety displays a 
quicker growth rate, and the drop in its curve marks the culmination of the growing season.  
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Figure 46: F21_2: NDVI curves for varieties i) Dexter (red), ii) Faber (green) and iii) Foster (blue), 

Through an examination of NDVI values and mean values of multiple VIs, the study depicted the 
progressive growth of the crop, with peaks in VI values observed at specific growth stages. The 
examination of different tomato varieties also revealed variations in growth patterns, emphasizing 
the potential for tailored crop management.  
 

3.3.2 Regional Approach 

Based on the reported NDVI values, Figure 47 shows the NDVI dynamics and the corresponding 
phenological stages of the crop. During the second year of the study (2021), it was found that the 
highest NDVI values were recorded 75 to 80 days after transplanting. Early on, during the initial 
stages, the NDVI values were notably low, which aligns with expectations, especially in row crops 
where the remotely sensed images prominently displayed visible soil. The phase of full canopy 
cover and flowering was recorded in June, occurring approximately 60–75 days after transplanting, 
while the phase of tomato formation took place in July, contingent upon the transplanting date. 
These findings align with a previous study [412], which conducted phenological monitoring using 
NDVI values derived from Sentinel-2 imagery over the period spanning from 2016 to 2021. 
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Figure 47. Annual NDVI dynamics and the respective phenological stages of the processing tomato crop. 

Not surprisingly, based on the mean values of all five VIs (NDVI, PVI, WDVI, SAVI, and RVI), 
progressive canopy growth is observed (Figure 48).  

 

 

Figure 48. The mean values of the five VIs: (a) PVI (green); (b) WDVI (light blue); (c) SAVI (red); (d) NDVI (blue); 
(e) RVI (orange), which has different range of values and is incorporated in the secondary axes. 

In the early stages, the influence of soil is strong due to the low canopy cover. There seems to be 
a positive trend that peaks at 80 days and is negative in the last stages of the crop. 
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3.4 Predicting yields 

3.4.1 Field - Level yield predictions 

During the first year, the following table (Table 22) demonstrates a positive and strengthening 
relationship between NDVI data from UAS and Sentinel platforms as plant growth progresses. 
The Pearson correlation coefficient (r) and R2 values reveal the strength of the relationship 
between NDVI datasets and yield by plant growth stages. In the year 2020, the Pearson coefficient 
values for NDVI data from both UAS and Sentinel platforms ranged from 0.51 to 0.75, suggesting 
a moderately positive correlation with crop yield. The strongest correlation was observed during 
the flowering stage, with Pearson coefficient values of 0.67 for UAS and 0.75 for Sentinel. These 
results indicate that NDVI data from both platforms were positively associated with crop yield 
during this year, particularly during the flowering stage. 

The R2 values, which represent the goodness of fit, follow a similar pattern. The R2 values ranged 
from 0.20 to 0.57, indicating that NDVI data explained a substantial portion of the variance in 
crop yield during various growth stages. The highest R-squared value was observed during the 
flowering stage for both UAS (0.45) and Sentinel (0.57). This suggests that NDVI data from both 
platforms had a considerable impact on explaining the variation in crop yield during this growth 
stage in 2020. 

Table 22 Relationship between NDVI data from UAS and Sentinel platforms to yield samples. 

Metrics 
Canopy 
Growth Budding Flowering Flowering 

Fruit 
formation 

Fruit ripening 
to maturity 

NDVI UAS 2020 

Pearson (r) 0.54 0.59 0.67 0.72 0.65 0.65 

R2 0.29 0.35 0.45 0.52 0.42 0.43 

NDVI Sentinel 2020 

Pearson (r) 0.51 0.62 0.75 0.74 0.73 0.44 

R2 0.26 0.38 0.57 0.54 0.53 0.20 

NDVI Proximal 2020 

Pearson (r) 0.59 - 0.54 - 0.73 - 

R2 0.34 - 0.30 - 0.53 - 

 

Overall, Table 22 illustrates that NDVI data from both UAS and Sentinel platforms were positively 
correlated with crop yield in 2020, with the strongest correlations occurring during the flowering 
stage. Additionally, these NDVI datasets explained a significant proportion of the variance in crop 
yield, particularly during the flowering stage.  

To estimate the total yield of each field for 2021 the yield sample values were upscaled based on 
the average plant per hectare. The Figure 49 shows the results for the season 2021, indicating 
variations between the predicted (based on yield sampling) and the actual yield values. The 
accuracy of the predictions varies across different instances, with some close matches, slight 
underestimations, and a few overestimations.  
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Specifically, in the fields F20_2 and F20_5, the predicted yield fell notably short of the actual 
yield, with a difference of approximately 17 tons per hectare. In contrast, in the cases of F20_1 and 
F20_7, the predicted yield slightly surpassed the actual yield by roughly 7 tons per hectare, 
suggesting a minor overestimation. Further analysis and refinement of the predictive model may 
be necessary to improve its accuracy for these yield predictions. 

 

Figure 49. Comparison of Actual vs. Predicted Crop Yields for the 2020 growing season 

In the following year (2021), the correlation between crop yield samples and NDVI datasets from 
both platforms exhibited a consistently weak relationship, and these correlations were not found 
to be statistically significant. The absence of statistical significance reinforces the notion that the 
observed correlations were not substantial enough to draw meaningful conclusions regarding the 
influence of NDVI on crop yield during that specific year.  

To address the challenge posed by manual yield estimation, a process known for its time and cost 
intensity and susceptibility to human errors, this research recognized the need to create a 
comprehensive and farm-scale crop yield production dataset for the same year. Such a dataset 
could serve as a precise ground-truth reference for farm-scale yield predictions. This is particularly 
crucial, considering the existing scientific evidence [651–653], that highlights the value of satellite 
data in predicting regional-scale yield production. Additionally, the research capitalized on the 
knowledge of the robust correlation between UAS and satellite values, further enhancing the 
dataset's reliability. As part of this initiative, accurate field boundaries from 108 fields were 
deployed to retrieve actual yield values. These carefully curated ground-truth data were then used 
to conduct a rigorous analysis of satellite imagery, strengthening the overall accuracy of the study's 
findings. 

 

3.4.1 Regional - Level yield predictions 

An initial statistical analysis was conducted, estimating the Pearson coefficient (r) between yield 
and satellite derived NDVI mean values for 108 fields. This analysis involved the extraction of five 
VIs, collected at five-day intervals using satellite imagery (Table 23). 
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Table 23. The Pearson coefficient representing the relationships between the derived VIs and the yield for 2021 season. 

VI Pearson Coefficient 

 80 Days 85 Days 90 Days 95 Days 

NDVI 0.68 * 0.72 * 0.70 * 0.63 * 

RVI 0.72 * 0.70 * 0.75 * 0.56 * 

SAVI 0.68 * 0.69 * 0.74 * 0.65 * 

PVI 0.67 * 0.64 * 0.72 * 0.68 * 

WDVI 0.58 * 0.65 * 0.73 * 0.69 * 

* Correlation is significant at the 0.05 level. 
 

The analysis revealed that the highest values of Pearson coefficient, indicating stronger 
correlations, were observed towards the end of the growing season. This suggest that the 
relationship between the derived VIs and crop yield became more pronounced and significant as 
the crop matured. Notably, NDVI, RVI, SAVI, and PVI exhibited moderate to strong positive 
correlations with yield, with coefficients ranging from 0.63 to 0.75, making them potentially 
valuable for yield prediction. The NDVI peaked at 85 days post-transplanting, while the other 
vegetation indices reached their highest points at 90 days, with RVI taking the lead. While WDVI 
showed slightly lower correlations compared to the other indices, it remained positively related to 
yield, with coefficients ranging from 0.58 to 0.73. This implies that WDVI, although having slightly 
weaker correlations, may still provide meaningful insights into yield prediction. 

Towards improving yield estimations, the next phase involved investigating the predictive 
capabilities of various VIs and growth stages through machine learning methods. Using AutoML, 
several combinations of sensors and growth stages per year were investigated to evaluate their 
performance in assessing processing tomato yield.  

Figure 50 presents the progression of adjusted R² over the growing season. All indices show the 
best results in the 80–90-day period, aligning with the results reported in Table 23. Although NDVI 
demonstrated generally lower performance, it reached its predictive peak at 85 days post-
transplanting. RVI displayed the most robust predictive performance especially at 90 post-
transplanting; however, its effectiveness diminished more rapidly after reaching its peak compared 
to the other VIs. On the contrary, PVI and WDVI exhibited inferior performance when contrasted 
with SAVI and RVI. 
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Figure 50 R² progress along the growth period for each of the VIs for the 2021 growing season. 

For the AutoML experiment, the adjusted R² and RMSE were used to evaluate the predictive 
accuracy and determine the performance of the models for the best VI and period. In addition, a 
fivefold cross-validation was performed for each regression model to check its generalization ability 
and ensure its robustness. The experiments were also repeated 10 times to ensure that the final 
results were as accurate as possible. Table 24 shows that the best yield predictions were made by 
RVI and SAVI. Specifically, these two indices reached an average R² of 0.72 ± 0.02 and 0.69 ± 
0.03, respectively, 90 days after transplanting. Moreover, their RMSEs were also the lowest (1.03 
± 0.03 and 1.06 ± 0.04, respectively). The remaining VIs (NDVI, WDVI, and PVI) are also among 
the regression models with the best performance. However, they all show a large difference relative 
to RVI and SAVI. Another observation from Table 24 is that the best result was achieved 90 and 
85 days after transplanting. 

Table 24 The 10 best-performing VIs and periods for the 2021 growing season. 

VI Period (Days) Adjusted R² RMSE 

RVI 90 0.72 ± 0.02 1.03 ± 0.03 

SAVI 90 0.69 ± 0.03 1.06 ± 0.04 

SAVI 85 0.65 ± 0.03 1.09 ± 0.03 

RVI 85 0.64 ± 0.02 1.12 ± 0.06 

RVI 80 0.63 ± 0.02 1.13 ± 0.04 

NDVI 85 0.62 ± 0.04 1.14 ± 0.06 

WDVI 90 0.61 ± 0.02 1.15 ± 0.03 

WDVI 85 0.61 ± 0.03 1.15 ± 0.04 

PVI 90 0.61 ± 0.05 1.16 ± 0.05 

SAVI 80 0.60 ± 0.04 1.15 ± 0.05 

WDVI 90 0.61 ± 0.02 1.15 ± 0.03 

WDVI 85 0.61 ± 0.03 1.15 ± 0.04 
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Figure 51 illustrates a scatter plot of RVI, comparing two high-performance dates (85 and 90 days 
after transplanting) with two dates showing lower performance (5 and 25 days after 
transplanting). The plot reveals that predictions closest to the actual yield values are found within 
the 85 to 95 days range. In contrast, the earlier dates with lower performance exhibit predictions 
that deviate from the actual yield values. 

 

Figure 51  Scatter plot of actual yield vs. prediction of the four predictor dates for the 2021 growing season. 

The plot (Figure 51) reveals a distinct pattern in the dataset, where the predictive models tend to 
behave differently under certain conditions. When actual yields are less than or equal to 9 t/ha, 
the regressors tend to overestimate yield. Conversely, when actual yields exceed 9 t/ha, the 
regressors tend to underestimate yield. This pattern suggests that the ensemble regressors may 
exhibit a central tendency or bias in their predictions, acting as a gravity point that affects the 
outcomes. In this case, the central tendency explains the behaviour of yields below and equal to 8 
t/ha and those above 9 t/ha. For the specific case of 9 t/ha, the range of predicted values is not 
as broad as for lower yields, indicating a more balanced prediction around the actual value. 
However, further research is needed to refine the predictive models and reduce the tendency for 
overestimation. 

In addition to selecting the VIs and growth stages with the highest predictive accuracy, it was also 
important to examine whether using ensembles of more than one regressor was a better choice 
than using only one regression model. Figure 52 shows the rate of ensemble size for each of the 
experiments that used the VIs and growth stages. This means that 500 were considered (number 
of rows × number of experiments × number of folds). An ensemble size of two was the preferred 
size (67.86%) to provide the predictions with the highest adjusted R² and lowest RMSEs. The 
option with the second highest performance was to use single regressors (21.43%); finally, the least 
promising option was to use ensembles with a size of three regressors (10.71%). 
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Figure 52. The optimal ensemble size (1, 2, 3) for the best regression models. 

Table 25 expands on Figure 52 by showing which models and ensembles achieved the best 
performance and how often they occurred. The combination of ARD regression and SVR proved 
to be the most successful for constructing an ensemble, occurring frequently. SVR paired with 
Huber regression also demonstrated high performance in multiple instances. ARD and Huber 
regression models outperformed others several times when considering individual regressors. 
Interestingly, SVR excelled when used in combination with other regressors but didn't perform as 
effectively when used as a single regressor. It's worth noting that some of the evaluated regressors, 
such as OLS regression, AdaBoost, and extra trees, did not appear to be as successful. In cases 
where three models were utilized to form the ensemble, the combination of ARD, random forest, 
and SVR emerged as the highest-performing option. 

Table 25. The 10 best-performing models (ensembles and single regressors) for the 2021 growing season. 

Ensemble/Model R²       Number of appearances 

ARD Regr. + SVR 0.67 ± 0.02 109 

ARD Regr. 0.65 ± 0.03 87 

Huber Regr. + SVR 0.65 ± 0.02 74 

Huber Regr. 0.65 ± 0.04 63 

ARD Regr. + Huber Regr. 0.66 ± 0.03 52 

ARD Regr. + Random Forest + SVR 0.63 ± 0.03 41 

ARD Regr. + Decision Tree 0.65 ± 0.02 30 

Huber Regr. + Theil-Sen Regr. 0.64 ± 0.04 23 

SVR + Theil-Sen Regr. 0.65 ± 0.03 12 
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ARD Regr. + Random Forest 0.63 ± 0.05 5 

 

Overall, various combinations of sensors and growth stages were examined to assess their 
effectiveness in predicting processing tomato yield using AutoML. The analysis included a detailed 
evaluation of different VIs and their performance during the growing season. The results 
highlighted that all VIs performed best during the 85 to 90-day period after transplanting, with 
RVI outperforming the others. NDVI showed lower overall performance but reached its peak 
predictive power at 85 days after transplanting. Conversely, PVI and WDVI exhibited lower 
performance when compared to SAVI and RVI. 

RVI and SAVI outperformed other VIs, achieving the most accurate yield predictions with average 
R² values of 0.72 ± 0.02 and 0.69 ± 0.03, respectively, at 90 days after transplanting. Additionally, 
they exhibited the lowest RMSEs of 1.03 ± 0.03 and 1.06 ± 0.04, respectively. Furthermore, the 
most precise yield predictions were concentrated within the 85 to 95-day range, while earlier date 
predictions exhibited more significant deviations. 

Regarding model optimization, ensembles consisting of two regressors were the preferred choice 
(67.86%) for achieving higher adjusted R² and lower RMSE values. Single regressors were the 
second-best option (21.43%), whereas ensembles with three regressors showed less promising 
performance (10.71%). 

Last but not least, the combination of ARD regression and SVR proved to be a frequently 
successful choice for creating ensembles. SVR paired with Huber regression also demonstrated 
strong performance in multiple instances. Among individual regressors, ARD and Huber regression 
models consistently outperformed others. Interestingly, SVR was most effective when used in 
combination with other regressors but showed weaker performance as a standalone regressor. It's 
worth noting that some regressors, like OLS regression, AdaBoost, and extra trees, did not perform 
as well. In cases where ensembles of three models were used, the combination of ARD, random 
forest, and SVR consistently achieved the highest performance. 

 

3.4.2 Temporal – Level: Yield predictions across years 

The AutoML pipeline underwent training using the 2021 Sentinel-2 dataset and was tested with 
the 2022 Sentinel-2 dataset to assess the relevance of each VI and band's reflectance in predicting 
crop yield. Aiming at developing a robust model, more 20 experiments were conducted on spectral 
data to obtain the average adjusted R2 for each scenario. This enabled the selection of the most 
effective dates, spectral bands and models for yield prediction without manual intervention. Linear 
regression is also used for baseline against AutoML algorithms. Subsequently, tables were 
generated, showcasing the most effective VIs and combinations of bands for the years of 2021 
and 2022, as well as their combined analysis at 5-day intervals post-transplanting.  

The adjusted R2 performances of spectral bands, derived from the dataset via the AutoML 
pipeline, are illustrated in Figure 53. The numerical values following the band channel denote the 
date post transplanting. Notably, the optimal timeframe for predicting yield appears to be from 
80 to 90 days post transplanting, while spectral bands B4, B6, B7, B8, and B8A demonstrated the 
highest predictive performance for yield estimation. Across all cases, AutoML demonstrated 
superior performance when compared to linear models. 
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Figure 53. The 5 best-performing spectral bands for predicting the 2022 yield. 

The subsequent table (Table 26), presents the overall efficacy of various VIs and spectral bands, 
gauged through adjusted R² values. When utilizing NDVI, the spectral band B8 corresponding to 
the NIR range demonstrates the highest performance, reaching an adjusted R2 of 0.56 at 80 days 
post transplanting. This performance is closely followed by B8A during the same period. Regarding 
RVI, lower performances were observed during 75 to 90 days after transplanting, with spectral 
bands B8, B9, B7, and B8A, achieving adjusted R² values ranging from 0.47 to 0.49. The AutoML 
models generally outperform linear regression models in the case of NDVI, while in the case of 
RVI similar results were retrieved. However, concerning RVI, both AutoML and linear regression 
yielded similar results in terms of predictive capability. 

Table 26. The 10  best-performing VIs for predicting the 2022 yield. 

 AutoML Linear 

VIs Adj. R² RMSE Adj. R² RMSE 

NDVI_B8_80 0.56 1.26 0.25 1.44 

NDVI_B8A_80 0.55 1.26 0.23 1.45 

RVI_B8_90 0.49 1.31 0.49 1.31 

RVI_B9_85 0.49 1.31 0.49 1.31 

RVI_B8A_90 0.49 1.31 0.49 1.31 

RVI_B7_90 0.48 1.31 0.48 1.31 

RVI_B8_85 0.47 1.32 0.47 1.32 

RVI_B7_85 0.47 1.32 0.47 1.32 
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NDVI_B7_75 0.46 1.33 0.26 1.43 

NDVI_B8_75 0.46 1.33 0.27 1.43 

 

In the case of best performing spectral band combinations, the performances were notably 

increased reaching a R2 of 0.64 (Table 27Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν 

βρέθηκε.).  The combination [B4_70, B4_90, B6_65, B12_65'] stands out, demonstrating a 
remarkable adjusted R² of 0.65 and an RMSE of 1.19. 

Table 27 The 5 best-performing combinations of spectral bands for predicting the 2022 yield. 

 AutoML Linear 

Combinations of spectral bands Adj. R² RMSE Adj. R² RMSE 

B4_70, B4_90, B6_65, B12_65 0.65 1.19 0.64 1.20 

B4_90, B8_65, B12_90, B12_95 0.64 1.20 0.63 1.21 

B8_90, B8A_90, B4_90, B7_80 0.60 1.23 0.52 1.23 

B4_90, B8_65, B12_90, B12_95 0.59 1.24 0.59 1.24 

B4_70, B4_90, B6_65, B7_65' 0.60 1.23 0.57 1.25 

B4_90, B8_65, B7_65, B6_65 0.58 1.24 0.56 1.29 

B8_90, B8A_75, B4_90, B8_65 0.54 1.27 0.54 1.27 

B12_65, B7_85, B8A_90, B8_80' 0.53 1.28 0.52 1.28 

B4_90, B8_65, B7_65, B6_65 0.51 1.30 0.48 1.30 

B4_90, B12_65, B9_95, B8A_85' 0.51 1.29 0.38 1.29 

 

In all the cases, the spectral band B4 (that corresponds to the red wavelength) at 90 days post 
transplanting is appearing, while B12 (SWIR 2) and B6 (RE) are also featured in several cases. 
The period between 65 to 95 days post-transplanting, the Red Edge/NIR (B7 to B8A) bands were 
repeatedly appearing, indicating their importance for yield prediction the highest performance 
among all bands. Particularly, the NIR bands are widely acknowledged for characterizing 
vegetation status due to their vegetation-specific reflectance patterns attributed to internal 
scattering and minimal leaf absorption [654]. 
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Additionally, several other combinations employing different models such as Random Forest, ARD 
Regression, and SVR combined spectral bands to achieve strong predictive capabilities, indicating 
their effectiveness in predicting crop yield during the 2021 season. ARD Regression was the most 
promising single model and the combination of ARD Regression and SVR was the best ensemble. 
Ensemble of two models demonstrated better performances than ensembles of three and one. 

These findings emphasize how various combinations of bands and model selections can influence 
the accuracy of yield prediction, offering a comparative understanding of their effectiveness. 
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Part 4. Discussion 

4.1 Yield estimation using Precision Agriculture – Systematic 
Review 

The earliest efforts to estimate crop yield can be traced back to the pioneering work of Pinter et 
al. in 1981 [655] and Wiegand et al. 1991 [656], who employed remote sensing techniques. Prior to 
these studies, Al-Abbas et al. (1974) conducted laboratory investigations into the spectral 
characteristics of corn leaves under different nutrient stress levels [657]. In a separate study, Robert 
(1982) used color infrared aerial photography in Minnesota for diagnosis of “problems related to 
drainage, erosion, germination, grass and weed control, crop stand and damage, and machinery 
malfunction[139]. Since then, many studies and review papers were published focusing on yield 
prediction, offering valuable insights into the challenges and opportunities associated with 
employing remote sensing technologies [658–660]. Some reviews narrow their scope to concentrate 
on predicting the yields of specific crops, including widely cultivated ones such as maize, rice, 
sugarcane, sugar beet, and vines [53,661–664]. Others take a broader approach by providing an 
overview of remote sensing technologies in the context of various application domains like crop 
management, crop monitoring, phenology, and other ecophysiological processes [665–668]. An 
intriguing study conducted by Schauberger et al. conducted a systematic review spanning the 
years 2004 to 2019, to explore crop yield forecasting methods across three commonly utilized data 
domains: weather, remote sensing, and crop mask data. Their thorough investigation, spanning an 
extensive dataset of more than 350 articles, unveiled the prevalence of several widely embraced 
models, including statistical, process-based, and machine-learning models [343]. 

In this context, a systematic review [381] was conducted covering the years 2002 to 2022, 
investigating the most commonly used platforms and methods in precision agriculture for 
predicting crop yields. The initial finding of this study reveals a relatively low publication rate 
between 2002 and 2012, averaging approximately one paper per year. Nevertheless, from 2013 
to 2019, a substantial surge in publications became apparent, signifying a heightened interest 
among researchers. This increase in the number of published articles can be traced back to several 
factors, including advancements in information and communication technology (ICT), progress in 
remote sensing technology, and the expanding availability of data. These developments have 
spurred a growing interest for utilizing these tools to create more efficient and precise crop yield 
prediction models. 

4.1.1 Key contributor countries and crops 

In terms of the most active countries conducting experiments within the scope of this study, China 
stands out prominently with more than 93 publications, leading the field. Following closely, the 
United States holds the second position with 58 publications, while India and Australia rank third 
each contributing 11 research studies, followed by Brazil. USA and China have displayed a 
substantial presence, marked by a significant number of research articles dedicated to crop yield 
estimation, through remote sensing applications. The notable impact of their research can be 
attributed to their status as the largest economies and their substantial investments in research 
and development. Consequently, they employ a substantial number of researchers who contribute 
to the production of research publications [669]. 

According to the findings of this study, the prevalent choice of crops for yield prediction primarily 
revolves around cereals and oilseed crops. These selections are influenced by several key factors, 
including their nutritional and economic significance, comprehensive data availability, and 
relevance to global food security [670,671]. An additional pivotal factor contributing to their 
widespread use is the accessibility of extensive datasets encompassing historical yield records, 
agronomic practices, and weather data. This data availability greatly simplifies the task of 
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conducting in-depth yield prediction studies for researchers. Furthermore, these crops lack the 
intricate structures found in vineyards and orchards, which can potentially impact remote sensing 
results [672]. The application of agricultural practices such as irrigation and pruning, commonly 
employed in vineyards and orchards, can introduce complexities in the interpretation of remote 
sensing data [673]. Subsequently, researchers may encounter more technical challenges and data 
processing requirements when dealing with these types of crops. Conversely, cereals and oilseed 
crops tend to encounter fewer disruptions from such factors, leading to more dependable and 
consistent outcomes in remote sensing. 

4.1.2 Trends in platforms and methods used 

Proximal, UAS and satellite platforms serve as significant tools for acquiring valuable insights into 
Earth's vegetation cover, making them integral components of precision agriculture practices. In 
the systematic review within this research, most studies leaned towards satellite platforms as their 
primary data source, followed by UAS and proximal sensors. Given the widespread adoption of 
these platforms, each with its distinct advantages and disadvantages. A comprehensive study 
conducted by Benos et al. [674], indicated that UASs are gaining prominence in comparison to 
satellites due to their flexibility and high-resolution imaging capabilities under various weather 
conditions. In contrast, satellites excel in providing time-series data over large areas. 

In relation to the methods used, statistical analysis emerges as the predominant method utilized 
for predicting crop yield across the reviewed studies, according to this study's findings. 
Subsequently, ML and DL methods also feature prominently in yield estimation. Furthermore, the 
study highlighted that the majority of studies encompassing ML and DL approaches emerged 
between 2017 and 2022, signifying a growing interest and recognition of these advanced methods 
for predicting crop yields using remote sensing data. A notable finding is the prevalence of the 
Random Forest algorithm, followed by Support Vector Machine (SVM) and Linear regression. 
XGBoost and Partial Least Square Regression (PLSR) have also proven effective and versatile in 
yield prediction. Additionally, ANN and CNN lead among Neural Network approaches.  

Among the identified model-based approaches, the Decision Support System for Agrotechnology 
Transfer (DSSAT) model [675] stands out, offering insights into agricultural management 
practices and crop responses to environmental conditions. Other common models used for yield 
estimations include the Simple Algorithm For Yield model (SAFY) and WOrld FOod STudies 
(WOFOST) model [676–678], AQUACROP,[679–681], Agricultural Production Systems 
Simulator (APSIM) model [682–684], considering various aspects of crop growth and 
management. These models cover various aspects of crop growth and management, each 
operating on distinct driving factors. For instance, WOFOST focuses on the influence of carbon 
dioxide (CO2), water, and temperature on yield. In contrast, AQUACROP emphasizes the impact 
of water stress on crop growth, making it suitable for simulating irrigation scenarios. APSIM, 
functioning as a process-based model, considers a wide array of soil processes alongside water 
balance and nutrient transformations. Researchers have also explored coupled models, merging 
different principles from two or more models, aiming to enhance simulation accuracy, system 
stability, and reduce operational costs. These advancements in model-based approaches contribute 
significantly to understanding crop-environment interactions, facilitating informed decisions for 
sustainable agriculture. 

Each approach presented distinct advantages and catered to specific research objectives, enabling 
the extraction of meaningful insights from remote sensing data for crop yield estimations. Notably, 
Statistical Analysis and Machine Learning methods are frequently employed in crop yield 
estimation owing to their capability to manage intricate nonlinear relationships within vast 
datasets, along with their proficiency in dealing with known parametric structures and unobserved 
cross-sectional differences [386]. Furthermore, the efficacy of Deep Learning methods might be 
limited as they heavily hinge on the quality of the extracted features [387]. Lastly, the limited 
utilization of model-based methods in crop yield prediction could be attributed to their substantial 
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demands for data and computational resources, as well as their lower adaptability compared to 
other methods [388]. 

4.1.3 Accuracy Performance Per Crop Category 

When comparing different methods in the case of sugar, beverage, and spice crops, the 
predominance of statistical and machine learning methods coupled with satellite data is apparent. 
For sugarcane & coffee tree, these methods, have provided high R2 values reaching 0.94, while in 
the cases of coriander and tea cropd, statistical methods using satellite data yielded R2 values 
between 0.68 and 0.87. ML techniques exhibit high performance and specifically the Random 
Forest method stands out with an impressive RMSE of 1.51 t/ha and an R2 value of 0.94, surpassing 
other methods like Classification and Regression Tree, Support Vector Regression, and K-Nearest 
Neighbor [396], These results align with Canata et al.'s findings, where RF regression outperformed 
Multiple Linear Regression (MLR) in sugarcane yield prediction, as well as Martello et al.'s 
discovery of RF regression's superiority in predicting coffee tree yields [401]. Moreover, satellite 
systems were the most commonly used platform, showing promising prediction accuracies with an 
R2 of 0.87 and an RMSE of 11.33 (t·ha−1) compared to actual harvested yields [395]. SAR-based 
yield prediction models have also proven useful in refining yield estimates for sugar crops [391]. 
However, Duveiller et al.'s study highlighted that sugarcane yield estimation is influenced by various 
factors, including the consideration of time (thermal or calendar), signal purity, data extraction 
methods from time series, and the timing of information availability, which can explain the range 
of R2 values observed in satellite-based yield prediction[393].  Moral et al. [392] propose that the 
empirical NDVI model emerges as the most fitting approach for estimating sugarcane yield at 
the field level, owing to its simplicity and consistently high accuracy across the entire crop cycle. 
Conversely, a separate study [390] highlights that among linear, logarithmic, power, and 
exponential models, the polynomial model exhibits significantly enhanced performance.  Regarding 
model-based yield prediction, the findings suggest a medium to high performance, with R2 values 
ranging from 0.64 to 0.86. This variability can be attributed to the specific model employed. In a 
study conducted in the US, three statistical models integrating remote sensing and weather data 
were compared, revealing that the SiPAR model outperformed the Cumulated DNVI (CNDVI) 
and Kumar and Monteith (K–M) models in terms of yield prediction[397]. 

In the category of Vegetables and Melons, there is predominance of statistical methods coupled 
with satellite and UAS measurements, while ML techniques have exhibited high performance, 
achieving an impressive R2 value of 0.90. The choice of VIs plays a pivotal role in achieving optimal 
performance. According to Suarez et al.'s study [403], the best results were obtained when using 
predictor variables such as Renormalized Vegetation Index (RDVI), SAVI, and OSAVI (R2= 0.77), 

with the lowest standard deviation (σ) of 10.75 t/ha achieved with RDVI. EVI2 also outperformed 

GNDVI (R2  =  0.55) in a separate study[406] that focused on processing tomato crops. This study 
identified plant height and VIs during the early to mid-fruit formation period as significant 
variables for predicting shoot masses. Additionally, NDVI and WDVI were notably important for 
predicting tomato weight, while VIs obtained one month before harvest played a crucial role in 
predicting fruit quantity. Recent research findings[350] suggest a strong correlation between the 
developmental stages of the primary canopy in processing tomatoes and their final yield. This 
correlation may indicate a critical stage during which noticeable changes occur in the crops, 
detectable using satellite-derived data. Furthermore, studies have demonstrated the possibility of 
predicting average tomato biomass and yield up to eight weeks before harvest and at the 
individual plant level up to four weeks before harvest, using time-series phenotypic features derived 
from UAS. Linear Regression models have shown strong correlations (R2 > 0.7) in this context 
[408]. 

For oilseed crops, numerous studies involved soybeans in their research, as soybean is a widely 
cultivated and economically important crop. There is predominance of ML/DL and statistical 
approaches, often combining satellite, UAS, or proximal data sources, while high performances (R2 

> 0.90) have been achieved in all crops except from palm oil and canola. A promising approach 
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for estimating sunflower yields involves using satellite NDVI series captured 50 days before harvest 
[88]. Furthermore, the effectiveness of Evolutionary Product-Unit Neural Network (EPUNN) 
models has been demonstrated, showing superior accuracy compared to linear SMLR models in 
both training and generalization sets [411]. When it comes to estimating rapeseed yields, a strong 
correlation has been observed between plot-level VIs and leaf-related abundance, resulting in an 
R2 value exceeding 0.75. Among the tested VIs, the most accurate yield estimation in rapeseed 
was achieved by multiplying NDVI, Chlorophyll Index Red Edge (CIred edge), Transformed 
Vegetation Index (TVI), and SAVI by short-stalk-leaf abundance [417]. Regarding model-based 
methods [418], comparing the WOFOST model and the coupled CASA-WOFOST model 
revealed that the CASA-WOFOST model has faster simulation speed while maintaining similar 
accuracy. This makes the proposed CASA-WOFOST model suitable for large-scale assessments 
using high-spatial-resolution images to obtain accurate yield simulations. A study examining the 
monitoring of winter rapeseed crops through the utilization of multisensor optical and multiorbital 
SAR data alongside the SAFY agrometeorological model revealed that integrating both SAR-
derived dry matter (DM) and optically derived Green Area Index (GAI) enhanced model control. 
This assimilation proved to be more effective compared to solely relying on SAR or optical data 
in isolation [419]. Another critical factor influencing satellite-based crop yield estimation is the 
spatial and temporal resolution of the deployed satellites. As noted by Chen et al. [416], challenges 
arise from the sparse time series of satellite remote sensing, characterized by low temporal 
frequency and cloud interference. These challenges hinder accurate crop yield estimation at 
regional and national scales. To overcome this limitation, Chen et al. proposed a solution involving 
the fusion of high-spatial-resolution yet low-temporal-frequency images with low-spatial-resolution 
yet high-temporal-frequency images. This strategy aims to bolster the temporal resolution while 
retaining crucial spatial details, potentially elevating the precision of crop yield estimations. 

It is not surprising to encounter numerous studies focusing on soybeans in their research, given its 
widespread cultivation and economic significance. A study [425] that compares various spatial 
resolutions provides convincing support for higher-resolution imagery over lower-resolution 
alternatives. The authors suggest opting for an NDVI resolution that equals or exceeds the current 
cropland mask resolution, while also taking into account factors like computational costs. Notably, 
another research study [439] reveals an interesting finding: county-scale models exhibit relatively 
poor performance in field-scale validation (R2 = 0.32), especially in high-yielding fields. However, 
these county-scale models demonstrate similar performance to field-scale models when evaluated 
at the county level (R2 = 0.82). 

In the Fruits and Nuts category, there is increased number of studies in vineyards, with high 
performances (R2 > 0.90) achieved through ML/ DL methods. The primary methods have involved 
proximal sensing, UAS sensing, or a combination of both, often complemented by satellite data. 
High-resolution satellite imagery has also been effectively used independently, showcasing a 
commendable performance with an R2 value of 0.87 [203,450]. The effectiveness of these methods 
stems from their reliance on visual counting and the utilization of high-resolution data, enabling 
accurate and efficient estimations of orchard production. However, the application of above-
ground remote sensing for tree production estimation remains limited, requiring specific calibration 
for individual orchards and yearly variations, accounting for climatic and site-specific effects [451]. 

In relation to root tuber and other crops, all methods and all sensors were used, and high 
performances (R2 > 0.90) have been achieved through all methods in Cotton, Sweet Potato, 
Perennial Ryegrass. ML approaches are notably prevalent, demonstrating exceptional accuracy 
levels (R2 > 0.90) compared to alternative methods. Particularly in cotton cultivation, the utilization 
of multispectral remote sensing systems mounted on UAS exhibits considerable promise. These 
systems offer rapid, precise, and cost-effective assessments of agricultural crop traits and yields. 
The correlation between crop growth indicators like LAI and chlorophyll content with canopy 
spectral reflectance enables the utilization of spectral indices collected during the growing season 
for estimating crop yields. This correlation between yield and the amount of photosynthetic tissue 
allows for wide-scale application, contrasting with traditional measurements of agronomic 
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parameters such as LAI and chlorophyll [460]. Furthermore, the feasibility of estimating cotton 
yield using low-altitude UAS imaging was confirmed in this study [462]. 

Researchers extensively utilized diverse data sources, including UAS, satellites and proximal 
sensors, to gather insights into leguminous crops. High performances (R2 > 0.90) have been 
achieved in Alfa Alfa, Red Clover, Chickpea, Snap Bean, Peas. Some studies solely focused on 
employing ML or DL algorithms, while others combined these approaches or integrated statistical 
methods to boost accuracy and interpretability. In a study by Minch et al. [476], the exploration 
of efficient flight parameters aimed to establish successful models for determining canopy heights, 
particularly in alfalfa yield estimation. The researchers strongly advocate using a flight parameter 
within the range of 50–75°, as it is likely to yield optimal data for precise canopy height estimation 
in alfalfa fields. 

In the domain of cereals, an array of methods and platforms was employed, leading to the 
subdivision of this category into two segments: cereals and maize and wheat. Notably, research 
dedicated to predicting wheat and maize yields surpasses that for other cereals, underscoring their 
pivotal role in agricultural research. Furthermore, researchers explored a spectrum of approaches 
for predicting wheat and maize yields, lacking a clear and consistent trend in the methodologies 
employed for yield prediction. Nevertheless, maize and, to a lesser extent, wheat, rice have been 
extensively studied using machine learning techniques. The variety of approaches used is consistent 
with a previous study [343] that also noted the use of diverse methods for predicting yields of 
staple crops, emphasizing the importance of appropriate validation for each specific context.  

Overall, the results emphasize the importance of tailoring methodologies to specific crop categories 
to enhance yield estimation techniques. The compilation of the highest R2 performance measures 
from various studies is categorized by crop type. ML techniques, especially Random Forest, 
demonstrate excellence in the prediction of sugar, beverage, and spice crops. Satellite systems, 
such as SAR, exhibit effectiveness in sugarcane yield forecasting. ML approaches yield promising 
results in the context of vegetables, with a focus on essential VIs. Orchards benefit from the 
utilization of proximal and UAS sensing technologies, while leguminous crops are examined 
through a combination of ML, DL, and statistical methods. Wheat and maize receive substantial 
attention and are explored using a wide array of methods, encompassing ML, DL, statistical 
techniques, and model-based approaches. 

4.2 Proximal vs UAS vs. Satellite NDVI: Are They Truly in 
Sync? 

The alignment of proximal, UAS, and satellite data often varies due to factors like sensor spectral 
and spatial resolution, proximity and the timing of data capture. While these technologies measure 
vegetation health, their outputs might differ due to their distinct data acquisition methods and 
instruments. Achieving complete alignment among them is challenging, but careful data 
interpretation can provide complementary insights into vegetation status and yield assessments. 

In this study, the average NDVI values demonstrated remarkable similarity between the two 
remote sensing technologies—UAS and Sentinel-2—highlighting a robust correlation in NDVI 
values, particularly during the later stages of the crop's phenological cycle. This suggests a more 
pronounced agreement or similarity between data collected from Sentinel and UAS sources as the 
crop matures. The mean NDVI values from UAS multispectral data were generally higher, 
reflecting the superior spatial resolution of the UAS's sensor, while Sentinel-2 presented higher 
standard deviation. This conforms with previous studies [685–693], acknowledging challenges 
faced by Sentinel-2 imagery in capturing localized conditions, especially in regions marked by 
pronounced heterogeneity due to abiotic or biotic stress factors. In such scenarios, the use of UAS 
becomes imperative for obtaining more precise and detailed data [694]. It is also reported that 
UASs can be optimal for finely characterizing fields in terms of resolution and pinpointing intra-
crop variability [692] 



Yield Prediction in processing tomato crop, through Precision Agriculture practices   

PhD Thesis Nicoleta K. Darra 

 

 

107(163) 

Despite the excellent spatial ground resolution and flexible real-time monitoring offered by UAS, 
deploying them on a commercial scale incurs significant expenses, encompassing equipment, data 
processing, and software costs, which can be a considerable investment, particularly for small-scale 
farmers [216,217]. Additionally UAS surveys involve the storage and management of substantial 
data and require preprocessing, and the resulting datasets are limited to what the user collects 
[218]. Consequently, relying solely on UAS for weekly monitoring can be financially burdensome 
and impractical, especially when managing multiple fields that may not be extensive or are widely 
dispersed. In such cases, leveraging satellite imagery to assess the overall field conditions is more 
practical. 

Satellite remote sensing excels in mapping field variability with a higher temporal continuity that 
remains consistent across seasons and multiple years. This allows for monitoring various vegetation 
stages throughout the growing season and facilitates historical analysis of past seasons. Satellite 
platforms also offer the advantages of extensive coverage, high temporal resolution, and cost-
effectiveness [706], allowing the integration of data from multiple sources, including optical and 
SAR remote sensing [707]. An additional noteworthy factor is the substantial volume of data they 
generate, making them conducive to applying data consuming methods such as machine learning. 
These benefits help explain why the majority of the studies chose to incorporate satellite remote 
sensing methods. 

To overcome the limitations associated with the described platforms, the synergistic use of both 
remote sensing techniques is considered to be the optimum solution in precision agriculture [695]. 
High-resolution UAS images can be selectively deployed during critical phases of the crop cycle 
to provide detailed insights. Additionally, it is desirable to combine UAS images, (preferably with 
a resolution exceeding 4 cm), with high-resolution satellite imagery to enhance the quality of the 
data obtained. This comprehensive approach offers a balanced and cost-effective solution for 
precision agriculture while adapting to the specific needs of different fields and crops. 

On the other side of the spectrum, proximal sensors offer real-time or near-real-time NDVI data, 
contributing to a fast and targeted diagnosis of nutritional and physiological states, stress 
incidence, and potential crop yield. Unlike aerial and satellite imagery, this system provides 
information obtained locally and quickly by terrestrial determinations. Most of these sensors are 
active, making them less affected by weather conditions. Their proximity to the target reduces 
atmospheric interference, resulting in more accurate data and high spatial resolution [249].  In 
addition, they can contribute to lower production costs, because it would allow applying the exact 
amount of fertilizers and water and mitigating stress at the appropriate time and in the right place 
[696]. Therefore, the importance of these remote sensing systems lies in the ease of obtaining 
reliable results, as stated in other studies about other type of crops (cereals, rice paddies, vineyards, 
forest stands, etc.)[697–699]. Multiple studies have consistently demonstrated that the 
developmental growth trends of NDVI derived from UASs and GreenSeeker sensors are highly 
comparable, irrespective of the measurement approach [700–703]. However, they do come with 
limitations related to area coverage, data interpretation, maintenance requirements, and initial 
costs. Therefore, it is essential to evaluate specific needs and available resources when considering 
the adoption of remote sensor technology. 

In this research, a comprehensive examination of the relationship between proximal sensor data in 
comparison to UAS and satellite datasets revealed a moderate level of correlation, as discerned 
from R2 values spanning from 0.41 to 0.72. The moderate correlation observed can be primarily 
attributed to the specific focus of proximal sensors, which are designed primarily for monitoring 
vegetation growth and do not account for reflective effects originating from the soil. Therefore, 
the retention of the intercept in the analysis deviates significantly from zero, which differs from the 
cases of UAS and Sentinel datasets. This outcome is expected, as the proximal sensor values 
commence at higher NDVI values compared to the NDVI values retrieved from the UAS and 
Sentinel datasets.  Additionally, a crucial contributing factor is the variation in electromagnetic 
spectrum wavelengths used for measurements among the different platforms. Specifically, the 
Sentinel-2 satellite employs the Near Infrared band (NIR, Band 8) with a mean wavelength of 
832.8 nm, while the GreenSeeker™ NIR band measures at 774 nm, and UAS-based sensors operate 
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at 790 nm. This can be the reason for the stronger correlations between UAS and proximal 
datasets compared to the Sentinel and proximal datasets. 

While proximal platforms offer real-time or near-real-time data, it is evident that they are most 
suitable for small to medium-sized fields and may not be practical for continuous monitoring of 
larger areas. Given that these sensors provide point measurements, conducting comprehensive 
assessments of extensive agricultural fields is impractical [704,705]. The accuracy of proximal 
platforms is heavily dependent on local factors such as soil type, weather conditions, and 
agricultural activities like pruning, limiting their applicability in diverse contexts. A notable 
drawback of proximal sensing is that terrestrial sensors require regular maintenance and need to 
be reattached each time, making them more susceptible to operator error. Furthermore, 
interpreting the high-resolution data collected by these sensors can be complex, necessitating 
expertise in data analysis. These limitations can impact the accuracy of estimating vegetation 
characteristics. For instance a study [706] reported that NDVI obtained from Sentinel-2 satellite 
observations outperformed NDVI obtained from the handheld GreenSeeker™ platform in 
estimating fAPAR (Fraction of Absorbed Photosynthetically Active Radiation). 

In conclusion, the integration of proximal, UAS, and satellite platforms represents a promising 
approach in precision agriculture. This study highlights the importance of strategically blending 
these technologies to maximize the quality and scope of data while being mindful of practical and 
financial considerations. The key takeaway is the imperative need to carefully select the 
appropriate sensor type based on the specific scale and objectives of the assessment. Proximal 
sensors excel in fine-scale, localized monitoring, but should be deployed judiciously, taking into 
account specific needs and constraints of the application. UASs and satellites found to generate 
very similar results and provide a broader, more comprehensive perspective over larger 
geographical regions. The synergy of these technologies enables more precise and efficient 
agricultural operations, helping farmers and researchers address critical issues related to resource 
allocation, crop health, and sustainability. This approach not only contributes to enhanced 
agricultural productivity but also supports the long-term goal of sustainable and environmentally 
responsible farming practices. 

4.3 Processing Tomato Crop: Phenological Stages Revealed 

Accurate assessment of plant growth and development is essential for agronomic management 
particularly for the decisions that are time-critical and growth stage-dependent in order to 
maximize efficiency of crop inputs and increase crop yields [667]. Identifying crop phenological 
stages at both subfield and field scales provides essential information for producers to make timely 
adjustments in input strategies, such as nitrogen application, herbicide and fungicide use. Remote 
sensing platforms, which observe crops' morphological and physiological traits based on spectral, 
structural, biophysical, or agronomic characteristics, are commonly employed in agriculture. 
However, these systems require continuous, cloud-free data to accurately capture all phenological 
stages and transitions between periods. Reduced spatial and temporal resolutions can limit their 
ability to distinguish subtle phenological differences between similar crops. 

Satellites offer extensive coverage and historical data, making them suitable for large-scale crop-
type classification and growth monitoring. The high spatial resolution of Sentinel-2 imagery enables 
monitoring of species-specific phenology, whereas its high temporal resolution increases the 
possibility to acquire dense time series. Thus far, Sentinel-2 time series have been used in 
monitoring forest phenology in several studies [707]. However, their drawbacks include low spatial 
resolution and vulnerability to cloud interference. UAS platforms, equipped with multi-
/hyperspectral, RGB, or thermal sensors, provide high resolutions and real-time data collection, 
addressing a wide range of crop attributes. Nevertheless, they come with high costs, weather 
dependence, and limited availability. Ground-based, cost-effective and IoT-enabled systems deliver 
high resolution close to objects but require labor-intensive surveys. Each platform presents a unique 
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set of advantages and drawbacks, highlighting the need for careful consideration based on specific 
application needs and constraints in precision agriculture. 

This research has unveiled a distinctive pattern of annual growth dynamics in tomato plants, and 
this pattern is effectively captured and elucidated by vegetation index values. Specifically, the UAS 
and proximal NDVI measurements exhibited elevated values as the crop canopy progressed. 
However, their limitations were evident in capturing dynamic canopy changes due to infrequent 
revisiting intervals. In contrast, satellite datasets proved more effective in offering indicative results 
regarding the phenology of the crop. The analysis of VIs dynamics from Sentinel-2 images revealed 
a narrative of seasonal progression and phenological stages in processing tomato crops.  Notably, 
the study observed that the lowest mean values for all VIs occurred in the period following 
transplanting, when the canopy cover was limited, and substantial gaps between rows were 
occupied by exposed soil. As the season progressed, there was a gradual increase in the percentage 
of canopy cover, particularly during the middle of the season when tomato plants reached their 
peak vigor just before they began reallocating sugars to their fruits. Respectively, as the tomato 
canopy expanded throughout the season, VI values showed a discernible increase. Specifically, the 
highest mean VI levels were observed in July, corresponding to the flowering and fruit tomato 
emergence stage, which occurs between 75 to 95 days after planting. Subsequently, there was a 
gradual decline in VI values. As tomato plants progress through their growth stages, particularly 
transitioning from the fruit emergence stage to later growth phases, their vegetation characteristics 
change. The rate of growth may slow down, causing a decline in VI values. Plants naturally undergo 
physiological changes such as processes like leaf aging, senescence (aging of plant parts), or fruit 
development that affect the VI values, resulting in a decline. 

This trend aligns with the research conducted by Lykhovyd et al. [708],  revealing that different 
phenological phases in processing tomato crop are associated with distinct ranges of NDVI values. 
Similarly, Veloso et al. [709] , utilized bands similar to Sentinel-2 in other optical sensors, 
demonstrating a high correlation between VI values and fresh biomass as well as the green area 
index (GAI). Veloso et al.'s findings enabled the precise monitoring of short-lived phenological 
stages, contributing to a nuanced understanding of crop development. Such findings emphasize 
the capacity of remote sensing techniques in capturing the intricacies of plant growth and 
phenological development, offering valuable insights for crop monitoring and management. 

4.4 Bridging the Gap: Accurate Crop Yield Predictions 

This research evaluated the effectiveness of individual UAS, proximal sensors, and satellite-derived 
VIs in forecasting the yield of three distinct varieties of processing tomato. VIs derived from 
spectral bands found in multispectral imagery have a longstanding history in estimating crop 
canopy and yield. The application of remote sensing technologies for assessing field and yield 
variability is increasingly prevalent in precision agriculture, largely owing to their comparatively 
reduced expenses and. non-invasive approach [710]. The study adopts a dual approach, exploring 
both field-level and regional perspectives to yield results applicable to varying scales. 

4.4.1 Yield Predictions: The Field- Level Approach 

Three different platforms were utilised to assess their performance in predicting the yield across 
ten fields. The GreenSeeker proximal sensor, UAS, and Sentinel-2 satellite imagery were utilized to 
assess crop vigor from distinct altitudes. Each sensor's performance is influenced by various data 
acquisition parameters, including proximity to the plants and the unique technical characteristics 
of the equipment used. NDVI was deployed, being the most widely VI used and can be generated 
from all the different sensors deployed in this study. 

The study's results reveal distinctive patterns in the performance of different sensing platforms 
across various growth stages of the crop. During the early phase of canopy growth, the proximal 
sensor demonstrates a higher explanatory power (R2 = 0.34) in predicting yield variance compared 
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to the UAS (R2 = 0.29) and satellite (R2 = 0.26) platform. This outcome is anticipated as the 
canopy, at this point, is not fully covering the lines, and the measurements from UAS and satellite 
platforms incorporate the soil effect, limiting their ability to represent canopy growth accurately 
compared to the proximal sensor. As the crop progresses to the budding stage, where canopy 
coverage increases, there is a notable uptick in the R-squared values for NDVI derived from UAS 
(R2 =0.35) and satellite (R2 =0.38) platforms. This suggests an improved capacity of these 
platforms to capture and explain yield variability as the canopy progresses. During the critical 
flowering stage, the satellite platform outperforms others with the highest R-squared value (R2 

=0.57), indicating its exceptional effectiveness in elucidating yield variability. Both the UAS (R2 

=0.45) and proximal sensor (R2 =0.30) also contribute significantly at this stage, emphasizing 
their relevance in assessing crop dynamics. Moving into the Fruit Formation stage, both UAS (R2 

=0.52) and satellite (R2 =0.54) platforms exhibit substantial R-squared values, highlighting their 
ability to explain a considerable portion of yield variability during this growth phase. In the final 
growth stage, the R-squared values underscore the persistent strength of the Sentinel platform 
(R2 =0.53) as a key explanatory factor for yield variability. The UAS (R2 =0.42) and Proximal 
sensor (R2 =0.53) also maintain significant contributions. These findings align with a similar study 
[706], corroborating the superior performance of the Sentinel satellite, particularly in its broader 
coverage that facilitates a more comprehensive understanding of vegetation even in suboptimal 
study areas.  

In the final step, the yield sample values were extrapolated by leveraging the average number of 
plants per hectare. This comparison showcased variations between the predicted values, derived 
from the yield sampling, and the actual yield values. The accuracy of these predictions 
demonstrated variability across different instances, with some closely aligning with the actual 
values, others slightly underestimating, and a few overestimating. The deviations in predicted yield 
ranged from 5 to 10 percent. This outcome highlights the effectiveness of the yield sampling 
strategy in providing satisfactory outcomes for yield prediction. Despite some discrepancies, the 
general alignment between predicted and actual values within a relatively small margin of 
deviation suggests that the yield sampling approach holds promise for estimating crop yield with 
reasonable accuracy. 

Overall, the temporal aspect emerged as a critical factor, with later growth phases presenting a 
strong foundation for data convergence and correlation. The observed positive and strengthening 
correlation, provides substantial support for the reliability and utility of NDVI data obtained from 
proximal. UAS and satellite platforms at different stages. The flowering stage is particularly 
noteworthy, where the correlation is most pronounced, with R-squared values reaching 0.52 for 
UAS and 0.57 for Sentinel. During the Fruit Ripening to Maturity stage, the proximal sensor 
exhibits a robust correlation with an R-squared value of 0.53. This robust correlation reaffirms the 
conclusion that NDVI data from both platforms positively influences crop yield, particularly during 
the critical flowering stage, offering valuable insights for precision agriculture. It also emphasizes 
the importance of selecting the appropriate sensing platform based on the specific growth stage, 
highlighting the Sentinel's consistent efficacy across various stages in the specific crop. 

Conversely, the year 2021 analysis revealed a stark contrast, with the correlation between crop 
yield samples and NDVI datasets from all platforms declining significantly. Lacking a clear 
indication of the underlying cause, these correlations did not reach statistical significance, for that 
specific year. It's worth noting that the dataset for the year 2021 encompassed only two fields, a 
relatively low number, potentially contributing to the insufficient data available for generating a 
statistically significant model.  

It's important to recognize that estimating crop production is a complex process influenced by a 
multitude of factors. These factors include microclimate conditions, weather patterns, soil 
characteristics, fertilizer usage, and the choice of seed varieties [711]. Considering the numerous 
methods and techniques have been developed and used for optimizing yield prediction and 
improving the effectiveness of the developed models [712,713], it became apparent that there was 
a need for a precise regional-scale crop yield dataset. This dataset would play a crucial role in 
integrating machine learning methods for more accurate predictions. Therefore, a dataset was 

https://www.zotero.org/google-docs/?sLNDD0
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created, encompassing actual yield values and field boundaries from 108 fields in 2021 and 44 
fields in 2022, serving as a ground-truth reference. The analysis of satellite imagery, guided by 
these ground-truth data, yielded promising results. Due to operational constraints, the analysis 
focused solely on satellite imagery, as deploying UAS and proximal surveys at such a scale was 
not feasible. 

 

4.4.2 Yield predictions: The Regional-Level approach 

Based on the systematic review, the statistical analysis is the most prevalent method employed for 
crop yield prediction in the reviewed studies, however, ML is also widely used for yield estimation 
providing high accuracy. A notable distinction lies in the approach: while statistical methods 
necessitate the selection of a model based on our understanding of the system, machine learning 
relies on the empirical capabilities of predictive algorithms. [714]. This study introduces an 
innovative approach to predicting tomato yield by integrating machine learning techniques with 
vegetation index (VI) data obtained from satellite platforms at different growth stages, commonly 
employed in precision agriculture. While prior research has explored various correlation and 
regression models between VIs and crop production, the utilization of machine learning techniques 
for estimating processing tomato yield has not been extensively investigated until now. The 
investigation involved the examination of different VIs over the growing season to assess their 
performance in predicting yield. 

The initial phase of the analysis involved the application of basic statistics, primarily utilizing the 
Pearson correlation coefficient, which is widely common in the literature. This coefficient is a 
statistical measure adept at evaluating the strength and direction of a linear relationship between 
various VIs and crop yield. During the initial growth stages of the plants lower r values were 
recorded. Such observations are anticipated, given the minimal canopy cover during that stage 
and the fact that the 10-meter spatial resolution imposes constraints, particularly for row-cultivated 
crops. Considering also that a substantial portion of the field area is covered by bare soil introduces 
additional noise into the spectral data, contributing to these limitations.  

Nonetheless, the findings revealed that all VIs demonstrated optimal performance during the 85 
to 90-day period post transplanting, with RVI exhibiting superior predictive capabilities compared 
to others. Although NDVI displayed lower overall performance, it reached its peak predictive 
power at 85 days after transplanting. On the other hand, PVI and WDVI exhibited comparatively 
lower performance than SAVI and RVI. Each VI demonstrated strong and consistent performance, 
consistently exhibiting Pearson correlation (r) values exceeding 0.6 at 80 days. The most 
exceptional performance across all VIs assessed in this study was observed at 90 days (r > 0.7). 
Specifically, the heightened values of the RVI during this timeframe were deemed optimal for 
predicting yield. These findings suggest the potential utility of these indices in predicting crop yield, 
especially during the later stages of crop development. These results collectively imply that certain 
VIs exhibit promising relationships with yield, particularly in the later phases of the crop growth 
cycle. Variability among the different varieties and VIs is to be expected because canopy 
development is a complex process and not homogeneous in all fields. Although the results are 
aligned with the findings of Psiroukis et al. [715], who adopted a similar approach, the Pearson 
correlation values we acquired did not attain the elevated levels reported in their study. This 
disparity might stem from variations in the dates of the datasets used or differences in the 
agricultural practices implemented in the different regions. 

Recognizing the potential of machine learning to enhance yield prediction accuracy, various ML 
algorithms were integrated, marking a strategic move towards optimizing the predictive 
capabilities of the model. This strategic move was aimed at optimizing the predictive capabilities 
of the model, with a specific emphasis on using AutoML to discover ensembles of regressors with 
high predictive power, which was one of the primary goals of this research. 
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Extensively used regression methods have been compared against more complex methods that 
deal better with outliers. Specifically, linear and nonlinear regression models were evaluated, 
including OLS, Theil-Sen and the Huber regression models, and Ensemble Methods based on 
Decision Trees. Regression analysis was performed using those highly correlated VI data, in order 
to evaluate their performance in assessing the crop yield. The analysis incorporated the use of 
adjusted coefficients of determination (R²) and root mean square error (RMSE) to evaluate 
predictive accuracy.  

According to the findings, the regression models between yield and VI data presented different 
degrees of accuracy, depending on the model fitted, the sensor used, and the growth stage 
assessed. The most effective VIs for predicting yield were RVI and SAVI, displaying average R² 
values of 0.72 and 0.69, respectively, at the 90-day mark post-transplanting. This timeframe 
potentially signifies a crucial stage in the development of processing tomato crops, distinctly 
detectable through Sentinel-2-derived data. Furthermore, these VIs demonstrated the lowest 
RMSEs of 1.03 and 1.06, respectively. Numerous researchers advocate for the utilization of the 
SAVI due to its reduced bias associated with soil properties present in remote sensing images, 
allowing for improved identification and differentiation of plants from the soil [685,708]. 
Conversely, NDVI performed less effectively compared to other VIs, exhibiting values below 0.62. 
The limited relationship between yield and NDVI and PVI may be influenced by non-weather-
related factors dictating yield, such as atmospheric influences or NDVI's sensitivity to soil brightness 
and canopy shadow effects [203]. The most accurate predictions were concentrated within the 85 
to 90-day range, while earlier date predictions exhibited more significant deviations. 

In terms of model optimization, ensembles consisting of two regressors were found to achieve the 
highest adjusted R² in most cases (67.86%) and lower RMSE values. This signifies that combining 
the predictions of two precise regressors enhances accuracy. This finding aligns with Zhang's 
suggestion [716] advocating for the balanced utilization of diverse viewpoints from various models 
or regressors, leading to more resilient and consistent predictions. Single regressors were the 
second-best option (21.43%), whereas ensembles with three regressors showed less promising 
performance (10.71%).  

The combination of ARD regression and SVR emerged as a frequently successful choice for 
creating ensembles. SVR paired with Huber regression also demonstrated strong performance in 
multiple instances. Among individual regressors, ARD and Huber regression models consistently 
outperformed others. Notably, SVR exhibited its highest effectiveness when used in combination 
with other regressors but showed weaker performance as a standalone regressor. Some regressors, 
such as OLS regression, AdaBoost, and extra trees, did not perform as well. Generally, tree-based 
regressors like extra trees or random forests did not yield successful outcomes. However, this doesn't 
imply that these methods will universally fail in other related regression problems. It adheres to the 
"no free lunch" theorem  [717], , suggesting that no single algorithm universally outperforms others 
across all datasets. Consequently, even the most potent algorithm might not be optimal for all 
yield prediction challenges. Contrarily, leveraging consistently successful regressors within AutoML, 
while constraining the search space, could enhance the efficiency of the overall pipeline by 
identifying suitable solutions. In instances where ensembles of three models were employed, the 
amalgamation of ARD, random forest, and SVR consistently showcased the highest performance. 

An important point is that satellite imagery proves valuable in estimating crop variables at a 
regional scale, yet high-resolution Earth observations often face disruptions due to cloud cover. In 
this study, cloud interference hindered VI computation in several instances, resulting in varying 
sample counts across different dates. Moreover, as is common in machine learning applications on 
real-world data, some variables did not conform to a Gaussian distribution. However, those 
adhering to this distribution displayed superior performance. Specifically, the VIs exhibited 
Gaussian distribution from 55 to 115 days after transplanting.  

In summary, the results confirm that the Sentinel-2 platform is highly effective in predicting yield 
at a regional scale. This study proved that indeed advanced sensing techniques may have many 
applications, especially with the help of the increasing computing power, allowing for more complex 
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machine learning techniques to be used to find patterns and correlations between canopy 
reflectance data and specific crop quality characteristics.  Overall, the outcomes provide evidence 
on the diverse platform’s accuracy and reliability when it comes to forecasting crop yield across 
local and broader geographical areas. 

4.4.1 Temporal – Level: Yield predictions across years 

In yield estimation based on multispectral remote sensing data, the red and NIR bands hold critical 
significance due to their distinct reflectance properties. This significance arises because the NIR 
band exhibits high reflectance for green vegetation due to substantial internal leaf scattering, 
while the red band shows low reflectance owing to chlorophyll absorption as vegetation cover 
increases. Consequently, there exists a distinct and pronounced reflectance slope between these 
bands, commonly known as the red-edge (RE) spectral region, residing within the 680 nm to 750 
nm range [718]. This region captures the sharp alteration in canopy reflectance. Reflectance within 
the RE band is highly correlated with various crucial physiological vegetation parameters such as 
nitrogen and chlorophyll content, portraying an essential indicator of plant pigment status and 
overall health [719,720]. The presence of a shift in RE within vegetation reflectance signifies 
alterations in the biological state of plants [721]. For example, Ramoelo et al. used WorldView-2 
satellite’s RE band reflectances to estimate leaf nitrogen content and above-ground biomass, and 
concluded that RE bands had the ability to improve leaf nitrogen content and biomass estimation 
accuracy [722]. Furthermore, the red-edge inflection point (REIP), identifying the wavelength of 
maximum slope in the RE region, exhibits lower sensitivity to spectral noise induced by soil or 
atmospheric conditions when estimating chlorophyll content. [723,724]. Current earth resource 
satellites like RapidEye, WorldView-2, WorldView-3, and Sentinel-2 are equipped with RE bands, 
amplifying their significance in vegetation assessment. 

Notably, the blue band exhibits minimal reflectance over vegetation due to chlorophyll absorption, 
yet it plays a crucial role in vegetation monitoring through remote sensing data. Various VIs, like 
the EVI [725] capitalize on the blue band's reflectance to characterize vegetation status. However, 
the shorter wavelength of the blue band renders it more susceptible to atmospheric influence [726]. 
On the other hand, the Shortwave Infrared (SWIR) band's sensitivity to foliar water content, 
attributable to water absorption [727] makes it valuable for biomass estimation, despite not being 
present in certain operational satellite instruments such as SPOT, Chinese GF-1, and GF-2. 

Although various VIs leverage selected spectral bands, their impact on yield estimation accuracy 
remains understudied. Therefore, it's crucial to explore the potential of spectral bands in enhancing 
biomass and yield estimation precision. 

The Sentinel-2 satellites (comprising S2A and S2B) equipped with Multi-Spectral Instruments 
(MSI) provide extensive spectral coverage across 13 bands, spanning from visible and near-
infrared to shortwave infrared (SWIR) bands. These bands are pivotal for vegetation monitoring 
and yield prediction. However, not all bands hold equal significance in yield estimation. Some 
bands might carry more pertinent information, exerting a stronger influence on the accuracy of 
yield estimation, while others may contain less relevant data for this purpose. As data dimensions 
expand, there's a consequential rise in computational and storage costs. Furthermore, redundant, 
noisy, or unreliable data within less important bands can impede the accuracy of yield estimation 
processes, potentially decreasing overall prediction accuracy. 

Previous studies have introduced various methodologies to enhance yield estimation accuracy, 
including empirical approaches, pixel unmixing models, and physically based models. Despite this, 
a limited number of studies have underscored the pivotal role of spectral band information 
specifically in yield estimation. Notably, machine learning regression methods have showcased 
enhanced accuracy in predicting yields for crops like corn [728] and soybean[439] by leveraging 
spectral bands. Crusiol et al. suggest that Sentinel-2 Vis/NIR/SWIR images, associated with partial 
least squares regression and support vector regression, can be used as a fast and reliable proxy 
for yield monitoring, contributing to better site-specific management of agronomic practices, 
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economic policies and strategic planning of governmental and corporative decision making over 
technical issues[729]. 

To reduce data redundancy, increase computational efficiency and improve yield estimation 
accuracy, all bands were extracted for the seasons 2021 and 2022 respectively.  The AutoML 
pipeline trained on the 2021 dataset and tested on the 2022 dataset resulted in twenty experiments 
showcasing various combinations of bands and models for predicting crop yield. Ensemble 
Machine learning methods enable the development of prediction models using several spectral 
bands or VIs acquired from the target area, or even their combination (spectral bands and VIs, 
contributing to the better characterization of the crop development condition across different 
wavelengths. 

The findings suggested that the period between 75 to 90 days was the optimal for accurate yield 
predictions, based on vegetation indices. This aligns with the reproductive growth phase, 
commencing approximately 55 days post-transplanting with flowering and extending until about 
88 days [311]. Within this phase, crucial developmental events like flower initiation, pollination, 
fertilization, and fruit set occur, spanning roughly 20 to 40 days depending on environmental 
factors and cultivar types [730]. Notably, combining bands like 'B4_70' 'B4_90' 'B6_65' 'B12_65  
reached an R² of 0.65, highlighting their predictive strength. Red Edge/NIR bands (B7 to B8A) 
between 65 to 95 days post-transplanting showcased significant importance for yield prediction. 
Surprisingly B12 (R2190)  was appeared in this approach, indicating that important information can 
be retrieved when using it in combination with other bands. It is used in vegetation indices such as 
Normalized difference water index, NDWI and Normalized multiband drought index, NMDI due 
to its efficiency in depicting the water potential fluctuations SWIR band's (B12) sensitivity to foliar 
water content due to water absorption [727] makes it valuable for biomass estimation. In other 
studies SWIR bands (SWIR-1 and SWIR-2) were highly correlated with canopy cover [731]. and  
yield estimation [732]. Various combinations utilizing models like Random Forest, ARD Regression, 
and SVR demonstrated strong predictive capabilities, with ARD Regression standing out as the 
most promising single model, and its ensemble with SVR as the best-performing combination. 
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Part 5. Conclusions 
One of the key objectives of the study was to provide valuable insights into the trends, patterns, 
and contributions of precision agriculture methodologies and technologies in the field of crop yield 
prediction. To this end a systematic literature review was conducted in the Scopus and WoS 
platforms. 

Understanding the geographical distribution of research efforts and the significant academic 
institutions, in this domain is crucial for comprehending the research landscape. The research 
revealed that using remote sensing techniques, China and the USA are key contributors to the 
field of crop yield prediction, while cereal crops (185 papers) emerged as the most extensively 
researched for yield estimation, with a particular emphasis on wheat. Among the remote sensing 
platforms utilized, satellites were predominant, followed by UAS platforms and proximal sensors. 
The systematic review identified NDVI as the most frequently used VI in the studies reviewed. 
Methodologically, machine learning featured in 142 articles, while deep learning was employed in 
62 articles specifically for yield prediction. Statistical methods were prevalent in 157 articles, 
whereas model-based approaches were present in 60 articles for predicting crop yields.  

Notably, machine learning and deep learning techniques exhibited high accuracy in crop yield 
prediction, although other methodologies also showcased success, contingent upon the crop and 
approach used. Specifically, in the case of Vegetables and Melons category, statistical methods 
paired with satellite and UAS measurements dominate, while ML techniques shine with an 
impressive R2 value of 0.90. For oilseed crops, exceptional performances (R2 > 0.90) were common, 
except for palm oil and canola crop. In Fruits and Nuts, vineyards see a surge in studies achieving 
high performances (R2 > 0.90) through ML/DL methods using proximal or UAS sensing, 
sometimes alongside satellite data. In the category of Root tuber and other crops, various methods 
were deployed, with outstanding performances (R2 > 0.90) in Cotton, Sweet Potato, and Perennial 
Ryegrass, notably driven by ML approaches. Leguminous crop studies extensively leverage diverse 
data sources (UAS, satellites, proximal sensors), achieving high accuracies (R2 > 0.90) in Alfa 
Alfa, Red Clover, Chickpea, Snap Bean, and Peas. Cereals employ a wide range of methods and 
platforms not indicating a clear trend. These findings contributed to a comprehensive 
understanding of the research domain, offering valuable insights for guiding future steps in crop 
yield estimation studies. 

The study's second objective was to compare satellite, UAS, and proximal technologies thoroughly, 
emphasizing their unique strengths and limitations when applied in precision agriculture. Focusing 
on the NDVI as a common metric, data obtained from different proximal and remote sensing 
methods in a processing tomato crop and evaluate the differences between the NDVI datasets 
from these different sensing systems in a production context. The results confirmed the substantial 
similarity between UAS and satellite data, particularly in the later stages of the crop's phenological 
cycle, suggesting increased agreement as the crop matures. The higher spatial resolution of the 
UAS is reflected in generally higher NDVI values compared to Sentinel-2, which faces challenges 
in capturing localized conditions. The research reveals a moderate correlation between proximal 
sensor data and UAS/satellite datasets, with variations attributed to differences in measurement 
wavelengths and specific focuses of each platform. While UASs offer excellent spatial resolution 
and real-time monitoring, their commercial-scale deployment involves significant expenses, making 
them less practical for small-scale farmers managing multiple fields. Proximal sensors, providing 
real-time or near-real-time NDVI data, contribute to fast and targeted diagnoses of crop 
conditions. Their proximity to the target reduces atmospheric interference, ensuring high spatial 
resolution and accurate data. However, their limitations include area coverage, data interpretation 
challenges, maintenance requirements, and initial costs. The study recommends a synergistic 
approach, combining high-resolution UAS images selectively deployed during critical crop phases 
with satellite imagery for overall field assessment, offering a balanced and cost-effective solution. 

Within the study's framework, the examination of VIs dynamics derived from Sentinel-2 images 
uncovered a narrative detailing the seasonal progression and phenological stages of processing 
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tomato crops. Notably, the study noted that the lowest mean values for all VIs occurred in the 
period following transplanting, characterized by limited canopy cover and exposed soil between 
rows. As the season advanced, there was a gradual increase in canopy cover percentage, 
particularly during the middle of the season when tomato plants attained peak vigor just before 
reallocating sugars to their fruits. Specifically, the highest mean VI levels were observed in July, 
corresponding to the tomato emergence stage, occurring between 75 to 95 days after planting, 
revealing a distinctive pattern in the annual growth dynamics of tomato plants, effectively 
captured and elucidated by vegetation index values. 

The main objective of this study investigates the efficacy of various sensing platforms, including 
UAS, proximal, and satellite-derived VIs, in predicting the yield of processing tomato varieties. 
Adopting a dual approach, the research examines both field-level and regional perspectives to 
offer insights applicable to different scales.  

At the field level approach, the study utilized the GreenSeeker proximal sensor, UAS, and Sentinel-
2 satellite imagery to assess crop vigor across ten fields. Results highlight distinctive performance 
patterns of sensing platforms during different growth stages. The proximal sensor exhibits higher 
explanatory power in the early canopy growth phase, while UAS and Sentinel platforms improve 
as canopy coverage increases. The Sentinel platform outperforms others during the critical 
flowering stage, emphasizing its effectiveness in elucidating yield variability. Yield predictions, 
extrapolated using the average number of plants per hectare, show variations but overall 
demonstrate the promise of the yield sampling strategy for estimating crop yield with reasonable 
accuracy, despite some discrepancies. The temporal aspect emerges as critical, with later growth 
phases providing a solid foundation for data convergence and correlation. The study highlights 
the importance of selecting the appropriate sensing platform based on the specific growth stage, 
with Sentinel consistently effective across various stages. However, in the year 2021, the correlation 
between crop yield and NDVI datasets at field level approach declines significantly across all 
platforms, with the limited dataset size potentially contributing to this observed decline and the 
diminished statistical significance.  

Acknowledging the complexity of estimating crop production and addressing the need for a precise 
farm yield dataset the study shifted to a regional scale integrating machine learning techniques 
with VI data retrieved from satellite platform. While prior research has explored correlations 
between VIs and crop production, the extensive use of machine learning for estimating processing 
tomato yield has not been thoroughly investigated until now. Previous studies have extensively 
investigated correlation and regression models linking VIs with crop production, alongside 
employing machine learning methods for crop yield estimation. However, the widespread 
exploration of AutoML, as detailed earlier, remains limited in this context. Within agriculture, 
AutoML techniques have been documented primarily for time series processing and analysis of 
proximal and satellite imagery [733,734], weed identification [735], and forecasting quality 
attributes in grapes [736]. An analysis of five different VIs over the growing season reveals their 
optimal performance during the 85 to 90-day period after transplanting, with RVI exhibiting 
superior predictive capabilities. Despite early growth stages showing poor correlation between VIs 
and yield, the study identifies promising relationships, particularly in the later stages of crop 
development. The investigation incorporates basic statistics using the Pearson correlation 
coefficient, emphasizing the optimal performance of VIs during specific growth stages. Machine 
learning algorithms, integrated to enhance yield prediction accuracy, identified RVI and SAVI as 
the best-performing VIs for yield predictions, achieving high R² values and low RMSEs, especially 
at 90 days after transplanting. Ensembles consisting of two regressors emerge as the optimal 
choice for enhanced predictive accuracy. The combination of ARD regression and SVR proves 
frequently successful in creating ensembles, emphasizing the effectiveness of combining different 
regressors. The study recognizes challenges such as cloud cover in satellite imagery but highlights 
the potential of machine learning in leveraging such data for precise crop yield predictions on a 
regional scale. 

Aiming at improving yield estimation accuracy, all bands were extracted for the seasons 2021 and 
2022 respectively. In this study, the various ensemble models were trained using the Sentinel-2 
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reflectance’s, which provided an indication for each band reflectance to represent the importance 
degree for yield estimation. Prominent spectral bands, such as those involving B4, B6, B7, B8, and 
B8A, demonstrated exceptional predictive power within the 80 to 90 days post-transplanting 
window. Effective VIs, notably RVI and NDVI with spectral bands B8, B7 and B8A showcased 
strong predictive capabilities. Similarly, RVI_B8_90, RVI_B7_90, and RVI_B8A_90 showed 
equivalent performance. Combining bands [B4_70, B4_90, B6_65, B12_65] stands out with an 
adjusted R² of 0.65 and an RMSE of 1.19., highlighting their predictive strength. This research will 
be extended, evaluating different machine learning algorithms/pipelines, thus increasing predictive 
power, and providing a more reliable and sustainable solution that can be used in the long term. 
Bagging, boosting or stacking as ensemble frameworks that reuse the best performing pipelines 
will be implemented to investigate whether they could lead to better performance. 
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Part 6. Future work 
As the global population continues to grow, the role of PA becomes increasingly pivotal in 
bolstering productivity, conserving resources, and curbing environmental impact [555]. Yield 
prediction stands out as a crucial strategy within PA, empowering farmers and the agricultural 
sector to make informed decisions, effectively manage resources, and optimize various production 
stages, from harvesting to logistics. This predictive capability yields increased productivity and 
substantial cost savings. It enables farmers to identify and address areas with lower yield potential 
due to factors like inadequate irrigation or poor soil fertility, leading to targeted interventions that 
enhance overall farm yields. The long-term viability of small and medium-sized farms, critical to 
the agriculture industry's growth, can be sustained by the profitability improvements facilitated by 
precision agriculture. Consequently, there is an urgent need for accessible and affordable precision 
agriculture technologies and techniques through further research and development. 

Based on this research some specific areas that need further research are: 

1)Integration to crop modelling: Integrating annual VI dynamics into models for tomato crops can 
streamline crop identification, mapping, and monitoring of crop growth phases. This integration 
can be complemented by leveraging weather data, particularly in gauging parameters like thermal 
days, which are instrumental in estimating tomato maturity accurately. 

2) The development of more accurate sensors and monitoring systems: The findings presented in 
this research are encouraging for the development of a large-scale monitoring system, especially 
based on the strategic use of remote sensor platforms. Identifying the factors contributing to yield 
variability enables farmers to develop strategies that ensure consistent and reliable harvests. 
Additionally, timely yield forecasts serve as a valuable risk management tool, enabling farmers to 
proactively plan for potential threats, such as severe weather events or pest outbreaks, allowing 
them to take swift actions to mitigate their impact on crop yield [137]. 

3) Enhancing the accuracy of forecasting models remains a key focus. Exploring the potential of 
spectral band reflectance coupled with advanced machine learning algorithms is a crucial step 
toward refining crop yield prediction accuracy. These advancements are imperative, especially 
given the impact of climate change on tomato production. Precision agriculture techniques can 
mitigate these effects and also facilitate better pest and disease management, reducing 
dependence on harmful chemicals. 

The ongoing evolution of precision agriculture technologies and methodologies underscores the 
potential to significantly enhance agricultural efficiency, sustainability, and profitability. The use of 
these techniques can help farmers better manage pests and diseases and reduce the need for 
harmful chemicals. Overall, the potential benefits of precision agriculture are significant and there 
is a strong demand for research and development in this area. If researchers and practitioners 
continue to advance precision agriculture technologies and techniques, they can help improve the 
efficiency, sustainability and profitability of crop production. 
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