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Abstract

This research is designed to make a valuable contribution to the field of precision agriculture, by
exp|oring the po’ren’rio| of state-of-the-art fechno|ogies and ‘rechniques for yie|d predicrion in
processing tomato crop. The core aim was to deve|op and evaluate o robust me’rhodo|ogy
incorporating cutting-edge technologies, remote sensing data, and sophisticated analytical
’rechniques like machine |eorning and statistical ono|ysis. The primary objec’rive is to improve the
accuracy and dependobih’ry of yie|d predic’rions at local and regiono| levels. This was achieved
rhrough a progressive opprooch imp|emenfed yeor|y, uﬂ|izing non-invasive methods to track the
crop's bio|ogico| cyc|e and refine predic’rive yie|d models.

Over the course of this srudy, a progressive mefhodo|ogy was imp|emenred fo gorher data and
refine merhodo|ogies. It commenced with a systematic literature review focusing on yield
predicﬁons within precision ogricuHure, to offer an extensive overview of the latest advancements
in this domain. Simu|‘rcmeous|y, pi|o‘r activities were conducted over three years. Ten pi|of fields
were chosen to infegrate proximo|, 0erio|, and satellite measurements with yie|d assessments in the
initial two years, primori|y exp|oring the correlation between crop yie|d and NDVI (Normo|ized
Difference Vegetation Index), a widely used indicator. This phase aimed to uncover similarities
between satellite technology, UAS (Unmanned Aerial System), and proximal sensors concerning
crop yie|d evaluation. Conducrmg an exftensive comparison of satellite, airborne, and proximo|
’rechno|ogies, their individual sfreng’rhs, and limitations were emphdsized within the precision
ogricu|’rure context.

During the second year, alongside the detailed investigation of specific fields using satellite, UAS,
and proximct| sensors at the field scale, an exponded s’rudy involved 108 fields at the regiono| scale,
incorporating satellite data analysis. This phase aimed to assess NDVI and four additional
vegetation indices (Vls) in predicting crop yield. Time series data comprising five Vls at a regional
scale were dep|oyed to exp|ore the re|0fionship between these indices and the critical pheno|ogico|
stages of the crop. Furthermore, machine |eorning rechniques were opp|ied to VI data collected
rhrough satellite images at different growrh stages to evaluate their predicﬂve performonce for
yield in industrial tomato fields. Specifically, AutoML algorithms and statistical analysis were
utilized to gauge the correlation between yie|d and Vls retrieved from satellite datasets. The
transformed data was utilized to train and test both statistical and machine |eorning o|gorifhms,
encompassing linear and nonlinear regression models, along with ensemble methods based on
decision trees. The ono|ysis encompcssed various regression models such as ordinory least squares
(OLS), Theil-Sen, and Huber, as well as tree-based methods, support vector machines (SVM),
and automatic relevance determination (ARD). This broader scope aimed to deepen the
unders’ronding of crop yie|d estimation based on the findings from the initial systematic review.

During the third year, a more infricate opprooch was odop‘red, focusing on the evaluation of
specrro| bands derived from satellite imagery. Each band's individual performonce in predicring
crop yie|d was assessed, 0||owing for a comprehensive evaluation of their unique contributions to
overall yie|d estimation accuracy. This grcmu|or ono|ysis provided deeper insighrs into the
imporftance and impact of each specrro| band in refining the precision of crop yie|d predicﬂonsr
The performonce of both statistical and machine |eorning models was assessed to gain profound
insighfs into the most efficient growrh stages and Vs for precise yie|d predicﬁorr

The findings of this study indicated substantial similarity between UAS and Sentinel-2 datq,
especio”y in the later stages of the crop's pheno|ogico| cyc|e, imp|yir1g a heighrened agreement as
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the crop matured. The study identified a moderate correlation between proximal sensor data and
UAS/satellite datasets, with discrepancies attributed to variances in measurement wavelengths
and the specific focus area of each platform. Regarding the relationship of the VI dynamics in
relation to the crop's phenological cycle, the lowest mean values for all VIs were observed shortly
after transplanting, marked by limited canopy cover and exposed soil between rows. Notably, as
the season progressed, canopy cover percenfage groduo||y increased, por‘ricu|or|y at the midpoini
of the season when processing fomato crop reached their peok vigor just before recr||occ|ﬁng sugars
to their fruits.

Regording yie|d prediciion, the proxirno| sensor showed nigner exp|ono‘rory power during the initial
canopy growth phase, while UAS and Sentinel platforms improved their performance as canopy
coverage exponded. The satellite p|oh(orm demonstrated superior performonce during the crucial
ﬂowering stage, empnosizing its effectiveness in e|ucido‘ring yie|d voriobi|iiy. The siudy ernp|oyed
basic statistics, notably the Pearson correlation coefficient, highlighting the VIs' optimal
performance during specific growfn stages. Additionally, machine |eorning o|gori’rhms were
iniegro’red to enhance yie|d predic’rion accuracy rigorous|y evaluated ‘rhrougn regression ono|ysis
and a 5-fold cross-validation procedure. The research identified NDVI, RVI and SAVI as the most
effective Vls for yield predictions, achieving high R? values and low RMSEs, particularly 90 days
after Jrronsp|oniing. Ensembles comprising two regressors emerged as the optimal choice for
enhanced predictive accuracy. Remarkably, band combinations of Band 4, Band 8, and Band 12
stood out. The Red Edge/NIR bands displayed notable performance, especially within the 80 to
90 doys pos‘r-fronsp|oniing window, exhibifing the strongest correlation with yie|d.

Overall, the findings suggest that UAS and satellite sensors demonstrate greater accuracy in
prediciing crop yie|d towards the end of the season and offer increased precision during the later
stages of deve|opmenf. In contrast, proximo| sensors showcase correlations at earlier stages of crop
growin Combining data from mu|’rip|e sensors and growfh stages can enhance prediciion
accuracy. Using VI and spectral band data in conjunction with machine learning techniques may
represent a more effective and economico”y efficient method for predicﬂng fomato yie|d4

Scientific area: Agricultural Engineering

Keywords: Precision Agriculture; Remote sensing; Vegetation Indices, NDVI processing tomatoes,
artificial intelligence, AutoML
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NpoBAsPn napaywyng oe KAAALEPYELEG BLOMNXAVIKNAG TORATAG HE Xpron edappoywv yewpyiag akpiBeiog

Tufipa Aéonoinong Quatkwv Mopwv & Mewpykng Mnxavikng
Epyaotrpto lewpytkn¢ Mnyxavoldoyiac

Nepidnyn

AUTA N HEAETN €XEL WG OTOXO va cUMPBAAEL otov Topéa tng MNewpylag AkpiBeiag, e€epeuvwvtag Tig
SUVATOTNTEG TWV TPONYUEVWY TEXVOAOYLWV Kol LeBOSwV otnv mpoBAsdn anddoaong otnv KaAALEpyeLa
Blopnxavikng vropdrag. To KUpLo eyxeipnua Atav n avamtuén kot afloAdynon pog aflomotng
pebodoloylag TOU EVOWUATWVEL TIPONYUEVEC TeXVOAoyieg, Oebopéva TNAEMLOKOTNONG Kol
TIPONYUEVEG OAVOAUTLKEG TEXVIKEG, OTIWG N UNXAVIKN HABnon Kal n otatiotiky avaAuon. O kUplog
oTox0G6 eival n BeAtiwon tnc akpifelag kat tng aflomiotiog Twv npoBAEPewv anddoong og TOTIKO Kal
TiepLdePELOKO eMiMedo. AUTO emITELYXONKE LECW ULOC TTPOOSEUTLKAG TTPOCEYYLONG TIou £PpapUOOTNKE
£TNOLWG, XPNOLLOTOLWVTAC U KOTAoTPOodLKEG HeBOSouC yla TNV mapakoAolBnon tou BloAoyikol
KUKAOU TN KaAALEPYELAG Kal TN BeAtiwon Twv poviéAwv mpoBAedng mapaywyng.

Kata tn OSwdpkela autng G HEALTNG, £papuoOoTnKe pla TTPoodeuTIK peBodoloyia yla TN
OUYKEVTpwon Sedopévwy. ApXLoE UE Lo cuoThatikh BLBALoypadIk ovaoKOTNonN OV £0TIA0E 0TNV
npoPAedn anddoong pe pebBodoug Newpyiag Akpipeiag, ylo vo TipoodEPEL ULt EKTEVI ETLOKOTINGN
Twv tedevtaiwy e€eliewv og autoOv TOV TOHEA. TaUuTOXpOva, TIAOTLIKEG Spaotnplotnteg SteEnxdnoav
yla Tpla xpovia. Ta 800 mpwta xpovia emAEXONKav SEKO TIIAOTLKA OYPOTEUAXLA YL TNV EVOWUATWON
eTiyewwy, evagplwv kot Sopudoplkwy Sedopévwy Kat SetypatoAnPieg mapaywyng, e KUpLo oTOX0 va
e€etAooULV TN oUoYETION PETAEL TG amodoong tng KaAALEpyeLag kat tou NDVI (Asiktng BAdotnong
Kavovikomotnpévng Atadopdc), evog Seiktn mou xpnotpomnoleital eupéwg. Auth n daon eixe wg otdxo
va £€epeUVNOEL TIC OHOLOTNTEG HETAEL TwV §opudOpwy, TwV IUNEA (Zuotiuata pun Emoavépwpévwv
Aepookadwv) Kol Twv eNlyelwv alobnthpwv otnv afloAdynon tng anddoong tng KaAALEpyeLag. Me
NV ektetapévn olykplon twv Sopuddpwy, IUNEA kol emiyelwv ateBntipwv, 666nke 8laitepn
onNUaoia oTo TAEOVEKTHLOTA KL TIEPLOPLOOUG TOUC 0To TAaioLo tng Mewpyiag AkptBeiag (FA).

Katd tn 8gltepn xpovikn meplodo, eKTOC Ao TO CUYKEKPLUEVA ayPOTEMAXLA TIoU UTIOBANBNKaV og
Aemtopepn €peuva pe xprion dopudoplkwy, ZUNEA Kat entiyelwy alobntripwy, (o SLEUPUUEVN LEAETN
npaypatonol0nke mou mepAdppave 108 aypotepdylo o MePLdEPELOKT KALLAKA, EVOWLATWVOVTOS
v avaAuon Sdopudopikwv dedouévwy. Autr n ¢aon ixe wg otdxo va afloAoynosl OxL LOVO ToV
NDVI, aA\d kal téocoeplg emumAéov Oeikteg PAAaotnong otnv mpoPAsdn tng amodoong tng
KoAALEpyeLag. XpnolpomowiOnkav xpovooelpeg OSebopévwv Tou meplhapPavav Tiévte  SeiKTEG
BAGotnong os mepldepelakn KALLOKA yLa va eEETACOUV TN OXE0N METOEY AUTWV TWV SEIKTWV KAl TWV
KPLoWWwV davoroylkwyv otadiwv Tng KOAALEPYELOC. 2TO TAALOLO AUTO TpaypaTonolttnke n xpnon
TEXVIKWV OUTOMOTOTONMEVNG UNXOVIKAG nadnong (AutoML) os cuvbuaoud pe Ssbopéva SelkTwy
BAdotnong mou avokténkav amnd dopudoplkd cUvola SeSOUEVWY yLa TN CUCXETLON TOUC UE TNV
anodoon. Ta petaoynUaTIOUEVA SE60UEVA OTN CUVEXELD XPNOLUOTIOLBNnKay yla TNV ekmaibsuon Kot
™ Soklun aAyopilBuwv OTOTIOTIKNAG KAl UNXOVIKAG MABNoNG, CUUMepAAUPBAVOUEVWY HOVTEAWV
VPOUULKAG KOL 1N YPOAUULKAC TaAlvépounong kat pebodwv ocuvolou mou Bacilovtal os Sévipa
anodpacewv ItV avdluon xpnotponowdnkav n péBodog eAdaylotou tetpaywvou (OLS), povtéa
naAwvdpopnong Theil-Sen kat Huber kot péBodol mou Baocilovtal os Sévipa. TuumeplAndOnkav
eniong UNXaveég SLavuopUATwy UTooTAPLENG (SVM) Kal autopatog mpoadloplopog cuvadelag (ARD).
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AUTOC oL eupUTEPEG SpaoTNPLOTNTEC OTOXELAV OTNV eUBABUVON TNG KATOWVONCNG OTNV EKTIUNGCN TNG
anodoong twv kaMlepyelwy, Aapfdvovtag unmoyn Ta €UpAUATO OO TNV OPXLK CUCTNLOTIKA
OVaOKOTINON.

Katd to tpito £10¢, UlOBETABNKE pLa TILO TIEPLITAOKN TIPOCEYYLON, UE ETIKEVTPO TNV afloAdynon Twv
daopatikwy kavaAliwv and tov dopudopo Sentinel 2. H atoutkr anddoon kdBe kovaAlol otnv
npoPAedn g amdédoong Twv KaAAlEpyeElwv afloAoynBnke, €MLTPEMOVIAG ML OAOKANPWHEVN
afLloAoynon tng Lovadikng ouvelodopdAg TOUG 0T CUVOALKN akpifela ektipnong tng amodoong. Auth
n avaAuon mapeixe PBabOUTEPEG YVWOELG OXETIKA HME T ONUAGCLO KAL TOV OVTIKTUTIO TNG KABe
daopatikng {wvng otn BeAtiwon tng akpifelag Twv nmpoPAéPewv amodoong Twv KaAAlepyelwv. H
aflohoynon tv amodoon TOC0 TWV OTOTLOTIKWY 000 KOL TWV HOVTEAWV HNXAVIKAC HABnong
ouvelodepe otnv amnoktnon Babutepng KATAVONONG OXETIKA UE TA TIO OTOTEAECHATIKA OTASLO
avantuéng kat toug Seikteg BAdotnong yla tnv akplpn mpoPAsdn Tng mapaywync.

Ta eupApaTa AUTAG TNG LEAETNG £6€l€av OUCLAOTIKN opoloTNTA PETAEY Twv dedopévwy IUNEA Kal
Sopudopou, eldIKA ota petaysvéotepa oTtadla Tou dotvohoykol KUKAou tNG KaAAlépyelag,
UTIOVOWVTOG Ko auénuévn cupdwvio kKabwe n kaAAEpyela wpipale. H HeAETN EVIOTLOE Lol LETPLA
OuoxXétlon MeTafl Twv Oebopévwv eyyUC aoBnthpa Kal Twv ouvolwv &edopévwv IunEA
/6opudopou, e amokAicslg mou amodidovral o SLOKUPAVOELG 0T HUAKN KUPATOG LETPNONG KABe
mAatdoppag. Ocov adopd otn oxéon NG SUVAULKAC TwV SelKTWV PAACTNONG O OXEOn HUE TOV
daLvoloyLko KUKAO TNG KAAALEPYELAG, OL XAUNAOTEPEG LEOEG TLUEG YLt OAoUC ToUuG Selkteg BAGoTNONG
napatnpnbnkav Alyo petd tn petoaduUteuon, oL omoieg odeilovral otnv meploplopévn Kaluyn
BAGotnong kot to ektebelpévo £6adog petatld twv oelpwv. ISaitepa kabBwe mpoxwpoloE N
KOAALEpYNTIKNA Ttepiod0o¢, To Too0oTO GUTIKAG KAAUYNG auéNBnke otadlakd, olaitepa KOTA TN HEoN
™¢ meplodou, Otav ta GuTA TopAtog £dtacav oto WPEYLOTO TNG PAAOTNONG toug Alyo TpLv
QVAKOTAVE{LOUV Ta GAKXAPA OTOUG KOPTIOUC TOUG.

‘Ooov adopd otnv poPAen anddoong, o eniyelog alobntrpag €5etée uPNAOTEPN EMEENYNTIKN LOXU
KOTA TNV apxkn ddaon avamntuéng pulwpatog, evw ta dedopéva amnod to TUnEA kat tov Sopudopo
BeAtiwoav tnv amddoon toug kobwg SteuplvOnke n kGAupn tou PpuAlwpotog. H dopudopikn
mAatdpopua enédelte avwtepn anddoon KATd To Kpiowo otddlo tng avBodopiag, tovilovtag tnv
OMOTEAEOUATIKOTNTA TNG otV amocadnvion tng petafAntotntag tg amddoonc. H pelétn
Xpnotpomnoinos Baclkég OTATIOTIKEG HeBOSoUC, £L8LKOTEPA TO CUVTIEAEOTH OUOYXETLONG Pearson,
gmonuaivovrag tnv BEATLOTN anddoon Twv SeIKTwV BAACTNONG 08 CUYKEKPLUEVO OTASLA AVATTTUENC.
ErumAéov, evowpatwBnkov oAydplOpol pnyovikng padbnong ywa tn BeAtiwon tng akpifelog
npoBAednc anddoonc, oL omoiol aflohoyndnkav auotned HECw avAaAluoncg MOAVSPOUNONG KOl LOG
Sladikaoiag Staotaupolpevng emikUpwone. H épeuva avedelée Toug deikteg RVI kat SAVI wg Toug Lo
ONOTEAECHATLKOUG yia TIG TIPOPAEPELG TNG amodoong, emtuyxdavovtog UPNAEC TIHEG R? kot xapnAd
RMSEs, 18taitepa 90 nUEPEG PETA TN petadUTevon. OL cuvSuaopoi povtéAwv ARD kat SVR métuyav
otaBepn KAVOTIONTIKN Omddoaon, UTOYPOUMLIIOVTOC TNV ATMOTEAECHATIKOTNTA TOU CUVSUAGHOU
Slodopetikwv HOVTEAWV. H xprion twv daopatikwv Kavohliwyv 8, 4 kat 12 mapsixe afldloya
anoteAéoparta. Ot paopatikég {wveg Red Edge/NIR spdavicav afloonueiwtn anddoon, elKA evtog
Tou napaBUpou 80 £wg 90 NUEPWV UETA T HeTadUTEUOTN, TTIOPOUGCLALOVTAC TNV LOXUPOTEPN CUCXETLON
UE TNV anodoon.
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JUVOALKA, TO gupnuata urmtodnAwvouv OTL oL aloBntrpeg IUNEA kal ol Sopudopikol aloBntipeg
eMLSELKVUOUV PeyaAUTEPN akpifela otnv mpoBAedn Tng anddoong Twv KAAALEPYELWY TTPOC TO TEAOG
™G oelov kat poodEpouv aufnuévn akpifela Katd ta tedevtaia otadla avantuéng. Avtibeta, ol
emiyelol alobntnpeg¢ mapoucldlouv CUOXETIOEL Ot Tponyoupeva otadla  avamtuéng Tng
KoAALEpyeLaG. O ouvbuaopuog Sedopévwy amo moAAoUg aloOntrpeg kat otadla avantuéng Unopet va
BeAtlwoel Tnv akpifela mpoPAredng. H xprion dedopévwy deiktwv PAACTNONG Kol GACUOTIKWY
KOVOALWY 0 oUVOUAOUO HE TEXVIKEC UNXAVIKAG HLABNONG CUVIOTA ULA TILO QITOTEAECUATIKI Kol
OLKOVOULKA amodotikn HEB0do yLa TNV IpoBAePn TN mapaywyng BLOUNXAVIKAG VTOUATOG,.

Erotnuovikn riepoxn: M'ewpyikn Mnxavikn

Né€eig kAedLa: M'ewpyia akplBeiac, TnAemiokonnon, Asikteg BAaotnong, NDVI, Bliounyavikn toudra,
Teyvntn vonuoouvn, AutoML

Mvevuatikn tdtoktnoia
© NwkoAsta K. Adppa 2023

Me tnv adela pou, n mapovoa epyacio eAeyxOnke and tnv E¢etaotikn Emitpont péoo amo AOYLOULKO
avixveuong Aoyokhomr¢ rou dltaBétet to MA kat SlactaupwBnKe n eyKUPOTNTA KAl N TPWTOTUTILA TNG
Me emidpUAaén mavtog SIKALWUATOG.
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Executive Summary

Precision Agriculture (PA) is a management strategy that gathers, processes and analyzes
temporal, spatial and individual data and combines it with other information to support
management decisions according to estimated variability for improved resource use eiiiciency,
produc’rivi‘ry, qug|iiy, proii’robihiy and susioinobih‘ry of ggricu|iuro| produciion [1].

The initial chapter (Part 1) of this thesis provides an exfensive overview on precision agriculture,
breaking it down into four main sections: Problem Statement, Precision Agriculture: Past, Present
and Future, Remote Sensing in PA, and Processing Tomato Crop. It commences by addressing the
cno||enges prevg|eni in ggricuHure and then offers a historical overview of the PA pni|osophy and
principles, emphasizing its benefits. This also encompasses drivers and limitations associated with
the odop‘rion of precision ggricuHure methods. Addi’riono”y, it outlines the historical progression of
satellite, aerial, and proximg| pigh(orms in precision ggricu|’rure, before providing detailed insigi’i’rs
info processing tomato crops. This involves an examination of the crop's breeding hisiory, its
management concerning water and nutrients, and a comprehensive overview of its pheno|ogico|
cycle.

Part 2 provides an overview of the materials and methods with information on the systematic
review conducted within the siudy and the selected siudy area for field and regiono| level
measurements. A discussion of the piofforms used is followed by an overview of data collection,
preparation, and gng|ysis. Within this sfudy, data from three different sources (one proximoi crop
reflectance sensor, a UAS equipped with a mu|fispecfro| camera, and Sentinel-2 irncxgery) were
ono|ysed over three seasons to assess the simi|oriiy of the data and their poienfio| for predicﬂng
yield of processing tomato crop at field and regional level. A time-series VI dataset was utilized
to meticulously track the phenological cycle of the crop and associate it not only with NDVI but
also with four other Vegetation Indices (Vls). At both spatial levels, yield predictions were retrieved
using VI and spec’rroi band data from proximoi and remote sensing, statistical ono|ysis, and
automated machine |egrning fecnniques (AutoML). To this end, rnuiiip|e data processing
Jrechniques, o|ongside statistical and machine |eorning methods, inc|uding linear and nonlinear
regression models, ensemble methods, and support vector machines, were emp|oyed fo ono|yze
the data and forecast crop yie|d.

Part 3 presents the research Findings of this sfudy presenting an overview of recent trends in PA
mefhodo|ogies as documented in literature pertaining fo yie|d prediciion. Both descripfive ono|ysis
and regression 0n0|ysis was conducted, seeking to establish correlations among different p|cm(orms
based on Normalized Difference Vegetation Index (NDVI). Notably, at the field level, the UAS
exhibited a robust correlation with satellite NDVI datasets, while the proximal sensor displayed a
moderate reioiionsnip with them. Furthermore, the s’rudy detailed the annual dynomics of Vls for
the crop, shedding |igni on biomass grow’rn patterns across the season. It was also observed that
crop yie|d demonstrated a moderate re|oiionship with VI data, both at the regiono| and field
levels. The accuracy of predic‘rions noiob|y increased during Howering stages, poriicu|or|y evident
in satellite data, snowcosing the hignesi correlations. Leveraging machine |egrning iecnniques
significantly enhanced prediction accuracy, offering valuable insights into the optimal timing for
yie|d prediciions. Losf|y, the s‘rudy exp|ored the use of speciro| band information in conjunction
with machine |edrning at a regionc1| level, providing additional insignis into yieid icorecos’ring.

Part 4 is the discussion and contributions of the whole research induding the three research papers
produced as part of this PhD thesis: The last two chapters, Part 5 and Part 6, build on each other
and draw some conclusions on the above objecﬁves and discuss areas for future research on the
impiemen’rofion of precision ggricuHure in yie|d prediciionsi
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Part 1. Introduction

1.1 Problem Statement

Modern ogricuHure faces a diverse array of ciio||enges, encompassing the ior—reoching impacts of
climate change [2], the decreasing availability of essential natural resources [3], transformations
in dietary inclinations [4], apprehensions about soieiy and health [5], and the escalating demands
p|oced on the ogricu|furo| sector due to the growing g|obo| popu|oiion. These ci'io”enges are not
only theoretical but also backed by empirical data. The World Health Organization [6], has
estimated that a staggering 820 million people globally still lack sufficient access to food.
Moreover, the Food and Agriculture Organization (FAO) anticipates a substantial 70% surge in
food demand to cater to the projected global population of 9.1 billion by 2050 [7]. Climate change
exacerbates the situation further by unieoshing drougn’rs, floods, and heatwaves that further strain
food production across various regions [7]. Moreover, conventional ogricu|’rure has fallen short in
terms of ocnieving op’rirnoi resources eiiiciency (8], by invo|ving intensive use of ogricu|iuro| inpufts,
such as fertilizers and pesiicides. Typico”y, these inputs are opp|ied uniiorm|y across entire farms
as a precautionary measure to avert poieniio| nutritional deficiencies or yie|d losses. However, such
practices come at a cost, causing numerous environmental problems inc|uding groundwoier
dep|eiion, euiropnicofion, diminished surface water iiows, excessive nitrogen use, soil erosion and
loss of soil organic matter, and excessive pes’ricide use [9-20]. At the same time, ’rney result in
economic losses and neigniened environmental impact [Qi].

In response to these cnoiienges that are piocing immense stress on the ogricu|‘ruro| sector, there is
an urgent need to enhance iecnniques that can increase crop producfion ’rnrougn increased
eiiiciency of inputs use and reduced environmental losses [22]. Precision Agricu|’rure is emerging
as a sustainable strategy [22], with the ultimate objective of managing crop and soil voriobiiiiy fo
increase proii‘robiiiiy and reduce environmental degrodoiion [23]. Using PA, data are collected to
assist farmers in making guided sub-field decisions, including applications of fertilizers and
pesiicides, distribution densities for seeds, irrigation opp|icoiion rates, and ii||oge regimes [24].
Decisions that are better than those that would be made with traditional/conventional ogricu|furo|
practices can boost the efficient use of resources, reduce input costfs, minimize environmental
degrodoiion, and improve yie|d and crop quo|i’ry.

1.2 Precision Agriculture: Past, Present and Future

1.2.1 Definition of Precision Agriculture

Precision ggricuiiure (PA) is a strategic management meihodoiogy that |everoges information
iecnnoiogy fo maximize eiiiciency, enhance produciivii\/ and proii’robiiiiy, and mitigate
environmental consequences within speciiic geogropnico| areas. The notion of ioi|oring ogricu|iuro|
practices to suit specific sites and conditions traces its roots back to Jethro Tull's proposal in 1731.
Later in the 1990s, the PA concepft emerged with the intention of improving produc’riviiy,
proiiiobihiy, and environmental susioinobihiy. The definition of PA was inifio||y surfaced in the
USA in the 1997, when the House of Representatives defined it as "an integrated information- and
produciion—bosed ogricui’ruroi system designed to increase |ong—ierm, siie—speciiic, and whole-farm
produc‘rion eiiiciency, produciivify, and proii‘robihiy while minimising unintended impacts on wildlife
and the environment." This definition underscores the pivoio| role of information ‘reciino|ogy within
PA, driving enhancements in producfion and reducing environmental iooiprinis across the entire
ogricui’ruroi spectrum, encompassing the entirety of the farm-to-fork suppiy chain.

Since then, mu|ii|o|e definitions provided by researchers, practitioners, and po|icy makers have
contributed to a progressive deepening of undersionding concerning the constituent elements of
the concept. The Lleida University Research Group in AgrolCT and Precision Agriculture lists 27
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definitions from the scientific literature and the Internet [25]. Similarly, Trivelli et al. [26] have
presented key definitions, as illustrated in the following table (Table 2), which has been updated

with more recent terminology.

Table 2: Literature review, definitions and components of precision agriculture. Source: [26]

Year Definition Authors Title and journal
Precision ogricuHure is the opp|icofion
of technologies and principles to
manage spo‘rio| and femporo|
voriobihfy associated with all aspects of £l P P N L Aspects of precision
1999 Ofgr',CUHUFO‘.' production F{?r the purposg J IercF,Qﬂ. owax, agriculture, Advances in
of improving crop performance an Agronomy, Vol. 67, pp. 1-85
environmental quo||fy. Precision
agriculture is technology enabled
Precision agriculture is a discipline that
aims fo increase efficiency in the Challenging targets for
management of agriculture. It is the H. Kirchmann, G. future agriculture, European
2000 | development of new technologies, Thorvaldsson, [28] Journal of Agronomy, 12, pp.
modification of old ones and 145-161
infegration of moniforing and
computing at farm level
Precision agriculture is ‘information
intense” and could not be realized
without the enormous advances in Implementing precision
networking and computer processing agriculture in the 21st
2000 | power. precision agriculture, as a crop J.V. Stafford, [29] century, Journal of
management concept, can meet much Agricultural Engineering
of the increasing environmental, Research, 76, pp. 267-275
economic, market and pub|ic pressures
on arable agriculture.
Precision agriculture is conceptualized
by a system approach to re-organize Precision agriculture - a
0002 the total system of agriculture towards | N. Zhang, M. Wang, worldwide overview,
a low-input, high-efficiency, sustainable N. Wang, [30] Computer and Electronics in
agriculture Agriculture, 36, pp. 13-132
Phrecision Agriculture ccEn be dgﬁlned as The analysis of spatial and
the management of spatia and Blackmore, S, temporal trends in yield map
2003 *empo"d variability at a sub-field level Godwin, R, Fountas, data over six years.
to improve  economic returns and S, [31] Biosystems Engineering, 84
reduce environmental impact (4), 455-466.
Precision agriculture can  help in
managing crop prgduchon inputs in an R. Bongiovanni, J. Precm.on o'g'rlcu|’rurg gnd
0004 environmentally friendly way. By using L owenbera-Deboer sustainability, Precision
site-specific knowledge, PA can target [38] ! Agriculture, Vol. 5, pp. 359-
rates of fertilizer, seed and chemicals 387
for soil and other conditions
One generic definition could be "that Future directions of precision
kind of c|gricu|’rure that increases the A McBratney, B. ogricuHure, Precision
2005 | number of (correct) decisions per unit Whelan, T. Ancev, Agriculture, 6, pp. 7-23,
area of land per wunit time with [33] Springer Science + Business
associated net benefits” Media
Precision AgrlcuHure is a production Factors influencing the
system that involves crop management . !
di . T . odop’rlon of precision
according to field vorloblh’ry and site- icul | hnoloai
e diti Precisi VST M. Brindal agricultural fechnologies: a
oQlg | SPecitic conditions. recision . 9. ley, M. Brindal, review for polic
ogricu|furo| fechno|ogies are those [8] poticy
. ) . . implications, Precision
’rec|’mo|og|es which, either used smg|y or Agricul
X 2 ! griculture, Vol 13, pp. 713-
in combination, as the means to realize 730
precision ogricuHure
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Precision Agriculture can be defined as Crop Management for
the management of spatial and Improved Productivity and
‘remporo| voriobih‘ry in the fields using Reduced Environmental
Information  and ~ Communications Impact or Improved
Technologies (ICT). Fountas, S, Sustainability. Precision
9015 Aggelopoulou, K, & Agriculture. In Supply Chain
Gemtos, T. A Management for
[34] Sustainable Food Networks

(pp. 41-65). Chichester, UK:
John Wiley & Sons, Ltd.
http://doi.org/10.1002/9781118

937495.ch2

Precision Agriculture is a management

strategy that gofhers, processes and

analyzes  temporal,  spatial  and This definition was the

individual data and combines it with | International Society | consensus of 36 PA experts
0091 other informo‘riph to s‘upporf for Precision in the Codigital process and

management decisions according to | Agriculture (ISPA), the result of 76 generations

estimated  variability for improved M based on the edits and votes

resource use efficiency, productivity, of all participants.

quality, profitability and sustainability
of agricultural production

It becomes increosing|y evident over time that fechno|ogy emerges as PA's pivotal and enob|ing

aspect. The Precision Agriculture cycle (Figure 1) could be summarized in the four (4) key stages
[25], which include:

i. Visual observations or observations by means of sensors that allow the acquisition of
geore{erenced data (that is to say, with coordinates that will enable their pen[ed location
on the p|o’r).

i.  Computerized systems for visualizing and processing data (GIS, geographic information
systems).

iii.  Decision Support Systems for decision making.

iv. Agricu|+uro| me+hodo|ogies or mochinery cc1pob|e of carrying out ogricu|furo| operations
in a specific way at each point of the plot, what is called VRT (Variable Rate Technology).

The cycle commences with the collection of crop data and environmental information. This involves
the use of sensors, visual observations, and traditional sampling methods, all georeferenced using
Global Navigation Satellite Systems (GNSS). These data encompass various aspects such as crop
geometry, biomass quantity, vigour, soil characteristics, and more. Once the data have been
gofhered, the next step is to extract valuable insighfs for farmers and technicians. One crucial
piece of information obtained is whether the crop is exhibiﬂng uniform and proper deve|opmen+
across the entire field. This information p|oys a pivo+o| role in the decision—moking phose. During
this stage, agronomic management actions are determined, including what operations should be
carried out and how Jrhey should be executed. The initial decision revolves around whether to
maintain uniform field management or if variations in the field recommend differentiated
opprooches. This decision entails assessing whether specific resources, such as fertilizers, irrigation,
|o|c1mL protection, p|on’ring, etc, should be opphed diFFerenHy in various areas of the field, and if so,
at what dosoge. Currenﬂy, this decision—moking stage represents one of the primary cho“enges in
PA and requires ongoing research efforts.
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OPERATION
in the field

SS management
Irrigation
Fertilization
Crop protection

PA
CYCLE

Figure 1. PA cycle. Source: [25]

Fino”y, action is taken in the field to opp|y the necessary resources or perform essential operations.
In cases where differentiated actions are required, VRT may be employed, allowing machinery to
adjust opp|ico‘rion doses occording to the prescriptions deve|oped during the decision-moking
phase.

In summary, PA consists of perForming the righ‘r operation in the righ’r p|oce, at the righf fime, in
the appropriate manner and the righf amount.

1.2.2 Historical Evolution of Precision Agriculture

The journey of Precision AgricuHure (PA) has seen several significonf milestones that have
revolutionized the way we opprooch forming and land management (Table 3). The first
0pp|ico’rions around the world started in the 1980s, when soil scientists and ogribusiness researchers
in the United States and Europe started to deve|op equipment and methods for variable rate
fertilizer application [35,36]. The first commercially successful grain yield monitors were introduced
in 1992. The combination of GNSS-enabled soil sampling, variable rate fertilizer applications, and
yie|d monitoring was the “classic precision ogricu|’rure" pockoge in the 1990s and some oclop’rion
studies focus on whether that classic pockoge has been odop‘red. Global Navigation Satellite
Systems equipment guidonce was commercialized in the late 1990s, first in Australia and shor‘r|y
after in North America. The introduction of yie|c| sensors and monitors in 1990s laid the foundation
for strategies like Variable Rate Application (VRA) and selective harvesting, delivering significant
benefits to farmers[37]. Soil somp|ing has also been also a very important PA opp|ico+ion; ‘roge‘rher
with sensing devices, such as E|ec‘rromogne’ric Induction (EC) measuring soil structure and water
content and the Hydro—Nifrogen sensor, which senses the ch|orop|’1y|| and oufomoﬂco”y c1djus1L the
fertilizer dozes, [38]. Many technological innovations, such as GIS, miniaturized computer
components, automatic control, in-field and remote sensing, mobile computing, advanced
information processing, and information and communications fechno|ogies (ICT), have exponded
the application of site-specific approaches while driving a new wave of increased agricultural
productivity [39]. In recent years, technologies such as Internet of Things (IoT), Big Data analysis,
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and artificial infe||igence (Al) are being utilized to optimize ogricu|iuro| operations and inputs
aimed to enhance production and reduce inputs and yield losses[40].

Table 3. Key precision agriculture milestones. Source: [37]

Company/organization,

Year Technology or activity broduct name Reference
1983 Execuii\(ﬁ order fh{onggowed US government Brustein, 2014
civilian use o Rip and Hasik, 2002 [41,42]
1987 Compuier»cgrﬁro“ed VRT Soil Teq Mulla and Khosla, 2016, [36]
fertilizer
1988 Handheld GNSS Magellan Smithsonian, 2018[43]
Firsi_c_om(ererice dedicated to |niemoiio_no| Con_fererice on Khosla, 2010, [44]
precision agriculture research Precision Agriculture
1992
Impact plate grain yield Ag Leader, Yield Monitor
monitor 9000 Ag Leader, 2018[45]
1995 Firsi‘c‘om(eren‘ce dedi;ofed to InfoAg IPNI, 2010
precision agriculture industry
Auto guidance Beeline Rural Retailer, 2002
On-the-go soil EC sensor Veris Lund, E, 2018
1997 Cotton yield monitor Micro-Trak, Zycom Vellidis et al, 2003[46]
First ECPA conference in John Stafford. and A. John Stafford and A. Werner
Europe Werner [47]
End of GNSS selective Coalition to Save Our GPS,
2000 availability US government 2019, [48]
Integrated optical sensor and N-Tech Industri
2002 variable rate nitrogen T ech indusiries, Rutto and Arnall, 2017 [49]
k Greenseeker
applicator
2003 On-the-go soil pH sensor Veris, So(i|[v|]oSHP)l\/|onoger Lowenberg-DeBoer, 2003 [50]
0006 Auiomoied sprayer boom Trimble, AgGPS EZ-Boom Trimble, 2006 [51]
section controllers 2010
2009 Planter row shutoffs Ag Leader, Sure Stop Ag Leader, 2018 [45]
First fully autonomous field o
2017 ducti Harper Adams University Hands Free Hectare, 2018[52]
crop production

The hisfory of PA has demonstrated that iechno|ogico| innovations have exerted a more profound
influence compored to innovations in information ono|ysis and decision support [36]. |niiio||y,
technologies like GNSS and yield monitors were perceived as valuable additions to existing farm
equipment. Over time, these Jrec|’mo|ogies became standard features on farm combines, moking
them equo”y prevo|eni among precision and conventional Forming practitioners. The intfegration
of GNSS into farm machinery paved the way for significant advancements in precision farming,
inc|uo|ing autosteer and variable rate fertilizer opp|icoiion (Figure 2).

Converse|y, information ono|ysis and decision support systems for tasks like de|ineo’ring
management zones or providing variable rate recommendations have not been wide|y infegro’recl
into routine farm operations. OHen, these functions are outsourced to crop reioi|ers, consuHchrs,
or ogribusiness service providers for a fee. However, there is a noticeable shift towards p|ocing
more emphosis on information ono|ysis and decision support systems within PA. Large corporations
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and researchers are increasingly focusing on big data challenges, which involve amalgamating
spatially and temporally variable data from sources like yield monitors, soil fertility measurements,
crop stress assessments, and climate data. This data is collected from numerous forming operations
and used to identify and model relationships with soil and landscape characteristics that can inform
precision fdrming decisions.

Figure 2. i) Pierre Robert explaining his computerized farming by soil map database (1985) to Jim Anderson at the
University of Minnesota, ii) First commercial unit (1980) of the Geonics EM-38 single dipole electromagnetic induction
conductivity meter, iii) Variable rate herbicide applicator developed by Stafford and Miller (1993), iv) Soil organic
matter sensor based on NIR reflectance (1991). Source: [36].

Future historians might reflect on the VRT equipment and services introduced in the early 1990s
as an essential initial stride, albeit not the op’rimo| solution for spo’rio| management of crop inputs.
Over time, we have seen a significom’r grow’rh in the vo|ume, diversi’ry, and value of databases.
Smart robots have been in‘regrofed, Al o|gori+hms and simulation models have been refined, while
the scale at which management decisions are being visualized and imp|emenfed has improved.
This continuous progression has been steering us towards an increased dependence on predic‘rive
precision forming practices, providing robust solutions characterized by heighfened aufonomy and
precision. The evolution from VRT to these significant advancements will serve as a continuous
reminder that future waves of innovation will consis‘renﬂy bring about remarkable transformations

in the field of PA.

1.2.3 Why Precision Agriculture?

Farmers are Focing mu|ﬂ|o|e cho”enges related to ogricu|’ruro| producfion. PA has the pofenﬂo| to
offer many benefits, inc|uding increased efficiency and producﬂvify, lower input costs and better
environmental management, mdking it an attractive choice for modern forming. EssenHQHy it aims
to do more with less resources.
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Enhanced Resource Utilization and Site-Specific Management

PA revolutionizes how agricultural resources are managed. It is intrinsically linked to the spatial
and temporal variability in yield and quality, recognizing that every field is unique and requires
tailored management gpproocnes. By ufi|izing data from remote sensing and on-site sensors,
farmers can idenrify variations in soil composition, moisture levels, and other factors across their
fields. This enables them to divide their fields into management zones, each receiving customized
treatments based on its specii(ic needs. This sire—specific opprooch ensures that resources are
allocated ei(i(icienﬂy, |eoding to more balanced growin and yie|d across the entire field. For
example, PA can optimise irrigation and fertilisation practises by making si’re—speciitic
recommendations based on real-time soil moisture and nutrient data, improving water and nutrient
use efficiency, and reducing the risk of over-irrigation and nutrient leaching [53]. PA can also
improve pest and disease control by providing eor|y warning of infestations and forgered
freatments, reducing the use of pesricides and other inputs [54].

Nonetheless, gaining a deep undersionding of field vorigbi|iiy is of utmost importance. Several
critical questions emerge to ascertain whether a uniform or differentiated management strategy
is effective in ogricu|ruro| production: Is the variation signiiiconr enougn to warrant deviation from
uniform management? |s the spo’rio| variation stable over time? Does iorge’red management make
economic and/or ecological sense?

When commercial yie|d mapping ini’rio||y emerged, there was an expectation that certain parts of
a field would consistently yield well, while others would yield poorly [23,34]. This expectation was
based on the assumption that permanent soil characteristics would exhibit consistent behaviour
from year to year. However, contrary to these initial expectations, it became apparent that spg’rio|
trends in yie|d could vary signii[iconﬂy in time as well. As a result, numerous researchers dedicated
their efforts to deve|oping spo‘rio”y and iemporo”y trend maps over the years fo depici these
trends within ogricu|furo| fields gccuroie|y. Spcn‘icr| databases have been genergied using various
GIS systems by infegrating maps derived from remote sensing, soil sgrnp|ing, yie|d monitoring, and
various sensors. Advanced geosrofis’rico| methods are used to gng|yze the spgrig| and remporo|
vctrictbi|iiy [55]. Crop—rnode|ing Techniques have been incorporgied fo deve|op yie|d poieniio| maps
as a base for fertilizer prescription [56]. Technologies like GNSS, sensors, and data analytics have
been dep|oyed, so that farmers can precise|y target the gpp|iccifion of water, fertilizers, and
pesficides.

Furthermore, the level of voriobi|i’ry p|gys a crucial role in de‘rerrnining the efficiency of PA. For
instance, vgriobi|iry may be too small or rondonn|y distributed so that spgrio| control is not feasible.
Uniform cropping strategies exhibit op‘rimo| ei(i(iciency and cost-effectiveness when there is
negligible variation between sites, thereby obviating the necessity for PA. VRT technology is not
currenf|y copob|e of deo|ing with hign|y variable sites, and the profirobihry of sites with low
voriobi|iry may not be sufficient to offset the costs of imp|emenring PA. Note that environmental
costs can be expressed in monetary terms, which could make low variability sites eligible for PA.

In summary, the performdnce of PA depends on the significgnce and s’robi|i’ry of variations within
a field, and whether sire—specific management proves economicg”y and eco|ogicg||y viable. Toking
a strategic dpproocn that entails careful p|gnning and fnoughifu| imp|emenig’rion when ern|o|oying
PA practices and fechno|ogies, is essential for Ochieving hign pericorrnonce across diverse contexts.

Profitability

The introduction of precision icorming marked a significgmL shift in ogricuHure, oHering the promise
of increased eHiciency and reduced operg‘riong| costs. PA aims to minimize operdriong| costs by
reducing the excessive use of inpufts. With accurate data on soil conditions, nutrient levels, and pest
presence, farmers can make precise decisions about the amount and fiming of fertilizer and
pesficide opp|icgrions. This not on|y cuts down on expenses related to inputs but also decreases
the environmental impact associated with excess chemical use. However, since the inception of
precision i(orming, scientists, farmers, and practitioners alike have quesrioned its economic
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feasibility [36]. While the concept held great potential, assessing the tangible economic benefits
associated with PA technologies has proven to be a complex and challenging task [57], as several
factors influence the investment value of PA. These factors include the current farm gross margin,
the cost of PA equipment, the area and number of years over which the equipment is used, and
the rate at which benefits from its adoption start to materialize[58]. Furthermore, an additional
challenge in evaluating the profi‘robihry of PA technologies stems from the diverse range of
agricultural contexts and practices. Farming operations vary widely in terms of scale, crops grown,
environmental conditions, and available resources. Consequenﬂy, the economic impact of PA
Jrechno|ogie5 can differ significonHy from one farm to another.

So far, some fundamental research studies have contributed valuable insights into the potential
cost savings linked to the irnp|emen+ofion of PA. For instance, in a review article conducted by
Griffin and Lowenberg-DeBoer (2005), it was reported that approximately 68% of the 210 studies
examined reported benefits from odopring various PA Jrecnno|ogies [59]. |n‘reresiing|y, about half
(52%) of these studies reporting benefits were authored or co-authored by economists, under|ining
the significance of economic analysis in assessing the advantages of PA. The USDA’s (United
States Department of Agriculture) October 2016 report highlighted that PA technologies
significonﬂy boosted net returns and operational profits [60]. On average, corn farms embrocing
PA observed operating profits $163 per hectare higher than those not adopting PA, especially on
larger farms exceeding 1500 hectares, where computer mapping, guidance, and variable-rate
equipment were most cornrnon|y odopied [60]. These profif margins could increase further,
reocning up to $272 per hectare, depending on the crop.

Heisel et al. (1996) and Timmermann et al. (2002) have demonstrated that making informed
decisions about input opp|icofions, such as herbicides, could result in substantial cost reductions
[61,62]. However, it is important fo note that cost savings do not o|woys immediofe|y translate into
profitability. In some cases, studies like those by Carr et al. (1991) and Biermachera et al. (2009)
have indicated that there may be an insignii(iconf difference in the return on investment between
using PA technologies for fertilizer applications and traditional methods [63,64]. Furthermore,
other studies [65,66] have suggested that applying soil sampling tests for soil fertility, a common
practice in precision forrning, may not consisfenﬂy lead to increased profifobihiy

In conclusion, the economic feosibi|iry and benefits of PA are cornp|e>< and context dependenJr.
While there is evidence of cost savings and improved resource management, the economic impact
of PA technologies can vary widely across different farming scenarios. This underscores the
importance of conduc’ring comprehensive economic assessments tailored to specific ogricu|iuro|
contexts to determine the true profi‘robi|i’ry of precision i(ornning practices.

Innovative Technologies: Agriculture 4.0 and 5.0

Precision AgricuHure drives the odop‘rion of curring-edge Jrecnno|ogies in the ogricu|ruro| sector.
Modern technologies such as the Internet of Things, Remote Sensing, Big Data and DSS are
expecied fo |everoge this deve|opmen’r and introduce more robots and artificial infe||igence in
formingi The data goinered ‘rnrough these ‘recnno|ogies goes be\/ond immediate decision—moking,
providing valuable insighrs info soil, climate, crop growrn, and yie|d interactions. Researchers can
use this data to refine icorming practices and deve|op innovative iecnno|ogies and contribute to
the continuous enhancement of ogricu|iuro| practices. These advancements offer detailed
information on soil, crop status, and environmental conditions, itoci|irofing precise pnyiosoni‘rory
produc‘r opp|icorions. This precision reduces herbicide and pesiicide use, enhances water efiﬁiciency,
and boosts crop yield and quality.

One of the fundamental differences between traditional and modern Forming is, apart from the
mechanization level, the data collected direc’r|y from the crops. In traditional farms where growers
judge by visual assessment, decisions are relative and subjec‘rive. Traditional icorrning relies on
subjecrive visual assessments by growers for decision—moking, while modern Forming relies on
quantitative data for moking objective decisions. Sensors enable field data collection, but the
integration of non-invasive ’rec|’1no|ogies and real-time sensing from mobile p|orforms has
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revolutionized data go‘rhering. Remote sensing, por’ricu|or|y fnrougn artificial satellites, has been
instrumental in advancing Smart Farming by providing widespread access to field data. Remote
sensing technologies mounted on aircraft, drones, or satellites to collect data pertaining to various
crop attributes. These include canopy coverage, leaf area index (LAI), and soil moisture, all of
which provide precise sporio| insighrs info crop health and perforrnoncer This data subsequenﬂy
informs specific site-oriented management strategies. The core objective is to gather intricate
information about Earth's surface characteristics and dynamics. Optical sensors, in particular, play
a pivo‘ro| role in this process by ufi|izing the pnenornenon of 5un|ignr reflection from terrestrial
objec’rsr The funcﬂono|i’ry and effectiveness of these sensors are underpinned by a range of critical
parameters including spatial resolution, radiometric resolution, spectral resolution, and temporal
resolution.

However, the cornp|e><i’ry of data is also a serious cho”enge to cope with, as vital information may
result in being masked by noise. A common way to manage field data disp|gyed on maps and
culminate with a practical solution is through the use of GIS. This suite of computer-based tools or
data platforms enables the storage, analysis, manipulation, and mapping of georeferenced
information of any kind. For PA applications, a specific GIS system named the Field-level
Geographic Information System (FIS) was developed [67], but it was designed for older computer
operating systems like Windows 3.1x, 95, 98, or NT [68]. A more updated version known as the
Farm Management Information System (FMIS), as outlined by Burlacu et al. [69] is a
management information system designed to assist farmers with various tasks, ranging from
opero’riono| p|onning, imp|emenfgrion and documentation to the assessment of performed field
work.

Beyond remote sensing and GIS, PA entails the utilization of other information technologies. loT,
GNSS, DSS are instrumental in processing and mapping spatial relationships, aiding in
management decisions informed by rnu|‘rip|e |c1yers of information.

loT is a fundamental driver behind the emergence of AgricuHure 40, signii(ying a substantial
transformation in ggricu|’ruro| practices [70]. It encompasses the utilization of sensors and various
devices to transform every aspect and action within farming into valuable data. In fact, loT
’rechno|ogies is one of the reasons Wny crgricu|’rure can generate such a big amount of valuable
information, and the ggricu|’rure sector is expecred to be nign|y influenced by the advances in these
Jrechno|ogies [71]. One of the main odvgnfgges of loT odop‘rion in ggricu|’rure is that facilitates
increased crop yie|ds and cost reduction. Studies conducted by OnFarm, for instance, reveal that
the utilization of loT on an average farm result in a 175% boost in crop yields and substantial
energy cost savings ranging from 17 to 32 dollars per hectare, while water use for irrigation talls
by 8%[72]. Currently, an estimated 10% to 15% of U.S. farmers have embraced loT solutions,
covering an extensive agricultural expanse of approximately 1.2 billion hectares and spanning
250,000 farms [73]. Projections suggest that, with the adoption of new techniques, loT could
increase agricultural productivity by a staggering 70% by 2050 [74]. This is particularly significant
given the world's need to ramp up global food production by 60% by 2050 to accommodate a
population expected to exceed nine billion [75].

Furthermore, the esco|o‘ring expansion of databases in terms of volume, ve|ociry, and variety has
given rise to the concepts of " Big Data " and " Big Data analytics" These concepts have the
po’renfio| to significonﬂy omp|ify research and deve|opmen’r efforts in the pursuit of smarter
forming, rnereby Gddressing the substantial cng||enge of producing nigner—quohfy food on a |orger
scale and in a more sustainable manner. Even fnougn the concept of Big Data is present in many
economic sectors, its intfegration into ogricuHure remains a question [70]. Kunisch concluded that
Big Data finds opp|ico‘rion on|y in certain ogricu|ruro| scenarios, confingent upon individual farm
setups and their Jrecnno|ogy odop‘rion levels [76]. Nevertheless, it is evident data was being
increosing|y opp|ied in the ogricu|’rure sector. Kamilaris et al. [77] referenced 34 works i||us‘rrg‘ring
the use of Big Data in ogricu|’rurg| opp|ico‘rions, while Wolfert et al. [78] conducted a review on
Big Data applications in Smart Farming. In line with this trend, the Consortium of International
Agricultural Research Centers (CGIAR, Montpellier, France) established a Platform for Big Data
in AgricuHure, aiming to address ggricu|‘ruro| deve|opmenf cho”enges more swifﬂy, eicicecfive|y, and
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on a larger scale using big data methodologies [79]. While Big Data's application in precision
forrning is currenHy in an eor|y deve|opmenr stage, it can be inferred that Big Data will cause
major changes in agricultural domain.

Decision support systems (DSS) have also made significant strides by empowering farmers to
make well-informed decisions regcrrding crucial aspects like p|onring, irrigation, fertilization, and
pest management. Tney serve as valuable tools for farmers to manage their farms efficienﬂy by
collecting, processing, storing, and sharing data related to agricultural activities. These systems
often utilize agronomic models and field data to foster effective |ong—ierrn |o|onning by idenfifying
trends and patterns in field pericormonce, rhereby enob|ing farmers to make more informed
decisions for the future. To be effective, agricultural DSS should meet criteria such as profitability,
user-friendliness, credibi|i‘ry, odgp‘robihry, maintenance, and updoies Some level of user know|edge
is also necessary for their utilization. These systems gofher data from various sources, inc|uding
weather stations, field sensors, image captfure systems, and information Jrechno|ogy tools like
srnorfpnones and provide information related to various ogricu|’ruro| tasks.

Navarro-Hellin et al developed a DSS for citrus orchards that estimates weekly irrigation needs
by considering climate and soil variables [80]. Lindsay Corporation, based in Omaha, Nebraska,
USA, developed and received recognition for FieldNET Advisor™ [81,82] a DSS that offers
irrigation management guidance to growers. Similarly, HydroLOGIC, designed for individual fields
in Australia, infegrates i<now|edge of crop pnysio|ogy, agronomy, available water resources, soil
properties, and climate to optimize cotfton yie|d and water utilization[83]. In addition, web-based
pest i(orecos’ring models and DSS are gaining |oopu|ori’ry as well, with expectations of increased
demand in the future. Damos and Karabatakis (2013) developed a web-based DSS that predicts
pest population pheno|ogy during the growing season by considering region—specific average
femperatures and climatic factors [84].

For efficient fertilization management, DSS based on ogricu|furo| models have been deve|oped.
These systems calculate op’rirno| fertilization rates and dosoges based on extensive crop fertilization
experiments, considering rnu|Jri|o|e factors inﬂuencing fertilizer decision-moking[85]4 For instance,
the Nutrient Management Support System (NuMaSS) software evaluates soil characteristics
related to organic matter, inc|uding corbon, nitrogen, pnospnorus, moisture content, c|oy, and
CaCO3, among others [86]. AgriSupport aids farmers in optimizing resource allocation according
to their business prospects while effecfive|y managing producrion risks, as detailed by Recio et al.
in 2003[87]. PCYield, developed in collaboration with the United Soybean Board (USB), Weather
Services International (WS Corp.), and a network of ogricu|iuro| providers, offers support for
soybean cultivation decisions [88].

Automation also has broughi about significon‘r enhancements in the produciivi’r\/ of ogricu|iuro|
mocninery by improving eiciciciency, re|iobi|i’ry, and precision while reducing the reliance on human
intervention [89]. The concepft AgricuHure 50 im|o|ies that farms are i(o||owing PA |orincip|es and
using equipment that involves unmanned operations and autonomous decision support systems,
inc|uding the use of robots and some forms of Al [90]. Al systems are increosing|y em|o|oyed to
assist in idenrii(ying diseases in p|onrs, recognizing pesfts, and diognosing issues related to poor
|o|onf nutrition on farms. Al sensors can detect and pinpoint weeds, subsequenHy derermining the
appropriate herbicides to opp|y within the correct buffer zone. This opproocn he|ps mitigate the
risk of over-opp|ying herbicides, which can lead to an excess of toxins in our food supp|y.
Furthermore, the automation of ogricu|ruro| robots is now considered essential for improving work
efficiency and should include the porenrio| for ennoncing the quo|i‘ry of fresh produce, |owering
producﬁon costs and reducing the drudgery of manual labour [91]. According to the Verified
Market |nfe||igence report, ogricu|furo| robots will be copob|e of com|o|efing field tasks with greater
efficiency as compared to the farmers [92]. A Forbes study [93] further highlights how farm robots
contribute to the human labor force, enob|ing the norvesfing of crops at a nigher volume and «
faster pace compored to human laborers. While there are instances where robots are not as fast
as humans, the ogricu|ruro| indus’rry is ocrive|y deve|0|oing robotic systems fto assist farmers with
repetitive tasks [94-96], driving the evolution of agriculture towards the emerging concept of
AgricuHure 5.0. As noted by Reddy et al. [97], the advent of robots in ogricu|fure dros’rico”y
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increased the producriviry in several countries and reduced the farm operating costs. It is evident
that the field of robotic innovations is experiencing exponeniio| growrh [98], which is bo|siering the
global agriculture and crop production market. Startups that leverage robotics and machine
learning to address agricultural challenges gained momentum in 2014, aligning with the increasing
interest in Al [99]. In fact, venture capital funding in Al has surged by 450% over the past five
years [100]. Nonetheless, these technologies remain prohibitively expensive for many farmers,
particularly those with smaller farm [101], as economies of scale make larger farms more profitable
[102]. However, as technology costs continue to decrease over time, agricultural robots are poised
to become a viable option in the future, serving as an alternative to achieve higher producfion

levels [103,104].

In summary, PA not on|y improves producrivify and eititiciency but also encourages innovation, by
presenting a Wide—rgnging suite of ’rechno|ogies that, when combined, significgn’dy elevate
ogricu|’rurg| practices, bolster economic vigbi|iry, and reinforce environmental susroinobihfy. The
amalgamation of technologies such as GPS, remote sensing, loT, GIS, Al, automation, and DSS
within Fcrrrning practices sets the stage for ongoing iechno|ogicg| progress that not on|y benefits
farmers but also enhances the ogricu|ruro| indusrry as a whole. By i(ocusing on precise resource
management, effective data uri|izg‘rion, and ongoing innovation, PA stands as a transformative
crpproctcn that empowers farmers to address the crig||enges posed by our rgpid|y evo|ving world.

Improved Environmental Sustainability

The ggricu|ruro| sector p|oys a substantial role in climate chonge, accounting for gpproxirno’re|y
135% of the total global anthropogenic greenhouse gas (GHG) emissions [105]. PA offers
substantial environmental benefits due to its ’rgrgefed and resource-efficient opprogch. This
method minimizes the usage of water, fertilizers, and pesricides, rnereby reducing the pofenrig| for
contamination of water bodies. Furthermore, PA practices aid in the mitigation of soil erosion and
promote soil health. These sustainable land management practices contribute to the We||—being of
ecosystems and bolster |ong—rerrn environmental susfginobihry.

The g|ignmenr between PA and sustainable forming practices is a no‘reworrhy aspect. Farmers
actively engage in preserving ecosystems and ensuring the long-term sustainability of agricultural
activities by optimizing the use of resources, reducing waste, and conserving natural resources. This
gpproocn ensures that ogricuHure can continue to meet the needs of future generations.

Precision Fgrrning to reduce the risks of pesiicide |egching fo groundwcr’rer in sgndy soils was first
studied by Mulla et al. (1996) at a field site in Washington State [36]. Measured concentrations
in carbofuran applied at 81 kg ha-1 ie were measured to a depth of 18 m at 57 locations
rhrougnou‘r the field and this data wad used to calibrate the convecfive—dispersive equation for
pore water ve|ocify, dispersion coefficient, and retardation factor [106]. To date, numerous studies
have nigh|ighfed the po‘renrio| of PA recnno|ogies to reduce the environmental impacts associated
with agriculture [107-110] PA technologies excel in precisely matching farm inputs with crop
requirements, fhereby ovoiding over—gpp|icgiion [111]. For instance, gpp|ying just the riginL amount
of nitrogen to achieve maximum crop yie|d has the pofeniig| to decrease nitrate contamination in
groundwofer and the po||urion of downstream water sources [63]. This is porficu|or|y critical as
ggricu|furg| non-point source po||u‘rion significgnﬂy contributes to the contamination of numerous
g|obct| waterways.

In a study conducted [112], it was observed that among the 14 environmental aspects considered,
ogricu|‘ruro| inputs were the most influenced in all categories, while gaseous emissions of all types
(with CO2 being the most affected) were the least affected aspects. An increase in soil biodiversiiy
was also noted, |ike|y because the rational use of inputs derived from the gpp|ico‘rion of PA
Jrec|’1no|ogies reduces the impact on fauna and flora, thus coniribufing fo biodiversi‘ry preservation.

It is evident that PA significonﬂy mitigates the environmental impact of ogricuHure, gddressing
concerns such as greenhouse gas emissions, water contamination, and soil health. Research
high|igh’rs PA's poreniig| to reduce po||urion risks, especio”y in pesricide management and
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groundwo’rer protection, while promoting precise resource use. This opprooch benefits ecosystems
and preserves biodiversify, reimcorcing its role in sustainable iorming and environmental
stewardship.

1.2.1 Precision Agriculture adoption: Key Factors

The opp|icobi|i’ry of PA extends to diverse ogricu|’ruro| domains, ranging from crop cultivation and
livestock management to fisheries and Foresrry. The adoption of PA has been steadily increasing
in recent years, as demonstrated by a s‘rudy conducted by Maloku et. al. [113].Their research
revealed a consistent and notable increase in the number of scientific articles dedicated to PA
between 1996 and 2018. By 2018, the total count of scientific articles in the field of precision
ogricu|’rure had reached an impressive 272. |nreresfing|y, the study also high|ighred that Chinese
and USA-based organizations exhibited a higher level of interest in pub|ishing articles related to
PA cornpored to organizations in other countries. However, the assimilation of PA practices in
ogricu|’rure often faces a number of cho”enges contingent on the local context.

The exp|ororion of factors inﬂuencing the odop‘rion of PA has yie|ded a substantial body of
literature. Over the years, several studies have tried to provide a world-wide overview of PA
adoption [30,59,114]. Zhang et al. (2002) focused mainly on the technical issues associated with
PA adoption and cited several adoption studies from the United States, United Kingdom, and
Australia [30]. They identified the fo||owing constraints to odopfion: (i) the quantity of PA data
exceeds the obi|i’ry of farmers to ono|yze and use it for management, (ii) lack of scien‘riiico“y
validated procedures defermining variable rate opp|icorion of inpufts, (iii) absence of evidence for
the benefits of PA, (iv) labor intensive and cosHy data collection, and (v) need for improved
technology transfer. Furthermore, Griffin and Lowenberg-DeBoer (2005) summarized the
worldwide data on PA odop’rion, reviewed the studies of PA economics, and drew imp|icofions for
Brazil[59]. They reported detailed US PA survey information and worldwide PA adoption in terms
of the number of combine yield monitors used in the United States, Australia, South Africa, several
Latin American countries, and nine western European countries. Likewise, several other studies
have examined broad aggregate factors such as farmer age, farm size, subsidy payments, the cost
and complexity of technology [115], level of farmer education and access to crop consultants [116]
and their influence and re|o’rionship with the odopfion rate of PA Jrecrmo|ogies.,

Tey and Brindal ,(2012) found that the odopfion of PA rechno|ogies is a result of multi-dimensional
considerations and is posi’rive|y associated with (i) socio-economic factors (formers who are older
and have higher education level), (ii) ogro—eco|ogico| factors(farmers whose farm has better soil
quality, is self-owned, and is large), (iii) institutional factors (farmers who face greater pressure
for sustainability), (iv) informational factors(farmers who have hired consultants and agreed on
the usefulness of extension services),(v) farmer perception (farmers who perceived that PA
technologies would bring profitability), and (vi)technological factors (farmers who have used
computers) [8]. Operator age has been identified as a signiiiconf exp|onorory factor, showing a
negatfive correlation with the odopfion of high-iechno|ogico| practices, such as compufters m7].
This negative re|o’rionship is often attributed to older farmers hoving shorter p|onriirig horizons,
reduced incentives for change, and limited exposure to Precision Agriculture technologies [118].
Converse|y, younger farmers tend to have |onger career horizons and a greater inclination toward
technology adoption [119]. They may be more motivated to explore PA technologies compared to
their older counterparts. Farming experience, on the other hand, qucmiifies the duration for which
farmers have been engoged in ogricu|ruro| producrion activities. Greater experience can lead to a
better undersronding of spofio| voriobi|iiy in the field [120], and po’renﬂo“y enhance operoriono|
eiciciciency ‘rhrough experienfio| |eorning [121]. However, more experienced farmers may perceive d
reduced need for the additional information provided by PA ‘redmo|ogies and, therefore, opt not
to adopt them [122]. Since the implementation of PA technologies demands substantial
‘rechno|ogico| |irerocy, ono|y’rico| skills, and know|edge—bosed intferpretation, farmers with higher
levels of formal education are more |ii<e|y fo possess the necessary human copiro| [119].
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Furthermore, the utilization of precision ogricuHure ‘recnno|ogies raises concerns regording
poienfio| adverse environmental impacts and effects on the livelihoods of small-scale farmers.

Moreover the odopfion of Precision AgricuHure ‘recnno|ogies tends to be more prevo|enf on |orge
farms [8]. This pattern emerges because |orger farms possess a greater capacity to absorb the
associated costs and risks, while sirnu|’roneous|y being able to spreod these factors over a |orger
productive area. Additionally, as arable land becomes increasingly scarce due to development, the
pressure to transition to more productive agricultural practices intensifies. Under such
circumstances, farmers who face this pressure are more inclined to crdopf PA. Furthermore, the
information required for irnp|erneniing PA recnno|ogies is ‘rypico”y sourced from extension services
or agricultural consultants. However, these public services are designed for mass consumption,
which can limit the officials' focus and ovgi|obi|iry fo provide tailored assistance to specific farms.
Given the technical complexity of PATs, many farmers opt to hire the services of third parties, such
as cropping consultants, to set up and utilize these recnno|ogies ei(i(eciive|y. This Jrendency has been
substantiated by the research conducted by Robertson et al. (2012) and Larson et al
(2008)[116,119]. Furthermore, computer technology plays an indispensable role in Precision
AgricuHure [18]. Consequenﬂy, the utilization of computers is often identified as a |<ey indicator
of the propensity to adopt PA technologies, as observed in several studies [24,122,123].

It is evident that extensive research has been conducted to iden’rify factors inﬂuencing the gdop’rion
of PA by individual farmers [8,24,39,39,111,116,118-120,122-135].These studies have highlighted
various sfoiis’rico”y signiiiconi focrors, inc|uding the age of the farm operaftor, educcﬂrion, years of
forming experience, farm specio|izorion, land tenure, farm size, full or part-time forming, debt-to-
asset ratio, use of a crop consultant, perceived profi‘robihiy of PA, computer usage, and irrigation.
[t's important to note that most of these studies have been conducted in deve|oped countries, with
limited research focusing on PA odop‘rion in the deve|oping world. Mondal and Basu (2009)
outlined the theoretical reasons Wny PA should be gdopied by farmers in deve|oping counftries
[136]. Say et al. (2018) added to the literature by documenting the beginnings of PA adoption in
middle- and lower-income countries [137]. Tney confirm that guidonce is the most common|y
ctdopfed PA iechno|ogy in c|eve|oping counftries.

PA is called to be the ggricuHure of the 2lst century. AHnough the assimilation of precision
ogricu|’rure ’rechno|ogies has progressed, its odopfion is influenced by social, economic, and
environmental imp|ico’rions. Therefore, it's crucial to ocknow|edge that significonr transformations
require time for widespreod acceptance. Just as the crdop’rion of tractors in crgricu|’rure took time
to become the norm, the comp|efe embrace of PA necessitates a groduo| opprocrcn to realize its
full poienrio| inrougnou‘r the ogricu|furo| sector.

1.3 Remote Sensing in PA

Remote sensing opp|icg’rions in ogricuHure re|y on the interaction between e|eciromogneiic
radiation and soil or p|onr materials, with a focus on measuring reflected radiation rather than
transmitted or absorbed radiation. These opp|icorions are often coregorized based on the type of
p|o’ncorm used for the sensors, which can be soie||iie—bgsed, geric||, or ground—bosed.

Various remote sensing p|offorms possess distinct odvonroges and limitations concerning factors
like spoﬁo| and iemporo| resolutions, specrro| characteristics, coverage areq, revisit Frequency, data
ovoi|obi|iiy, cost, and processing needs. Consequenﬂy, cnoosing the opiimo| remote sensing
p|g’ncorm for a poriicu|or crop yie|d predic’rion task relies on mu|iip|e considerations inc|uding crop
type, ono|ysis scale, forecosring objectives, available resources, and user preferencesr

1.3.1 Satellite remote sensing
Satellites serve as versatile tools with dpp|icorions in diverse domains, ranging from geo|ogy and

ogricu|’rure to climate and emergency response (Figure 3). For over four decades, satellites have
also played a pivotal role in advancing PA applications.
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Figure 3. An overview of spectral, spatial, temporal, and radiometric resolution of different optical satellite system.

Source: [138]

The evolution of satellite Jrechno|ogy has been remarkable, with three generations of instruments
shoping this progress. The first generation offered re|o+ive|y low spofio| resolutions, ranging from
1 km to 100 m. In the second generation, this improved to 30-10 m, while the third generation
reached new heigh’rs with very high spo‘rio| resolutions of 5-05 m and less, |e0ding to more
accurate feature recognitfion [138]. This journey commenced for ogricu|‘rure with the launch of
Landsat 1in 1972 (Figure 4) by the National Aeronautics and Space Administration (NASA). This
was equipped with a mu|’rispec’rro| sensor and possessing d spo‘ri0| resolution of 80 meters per
pixe|, observed at 18—o|oy intervals. After Landsat 1, a series of Landsat satellites (Landsat 2-9)
were launched to provide high quo|i‘ry images to researchers, land managers, and po|icy makers
to he|p in the management of natural resources g|obo||y. Later, in 1984, the Landsat 5 Thematic
Mapper was launched to collect higher resolution (30 m) images in more bands in visible and NIR
region.

Landsat imagery was inves‘rigofed for diognosis of ogricu|+ur0| prob|ems by Robert (1982), but
difficulties in processing satellite remote sensing data at that time prevenfed meoningfu| results
[139]. Zheng and Schreier (1988) and Bhatti et al. (1991) were the first to use aerial and satellite
imagery, respectively, for the specific purpose of estimating spatial patterns in soil fertility that
could be used to guide variable rate fertilizer applications [140,141]. Zheng and Schreier (1988)
found that potassium fertilizer recommendations for a bare field in British Columbia could be
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reduced relative to uniform opp|ico+ion5 if rates were varied occording to spofio| patterns in soil
organic matter content identified using color aerial photographs. Bhatti et al. (1991) found that
spatial patterns in soil organic matter from Landsat satellite imagery for bare soil on a commercial
farm in Woshing’ron State were sfrong|y related to patterns in soil phosphorus and wheat yie|d.
They proposed that areas with low organic matter content and low crop producﬂvify ‘could be

managed with customized fertilizer and tillage practices’ for environmental protection.

Figure 4. Visual presentation of i) Landsat 1-3, ii) Landsat 4-5, iii) Landsat 7, iv) Landsat 8, v) Landsat 9, Source:
NASA. Source: [142]

Until launch of the commercial IKONOS satellite in 1999, there were few instances where satellite
remote sensing was used for precision farming applications [143]. IKONOS, collected imageries
at 1-m resolution in ponchromoﬂc image and 4-m spoﬂo| resolution in visible and NIR bands with
a revisit period of up to five days [143]. Imageries collected from IKONOS have been used for
mu|ﬂp|e purposes in PA, inc|uding soil mapping, crop growfh and yie|d predic’rion, nufrient
management, and ET estimation [144,144-146]. In 2001, DigitalGlobe, Longmont, CO, USA
launched a satellite named QuickBird with capabilities similar to IKONOS and a revisit frequency
of 1-3 days.

After remote sensing opp|icoﬁons started to have a wide research impact, efforts were made to
design satellite imaging systems with higher spofio| resolution and quicker revisit cyc|es. For
instance, GeoEye-1 (2008), Pleiades-1A (2011), Worldview-3 (2014), SkySat-2 (2014), and
Superview-1 (2018), were launched and collected multispectral images at a high spatial resolution
of €2 m with a doi|y or sub—doi|y revisit period. A significonf milestone in this progression was the
introduction of WorldView 3 in 2014. This sophisticated satellite boasts an exceptional resolution
of merely 0.31 metre panchromatic and 124 metre in the eight VNIR bands, 37m in the eight
SWIR bands and a 30 m resolution in the CAVIS (Clouds, Aerosols, Vapours, lce and Snow)
bands. Moreover, it operates at an impressive|y swift updo‘re rate ranging from 110 4 doys. In the
same year the Copernicus Programme, led by the European Space Agency [147], marked a new
era in open access Earth observation by launching the first Sentinel satellite, Sentinel-TA.
Subsequently, the Copernicus Programme has successfully launched several satellite missions,
including open-source satellites Sentinels-1, 2, 3, and 5. One significant contribution of the
Copernicus Programme was the launch of the mu|+ispecfro| instruments aboard the Sentinel-2
satellites. The Sentinel-2 constellation consists of twin satellites, Sentinel-2A and Sentinel-2B, each
making distinctive contributions to Earth observation [148]. Sentinel-2A was launched on June 23,
2015, with the first images received a few days later, marking a significant milestone in the
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Copernicus Programme's ongoing mission to enhance our understanding of Earth's dynamics. It
has multiple multispectral bands with a spatial resolution of 10 to 60 metres per pixel.

Each satellite is equipped with optical sensors designed to measure features on the Earth's surface
by detecting and recording sunlight reflected from objects (Figure 6). The effectiveness of these
sensors is determined by several critical factors, inc|uding their 5po+io|, radiometric, specfro|, and
temporal resolution[149].

Figure 5. Visual presentation of i)Albedo (10cm), ii) WorldView-4 (30cm), iii) Worldview-3, iv) Satellogic (0.7m),
v)IKONOS (0.82m), vi) Stereo Satellite, vii) GeoEye-1 (0.41m), viii) WorldView-2 (0.46m), ix) WorldView-1 (0.46m), x)
Jilin-1 (Im), xi) SPOT-7 (15m), xii) SPOT-6 (1.5m), xiii) Pelican, xiv) SuperView-1 (0.5m), xv) QuickBird (0.61m),
xvi)TerraSAR-X, xvii) TH-O1 (2m), xviii) SkySat (50cm). Source: NASA, [150]

Spoﬁo| resolution, a fundamental aspect of remote sensing, refers to the inherent capacity of a
sensor to discern the smallest detectable ground object. This resolution is inexfricob|y linked to pixe|
size and image coverage, both of which are influenced by the number of pixe|s within the sensor
and its proximity to the Earth's surface. This in*erp|oy is exemp|ifieo| by sensors like Landsat,
characterized by 30-meter pixels, which encompass an expansive image area of 185 km x 185 km.
Similarly, the SPOT sensor boasts 20-meter pixels and is capable of generating comprehensive
images spanning 60 km x 60 km. Meanwhile, the deployment of UAS sensors at altitudes of up
to 3 km yie|c|s resolutions as impressive as 1-2 meters and image coverage that extends across
approximately 100 hectares. Pleiades-1A and Worldview-3 have been used for many PA
opp|icofions requiring high spofio| resolution imagery, inc|uo|ing disease and crop water stress

detection [151-153].

Radiometric resolution, another indispensob|e facet, quonﬂfies the sensor's obi|i+y fo capture the
intensity of radiation emitted by a target within a specific waveband. This resolution translates
into the number of discrete radiometric levels available for individual pixe|s to record this intensity.
For instance, sensors with an 8-bit radiometric resolution offer 256 disﬁnguishob|e intensity levels,
rendering a gradation from the darkest (O) to the brightest (256). Conversely, sensors with a 10-
bit radiometric resolution extend this capacity to an impressive 1024 levels per image pixel,
enob|ing finer distinctions in recorded intensities.

Spec‘rro| resolution, an intricate dimension of remote sensing, dictates the number of distinct
wavebands of data that a sensor can simu|+oneous|y capture af each pixe|4 This resolution is
profouno”y significon‘r due to its connection with the reflectance profi|es of objec‘rs under s‘rudy. For
instance, as a prime exonmp|e, vegetation exhibits distinct reflectance behaviours in response to

25(163)



Yield Prediction in processing tomato crop, through Precision Agriculture practices
PhD Thesis Nicoleta K. Darra

different wavebands. Photosynthesizing plants, including a range of flora such as groundcovers
and vines, exhibit reduced reflectance in blue and red Wove|eng+n5. This can be attributed to the
absorption of incident energy by chlorophyll and related pigments for photosynthesis. Conversely,
these p|on’r5 reflect a nofob|y nigner proportion of |igh+ within green Wove|eng’rhs, Tnereby
rnonifesﬂng their characteristic green appearance to the human eye. |nJrereering|y, in the near-
infrared range (wavelengths exceeding 700 nm), photosynthetic plants display a substantial
increase in reflected sunlight—over 65%—which, while unperceivable to the human eye, can be
effec’rive|y detected using specio|ized instruments. This pronounced reflectance in the near-infrared
range is infrinsico”y tied to leaf cell structure and moisture content, which profouno”y influence this
reflective behaviour.

Ternporo| resolution, the final cornerstone, encopsu|o+es the Frequency with which a sensor can
amass data over time. This temporal dimension holds particular significance in capturing dynamic
and evo|ving phenomena. For instance, the progression of vegetation growfn or the onset and
progression of stress conditions in crops can be occuro+e|y tracked and monitored Jrhrougn sensors
with varying Jrernporo| resolutions.

Spoﬂo| and Jremporo| resolution requirements vary wio|e|y for monitoring terrestrial, oceanic, and
ofmospheric features and processes (Table 4). Each opp|icoﬂon of remote sensing sensors has its
own unique resolution requirements ono|, ’rnus, there are trade-offs between spo’rio| resolution and
coverage, spec’rro| bands and signo|—’ro—noise ratios. For a comprehensive overview,

Table 4. Spatiotemporal resolutions of the satellite sensors used for PA applications.Source: [154]

Sensor Temporal
Resolution

Application in PA

Satellite Years Active
(Spatial Resolution)

Landsat 1 1972-1978 MS (80 m) 18 days Crop growth [155]

Nutrient management
AVHRR 1979-present MS (11 km) 1 day [146]
Landsat 5 19842013 MS and Thermal (30 -

120 m)

MS and Thermal (30 - Biomass [156]; crop yield

Landsat 7 1999-2022 60 m) 16 days [157), erop growth [156]
MS and Th | (30 -
Landsat 8 2013-present an 1OOenqu)10 (
SPOT 1 1986-1990 Vet f
MS (20 m) 9-6 days afer T@g?gemen
SPOT-2 1990-2009
Water management,
IRS 1A 1988-1996 MS (72 m) 292 days nutrient management
[136]
LiDAR 1995 VIS (10 em) 1 N/A Topography, nutrient
management [160]
RadarSAT 1995-2013 C-band SAR (30 m) 1-6 days Crop growth [161]

Crop [162]; sail

properties [163]; nutrient
IKONOS 1999-2015 MS (1to 4 m) 3 days management[146]; ET

estimation [144]

EO-1 Hyperion 2000-2017 HS (30 m) 16 days Disease[164,165]

Terra MODIS 1999-present, 1-2 days
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Aqua MODIS

2002-present

MS (Spectroradiometer;
250-1000 m)

Crop yield [166]; crop
growth [167]

MS and Thermal (15 m-

Water management

Terra-ASTER 2000-present V, NIR, 30 m-SWIR, 90 16 days [168]
m-TIR)
QuickBird 2001-2014 MS (2.44 m) 1-3.5 days Disease [169]
MS (Microwave
AQUA AMSR- | 9500 9016 Radiometer; 54 km-56 | 1-2 days Water management
E km) [170]
MS (V, NIR-10 .
Spot-5 2002-2015 SéVfR—QO wﬁr“' 2-3 days Crop yield [1[171]
MS (5.6m-V, 23.5 m- Nutrient t
ResourceSat-1 2003-2013 ( é%ku m 5 days utren Hﬁgggeme”
KOMPSAT-2 2006-present MS (4 m) 5.5 days Crop yield [173]
Radarsat-2 C-band SAR (1-100 m) 3 days LAl and biomass [174]
Water mono|gdemenf
. 175]; ield [176];
RapidEye 2008-present MS (6.5 m) 1-5.5 days [ cr]o;:r;foxfh O[n ]
chlorophyll [177]
21-8. Nutri
GeoEye-1 2008-present MS (1.65 m) dosj uirient H}%?Ogemen*
WorldView-2 2009-present MS (1.4 m) 11 days Crop growth [[179]
Pleiades-1A
MS (2 m) 1 day Crop growth [180,181]
Pleiades-1B 2012-present
VIIRS Suomi- 00N +
NPP “presen MS (IR Radiometer, 375 16 d Crop management
m and 750 m) ars (NDVI[182] )
VIIRS-JPSS-1 2017-present
KOMPSAT-3 2012-present MS (2.8 m) 14 days Crop growth[183]
Spot-6 2012-present
MS (2.5 -20 m) l-day Disease[184]
Spot-7 2014-20923
SkySat-1 2013-present
MS (1 m) sub-daily Crop growth [185]
SkySat-2 2014-present
. C th[186]; d
Worldview-3 2014-present SS (124 m) <1 day riqugézv;mgm []]O\Aé?e
Sentinel-1 2014-present C-band SAR (5-40 m) 1-3 days Crop growth[187]
MS (10 m-V and NIR, A _
Sentinel-2 2015-present 20 m-Red edge and 2-5 days Vield [188]; [1\189
SWIR, 60 m-2 NIR) management [189]
KOMPSAT-3A 2015-present MSS\()\\//l R[\ySRS_QrﬁQ) m 14 days Disease [190]
SMAP 9015-present L-band SAR (1-3 km) 9-3 days Crop yield [191]; water

and radiometer (40 km)

management [192]
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TripleSat 2015-present MS (32 m) 1 day Soil properties[193]
EC%&J—EESS_ 2018-present Thermal (38 x 69 m) 1-5 days ET [194]

Water quality

Landsat 9 2021-present OLI-2(30 m) 16 days monitoring, crop status

Several trends are apparent in satellite based remote sensing (Table 4). Firstly, the spatial
resolution of imaging systems has improved from 80 m with Landsat to sub-metre resolution with
GeoEye and WorldView. Secondly, the return visit frequency has improved from 18 days with
Landsat to subdaily with SkySat. Thirdly, the number of spectral bands available for analysis has
improved from four bands (bandwidths greater than 60 nm) with Landsat to eignr or more bands
(bandwidths greater than 40 nm) with WorldView. Hyperspectral imaging systems such as
Hyperion on the National Aeronautics and Space Administration (NASA) earth observing 1 (EO
1) satellite provided even greater spectral resolution, with imaging from 400 to 2500 nm in 10 nm
increments.

While these advancements in satellite systems mark substantial leaps forward, they have certain
limitations, particularly concerning crop monitoring. Moran et al. in 1997 and Yao et al. in 2010
succincHy outlined the primary hurdles associated with the utilization of satellite remote sensing in
PA [195,196]. One of the signir(iconi limitations lies in the reliance on satellite imagery cop’rured in
the visible and near-infrared (NIR) bands, which are contingent upon cloud-free conditions for
op‘rimo| func‘riono|iry. These bands periorm best when solar irradiance remains re|ofive|y consistent
over time. In contrast, radar imagery obtained via satellites or aircraft remains unaffected by cloud
cover, oFFering a more reliable alternative. Additional cho”enges entail the need to calibrate raw
digi’ro| numbers to occuroie|y represent surface reflectance, the correction of imagery fo eliminate
ofmospneric interferences and accommodate off-nadir view ong|es, and the geo—rec’riiicg’rion of
pixels through the utilization of GPS-based ground control locations [143]. These intricacies
underscore the comp|exiries involved in nornessing satellite remote sensing for PA.

On the other hand, satellite p|ohcorms enable the assessment of crop growfn and yie|d po’renrio|
on a |grge scale, providing valuable insign’rs for ogricu|furo| management and p|gnning. The gbi|ify
tfo monitor crop health and produc’rivi’ry rerno’re|y allows for ideniifying regions with poien‘rio| yie|d
losses and imp|erneniing iorgefed inferventions to mitigate risks. Second|y, satellite-based yie|d
prediciion offers a non-destructive and cost-effective opprooch that reduces the reliance on labour-
intensive field surveys, inereby increasing eﬁ(iciency and reducing costs. Cornpored to the rest of
the p|oh[orms, satellites can offer broad coverage, nign iemporo| resolution, while being cost
effective [197]. Tney can also be used in multisource data infegration, such as the infegration of
optical and SAR remote sensing[154]. Additionally, satellite-based yield prediction has the
porenfio| to provide fime|y and up-io-dofe information, o||owing for better decision—moking and
response to climate voriobi|ify and extreme events. These odvonfoges can exp|oin Wny the majority
of the studies incorporated satellite remote sensing approaches.

In summation, the convergence of satellite-based observations, remote sensing fecnno|ogies, and
data-driven ono|y‘rics has opened up new avenues for monitoring and managing ogricu|ruro|
|ondscopes at unprecedenfed levels of gronu|orify. By nornessing the power of satellite data,
researchers and practitioners can obtain real-time insignfs intfo various aspects of crop health, soil
moisture, nutrient disrribuiion, and environmental conditions. These insigh‘rs, when coup|ed with
advanced yie|d predicrion models, enable farmers and stakeholders to make informed decisions
that optimize resource o||ocofion, minimize risks, and maximize overall crop yie|di Moreover, Vls
derived from satellite imagery have shown promise in capturing the spg‘rio‘remporo| variations of
crop health and produciivi‘ry.
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1.3.2 UAS Platforms

As technology continues to advance, the utilization of unmanned aerial systems (UAS), commonly
known as drones or unmanned aerial vehicles (UAVs), has gained remarkable traction for data
collection and various opp|icoiions in dgricuHure [198]. These versatile aerial p|ohcorms,
encompassing both fixed—wing and rotary-wing aircraft, are equipped with a wide array of sensors
for comprehensive monitoring and can operate autonomously or be controlled remotely.

The history of unmanned aerial systems (UASs) has seen significant milestones. Formally, the
drones’ chronicle starts in 1783 in France, where Monfgohcier brothers made a pub|ic demonstration
ﬂigh‘r of a g|obe shaped balloon filled with smoke [198]. However, the forerunner of modern
remote-controlled drones is considered the first radio-operated boat; a technological masterpiece
shown by Nikola Tesla in Madison SquareGarden in 1898. The earliest unmanned radio-controlled
aircraft made its appearance during World War |, known as the Curtiss N-9, which was invented
by Cooper and Sperry in 1917. Around this time, Kettering conceptualized the "Kettering Bug,"
regorded as a predecessor to the modern cruise missile (Figure 7). The signiiiconi deve|opmen’r of
drones continued during World War Il with the creation of the Radioplane OQ-2 in 1940, marking
the first mass-produced drone in the United States. Subsequently, in 1945, an adapted version
known as the OQ-3 was utilized for reconnaissance missions. Post-World War Il, the United States
intfroduced the Ryan Firebee, a series of target drones, which were nofeworfhy for being the first
jet-propelled drones, primarily used for air-to-air combat training. In the mid-1950s, the
Convertawings Quadrotor, the first four-rotor helicopter, was introduced, featuring an "H"
comtiguroﬂon for its four rotors. Another pioneering moment in UAS hisiory was the Mastiff, the
first Israeli Military UAS equipped with live-streaming capabilities in 1973, Initially transmitting
black-and-white video, it was later upgroded to a colored cameraq, ushering in a new era of drone
cnpp|ico’rions, por’ricu|or|y for irocking humans or vehicles. In 1986, the RQ2 Pioneer UAS was
emp|oyed by the US Navy to provide real-time battlefield imagery and perform various tasks,
iric|udirig reconnaissance and surveillance. The 1990s saw the recognition of the significonce of
UAS in warfare, |eoding to advancements in |ighfweighf materials and communication ’recimo|ogy.
One standout development during this period was the remotely piloted aircraft RQ-1 Predator,
initially equipped with a reconnaissance camera. In 2002, it was renamed "MQ-1" with "R"
representing "Reconnaissance" and "M" indico’ring "Multi-role" These historical milestones
demonstrate the evolution of UASs from eor|y experimen‘ro| designs to crucial tools in modern
military operations. Yamaha developed probably the first UAS applied to agriculture in 1997 by
using a rotary wing aircraft [199]. Using he|icopiers showed big odvcmictges in field spraying due
to their high moneuverobihiy, reduced speed and ve|ocify and the positive impact of the airflow
from the rotor in spraying tasks. Nevertheless, in the 1990s, mu|ﬂp|e countries limited or even
banned aerial opp|icofion of producfs such as pes‘ricides or fertilizers. Moreover, in 2009 the
European Union mos‘r|y prohibi’red aerial spraying of pes‘ricides, which eHec’rive|y ruined most
commercial services of aerial opp|ico‘rion in all member states and overseas territories.

Figure 6. i)Prototype Kettering Bug (circa 1918); ii)OQ-2 on display at the Aviation Unmanned Vehicle Museum,
iii)BOM-34F Firebee Il RATO launch, Tyndall AFB 1982 Source: Wikipedia
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The technological progress of drones in recent years is undeniable. Initially designed primarily for
military applications, these UASs have evolved significantly. As the landscape shifted towards
commercial utilization, government agencies and private entities began testing and deploying
drones for a wide array of purposes such as. environmental monitoring, response to humanitarian
disasters, surveying and mapping, as well as engineering and construction

In ogricuHure, drones provide crucial data for precision forming practices, optimizing crop yie|o|s
and resource usage. A recent analysis and forecast report [200]conducted in the USA, using data
spanning from 2014 to 2017, highlights the PA among primary application areas for unmanned
aerial vehicles (UAVs). The PA application is expected to record a considerable Compound Annual
Growth Rate (CAGR) of over 15% from 2023 to 2030 as drones are becoming one of the essential
aspects of farm management [201]. Furthermore, the USA Federal Aviation Administration (FAA)
forecast for the period 2019-2038, as provided by Association for Unmanned Vehicle Systems
International (AUVSI), ranks agriculture as the sixth most prominent sector in terms of the number
of missions, accounting for 7% [202].The last decade UASs increasingly playing an active role in
the field of agriculture (Figure 7).
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Figure 7: The number of studies in Web of Science on UAS/UAV applications in agriculture. Source: [193]

Their area of application is wide (Figure 8) including nutrients evaluation and health assessment,
water stress cmcl|ysis, yie|d and biomass estimate [203], soil monitoring, weeds detection[204-207],
environmental monitoring, aerial spraying [208], mapping, greenhouses [209-212]. These devices
offer valuable assistance to farmers in a wide range of tasks, such as crop p|orming, ono|ysis, and
field monitoring to assess crop growth and health [213].

80% 73%
59% 60%
40%
5%

B - X m il
8 g E - g j g g g g
&= 5] [+} = = ° O - e« %]

1) o o 1) @ o [7)
2 @ E z g E Z
: i | £ E
= £ = = =
66% 11% 10% 13%
Plant status/yield estimation Pest-disease Water supply Weed mapping
infestation

UAV application

Figure 8: Share of UAS in specific tasks in agriculture and remote sensing platforms utilised in various aspects. Source:

[198].
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Their distinguishing attributes of UAS encompass high spatial ground resolution [214], ranging
from 0.1 to 0.5 meters per pixel in lighter models, with some models achieving ultra-high resolutions
as fine as 0.01 meters per pixe|. Moreover, these autonomous p|oﬁorms, whether under remote
human control or autonomously operated, provide flexible and timely surveillance. These qualities
make them particularly well-suited for medium to small crops, which typically span from 1 to 20
hectares, especially in areas characterized by substantial heterogeneity [215]

Nonetheless, it is imperative to underscore that UASs face certain limitations that warrant
consideration. The effectiveness of UAS data collection hinges on the sensor technologies they
employ. While UASs can capture ultra-high-resolution images nearly in real-time, they must adhere
to High‘r permits and regulations, which can introduce inﬂexibihfy in Highf scheduling and lead to
higher operating costs. To operate aircraft, ob‘roining operoﬁono| clearances from civil aviation
authorities and ensuring the presence of quo|ified pi|o‘rs are mondo’rory prerequisites. Furthermore,
certain areas, inc|uo|ing prisons, mi|i+ory insfo”oﬂons, airports, and restricted or hazardous zones,
are off-limits for UAS operations. Regu|o+ory authorities offer pi|oJrs guidonce Jrhrough maps and
lists to facilitate aerial activities within designo*ed surveillance zones. Discussions and deliberations
concerning UAS regu|oﬂon have been actively conducted within organizations such as the
European RPAS (Remotely Piloted Aerial System) Steering Group and the Federal Aviation
Administration. Additional constraints are associated with pcty|ooo| Weigh’r, which encompasses the
equipment required for specific tasks, and limited High* duration, erpicci”y fo”ing under one hour
due to boﬁery capacity.

The |ondscope of UASs encompasses a wide range of tfypes varying in size, shope, comciguroﬂon,
and ﬂigh’r characteristics, oo|o|ing comp|exi’ry to their operation. The dep|oymen‘r of UASs on «a
commercial sco|e, inc|uo|ing expenses related to equipment, data processing, and soffwore, can be
a substantial investment for small-scale farmers [216,217]. UAS surveys entail handling large data
volumes and preprocessing, with generoTed datasets restricted to the user's collected information
[218]. Consequently, deploying UASs on a commercial scale involves significant expenses,
encompassing equipment, data processing, and software costs, which can be a substantial
investment for small-scale farmers [216,217]. In addition, UASs are subject to certain constraints
related to weather conditions. These constraints imp|y that UAS operations can be influenced or
restricted by various ofmospheric factors, such as wind, precipitation, and clouds (Figure 9).
Despite these cho”enges, continuous advancements in low-cost sensor fechno|ogies and the
po*enficd for cost savings and benefits are onficipo’red fo ou‘rweigh these initial costs in the future.

Figure 9: An example of a partly cloudy day that is unfavorable for UAS flights. Source: Personal Archive
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In summary, the growth in the development and utilization of UASs has facilitated the acquisition
of high spo’rio|, specfro|, and ’rempor0| resolution data, essential for PA management at the field
or farm level. Moreover, multispectral, high spatial resolution data collected through UASs can be
infegro’red with existing satellite data, exfending their opp|icc|ﬁons fo |orger ogricu|+uro| areas
[219]. However, UASs grapple with limitations such as abbreviated flight times—typically less than
30 minutes for rotorcraft and 60 minutes for Fixed—wing aircraft—and the requirement for pilots to
be duly licensed and adhere to guidelines delineated by national civil aviation authorities [220].
Privacy and data security concerns are additional considerations entwined with UAS use in
agriculture. Despite these constraints, the growing utilization of UASs in agriculture remains
inevitable due to their cost-effective data collection capabilities and efficient monitoring potential

[221].
1.3.3 Proximal platforms

Ground-based remote sensors have been in use for nearly three decades (Table 5). The shift from
remote sensing fo proximo| sensing for crop status assessment was pioneered by Schepers, Francis,
Vigil, and Below in 1992 [222]. They utilized a Minolta Soil Plant Analysis Development (SPAD)
meter to measure leaf greenness (cHorophyH) in maize crops during the si||<ing stage, varying the
0pp|ieo| nitrogen (N) fertilizer rates. Their sfudy revealed that SPAD meter reodings of leaf
reflectance at 650 and 940 nm correlated with the amount of applied N fertilizer and independent
measurements of leaf N concentration.

Table 5: Innovations in remote and proximal leaf sensing in precision agriculture. Source: [143]

Year Innovation Reference
1999 SPAD meter (65Q, ‘940 nm) used to detect N Schepers et al, 1992; [222]
deficiency in corn
1995 Nitrogen sufficiency indices Blackmer &[QSQC;]epers, 1995;
1996 Opfico|' sensor (671, ‘7‘80‘nm) used‘ for on-the-go Stone et al, 1996; [224]
detection of variability in plant nitrogen stress
Link et al, 2002, TopCon
Yara N sensor industries; [225]
GreenSeeker (650, 770 nm) Raun efo(tl, QJFO.OQ’ NTech
2009 industries
CASI hyperspectral sensor-based index Haboudane et al,
measurements of chlorophyll 2002, 2004; [226,227]
MSS remote sensing of ag fields with UAS Herwitz et al, 2004; [228]
2003 Fluorescence sensing for N deficiencies Apostol et al, 2003, [229]
) Holland et al, 2004,
2004 Crop Circle (590, 880 nm or 670, 730, 780 nm) Holland scientific; [230]

Blackmer and Schepers (1995) introduced the concept of a nitfrogen suﬁciciency index (NSI) to
assess the degree of N stress in maize [223]. The NSI was defined as the ratio of SPAD meter
greenness reodings for crops in a given field location relative to SPAD reodings for the same crop
in a well-fertilised reference strip with no N deficiencies. NSI values less than 0.95 were used to
indicate areas with N stress that required additional N fertiliser. Varvel, Schepers, and Francis
(1997) showed that SPAD meters and NSI values could be used for in-season correction of N
deficiency in maize [231]. Bausch and Duke (1996) showed that the SPAD meter could be replaced
with a boom-mounted radiometer to estimate spatial patterns in NIR/G ratio and NSI across an
irrigofed maize field based on comparisons with a well-fertilised reference strip [232]. They
observed that this approach could detect N deficiencies in the V6 growth, but results were
confounded by interference with reflectance patterns from bare soil[233].
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Stone et al. (1996) measured spectral radiance in the red (671 nm) and NIR (780 nm) bands in
wheat with a sensor mounted on a mobile lawn tractor [224]. They used these data to estimate a
spectral index known as the plant nitrogen spectral index (PNSI), which was the absolute value of
the inverse of NDVI. Results showed that PNSI was strongly correlated with crop N uptake. Sensor
reodings were used to vary N fertiliser rates using an o|gorirhrn that increased exponen’rio”y with
PNSI values[234] . This was the beginning of technology to variably apply N fertiliser “on-the-go”
in response to proximal crop sensing and was the basis for commercial development of the
GreenSeeker NDV/I active sensor marketed by NTech Industries, Ukiah, CA, USA in 2001. Raun
et al. (2002) subsequently developed a seven-step response index (RI)-based algorithm to
estimate crop N fertiliser needs for maize and wheat based on in-season sensing of crop
reflectance relative to check |o|o’rs with no added fertiliser and reference p|ois with sufficient
fertiliser[235]. This algorithm accounted for both season-to-season temporal variability in crop
growth using the concept of in-season estimated yield (INSEY) as well as within-field spatial
voriobi|iry in N supp|y. A|gori’rhrns for estimating porenrio| crop yie|d and N uproke are available
for many crops and locations around the world [236]. The Rl is estimated as the ratio of NDVI
values in the crop relative to those in a reference strip with sufficient fertiliser.

Link, Panitzki, and Reusch (2002) and Reusch, Link, and Lammel (2002) created a passive sensor
mounted on a tractor to assess crop nitrogen (N) status based on NDVI [225,237]. Initially called
the Hydro-N sensor, it has since been rebranded as the Yara-N sensor by Yara in Oslo, Norway.
Another version of the Yara-N sensor is available, incorporating active sensors, as deve|oped by
Link and Reusch (2006) [238]. These active sensors mitigate errors caused by varying cloud cover
and enable tractor operators to work at night.

Holland et al. (2004) introduced the Crop Circle sensor, which inirio||y used green and near-
infrared (NIR) reflectance to estimate crop nitrogen (N) deficiencies [230]. They chose green
reflectance over red based on research snowing that, with a crop leaf area index (LAI) above 2.0,
green NDVI becomes more sensitive to cn|oropny|| cnonges and poieniio| yie|d, as demonstrated
in prior studies [239-241]. This addressed limitations of the GreenSeeker sensor in advanced crop
growth stages. Solari et al. (2008) found that N deficiencies could be more accurately predicted
with a green chlorophyll index ((NIR880/VIS590) - 1) compared to green NDVI, using the Crop
Circle sensor [242] . Sripada et al. (2008) showed that spectral index performance improved when
using ratios with corresponding values from reference strips receiving sufficient N fertilizer [243].
Kitchen et al. (2010) and Scharf et al. (2011) demonstrated that Crop Circle sensor use allowed
farmers to reduce N fertilizer, boosting crop yields and farm profitability [244,245].

One limitation of the chlorophyll meter, GreenSeeker, Yara N and Crop Circle sensors, however,
is that they cannot directly estimate the amount of N fertiliser needed to overcome crop N stress
[246]. To overcome this, scientists have conducted comparisons of sensor reodings with reodings
in reference strips receiving sufficient N fertiliser [223,235,243,244]. They have used these data to
deve|op N fertiliser response functions that relate sensor reodings to the amount of N fertiliser
needed to overcome crop N stress [245]. Even with this opproocn, reference strips with odequoie
fertiliser have to be s‘rrofegico”y |o|oced in representative soils and |ondscopes because yie|d
response to N fertiliser exhibits significonf spo‘rio| voriobi|i‘ry across producrion fields [247].

Ground-based sensors encompass various instruments grouped by their functionalities and
opp|icofions. These instruments include weather data recording fnrougn local me’reoro|ogico|
stations and soil sensing. Soil sensing involves continuous real-time monitoring of sporio| variations
in soil properties using sensors mounted on tractors. The first opp|icorion of this opproocn was for
soil organic matter sensing based on reflectance from rnu|’ri|o|e |igh‘r emitting diode (LED) sensors
emitting radiation at 660 nm [143]. A major breakthrough in PA occurred when Carter, Rhoades,
and Chesson (1993) introduced continuous real-time, non-contact proximo| sensing of soil apparent
electrical conduc’rivi‘ry using non-invasive e|ecrrornogne’ric induction with the Geonics EM-38

(Geonics Ltd., Mississauga, Ontario, Canada)[248].

AHhougn ground-bosed sensors do provide some copobi|iries unavailable from other remote
sensing |o|ohcorms, there are some drawbacks to these types of sensors. Gofnering data using
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handheld sensors can be tedious and time consuming. Even if the sensors are mounted to vehic|e5,
the data collection process is hign|y inefficient when used on |0rger fields. Some of these sensors
are inflexible regarding the type of spectral data that can be collected.

In contrast to the predominantly passive sensors carried by satellite or UAS, most ground-based
sensors are active and are genero“y either handheld or mounted on various equipment. Active
sensors produce their own light signal and measure the resulting reflectance while passive sensors
on|y capfure the reflectance from ambient sun|ighf [249]. These active ground—bosed sensors have
some benefits unmatched by the other systems. In comparison to co||ec’ring data using other
p|o+1[orms, ground-bosed sensors tend fo be less expensive, and since most of these sensors are
active, they are not as restricted by weather conditions. Cloud cover does not affect the data since
the sensors produce their own light [249]. Due to the close proximity at which the data are
collected, there is less onospneric interference |eoding to more accurate data as well as hign
spoﬂo| resolution. These ground-bosed sensors are also more suitable for some opp|icoﬁons,
por’ricu|or|y those using smaller fields.

In summary, proximo| sensors present distinct odvon’roges in terms of precision and cost-
effectiveness in ogricuHure. Since most of these sensors are active, Jrney are not as restricted by
weather conditions Co||ec’ring data in close proximity minimizes ofmospneric interference, resu|‘ring
in nigh|y accurate data with superior spo‘rio| resolution [249]. Nevertheless, r, +ney do have
limitations related to coverage, data inferpretation, maintenance requirements, and initial costs.
Hence, careful assessment of individual needs and available resources is crucial when considering
the imp|emen+oﬂon of remote sensor ’rechno|ogy.

1.3.4 Vegetation Indices

Remote sensing refers to non-contact measurements of radiation reflected or emitted from
ogricu|’ruro| fields. Canopy reflectance is used to io|enﬁfy biophysiccﬁ and biochemical properties
of the canopy. The specfro| response of the vegetation is unique, as it reflects the p|on+'s health
and nutritional status, and is nigh|y dependen’r on solar radiation, soil properties, and available
nutrients. Vls and soil properties can be calculated using opﬁco| sensors mounted on a UASs,
satellites or ground vehicles. Tney are a numerical depicﬂon of the re|o’rionship between various
wove|eng’r|’15 of |igh+ reflected from the |o|onJr surface. More than one hundred VIs have been
derived from mu|ﬁspec+ro| imagery to simp|ify the monitoring method [250]. Because of the
significon’r correlation between N and obsorpﬁon of cn|oropny|| in the visible and near infrared
region, most of the Vls were calculated from bands in the visible and near infrared range [251,252].

The most renowned and applied VI is the Normalized Difference Vegetation Index (NDVI),
compu*ed as the normalized difference between NIR and red reflectance, and genero“y used to
assess vegetation greenness in space and time [253]. NDVI has been used to detect crop nutrient
deficiencies, patterns in crop yie|o|, insect and weed infestations, and crop diseases [36]. However,
NDVI has several limitations, however, inc|uo|ing po’renﬁo| interference from soil reflectance at low
canopy densities and insensifivity to chonges in leaf cn|oropny|| content in mature canopies with
leaf area index values that exceed 2 or 3 [254] As a result, there has been significonf research
effort devoted to finding broadband multispectral indices that can be used as an alternative to
NDVI [241]. In general, there are three classes of broadband multispectral indices used in precision
forming. These include soil-adjusted Vls, ratios of green and near-infrared reflectance bands, and
ratios of red and near-infrared reflectance bands [255]. Soi|—oo|jusfed vegetation indices reduce
reflectance from bare soil that interferes with the interpretation of reflectance from a growing
crop before canopy closure. Red ratio indices ‘rypico||y are sensitive fo obsorpﬂon of radiation by
leaf cn|oropny||, while green rafio indices are sensitive to leaf pigments other than ch|orophy||. In
common|y used red and green ratio indices, either the red or green or the near-infrared reflectance
can appear in the numerator of the ratio.

Many broadband spectral indices (Table 6) other than NDVI are available for use in PA
[243,256,257]. These indices reflect two historical trends in remote sensing for crop characteristics:
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the prediction of reflectance ratios in the Red (R) and NIR bands versus ratios in the green (G)
and NIR bands. The Normalised Red (NR) index focuses on the portion of the spectrum where
chlorophyll strongly absorbs radiation. In contrast, the Normalised Green (NG) index focuses on
the portfion of the spectrum where pigments other than ch|orophy|| (carotenoids, cmfhocyonins,
xanthophylls) absorb radiation. Similarly, there are two forms of the Ratio Vegetation Index (RVI),
one that consists of the ratio of NIR to R reflectance, the other Green Ratio Vegetation Index
(GRVI) that consists of the ratio of NIR to G reflectance. Two forms of the NDVI exist, one that
involves NIR and R reflectance, the other Green Normalized Difference Vegetation Index
(GNDVI) involves NIR and G reflectance. The Difference Vegetative Index (DVI) was developed
using the difference between reflectance in the NIR and R bands to compensate for effects of soil
reflectance (Tucker, 1979). Sripada et al. (2006) found that economically optimum N rate in corn
was better correlated with green difference vegetation index (GDVI) (NIR - G) than DVI (NIR
- R), and these indices that compensated for soil effects performed better than NIR and R ratio
indices such as NDVI and RVI that did not compensate for soil effects. A wide range of other
indices have been deve|opeo| to compensate for soil effects, inc|uding Soil Adjus’red Vegetation
Index (SAVI), Green Soil Adjusted Vegetation Index (GSAVI), Optimised Soil Adjusted
Vegetation Index (OSAVI), Green Optimised Soil Adjusted Vegetation Index (GOSAVI) and
Modified Soil Adjusted Vegetation Index (MSAVI).

Table 6. Multi-spectral Vis available for use in precision agriculture. Source: [143]

Index Definition Reference
NG G/ (NIR + R + G) Sripada et al, 2006[241]
NR R/ (NIR + R + G) Sripada et al, 2006, [241]
RVI NIR/R Jordan, 1969 [258]
GRVI NIR/G Sripada et al, 2006, [241]
DVI NIR - R Tucker, 1979[259]
GDVI NIR - G Tucker, 1979, [259]
NDVI (NIR - R)/ (NIR + R) Rouse et al, 1973 [260]
GNDVI (NIR - G)/ (NIR + G) Gitelson et al, 1996, [239]
SAVI 15*[(NIR - R)/ (NIR + R + 0.5)] Huete, 1988[261]
GSAVI 1.5*[(NIR- G)/ (NIR + G + 0.5)] Sripada et al, 2006, [241]
OSAVI (NIR - R)/ (NIR + R + 016) Ron et even; & Baret,
GOSAVI (NIR G)/ (NIR + G + 0.16) Sripada et al, 2006, [241]
MSAVI9 O.5*[2*(NIR + 1) -SQRlR—)()(]Q*NH)\ +1) "2 8*(NIR - Q;, %hesibrggzﬁi:nlﬁgeélfeer,

So far, a wide number of studies have demonstrated that specfro| indices are effective in
iden’rifying spo‘ric1| patterns of crop parameters, moking them valuable tools for precision
ogricu|’rure and crop management. These indices, with their unique focus on specific aspects of
|o|onf health and soil correction, p|oy a pivoJrc1| role in PA for optimizing ogricu|+uro| practices and
decision—moking.
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1.4 Processing Tomato Crop

The tomato, scientifically classified as Solanum lycopersicum L., belongs to the Solanum genus
within the broader Solanaceae Fomi|y. Although it is customarily considered a vegetable it is
crc’rucr||y a fruit and more specifico”y a berry based on its |o|on‘r parts. This misunders’ronding was
a question of debates during the 19th century in USA, with the special case of Nix vs. Hedden —
149 U.S. 304 (1893). In 1887, Nix contested the decision of the tax collector of the port of New
York to recover taxes on tomatoes imported from the West Indies in the spring of 1886, which the
collector assessed as a vegetable. The court opined: “Botanically speaking, tomatoes are the fruit
of a vine, just as are cucumbers, squoshes, beans, and peas. But in the common |onguoge of the
people, [..] all these are vegetables which are grown in kitchen gardens, and which, whether eaten
cooked or raw, are, like potatoes, carrots, parsnips, turnips, beefs, cou|if|ower, cobboge, ce|ery, and
|eHuce, usuo||y served at dinner in, wi’rh, or after the soup, fish, or meats which constitute the
principal part of the repast, and not, like fruits generally, as dessert” [263]. The name Lycopersicon,
bestowed by Miller in 1788, is universally recognized and adopted by researchers studying
fomatoes.

1.41 History

The history of tomato dates back to 700 AD, in the tropical regions of South America (Pery,
Bolivia, Ecuador) or Mexico, where wild plants can be still found. The word "tomato" itself is
believed to have been derived from the Aztec Nahuatl word "tomatl" [264] that gave rise to the
Spanish word “fomate”. It was first intfroduced in Europe from Spanish explorers in the early 16th
century, and was cultivated in various European countries, including Portugal, Spain, Italy, France,
England, and Belgium. It was initially used as a food by the ltalians. Italy holds the distinction of
providing the first recorded description of the tomato in 1554, affectionately referring to its fruit
as "golden apples" (pomi d' oro), possibly because one variety of the plant bore fruits with a
srriking ye||ow hue. In the northern Europe, tomato was origino”y cultivated as an ornamental
p|or1f and was considered poisonous. However, this is porﬂy true, since all the green parts of the
plant contain the neurotoxin solanine. It's cultivation in the USA began two centuries later.

Tomatoes are divided in two categories, based on the direction of the produc‘rion; the first is the
fresh consumption and the second is the processed tomato, where the produc’rion is processed info
other |oroo|uc’rs. A pivo’ro| moment in the hisfory of tomato processing occurred in the eor|y 1800s
in the United States with the emergence of canning tomatoes as one of the earliest forms of
tomato processing. However, a significant breakthrough came about in 1893, when John W. Gates,
an innovative entrepreneur and inventor, introduced the pneumatic tomato-paste process. This
groundbreoking innovation revolutionized the producﬁon of tomato paste, rronsforming it info a
fundamental ingredient for various food products.

The eor|y 20th century witnessed a remarkable expansion in fomato cultivation, predominonﬂy
driven by the burgeoning canning indusfry's demand for tomato paste, as elaborated by Gould in
2013 [265]. In Greece it was originally cultivated in the Dodecanese. In 1915, the production of
tfomato paste in a small pre—indusfrio| recrmo|og\/ |o|omL in the vi||oge of Messaria in Santorini
[266]. In just seven years, one of the first tomato canning factories in the Balkans was built, that
was a state-of-the-art rechno|ogy rtocfory at that time. After 1945, there was a significonf expansion
in the tomato processing industry. Modern industrial processing units were created, and they had
a daily processing capacity of 3,500 baskets of tomatoes, indicating the growing importance of
fomato processing in the region.

With the grow’rh of the food indusrry and an increasing demand for convenient food produc’rs,
tomato processing continued to evolve. This suggests that the tomato processing inolus‘rry odop‘red
fo chonging consumer preferences and fechno|ogico| advancements to meet the growing demand
for tomato-based produc‘rs
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1.4.2 Breeding

Tomatoes intended for processing are primarily grown in fields, while fresh tomatoes can be
cultivated either in fields or greenhouses, with or without tfemperature control. Over time, breeding
objectives for tomatoes have evolved, with cultivars released and growing systems modified.
AHnough three main objecﬁves persisr—odopfobihry to the environment, resistance to pests and
diseases, and fruit yield and quality—tomato breeding has gone through four distinct phases:
breeding for yield in the 1970s, for shelf-life in the 1980s, for taste in the 1990s, and more recently,
for nutritional value [267-271].

Figure 10. Processing tomatoes grown in open fields. Source: Personal Archive

Breeding efforts in tomato started more than 200 years ago [267]. Until the 1950s, tomato
breeding developed multipurpose cultivars to meet several needs. Some interesting traits were
intfroduced such as tolerances to abiotic stresses, broad odopfobihry to different environments and
eor|y fruit maturity. Subsequenﬂy, breeding objec’rives depended upon the method of producﬂon:
open field vs greennouse producﬂon, and whether the fruits are used fresh or processed [272,273].
Processing tomato needed the introduction of spech[ic morpno|ogico| and pneno|ogico| traits such
as: deferminate growfn habit, concentrated Howering and fruit sef, canopy suitable for once-over
machine harvest, easy separation of fruit from the vine (jointless characteristic) [272,274]. More
specifico”y, varieties intended for processing should possess the fo||owing specific attributes [271]:

e Concentrated Flowering and Fruiting: These varieties should exhibit a concentrated pattern
of Howering and frui‘ring, which means that a significonr number of flowers should deve|op
into fruits in @ re|orive|y short time frame. This characteristic ensures efficient machine
norvesring.

e Determinate Growth Controlled by the sp. Gene: The plants should have a determinate
growth habit controlled by the "spontaneous self-pruning” (sp.) gene. This genetic trait helps
control the size and structure of the p|on’r, moking it more conducive to mechanical horves’ring.
The "spontaneous self-pruning” mutation (sp.), which emerged in 1914, allowed the
deve|opmen‘r of bushy growfn habit cultivars. This mutation also concentrated flowers and,
consequenﬂy, fruits, con’rribu’ring to fruit firmness and resistance to over-ripening. Cultivars
with this mutation became the preferred choice for mechanical harvest. The "jointless"
mutations (j and j2) are characterized by the absence of an abscission zone in the fruit pedice|,
enabling harvest without calyx and pedicel, resulting in fruit free from any "green" parts [271].
The presence of a join’r|ess pedice|, which means that there is no natural separation point
between the fruit and the stem, is desirable for machine horvesﬂng. This feature allows the
fruit to be cleanly detached from the plant without leaving any "green" parts behind.

e Elongated Fruit Shape: In general, varieties with elongated fruit shapes tend to suffer less
damage during machine harvesting compared to round or irregularly shaped fruits. This
attribute contributes to nigher yie|d retention.
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e Resistance to Cracking, Crushing and Puncture: Varieties should be resistant to fruit cracking,
which can occur due to environmental factors or uneven ripening Processed tomatoes should
also have fruits that are resistant to crusning and puncture. This ensures that the fruits remain
intact during the mechanical norves’ring process and maintain their quo|i’ry for processing.

e  Uniform Fruit Set and Synchronous Maturity: Uniformity in fruit set and ripening is crucial for
mechanical norves’ring systems. Synchronous mafturity, where fruits on the same p|on‘r ripen at
the same time, is often a dominant or overdominant trait that is po|ygenico||y inherited. This
trait is highly desirable for efficient machine harvesting because it minimizes the need for
rnu|Jri|o|e passes inrougn the field and ensures that the machine can efficienﬂy collect fruits at
the rignf stage of maturity.

Moreover, also specii(ic fruit quo|ify fraits are required, such as: low poH, nign soluble solids, total

solids and viscosity [265,267,275].

A significant milestone in tomato cultivation has been the breeding of cultivars specifically
designed for mechanical norvesfing. The creation of VF 145, which was the first cultivar intended
for mechanical norvesﬂng and subsequenﬂy became a major p|oyer in the California processing
tomato industry for over a decade, is a fascinating story (G. C. Hanna, unpublished) [272]. In the
early stages, the concept of tomato harvesters didn't even exist, and there was no clear idea of
how they mign’r function. However, two critical needs were identified: the fruit needed greater
firmness to withstand machine nond|ing, and the p|onJr had to have a very short fruit-set period fo
ensure a nign percentage of ripe fruits at the same time. Hanna's vision for a machine-harvestable
cultivar began to take shape in 1947 when he released a small determinate strain resulting from a
cross between 'Gem' and 'San Marzano,' known as 'Red Top.' By using 'Gem' as a parent, he
deve|oped mu|iip|e small determinate strains. Unforiuno’re|y, these strains were more suscep’rib|e
to verticillium wilt at the beginning of fruit ripening, |eoding to small clusters of sunburned fruit.
The neovy concentration of fruit on these small p|onis created stress and increased their
vu|nerobi|i’ry to disease. To address this issue, a verticillium-resistant strain known as VR 11,
deve|oped at the USDA, was introduced to incorporate disease resistance.

Efforts to deve|op fomato varieties specifico“y suited for machine norvesﬂng have been exfensive|y
reviewed by Lukyonenko [276], indicofing the importance of ongoing research and breeding fo
meet the demands of modern ogricu|’ruro| practices and processing industries. These efforts aim
tfo optimize tomato varieties for efficient and cost-effective mechanical norves’ring, u|’rimoie|y
benefifing both growers and consumers.

1.4.3 Water and Nutrient management

Irrigation and the obsorpfion of essential nutrients are pivoio| factors in the deve|opmen‘r of field
crops, with processing tomatoes being a notable exomp|e.

The way in which field crops like tomatoes absorb nitrogen and potassium undergoes a specific
patftern Jrnroughou‘r their growfn cyc|e (Figure 1). |nifio||y, the upioke of these two essential
nutrients is re|oiive|y slow. However, as the |o|on’rs progress inrougn the Howering stages, their
demand for nitrogen and potassium ropid|y increases. This surge in nutrient up’roke is por‘ricu|or|y
crucial during the Howering period, as it sets the stage for the deve|opmeni of neloy and
productive tomato plants.
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Figure 11. The uptake dynamics of the macro- and the secondary nutrients by a tomato plant. Source: [277]

When it comes to potassium, its demand and obsorpﬁon reach their peok during the phose when
the fruits are Forming and maturing (Figure 12). This nutrient plays a pivotal role in fruit
deve|opmen’r, con’rribu‘ring to the overall quo|i’ry and yie|o| of the crop.

On the other hand, nitfrogen up’roke predominonﬂy occurs after the formation of the first fruit. This
fiming is signh(icon‘r because it o|igns with the period when the plant diverts its energy and resources
towards producing and ripening the fruit, moking nitrogen crucial for this phase of growfh.

In addition to nitrogen and potassium, other essential nutrients like phosphorus (P), calcium (Ca),
and magnesium (Mg) are also vital for the overall health and produc’rivi‘ry of the tomato p|chr.
These nutrients are needed at a re|o‘rive|y consistent rate Throughou‘r the entire |ifespon of the
p|ont Phosphorus is essential for root deve|opmen’r and overall p|on’r vifo|ify, while calcium and
magnesium are important for various physio|ogico| processes, such as cell structure and
pho’rosynfhesis. Ensuring that these nutrients are supp|ieo| in odequofe guanftities and at the righf
times is crucial for optimizing the growfh and yie|d of processing tomatoes.
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Figure 12. Daily uptake rates of plant nutrients by processing tomatoes yielding 127 ton/ha. Source: [278]

A number of studies [279-284] provide further details and insights into the specific practices and
strategies used in managing nutrient upfoke in the context of this crop.

When it comes to processing tomatoes, one distinctive characteristic is their substantial demand
for water [285]. The reproduc‘rive phose of the p|om‘r, especio”y the critical ﬂowering stage, is
exceptionally sensitive to any form of water stress [286].
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The quantity of water required by the crop is contingent on several factors, inc|udirig the p|on+'s
deve|opmen’ro| stage, prevoi|ing tfemperatures, the rate of evapotranspiration (Figure 13), soil type,
and the quality of the water [287]. Interestingly, the irrigation schedule preceding the Howering
and maturation of the initial fruits seems to have minimal influence on the crop's performonce, as
long as the soil moisture level at the time of planting is close to field capacity [288]. At this early
stage of its growth, the plant's water demand remains relatively low due to its limited surface area
for evaporation and its underdeve|oped root system. Consequenﬂy, in most cases, the natural
moisture content in the soil is sufficient to prevent any water-related stress that could odverse|y
affect the crop.
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Figure 13. Evapotranspiration from four cultivars of bush tomato grown in the open field in California. Source: [289]

During the initial stages of growth, processing tomato plants have relatively lower water
requirements. Irrigation is ‘rypico”y mcmoged to ensure that the soil remains consisrenﬂy moist but
not wofer|ogged. This he|ps establish a strong root system and promote heloy vegetative growfh.
As the tomato p|onfs transition into the Howering and fruif—se’r’ring stage, their water needs begin
to increase. This is a critical phcrse where odequore water ovoi|obi|i’ry is essential for successful
po||ir10riori, fruit formation, and eor|y fruit deve|opmenf. Evapotranspiration rates are re|orive|y
higher during this period. The fruit deve|opmerii stage is when processing tomatoes require the
most water. As the fruit exponds and matures, the water demand peoks. Proper and consistent
irrigation is crucial to support fruit growrh and prevent issues like blossom-end rot or fruit crocking.
Towards the end of the growrh cyc|e, as the fruit begins fo ripen and mature, the water
requirements start to decrease. It's important to grdduo“y reduce irrigation fo avoid over-watering,
which can negorive|y impact fruit quo|iry. Several studies [290-292] offer comprehensive insighrs
and detailed information regording the specific practices and strategies emp|oyed for managing
nutrient up’roke in the context of processing tomato cultivation.

It's worth noting that |omd—|eve||ing is also necessary for an even water distribution from either rain
or irrigation water and diminishes the donger of Worer|ogging (Figure 14). When soil becomes
worer|ogged, it quick|y and significonﬂy transforms both the physico| and bio|ogico| conditions of
the root environment for processing tomato |o|cm’rs. In reaction to this Wofer|ogging, various
physio|ogico| chonges take p|oce within the p|orif, profound|y inﬂuencing its growrh and
deve|opmer1’r. The primary consequence of sail Hooding is a significon’r restriction in the diffusion
of oxygen to the root zone, which has a pervasive impact on the |o|on’r's overall we||—being.
Addi’riono”y, it's important to high|igh‘r that drough‘r conditions can also result in decreased crop
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yields [293]. Drought-induced water scarcity can significantly impact the growth and productivity
of the crops (Figure 14).

Figure 14. i) Waterlogging and ii) Drought Events on Processing Tomato Crops. Source: Personal Archive

In summary, ochieving successful processing tomato cultivation necessitates precise nutrient and
water management. The intricate re|oﬁonship between nutrient obsorpﬁon and p|on+ deve|opmen’r
is c|ose|y tied to effective water management, especio“y during the sensitive ﬂowering phose.

1.4.4 Phenological cycle

The pheno|ogico| cyc|e of processing fomato is the sequence of deve|opmenfo| stages that the
tomato plant goes through from seed to harvest. The phenological cycle can be divided into four
main phctses: germination, vegetative growfh, reproduc’rive grow’rh, and ripening Figure 17.

Germination

Germination is the fundamental process of a seed sprouting and the subsequen’r emergence of a
seed|ing. The successful germination of a seed is contingent on several factors, inc|uding
tfemperature, moisture levels, and the ovoi|obi|i’ry of oxygen in the soil [294].

Under ideal conditions, germination typically occurs within a span of 5 to 10 days. To further
enhance the germination process, biostimulants like chitosan can be employed. These substances
have the capacity to augment the overall seed vigor, accelerate the germination rate, and improve
the quo|ify of tomato seed|ings. Tomato Jrronsp|onrs for open-ﬁe|d produc’rion could be raised in a
greenhouse or in tunnels if ’rhey are fo be grown in a season when climatic conditions outside would
not be favourable for grow’rh. If fhey are to be produced when climatic conditions are suitable
Jrronsp|onrs could be grown outside in soil on raised, We||—prepored beds. In a nursery sown in the
ground in open field or tunnels, the row distances should be 8-12 cm.

In recent years produc’rion of ‘rrdnsp|dn‘rs has been more and more the province of speciohzed
commercial nurseries. This is because hybrid varieties are now used exfensive|y with fresh market
tomatoes and also with processing fomatoes to a lesser extent. Many growers find it more
convenient, safe and profi’rob|e to buy the reody p|om’rs from a specid|is‘r nursery (Figure 15). The
principo| odvonroge of the current hybrid cultivars has been more consistent performcmce, so that
growers can gef so‘risfoc‘rory yie|ds when weather and cultural conditions are poor. There is
evidence that the bigger the ’rronsp|on‘r the earlier the yie|d, but the more expensive the p|on‘rs will
be and more labour and skill needed to handle the p|dnf [295]. Increasing the age of the ’rromsp|cm‘r
had an unfavourable effect on the subsequen‘r yie|d.
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Figure 15. Photographs depicting the transplanting of processing tomato hybrids in a pilot field. Source: Personal Archive

Following germination and transplanting, vegetative growth proceeds at first alone and then
coincident with reproductive growth.

Vegetative development

The vegetative grow‘rh phose represents a period of ropid deve|opmenf and expansion of p|on+
organs, inc|uo|ing roots, stems, |ec1ves, and branches. In the context of tomato p|on+s, vegetative
deve|opmen‘r can also be associated with the rate of leaf appearance, which is c|ose|y linked to
the appearance of trusses, given the species' sympodic nature, ‘rypico”y producing one inflorescence
every three leaves [296].

This growth phase typically extends for a duration of 40 to 60 days following germination [297].
The deve|opmen‘r of the first flower-trusses and fruit-set can be onficipo‘red rough|y 4-7 weeks after
seeding or 2-3 weeks after frcmsp|cnr1+ing in processing tomatoes, 0|Though the exact timing
c|epenc|s on the spechcic growing habits of the varieties. Indeterminate tomato types often initiate
the first flower-truss after 7-11 leaves, while most determinate varieties tend to do so after 5-7

leaves [298].

Numerous factors influence this stage, inc|uding |igh’r, temperature, water ovoi|0bi|i’ry, nutrient
supply, and plant density. Research conducted by Van der Ploeg and Heuvelink in 2005, the
optimal temperature for the early vegetative growth of tomato plants is around 25°C [299]. De
Koning's work in 1993 further high|igh‘rec| the impact of temperature, indicq‘ring that the number
of trusses per week increases by opproximo’re|y 0.05 trusses per week for each degree Celsius rise
in temperature [BOO]. His research also demonstrated a linear correlation between the leaf
appearance rate and the average air temperature. This rate increased from 0.2 leaves per o|oy at
12°C, peaking at 0.5 leaves per day at 28°C, and then declining to zero at 48°C [301].

Addi‘riono”y, the work of Adams et al. in 2001 revealed that the op‘rimo| femperature range for
vegetative development in tomatoes falls within 22°C to 26°C [302]. Similar temperature values
were also observed for the eor|y reproducﬂve phcse (progression to anthesis). Furthermore, the
research indicated that the rate of truss appearance exhibited a linear increase from O.11 to O.17
trusses per day as the average temperature rose from 17°C to 23°C. Simultaneously, there was a
strong correlation between weekly "above-ground" fresh weight growth and the light received by
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the crop each week[301]. However, the efficiency of light utilization (weight increase per unit of
|ign’r) was norgb|y nigner during the initial pngse of growrn.

It's interesting to note that many plants exhibit an optimal temperature for photosynthesis that
closely aligns with their typical growth temperature, as suggested by Lambers et al. in 1998 [303].
For tomatoes, which thrive in temperatures between 22 and 30 °C, single-leaf photosynthesis
operates optimally between 20 and 30 °C under normal CO2 levels; this range shifts to 25-30 °C
under elevated CO?[303-305]. In an experiment by Xu et al. in 1999, net photosynthesis increased
from 18 to 23 °C but declined beyond 23 °C, with dark respiration increasing exponentially [306].
Ogweno et al's 2009 study exposed detached tomato leaves to temperatures of 15, 25, and 35 °C
for 5 days, showing similar photosynthetic rates at 15 °C and 25 °C, with significantly lower rates
at 35 °C [305]. Hu et al. (2006) found that decreased photosynthesis at 35 °C was due to impaired
pno’rosyn’rneﬂc apparatus, not stomatal function [307]. The opﬁrng| temperature for phorosyn’rhesis
in tomatoes at 350 ppm CO2 is reported to be between 22 °C and 30 °C, whereas low
temperatures of 4-6 °C dramatically reduce photosynthesis, with photosynthesis ceasing at 1 °C
[308,309].

Vegetative growrn can be enhanced by using biostimulants, which can increase the plant heighr,
stem thickness, cn|oropny|| content, and water use efﬁciency of tomato p|onr [297]. The duration
of the vegetative pnose may be pro|ongeo| by deficiencies of inorganic nutrients in the rooting
medium.

It's essential to recognize that the majority of our know|eo|ge concerning the vegetative growrh of
tomatoes is derived from studies invo|ving greennouse cultivars grown under controlled
environmental conditions [298]. Consequen’r|y, the existing literature primori|y pertains fo fomatoes
cultivated in greenhouses, and there is relatively less information available regording fomatoes
grown in open fields. Nonetheless, when summarizing these studies, we can distil that this pnose is
characterized by the rapid development of roots, stems, leaves, and branches, typically spanning
a 40 to 60—d0y period post-germination. A multitude of factors, inc|uding |ignf, tfemperature, water
ovoi|obi|iry, nutrient supp|y, and p|on‘r densify, come info p|oy during this growfh phose, with
tfemperature emerging as a signir(icon’r influencer. An oprimcr| temperature range of 22-26°C is
observed, offecﬁng various facets of grow’rn. No‘rob|y, pnorosynrnesis is also temperature-sensitive,
with an ideal range of 20-30°C under normal CO2 levels.

Reproductive growth

Reproductive growth marks the phase of a plant's life cycle that involves essential processes such
as flower initiation, po||inoﬁon, ferri|izorion, and the fruit set. Various focfors, inc|uo|ing
tfemperature, doy |engrn, |ighr infensity, water ovoi|obi|iry, and the influence of p|on‘r hormones
s+rong|\/ influence this stage. Typico”y, the reproduc’rive grow‘rn phose extends over a perioo| of 20
to 40 days [310].

The formation of flowers (Figure 16) is a prerequisite for the formation of fruits, and ﬂowering
de|ctys can lead to fruit producrion de|0ysr F|owering fypico”y begins around 55 doys after
transplanting and continues until approximately 88 days after transplanting [311], depending on
environmental conditions and cultivars. Variations in the rate of flower formation can have
significomL imp|icoﬁons for fruit producﬁon at different stages of a crop's growfh Short-term spikes
in yie|c| may be linked to the emergence of an unusug”y nign number of flowers within a sing|e
inflorescence, as noted by Hurd and Cooper in 1967 [312]. Alternatively, a rapid initiation of
successive inflorescences can also contribute to increased yie|d. This pnenomenon becomes
porﬁcu|or|y crucial when there's a demand for nign \/ie|ds eor|y in a crop's |ifecyc|er However, it's
essential to note that such obrup‘r increases in fruit producﬂon mignf frigger grow‘rn restrictions
later on due to the competing demands of developing fruits, as discussed by Fisher in 1977 [313]
and further elaborated on by Slack and Calvert in 1977 [314].
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Figure 16. Formation of the first flowers in processing tomato crop. Source: Personal Archive

In both indeterminate and determinate tomato cultivars, the producfion of fruits can face
limitations when flowers fail to cleve|op into viable fruits. In some cases, flowers may ceadse their
growfh and wither premo’rure|y before fhey even have a chance to open. In harsh environmental
conditions, characterized by high femperatures and low levels of sun|ighf, it's possib|e for all the
flowers on an inflorescence to be lost. When this occurs during the early stages of floral
deve|opmen’r, the inflorescence remains underdeve|opeo| and appedrs as little more than a bu|ging
piece of tissue emerging from the stem[315].

Heuvelink (2005) reporfed that flower fertilization in tomatoes is greo‘r|y reduced at tfemperatures
outside the 5 to 37 °C range and that pollen tube growth rate is adequate within this temperature
ronge[304]. A linear relation between Howering and air femperature has also been observed

by Abreu et al. [316].

In addition to temperature, irrigation another principo| component of this stage. Studies have
shown that the irrigation regimen significonﬂy influences the number of flowers and fruit
production [311]. A study conducted by Takahashi, Equchi, and Yoneda in 1973 demonstrated that
flower initiation was nofob|y de|oyeo| when there were deficiencies in essential nutrients such as
nitfrogen, phosphorus, and potassium. |mpor’ron‘r|y, these o|e|oys in flower initiation due to nutrient
shorfoges migh‘r indicate a broader deceleration in the overall growfh and deve|opmen+ of the
enfire p|on‘r, rather than hoving isolated effects specific to the Howering process [317].

Moving on to the fruit set stage, the first fruit buds become visible opproximot’re|y 50 cloys after
’rrcmsp|cm’ring. In the process of po||ino’rion and fruit setting temperature p|0ys a pivo‘ro| role, as
high|igh‘reo| in various scientific studies. The tfemperature range for fruit setting in fomatoes is
narrow, with por’ricu|or sensitivity to nigh’r’rime temperatures. A no’rewor’rhy s’rudy [281]
demonstrated that the most critical stage for successful po||inc1ﬂon appears to be meiosis, a process
occurring approximately 9 days before the flowering stage. According to these authors, the optimal
temperature range for effective pollination typically falls between 17 and 24 °C. High-temperature
conditions may result in cone sp|i’r’ring, stigma exertion, and |oo||en sferi|i+y, with maximal doyﬂme
temperatures exceeding 32 ‘C and minimal nighttime temperatures above 21 °C significantly
reducing fruit set [318,319]. Similarly, the research by Atherton and Harris (1986) suggests that
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fruit pollination faces the risk of failure when temperatures exceed 40 °C [281]. However,
differences may occur between heat-sensitive and heat-tolerant tomato cultivars. This underscores
the crucial role of temperature in the pollination and iruii—se‘r‘ring process.

Fruit growth and progression to maturity

The fruit yield of a tomato plant depends on both the quantity and weight of individual fruits,
making proper fruit set and development crucial for achieving high tomato yields. However, the
market value of the fruits is determined by factors like fruit quo|iiy (such as size, shope, firmness,
co|or, taste, and solids conieni) and market dernond, which can vary with the season, especio”y
for fresh market tomatoes. In practice, both the quantity and quality of fruit yield have been
enhanced by manipulating the processes involved in fruit development, from pollination to
maturity. While fruit quo|iiy has seen improvements ’rhrougi’i p|0ni breeding, the quantity of fruit
has been increased, particularly in greenhouses, by carefully coniro||ing the growing environment
tfo optimize growin processes.

To attain fruit maturity, it's essential fo accumulate a critical temperature sum during an individual
fruit's growth period [296]. In the case of indeterminate greenhouse tomato varieties, the duration
of fruit grow‘rh represents the time it takes for an individual fruit to progress from anthesis (the
ﬂowering sioge) fo opiirnc1| ripeness for hand ndrves’ring within the same cohort. For indeterminate
greennouse cultivars, flower cluster formation and ripening continue over several months, even as
the first fruits are being harvested. In contrast, semi determinate iie|d—grown tomato varieties,
‘rypico”y harvested over 1 to 2 weeks, exhibit a distinct pattern where the time for an individual
fruit to deve|op from anthesis to maturity (green—breoker s’roge) for the initial |0rger fruits c|ose|y
C||igns with the entire crop's duration from the first fruit setting tfo full crop maturation, usuo||y
taking only a few days [320].

Temperature is a pivofo| factor inﬂuencing the duration of the tomato fruit growin period, as
highlighted by De Koning's research [321]. His results showed this period to be 73 days at 17 °C
and 42 days at 26 °C. Similar results were observed by Rylsky in 1979 [322]. and Verkerk in 1955
found that the time interval from anthesis to harvest was 90 doys at 13 °C, 53 doys at 19 °C, and
40 days at 26 °C. [315]. For this later phase, Adams et al. [302] dentified an optimal temperature
of 22°C, while De Koning [301] suggested approximately 21°C as the optimum.

Adams et al. (2001) and Adams and Valdez (2002) found that as tomato plants were grown at
different temperatures (14, 18, 22, and 26 °C), the time required for fruit ripening varied: 95, 65,
46, and 42 days, respectively[302,323]. Notably, elevated temperatures affected the later stages
of fruit maturation more. Increasing temperatures from 18 to 25 °C for three weeks reduced the
time to harvest by 8.7 to 11.2 days. Aikman (1996) proposed that the time from anthesis to maturity
for tomato is 806 degree-days [324]. Using the 4 °C of De Koning (1994), this time translates to
940 degree-days, whereas Scholberg et al. (1997) calculated 722 degree-days using a base
temperature equal to 10 °C [301,325]. Beyond these differences in computing thermal units, it is
also |ii<e|y the cultivars may differ in the duration from anthesis to harvest maturity.

The influence of the irrigation regimen appears to be less signiicicomL when compored to the choice
of tomato variety [326]. In genero|, infensive irrigation opp|ied during the fruit deve|opmeni and
maturation pnose is shown to have an unfavorable impact on several quo|iiy indicators, as
reported in previous studies [288,327,328]. More recent research studies have focused on assessing
the effects of deficit irrigation on various aspects, inc|uding p|oni growfn, pnysio|ogico| fraits, yie|d,
and water productivity, in the context of processing tomato cultivation [286,311,311,329,330].

Varieties with concentrated fruit set, especio”y processing fomatoes, can be oriiiicio”y ripened by
spraying the entire field with commercial einephon. The amount of eihephon to be opp|ied depends
very much on temperatures prevoi|ing at the time of opp|ico‘rion and during the fo”owing three
doys. This fecnnique allows for the synchronized ripening of fruits, which can be odvoniogeous for
|orge—sco|e harvest and processing operations.
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Summarising the results, opfimoi tfemperatures for this later fruit grow‘rh phose are around 21-
22°C, as observed in different studies, with temperature playing a critical role in determining the
duration of the fruit growih period [321]. The warmer the temperature, the shorter the time it takes
for tomatoes to reach maturity, while cooler temperatures prolong this period [322]. Variations in
femperature can signiiiconfiy impact the time required for fruit ripening, with elevated
temperatures accelerating the process. An estimate of 806 degree-days was suggested for
tomatoes to mature, based on a speciiic temperature threshold [324]. Some studies calculated a
different value of 722 degree-days, accounting for variances among tomato cultivars [301,325].

Figure 17. Phenological stages of the processing tomato: i) Vegetative development, ii) Reproductive growth, iii) Fruit
growth and progression to maturity. Source: Personal Archive

Harvest

Deciding when to terminate irrigation in processing tomatoes requires careful consideration. It
involves assessing its pofenﬂoi impact on fruit quoiiry, porficuioriy the TSS content, as well as the
risk of fruit rot. In cases where mechanical harvesters are used (i:igure 18), the soil surface needs
to be suiiicien’riy dry for the harvester to function eiiecfiveiy. The period between the last sprinkier
irrigation and harvest can range from 25 to 30 doys in medium and heovy soils, depending on soil
and climatic conditions. In very warm regions, irrigation may be extended up to 10-12 doys before
harvest.

Under op‘rirnoi climatic conditions, provided that pionr diseases and pests have not signiiiconriy
domoged the ioiioge, the ideal fime to commence norvesring a tfomato field is when opproximoreiy
90% of the fruit has reached a red or pini< coloration [295]. In most countries where processing
tfomatoes are grown, a singie, comprehensive harvest is conducted. This process involves cutting
the entire pion‘r atf ground level or monuoiiy uproofing it and shoking it to release the fruit.
Subsequenriy, the fruit suitable for processing is collected either by hand or mechonicoiiy and
pioced into bins, gondoios, or tandem truck trailers for tfransportation to the processing iociii’ry.
Modern tomato varieties intended for processing are well-suited for this method due to their iiigiiiy
concentrated fruit set and their capacity to retain ripe fruit on the vine without deterioration. These
fruits can maintain their quality for 25-35 days after reaching full ripeness, making it possible to
utilize 90-95% of the fruit harvested at once for processing. Furthermore, the fruit's consistency
enables mechanical horvesﬂng and bulk fransportation with a load heign‘r of 1.0-1.5 meters without
causing domoge that would lead to rejection by the indus’rry. Hondpicking would require 3-5 labor
hours per metric ton, while machine norvesiing can be occompiisned by a team of 6-15 individuals
operating the harvester, with the capacity to harvest 20-30 tons per hour.
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Figure 18. Mechanical harvesting and processing of tomato. Source: Personal Archive

Fruit soluble solids content is also of tremendous importance to the processing tomato industry.
Soluble solids encompass sugars and organic acids, and their ratio, combined with volatile aroma
composition, defines the fruit's flavor. Organic acids also determine the pH of the final product. A
pH above 45 can lead to the growth of microorganisms, spoiling the product. To address this
issue, higher temperatures and extended processing times are necessary but also increase
processing costs. Insoluble solids, consisting of cell wall components and proteins, influence fruit
firmness and the viscosity of final produds like tomato juice, kefchup, soups, and paste.

The quality of the fruit delivered to the processing plant is usually outlined in the contractual
agreement between the grower and the processor. Quo|i+y standards may encompass factors such
as color, the percentage of green and pink fruit, the presence of c|ry or wet wounds, mold, Foreign
materials other than tomatoes, the presence of co|yx on the fruit, over-ripeness, the presence of
worms or worm-related damage, peelability, and TSS measurement in Brix (Figure 19).

Figure 19. Quality standards measurements in processing tomato. Source: Personal Archive

When cultivated under stressful conditions, Tomatoes tend to exhibit enhanced flavor, and their
shelf life may show a s|igh’r improvement for the same uno|er|ying reasons. The more water is

supp|ieo| to these |o|on‘rs, the higher the yie|o| fhey fypico“y produce, but this can come at the cost
of a decrease in Total Soluble Solids (TSS).
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1.4.5 Significance of Processing Tomato

The tomato ranks as one of the most Wide|y consumed vege’rob|es g|obo||y, second on|y to potatoes
and ahead of onions and considered among the most favored garden crops [331]. From 1961 until

nowadays the European tomato yield increased by ~ 250% (FAOSTAT, 2018)[332]. It is estimated
that on average about half of the increase in crop productivity was due to cultivar improvement
through breeding[333]. While tomatoes are grown in over 100 countries, more than 80% of the
production is concentrated in the United States, Ching, ltaly, Iran, Turkey, Spain, Brazil, Portugal,
Greece, and Chile [334]. The majority of tomato production, about 90%, takes place in the
northern hemisphere, primarily in regions like the Mediterranean, California, and China[334].
|n+eres’ring|y, while Europe and the America were the dominant producers two decades ago, the
|ondscope has shifted significonﬂy, with Asia now ’roking the lead in the g|obo| tomato market.
China holds the top spot, followed by India, the USA, Turkey, Egypt, Iran, Italy, Brazil, Spain, and
Uzbekis’ron, in that order [331]. In Europe, countries with the highesf tomato yie|ds are often found
in northern Europe, where the climate isn't por’ricu|or|y favorable for tomato cultivation, and the
dedicated cultivation areas are relatively small [331]. These nations heavily rely on controlled
greenhouse conditions for tomato produc’rion. When it comes to tomato consumpftion, three
countries stand out as the leaders: Libya, Egypt, and Greece, with each exceeding 100 kg per
capita per year[331]. Broadly speaking, the Mediterranean and Arabian countries exhibit the
highesf tomato consumption levels, with average figures ranging from 40 to 100 kg per capita per
year[331].

In 2011, the world experienced a remarkable global production of nearly 160 million tons of
tomatoes, ronking it as the seventh most significonr crop species, Jrroi|ing behind maize, rice, wheor,
potatoes, soybeons, and cassava[331]. Out of 160 million tons total tomato producﬂon, about 40
million tons are processed tomato production [335].

Tomato processing encompasses a wide range of methods, inc|uding canning, moking tomato
paste, producing tomato sauce and puree, drying tomatoes, and creating various tomato-based
produc’rs. The processed tfomato induerry p|oys a vital role in providing consumers with yeor—round
access to tomato products and contributes significantly to the global food supply chain. Being rich
in antioxidants such as lycopene and carotenoids [336,337], the processing tomato fruit is a raw
material in the produc‘rion of kefchup, dried tomato fruits, and |ycopene producrs[BH]. In genero|,
the quo|ier of the tomato fruit can affect the quo|i+y of the final produc’rs. The quo|i’ry of fruits is
highly related to its maturity degree. For example, soluble solids content (SSC) is a key quality
attribute that has an impact on the flavor, consistency, and taste of processed produc’rs. The level
of titratable acid and |ycoper1e can affect the ocidiry and color of processed producfsr Therefore,
these are key indicators for assessing the quality of processing tomato[338]. Traditional testing
methods to measure quo|iry attributes such as SSC, titratable acid and |ycopene require a
destructive somp|ing procedure and a series of comp|ex and fime-consuming experimenro|
operations, which makes it difficult in ochieving a |orge—sco|e of fruit testing due to the high cost
of labor-work and chemical usage [339]. Therefore, there is an increasing demand in the fruit
indusrry to seek ropid and non-destructive festing solutions for nutritional quo|ify determination
and fruit maturity stage classification.

Greece, despife its minor role in g|obo| tfomato produd producﬁon (12%), stands out as a
remarkable exporter with a wide reach [340]. The tomato products are shipped to over 40
countries, including Europe, the Middle East, the Far East, and the USA. In 2017, Greece achieved
notable ronkings g|obo||y, ronking 10th in paste exports, 4th in canned tomato exports, and 35th
in sauce exports [340]. Their revenue from exports reached 13th place worldwide, with a turnover
of USD 76 million (approximately EUR 62 million on average over the past five marketing years).
This success underscores Greece's obi|i‘ry to eHec’rive|y penetrate international markets, despife its
re|o’rive|y small share of g|obo| tfomato produc’r produc’rion [340].
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Figure 20. The exported quantities of Greek processing tomatoes on international markets over the past two decades.
Source: [340]

The Greek tomato industry primarily focuses on exporting tomato pastes and canned tomatoes,
while the export quantities of sauces and ketchup remain relatively small (Figure 21). In 2022,
revenue generofed from the external sales of tomato pastes amounted to opproximo’re|y EUR 41
million[341]. Addiﬂono”y, the financial significonce of canned tomato exports in Greece's foreign
trade results has seen a substantial increase, rising from 28% in 2013 to over 44% in 2022, with an
income of about EUR 37 million in 2022. In contrast, exports of sauces have shown little variation
over the past decade, consisfenﬂy con‘rribu‘ring around 6% to the total income, resu|‘ring in an
average annual turnover of approximately EUR 4.6 million over the past five years.

Greek Exports of Tomato Products (mT)
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Figure 21. The quantities of Greek tomato sauce, pastes, and canned tomatoes have been exporfed over the past

decade. Source [341]
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Overall, Greek exports of tomato products, which have increased significantly in quantity and value
in recent years, generated an overall turnover of about EUR 83 million in 2022, of which 57% on
European Union markets and 95% on the European continent as a whole (Figure 22).

Revenue from Greek Exports of Tomato Products
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Figure 22. Revenue of Greek exports of tomato products over the past decade, according to category and region of
destination. Source [341]

According to the Figure 22, the export dynomics show a s|ighf decline during the pre-pondemic
period (2017-2019), but there was noticeable progress in the subsequent years.

Overall, since its discovery in the 16th centfury and its initial steps info domestication and breeding,
the tomato has evolved into one of the most, if not the most, crucial vege‘rob|e crops on a g|obo|
scale [331]. The tomato isn't just a siop|e in the fresh produce market; it also p|oys a pivo‘ro| role
in the processing indusrry, serving ads the foundation for soups, paste, concentrate, juice, and
kefchup. The profound signiiciconce of this fruit arises from its excepiiono| quo|iiy attributes,
unmatched verso‘ri|i‘ry, and ior-reocning impact on the food indusiry and international trade. The
fomato is a cu|inory cornerstone that has left an indelible mark on the g|obo| food indusfry.
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Aim and Obijectives

This research is designed to make a valuable contribution to the field of precision agriculture, by
exploring the potential of state-of-the-art technologies and techniques for yield prediction. The
primary objec’rive was to formulate and assess a comprehensive meThodo|ogy that seom|ess|y
integrates cufting-edge technologies, remote sensing data, and advanced analytical techniques,
such as machine learning and statistical analysis, with the principal goal of enhancing the precision
and re|iobi|i+y of yie|o| predicﬁons at both local and regiono| scales. To achieve this, a dynamic
opproach was Qdop‘red, progressing each year, which involved the utilization of non-destructive
methods to monitor crop biological cycle and to refine the predictive models for yield estimations.

The specific objecﬁves of this s’ruo|y are as follows:

1. To offer valuable insighfs into the o|ep|oymenf and infegration of state-of-the-art precision
ogricu|’rure methods and Jrechno|ogies, with a porﬂcu|or focus on their opp|icoﬂon in the
field of crop yie|o| predicﬂon. This is occomp|isheo| Through a systematic review of the
existing literature, offering a comprehensive overview on the latest advancements in this

field.

2. To fhorough|y compare satellite, UAS, and proximo| ’rechno|ogies, p|ocing specific
emphosis on their unique sfreng’rhs and limitations when opp|ieo| in the context of precision
ogricu|’rure. This is realized fhrough field-scale measurements using these three p|offorms4

3. Toinvestigate the re|oﬂonship between vegetation indices, the critical pheno|ogico| stages
of the crop. This involves dep|oying time series of five Vs at a regiono| scale.

4. To evaluate the perFormcmce of both statistical and machine |eorning models, generating
clear insighfs into the most effective growfh stages and vegetation indices for accurate
yie|d predicﬁon. To this end, all |o|ohtorms were dep|oyeo|, o|ong with yie|o| measurements
at both field and regiono| scales.

The outcomes of this research yield benefits that extend beyond the academic community, offering
valuable support to various audiences, inc|uo|ing po|icymokers, researchers, ogricu|+uro|
practitioners, and those involved in decision-moking related to resource o||oco’rion, food security,
and sustainable agricultural development.
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Part 2. Materials and Methods

2.1 Workflow Overview

This study followed a progressive trajectory in data collection and methodology (Figure 23). The
research initiation involved a systematic literature review to explore the landscape of yield
predicﬂons within the framework of precision ogricuHure opp|ico+ions. Simu|’roneous|y, eigh1L fields
were selected for detailed investigation fhrough |oi|o1L activities that incorporofed proximo|, aerial,
and satellite measurements foge’rher with yie|o| somp|ing. The primary focus of this phase was fo
examine the relationship between crop yield and NDVI (Normalized Difference Vegetation Index),
a commonly used index. The investigation also aimed to identify similarities between satellite
technology, UASs, and proximal sensors in the context of crop yield assessment.

Moving into the second year, two distinct fields were individually investigated using satellite, UAS,
and proximal sensors at the field level scale. Additionally, a total of 108 fields were included at the
regional scale, incorporating satellite data for analysis and thus expanding the experiment's scope.
This phase aimed to evaluate the effectiveness of not only NDVI but also four additional Vls in
predicting crop vyield. Furthermore, AutoML algorithms were deployed along with statistics to
assess the correlation between yie|o| and the retrieved Vls from the satellite dataset. The
broodening of this eruo|y in terms of spoﬁo| scale, VIs and research methods, was intended to
provide a more thorough understanding of crop yield estimation on the basis of the systematic
review results.

Satellite (8)
UAV (8)
Proximal Sensor (2)

Satellite (108 +44)

SYSTEMATIC REVIEW

Figure 23. Workflow for assessing the effectiveness of Vis spectral bands to predict processing tomato through proximal
aerial and satellite remote sensing. Source: Created by N. K. Darra

During the third year of the study, a more intricate and detailed approach was adopted. Spectral
bands derived from satellite imagery played a central role as they were individually assessed to
determine their performonce in predicfing crop yie|o|. This step enabled a comprehensive
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evaluation of the unique contribution of each 5pec’rr0| band to the overall accuracy of crop yie|d
estimation. This opprooch yie|ded a deeper undersmnding of the significonce and influence of
each individual spectral band in enhancing the precision of crop yield predictions.

2.2 Systematic Review

In this study, a systematic review of peer-reviewed articles on PA technology's application in yield
prediction was conducted to idenfify the most common approaches used in yield prediction. A
comprehensive search strategy was developed by utilizing Scopus “ www.scopus.com” and Web of
Science (WoS) “ www.webofscience.com” search engines following the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) framework [342]. Specifically, the PRISMA
Statement consists of a 27-item checklist and a four-phase flow diogrom, aiming at he|ping authors
improve the reporting of systematic reviews and meTo—on0|yses [342]. To ensure the selection of
pertinent research articles, the s’rudy's opprooch was designed based on speciﬁc research questions
and the review's objectives. Recognizing that a simple search using "yield prediction" would yield
numerous articles from various fields unrelated to the review's aim, a more focused opprooch was
taken. Therefore, the research words [343-345] were also considered to narrow the focus from a
main concept to the central idea. Specifico”y, the query used for encompassing all the works
related to the fopic without risking exc|uding any item is presen’red in (Table 7).

Table 7. Search engines and queries that were used for the scope of this sfudy.
Search Engine Query

TITLE-ABS-KEY ("yield forecasting” OR "yield prediction” OR “yield estimation” OR
Scopus “crop modeling”) AND TITLE-ABS-KEY (“satellite” OR "UAV" OR “proximal” OR

‘remote sensing” OR "proximo| sensing” OR "oerio|”)

TS = (yield forecasting” OR “yield prediction” OR “yield estimation” OR “crop
WoS modeling”) AND TS = (“satellite” OR "UAV" OR “proximal” OR “remote sensing” OR

“proximal sensing” OR “aerial”)

A filtering process was then implemented by utilizing exclusion criteria provided within the Scopus
and WoS search engines, specifically focusing on document type, language, and publication year.
On|y open-access articles pub|ished in the Eng|ish |onguoge were included, while review articles
and conference papers were excluded. This selection was based on the belief that open-access
pub|ishing o|igns with the princip|es of open science, promoting fransparency and ensuring that
research is readily accessible for comprehensive scrutiny, thus upholding the core principles of
scientific infegrity. Addiﬂono”y, the sfudy's timeframe gofhered the entire literature for the period
2002 to 2022.

The initial search query yielded 725 records from Scopus and 704 from WoS, with publication
details categorized into sections such as "Author, Title, Source," "Abstract, Keyword, Addresses,"
and "Cited, References, and Use." Furthermore, after eliminating duplicate and review articles from
the two chosen databases, 864 articles were subjec’red to screening based on their titles and
abstracts.

2.2.1 Article Selection Criteria

The articles iniJrio||y retrieved were selected occording fo porﬂcu|or criteria, such as the remote
sensing fechno|ogy utilized and the method emp|oyed for yie|d predicﬂon. Examining the abstracts
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of these articles helped to identify pertinent keywords and facilitated the selection process. To
maintain the review's relevance and focus, specific exclusion criteria were utilized.:

e Records not pertinent to the research objective (e.g, satellite RNA in plant pathology)
were excluded;
e Articles fo“ing within the ogricu|+uro| sector but not direcf|y related to crop yie|o| predicﬁon
were also removed from consideroﬂon;
e Publications that did not incorporate the use of satellites, airborne/UAS, or ground-based
sensors for crop yield prediction were excluded;
e Literature search for articles that are published between 1 January 2002 to 31 December
2022;
Articles were considered for inclusion only if they involved crop yield prediction, whether in absolute
or relative terms, and provided performance metrics for assessment. To ensure uniformity and
comporobih’ry, specio| emphosis was |o|oced on the presence of evaluation metrics like the
Coefficient of Determination (R?) and error metrics such as the Root Mean Square Error (RMSE).
Studies lacking performance metrics were excluded to standardize the evaluation process.

After opp|ying all the exclusion criteria, a total of 456 full-text articles were examined for e|igibi|i’ry.
Figure 24 illustrates the article selection and rejection process from the databases, following the

PRISMA framework.
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Figure 24. Systematic review procedure for article selection.

The e|igibi|i‘ry process involved fhorough|y ono|yzing the full articles to ensure that on|y the studies
that met the necessary aforementioned criteria were included. As a resu|‘r, a total of 269 studies
were deemed suitable and incorporo’red into this comprehensive review.

/

e N\
Included / Screening

2.2.2 Scientific Studies Classification & Statistical Analysis

The selected papers were tabulated and standardized to enable comparison and systematic
evaluation by extracting the following variables from each study:

e Study data: lead author, year, title, citations;

e Experiment setup: study region, type of crop;
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e Platform type: Satellite, Airborne/UAS measurements (Unmanned Aerial Systems—UAS
or Manned Flight), Ground based measurements;

e Method type: machine learning, statistical analysis, model-based approach, Vls;

e Evaluation: performance measures (e.g, R2, RMSE, MAE).

Subsequently, the actual data collected from the papers were subjected to statistical analysis using
XLSTAT software version 2016 from Addinsoft (wwwxlstat.com). This analysis involved
de’rermining the number of research articles produced cmnuc1||y and by type. Addiﬁono”y, further
analyses were conducted based on crop type, platform type, sensor type, and the method's focus
area for each year over the past two decades.

2.3 Description of the study area

The pilot research was conducted within the broader region of Thessaly and Central Greece, spanning from E:22°13'20"
N:39°42'40" to E:24°6'40" N:38°10'40". Within this areq, a total of 504.14 hectares of processing tomato fields were
chosen as the pilot fields for the study

Table 8. the boundaries of the pi|oJr fields were digifo”y copfured using georeferenced |oyers in
KML format. An illustrative example of these vector layers, showing the field locations is

demonstrated in Figure 25.

Pilot Fields

Fields_2022

B Feos 2021
Bl Ficids 2020

Service Layer Credits: Esti, HERE, Garmin, (¢} OpenStreetiap contributors, and the GIS us er community
Source: Esti, Maxar, Esrthstar Geographics, and the GIS User Community

Figure 25 The pilot fields” position at the national level and a close-up at regional level. Created by N. K. Darra (ArcGlIS,
2003).

These pilot fields encompassed three distinct hybrid varieties: Dexter, Faber, and Foster. Their sizes
ranged from 1 to 14 hectares, with double rows planted at an average spacing of 0.4 to 0.6 meters,
reHec’ring the prevo|en+ extensive forming practices in the region. P|on’ring dates for these |oi|oJr
fields varied, occurring between mid—Apri| and mid—Moy of each season, with horves‘ring comp|e+ed
across all fields by late August.

55(163)



Yield Prediction in processing tomato crop, through Precision Agriculture practices
PhD Thesis Nicoleta K. Darra

The study's framework, as summarized in

Table 8, outlined the research activities over a span of three years. The first year, the erudy utilized
satellite, UAS, and proximal sensor technology to extract the NDVI. A total of 8 fields, covering
21 hectares, were assessed to evaluate the use of satellite and UAS data for yield prediction. In
2021, a similar approach was applied, focusing on only 2 fields covering 6 hectares. During the
same year, the research focus shifted primarily to satellite technology, with 108 fields totalling 410
hectares being considered for the evaluation of NDVI and other four Vls.

In the final year (2022), the study further broadened its scope to include an assessment of all
specfro| bands to refine yie|d predic’rion copobihﬂes. The research concentrated on satellite datq,
incorporating thirteen spectral bands. A comprehensive evaluation was conducted, encompassing

108 fields for the 2021 season and 44 fields for the 2022 season, all included in this evaluation to
investigate the efficctcy of these specfrd| bands for yie|d predic’rion

Table 8. Study's framework

Techno|ogy or activity Velgceiii‘ge’rison Total Area
Satellite
2020 Field level UAS NDVI 8 21
Proximal Sensor
Satellite
Field level UAS NDVI 2 6.9
2021 Proximal Sensor
Regional ) NDVI, RVI, WDV/,
Lovel Satellite PVI SAVI 108 410
; NDVI, RVI
20292 Regional Satellite 44 20,94
Level Bands

The sequen’rio| progression of the s*udy's framework, was s’rrd’regico”y designed to exp|ore, refine
and upsco|e yie|d predic’rion copobihfies over d ‘rhree—yeor span.

2.4 Data collection and Preprocessing

Data collection and preprocessing procedures involved the acquisition of satellite imagery data at
5-day intervals. However, it's important to note that the sample size was not consistently uniform
Throughou‘r the data collection process. This voriobi|i+y in somp|e size is attributed to the presence
of total cloud cover, which occosiono“y hindered data collection efforts, as summarized in

Table 9.

Table 9. Acquisition dates of satellite data for the 2020 to 2023 growing season.
MONTH ACQUISITION DATES

93/05/20 28/05/20
MAY 03/05/20 13/05/20 18/05/20 > R -
JUNE 02/06/20* 07/06/20 19/06/20 17/06/20* LG H0 27/06/20
Cloud Cover
JuLy 02/07/20* QO 12/07/20 17/07/20* 29/07/20 27/07/20
Cloud Cover
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91/08/20
I O1/08/2020* 08/08/20 1/08/20*  16/08/20 Partial cloud 26/08/20
Cloud Cover cover

Cloud Cover
03/05/2] 08/05/2021
o ot ol G 13/05/21 18/05/21 93/05/91 28/05/21
02/06/21 07/06/21** 12/06/21 17/06/21 20/06/21* 97/06/21
JuLy 02/07/21 07/07/21* 12/07/21 17/07/21 29/07/21* 97/07/21
LU 01/08/2091 06/08/21* 11/08/21 16/08/21 21/08/21* 26/08/21

03/04/22 08/04/22 13/04/22 18/04/22 23/04/22 28/04/22
03/05/22 08/05/22

Cloud Cover | Partial cloud. cover 13/05/22 18/05/22 23/05/22 28/05/22
02/06/22 07/06/22 12/06/22 17/06/22 292/06/22 Cloud Cover
02/07/22 07/07/22 12/07/22 17/07/22 22/07/22 Cloud Cover

16/08/22 26/08/22
AUGUST CIOUCI Cover 06/08/22 ”/OB/QQ Porﬁol CIOUd 21/08/22 Porﬁal C/OUCI

Cloud Cover
cover cover

*UAS and proximal measurements
** Due to weather conditions (increased wind) the UAS flight was not feasible

The next phase of the data processing pipeline involved the establishment of a geodatabase
structured at a 10x10 grid cell level, corresponding to the geometry of the satellite imagery for the

2020 and 2021 pilot measurements. The satellite image grid (10x10) was extracted and used as a
reference grid for all measurements to ensure that the vegetation indices are consistent and
comporob|e across different satellite images and acquisitions. The grid (.shp) stored the average
values of the Vs or NDVI for each sensor's observations within a particular cell, recorded for
specific dates.

2.41 UAS measurements

For the years 2020 and 2021 remote assessments of processing tomato vigour were made using
Phantom 4 Pro UAS (SZ DJI Technology Co., Ltd., Shenzhen, Guangdong, China) equipped with
a Parrot Sequoia+ multispectral camera (Parrot SA, Paris, France) and associated 3-axis
georeferencing metadata using the cameras integrated positioning system (Figure 26). The UAS
used in this context incorporates a gimbo|, which adjusts the camera's position relative to the
vehicle to maintain the selected shoo‘ring ong|es during movement. It is equipped with a
mu|ﬁspec’rro| camera, GPS, and a barometric sensor for measuring altitude differences. Its
telemetry system enables communication between the UAS and the operator via a specialized
console, with a range of several kilometres. The mu|+ispecfro| camera is specifico”y designed for
ogricu|furo| opp|icoﬂons, capturing high—reso|ufion images of reflected solar radiation in four
wavelength bands (Red, Red Edge, Green, and NIR). This makes it suitable for studies related to
|o|onf resilience and other precision ogricu|‘rure opp|icoﬂons. The aerial UAS imagery was ocquired
around middoy with nadir ﬂigh‘rs at 30 m above the ground The acquisition interval of the
multispectral camera was set at 2 s, and the flight plan overlap, and side lap were 80% and 70%,
respecﬂve|y4
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Panst SEQUOLA

Figure 26. i) a Phantom 4 Pro UAS used to collect imagery, ii) Parrot Sequoia+ multispectral camera of the UAS, iii)
On site data collection

The multispectral images captured by the UAS were mosaicked using Pix4D software (Pix4D S.A,
Prilly, Switzerland) through the "Ag Multispectral” photogrammetric model pipeline. Radiometric
calibration was applied to the generated orthomosaic using the reference images of a radiometric
calibration target (Airinov Aircalib) ocquired after each ﬂight Fino”y, the genero*ed NDVI
orthomosaic was masked to the boundaries of the fields and then scaled up to the same 10 x10
reference (satellite) geometry grio|, using a mean aggregation opprooch.

2.4.1 Proximal sensing measurements

The GreenSeeker hand-held optical sensor (N-Tech Industries, Ukiah, CA), was employed for
instantaneous measurement of the NDV/I. This sensor utilizes a self-illumination system in both red
(656 nm) and near-infrared (774 nm) wavelengths. It includes a datalogger that records the
geogrophic coordinates of the ocquired values and generates a shopeme (shp). Proximal
measurements were conducted three times Jrhroughou’r the growing season for two fields in both

the 2020 and 2021 seasons (Figure 27).

Figure 27 : GreenSeeker hand-held optical sensor. Source: Personal Archive

To standardize the data, the geographic coordinates of all proximally acquired canopy reflectance
data collected throughout the season were initially converted to projected coordinates (UTM Zone
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34N). Subsequenﬂy, preprocessing steps involved c|eoning and removing data points i(o||ing

outside the field boundaries and eliminating outliers (values > #2.50) following the methodology
outlined by Taylor et al. in 2007 [346].

The point data were then in’rerpo|o+ed fo a common grid file corresponding to the field boundaries
using a 1-m grid with block kriging on a 10x10-m block size and a local variogram, utilizing the
Vesper software [347]. The resulting grids were converted to tiff format in ArcMap v10.3 (ESRI,
Redlands, CA, USA) and scaled up to 10 m x 10 m plots using the satellite geometry grid. This
process ultimately generated a time series of NDVI maps with a spatial resolution of 10 m x 10 m,
precisely aligned with the corresponding satellite imagery.

2.4.2 Satellite imagery acquisition

Remote assessments of field vigour were made using Sentinel-2 satellite imagery, that is a satellite
mission developed by the ESA as part of the Copernicus program. Sentinel-2 comprises two
identical satellites, Sentinel-2A and Sentinel-2B, equipped with rnu|Tispecfro| imaging sensors
copob|e of capturing hign-reso|ufion Earth surface imagery. These satellites follow sun—syncnronous
orbits, providing global coverage and revisiting the same area every five days. The MultiSpectral
Instrument (MSI) on board captures data across 13 spectral bands, encompassing the visible to
shortwave infrared region. These bands include red, green, b|ue, neor—infrored, and others sensitive
to various land features, including vegetation and water bodies. Spatial resolution ranges from 10
meters for visible and near-infrared bands to 20 meters for red—edge and shortwave infrared
bands. To maintain consistent resolution, a resampling approach using SNAP software (Sentinel
Application Platform—ESA Sentinels Application Platform v6.04), was applied, resulting in a
uniform 10-meter resolution for all bands in this s’rudyi For in—depfn technical specifico’rions on
Sentinel-2 bands, reference can be made to the European Space Agency's documentation
[European Space Agency, 2010].

For each observation date, 3 to 5 satellite images, depending on the fields’ locations, were ocquired
to cover the entire s’rudy area. The second step of data preprocessing involved mosoicking each
survey date's images info a sing|e raster dataset of the whole erudy area using ArcGIS software
(Environmental Systems Research Institute, Redlands, CA, USA).

In this study, Sentinel-2A&B imagery, obtained from the Copernicus Open Access Hub, was level
2A imagery, indicoﬂng processing by supp|iers using the Sen2Cor processor. This processing
encompossed geometric, radiometric, and ofmospheric corrections, rendering the imagery
immedio+e|y usable. Afmospneric correction, a critical step, mitigates o’rmospneric effects and
restores surface reflectance values. These corrections emp|oy ofrnospneric models and onci||ory
data, such as mefeoro|ogico| information and aerosol opfico| thickness, to estimate and
compensate for ofmospneric influences on satellite measurements.

Furthermore, the satellite image grid (10x10) was extracted and used as a reference grid for all
measurements to ensure that the vegetation indices are consistent and comporob|e across different
satellite images and acquisitions.

In the final phase of the study, raw digital number values for each spectral band were extracted
utilizing the Google Earth Engine (GEE) platform. This extraction process aimed to investigate
potential correlations between these spectral bands and crop yield for the years 2021 and 2022.
A total of thirteen distinct specfro| bands were ocquired as covariates for each observation date.
The inclusion of these covariates was driven by the anticipation that f|’iey would contribute to
enhoncing the predicﬁve copobi|iﬂes of the srudy. By incorporating a broader range of specrro|
information, the research soughi tfo gain a more comprehensive undersfonding of the re|oﬁons|’1ips
between the spec‘rro| characteristics of the crop fields and the resu|’ring crop \/ie|d. This ono|ysis
allowed for a deeper exp|oroﬁon of the factors inﬂuencing ogricu|‘ruro| producrivify and provided
valuable insighis for the s’rudy's conclusion.
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2.4.1 Yield measurements

The yield quantity and quality were sampled manually before harvest for the 8 fields of 2020 and
the two of 2021 growing season. A regular 10x10 reference -cell grid covering the entire area was
laid out, using ArcMap v10.3 (ESRI, Redlands, CAUSA). To carry out the yield mapping, an NDVI
map was generated for each field using UAS measurement data taken before the harvest. This
NDVI map was then classified using the quantile method, which allowed for the visualization of
low, medium, and high NDVI values within each field. This classification helped identify different
levels of vegetation health and producfivify across the fields.

Using these classified NDVI maps as a reference, random points were selected for each of the
three designated zones (Figure 28):

a) Low Zone (L1, L2): Representing areas with lower NDVI values, indicating lower crop
productivity.

b) Medium Zone (M1, M2): Corresponding to areas with moderate NDVI values,

suggesting intermediate crop productivity.

c) High Zone (H1, H2): Encompassing areas with high NDV| values, indicating higher crop
productivity.

At each of these selected somp|ing points, a specific group of p|oers included two and a half
meters along the planting lines was harvested. This group typically comprised four to six plants.

F20 1 F20 2 F20 3 F20 4

Figure 28 Yield sampling points (L1, L2, M1, M2, H1, H2) for 2020 growing season.

To ensure precise location accuracy in the field, a GPS device was emp|oyed. These type of devices
allowed for the exact identification of the somphng points within the designo‘red zones. Once the
somp|ing points were occuro’re|y pinpoin’red, the next step involved the collection of tomato somp|es
from the selected location poinfts. This collection process was facilitated by using p|C]SﬂC bogs to
gather the harvested tomatoes.

An electronic scale was used to weigh the gathered tomatoes after the collection. The process
involved considering the green and red tomatoes seporqfe|y and defermining the total Weighf. This
step was essential to occuro‘re|y measure the yie|o| of tomatoes obtained from each of the somp|ing
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points. The recorded weights provided valuable data for assessing the crop yield in the various
zones, allowing for an in-depth analysis of crop productivity across the field. The images below
(Figure 29) show the manual collection of tomato somp|es.

1 %

Figure 29. Yield sampling of processing tomatoes, i) separation and weighing of ripe and unripe tomatoes, ii) yield
sampling along a length of 2,5 m, iii) the collected of the yield samples per pilot area.

In the final step of the process, the number of p|cm’rs per hectare was taken into account. This
information served as a crucial factor for exfropo|oﬂon, which involved moking estimations and
predicﬂons based on the data collected from the somp|ing points. By upsco|ing the somp|ing
measurements, the s’ruo|y aimed to assess the re|iobi|ify and accuracy of the projec’red producﬁon
across the entire field. This ex’rropo|oﬂon allowed for moking informed predicﬂons about the overall
crop yie|o|, per pi|of field. I+ provided insigh‘rs intfo how the observed data from the somp|eo| points
could be scaled up to represent the entire hectare, thus he|ping in evo|uofing the re|iobi|ify and
robustness of the yield projections. It's noteworthy that in the case of 2022, each of the two fields
included three different varieties. Consequenﬂy, SiX somp|es were gofhered for each variety,
resulting in a total of 18 samples per field. Finally, for the years 2021 and 2022 the actual yield of
each pi|o+ field within the satellite framework was recorded direcHy by the farmers under the
supervision of agronomists, and the respective total yie|d values were included in the dataset

(Table 10).

Table 10. Summary of yield sampling strategy over the three years

Technology or Vegetation Number of Total Area Yield Sampling
activity Indices Fields (ha)
Satellite
2020 UAS NDVI 8 2] 6 Yield samples per
Proximal Sensor
Satellite
UAS NDVI 2 69 18 samples per field
Proximal Sensor
2021
NDVI, RVI,
Satellite WDVI, PVI, 108 410 Total yield per field
SAVI
RVI, NDVI,
2022 Satellite 44 29,24 Total yield per field
All Bands
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2.5 Vegetation indices and spectral bands

To evaluate the satellite systems and their relationship to yield, five Vls, namely the NDVI,
Weighted Difference Vegetation Index (WDVI), SAVI, RVI, and Perpendicular Vegetation Index
(PVI), were calculated for each date via SNAP software (Sentinel Application Platform—ESA
Sentinels Application Platform v6.0.4), which is provided free of charge and accessible to everyone
as part of the European Copernicus project. Each index captures different aspects of plant vitality
and environmental conditions, providing a comprehensive understanding of crop performonce.
These five Vs were chosen based on their well-established utility and effectiveness in assessing
vegetation health and predicting crop yield. Particularly, WDVI and PVI, indices that correct for
soil reflectance, show a more linear and less-scattered relation than NDVI and RVI [348]. The
research Findings [349] also highhghf the sensitivity of different Vls to variations in green cover
and their associated noise levels. Specifically, at a 40% green cover, the noise level of the NDVI
is observed to be four times that of the WDVI and nearly ten times that of the SAVI. These noise
levels correspond to vegetation estimation errors of approximately +/- 23% for NDVI, +/- 7% for
WD\/|, and +/- 2.5% for SAVI. Fur’rhermore, the NDVI and WDVI were found to be significonﬂy
crucial for predicﬂng fomato weighf, while VIs one month prior to harvest were signiﬁconf in
predicﬂng fruit quanftity [350]. These indices have also been found, Through the systematic review
that generate high correlations with yield [351,352]

As a result, Vl raster datasets (10x10m) of the whole area were created by iterating the VI formulas
over all satellite image pixels. Once the total number of images was determined, an additional
manual filtering step was performed to ensure that each generated mosaic consisted solely of
high—quohfy and cloud-free data from the pi|o’r fields. Given the small size of the fields, pixe|s
outside the pi|oJr farm boundaries were also selected and masked. For each doJre, a mean VI value
was extracted from each field using the zonal statistics tool of the ArcGIS software.

For the Vls calculation, Bands 4 (B4) and 8 (B8) of Sentinel-2 were used, which correspond to the
RED and NIR spectrum, respectively. The equations used for the estimation Vls are presented
below (Table 11):

Table 11 The selected Vs used in this study and their respective spectral equations.

Index Equation Reference

(NIR - RED)

NDVI S T RER)
(NIR + RED)

Rouse et al, [253]

NIR-S*RED
WDVI where S is the slope of the soil line Clevers, [353,354]
from a plot of red versus near-
infrared.

(NIR — a = RED — b)

where a is the slope of the ground iehardson legand, [355]

line, and b is the ground line’s

gradient.
RVI NIR/RED Pearson & Miller, [356]
(NIR — RED) )
£
SAVI (NIR + RED + L)) ( ) Huete [261]

where L is a soil adjustment factor
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NDVI is the most commonly used vegetation index and has found various applications. The result
of NDVI calculation is an image with a continuum of pixel values ranging from - 1+to 1. The NDVI
varies from a minimum at bare soil reflectance to a maximum for a Fu||y o|eve|opeo| canopy with
a value s|ighr|y less than one [30]. HeoHny pnorosynfne’ric vegetation is related to nigner positive
vo|ues; on the other nond, stressed vegetation or even bare soil is related to lower vo|ues, especio”y
<02 [357,358]. In the processing tomato crop, NDVI values are reported to have good correlation
with several vegetation parameters, including the ability to predict yield [359].

The same spectral bands were used for RVI (Ratio Vegetation Index or Simple Ratio vegetation
index), which is recorded to improve both saturation in high vegetation and sensitivity to the soil
in low vegetation compared with NDVI [360]. It was introduced by Pearson and Miller [356] and
is based on the contrast between the visible red and far-infrared bands of electromagnetic
radiation for the pixels corresponding tfo vegetation [356]. Hign values of the index are mainly
attributed to healthy vegetation and result from the combination of its low reflectance value for
the red and the nign reflectance it presents in the near-infrared band. Its value range is from O to
more than 30, with healthy vegetation usually presenting values of 2 to 8.

Richardson and Wiegond [355] opprooched the prob|ern of variable soil brigh’rness by o|eve|oping
the PVI, which attempts to eliminate differences in soil background [355]. It can be computed as
a specrro| indicator of p|onr deve|oprnen’r or biomass accumulation and cannot be considered to
be independent of soil brign’rness. While it is effective in removing soil brighrness effects for bare
soil, it quick|y becomes more sensitive as the canopy deve|ops. A PVI value of O indicates bare soil,
whereas negative values indicate water and positive values indicate vegetation. It is less sensitive
to the atmosphere but is considered sensitive to the reflectivity and brign‘rness of the ground,
especio”y in cases with low vegetation cover.

The weakness PVI presents regarding the assumption that there will be only one soil type under
vegetation is addressed by the SAVI proposed by Huete [261] and is a hybrid of NDVI and PVI.
The origino|iry of this index lies in esfob|ishing a sirnp|e model that permits an odequore descriprion
of the soil-vegetation system [361]. SAVI also attempts to eliminate soil background effects;
however, it is much less sensitive to cnonges in the bockground caused by soil color or surface soil
moisture content than the RVI [362]. Qi et al. [363] shoed that the adjustment factor (L) is not a
constant but a function that varies inverse|y with the amount of vegetation present. Genero”y, it
is best opp|ied to soils with sparse vegetation, and its range of desired values is the same as that

of NDVI [364].
The WDVI was introduced by Clevers et al. [353] in 1989. WDVI has been used to overcome high

PVI values due to a bright soil background. This index is also based on distance, and it assumes
that the ratio between NIR and the red reflectance of bare soil is constant [365]. The WDV
concept was o|eve|opeo| in order to correct the influence of soil bockground, but it is quite sensitive
fo ofmospneric conditions. It is mofhemoﬂco”y simp|er than the rest of the indicators but with an
infinite range of desired values [354].

To conclude the sfuo|y, raw digiro| number values for each band were extracted using the Goog|e
Earth Engine (GEE) to explore potential correlations with crop yield for the years 2021 and 2022.
The Sentinel-2 imagery consists of a total of 13 specfro| bands, encompassing d range from visible
and near infrared (vis-NIR) to short-wave infrared (SWIR). Among these bands, there were four
bands with a spatial resolution of 10 meters, namely B2 (490 nm), B3 (560 nm), B4 (665 nm),
and B8 (842 nm). Additionally, there were six bands with a spatial resolution of 20 meters,
including B5 (705 nm), B6 (740 nm), B7 (775 nm), and B8A (865 nm). The remaining bands
consisted of two SWIR large bands, B11 (1610 nm) and B12 (2190 nm), as well as three bands with
a resolution of 60 meters, namely B1 (443 nm), B9 (940 nm), and B10 (1380 nm). These spectral
bands were extracted as covariates for each observation do’re, with the expectation that these
would enhance the predicrive capacity of the s‘rudy at multi remporo| level.
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All the results were recorded in Excel spreadsheets with Vls and spectral band values for all the
measurement dates acquired.

2.6 Data Analysis

Data ono|y5is was carried out to assess the sfreng’rh and significonce of these re|oiion5hips to
determine the predictive capabilities of the proximal, UAS and satellite-based indices for
processing tomato yield estimation.

2.6.1 Statistical analysis

Pearson’s correlation coefficient (r) and regression analyses, facilitated by the XLstat software (R
Core Team, 2022), were conducted to explore the relationships between yield and Vegetation
Index (VI) data obtained from all three sensors. The objective was to assess the efficiency of Vs
prediciing yie|d, and whether ’rhey demonstrated a consistent trend. In this ono|ysis, correlation r-
values exceeding 0.50 were considered indicative of a moderate to strong relationship.

Descriptive statistics, including mean and standard deviation, were computed for the NDVI data
fo provide a comprehensive overview of crop produciion.

2.6.2 Regression Methods and AutoML Set Up

Machine |eorning ‘rechniques have the poienfio| to enhance the moo|e|ing copobi|ifies of traditional
statistical methods. Nevertheless, the vast array of machine |eorning o|gori‘rhms available presents
a substantial cho”enge when it comes to se|ecfing the most suitable one. Furthermore, each of
these o|gori’rhms involves various nyperporome’rers that require i(ine-iuning anougn trial and error.
Consequenﬂy, there is no inherent know|eo|ge regording the op‘rirno| configuroiion, and these
hyperporome’rers are not ou’romofico”y opiimized o|uring the training process. For instance,
nyperporomeiers include the number of trees in methods like Random Forests and AdaBoost, the
choice of sp|iJrJring criteria (e.g., Gini, eniropy) for tree-based o|gori’rhms, and the hono“ing of
outliers in robust linear regression methods like Theil-Sen or Huber.

AutoML is a field of research that has become increosing|y popu|or over the last few years [366].
Different domains, such as image recognition [367] and time series processing [368], take
odvonfoge of this iechniquei Moreover, some specific subfields of AutoML, such as neural
architecture search (NAS), have arisen to optimize the search for some specific hyperporomeiers
in the design of neural architectures (e.g., number of |oyers, activation funcfion, eJrci). However,
there are still some open concerns [369] because (i) finding the best nyperporomeiers can still be
too computationally expensive and (i) AutoML adds a new layer of complexity/abstraction that
can make the interpretability of the model decisions harder. On the other hand, more studies are
arising around this fopic; therefore, ogricu|‘rure, specifico”y yie|o| prediciion, should be used to
evaluate the current state of the technologies implementing AutoML techniques.

To improve the predic’rive power of our model, this sfudy also evaluated several ensemble methods
based on decision trees, such as AdaBoosting, Random Forests, and Extra Trees. These combine
the |oreo|ichions of mu|Jri|o|e machine |eorning o|gorifhms to make more accurate preo|ic‘rions than
the individual models. All of these ensemble methods start with a decision tree and then use
boosfing or boofsirop aggregation fo reduce its variance and bias (bogging). Ensemble models
aim fo improve the performonce of machine |eorning models by combining several of them [370].
In the case of regression, the mean of the predicfions of the models with the best performonce is
used as the final prediction (Figure 30). An ensemble can be composed of endless models, however
the |orger the amount, the higher the compufofiono| requirements. Therefore, in this siuo|y,
ensembles of up to 3 regressors were evaluated.
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Figure 30. The use of AutoML for selection of the best combination of inputs (vegetation index and growth stage) and
creating an ensemble of regression models is proposed as the methodology.

AutoML was studied in this study using linear and nonlinear regression o|gori’rhms, inc|uding
ordinary least square, automatic relevance determination regression, Theil-Sen, and Huber
regression models, as well as decision-tree-based o|gori+hms:

e Ordinary least squares (OLS): the most common estimation method for computing linear
regression models, which can be found in related work, e.g, Prasetyo et al. [371];

e Automatic relevance determination (ARD) regression: compared to the OLS estimator,
the coefficient weights are shifted slightly toward zeros, which stabilizes them [372];

e Theil-Sen estimator method: the most popular non-parametric technique for estimating a
linear trend, making no assumptions about the uno|er|ying distribution of the input data

[373];

e Huber regression: this model is aware of the possibility of outliers in a dataset and assigns
them less weighf than other sctmp|es, in contrast to Theil-Sen, which ignores them [374];

e Decision trees: this method uses a non-parametric learning approach. Its main advantage
is that it can be visualized to better understand Why the classifier made a porﬁcu|or
decision.

To improve the predicﬂve power of the model, in this sfudy, we also evaluated several ensemble
methods based on decision trees, such as AdaBoost, Random Forests, and extra trees. These
methods combine the predicﬁons of mu|’ri|o|e tree-based models to make more accurate predicfions
than the individual models. Specifico“y, these ensemble methods start with a decision tree and
then use boosﬁng or boo*s*rop aggregation to reduce its variance and bias (bdgging). It is
important to remark that these tree ensembles are different from the ensemble of models that are
built on fop of the system. This means that the final ensemble used to compute the regression can
be composed of three tree ensembles (e.g, two random forests and one AdaBoost).

e AdaBoost: The AdaBoost o|gori+hm (odop‘rive boosfing) uses an ensemble |eorning
Jrechnique known as boosﬁng, Whereby a decision tree is retrained several times, with
greater consideration given to data somp|es for which the regression is imprecise [375];

e Random Forest: A supervised |eornmg opprooch using the ensemble |eorning method for
regression. In this opprooch, numerous decision free regressors are combined into a sing|e
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model trained for many data samples collected on the input characteristic (in this case,
NDVI) using the bootstrap sampling method [376];

e Extremely Randomized Trees: Extra trees is similar to random forest in that it combines
predictions from many decision trees, but instead of bootstrap sampling, it uses the entire
original input sample [377].

The auto-sklearn framework [378] was used to implement the AutoML pipeline. This means that
three main ’recrmiques were used. First, Bayesian optimization was used as the g|obo| optimization
cr|gori‘rrim. Since Finding the best regressor and its hyperporomerers is o non-convex,
computationally expensive problem, the Bayes theorem can be used to direct an efficient and
effective search of an oprimo| hyperporomerer com(igurcn’rion [379]. Secorio”y, a mero|eorning step
was used to warm start the Bayesian optimization procedure, which resulted in a considerable
boost in eHiciency. In the case of auto-sklearn, the me‘ro|eorning opprooch used an offline phose
to learn the best initialization com[igurorioris o|ong 140 datasets from the OpenML [380]
repository. Triirc”y, auto-sklearn imp|emenrs an ensemble bui|dirig ’recrmique Wriereby the most
suitable models are combined to boost the predicrion performorice.

2.6.3 Evaluation methodology

The assessment involves evo|uoring the peri(ormomce and accuracy of satellite-derived indices for
predicring processing tomato yie|d. This evaluation is achieved by comparing the satellite-derived
data with ground truth information collected during field surveys. The ono|ysis takes intfo account
factors such as sporio| resolution, specrro| characteristics, and remporo| voriobi|iry, o||owing for a
comprehensive examination of the agreement and discreponcies between and satellite data.

To measure the prediction accuracy, two key metrics are employed: the R? and the RMSE. R?2
provides irisigh’rs into the degree of correlation between predic’red and observed values, while
RMSE quantifies the error between them. Additionally, a 5-fold cross-validation procedure is
imp|emenred for each regression model to assess their genero|izo’rion obi|i‘ry and ensure their
robustness. To further enhance the precision of the final periormonce assessments, the experiments
are conducted 20 times with different data splits.

This opprooch ensures a comprehensive evaluation of the satellite-derived indices, their predicrive
accuracy, and their robustness, providing a well-rounded assessment of their suirobi|iry for
processing tomato yie|d predicrion.
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Part. 3 Results

3.1 Yield Estimation using Precision Agriculture - Systematic
Review

One of the key Findings in the systematic review pertains to the annual pub|ico‘rion count spanning
from 2002 to 2022. Figure 31 provides insight into the changing patterns of research output in the
field of yield prediction over this two-decade period. The findings of the study [381] indicating that
during 2002 to 2012, the publication rate was low, with an average of roughly one paper per year.
However, between 2013 from 2019 onwards, a rapid increase in publications is evident, confirming
the growing interest among researchers, which also reflects the vyield prediction used in the
literature. This also o|igns with similar systematic review for machine |eorning [382], that mark
2019 as a year of with high research activity.
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Figure 31. Number of publications per year throughout the period 2002 to 2029.

The higher number of articles in the last years can be exp|oineo| by a confluence of factors such
as technological advancements in ICT, augmented research funding, and an expanding
undersfonding of remote sensing opp|ico+ions.

311 Key contributor countries and crops

This systematic review also provided insighfs into the geogrophico| distribution of research and
the key contributors in the field. The studies sponned across 55 countries, with China emerging as
the most prevalent location, succeeded by the USA, India, Australia, and Brazil (Figure 32). While
experiments in deve|oping counftries exist, fhey often focus on a sing|e crop and are less abundant.
In Europe, research efforts are geogrophico”y diverse, corre|o‘ring somewhat with country size and
production share, yet Eastern Europe exhibits a scarcity of studies. Notably, these findings pertain
to the sfudy areas within the articles, not necessori|y the countries of oufhorship.
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Figure 32. Top 10 countries in terms of publications 2002-2029.

The selection of crops for yie|o| estimation p|oys a pivo*o| role in remote sensing—bosed ogricuHure
research. Through a comprehensive ono|ysis of the available literature, this s’rudy has identified
the most common|y invesﬂgofed crops when using remote sensing fechniques for yie|o| estimation.
The research covered a wide range of crops, encompassing 48 different types, further categorized
info nine groups based on the classification provided by the Food and AgricuHure Organization
(FAQ) [383] . Figure 33 provides an overview of the number of studies that encompass crops from
each category, high|ighﬂng the prominent crops that have received extensive attention in the field
of remote sensing—bosed yie|o| estimation. It's important to note that several studies addressed
multiple crops, which is why the total number of crops mentioned exceeds the number of studies
analyzed.

200
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M Oilseed Crops
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140 Other crops(cotton, ramie ,
grassland, bracharia)
120 B Leguminous crops
100 M Fruits and nuts
80 I Sugar crops
60
M Vegetables and melons
40 38
H Root/tuber crops
20 17 14 12

9 8 8 ,
4 H Beverage and spice crops
. L .
Figure 33 Categories of crops included in literature between 2002 and 20292.

Figure 34 offers a more detailed breakdown of the number of studies corresponding to various
crops. It's important to highlight that several studies investigated multiple crops, which accounts
for the total number of crops being greater than the number of studies ono|yzed.
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Figure 34. Number of studies per crop category and crop.

Among these crops, wheat (inc|uo|ing durum wheat), ma

Number of studies

ize, and rice stand out as high|y studied,

not on|y within the cereal category but across all categories. Addi‘riono“y, oilseed crops, with
soybeons Jroking the lead, also garner significcmf attention in scientific pub|ico‘rions. On the other
hand, the categories of fruits and nuts, as well as vegefob|es and melons, appear to be the least

exp|ored in terms of research pub|icofions. It's worth

noting that the "Grass crops" category

encompasses various crops, inc|uding Bachiaria pastures, gross|ono|, miscanthus, perennio|

bioenergy grass, and ryegrass. Similarly, the "tomato"
processing tomato crops.

category includes research related to
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3.1.2 Trends in platforms and sensors used.

The literature on remote sensing platforms for crop yield forecasting encompasses a wide range
of options with unique strengths and drawbacks. These platforms vary in spatial and temporal
reso|ufion, specfro| and radiometric copobi|iﬂes, coverage area, revisit frequency, data ovoi|obi|ify,
cost, and processing demand. Consequenﬂy, choosing the ideal remote sensing |o|o’r1corm for a
specific crop yield forecasting scenario relies on multiple factors such as crop type, analysis scale,
forecosﬂng objec’rives, available resources, and user preferences.

The study's findings reveal that a wide range of remote sensing platforms were commonly
emp|oyeo| for crop yie|o| estimation, with many studies using mu|‘rip|e |o|ohcorms concurrenHy.
Notably, the majority of the reviewed studies (62%) relied on satellite-derived data to generate
yield forecasts throughout the growing season. However, for small-scale investigations conducted
on experimental plots, ground-based sensors (27%) or airborne/UAS sensors (30%) were more
frequenHy utilized (as depic’red in Figure 35). Despite the utilization of mu|’rip|e |o|o’rForms, satellites
remained the predominant choice for crop vyield estimation. This diverse utilization of remote
sensing platforms highlights their versatility and their advantages in collecting crucial data for
crop yie|d forecosﬂng.

Remote Sensing Platforms

70%
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Figure 35. Remote sensing platforms for yield forecasting used in the literature [381].

Figure 36 provides a visual representation of the satellite systems that are most common|y utilized
for crop yie|c| predic‘rion. The most prevo|en’r satellite system emp|oyeo| for this purpose is the
Moderate Resolution Imaging Spectroradiometer (MODIS), followed by Sentinel-2, Landsat, and
Satellite pour I'Observation de la Terre (SPOT). Additionally, Synthetic Aperture Radar (SAR)
sensors, primori|y Sentinel-1, have been ex’rensive|y utilized. Moreover, airborne/UAS |o|o‘rforms
have contributed significantly to yield predictions. Out of the 269 reviewed studies, 84 utilized
airborne/UAS data for crop yie|o| predicfion, invo|ving both manned and unmanned High‘rs. These
studies utilized multispectral cameras (45), RGB cameras (30), and hyperspectral data (15).
Thermal and SAR sensors were less frequently employed. Notably, many studies employed more
than one sensor, indicating the integration of multiple data sources to enhance the accuracy and
comprehensiveness of crop yield prediction models.
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Figure 36. i) Satellite platforms for yield forecasting used in the literature; ii) ground-based platforms for yield
foreccs‘ring used in the literature; iii) airborne/ UAS |o|O|H:orms for yield foreccs‘ring used in the literature. Source [381].

Ground-based sensors were classified based on their functionalities and opp|icoﬂons. Canopy
sensors and analyzers constituted instruments for Chlorophyll Measurement (SPAD), Crop Health,
and Nutrient Management (such as GreenSeeker, NTech Industries, Ukiah, CA, USA, and
CropCircle, Holland Scientific Inc, Lincoln, NA, USA), in addition to Spectral Analysis and Canopy
Analysis sensors (like Spectroradiometer, spectrometers, Li-Cor 2000 Plant Canopy Analyzer from
Li-Cor, Lincoln, NE, USA). Among these sensors, local meteorological stations emerged as the
most prevo|en’r, being featured in 39 studies. Canopy sensors also saw frequenf utilization.
Conversely, thermal sensors and LiDAR/Laser scanner data were the least employed within the
spectrum of ground—bosed sensor categories.

3.1.3 Trends in Vls and methods used

As indicated by the study’s results (Figure 37), the NDVI emerges as the most prevalent vegetation
index. This prominence is justified by its strong correlation with vital yie|o| variables like above-
ground biomass, crop height, and LAl [9,384]. NDVI's extensive documentation in literature
contributes to its re|iobi|i‘ry in estimating crop health and produc’rivify, pivo‘rc1| for accurate yie|o|
predictions [385]. Following NDVI is the Enhanced Vegetation Index (EVI), an enhanced version
addressing some limitations of NDV/, especially in regions with dense vegetation or atmospheric
interferences. Additionally, LAl and GNDVI find substantial application in studies. Each index
offers distinct odvon’roges and serves specific research or monitoring objec‘rives. Researchers,
agronomists, and environmental scientists re|y on these indices to scrutinize vegetation dynomics,
evaluate crop health, monitor alterations in land cover, and make informed management decisions.
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Figure 37. Most W|c|e|y used Vls for crop yield prediction [381].

Analyzing remote sensing products for vyield prediction involves various methodologies
encompassing ML, DL, statistical, and model-based approaches. These methods leverage remote
sensing data's power to estimate and accurately predict crop yields.

Based on the findings of this study (Figure 38), statistical analysis is the most prevalent method
employed in the reviewed studies for crop yield prediction. ML and DL techniques are also widely
utilized for yield estimation. In contrast, model-based approaches are less frequently used in these
studies. Statistical analysis techniques often offer clear and interpretable relationships between
variables, making them a popular choice for analyzing and understanding the impact of different
factors on crop yie|o|s. On the other hand, machine |eorning and o|ee|o |eorning methods excel at
capturing infricate patterns and re|o+ionships in |orge and high-dimensiono| datasets, which is
por‘ricu|or|y odvon‘rogeous when o|e0|ing with remote sensing data. While model-based opprooches
are less common in this context, they provide valuable insights and predictions by simulating the
entire crop grow‘rh process and its comp|ex interactions with the environment from an eco|ogico|
physio|ogy perspective.
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Figure 38. Overview of the methodological approach in the studies considered [381].
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In essence, Statistical Analysis and Machine Learning methods stand out in crop yield estimation
due to their odepmess in managing infricate nonlinear re|cn’rionships within expansive datasets,
encompassing known parametric structures and unobserved cross-sectional variations [386].
Addi’riono”y, the performonce of Deep Learning methods may be inodequo’re due to the fact that
they heavily rely on the quality of the extracted features [387]. Lastly, the limited adoption of
model-based methods in crop yield prediction could be attributed to their substantial demands for
data and computational resources, coupled with their comparatively lower ﬂexibihfy when
juxtaposed with other methodologies [388].

3.1.4 Accuracy Performance Per Crop Category

Assessing accuracy performonce per crop category is crucial for undersfonding the effectiveness
of different methods and p|oh[orms in estimating yie|o|s for specific crops, oiding in informed
decision—moking and optimizing ogricu|’ruro| practices. Consequenﬂy, the highes‘r performonce
measures (R?) obtained for each sfudy were extracted and orgonized into tables based on crop
categories. The fo||owing tables summarize crop-specific studies o|ong with the methods and
platforms used for yield prediction, as well as the corresponding R? values.

Table 12 summarizes the me*hods, p|o’r1corms, and associated R? values for the sugar, beveroge,
and spice crop category. The results show that a combination of statistical and machine |eorning
methods has been used for yie|o| predicﬁon. For sugarcane, these methods, coup|ed with satellite
data, have provided R? values ranging from 0.53 to 0.94. For coriander and tea, statistical methods
using satellite data yielded R? values between 0.68 and 0.87. In the case of coffee tree crops,
statistical and model-based Jrechniques with satellite data achieved R? values in the range of 0.64

to 0.93. R?

Table 12. Reporfed method, p|c1H:orm, and R?, for sugar, beveroge, and spice crop category.

Crop References Method Platform R2
[389] Statistical Satellite x Proximal 0.53
[390-393] Statistical Satellite 0.551t0 0.8
Sugarcane [394], [395] ML, Statistical Satellite 0.87 to 0.94
[396] ML Satellite 0.70
[397] Model based Satellite 0.86
Coriander [398] Statistical Satellite 0.81 to 0.87
Tea [399] ML Satellite 0.68 to O.71
Statistical, Model
[400] Satellite 0.64 to 0.69
Coffee Tree based
[401] ML, Statistical Satellite 0.88 to 0.93

In Table 13, the reported methods, platforms, and corresponding R? values for the Vegetables and
Melons crop category are presenfed. These ﬁndings reveal a variety of methods opp|iec| for yie|c|
predicﬁon in different vegefob|e crops. For Chinese cobboge and white radish, statistical methods
using UAS platforms demonstrated R? values between 0.66 and 0.90. In the case of carrots,
statistical methods with satellite data resulted in R? values ranging from 0.29 to 0.78. African
eggp|onf, when studied with statistical methods in conjunction with UAS and proximo| sensing,
achieved R?values between 0.54 and 0.87. For table beet, a statistical approach using UAS data
provided an R? of 0.89. For tomatoes, both processing and fresh fruits, a combination of statistical
and machine learning methods with satellite and UAS platforms yielded R? values in the range of
0.69 to 0.90.
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Table 13. Reported method, platform, and R? for the Vegetables and Melons crop category.

Crop Reference Method Platform R2
Chinese Cabbage -
White Radish [402] Statistical UAS 0.66 to 0.90
Carrot [403] Statistical Satellite 0.29 to 0.78
African Eggplant [404] Statistical UAS x Proximal 0.54 to 0.87
Table Beet [405] Statistical UAS 0.89
[350] * Statistical Satellite 0.69 to 0.81
Tomato *
1406}, LIOTL ML, Staistical UAS 070 to 090

* Processing Tomato.

Table 14 summarizes the me*hods, p|offorms, and R? values for various oilseed crops. No‘rob|y,
groundnqu achieved an R? of 0.96 using a combination of machine |eorning and statistical methods
with satellite and proximal data. Sunflower performed well with an R? of 0.90 using machine
learning on satellite data. Olive tree and palm oil had high R? values of 0.97 and 0.82, respectively,
using statistical and machine learning methods on UAS and satellite platforms. Canola yielded
good results with R? values of 0.82 (UAS) and 0.86 (satellite) with statistical methods. Rapeseed
showed promise with an R?of 0.86 using a combination of model-based and statistical opprooches
with satellite and proximo| data. Soybeon demonstrated a wide range of R?values from 0.49 to
0.98, depending on the method and platform chosen.

Table 14. Reported methods, platforms, and R? for the Oilseed Crop category.

Crop References Method Platform R2
[351] ML, Statistical Satellite x Proximal 0.96
Groundnut [409] ML/E(L_S’QZIOCJQ' Satellite x Proximal 0.68
[410] ML Satellite 0.90
Sunflower [398] Statistical Satellite 0.56
[411] ML/DL, Statistical UAS 043
[412] Statistical Satellite 091
Olive Tree [413] Statistical UAS 097
Palm Gil [414] ML/DL Satellite 0.82
Coralle [415] Statistical UAS 0.82
[416] Statistical Satellite 0.86
[417] Statistical UAS x Proximal 0.81
Terseseae [418] M(S)?oﬂisk:iocl:sjd/ Satellite x Proximal 0.86
[419] Model based Satellite x Proximal 0.82
[412] Statistical Satellite 097
[420], [421], [422] ML/DL, Statistical Satellite 0.87 to 0.90
[412,423-499] Statistical Satellite 049 to 0.98
Soybean  [430], [431] ML/DL Satellite 085
[432] ML Satellite 0.61
[433], [434] ML, Statistical Satellite 0.86 to 0.90
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[435], [436] ML/DL UAS 072 to 0.66
[352] ML UAS 0.89
[437] Statistical UAS 074
[438] ML/DL Satellite x Proximal 0.85
[439] ML, Statistical ~ Satellite x Proximal 0.82
[440] ML UAS x Proximal 0.97
[441] ML/DL, Statistical Satellite x Proximal 0.67

In the Fruits and Nuts category (

Table 15), orchard yield estimation has predominantly been conducted using proximal sensing and
UAS sensing, or a combination of both o|ong with satellite data. Nofob|y, rnu|ﬂp|e methods and
platforms have been applied for vineyard vyield prediction, with ML and DL approaches,
demonsfroﬂng hign perforrnonce, with an R? of 091 when using proxim0| data. Satellite and
proximal data combinations also achieve strong results, with R? values ranging from 0.42 to 0.87.

Table 15. Reported methods, platforms, and R? for the Fruits and Nuts crop category.

Crop References Method Platform R2
[203,442] Statistical Satellite x Proximal 0.42-0.87
Vi d [443] ML Satellite x Proximal 0.79
ineyards
[444] ML/DL Proximal 091
[445] ML, Statistical Proximal 0.86
[446] Statistical UAS 0.84
Almond
[447] ML/DL, Statistical Satellite x UAS 071
Apple [448] ML/DL UAS 0.88
Jujube [436,449] Model based Satellite 0.62 to 0.78
M [450] ML/DL, Statistical Satellite 0.77
ango
[451] ML, Statistical UAS 077

Table 16 offers a comprehensive overview of yie|o| predic’rion methods, p|o+forms, and associated
R? values for a range of root tuber and other crops. Nofob|y, for potato crops, the odopﬁon of
ML approaches, either with satellite or UAS data, demonstrates high performance, achieving R?
values of up to 0.89. Cotton yie|d predicfion, on the other hand, involves a spectrum of methods,
including statistical, ML, and model-based approaches, often combining satellite, UAS, or proximal
data sources. This results in a wide range of R? values from 0.52 to 0.97, highlighting the versatility
and effectiveness of different Jrechniques. Other crops like sweet potato, cassava tuber, ramie, milk
thistle, and various grasses also disp|c1\/ varying levels of accuracy, depending on the me*hodo|ogy
and data source used.

Table 16. Reported methods, platforms, and R? for the Root tuber and other crops category.

Crop References Method Platform R2
[452] Statistical Satellite 0.65
[453] ML, Statistical Satellite 0.89
Potato [454] ML Satellite x Proximal 0.86
[384] ML UAS 0.83
[455] ML, Statistical Proximal 0.72
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[418] Mgfoi'iﬁi‘iijd' Satellite x Proximal 086
[141,142] Statistical UAS 0.52 to 0.94
[457] ML/DL UAS 0.85
[458] S Satellite 067
Cotton [459] Model based  Satellite x Proximal 0.96
[460] Statistical UAS x Proximal 0.84
[461] ML UAS x Proximal 093
ML/DL,
[462] Statistical UAS 0.97
[463], [464] ML, Statistical UAS 0.77 to 091
Sweet Potato [429] Statistical Satellite 068
Cassava Tuber [465] Statistical UAS 087
Ramie [466] Statistical UAS 066
Milk Thistle [418] M(S)foefliﬁiscjd’ Satellite xProxima 0.86
Grassland * [467] ML UAS 0.87
[468] Statistical UAS 075
Perennial Ryegrass
& [469] ML UAS 093
Perennial Bioenergy
Grass * [470] Statistical Satellite 0.88
Brachiaria Pastures
* [471] ML Satellite x UAS 0.75
Miscanthus * [472] ML, Statistical, UAS 079

Model based

* Grasses and other fodder crops.

In the case of Leguminous crop category (Table 17), Alfa Alfa yield prediction benefits from
statistical, ML, and DL methods, coupled with either satellite or UAS platforms, yielding R values
ranging from 0.64 to 0.94. Red Clover exhibits impressive R? values of 0.90, achieved through ML
and DL techniques with UAS data. Chickpea yields are accurately estimated using ML methods
combined with satellite and proximal data sources, achieving an R? value of 0.92. Additionally,
Snap Bean and Peas show high predictive accuracy, especially with ML and DL methods using
UAS data, attaining R? values of 0.98 and 0.95, respectively. Beans demonstrate the adaptability
of statistical and ML Techniques, whether with satellite or so+e||ife—proximo| datq, resu|ﬁng in R?
values ranging from 0.54 to 0.84. Finally, Faba Bean benefits from a combination of ML and
statistical methods with UAS data, achieving an R2value of 0.72. These findings underscore the
significonce of tailored opprooches for different |eguminous crops fo enhance yie|o| predicﬂon
accuracy.

Table 17. Reported methods, platforms, and R? for the Leguminous crop category.

Crop References Method Platform R?
[473], [474] Statistical Satellite 0.72 to 0.94

[475] ML/DL UAS 0.87

Alfa Alfa [476] ML UAS 0.84

[477] Statistical UAS 0.64

[478] ML, Statistical Satellite 0.93
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Red Clover

[479] ML/DL UAS 0.90

Chickpea [480] ML Satellite x Proxima 0.92
Snap Bean * [481] ML/DL UAS 098
Peas [473] Statistical Satellite 0.95
[482] Statistical UAS x Proximal 0.70

Beans * [483] ML Satellite 0.54
[484] Statistical Satellite x Proximal 0.84

Faba Bean [485] ML, Statistical UAS 0.72

* Included in beans.

The category of cereals encompasses a wide range of methods and p|o’r{orms, prompfting its
separation into two tables: cereals (Table 18), and maize and wheat (Table 19). Table 18 shows
that statistical methods with satellite data yield R? values in the range of 0.25 to 0.97 for Sorghum
and Rice, demons’rro’ring the eHicocy of this opprooch. Bor|ey exhibits R? values ranging from 070
to 0.93 when emp|oying statistical methods with satellite data and data from mu|ﬂp|e p|offorms.
For Oats, the use of statistical and machine learning techniques, along with data from various
sources, results in R? values of 0.68 to 0.929. Millet and Rice are also estimated using statistical
and machine learning methods with satellite data, achieving R? values between 0.40 and 0.95.
The opp|icoﬂon of model-based fechniques and a combination of statistical, machine |eorning,

and model-based methods contributes to successful yield predictions.

Table 18 Reported methods, platforms, and R2 for the cereal crop category.

Crop Reference Method Platform R2
Ceredl [486], [487] Statistical Satellite 071
[416],[488], [473] Statistical Satellite 0.86 to 0.93
[489] Statistical sarelie < AS 070
X PrOX|mO|
Barley [490], Mgiﬂjijd' Satellite 0.6 to 0.77
[492] ML/DL UAS x Proximal 093
[493] ML x Statistical Satellite x Proximal 0.88
[494] ”1L'S*°ES“C3L Model Satellite 0.47
ase
[489] Statistical Satellite x UAS « 0.79
Oat Proximal
ats
[492] ML/DL UAS x Proximal 0.929
[495] Statistical Proximal 090
Millet [429] Statistical Satellite 0.68
[483] ML Satellite 0.40
[496], [474], Statistical Satellite 0.25 to 0.81
[429]
Sorghum
[497] ML/DL Satellite x Proximal 0.35
[483] ML Satellite 0.44
[429,498-502] Statistical Satellite 0.56 to 0.97
Rice [[55%55]]’ [[Egg]]’ ML Satellite 043 to 0.95
[506], [507] Model based Satellite 0.89 to 0.96
[508] ML, Model based UAS x Proximal 0.75
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[509], [510]
[511], [512]
[513], [409]

ML/DL, Statistical UAS x Proximal
ML, Statistical UAS
ML/DL, Model based Satellite x Proximal
Statistical, Model

[514] based Satellite
[515] ML/DL Satellite
[516] ML/DL UAS
[517] Statistical UAS x Proximal
[518] ML, Statistical UAS x Proximal
[519] ML, Statistical Proximal
Statistical, Model
[520] based UAS
[521], [522] Statistical Satellite x Proximal
[523], [524], Statistical UAS

[525], [526]

0.22 051
076 to 0.8
0.75 to 0.86

0.80

0.81
0.84
0.64
0.83
0.86

0.94

0.66 to 0.90

0.74 to 0.83

In the table Focusing on wheat and maize (Tob|e 19), it becomes evident that these crops have
received specio| attention in the literature. The number of research papers dedicated to sfudying
wheat and maize yie|d predicﬂon is higher compored to other cereals, indico’ring their prominence
in ogricu|’ruro| research. Moreover, the utilization of diverse opproocl’]es in predic’ring the yie|o|s of
wheat and maize is also noteworthy.

Table 19. Reported methods, platforms, and R2 for wheat and maize.

Crop

Maize

References Method Platform
[527] Statistical Satellite x Proximal
[528] Statistical UAS xProximal
[529] Statistical UAS
[425-
497,429 473,47 4,483,530 - Statistical Satellite
537]
538], [539 Model based, _
[540], [541], [542], [543] Model based Satellite
[544] Model based UAS x Proximal
[545] Model based Proximal
[410], [546], [547], [548], ML Satellite
[549], [550], [432]
[551] ML, Statistical, S .
tellit
Model based arene
[433], [552], [553] ML, Statistical Satellite
[554], [438] ML/DL Satellite x Proxima
[422], [555], [441], [421], ML/DL, Statistical Satellite
[420], [556], [557]
[558], [559], [560], [561] ML/DL UAS
[562], [563] ML, Statistical ~ Satellite x Proximal
[564] ML Proximal

R2
0.87
0.83
074

0.46 to 0.99

0.85

0.68 to 0.83
0.855
0.68

043 to 0.92

0.59

0.48 to 091
0.75 to 0.85

0.70 to 092

0.57 to 0.93
0.35 to 0.98
07
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[565] Model based, ML Satellite x Proximal 0.58
[566] Statistical, Model UAS 0.8]
based
[409] MILIDL, e Satellite x Proximal 075
based
[567] Statistical, Model Satellite 073
based
[568] ML, Model based Satellite 0.76
[569] ML x Statistical UAS 0.80
[474], [488], [570], [533],
., 1572], [573], [416],
[[574% {473%1 %575% %4 ]] Statistical Satellite 0.37 to 0.99
[576], [398], [577], [578],
[427]
[579] ML/DL, Model Satellite 0.83
based
[580] ML/DL Satellite 075
[555], [581] ML/DL, Statistical Satellite 072 t0 078
[490], [582], [583], FEE I ee] Satellite 0.48 to 0.86
[584], [585] Statistical ' '
[586], [587], [494] ML, Model based Satellite 0.55 to 0.75
[433], [588], [589] ML, Statistical Satellite 0.72 to 0.89
594], [595], [596], [597],
%598}, %599%/ %600]], [[49]%, Model based Satellite 049 to 0.86
[601], [602], [603]
[604], [605], [606], ML/DL Satellite 0.79 to 0.93
Wheat  [607], [608], [609]
[610], [e11] Mode|. bgsed, Proximal 0.698 to 0.77
Statistical
[612],[613] Statistical Proximal 0.46 to 0.48
[614], [615] ML/DL Proximal 0.83 to 0.891
[616] Model based Proximal 0.84
[617] ML, Statistical UAS 0.81
[618],[619], [620] ML/DL UAS 0.62 to 0.85
[621] Statistical UAS 070
[622], [623], [624], [625], ML UAS 062 to 093
[626]
[627], [628], [62 ML/DL, Statistical UAS 0.59 to 0.84
[630], [631], [63 ML/DL, Statistical UAS x Proximal 0.83 to 0.93
[633], [492], [63 ] Statistical UAS x Proximal 0.73 to 0929
[635] ML, Statistical UAS x Proximal 078
[493], [636] ML, Statistical ~ Satellite x Proximal 0.83 to 0.88
[637], [638] ML/DL, Statistical Satellite x Proximal 0.68 to 0.91
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Model based
[639] ML/DL, Statistical Satellite x Proximal 0.50
[640], [64%'4%18]/ [642], Sfofisgzcidi\/lodd Satellite x Proximal 0.61 to 0.93
[644] ML Satellite x Proximal 0.89
[645], [646] ML/DL Satellite x Proximal 0.63 to 0.86
[647] ML[\//E)E,QISLOJSIZ(;COL Satellite x Proximal Q.77
[648] Model based  Satellite x Proximal 049
[649], [650] Statistical Satellite x Proximal 0.55 to 0.76
Satellite x UAS
[489] Statistical e e 0.79

x Proximal

Both wheat and maize show a diverse range of ’rechniques used for yie|o| predicfion. Statistical
methods in conjunction with satellite, UAS, and proximo| data provide R?values ranging from 0.37
to 0.99 for wheat, with similar statistics for maize in the range of 025 to 0.99. Model-based
mefhods, machine |eorning, and deep |eoming Techniques are also prevo|en+, further showcosing
the variety of opproocl’]es utilized for yie|o| estimation. The combination of satellite, proximo|, and
UAS data in different ways contributes to the overall accuracy, with R? values reaching 0.86 for
wheat and 0.98 for maize in various studies. This table illustrates the comp|exi+y and diversify of
methods and p|ohforms emp|oyec| fo predicf wheat and maize crop yie|c|s occurofe|y.

3.2 Intercomparison of Proximal, UAS and Satellite Remote
Sensing Platforms

Over the initial two years of the s’rudy, an investigation was undertaken across ten distinct fields
(eighf in the first year and two in the second year) at field level scale. These designofed areas
functioned as reference fields, facilitating the comparison of NDV|I datasets derived from proximal,
UAS and Satellite imagery. The analysis conducted at the level of 10x10 meters.

3.2.1 Descriptive Statistics

The summary statistics derived from the UAS (Table 20) and Sentinel (Table 21) NDVI dataset
provide valuable information about the overall condition and diversity of vegetation in a total of
ten distinct fields during the 2020 and 2021 seasons.

The mean NDVI values serve as a measure of the average vegetation health within each field.
According to the results of descriptive statistics for the NDVI derived from UAS dataset (Table
20), the fields F20_1, F20_6, F20_3, and F21_2 stand out with the highest mean NDVI values
(076 and 0.81), signifying relatively healthy vegetation conditions. Conversely, fields F20_7 and
F20_8 exhibit the lowest mean NDVI values, suggesting the presence of less healthy or sparse
vegetation. The standard error for all fields is remarkably low (around 0.01), indicating a high
level of accuracy and reliability in the mean NDVI estimations. The median values provide a
measure of the central tendency, with F20_1 having the highest median NDVI (0.82) and F20_7
the lowest (0.70).

Standard deviation measures the spread or variability in NDVI values. Fields F20_4 and F20_5
show the highest standard deviations, indicating a broader range of NDVI values and greater
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voriobihfy in vegetation health. This voriobihfy is further exemp|ified by the somp|e variance, which
is higher in these fields. Positive kurtosis in F20_2 suggests a distribution with a peak, while
negative kurtosis in F20_7 and F20_8 points to flatter distributions. Negative skewness in most
fields signifies a left-skewed distribution with a |onger tail on the left side, indicoﬂng an abundance
of lower NDVI values. The range between minimum and maximum NDVI values ranging from O.11
to 0.93, indicating a broad spectrum of vegetation health throughout each season. Notably, the
Field F20_7 boasts the lowest minimum NDVI (0.11), possibly indicating regions with very sparse
or stressed vegetation. In contrast, F20_1 presents the highest maximum NDVI (0.89), highlighting
areas with exceptionally healthy vegetation.

Table 20. Descriptive statistics for the NDVI derived from UAS dataset for the 2020 and 2021 seasons.

Stand. | S |

2020
164
F20_1 .., o000 082 0.4 0.02 185 177 069 020 o089 ¥
676
F20-2 ., o000 o076 0.08 0.0l 554 184 057 028 086
10
F20_.3 .5, o000 o078 0.08 0.01 100 128 038 050 088 3
F20_4 64
-4 o067 OO 079 0.22 0.05 044 106 069 017 086
3120
F20.5 4, o000 073 016 0.03 092 130 075 Ol 086
1446
F20.6 ,,; o000 084 016 0.02 060 -139 072 020 09I
F20_7 e
-7 959 001 070 0.20 0.04 039 099 071 Ol 082
775
F20.8 ., o0l 070 0.19 0.03 AN 062 067 021 089
20921
1460
F21.1 40 000 072 018 0.03 032 108 068 0I5 083
093
F21.2 4 000 089 015 0.02 094  -l44 070 024 e

The satellite NDVI dataset reveals insights into vegetation health and variability across ten fields.
F21_2 stands out with remarkably healthy vegetation (mean NDVI 0.77), while F20_7 shows less
healthy vegetation (mean NDVI 0.56). F20_4 and F20_5 exhibit diverse vegetation conditions
with high standard deviations, while F20_2 and F20_3 demonstrate more consistent health. Field
F20_2 has a peaked distribution, while F20_7 shows a skewed distribution toward higher NDVI
values. The range of NDVI values varies, with F20_5 and F21_2 having the widest range (0.73).
F21_2 features the highest maximum NDVI (0.93), and F20_5 exhibits the lowest minimum (0.14),
suggesting sparse or stressed vegetation. Higher variance values in F20_5 and F21_2 indicate
greater voriobih#y in vegetation health.
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Table 21. Descriptive statistics for the NDVI derived from Sentinel dataset for the 2020 and 2021 seasons.

Stand. | S |

2020

164

F20.1 o 000 075 ol4 002 014 6 058 028 08 P

F20_2 001 077 Ol 676
on O : 13 002 263 169 068 018 086

1035
F20.3  ,,5 o000 078 on 001 073 064 051 038 089
F20_4 1164
067 0Ol 08 023 005 -067 -096 068 020 089
3120
F20.5 4 000 067 020 004 061 -079 073 0l4 087
1446
F20.6  ,,, 000 08 015 002 057 -3 066 025 0O

1710
F20.7 5, 0Ol 066 022 005 -lI9 -055 067 016 083

775
F20.8 4, 001 067 016 003 -lI5 -043 058 029 087
2021
1460
F21-1 065 000 072 014 002 002  -l12 061 026 087
F21_2 1312
- o077 OOl 08 018 003 03 131 073 020 093

The results of the descriptive statistics noteworthy resemblance in average NDVI values when
comparing these two remote sensing techniques—UAS and Sentinel-2. In the majority of cases, the
UAS multispectral data produces higher mean NDVI values, probably due to superior spatial
resolution.

3.2.1 Regression Analysis

Below the Figure 39 presents the relationship between the UAS and satellite datasets for all the
fields encompassing all the associated measurements recorded on multiple dates. The spectrum of
R? values spans from 0.98 to 0.99, signifying a robust and substantial correlation between the
measurements. This high degree of correlation underscores the consistency and re|iobi|i+y of the
re|oﬁonship between the two datasets, oﬁcirming their close o|ignmen’r across various data points
and dates. The intercept is omitted, as both datasets are expecfed to have a natural zero baseline
when there is no vegetation.
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Figure 39. Regressive plots depicting the UAS and satellite NDVI datasets for the 2020 and 2021 seasons.
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Figure 40 and Figure 41Figure 39 present the re|o’rionship between the proxim0|, UAS and satellite
datasets for all the fields encompassing all the associated measurements recorded on mu|‘rip|e
dates. The spectrum of R? values spans from 0.66 to 0.70, signifying a moderate correlation
between the measurements. This substantial correlation high|ighfs the robust and dependob|e
nature of the connection between the two datasets, confirming their close o|ignmen’r across a
diverse array of data points and ‘rempor0| observations.

84(163)



Yield Prediction in processing tomato crop, through Precision Agriculture practices

PhD Thesis Nicoleta K. Darra

Proximal vs UAS_2020 y =1.327x-0.3348

2
10 R* =0.6977

0.3
0.8
0.7
0.6
0.5
0.4
03
0.2
0.1
0.0

UAS NDVI

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Proximal NDVI

Proximal vs SENTINEL_2020 y=1.3145x-0.3118
R? = 0.6562

0.9
0.8
0.7
0.6
0.5
0.4
03
0.2
0.1

SENTINEL NDVI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Proximal NDVI

Figure 40 Regressive plots depicting the proximal, UAS, and Satellite NDVI datasets for the 2020 season.

Unlike the UAS and Sentinel datasets. the intercept was retained in the analysis, as it significantly
deviated from zero. This outcome is expec‘red, considering that the proxim0| sensor primori|y
concentrates on monitoring vegetation grow’rh exc|usive|y. In contrast, the UAS and Sentinel
sensors encompass the influence of soil reflectance and ofmospheric conditions in their
measurements. Consequenﬂy, this discrepomcy jus‘rifies the observation that proximo| sensor values
commence at opproximo’re|y 0.3 and do not dip lower in comparison to the values of the UAS and
Sentinel datasets.
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Figure 41. Regressive plots depicting the proximal, UAS, and satellite NDVI datasets for the 2021 season.

Given the robust correlation between UAS and Sentinel NDVI datasets, individual plots per field
are presented below (Figure 42). These plots depict the regression relationships between UAS and
Satellite NDVI datasets for each specific field in the year 2020.
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Figure 42. Regression plots of UAS and Satellite NDVI datasets by field in 2020.
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Figure 43 illustrate the re|o+ionship between the UAS and satellite datasets across the two fields

for 2021 season.
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Figure 43. Regression plots of UAS and Satellite NDVI datasets by field in 2021.

The figure below (Figure 44)presents the correlation between the UAS and satellite datasets for
one specific field per growth stage depicts the correlation between the UAS and satellite datasets
for one specific field at each growfh stage. No‘rob|y, the values show a linear progression from the
canopy growth stage, with a steady increase observed until reaching maturity. This linear trend
highlights the evolving relationship between the datasets as the crop grows and matures.
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Figure 44 An exomp|e of correlation between the UAS and satellite datasets for one specific field per growfh stage

Overall, the values of R? ranged from 0.97 to 0.99, providing robust confirmation of Sentinel-2's
effectiveness in choroc’rerizing vegetation and ev0|u0’ring p|cm’r health, with values similar to UAS
data concerning the NDVI trends (R?). This was apparent to the analysis conducted by field but
also to the total datasets of each season. This consistency was evident not on|y in the fie|o|—speci1cic
cmc1|ysis but also across the comp|efe datasets for each season. Furthermore, both datasets exhibit
a clear and linear increase in their values per growth stage.
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3.3 Phenological stages of the processing tomato crop

A noteworthy byproduct of this study was the establishment of a connection between the
phenological stages of the processing fomato crop and the corresponding VI values. This linkage
offers valuable insighfs info the p|onf's growfh and deve|opmen+ Jrhroughou‘r its various groerh
stages, enhancing our understanding of the crop's behavior in relation to remote sensing data.

3.3.1 Field level approach

In the second year, NDVI values were continuously recorded throughout the growing season for
the two respective fields included in the study, relying on satellite time series data. Each of the
fields under investigation was p|on’rec| with three different varieties of processing fomatoes. The
provided Figures illustrate the yeor|y patterns of NDVI for these two fields. Even ’rhough all three
tomato varieties were initially planted in the same field, Figure 45 reveals variations in the vigor
curves of these varieties. Specifico”y, the Dexter variety exhibits ropid growfh, and the decline in
its curve after 100 o|oys signifies the tfiming of its harvest. Converse|y, the other varieties continue
to grow, with a noticeable downward trend beyond 110 days.

Phenological stage

Canopy Growth Budding Flowering Fruit formation Fruit ripening to maturity

15 20 25 30 35 50 60 70 75 80 85 920 100 105 110 120 125
DAYS FROM TRANSPLANTING
—DEXTER —FABER —FOSTER

Figure 45: F21_1: NDVI dynamics curves for varieties i) Dexter (red), ii) Faber (green) and iii) Foster (blue),

In the context of Figure 46, depic‘ring the second field, the robustness curves of the different
varieties also show disporifies within the initial 95 doys. Nofob|y, the Dexter variety disp|oys a
quicker grow*h rate, and the c|rop in its curve marks the culmination of the growing season.
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Phenological stage

Canopy Growth Budding Flowering Fruit formation Fruit ripening to maturity
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Figure 46: F21_2: NDVI curves for varieties i) Dexter (red), ii) Faber (green) and iii) Foster (blue),

Through an examination of NDV|I values and mean values of multiple Vls, the study depicted the
progressive grow’rh of the crop, with peoks in VI values observed at speciFic grow’rh stages. The
examination of different tomato varieties also revealed variations in growfh patterns, emphosizing
the pofenfio| for tailored crop management.

3.3.2 Regional Approach

Based on the reported NDVI values, Figure 47 shows the NDVI dynamics and the corresponding
phenological stages of the crop. During the second year of the study (2021), it was found that the
highest NDVI values were recorded 75 to 80 days after transplanting. Early on, during the initial
stages, the NDV|I values were notably low, which aligns with expectations, especially in row crops
where the remofe|y sensed images prominen’r|y o|isp|oyed visible soil. The phose of full canopy
cover and Howering was recorded in June, occurring opproximo+e|y 60-75 doys after ‘rronsp|onﬁng,
while the phose of tomato formation took p|oce in Ju|y, confingent upon the fronsp|onfing date.
These findings o|ign with a previous s*udy [412], which conducted pheno|ogic0| monitoring using
NDVI values derived from Sentinel-2 imagery over the period spanning from 2016 to 2021.
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Figure 47. Annual NDVI dynamics and the respective phenological stages of the processing tomato crop.

Not surprisingly, based on the mean values of all five VIs (NDVI, PVI, WDVI, SAVI, and RVI),
progressive canopy growfh is observed (Figure 48).
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Figure 48 The mean values of the five Vls: (a) PVI (green); (b) WDVI (light blue); (c) SAVI (red); (d) NDVI (blue);

(e) RVI (orange), which has different range of values and is incorporo’red in the secondory axes.

In the eor|y stages, the influence of soil is strong due to the low canopy cover. There seems to be
a positive trend that peoks at 80 doys and is negative in the last stages of the crop.
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3.4 Predicting yields

3.4.1 Field - Level yield predictions

During the first year, the following table (Table 22) demonstrates a positive and strengthening
relationship between NDVI data from UAS and Sentinel platforms as plant growth progresses.
The Pearson correlation coefficient (r) and R? values reveal the strength of the relationship
between NDVI datasets and yield by plant growth stages. In the year 2020, the Pearson coefficient
values for NDVI data from both UAS and Sentinel platforms ranged from 0.51 to 0.75, suggesting
a moderately positive correlation with crop yield. The strongest correlation was observed during
the flowering stage, with Pearson coefficient values of 0.67 for UAS and 075 for Sentinel. These
results indicate that NDVI data from both platforms were positively associated with crop vyield
during this year, particularly during the ﬂowering stage.

The R?values, which represent the goodness of fit, follow a similar pattern. The R? values ranged
from 0.20 to 0.57, indicating that NDVI data explained a substantial portion of the variance in
crop vyield during various growrh stages. The hignesr R-squared value was observed during the
flowering stage for both UAS (0.45) and Sentinel (0.57). This suggests that NDVI data from both
p|ohtorms had a considerable impact on exp|gining the variation in crop yie|d during this growih
stage in 2020.

Table 22 Relationship between NDVI data from UAS and Sentinel platforms to yield samples.

. Canopy . . Fruit Fruit ripening
Budding Flowering formation to maturity

NDVI UAS 2020

Pearson (r) 0.54 059 067 072 065 065

Pearson (r) 0.59 . 054 . 073

R2 0.34 - 0.30 - 0.53

Overall, Table 22 illustrates that NDVI data from both UAS and Sentinel platforms were positively
correlated with crop yield in 2020, with the strongest correlations occurring during the flowering
stage. Additionally, these NDVI datasets explained a significant proportion of the variance in crop
yie|d, porficu|or|y during the Howering stage.

To estimate the total yield of each field for 2021 the yield sample values were upscaled based on
the average plant per hectare. The Figure 49 shows the results for the season 2021, indicating
variations between the predicfed (based on yie|d sc:imp|ing) and the actual yie|d values. The
accuracy of the predicfions varies across different instances, with some close matches, s|ighr
underesrimgrions, and a few overestimations.
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Specifically, in the fields F20_2 and F20_5, the predicted yield fell notably short of the actual
yield, with a difference of approximately 17 tons per hectare. In contrast, in the cases of F20_1 and
F20_7, the predicted vyield slightly surpassed the actual yield by roughly 7 tons per hectare,
suggesting a minor overestimation. Further cmo|ysis and refinement of the predicﬂve model may
be necessary to improve its accuracy for these yield predictions.
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Figure 49. Comparison of Actual vs. Predicted Crop Yields for the 2020 growing season

In the following year (2021), the correlation between crop yield samples and NDVI datasets from
both |o|ohcorms exhibited a consis’renHy weak re|ofionship, and these correlations were not found
to be s’ro’risﬁco”y significont The absence of statistical signhciccmce reinforces the notion that the
observed correlations were not substantial enough to draw meaningful conclusions regarding the
influence of NDVI on crop yield during that specific year.

To address the cho”enge posed by manual yie|o| estimation, a process known for its time and cost
intfensity and suscep’ribih‘ry to human errors, this research recognized the need to create a
comprehensive and farm-scale crop yie|o| producﬁon dataset for the same year. Such a dataset
could serve as a precise ground—frufh reference for farm-scale yie|o| predic‘rions. This is porﬂcu|or|y
crucial, considering the existing scientific evidence [651-653], that highlights the value of satellite
data in predicﬂng regiono|—sco|e yie|o| producﬂon. Addiﬂono”y, the research copi‘rohzed on the
know|eo|ge of the robust correlation between UAS and satellite values, further enhoncing the
dataset's re|iobi|i’ry4 As part of this initiative, accurate field boundaries from 108 fields were
dep|oyed to retrieve actual yie|d values. These cctrefu”y curated ground—’rru’rh data were then used

to conduct a rigorous ono|ysis of satellite imagery, s‘rreng‘rhening the overall accuracy of the sfudy's
findings.

3.4.1 Regional - Level yield predictions

An initial statistical cm0|ysis was conducted, estimating the Pearson coefficient (r) between yie|o|
and satellite derived NDVI mean values for 108 fields. This analysis involved the extraction of five
Vls, collected at five-day intervals using satellite imagery (Table 23).
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Table 23. The Pearson coefficient representing the relationships between the derived Vls and the yield for 2021 season.

Vi Pearson Coefficient
80 Days 85 Days 90 Days 95 Days
NDVI 0.68 * 072+ 070+ 0.63*
RVI 072+ 070+ 075~ 0.56*
SAVI 0.68 * 0.69 * 074~ 065+
PVI 0.67 * 0.64 * 072+ 0.68 *
WDVI 0.58* 065+ 073~ 0.69 *

* Correlation is significant at the 0.05 level.

The ono|ysis revealed that the highes’r values of Pearson coefficient, indicofing stronger
correlations, were observed towards the end of the growing seadson. This suggest that the
re|o’rions|’1ip between the derived Vls and crop yie|d became more pronounced and significon‘r as
the crop matured. Notably, NDVI, RVI, SAVI, and PVI exhibited moderate to strong positive
correlations with yield, with coefficients ranging from 063 to 075, making them potentially
valuable for yield prediction. The NDVI peaked at 85 days post-transplanting, while the other
vegetation indices reached their highest points at 90 days, with RVI taking the lead. While WDVI
showed s|igh’r|y lower correlations compored to the other indices, it remained posifive|y related to
yield, with coefficients ranging from 0.58 to 0.73. This implies that WDV/, although having slightly
weaker correlations, may still provide meoningfu| insighfs info yie|o| predicﬂon.

Towards improving yie|o| estimations, the next phose involved investigating the predic’rive
capabilities of various Vls and growth stages through machine learning methods. Using AutoML,
several combinations of sensors and grow’rh stages per year were inves’rigofed to evaluate their
performonce in assessing processing tomato yie|o|.

Figure 50 presents the progression of odjuered R2 over the growing season. All indices show the
best results in the 80-90-day period, aligning with the results reported in Table 23. Although NDVI
demonstrated genero”y lower performonce, it reached its predicﬂve peok at 85 o|oys post-
transplanting. RVI displayed the most robust predictive performance especially at 90 post-
+ronsp|onﬁng,~ however, its effectiveness diminished more ropio||y after reoching its peok compored
to the other VlIs. On the contrary, PVI and WDVI exhibited inferior performance when contrasted
with SAVI and RVI.
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Figure 50 R? progress along the growth period for each of the Vls for the 2021 growing season.

For the AutoML experiment, the adjusted R?2 and RMSE were used to evaluate the predictive
accuracy and determine the performonce of the models for the best VI and period. In addition, a
fivefold cross-validation was performed for each regression model to check its generalization ability
and ensure its robustness. The experiments were also repeoJred 10 times to ensure that the final
results were as accurate as possib|e. Table 24 shows that the best yie|o| predic’rions were made by
RVI and SAVI. Specifically, these two indices reached an average R? of 072 £ 0.02 and 0.69 +
0.03, respectively, 90 days after transplanting. Moreover, their RMSEs were also the lowest (103
+ 0.03 and 106 + 0.04, respectively). The remaining VIs (NDVI, WDVI, and PVI) are also among
the regression models with the best performonce. However, ‘rhey all show a |orge difference relative
to RVI and SAVI. Another observation from Table 24 is that the best result was achieved 90 and
85 days after transplanting.

Table 24 The 10 best-performing Vls and perlods for the 2021 growing season.

072 + 0.02 1.03 + 0.03

SAVI 90 0.69 £ 003 1.06 £ 0.04
SAVI 85 0.65 £ 003 1.09 £ 0.03
RVI 85 0.64 £ 0.02 112 + 0.06
RVI 80 0.63 = 0.02 113 + 0.04
NDVI 85 0.62 £ 0.04 114 + 0.06
WDVI 90 0.61 £ 0.02 115 £ 0.03
WDVI 85 0.61 £ 0.03 115 £ 0.04
PVI 90 0.61 £ 0.05 116 + 0.05
SAVI 80 0.60 = 0.04 115 £ 0.05
WDVI 90 0.61 £ 0.02 115 + 0.03
WDVI 85 0.61 £ 0.03 115 £ 0.04
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Figure 51illustrates a scatter plot of RVI, comparing two high-performance dates (85 and 90 days
after transplanting) with two dates showing lower performance (5 and 25 days after
transplanting). The plot reveals that predictions closest to the actual yield values are found within
the 85 to 95 days range. In contrast, the earlier dates with lower performance exhibit predictions
that deviate from the actual yie|cJ values.

Actual Yield Vs Prediction (RVI)
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Figure 51 Scatter p|o‘r of actual \/ie|o| VS. predicfion of the four predic‘ror dates for the 2021 growing seadson.

The p|o’r (Figure 51) reveals a distinct pattern in the dataset, where the predic’rive models tend to
behave diﬁ(erenﬂy under certain conditions. When actual yie|o|s are less than or equo| to 9 t/ha,
the regressors tend to overestimate yie|d. Converse|y, when actual yie|o|s exceed 9 t/ha, the
regressors tend to underestimate yie|o|. This pattern suggests that the ensemble regressors may
exhibit a central Tendency or bias in their predic‘rions, acting as a gravity point that affects the
outcomes. In this case, the central Jrendency exp|oins the behaviour of yie|c|s below and equo| to 8
t/ha and those above 9 t/ha. For the specific case of 9 t/ha, the range of predicted values is not
as broad as for lower yie|o|s, indico’ring a more balanced predicﬁon around the actual value.
However, further research is needed to refine the predictive models and reduce the tendency for
overestimation.

In addition to se|ec+ing the Vls and growfh stages with the highesf predicﬁve accuracy, it was also
important to examine whether using ensembles of more than one regressor was a better choice
than using only one regression model. Figure 52 shows the rate of ensemble size for each of the
experiments that used the Vls and growfh stages. This means that 500 were considered (number
of rows x number of experiments x number of folds). An ensemble size of two was the preferred
size (67.86%) to provide the predictions with the highest adjusted R? and lowest RMSEs. The
option with the second highest performance was to use single regressors (2143%); finally, the least
promising option was to use ensembles with a size of three regressors (10.71%).
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Figure 52. The optimal ensemble size (1, 2, 3) for the best regression models.

Table 25 expands on Figure 52 by showing which models and ensembles achieved the best
performance and how often they occurred. The combination of ARD regression and SVR proved
to be the most successful for constructing an ensemble, occurring frequently. SVR paired with
Huber regression also demonstrated high performance in multiple instances. ARD and Huber
regression models oufperformed others several times when considering individual regressors.
Interestingly, SVR excelled when used in combination with other regressors but didn't perform as
eHec’rive|y when used as a sing|e regressor. It's worth noting that some of the evaluated regressors,
such as OLS regression, AdaBoost, and extra trees, did not appear to be as successful. In cases
where three models were utilized to form the ensemble, the combination of ARD, random foresf,
and SVR emerged as the highest-performing option.

Table 25. The 10 best-performing models (ensembles and single regressors) for the 2021 growing season.

ARD Regr. + SVR 067 + 0.02 109

ARD Regr. 0.65 * 0.03 87

Huber Regr. + SVR 0.65 = 0.02 74

Huber Regr. 0.65 + 0.04 63

ARD Regr. + Huber Regr. 0.66 £ 0.03 59
ARD Regr. + Random Forest + SVR 0.63 = 0.03 4]
ARD Regr. + Decision Tree 0.65 £ 0.02 30
Huber Regr. + Theil-Sen Regr. 0.64 + 0.04 %)
SVR + Theil-Sen Regr. 0.65 £ 0.03 12
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ARD Regr. + Random Forest 0.63 £ 0.05 5

Overall, various combinations of sensors and growth stages were examined to assess their
effectiveness in predicting processing tomato yield using AutoML. The analysis included a detailed
evaluation of different VIs and their performance during the growing season. The results
highlighted that all Vis performed best during the 85 to 90-day period after transplanting, with
RVI outperforming the others. NDVI showed lower overall performance but reached its peak
predictive power at 85 days after transplanting. Conversely, PVl and WDVI exhibited lower
performance when compared to SAVI and RVI.

RVI and SAVI outperformed other Vls, achieving the most accurate yield predictions with average
R2 values of 0.72 £ 0.02 and 0.69 + 0.03, respectively, at 90 days after transplanting. Additionally,
they exhibited the lowest RMSEs of 103 + 0.03 and 106 + 0.04, respectively. Furthermore, the
most precise yie|o| predicﬂons were concentrated within the 85 to 95—o|oy range, while earlier date
predictions exhibited more significon’r deviations.

Regording model optimization, ensembles consisting of two regressors were the preferred choice
(67.86%) for achieving higher adjusted R? and lower RMSE values. Single regressors were the
second-best option (2143%), whereas ensembles with three regressors showed less promising
performance (10.71%).

Last but not least, the combination of ARD regression and SVR proved to be a frequently
successful choice for creating ensembles. SVR paired with Huber regression also demonstrated
strong performance in multiple instances. Among individual regressors, ARD and Huber regression
models consis’renHy ou’rperFormed others. |nferesfing|y, SVR was most effective when used in
combination with other regressors but showed weaker perFormcmce as a standalone regressor. It's
worth noting that some regressors, like OLS regression, Ada Boost, and extra trees, did not perform
as well. In cases where ensembles of three models were used, the combination of ARD, random
forest, and SVR consistently achieved the highest performance.

3.4.2 Temporal - Level: Yield predictions across years

The AutoML pipeline underwent training using the 2021 Sentinel-2 dataset and was tested with
the 2022 Sentinel-2 dataset to assess the relevance of each VI and band's reflectance in predicting
crop yie|o|. Aiming at deve|oping a robust model, more 20 experiments were conducted on specfro|
data to obtain the average odjus’red R? for each scenario. This enabled the selection of the most
effective dates, spedro| bands and models for yie|o| predicfion without manual intervention. Linear
regression is also used for baseline against AutoML o|gori‘rhms. Subsequenﬂy, tables were
generofed, showcosing the most effective VIs and combinations of bands for the years of 2021
and 2022, as well as their combined analysis at 5-day intervals post-transplanting.

The adjusted R? performances of spectral bands, derived from the dataset via the AutoML
pipe|ine, are illustrated in Figure 53. The numerical values fo||owing the band channel denote the
date post Jrronsp|orﬁir1g. Nofob|y, the opfim0| timeframe for prediding yie|o| appears to be from
80 to 90 days post transplanting, while spectral bands B4, B6, B7, B8, and B8A demonstrated the
highesf predicﬁve performonce for yie|o| estimation. Across all cases, AutoML demonstrated
superior perFormonce when compored to linear models.
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Figure 53. The 5 best-performing spectral bands for predicting the 2022 yield.

The subsequent table (Table 26), presents the overall efficacy of various Vs and spectral bands,
gauged through adjusted R? values. When utilizing NDVI, the spectral band B8 corresponding to
the NIR range demonstrates the highest performance, reaching an adjusted R2 of 0.56 at 80 days
post Jrronsp|onﬂng. This performonce is c|ose|y followed by BBA during the same period. Regording
RVI, lower performances were observed during 75 to 90 days after transplanting, with spectral
bands B8, B9, B7, and B8A, achieving adjusted R? values ranging from 0.47 to 0.49. The AutoML
models generally outperform linear regression models in the case of NDVI, while in the case of
RVI similar results were retrieved. However, concerning RVI, both AutoML and linear regression
yie|ded similar results in terms of predic’rive copobihfy.

Table 26. The 10 best-performing Vs for predicting the 20292 yield.

NDVI_B8_80 0.56 126 025 144
NDVI_B8A_80 0.55 126 0.23 145
RVI_B8_90 0.49 131 0.49 131
RVI_B9_85 0.49 131 0.49 131
RVI_B8A_90 0.49 131 0.49 131
RVI_B7_90 0.48 131 0.48 131
RVI_B8_85 0.47 132 0.47 132
RVI_B7_85 047 132 0.47 132
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NDVI_B7_75 0.46 1.33 0.26 143

NDVI_B8_75 0.46 1.33 0.97 143

In the case of best performing specfro| band combinations, the performonces were no‘rob|y
increased reaching a R? of 0.64 (Table 27X@dipa! To apysio mpoérevong TG avagopis dev
BpéOnke.). The combination [B4_70, B4_90, B6_65, B12_65"] stands out, demonstrating a
remarkable adjusted R? of 0.65 and an RMSE of 1.19

Table 27 The 5 best- performmg combinations of spectral bands for predicting the 2022 yield.

AutoML Lmear

B4_70, B4_90, B6_65, B12_65

B4_90, B8_65, B12_90, B12_95 0.64 120 0.63 121
B8_90, BBA_90, B4_90, B7_80 0.60 123 0.52 123
B4_90, B8_65, B12_90, B12_95 0.59 124 0.59 124
B4_70, B4_90, B6_65, B7_65' 0.60 123 0.57 125
B4_90, B8_65, B7_65, B6_65 0.58 124 0.56 129
B8_90, B8A_75, B4_90, B8_65 0.54 127 0.54 127
B12_65, B7_85, BSBA_90, B8_80' 0.53 128 0.52 128
B4_90, B8_65, B7_65, B6_65 0.51 130 0.48 130
B4_90, B12_65, B9_95, BBA_85' 0.51 129 0.38 129

In all the cases, the specfro| band B4 (that corresponds to the red Wove|eng‘rh) at 90 doys post
transplanting is appearing, while B12 (SWIR 2) and B6 (RE) are also featured in several cases.
The period between 65 to 95 days post-transplanting, the Red Edge/NIR (B7 to B8A) bands were
repeo‘red|y appearing, indico‘ring their importance for yie|o| predic‘rion the highes‘r performonce
among all bands. Particularly, the NIR bands are widely acknowledged for characterizing
vegetation status due to their vegefoﬂon—specific reflectance patterns attributed to internal
scattering and minimal leaf absorption [654].
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Additionally, several other combinations employing different models such as Random Forest, ARD
Regression, and SVR combined spectral bands to achieve strong predictive capabilities, indicating
their effectiveness in predicting crop yield during the 2021 season. ARD Regression was the most
promising single model and the combination of ARD Regression and SVR was the best ensemble.
Ensemble of two models demonstrated better performances than ensembles of three and one.

These findings emphasize how various combinations of bands and model selections can influence
the accuracy of yield prediction, offering a comparative understanding of their effectiveness.
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Part 4. Discussion

4.1 Yield estimation using Precision Agriculture - Systematic
Review

The earliest efforts to estimate crop yie|cJ can be traced back to the pioneering work of Pinter et
al. in 1981 [655] and Wiegand et al. 1991 [656], who employed remote sensing techniques. Prior to
these studies, Al-Abbas et al. (1974) conducted laboratory investigations into the spectral
characteristics of corn leaves under different nutrient stress levels [657]. In a separatfe sfudy, Robert
(1982) used color infrared aerial photography in Minnesota for diagnosis of ‘problems related to
droinoge, erosion, germination, grass and weed conrro|, crop stand and domoge, and mochinery
malfunction[139]. Since then, many studies and review papers were pub|isheo| focusirlg on yie|d
predicﬁon, offering valuable insigh’rs info the cho”enges and opportunities associated with
emp|oying remote sensing ’recrmo|ogies [658-660]. Some reviews narrow their scope to concentrate
on predicting the yields of specific crops, including widely cultivated ones such as maize, rice,
sugarcane, sugar beet, and vines [53,661-664]. Others take a broader approach by providing an
overview of remote sensing rechno|ogies in the context of various opp|icorion domains like crop
management, crop monitoring, phenology, and other ecophysiological processes [665-668]. An
infriguing srudy conducted by Schouberger et al. conducted a systematic review spanning the
years 2004 to 2019, to explore crop yield forecasting methods across three commonly utilized data
domains: weather, remote sensing, and crop mask data. Their Thorough investigation, spanning an
extensive dataset of more than 350 articles, unveiled the prevo|ence of several Wide|y embraced
mode|s, ir1c|uo|ing sfoﬂsﬁco|, process—bcsed, and mochine—|eorning models [343].

In this context, a systematic review [381] was conducted covering the years 2002 to 2022,
investigating the most common|y used p|ohtorms and methods in precision ogricuHure for
predicﬁng crop yie|o|s. The initial Finding of this s‘ruo|y reveals a re|crfive|y low pub|ico‘rion rate
between 2002 and 2012, averaging approximately one paper per year. Nevertheless, from 2013
to 2019, a substantial surge in pub|icoﬂons became apparent, signifying a heighrened inferest
among researchers. This increase in the number of published articles can be traced back to several
factors, inc|uding advancements in information and communication ’recrmo|ogy (ICT), progress in
remotfe sensing ’rechno|ogy, and the exponding ovoi|obi|ify of data. These o|eve|opmenrs have
spurred a growing interest for uri|izing these tools to create more efficient and precise crop yie|o|
predicﬁon models.

4.1.1 Key contributor countries and crops

In terms of the most active countries conduc’ring experiments within the scope of this sfuo|y, China
stands out prominenHy with more than 93 pub|icorions, |eoo|ing the field. Fo||owir1g c|ose|y, the
United States holds the second position with 58 publications, while India and Australia rank third
each contributing 11 research studies, followed by Brazil. USA and China have displayed a
substantial presence, marked by a signh[iconr number of research articles dedicated to crop yie|o|
estimation, fhrough remote sensing opp|icoﬂons The notable impact of their research can be
attributed to their status as the |orges’r economies and their substantial investments in research
and o|eve|opmer1r. Consequenﬂy, Jrhey emp|oy a substantial number of researchers who contribute
to the production of research publications [669].

According to the findings of this s‘rudy, the prevo|enf choice of crops for yie|o| predicrion primori|y
revolves around cereals and oilseed crops. These selections are influenced by several key factors,
inc|uo|ir1g their nutritional and economic significonce, comprehensive data ovoi|obi|iry, and
relevance to global food security [670,671]. An additional pivotal factor contributing to their
widespreod use is the occessibih’ry of extensive datasets encompassing historical yie|o| records,
agronomic practices, and weather data. This data ovoi|obi|i+y greo’r|y simp|ifies the task of
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conducfing in—dep’rh yie|o| predicfion studies for researchers. Furthermore, these crops lack the
intricate structures found in vineyords and orchards, which can po’ren’rio“y impact remote sensing
results [672]. The application of agricultural practices such as irrigation and pruning, commonly
emp|oyeo| in vineyords and orchards, can introduce comp|exifies in the interpretation of remote
sensing data [673]. Subsequenﬂy, researchers may encounter more technical cho”enges and data
processing requirements when dealing with these types of crops. Conversely, cereals and oilseed
crops tend to encounter fewer disrupiions from such factors, |eoding fo more dependob|e and
consistent outcomes in remote sensing.

4.1.2 Trends in platforms and methods used

Proximal, UAS and satellite platforms serve as significant tools for acquiring valuable insights into
Earth's vegetation cover, moking them in’regro| components of precision ogricuHure practices. In
the systematic review within this research, most studies leaned towards satellite p|ohCorms as their
primary data source, followed by UAS and proximo| sensors. Given the Widespreod odopiion of
these p|oh(orms, each with its distinct odvon’roges and disodvonfoges. A comprehensive sfudy
conducted by Benos et al. [674], indicated that UASs are gaining prominence in comparison fo
satellites due to their i(|e><ibi|i‘ry and high—reso|u‘rion imaging copobih’ries under various weather
conditions. In contrast, satellites excel in providing time-series data over |orge areads.

In relation to the methods used, statistical cmo|ysis emerges as the predominonf method utilized
for prediciing crop yie|c| across the reviewed studies, occording to this siudy's Findings.
Subsequenﬂy, ML and DL methods also feature prominenﬂy in yie|d estimation. Furthermore, the
study highlighted that the majority of studies encompassing ML and DL approaches emerged
between 2017 and 2022, signifying a growing interest and recognition of these advanced methods
for predic’ring crop yie|o|s using remote sensing data. A notable finding is the prev0|ence of the
Random Forest algorithm, followed by Support Vector Machine (SVM) and Linear regression.
XGBoost and Partial Least Square Regression (PLSR) have also proven effective and versatile in
yield prediction. Additionally, ANN and CNN lead among Neural Network approaches.

Among the identified model-based approaches, the Decision Support System for Agrotechnology
Transfer (DSSAT) model [675] stands out, offering insights into agricultural management
practices and crop responses to environmental conditions. Other common models used for yie|o|

estimations include the Simple Algorithm For Yield model (SAFY) and WOrld FOod STudies
(WOFOST) model [676-678], AQUACROP,[679-681], Agricultural Production Systems
Simulator (APSIM) model [682-684], considering various aspects of crop growth and
management. These models cover various aspects of crop grow’rh and management, each
operating on distinct driving factors. For instance, WOFOST focuses on the influence of carbon
dioxide (CO?2), water, and temperature on yield. In contrast, AQUACROP emphasizes the impact
of water stress on crop growth, making it suitable for simulating irrigation scenarios. APSIM,
fundioning as d process-bcsed model, considers a wide array of sail processes o|ongsio|e water
balance and nutrient transformations. Researchers have also exp|ored coup|eo| models, merging
different princip|es from two or more models, aiming to enhance simulation accuracy, system
siobi|ify, and reduce operoiiono| costs. These advancements in model-based opprooches contribute
significonﬂy to unders’ronding crop-environment interactions, icoci|ii0‘ring informed decisions for
sustainable ogricuHure.

Each opprooch presenfed distinct odvcmioges and catered to speciicic research objeciives, enob|ing
the extraction of mecmingfu| insighis from remote sensing data for crop yie|o| estimations. No‘rob|\/,
Statistical Ano|ysis and Machine Learning methods are frequenﬂy emp|oyeo| in crop yie|o|
estimation owing to their copobi|i’ry fo manage intricate nonlinear re|oiionships within vast
datasets, Ci|ong with their proficiency in o|eo|ing with known parametric structures and unobserved
cross-sectional differences [386]. Furthermore, the eHicocy of Deep Learning methods migh’r be
limited as they heavily hinge on the quality of the extracted features [387]. Lastly, the limited
utilization of model-based methods in crop yie|c| predidion could be attributed to their substantial
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demands for data and compufoﬂono| resources, as well as their lower odopmbihfy compored fo

other methods [388].
4.1.3 Accuracy Performance Per Crop Category

When comparing different methods in the case of sugar, beverage, and spice crops, the
predominance of statistical and machine learning methods coupled with satellite data is apparent.
For sugarcane & coffee tree, these methods, have provided high R? values reoching 0.94, while in
the cases of coriander and tea cropd, statistical methods using satellite data yielded R? values
between 0.68 and 0.87. ML techniques exhibit high performance and specifically the Random
Forest method stands out with an impressive RMSE of 1.51 t/ha and an R?value of 0.94, surpassing
other methods like Classification and Regression Tree, Support Vector Regression, and K-Nearest
Neighbor [396], These results align with Canata et al's findings, where RF regression outperformed
Multiple Linear Regression (MLR) in sugarcane yield prediction, as well as Martello et al's
discovery of RF regression's superiority in predicting coffee tree yields [401]. Moreover, satellite
systems were the most common|y used p|oh(orm, showing promising predicfion accuracies with an
R2of 0.87 and an RMSE of 11.33 (t+ha-1) compared to actual harvested yields [395]. SAR-based
yield prediction models have also proven useful in refining yield estimates for sugar crops [391].
However, Duveiller et al's study highlighted that sugarcane yield estimation is influenced by various
focfors, inc|uding the consideration of time (Jrhermo| or co|endor), signo| purity, data extraction
methods from time series, and the tfiming of information ovoi|obi|i’ry, which can exp|oin the range
of R?values observed in satellite-based yield prediction[393]. Moral et al. [392] propose that the
empirical NDVI model emerges as the most fitting approach for estimating sugarcane yield at
the field level, owing fo its simp|ici+y and consisfenﬂy high accuracy across the entire crop cyc|e.
Conversely, a separate study [390] highlights that among linear, logarithmic, power, and
exponen’rio| models, the po|ynomio| model exhibits significan’dy enhanced performonce. Regording
model-based yie|d predicﬂon, the Findings suggest a medium to |'1ig|'1 performonce, with R?values
ranging from 0.64 to 0.86. This variability can be attributed to the specific model employed. In @
erudy conducted in the US, three statistical models infegrating remote sensing and weather data
were compared, revealing that the SiPAR model outperformed the Cumulated DNVI (CNDVI)
and Kumar and Monteith (K-M) models in terms of yield prediction[397].

In the category of Vegetables and Melons, there is predominance of statistical methods coupled
with satellite and UAS measurements, while ML techniques have exhibited high performance,
achieving an impressive R?value of 0.90. The choice of Vs plays a pivotal role in achieving optimal
performance. According to Suarez et al's study [403], the best results were obtained when using

predictor variables such as Renormalized Vegetation Index (RDVI), SAVI, and OSAVI (R?= 0.77),
with the lowest standard deviation (0) of 10.75 t/ha achieved with RDVI. EVI2 also outperformed

GNDVI (R? = 0.55) in a separate study[406] that focused on processing tomato crops. This study
identified p|on+ heighf and Vls during the e0r|y to mid-fruit formation period as significom
variables for predicting shoot masses. Additionally, NDVI and WDVI were notably important for
predicﬁng fomato weighf, while Vls obtained one month before harvest p|oyed a crucial role in
predicﬁng fruit quantity. Recent research findingsBSO] suggest a strong correlation between the
deve|opmenfo| stages of the primary canopy in processing tfomatoes and their final yie|dA This
correlation may indicate a critical stage during which noticeable chonges occur in the crops,
detectable using satellite-derived data. Furthermore, studies have demonstrated the possibi|i+y of
predic’ring average tomato biomass and yie|d up to eighf weeks before harvest and at the
individual p|cm’r level up to four weeks before harvest, using time-series phenofypic features derived
from UAS. Linear Regression models have shown strong correlations (R? > O7) in this context

[408].

For oilseed Crops, numerous studies involved soybeons in their research, as soybeon is a Wide|y
cultivated and economically important crop. There is predominance of ML/DL and statistical
approaches, often combining satellite, UAS, or proximal data sources, while high performances (R?
> 0.90) have been achieved in all crops except from po|m oil and canola. A promising opprooch
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for estimating sunflower yields involves using satellite NDV/| series captured 50 days before harvest
[88]. Furthermore, the effectiveness of Evolutionary Product-Unit Neural Network (EPUNN)
models has been demonstrated, showing superior accuracy compared to linear SMLR models in
both training and generalization sets [411]. When it comes to estimating rapeseed yields, a strong
correlation has been observed between p|o+—|eve| Vls and leaf-related abundance, resuHing in an
R?value exceeding 0.75. Among the tested Vls, the most accurate yield estimation in rapeseed
was achieved by multiplying NDVI, Chlorophyll Index Red Edge (Clred edge), Transformed
Vegetation Index (TVI), and SAVI by short-stalk-leaf abundance [417]. Regarding model-based
methods [418], comparing the WOFOST model and the coupled CASA-WOFOST model
revealed that the CASA-WOFOST model has faster simulation speed while maintaining similar
accuracy. This makes the proposed CASA-WOFOST model suitable for large-scale assessments
using hign-spofio|—reso|uﬁon images to obtain accurate yie|d simulations. A sfudy examining the
monitoring of winter ropeseed crops Jrnrougn the utilization of multisensor opfico| and multiorbital
SAR data alongside the SAFY agrometeorological model revealed that integrating both SAR-
derived dry matter (DM) and optically derived Green Area Index (GAI) enhanced model control.
This assimilation proved to be more effective compored fo so|e|y re|ying on SAR or opﬂco| data
in isolation [419]. Another critical factor inﬂuencing satellite-based crop yie|o| estimation is the
spoﬂo| and ’remporo| resolution of the dep|oyeo| satellites. As noted by Chen et al. [416], cho”enges
arise from the sparse fime series of satellite remote sensing, characterized by low Jrernporo|
frequency and cloud interference. These cho”enges hinder accurate crop yie|o| estimation af
regiono| and national scales. To overcome this limitation, Chen et al. proposed a solution invo|ving
the fusion of nigh—spoﬁo|—reso|uﬂon yet |ow—+emporo|—frequency images with |ow—spoﬁo|—reso|u’rion
yet nign-femporo|—frequency images. This strategy aims fo bolster the Jrernporo| resolution while
retaining crucial spoﬂo| details, pofenfio||y e|evoﬂng the precision of crop yie|d estimations.

It is not surprising to encounter numerous studies focusing on soybeons in their research, given its
Widespreod cultivation and economic significonce. A erudy [425] that compares various spoﬁo|
resolutions provides convincing support for higner-reso|uﬂon imagery over lower-resolution
alternatives. The authors suggest opting for an NDVI resolution that equals or exceeds the current
cropland mask resolution, while also taking into account factors like computational costs. Notably,
another research eruo|y [439] reveals an interesting 1Eino|ing: counfy-sco|e models exhibit re|c|‘rive|y
poor performonce in field-scale validation (R? = 0.32), especio”y in nign—yie|o|ing fields. However,
these county-scale models demonstrate similar performance to field-scale models when evaluated
at the county level (R2=0.82).

In the Fruits and Nuts category, there is increased number of studies in vineyords, with nigh
performances (R?> 0.90) achieved through ML/ DL methods. The primary methods have involved
proximo| sensing, UAS sensing, or a combination of bofn, often comp|emen’rec| by satellite data.
Hign-reso|ufion satellite imagery has also been effecﬂve|y used independenﬂy, snowcosing a
commendable performance with an R?value of 0.87 [203,450]. The effectiveness of these methods
stems from their reliance on visual counting and the utilization of nign—reso|u‘rion datq, enob|ing
accurate and efficient estimations of orchard producﬁon. However, the opp|icofion of above-
ground remote sensing for tree producﬂon estimation remains limited, requiring specific calibration
for individual orchards and yearly variations, accounting for climatic and site-specific effects [451].

In relation to root tuber and other crops, all methods and all sensors were used, and nigh
performances (R?> 090) have been achieved through all methods in Cotton, Sweet Potato,
Perennial Ryegrass. ML opprooches are nofob|y prevo|en+, demonsfrofing excepﬂono| accuracy
levels (R?> 0.90) compored to alternative methods. Porﬁcu|0r|y in cotton cultivation, the utilization
of mu|ﬂspec‘rro| remote sensing systems mounted on UAS exhibits considerable promise. These
systems offer ropid, precise, and cost-effective assessments of ogricu|+uro| crop traits and yie|o|s.
The correlation between crop growfh indicators like LAl and cn|oropny|| content with canopy
specfro| reflectance enables the utilization of specfro| indices collected o|uring the growing seadson
for estimating crop yie|o|s. This correlation between yie|o| and the amount of pno’rosyn’rheﬁc fissue
allows for wide-scale opp|ico‘rion, contrasting with fraditional measurements of agronomic
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parameters such as LAl and chlorophyll [460]. Furthermore, the feasibility of estimating cotton
yield using low-altitude UAS imaging was confirmed in this study [462].

Researchers extensively utilized diverse data sources, including UAS, satellites and proximal
sensors, to go’rher insignrs into |egurninous Crops. Hign pencorrnonces (R? > 090) have been
achieved in Alfa Alfa, Red Clover, Chickpea, Snap Bean, Peas. Some studies solely focused on
employing ML or DL algorithms, while others combined these approaches or integrated statistical
methods to boost accuracy and interpretability. In a study by Minch et al. [476], the exploration
of efficient Hign’r parameters aimed to establish successful models for deferrnining canopy heign’rs,
por’ricu|or|y in alfalfa yie|d estimation. The researchers s’rrong|y advocate using a High‘r parameter

within the range of 50-75°, as it is likely to yield optimal data for precise canopy height estimation
in alfalfa fields.

In the domain of cereals, an array of methods and p|oh(orrns was ernp|oyed, |eoding to the
subdivision of this category info fwo segments: cereals and maize and wheat. Notably, research
dedicated to predicﬂng wheat and maize yie|ds surpasses that for other cereals, underscoring their
pivo‘ro| role in ogricu|+uro| research. Furthermore, researchers exp|ored a spectrum of opproocnes
for predicﬂng wheat and maize yields, |ocking a clear and consistent trend in the mernodo|ogies
emp|oyed for yie|d predicrion. Neverrne|ess, maize ond, to a lesser extent, wneor, rice have been
ex’rensive|y studied using machine |eorning fecnniques‘ The variety of opproocnes used is consistent
with a previous srudy [343] that also noted the use of diverse methods for predicﬂng yie|ds of
s‘rop|e crops, ernphosizing the importance of appropriate validation for each specific context.

Overall, the results ernpnosize the importance of Jroi|oring mernodo|ogies fo specific crop categories
to enhance yie|d estimation fecnniques. The compi|orion of the nignes’r R? perforrnonce measures
from various studies is categorized by crop type. ML techniques, especially Random Forest,
demonstrate excellence in the predicﬁon of sugar, beveroge, and spice crops. Satellite systems,
such as SAR, exhibit effectiveness in sugarcane yield forecasting. ML approaches yield promising
results in the context of vege’rob|es, with a focus on essential Vls. Orchards benefit from the
utilization of proximo| and UAS sensing recnno|ogies, while |eguminous crops are examined
through a combination of ML, DL, and statistical methods. Wheat and maize receive substantial
attention and are explored using a wide array of methods, encompassing ML, DL, statistical
rechniques, and model-based opproocnes.

4.2 Proximal vs UAS vs. Satellite NDVI: Are They Truly in
Sync?

The o|ignmenf of proximo|, UAS, and satellite data often varies due to factors like sensor spec‘rro|
and sporio| resolution, proximity and the fiming of data capture. While these ‘rechno|ogies measure
vegetation health, their outputs mignr differ due to their distinct data acquisition methods and
instruments. Achieving cornp|ere o|ignrnen1L among them s cno”enging, but careful data
inferpretation can provide comp|emenfory insignrs info vegetation status and yie|d assessments.

In this study, the average NDVI values demonstrated remarkable similarity between the two
remote sensing technologies—UAS and Sentinel-2—highlighting a robust correlation in NDV/|
values, por‘ricu|or|y during the later stages of the crop's pheno|ogico| cyc|e. This suggests a more
pronounced agreement or simi|orify between data collected from Sentinel and UAS sources as the
crop matures. The mean NDVI values from UAS multispectral data were generally higher,
reﬂecﬁng the superior spoﬁo| resolution of the UAS's sensor, while Sentinel-2 presenfed nigner
standard deviation. This conforms with previous studies [685-693], ocknow|edging cno||enges
faced by Sentinel-2 imagery in capturing localized conditions, especio||y in regions marked by
pronounced ne‘rerogenei‘ry due to abiotic or biotic stress factors. In such scenarios, the use of UAS
becomes imperative for ob‘roining more precise and detailed data [694]. It is also reporred that
UASs can be op‘rimo| for fine|y cnorocrerizing fields in terms of resolution and pinpointing infra-
crop variability [692]
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Despite the excellent spatial ground resolution and flexible real-time monitoring offered by UAS,
dep|oying them on a commercial scale incurs significoni expenses, encompassing equipment, data
processing, and software costs, which can be a considerable investment, por‘ricu|or|y for small-scale
farmers [216,217]. Additionally UAS surveys involve the storage and management of substantial
data and require preprocessing, and the resu|iing datasets are limited to what the user collects
[218]. Consequently, relying solely on UAS for weekly monitoring can be Finoncio”y burdensome
and impractical, especially when managing multiple fields that may not be extensive or are widely
dispersed In such cases, |everoging satellite imagery fo assess the overall field conditions is more
proc’rico|.

Satellite remote sensing excels in mapping field variability with a higher temporal continuity that
remains consistent across seasons and mu|iip|e years. This allows for monitoring various vegetation
stages fhroughoui the growing season and facilitates historical ono|ysis of past seasons. Satellite
platforms also offer the odvonioges of extensive coverage, high temporal resolution, and cost-
effectiveness [706], o||owing the infegration of data from multiple sources, inc|uding optical and
SAR remote sensing [707]. An additional noteworthy factor is the substantial volume of data they
generate, moking them conducive to opp|ying data consuming methods such as machine |eorning.
These benefits he|p exp|oin why the majority of the studies chose to incorporate satellite remote
sensing method:s.

To overcome the limitations associated with the described p|oh(orrns, the synergistic use of both
remotfe sensing Jrechniques is considered to be the opfimum solution in precision ogricu|rure [695].
High-reso|u’rion UAS images can be se|ec‘rive|y dep|oyed during critical phoses of the crop cyc|e
fo provide detailed insighfs. Addi’riono”y, it is desirable to combine UAS images, (preferob|y with
a resolution exceeding 4 cm), with nigh—reso|u’rion satellite imagery to enhance the quality of the
data obtained. This comprehensive opprooch offers a balanced and cost-effective solution for
precision ogricuHure while odopiing to the specific needs of different fields and Crops.

On the other side of the spectrum, proximo| sensors offer real-time or near-real-time NDV/| doio,
confribu’ring to a fast and forgeied diognosis of nutritional and physio|ogico| states, stress
incidence, and potential crop vyield. Unlike aerial and satellite imagery, this system provides
information obtained locally and quickly by terrestrial determinations. Most of these sensors are
active, moking them less affected by weather conditions. Their proximity fo the tfarget reduces
ofmospneric interference, resu|fing in more accurate data and high sporio| resolution [249]. In
addition, ’rhey can contribute to lower producfion costs, because it would allow opp|ying the exact
amount of fertilizers and water and mitigating stress at the appropriate fime and in the rigri’r p|oce
[696]. Therefore, the importance of these remote sensing systems lies in the ease of obioining
reliable results, as stated in other studies about other type of crops (cereals, rice poddies, vineyords,
forest stands, etc.)[697-699]. Multiple studies have consistently demonstrated that the
developmental growth trends of NDVI derived from UASs and GreenSeeker sensors are highly
comparable, irrespective of the measurement approach [700-703]. However, they do come with
limitations related to area coverage, data intferpretation, maintenance requirements, and initial
costs. Therefore, it is essential to evaluate specific needs and available resources when considering
the odop‘rion of remote sensor Jrechno|ogy.

In this research, a comprehensive examination of the re|ofionsr1ip between proxirno| sensor data in
comparison to UAS and satellite datasets revealed a moderate level of correlation, as discerned
from R? values spanning from 041 to 0.72. The moderate correlation observed can be primarily
attributed to the specific focus of proximo| sensors, which are designed primori|y for moniforing
vegetation grow’rn and do not account for reflective effects originating from the soil. Therefore,
the retention of the infercept in the ono|ysis deviates signii[iconﬂy from zero, which differs from the
cases of UAS and Sentinel datasets. This outcome is expected, as the proximal sensor values
commence at higher NDVI values compared to the NDVI values retrieved from the UAS and
Sentinel datasets. Addi’riono”y, a crucial coniribu‘ring factor is the variation in e|ecfrornogne’ric
spectrum Wove|eng’r|'is used for measurements among the different p|ohcorms. Specifico”y, the
Sentinel-2 satellite employs the Near Infrared band (NIR, Band 8) with a mean wavelength of
832.8 nm, while the GreenSeeker™ NIR band measures at 774 nm, and UAS-based sensors operate
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at 790 nm. This can be the reason for the stronger correlations between UAS and proximal
datasets compored to the Sentinel and proximo| datasets.

While proximal p|o‘r1(orms offer real-time or near-real-time data, it is evident that they are most
suitable for small to medium-sized fields and may not be procﬁco| for continuous monitoring of
|orger areas. Given that these sensors provide point measurements, conducfing comprehensive
assessments of extensive agricultural fields is impractical [704,705]. The accuracy of proximal
p|oh(orms is heavily dependent on local factors such as soil type, weather conditions, and
ogricu|’ruro| activities like pruning, |imiring their opp|icobi|ify in diverse contexts. A notable
drawback of proximo| sensing is that terrestrial sensors require regu|or maintenance and need to
be reattached each time, moking them more susceprib|e tfo operator error. Furthermore,
interpreting the high—reso|u+ion data collected by these sensors can be comp|e><, necessitating
expertise in data ono|ysis. These limitations can impact the accuracy of estimating vegetation
characteristics. For instance a study [706] reported that NDVI obtained from Sentinel-2 satellite
observations outperformed NDVI obtained from the handheld GreenSeeker™ platform in
estimating fAPAR (Fraction of Absorbed Pho‘rosyn‘rhefico”y Active Rodioiion).

In conclusion, the infegration of proximo|, UAS, and satellite p|oh[orms represents a promising
opprooch in precision ogricuHure. This srudy high|ighrs the importance of sfrofegico”y b|eridirig
these ’recrmo|ogies to maximize the quo|i’ry and scope of data while being mindful of proc’rico| and
financial considerations. The key ‘rokeowoy is the imperative need to corefu”y select the
appropriate sensor type based on the specific scale and objecfives of the assessment. Proximal
sensors excel in fine-scale, localized monitoring, but should be dep|oyed judicious|y, Jroking info
account specific needs and constraints of the opp|ico’rion. UASs and satellites found to generate
very similar results and provide a broader, more comprehensive perspective over |orger
geogrophico| regions. The synergy of these fecrmo|ogies enables more precise and efficient
agricultural operations, helping farmers and researchers address critical issues related to resource
allocation, crop health, and susioinobih’ry. This opprooch not on|y contributes to enhanced
ogricu|’ruro| producriviry but also supports the |ong-rerm goo| of sustainable and environmenfo”y
responsib|e Forming practices.

4.3 Processing Tomato Crop: Phenological Stages Revealed

Accurate assessment of p|onf growrh and deve|opmenr is essential for agronomic management
por’ricu|or|y for the decisions that are time-critical and growfh sroge-dependenr in order to
maximize eFFiciency of crop inpufs and increase crop yie|ds [667]. |deri’ri1(ying crop pheno|ogico|
stages at both subfield and field scales provides essential information for producers to make ’rime|y
adjustments in input strategies, such as nitfrogen opp|icofion, herbicide and fungicide use. Remote
sensing p|ohcorms, which observe crops' morpho|ogico| and physio|ogico| traits based on spec’rro|,
structural, biophysicoL or agronomic characteristics, are common|y emp|oyed in ogricuHurei
However, these systems require contfinuous, cloud-free data to occuro‘re|y capture all pheno|ogico|
stages and transitions between periods. Reduced sporio| and Jremporo| resolutions can limit their
obi|ify to dis’ringuish subtle pheno|ogico| differences between similar crops.

Satellites offer extensive coverage and historical data, moking them suitable for |orge—sco|e crop-
type classification and growrh moniforing. The high spofio| resolution of Sentinel-2 imagery enables
monitoring of species-specific phenology, whereas its high temporal resolution increases the
possibi|iiy to acquire dense time series. Thus far, Sentinel-2 time series have been used in
monitoring forest pheno|ogy in several studies [707]. However, their drawbacks include low sporio|
resolution and vu|nerobi|i’ry to cloud interference. UAS p|ohcorms, equipped with  multi-
/hyperspedroL RGB, or thermal sensors, provide high resolutions and real-time data collection,
oddressing a wide range of crop attributes. Nevertheless, f|'iey come with |’1ig|’1 costs, weather
dependence, and limited availability. Ground-based, cost-effective and loT-enabled systems deliver
high resolution close to objec‘rs but require labor-intensive surveys. Each p|o’rform presents a unique
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set of odvon’roges and drawbacks, hign|ignring the need for careful consideration based on speciiic
opp|icofion needs and constraints in precision ogricuHure.

This research has unveiled a distinctive pattern of annual growth dynamics in tomato plants, and
this pattern is effectively captured and elucidated by vegetation index values. Specifically, the UAS
and proximal NDVI measurements exhibited elevated values as the crop canopy progressed.
However, their limitations were evident in capturing dynamic canopy changes due to ini(requenr
revisiting intervals. In contrast, satellite datasets proved more effective in ofi(ering indicative results
regarding the phenology of the crop. The analysis of VIs dynamics from Sentinel-2 images revealed
a narrative of seasonal progression and pheno|ogico| stages in processing tomato crops. No‘rob|y,
the s’rudy observed that the lowest mean values for all Vls occurred in the period i(o||owing
rronsp|onring, when the canopy cover was limited, and substantial gaps between rows were
occupied by exposed soil. As the season progressed, there was a groduo| increase in the percentage
of canopy cover, porricu|or|y during the middle of the season when tomato p|onrs reached their
peok vigor just before Tney begon reo||ocoring sugars fo their fruits. Respecfive|y, as the tomato
canopy exponded inrougnou’r the season, VI values showed a discernible increase. Speciiico“y, the
hignesf mean VI levels were observed in July, corresponding to the Howering and fruit tomato
emergence stage, which occurs between 75 to 95 days after planting. Subsequently, there was a
groduo| decline in VI values. As tomato p|onfs progress ’rhrough their grow‘rn stages, por’ricu|or|y
fransitioning from the fruit emergence stage to later growin pnoses, their vegetation characteristics
change. The rate of growth may slow down, causing a decline in VI values. Plants naturally undergo
pnysio|ogico| cnonges such as processes like leaf aging, senescence (aging of plant parts), or fruit
deve|opmen’r that affect the VI values, resu|‘ring in a decline.

This trend o|igns with the research conducted by Lyknovyd et al. [708], reveo|ing that different
pneno|ogico| pnoses in processing fomato crop are associated with distinct ranges of NDVI values.
Sirni|or|y, Veloso et al. [709] , utilized bands similar to Sentinel-2 in other opiico| sensors,
demonstrating a high correlation between VI values and fresh biomass as well as the green area
index (GAI). Veloso et al's Findings enabled the precise moniforing of short-lived pneno|ogico|
stages, confribu’ring to a nuanced undersfonding of crop deve|opmen’r. Such iindings empnosize
the capacity of remote sensing ‘rechniques in captfuring the intricacies of p|on’r grow’rn and
pneno|ogico| deve|opmen‘r, oifering valuable insignrs for crop monitoring and management.

4.4 Bridging the Gap: Accurate Crop Yield Predictions

This research evaluated the effectiveness of individual UAS, proxirno| sensors, and satellite-derived
Vls in forecasting the yield of three distinct varieties of processing tomato. Vls derived from
specrro| bands found in mu|rispecrro| imagery have a |ongsronding nisrory in estimating crop
canopy and yie|d. The opp|icoiion of remote sensing iecnno|ogies for assessing field and yie|d
voriobih’ry is increosing|y prevo||en’r in precision ogricu|’rure, |orge|y owing tfo their cornporoiive|y
reduced expenses and. non-invasive opprooch [710]. The srudy odopfs a dual opprooch, exp|oring
both field-level and regiono| perspectives to yie|d results opp|icob|e fo varying scales.

4.41 Yield Predictions: The Field- Level Approach

Three different p|offorms were uftilised to assess their pericorrnonce in predicfing the yie|d across
ten fields. The GreenSeeker proximal sensor, UAS, and Sentinel-2 satellite imagery were utilized to
assess crop vigor from distinct altitudes. Each sensor's performonce is influenced by various data
acquisition parameters, inc|uding proximity fo the p|on‘rs and the unique technical characteristics
of the equipment used. NDVI was deployed, being the most widely VI used and can be generated
from all the different sensors dep|oyed in this srudy.

The s’rudy's results reveal distinctive patterns in the performonce of different sensing p|oh(orms
across various grow’rh stages of the crop. During the eor|y pnose of canopy grow‘rn, the proximo|
sensor demonstrates a higner exp|onofory power (R?=0.34) in predicring yie|d variance compored
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to the UAS (R? = 0.29) and satellite (R?2 = 0.26) platform. This outcome is anticipated as the
canopy, af this point, is not iu||y covering the lines, and the measurements from UAS and satellite
p|oh(orms incorporate the soil effect, limiting their ability to represent canopy growth accurately
cornpcired to the proximo| sensor. As the crop progresses to the budding stage, where canopy
coverage increases, there is a notable uptick in the R-squared values for NDVI derived from UAS
(R? =0.35) and satellite (R?2 =0.38) platforms. This suggests an improved capacity of these
p|oh(orms to capture and explain yield variability as the canopy progresses. During the critical
ﬂowering stage, the satellite p|crhcorrn ou’rperforms others with the nignesf R—squored value (R?
=0.57), indicating its exceptional effectiveness in elucidating yield variability. Both the UAS (R?
=0.45) and proximal sensor (R? =0.30) also contribute significantly at this stage, emphasizing
their relevance in assessing crop dynamics. Moving into the Fruit Formation stage, both UAS (R?
=0.52) and satellite (R? =0.54) platforms exhibit substantial R-squared values, highlighting their
obi|i’ry fo exp|oin a considerable porfion of yie|d voriobi|iry during this grow’rh phose. In the final
growrn stage, the R-squared values underscore the persistent s‘rrengrn of the Sentinel platform
(R2 =053) as a key explanatory factor for yield variability. The UAS (R? =0.42) and Proximal
sensor (R2=053) also maintain signiiiconf contributions. These Findings o|ign with a similar study
[706], corrobororing the superior periormonce of the Sentinel satellite, porricu|or|y in its broader
coverage that facilitates a more comprehensive undersionding of vegetation even in subop‘rimg|
siudy areas.

In the final step, the yie|d sornp|e values were exrropo|ored by |everoging the average number of
p|onfs per hectare. This comparison showcased variations between the predicfed values, derived
from the vyield sampling, and the actual yield values. The accuracy of these predictions
demonstrated variability across different instances, with some closely o|igning with the actual
values, others s|ighr|y underesrirnofing, and a few overestimating. The deviations in predicted yield
rcrnged from 5 to 10 percent. This outcome nign|ignfs the effectiveness of the yie|d somp|ing
strategy in providing scn‘isigc‘rory outcomes for yie|d prediciion. Despite some discreponcies, the
genero| o|ignmen’r between predicfed and actual values within a re|o’rive|y small margin of
deviation suggests that the yie|d somp|ing opproocn holds promise for estimating crop yie|d with
reasonable accuracy.

Overall, the Jremporo| aspect emerged as a critical factor, with later growrh phoses presenting a
strong foundation for data convergence and correlation. The observed positive and srrengrnening
correlation, provides substantial support for the reliability and utility of NDVI data obtained from
proximoi UAS and satellite p|cn‘iorrns at different stages. The ﬂowering stage is pgr’ricu|gr|y
nofeworrhy, where the correlation is most pronounced, with R—squored values reoching 0.52 for
UAS and 057 for Sentinel. During the Fruit Ripening to Maturity stage, the proximal sensor
exhibits a robust correlation with an R-squared value of 0.53. This robust correlation reaffirms the
conclusion that NDVI data from both platforms positively influences crop yield, particularly during
the critical Howering stage, oiiering valuable insignrs for precision ogricu|‘rure. It also emphosizes
the importance of se|ec‘ring the appropriate sensing p|ohcorm based on the speciicic growfh stage,
nign|ighfing the Sentinel's consistent efficocy across various stages in the speciiic crop.

Converse|y, the year 2021 ono|ysis revealed a stark contrast, with the correlation between crop
yield samples and NDVI datasets from all platforms declining significantly. Lacking a clear
indication of the underlying cause, these correlations did not reach statistical significance, for that
speciiic year. It's worth noting that the dataset for the year 2021 encompossed on|y two fields, a
re|ofive|y low number, pofenfio”y conrriburing to the insufficient data available for generating a
sio‘risiico”y signiicicon’r model.

It's important to recognize that estimating crop producrion is a comp|ex process influenced by a
multitude of factors. These factors include microclimate condifions, weather patterns, soil
cnoroc’reris’rics, fertilizer usage, and the choice of seed varieties [711]. Considering the numerous
methods and ’rechniques have been deve|oped and used for optimizing yie|d predic’rion and
improving the effectiveness of the developed models [712,713], it became apparent that there was
a need for a precise regiono|—sco|e crop \/ie|d dataset. This dataset would p|gy a crucial role in
infegrating machine |eorning methods for more accurate predic’rions. Therefore, a dataset was
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created, encompassing actual yield values and field boundaries from 108 fields in 2021 and 44
fields in 2022, serving as a ground-truth reference. The analysis of satellite imagery, guided by
these ground-truth data, yielded promising results. Due to operational constraints, the analysis
focused solely on satellite imagery, as deploying UAS and proximal surveys at such a scale was
not feasible.

4.4.2 Yield predictions: The Regional-Level approach

Based on the systematic review, the statistical analysis is the most prevalent method employed for
crop yield prediction in the reviewed studies, however, ML is also widely used for yield estimation
providing nign accuracy. A notable distinction lies in the gpprogch: while statistical methods
necessitate the selection of a model based on our undersronding of the system, machine |eorning
relies on the ernpiricoi copobiiiries of predicfive oigorirhms. [714]. This srudy introduces an
innovative dpprogch to predic’ring fomato yieid by integrating machine |egrning ’recnniques with
vegetation index (VI) data obtained from satellite platforms at different grow’rn stages, commonly
empioyed in precision ogricuirure. While prior research has expiored various correlation and
regression models between Vls and crop produc’rion, the utilization of machine |egrning ‘recnniques
for estimating processing tomato yieid has not been ex’rensiveiy inves’riggied until now. The
investigation involved the examination of different Vls over the growing season fto assess their
performgnce in predic’ring yieid.

The initial pngse of the dnoiysis involved the gppiicgiion of basic statistics, primgriiy uiiiizing the
Pearson correlation coeiiicien’r, which is wideiy common in the literature. This coefficient is a
statistical measure odepr at evoiuo‘ring the sfrengrn and direction of a linear re|orionsnip between
various Vs and crop yield. During the initial growth stages of the plants lower r values were
recorded. Such observations are on’ricipoied, given the minimal canopy cover during that stage
and the fact that the 10-meter sporio| resolution imposes constraints, porricu|0r|y for row-cultivated
crops. Considering also that a substantial portion of the field area is covered by bare soil introduces
additional noise into the spectral data, contributing to these limitations.

Nonetheless, the iindings revealed that all VIs demonstrated opfimoi periormonce during the 85
to QO-doy period post fronspion’ring, with RV exnibiring superior predic’rive copobihfies compored
to others. Although NDVI displayed lower overall performance, it reached its peak predictive
power at 85 days after transplanting. On the other hand, PVI and WDVI exhibited comparatively
lower performance than SAVI and RVI. Each VI demonstrated strong and consistent performance,
consistently exhibiting Pearson correlation (r) values exceeding 0.6 at 80 days. The most
excepiionoi pencormonce across all Vs assessed in this sfudy was observed at 90 doys (r>07).
Specifically, the heightened values of the RVI during this timeframe were deemed optimal for
predicring yieid. These iindings suggest the porenrioi ufi|ify of these indices in predicring crop yieid,
especioiiy during the later stages of crop deveiopmen’r. These results coiieciiveiy impiy that certain
Vls exhibit promising reiorionsnips with yieid, porricuioriy in the later pnoses of the crop grow‘rh
cycie. \/oriobiiiry among the different varieties and Vls is to be expecred because canopy
deveiopmemL is a cornpiex process and not nomogeneous in all fields. Aiinougn the results are
aligned with the findings of Psiroukis et al. [715], who adopted a similar approach, the Pearson
correlation values we ocquired did not attain the elevated levels reporred in their s‘rudy. This
disporify migh’r stem from variations in the dates of the datasets used or differences in the
ogricuiiurdi practices irnpiernenied in the different regions.

Recognizing the porenrioi of machine |eorning to enhance yieid predicrion accuracy, various ML
oigorirnms were in‘regrored, morking a strategic move towards optimizing the predicrive
copgbiiiries of the model. This strategic move was aimed at optimizing the predicrive copgbiii‘ries
of the model, with a specific empnosis on using AutoML to discover ensembles of regressors with
nign prediciive power, which was one of the primary goois of this research.
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Exfensive|y used regression methods have been compored against more comp|e>< methods that
deal better with outliers. Specifico”y, linear and nonlinear regression models were evaluated,
including OLS, Theil-Sen and the Huber regression models, and Ensemble Methods based on
Decision Trees. Regression analysis was performed using those highly correlated VI data, in order
to evaluate their performonce in assessing the crop yie|d4 The 0no|ysis incorporofed the use of
adjusted coefficients of determination (R?) and root mean square error (RMSE) to evaluate
predictive accuracy.

According to the findings, the regression models between yield and VI data presented different
degrees of accuracy, depending on the model fitted, the sensor used, and the growfh stage
assessed. The most effective Vls for predicting yield were RVI and SAVI, displaying average R?2
values of 072 and 0.69, respectively, at the 90-day mark post-transplanting. This timeframe
poJrenﬂoHy signifies a crucial stage in the deve|opmen+ of processing tomato crops, dis’rincHy
detectable through Sentinel-2-derived data. Furthermore, these Vls demonstrated the lowest
RMSEs of 1.03 and 1.06, respectively. Numerous researchers advocate for the utilization of the
SAVI due to its reduced bias associated with soil properties present in remote sensing images,
allowing for improved identification and differentiation of plants from the soil [685,708].
Conversely, NDVI performed less effectively compared to other Vls, exhibiting values below 0.62.
The limited relationship between yield and NDVI and PVI may be influenced by non-weather-
related factors dictating yield, such as atmospheric influences or NDVI's sensitivity to soil brightness
and canopy shadow effects [203]. The most accurate predicﬂons were concentrated within the 85
to 90-day range, while earlier date predictions exhibited more significonf deviations.

In terms of model optimization, ensembles consisting of two regressors were found to achieve the
highest adjusted R? in most cases (67.86%) and lower RMSE values. This signifies that combining
the predicﬂons of two precise regressors enhances accuracy. This Finding o|igns with Zhong's
suggestion [716] odvoco‘ring for the balanced utilization of diverse viewpoints from various models
or regressors, |eoding to more resilient and consistent predic’rions. Sing|e regressors were the
second-best option (2143%), whereas ensembles with three regressors showed less promising
performance (10.71%).

The combination of ARD regression and SVR emerged as a frequently successful choice for
creating ensembles. SVR poired with Huber regression also demonstrated strong performonce in
multiple instances. Among individual regressors, ARD and Huber regression models consistently
outperformed others. Notably, SVR exhibited its highest effectiveness when used in combination
with other regressors but showed weaker performance as a standalone regressor. Some regressors,
such as OLS regression, AdaBoost, and extra trees, did not perform as well. Generally, tree-based
regressors like extra trees or random forests did not yie|d successful outcomes. However, this doesn't
imp|y that these methods will universo”y fail in other related regression prob|ems. It adheres to the
"no free lunch" theorem [717],, suggesting that no single algorithm universally outperforms others
across all datasets. Consequenﬂy, even the most potent o|gori‘rhm mighf not be opﬂmo| for all
yie|d predicfion chd”enges Conh’ori|y, |everoging consis‘renﬂy successful regressors within AutoML,
while constraining the search space, could enhance the eﬁciciency of the overall pipe|ine by
iden‘rifying suitable solutions. In instances where ensembles of three models were emp|oyed, the
amalgamation of ARD, random forest, and SVR consistently showcased the highest performance.

An important point is that satellite imagery proves valuable in estimating crop variables at a
regiono| scale, yet high—reso|uﬁon Earth observations often face disrupﬂons due to cloud cover. In
this erudy, cloud interference hindered VI computation in several instances, resu|fing in varying
sample counts across different dates. Moreover, as is common in machine learning applications on
real-world do‘ro, some variables did not conform to a Gaussian distribution. However, those
adhering to this distribution displayed superior performance. Specifically, the Vls exhibited
Gaussian distribution from 55 to 115 days after transplanting.

In summary, the results confirm that the Sentinel-2 p|o’rform is high|y effective in predicﬂng yie|d
at a regiono| scale. This erudy proved that indeed advanced sensing Techniques may have many
opp|icofions, especic”y with the he||o of the increasing computing power, o||owing for more comp|e><
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machine |eorning iecnniques to be used to find patterns and correlations between canopy
reflectance data and specific crop quo|ify characteristics. Overall, the outcomes provide evidence
on the diverse p|oh(orm's accuracy and reliability when it comes to forecosiing crop vyield across
local and broader geographical areas.

4.41 Temporal - Level: Yield predictions across years

In yield estimation based on multispectral remote sensing data, the red and NIR bands hold critical
significonce due to their distinct reflectance properties. This significonce arises because the NIR
band exhibits high reflectance for green vegetation due to substantial internal leaf scattering,
while the red band shows low reflectance owing fo ch|orophy|| obsorpfion as vegetation cover
increases. ConsequenHy, there exists a distinct and pronounced reflectance s|ope between these
bands, commonly known as the red—edge (RE) spectral region, residing within the 680 nm to 750
nm range [718]. This region captures the snorp alteration in canopy reflectance. Reflectance within
the RE band is nign|y correlated with various crucial pnysio|ogico| vegetation parameters such as
nitfrogen and ch|oropny|| content, portraying an essential indicator of p|on‘r pigment status and
overall health [719,720]. The presence of a shift in RE within vegetation reflectance signifies
alterations in the biological state of plants [721]. For example, Ramoelo et al. used WorldView-2
satellite’'s RE band reflectances to estimate leaf nitrogen content and above-ground biomass, and
concluded that RE bands had the obi|i+y tfo improve leaf nitrogen content and biomass estimation
accuracy [722]. Furthermore, the red-edge inflection point (REIP), identifying the wavelength of
maximum s|ope in the RE region, exhibits lower sensitivity to speciro| noise induced by soil or
atmospheric conditions when estimating chlorophyll content. [723,724]. Current earth resource
satellites like RapidEye, WorldView-2, WorldView-3, and Sentinel-2 are equipped with RE bands,

amplifying their significance in vegetation assessment.

Notably, the blue band exhibits minimal reflectance over vegetation due to chlorophyll absorption,
yet it p|oys a crucial role in vegetation monitoring ’rnrough remote sensing data. Various Vls, like
the EVI [725] copiio|ize on the blue band's reflectance to characterize vegetation status. However,
the shorter Wove|engin of the blue band renders it more suscepiib|e fo ofmospneric influence [726].
On the other hand, the Shortwave Infrared (SWIR) band's sensitivity to foliar water content,
attributable to water obsorpfion [727] makes it valuable for biomass estimation, despi’re not being
present in certain operofiono| satellite instruments such as SPOT, Chinese GF—], and GF-2.

AHnougn various Vls |everoge selected specfro| bands, their impact on yie|d estimation accuracy
remains understudied. Therefore, it's crucial to e><|o|ore the poien’rio| of speciro| bands in ennoncing
biomass and yield estimation precision.

The Sentinel-2 satellites (comprising S2A and S2B) equipped with Multi-Spectral Instruments
(MSI) provide extensive specfro| coverage across 13 bands, spanning from visible and near-
infrared to shortwave infrared (SWIR) bands. These bands are pivotal for vegetation monitoring
and yie|c| prediciioni However, not all bands hold equo| signiiciconce in yie|d estimation. Some
bands mighf carry more pertfinent information, exerfing a stronger influence on the accuracy of
yie|d estimation, while others may confain less relevant data for this purpose. As data dimensions
expond, there's a consequeniio| rise in compu‘roﬁono| and storage costs. Furthermore, redundant,
noisy, or unreliable data within less important bands can impede the accuracy of yie|d estimation
processes, po‘reniio“y decreosing overall predicfion accuracy.

Previous studies have introduced various me’rnodo|ogies to enhance yie|c| estimation accuracy,
including empirical approaches, pixel unmixing models, and physically based models. Despite this,
a limited number of studies have underscored the pivo‘ro| role of specfro| band information
specifico“y in yie|o| estimation. Noiob|y, machine |eorning regression methods have showcased
enhanced accuracy in predicfing yie|ds for crops like corn [728] and soybeon[439] by |everoging
spectral bands. Crusiol et al. suggest that Sentinel-2 Vis/NIR/SWIR images, associated with partial
least squares regression and support vector regression, can be used as a fast and reliable proxy
for yie|d monitoring, con‘rribuiing to better si‘re—specific management of agronomic practices,
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economic po|icies and strategic p|onning of governmenfo| and corporative decision moking over
technical issues[729].

To reduce data redundancy, increase computational eﬁ(iciency and improve vyield estimation
accuracy, all bands were extracted for the seasons 2021 and 2022 respectively. The AutoML
pipeline trained on the 2021 dataset and tested on the 2022 dataset resulted in twenty experiments
showcasing various combinations of bands and models for predicting crop yield. Ensemble
Machine learning methods enable the development of prediction models using several spectral
bands or Vs acquired from the target area, or even their combination (spectral bands and Vls,
confribu’ring to the better characterization of the crop deve|opmen+ condition across different
wove|eng’rhs.

The findings suggested that the period between 75 to 90 days was the optimal for accurate yield
predicﬁons, based on vegetation indices. This o|igns with the reproduc’rive growfh phose,
commencing opproximo‘re|y 55 doys posf-‘rrcmsp|onﬂng with Howering and exfending until about
88 doys [311]. Within this phose, crucial deve|opmen‘ro| events like flower initiation, po||ino’rion,
fertilization, and fruit set occur, spanning roughly 20 to 40 days depending on environmental
factors and cultivar types [730]. Notably, combining bands like 'B4_70' 'B4_90' 'B6_65' 'B12_65
reached an R? of 0.65, highlighting their predictive strength. Red Edge/NIR bands (B7 to B8A)
between 65 to 95 doys pos+—+ronsp|on’ring showcased significon‘r importance for yie|o| predicfion.
Surprising|y B12 (Rawo) was oppeored in this Qpprooch, indicoﬂng that important information can
be retrieved when using it in combination with other bands. It is used in vegetation indices such as
Normalized difference water index, NDWI and Normalized multiband drought index, NMDI due
fo its eﬁ(iciency in depicfing the water pofen’rio| fluctuations SWIR band's (B12) sensitivity to foliar
water content due to water obsorpﬂon [727] makes it valuable for biomass estimation. In other
studies SWIR bands (SWIR-1 and SWIR-2) were highly correlated with canopy cover [731]. and
yield estimation [732]. Various combinations utilizing models like Random Forest, ARD Regression,
and SVR demonstrated strong predictive capabilities, with ARD Regression standing out as the
most promising sing|e model, and its ensemble with SVR as the besf—performing combination.
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Part 5. Conclusions

One of the i<ey objeciives of the s’rudy was to provide valuable insignrs into the trends, patterns,
and contributions of precision agriculture methodologies and technologies in the field of crop vyield
prediction. To this end a systematic literature review was conducted in the Scopus and WoS
p|oiforms.

Understanding the geographical distribution of research efforts and the significonf academic
institutions, in this domain is crucial for comprehending the research landscape. The research
revealed that using remote sensing techniques, China and the USA are key contributors to the
field of crop vyield prediction, while cereal crops (185 papers) emerged as the most extensively
researched for yield estimation, with a particular emphasis on wheat. Among the remote sensing
platforms utilized, satellites were predominant, followed by UAS platforms and proximal sensors.
The systematic review identified NDVI as the most frequently used VI in the studies reviewed.
Mernodo|ogico||y, machine |eorning featured in 142 articles, while deep |eorning was emp|oyed in
62 articles specifically for yield prediction. Statistical methods were prevalent in 157 articles,
whereas model-based approaches were present in 60 articles for predicting crop yields.

No‘rob|y, machine |eorning and deep |eorning ‘recnniques exhibited hign accuracy in crop yie|d
prediction, o|rhougn other mernodo|ogies also showcased success, contingent upon the crop and
opproocn used. Specifichy, in the case of \/egeiob|es and Melons category, statistical methods
paired with satellite and UAS measurements dominate, while ML techniques shine with an
impressive R? value of 0.90. For oilseed crops, exceptional performances (R? > 0.90) were common,
except for po|m oil and canola crop. In Fruits and Nuts, vineyords see a surge in studies ocnieving
nign performgnces (R? > 090) ’rhrougi’i ML/DL methods using proxirng| or UAS sensing,
sometimes o|ongside satellite data. In the category of Root tuber and other crops, various methods
were deployed, with outstanding performances (R? > 0.90) in Cotton, Sweet Potato, and Perennial
Ryegrass, no’rgb|y driven by ML gpproocnes. Leguminous crop studies exfensive|y |evergge diverse
data sources (UAS, satellites, proximal sensors), achieving high accuracies (R? > 0.90) in Alfa
Alfa, Red Clover, Chickpea, Snap Bean, and Peas. Cereals employ a wide range of methods and
p|oh[orms not indicoring a clear trend. These findings contributed to a comprehensive
unders‘ronding of the research domain, oHering valuable insignis for guiding future steps in crop
yie|d estimation studies.

The srudy's second objective was to compare satellite, UAS, and proxirno| fecnno|ogies rnorougn|y,
empnosizing their unique s’rrengins and limitations when 0pp|ied in precision ggricu|fure. Focusing
on the NDVI as a common metric, data obtained from different proximal and remote sensing
methods in a processing tomato crop and evaluate the differences between the NDVI datasets
from these different sensing systems in a produciion context. The results confirmed the substantial
simi|ori’ry between UAS and satellite datq, poriicu|or|y in the later stages of the crop's pneno|ogico|
cyc|e, suggesting increased agreement as the crop matures. The nigner sporio| resolution of the
UAS is reflected in generally higher NDVI values compared to Sentinel-2, which faces challenges
in capturing localized conditions. The research reveals a moderate correlation between proximal
sensor data and UAS/satellite dg‘rosefs, with variations attributed to differences in measurement
wavelengths and specific focuses of each platform. While UASs offer excellent spatial resolution
and real-time monitoring, their commercial-scale dep|oymen1L involves signiiciconi expenses, mgking
them less prgc’rico| for small-scale farmers managing rnu|’rip|e fields. Proximal sensors, providing
real-time or near-real-time NDVI data, contribute to fast and targeted diagnoses of crop
conditions. Their proximity to the tfarget reduces ofmospneric interference, ensuring hign sporio|
resolution and accurate data. However, their limitations include area coverage, data interpretation
cno||enges, maintenance requirements, and initial costs. The srudy recommends a synergistic
approach, combining high-resolution UAS images selectively deployed during critical crop phases
with satellite imagery for overall field assessment, orcicering a balanced and cost-effective solution.

Within the study's framework, the examination of Vls dynamics derived from Sentinel-2 images
uncovered a narrative defoi|ing the seasonal progression and p|’1eno|ogico| stages of processing
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tomato crops. Notably, the study noted that the lowest mean values for all Vis occurred in the
period i(o||owing ’rronsp|onring, characterized by limited canopy cover and exposed soil between
rows. As the season advanced, there was a gradual increase in canopy cover percentage,
por’ricu|or|y during the middle of the season when tomato p|onrs attained peok vigor just before
reallocating sugars to their fruits. Specifically, the highest mean VI levels were observed in July,
corresponding to the tomato emergence stage, occurring between 75 to 95 doys after p|onring,
revealing a distinctive pattern in the annual growth dynamics of tomato plants, eH:ec’rive|y
copfured and elucidated by vegetation index values.

The main objec’rive of this srudy investigates the eﬁicocy of various sensing p|oh[orms, inc|uding
UAS, proximal, and satellite-derived Vls, in predicting the yield of processing tomato varieties.
Adopﬁng a dual opproocn, the research examines both field-level and regiono| perspectives to
offer insights applicable to different scales.

At the field level approach, the study utilized the GreenSeeker proximal sensor, UAS, and Sentinel-
2 satellite imagery to assess crop vigor across ften fields. Results nign|ignr distinctive performance
patterns of sensing p|offorms during different grow’rh stages. The proximo| sensor exhibits nigher
exp|onorory power in the eor|y canopy growrn phose, while UAS and Sentinel p|oh(orms improve
as canopy coverage increases. The Sentinel p|ohtorrn ourperforms others during the critical
ﬂowering stage, emphosizing its effectiveness in e|ucidofing yie|d voriobi|iiy. Yield predic’rions,
ex’rropo|oied using the average number of p|on+s per hectare, show variations but overall
demonstrate the promise of the yie|d somp|ing strategy for estimating crop yie|d with reasonable
accuracy, despire some discreponcies. The Temporo| aspect emerges as critical, with later growrh
pnoses providing a solid foundation for data convergence and correlation. The s’rudy hignhgn‘rs
the importance of se|ecring the appropriate sensing p|oh[orm based on the specific growrn stage,
with Sentinel consisrenﬂy effective across various stages. However, in the year 202], the correlation
between crop yie|d and NDVI datasets at field level opproocn declines significonﬂy across all
p|ohforms, with the limited dataset size pofeniio”y con’rribuﬁng to this observed decline and the
diminished statistical signii(iconce.

Acknow|edging the cornp|e><i+y of estimating crop produc’rion and oddressing the need for a precise
farm yie|d dataset the sfudy shifted to a regiono| scale infegrating machine |eorning ’rechniques
with VI data retrieved from satellite p|ohtorm. While prior research has exp|ored correlations
between Vls and crop producrion, the extensive use of machine |eorning for estimating processing
fomato yie|d has not been ’rnorough|y invesfigo’red until now. Previous studies have exfensive|y
inves‘rigored correlation and regression models |inl<ing Vls with crop produciion, o|ongside
emp|oying machine |eorning methods for crop yie|d estimation. However, the widespreod
e><p|orofion of AutoML, as detailed eor|ier, remains limited in this context. Within ogricuHure,
AutoML techniques have been documented primarily for time series processing and analysis of
proximal and satellite imagery [733,734], weed identification [735], and forecasting quality
attributes in grapes [736]. An ono|ysis of five different Vls over the growing season reveals their
optimal performance during the 85 to 90-day period after transplanting, with RVI exhibiting
superior predicfive copobi|iries. Despite eor|y growrn stages snowing poor correlation between Vls
and yie|d, the srudy identifies promising re|orionsnips, porricu|or|y in the later stages of crop
deve|opment The investigation incorporates basic statistics using the Pearson correlation
coefficient, empnosizing the oprimo| pericormonce of Vls during speciicic growrh stages. Machine
learning algorithms, integrated to enhance yield prediction accuracy, identified RVI and SAVI as
the best-performing Vls for yield predictions, achieving high R? values and low RMSEs, especially
at 90 doys after ironsp|onfingi Ensembles consisting of two regressors emerge as the opiimo|
choice for enhanced predictive accuracy. The combination of ARD regression and SVR proves
frequenHy successful in creating ensembles, empnosizing the effectiveness of combining different
regressors. The s‘rudy recognizes cno”enges such as cloud cover in satellite imagery but nignhghrs
the pofenrio| of machine |eorning in |everoging such data for precise crop \/ie|d predic‘rions on a
regiono| scale.

Aiming at improving yie|d estimation accuracy, all bands were extracted for the seasons 2021 and
2022 respectively. In this study, the various ensemble models were trained using the Sentinel-2
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reflectance’s, which provided an indication for each band reflectance to represent the importance
degree for yield estimation. Prominent spectral bands, such as those involving B4, B6, B7, B8, and
BBA, demonstrated exceptional predictive power within the 80 to 90 days post-transplanting
window. Effective Vls, notably RVI and NDVI with spectral bands B8, B7 and B8A showcased
strong predictive capabilities. Similarly, RVI_B8_90, RVI_B7_90, and RVI_B8A_90 showed
equivalent performance. Combining bands [B4_70, B4_90, B6_65, B12_65] stands out with an
adjusted R2 of 0.65 and an RMSE of 119, highlighting their predictive strength. This research will
be extended, ev0|uoﬁng different machine |eorning o|gori+hms/pipe|ines, thus increasing predicfive
power, and providing a more reliable and sustainable solution that can be used in the long term.
Bagging, boosting or stacking as ensemble frameworks that reuse the best performing pipelines
will be imp|emen’red fo investigate whether +hey could lead to better performonce

117(163)



Yield Prediction in processing tomato crop, through Precision Agriculture practices
PhD Thesis Nicoleta K. Darra

Part 6. Future work

As the global population continues to grow, the role of PA becomes increasingly pivotal in
bolstering productivity, conserving resources, and curbing environmental impact [555]. Yield
prediction stands out as a crucial strategy within PA, empowering farmers and the agricultural
sector to make informed decisions, effec‘rive|y manage resources, and optimize various producﬂon
stages, from harvesting fo logistics. This predictive capability yields increased productivity and
substantial cost savings. It enables farmers to iden’ri{y and address areas with lower yield potential
due to factors like inodequo‘re irrigation or poor soil fer’rihfy, |eoo|ing to ’rorgefed interventions that
enhance overall farm yie|o|s. The |ong—+erm viobi|i’ry of small and medium-sized farms, critical to
the agriculture industry's growth, can be sustained by the profi‘robih’ry improvements facilitated by
precision QgricuHure. Consequenﬂy, there is an urgent need for accessible and affordable precision
ogricu|’rure ’recl’mo|ogies and ’rechniques ’rhrough further research and deve|opmen’r.

Based on this research some specific areas that need further research are:

Y)Infegroﬁon to crop mode//ing: Integrating annual VI dynamics into models for tomato crops can
streamline crop ic/enfificofion, mapping, and monitoring of crop growf/') phoses. This integration
can be comp/emenfed by /everctging weather c/czfq pqrficu/or/y in gauging parameters like thermal
doys, which are instrumental in estimating tomato maturity occurofe/y.

2) The C/evelopmemL of more accurate sensors and monitoring systems: The findings presenfec/ in
this research are encouraging for the deve/opmenf of a /orge—scole monitoring system, especio”y
based on the strategic use of remote sensor platforms. /c/enﬁfying the factors confribuﬁng to yield
voriobi/ify enables farmers to deve/op strategies that ensure consistent and reliable harvests.
Additionally, timely yield forecasts serve as a valuable risk management tool enabling farmers to
proocﬁve/y p/cm for pofenﬁo/ threats such as severe weather events or pest outbreaks, ol/owmg
them to take swift actions to mitigate their impact on crop yield [137].

3) En/’)oncing the accuracy of forecctsﬁng models remains a key focus. Exploring the pofenﬁo/ of
specfro/ band reflectance coup/ec/ with advanced machine /eammg o/gorifhms is a crucial step
toward refining crop yie/c/ predicﬁon accuracy. These advancements are imperative, especio//y
given the impact of climate chonge on fomato produch’on. Precision ogricu/fure fechniques can
mitigate these effects and also facilitate better pest and disease management, reducing
dependence on harmful chemicals.

The ongoing evolution of precision ogricuHure ‘rechno|ogies and mefhodo|ogies underscores the
pofem‘icd fo significonﬂy enhance ogricu|furo| efficiency, susfoinobi|i+y, and profifobimy. The use of
these Techniques can he|p farmers better manage pests and diseases and reduce the need for
harmful chemicals. Overall, the poTenTio| benefits of precision ogricuHure are significonf and there
is a strong demand for research and o|eve|opmen’r in this area. If researchers and practitioners
continue to advance precision 0gricu|’rure fec|’mo|ogies and Techniques, ‘rhey can he||o improve the
efficiency, sus‘roinobihfy and profi‘robihfy of crop producﬂon.
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