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Computational drug repurposing in Claudin-low breast cancer subtype 
 
Msc Systems Biology 
Department of Biotechnology 

ABSTRACT 

Claudin-low (CL) subtype of breast cancer is characterized by low gene expression of 
tight junction proteins claudin 3, 4 and 7 and E-cadherin, and by high expression of genes 
participating in the epithelial-mesenchymal transition (EMT). Despite its clinical 
significance, there is limited understanding regarding the cellular origin and the specific 
oncogenic drivers that contribute to its development and progression. Within this context, 
the MSc dissertation aimed at providing insight into the CL mechanism and at 
computationally identifying candidate repurposed FDA-approved drugs. To this end, we 
used network analysis and two in silico drug repurposing techniques, namely docking and 
gene expression profile reversing. The network analysis of the upregulated CL genes 
signature showed that, based on nodes centrality, the most influential genes were the 
CD44, JUN and TGFBR2. These genes were found to be associated through a positive 
regulation loop, primarily activating the ERK pathway. Next, we performed docking of 
FDA-approved compounds to ANPEP, a protein found upregulated in CL and proposed 
as a therapeutic target. We also compiled a list of molecules that reverse the genetic 
signature of CL. Two shared drugs between those two lists, Olanzapine and 
Pantoprazole, were shown to reduce the migratory ability of cancer, by inhibiting both 
ANPEP and ERK pathway. Molecular dynamics simulations of the predicted complexes 
were performed to investigate if the compounds acquired stable conformations in the 
docked poses within ANPEP. Additionally, the analysis of the gene ontology terms of the 
proteins targeted by the compound lists showed that the term GABA alpha-receptor 
(GABAAR) was enriched among all gene lists, indicating that most compounds indirectly 
affect it. The particular receptor is upregulated in breast cancer and is found to utilize the 
ERK 1/2 signaling pathway to mediate pro-migratory effects. The research suggests the 
significance of the ERK1/2 pathway, as the main mediator of the epithelial-mesenchymal 
transition (EMT), in the formation/progression of CL. ERK is involved in a variety of cellular 
processes making it harder to target without causing significant side effects. GABAAR is 
proposed as a therapeutic target, as hyperactivation of the receptor is shown to induce 
apoptosis. Further in silico and experimental studies are necessary to validate the 
candidate-repurposed drugs.  
 

 

 

Scientific area: Bioinformatics 

Keywords: Drug repurposing, breast cancer, claudin-low, molecular dynamics, 
molecular docking, connectivity map 
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Υπολογιστική φαρμακευτική επαναστόχευση στο Claudin-low υποείδους του μαστικού 
καρκίνου 

ΠΜΣ Βιολογία Συστημάτων 
Τμήμα Βιοτεχνολογίας 

ΠΕΡΙΛΗΨΗ 

Το υποείδος του καρκίνου του μαστού Claudin-low (CL) χαρακτηρίζεται από μειωμένη 
γονιδιακή έκφραση των πρωτεϊνών claudin 3, 4 και 7, και e-cadherin και από την 
υπερέκφραση γονιδίων που συμμετέχουν στην επιθηλιακή-μεσεγχυματική μετάβαση (ΕΜΜ). 
Παρα την κλινική του σημαντικότητα, υπάρχει περιορισμένη κατανόηση σχετικά με την 
κυτταρική προέλευση του, και τους συγκεκριμένους ογκογενείς παράγοντες που συμβάλλουν 
στην ανάπτυξη και εξέλιξή του. Στο πλαίσιο αυτό, η μεταπτυχιακή διατριβή στοχεύει στο να 
συμβάλλει στην κατανόηση του μηχανισμού του CL, αλλά και στην υπολογιστική ταυτοποίηση 
υποψήφιων FDA-εγκεκριμένων φαρμάκων για επαναστόχευση σε αυτόν. Για αυτόν τον 
σκοπό, πραγματοποιήθηκε ανάλυση δικτύου και δύο υπολογιστικές (in silico) τεχνικές 
φαρμακευτικής επαναστόχευσης, την πρωτεϊνική σύνδεση (protein docking) και την 
αντιστροφή της γονιδιακής έκφρασης του CL. Η ανάλυση δικτύου των υπερεκφραζόμενων 
γονιδίων του CL, βασιζόμενη στην ανάλυση της κεντρικότητας των κόμβων, έδειξε ότι τα 
γονίδια CD44, JUN και TGFBR2, εμφανίζουν την μεγαλύτερη επιρροή στο δίκτυο. Αυτά τα 
γονίδια φαίνεται ότι μετέχουν σε μια θετικά ρυθμιζόμενη λούπα, υποκινούμενη από την 
ενεργοποίηση του μονοπατιού ΕΡΚ. Στη συνέχεια πραγματοποιήθηκε η πρωτεϊνική σύνδεση 
των FDA-εγκεκριμένων μορίων στην πρωτεΐνη του ANPEP, η οποία βρέθηκε να 
υπερεκφράζεται στον CL και αποτελεί δυνητικό θεραπευτικό στόχο. Επίσης, συντάξαμε δύο 
λίστες μορίων ικανά να αντιστρέψουν την γενετική υπογραφή του CL. Τα κοινά φάρμακα που 
βρέθηκαν από τις δύο υπολογιστικές τεχνικές, Olanzapine και Pantoprazole, έδειξαν να 
μειώνουν την μεταναστευτική ικανότητα του καρκίνου, παρεμποδίζοντας την ANPEP αλλά 
και το μονοπάτι ERK. Ακολούθως, εφαρμόστηκαν μοριακές δυναμικές προσομοιώσεις των 
προβλεπόμενων συμπλόκων με σκοπό να διερευνηθεί αν τα μόρια αποκτούν σταθερές 
διαμορφώσεις κατά την σύνδεση τους με την ANPEP. Τέλος, η ανάλυση των γονιδιακών 
οντολογικών όρων των γονιδίων που επηρεάζονται από τα μόρια των λιστών που 
συντάχθηκαν, έδειξε ως κοινό τους όρο τον υποδοχέα GABA alpha receptor (GABAAR), 
υποδεικνύοντας ότι επηρεάζεται έμμεσα από τα περισσότερα μόρια. Η υπομονάδα πι του 
συγκεκριμένου υποδοχέα, παρατηρείται να υπερεκφράζεται στον καρκίνο του μαστού, και να 
ενεργοποιεί το μονοπάτι ERK για την απόδοση των μεταναστευτικών ιδιοτήτων. Η έρευνα 
υποδεικνύει τη σημαντικότητα του μονοπατιού ERK, ως τον κύριο διεκπεραιωτή  της 
επιθηλιακής-μεσεγχηματικής μετάβασης, στον σχηματισμό και στην ανάπτυξη του CL. Το 
ERK συμμετέχει σε πληθώρα κυτταρικών διεργασιών, καθιστώντας δύσκολη τη στόχευση / 
καταστολή χωρίς παρενέργειες. Το GABAAR προτείνεται ως θεραπευτικός στόχος, μιας που 
η υπομονάδα πι μπορεί να επηρεάσει έμμεσα το μονοπάτι ΕΡΚ. Τέλος τα μόρια Olanzapine 
και Pantoprazole προτείνονται για περαιτέρω ανάλυση μέσω πειραματικών διεργασιών για 
την πιθανότητα επαναστόχευση τους στον CL. 

 

Επιστημονική περιοχή: Βιοπληροφορική  

Λέξεις κλειδιά: Φαρμακευτική επαναστόχευση, καρκίνος μαστού, μοριακή πρόσδεση 
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1. INTRODUCTION 

1.1 Breast cancer Overview 
Breast cancer (BC) is a highly heterogeneous group of diseases with variable biological 

and clinical behaviour. The different BC types can be classified based on different factors, 

including the presence or absence of certain genetic mutations, the expression of different 

proteins, and the tumour's growth pattern and stage. These factors not only influence the 

tumour's behaviour and response to treatment, but the overall prognosis as well. Gene-

expression profiling analyses provided insight into the diversity of the molecular subtypes, 

known as intrinsic subtypes. According to the PAM50 classification these subtypes are 

luminal A, luminal B, HER2-enriched and basal-like (Prat et al., 2010). An additional 

intrinsic subtype of BC, known as claudin-low (CL), has recently been identified in human 

and mouse tumours, in BC cell lines. CL shows several common features with basal-like 

tumours, reflecting the diversity of tumours with a low luminal differentiation status (Prat 

et al., 2010). 

1.2 Breast Cancer Subtypes and Claudin-low  
Luminal A is the most common subtype, accounting for about 40% of all breast cancers. 

It is characterised by the presence of oestrogen and/or progesterone receptors (ER/PR) 

on the tumour cells, typically showing low levels of HER2 expression and a low 

proliferation rate. Luminal B, on the other hand, shows a more aggressive profile, with 

higher levels of HER2 expression and a higher proliferation rate, without necessarily 

being ER/PR positive. HER2-enriched tumours are characterised by overexpression of 

the HER2 protein on the surface of tumour cells. Although HER2-enriched cells are similar 

to luminal B, they have a higher risk of recurrence, and are less likely to express 

oestrogen and/or progesterone receptors. The determination of the subtype in BC is 

important in guiding treatment decisions and predicting the prognosis of the disease. 

Triple-negative breast cancers (TNBCs) are an aggressive subgroup of breast 

malignancies defined as tumours lacking expression of the oestrogen receptor (ER), 

progesterone receptor (PR), and HER2 (Lenhmann et al., 2011). Basal-like and claudin-

low tumours form the majority of TNBCs, sharing common features, but distinct molecular 

and genetic characteristics. Basal-like is characterised by the expression of genes that 

are typically found in basal cells, which line the mammary ducts. It tends to have a higher 

expression of genes involved in cell cycle regulation and DNA repair, whereas claudin-

low has a higher expression of genes involved in cell migration and invasion. 

CL tumours reflect characteristics of their intrinsic subtype, as they are distinguished by 

low genomic instability and mutational burden, consisting of a predominant population of 

triple-negative mammary tumour cells (Fougner et al., 2020). These cells exhibit 
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characteristics reminiscent of stem cells and display mesenchymal features (Radler et al., 

2021).  

The genetic profile of CL is characterised by low expression of the calcium-dependent 

glycoprotein E-cadherin, and tight junction proteins claudin 3, 4 and 7, responsible for 

cell-cell adhesion (Lenhmann et al., 2011). And by the high expression of genes 

participating in the epithelial-mesenchymal transition (EMT), during which epithelial cells 

lose their polarity and cell-cell adhesion. Cytoskeletal reorganisation and loss of E-

cadherin are important steps in this transition; thus, CL tumours gain migratory and 

invasive properties (Bhatt et al., 2021). 

Despite its clinical significance, there is limited understanding regarding the cellular origin 

and specific oncogenic drivers that contribute to the development and progression of CL 

(Radler et al., 2021). This result can be attributed to the unique challenges it poses, due 

to its distinct molecular profile and limited knowledge about its underlying mechanisms. 

Thus, there is a growing demand for further research to unravel the cellular origins of 

claudin-low breast cancer (CLBC) and to identify the specific oncogenic drivers 

responsible for its aggressive profile (Radler et al., 2021). Such investigations hold the 

potential to uncover novel therapeutic targets and treatment strategies for this challenging 

subtype of BC (Radler et al., 2021). Overall, identifying the specific subtype is crucial for 

determining the best course of treatment for each patient, as different subtypes respond 

differently to various therapies. 

1.3 Drug repurposing 
Drug repurposing, also known as drug repositioning or therapeutic switching, is the 

process of identifying new therapeutic uses for existing drugs that have already been 

approved for human use. According to certain reports, approximately 30-40% of novel 

drugs and biologics that received approval from the US Food and Drug Administration 

(FDA) between 2007 and 2009 could be categorised as repurposed or repositioned 

products (Graul et al., 2009). Similarly, a research study discovered that 35% of 

transformative drugs endorsed by the FDA from 1984 to 2009, which were characterised 

as both innovative and having groundbreaking effects on patient care were actually 

repurposed products (Krishnamurthy et al., 2022). Many experts argue that repurposing 

drugs may offer advantages in terms of speed, cost-efficiency, reduced risk, and higher 

success rates compared to traditional drug development methods (Krishnamurthy et al., 

2022). This is primarily because researchers can bypass the earlier phases of 

development that focus on establishing drug safety, as these stages have already been 

completed and the safety and pharmacokinetic properties of the drug have been already 

established. Therefore, repurposing enables the expansion of treatment options for 

patients by identifying new uses for existing drugs (Krishnamurthy et al., 2022). 
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It has been suggested by some reviews that around 30% of repurposing endeavours 

achieve success, resulting in FDA-approved marketable products. In contrast, the 

success rate for new drug applications in general, hovers around 10% (Hauser et al., 

2017). However, there is contradictory evidence suggesting that repurposed agents do 

not necessarily outperform new agents, with their effectiveness, rather than safety, often 

being their limiting factor (Krishnamurthy et al., 2022). 

Reports indicate that the process of de novo drug discovery and development can span 

a lengthy 10-to-17-year period. Conversely, repurposed drugs typically receive approval 

much sooner, within a range of 3 to 12 years, and at approximately half the cost (Novack, 

2021). During the Covid-19 pandemic, there has been a renewed focus on drug 

repurposing, notably after the FDA granted emergency use authorization (EUA) for 

several repurposed drugs to treat Covid-19 (Novack, 2021). For instance, within six 

months of the pandemic's onset, the FDA issued a EUA for remdesivir, marketed as 

Veklury. Prior to its authorization as a Covid-19 treatment, remdesivir hadn’t received 

FDA authorization for its original design as an antiviral for RNA-based viruses 

(Krishnamurthy et al., 2022). Despite the enthusiasm surrounding drug repurposing, there 

has been a lack of systematic literature reviews examining why pharmaceutical 

companies often reprioritize or abandon promising drug candidates that have not received 

FDA approval for any indication. In addition, there has been a dearth of research exploring 

the factors that either hinder or facilitate the process of bringing these promising 

compounds off the shelf and back into development, commonly referred to as drug 

repurposing (Krishnamurthy et al., 2022). 

Several computational approaches coupled with open-access databases have been 

described as instrumental in predicting drug-disease responses and validating targets 

and pathways, thus advancing repurposing endeavours (Pulley et al., 2018). Among 

these newer methods, signature-based approaches have been commonly employed for 

drug repurposing. Such approaches identify alternative indications for existing drugs by 

investigating published GWAS data from institutes such the US National Human Genome 

Institute (Krishnamurthy et al., 2022). However, key limiting factors are the expertise and 

time required to develop such assays and the integration of databases that identify known 

drugs among confirmed activities (Swamidass, 2011). 

In-silico screening of compound libraries is important in both significantly reducing wet-

laboratory work and lowering the cost of experimental determination of drug-target 

interactions (Wang & Weng, 2013).  

Additionally, an effective and economical strategy for repurposing drugs is the mining of 

open-access phenotypic screens of small molecules (Swamidass, 2011). Bioinformatics-

based approaches are able to identify closely related targets and new repurposing 

opportunities, utilizing tools for domain similarity prediction and sequence alignment to 

discover novel protein–protein similarities. Additionally, chemoinformatics-based 
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approaches utilize computational algorithms that rank and prioritise compounds for 

experimental testing, based on the molecular representations of candidate compounds. 

Such example is the molecular docking method used to screen several compounds 

against a target protein, with known 3D structure (Wang & Zeng, 2013). 

Network modelling and systems-biology approaches have also been discussed as 

valuable techniques. Network modelling involves the reconstruction of a biological 

network and the simulation of its interactions to reveal potential drug targets (Shahreza 

et al., 2018). A systems-biology approach involves the utilisation of omics data, signalling 

pathways, metabolic pathways, and protein interactions to propose a new pathway for a 

given disease (Katare & Banerjee, 2016). Limitations of such approaches, in their 

predictions of how drugs and targets interact, are tackled by the use of machine learning 

which is able to accurately predict drug-target interactions, inferring modes of action, and 

establishing novel drug-target relationships (Wang & Zeng, 2013). Finally, the utilisation 

of Artificial Intelligence (AI)-driven technology has been introduced as a means to 

integrate diverse types of data and search for connections. Such example is the project 

prodigy, an AI solution developed by Biovista, with the capability to construct entirely new 

clinical scenarios, resulting in repurposing successes in the fields of multiple sclerosis 

and epilepsy (Challener, 2018). Their AI system has been applied in collaboration with 

major pharmaceutical companies, patient advocacy groups, and the FDA (Challener, 

2018). 

1.4 Examples of repurposed drugs 
Examples of drugs that have been successfully repurposed or repositioned in various 

medical contexts are frequently discussed in the literature, including repurposing for rare 

and neglected diseases, including Alzheimer's disease, AIDS, and central nervous 

system disorders. The literature highlights several instances of drugs that have been 

effectively repositioned. These include thalidomide, Viagra® (sildenafil), Saracatinib, 

AZT, Aducanumab, Sunitinib, Tamoxifen, Raloxifene, and Trastuzumab (Krishnamurthy 

et al., 2022). 

In the field of drug development, there is a concept known as "drug promiscuity," which 

refers to the idea that a single drug can have an impact on multiple pathways, potentially 

leading to new applications for drug candidates. Thalidomide is frequently cited as a prime 

example of this phenomenon. Originally produced by the German company Chemie 

Grunenthal in the 1950s, thalidomide faced setbacks and was withdrawn from several 

markets due to its teratogenic effects (Chesbrough & Chen, 2013). Notably, it had not 

received approval from the US FDA at that time. However, subsequent research revealed 

that thalidomide could inhibit tumour necrosis factor-alpha signalling. As a result, it found 

new purpose in the treatment of erythema nodosum leprosum, a serious complication of 

leprosy, and later in multiple myeloma. Although it was approved by the FDA for acute 



9 
 

erythema nodosum leprosum in 1998, its usage remained restricted due to stringent 

guidelines (Chesbrough & Chen, 2013). Another well-known example, Viagra®, initially 

demonstrated a lack of efficacy during clinical trials for its intended use. However, its 

unusual side effects and unsuitable pharmacokinetic properties for angina treatment led 

to its eventual repurposing for the treatment of erectile dysfunction (Chesbrough & Chen, 

2013). 

Saracatinib, initially designed for various oncology applications, was deprioritized 

following limited efficacy observed in phase II studies. The inspiration for repurposing this 

drug emerged from the discovery of memory impairments in Alzheimer's disease mouse 

models and data linking Fyn tyrosine kinase phosphorylation to Aβ and tau-related 

synaptic dysfunction (Frail et al., 2015). Saracatinib is currently under investigation for 

alternative uses, including bone pain and lymphangioleiomyomatosis (Frail et al., 2015). 

The case of Azidothymidine (AZT) illustrates the potential of comprehensive 

understanding of disease and drug mechanisms in discovering new applications. 

Originally explored as a chemotherapy drug in the 1960s, AZT was discarded due to its 

ineffectiveness. However, its antiretroviral properties were recognized during the early 

stages of the HIV epidemic (Cha et al., 2018). Collaborative efforts between National 

Institutes of Health (NIH) and industry experts repurposed the drug, making it the first HIV 

treatment (Cha et al., 2018). 

Initially abandoned due to unfavourable results from an independent monitoring 

committee's futility analysis, Aducanumab was revitalised through a re-examination of 

data from two unsuccessful clinical trials. Notably, patients receiving the highest dose 

exhibited a statistically significant reduction in cognitive decline and improved basic daily 

living activities. Biogen contested the accuracy of the initial analysis, receiving FDA 

approval to reintroduce the nearly abandoned drug (Cortez & Langreth, 2019). 

Sunitinib serves as an example of successful on-target repurposing. Despite failures in 

clinical trials for various cancers, including colorectal, breast, prostate, and non-small cell 

lung cancer, it found success in treating gastrointestinal stromal tumours and renal 

cancers after repurposing efforts. In 2010, it obtained approval for pancreatic 

neuroendocrine tumour treatment, emphasising the significance of a targeted approach 

in repurposing (Naylor & Schonfeld, 2014). 

Tamoxifen, initially developed as a contraceptive and orphan drug, later displayed 

efficacy in inducing ovulation in sub-fertile women and treating postmenopausal women 

with metastatic breast cancer in translational laboratory studies (Jordan, 2003). As a 

nonsteroidal antiestrogen, tamoxifen was repurposed, gaining approval for treating 

metastatic breast cancer and reducing breast cancer risk (Jordan, 2003). It currently 

stands as the standard therapy for long-term adjuvant treatment of oestrogen receptor-

positive breast cancer. 
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A series of translational studies conducted in the 1970s and 80s focused on the uterus, 

breast, and bone, creating a foundation for further research and trials. This effort led to 

the reintroduction of, the initially failed, keoxifene into raloxifene—the first clinically 

available selective oestrogen receptor modulator for preventing breast cancer and 

osteoporosis. 

Trastuzumab, which is a monoclonal antibody initially approved for the treatment of 

HER2-positive breast cancer, has now gained approval for the treatment of HER2-

positive advanced gastric and gastroesophageal junction cancer as well (To & Cho, 

2022). This expansion of trastuzumab's indications reflect a process known as "soft 

repurposing," where existing oncological drugs are repurposed for new applications in 

different cancer types (To & Cho, 2022). Additionally, Pantziarka et al. (2018) categorised 

the repurposing of non-oncology drugs for cancer treatment as "hard repurposing". This 

term refers to the utilisation of drugs originally developed for non-cancer-related purposes 

in the treatment of cancer (Pantziarka et al., 2018). This classification highlights the 

innovative approaches being explored to identify potential therapeutic options for various 

cancer types. 
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2. RESEARCH PURPOSE 

The purpose of the research is to investigate the CL mechanism and to propose candidate 

FDA-approved drugs for repurposing, by employing several computational methods. In 

particular, network analysis and functional annotation clustering indicated the significance 

of the ERK1/2 pathway as the main mediator of the epithelial-mesenchymal transition 

(EMT), in the formation/progression of CL. The in silico drug repurposing techniques 

docking and gene expression profile reversing resulted in two lists of candidate 

compounds. The lists intersection highlighted two drugs, which were further studied using 

molecular simulation techniques. 
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3. METHODS 

 

Figure 1. Workflow pipeline of the methods used in this study. 

 

3.1 Genetic signature network analysis using Cytoscape 

The upregulated genes of the claudin low genetic signature, identified by Papamichail 

(2023) were imported in string database (Szklarczyk et al., 2015). The resulting network 

was loaded in Cytoscape and analyzed using the Network Analyzer plugin. The plugin is 

suitable for studying the properties of biological networks such as gene regulatory 

networks, protein-protein interaction networks, and metabolic networks (Shannon et al., 

2003). The analysis of the network poses the first step of the pipeline developed for this 

research (fig1.). 
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In the context of biological gene networks, betweenness centrality and closeness 

centrality are commonly used to identify key genes involved in the regulation of gene 

expression and signalling. Betweenness centrality is calculated based on the number of 

shortest paths that pass-through a given node, which reflects the importance of that node 

as a bridge between different regions of the network. Genes with high betweenness 

centrality are thus considered to be critical in maintaining the overall connectivity and flow 

of information in the network. On the other hand, closeness centrality is calculated based 

on the average distance from a given node to all other nodes in the network, which reflects 

the efficiency of that node in transmitting signals to other parts of the network. Genes with 

high closeness centrality are thus considered to be central in the network and may play 

an important role in coordinating biological processes. Both measures have been shown 

to be useful in identifying key genes and pathways in biological gene networks, which can 

provide insights into the underlying molecular mechanisms of biological processes and 

potential therapeutic targets for diseases involving disruptions in gene regulation or 

signalling. 

3.2 Genetic signature analysis using Connectivity map 
In the Connectivity Map (CMap), a detailed collection of cellular signatures has been 

compiled, representing organized alterations caused by both genetic (reflecting protein 

function) and pharmacological (reflecting small-molecule function) factors. Similar 

signatures may indicate potential connections, such as between proteins in the same 

pathway, a small-molecule and its target protein, or between structurally different small-

molecules with similar functions (https://clue.io). The 29 upregulated genes of the CL 

genetic list were imported into the CLUE (CMap and LINCS Unified Environment) QUERY 

tool. The genetic library BING utilised by the CMap 1.0 version included 28 of the input 

upregulated genes. The tool generated a list with molecules able to enhance or reverse 

the uploaded genetic signature. The tool scored each molecule with a tau value between 

-100 and +100, with the lowest score indicating the highest correlation of genetic 

signature reversal. For example, tau= -90 indicated that only the 10% of the molecules 

from the Touchstone dataset, tested on the same cell line, showed stronger reversal of 

the genetic signature than the molecule of interest (scored -90). Bioactive compounds of 

Tau > 90 and <-90 show statistical significance, for enhancing or reversing the genetic 

signature, respectively. The output results could be reviewed by showcasing 150 

bioactive compounds, derived from 9 different cell lines, with a maximum tau score of -

90. In general, it was considered that tau scores of +90 or higher, and of -90 or lower, 

were to be considered as hypotheses for further study (https://clue.io). The compounds 

were further filtered to be only FDA approved compounds, resulting in a list of 38 total 

compounds (Supplementary Table 2). The genes that were targeted by the extracted 

compounds were used to isolate their gene ontology terms. Finally, the same procedure 

was followed but only using the compounds generated from the MCF7 cell line. The 
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resulting list consisted of 66 FDA approved molecules (Supplementary table 3). The 

FDA approved molecules derived from connectivity map were analysed using the Broad 

id identifier to categorise them into different disease areas. 

3.3 Gene ontologies of the targeted genes 
The gene ontologies of the genes that are targeted by the compounds of the lists CM and 

MCF7 were extracted, clustered using the DAVID program, and analysed to identify 

shared clusters. The enrichment score reflected the degree of over-representation of a 

specific functional category in a cluster of related categories (Huang et al., 2009). The 

clustering analysis grouped functionally related terms based on their similarity and 

assigned an enrichment score to each cluster. The enrichment score for a functional 

annotation cluster was calculated as the geometric mean of the enrichment scores for the 

individual annotation terms within the cluster (Huang et al., 2009). A higher enrichment 

score for a cluster indicated a stronger degree of enrichment for the corresponding 

biological process, molecular function, or cellular component, and suggested that the 

cluster was biologically relevant to the input gene list. Similar to the individual annotation 

term analysis, a score of 1.3 or higher was used as a significance threshold for the 

functional annotation clustering analysis (Huang et al., 2009). 

3.4 Docking analysis of ANPEP USING Autodock Vina 
A protein that participates in the EMT, the mammalian aminopeptidase N (ANPEP) shows 

great potential as a therapeutic target for the treatment of diseases related to many 

physiological processes like blood pressure regulation, tumour angiogenesis and 

metastasis, immune cell chemotaxis, sperm motility, cell-cell adhesion, and coronavirus 

entry (Hen et al., 2012). This protein was selected after extensive literature research as 

a potential therapeutic target for performing molecular docking. 

Docking results were generated for the ANPEP with all FDA approved drug molecules, 

including Ezetimibe, ANPEP`s known inhibitory compound, using Autodock vina. 

AutoDock Vina is a software program used to predict the binding affinity of a small 

molecule ligand to a protein receptor. Before running Vina, it's essential to prepare the 

protein receptor and the small molecule ligand. This involves removing any water 

molecules or other unwanted structures from the protein structure and optimising the 

ligand structure. Once the protein and ligand structures are prepared, a grid is generated 

around the protein receptor to define the search space for the ligand. This grid is used to 

calculate the interaction energy between the protein and the ligand. Vina performs a 

docking simulation by systematically exploring the search space defined by the grid and 

predicting the binding affinity of the ligand to the protein. The software uses a genetic 

algorithm to perform this search and optimise the binding energy score. Once the docking 
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simulation is complete, AutoDock Vina generates a list of predicted binding poses 

(conformations) and associated binding energies for the ligand (Eberhardt et al., 2021). 

Vina reports the binding energy of each predicted binding pose of the ligand. These 

binding energies are expressed in units of kcal/mol and represent the free energy change 

associated with the formation of the protein-ligand complex from the separated 

components (Eberhardt et al., 2021). A more negative binding energy (i.e., a larger 

absolute value) indicates a stronger binding interaction between the protein and the 

ligand, and therefore a higher predicted binding affinity. Molecules with binding affinity 

lower than the known molecule were filtered out (Supplementary Table 1). The FDA 

approved molecules derived from VINA were analysed using the Broad id identifier to 

categorise them into different disease areas.  

The gene ontologies extracted from the Vina, CM, MCF7 drug lists, and upregulated 

genes of the claudin-low signature, were clustered using the functional annotation 

clustering option of DAVID program. Moreover, the three drug lists generated were 

compared, to find shared compounds (fig1.). The resulting compounds were used to find 

their gene targets and create a network with the upregulated genes of the genetic 

signature, in order to observe possible interactions, using the Cytoscape software. 
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3.5 Molecular dynamics 

 

Figure 2. Aminopeptidase-N (ANPEP) complex with Bestatin (protein data bank id: 4FYR). The alpha 

helices of the ANPEP protein are shown in cyan, the beta sheets in red and the loops in magenta, while 

the ZN is shown in dark green and the Bestatin molecule in green. 

 

Based on the docking and CM results and literature research of the four shared 

molecules, we selected only Pantoprazole and Olanzapine choosing four and three 

different conformations, respectively (fig3.). For the reference protein structure, we used 

the experimentally characterised ANPEP-Bestatin complex (pdb: 4FYR), as Bestatin is a 

known natural inhibitor of ANPEP (Chen et al., 2012) (fig2.).  The pdb files of all the 

conformations generated from Autodock Vina were used to make pdb files of the protein-

ligand complexes, using the Chimera software.  



17 
 

The complexes were processed using PoseView to generate a graphical representation 

of their protein-ligand interaction profile. PoseView automatically generates 2D diagrams 

of molecular complexes, focusing on the interaction network between the complex 

partners (Stierand et al., 2010). Computing collision-free layouts by representing the 

interacting molecules on the atomic level following the IUPAC recommendations for the 

depiction of structured diagrams (Stierand et al., 2010). 

The files of each complex were used as input in the charmm-gui solution builder 

generator. For the next steps, the Antechamber option was selected to generate top and 

par files, automatically generating the customised FF parameters for the molecule, 

uploaded in SDF format. In addition, two pairs of disulfide bonds were defined, which are 

known to appear in ANPEP. The TIP3P water box size was set to "rectangular" and 

defined to fit the protein size with an edge distance of 12Å. Finally, ions were added using 

the Monte-Carlo ion placing method, and the generated input files for GROMACS 

software were downloaded. MD simulation was carried out with the GROMACS 4.6.5 

suite of programs using the CHARMM36m force field. Periodic boundary conditions were 

employed using the particle mesh Ewald (PME) method for long-range electrostatics 

interactions. The Na+ counterions were added to satisfy the electroneutrality condition.  

Initially, energy minimization and equilibration of all systems was executed through 

following three steps: (i) Energy minimization of all systems containing ions, solvent, 

receptor, and ligand was executed using the steepest descent minimization algorithm with 

5000 steps to achieve stable systems with maximum force < 1000 kJ mol nm. (ii) Position 

restrains were applied to receptor and ligand of each system for 100 ns throughout 

heating (300 K) utilising NVT (No. of atoms, Volume, Temperature) ensemble with leap-

frog integrator, a time step of 2 fs and LINCS holonomic constraints. (iii) NPT (No. of 

atoms, Pressure, Temperature) ensemble was applied at a constant pressure (1 bar) and 

temperature (300 K) for 100 ps using a time step of 2 fs for NPT equilibration phase. After 

the energy minimization and equilibration of all systems, MD production run was executed 

without any restrain for 50 ns with a time step of 2 fs, and the coordinates of the structure 

were saved every 10 ps. After the completion of 50 ns MD simulation, the trajectories 

were used for various dynamic analysis such as root mean square deviation (RMSD), 

root mean square fluctuation (RMSF), and radius of gyration (Rg).  
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4. RESULTS 

4.1 Genetic signature network analysis 
Table 1. Network analyzer table from Cytoscape, showcasing the top nodes based on the 

centrality of each node. 

display name BetweennessCentrality ClosenessCentrality Degree 

SNAI2 0.02 0.5 6 

VIM 0.03 0.51 8 

ANXA1 0.03 0.48 4 

ZEB2 0 0.45 5 

JUN 0.29 0.61 9 

PBK 0 0.33 1 

TGFBR2 0.17 0.56 9 

CD274 0.07 0.51 6 

CSF1R 0.1 0.49 5 

CCNB1 0.18 0.49 5 

CALR 0.18 0.47 4 

SNCA 0 0.39 2 

PTGS2 0.04 0.5 5 

CD44 0.21 0.61 13 

ADAM12 0 0.37 1 

PTTG2 0 0.33 1 

TWIST1 0 0.46 6 

SERPINH1 0.09 0.33 2 

THY1 0.02 0.46 6 

CRTAP 0 0.25 1 

LAPTM5 0 0.33 1 

ZEB1 0.03 0.51 7 

EPAS1 0 0.39 1 
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B 

 

Figure 3. Network of the claudin-low genetic signature generated by the string database. 

 

In order to identify relevant and specific therapeutic targets to CL, the upregulated genetic 

signature of CL was utilized as determined by Papamichail (2023). The potentially 

important upregulated genes identified in CL are VIM, SNAI2, TWIST1, ZEB1, ZEB2, 

THY1, PBK, CCNB1, SNCA, PTTG2, CRTAP, TGFBR2, PROS1, FLRT2, PID1, ANXA1, 

LAPTM5, PLAC8, ADAM12, DOCK1, PTGS2, CD274, DPT, EPAS1, CSF1R, 

SERPINH1, CALR, CD44, JUN. The network of upregulated genes was created in 

Cytoscape and analyzed to identify the most influential nodes. Non connected nodes, 

including DOCK1, FLRT2, PID1, DPT, and PROS1, were opted out of the analysis 

(fig3B.). To understand the relationships between these genes, the network analysis 

used degree centrality, betweenness centrality, and closeness centrality metrics (fig3A.). 

Degree centrality is a measure of the number of connections (edges) that a node has in 

a network. In the context of this analysis, the top 3 nodes with the highest degree centrality 

are CD44, JUN, and TGFBR2. CD44 has the highest degree centrality with a value of 13, 

indicating that it is highly connected in the network. JUN and TGFBR2 both have a degree 

centrality of 9, indicating that they are also highly connected. These results suggest that 

CD44, JUN, TGFBR2 are potentially important nodes in the network and may play a 

critical role in the disease process. CD44 stands out with the highest degree centrality 

value, indicating that it may be a key therapeutic target. 
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Betweenness centrality is a measure of how important a node is in facilitating the flow of 

information between other nodes in a network. In this analysis, the top three nodes based 

on betweenness centrality are JUN, CD44, and with the same scores, CCNB1 and CALR. 

JUN has the highest betweenness centrality value (0.289), indicating that it is a key 

mediator of communication between other nodes in the network, as it is located on many 

of the shortest paths connecting pairs of other genes in the network. JUN is a transcription 

factor that plays a role in many cellular processes, including cell proliferation, 

differentiation, and apoptosis. CD44, CCNB1 and CALR have betweenness values of 

0.208, 0.18 and 0.18, respectively, indicating that they also play a role in connecting 

different parts of the network. This cluster may represent key genes that act as bridges 

between different regions of the network and are essential for information flow. 

The third ranking identified by the closeness centrality measure consists of CD44, JUN, 

and TGFBR2, with CD44 and JUN having the highest closeness values of 0.611. This 

suggests that CD44 and JUN are located close to most other genes in the network and 

may play a central role in information transfer. TGFBR2 also has a high closeness value 

of 0.564, indicating it is also centrally located in the network. This cluster may represent 

key genes that are essential for efficient communication between different parts of the 

network. These findings provide insight into the potential functional relationships and roles 

of these genes within the network and could be used to generate new hypotheses or 

predictions for further investigation. 

 

Figure 4. Schematic representation of how the most influential nodes JUN, CD44 and TGFBR2, of the CL 

gene upregulated network, affect and interact with each other showcasing their association with ERK 

pathway. 
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4.2 ERK Pathway and its involvement in the network 
Cancer cells infiltrate and grow outside the tumour microenvironment before entering the 

circulatory system and migrate to neighbouring organs to proliferate and form a primary 

tumour (Pommier et al., 2020). To facilitate such a complex process, multiple signalling 

pathways are required to be coordinated. An important pathway that is proposed to 

mediate tumourigenesis in TNBCs is the activated Extracellular signal-regulated kinase 

1/2 (ERK1/2), thought to be a prime oncogenic event for the formation of CL (Pommier et 

al., 2020) (Bhatt et al., 2021). Many diseases including cardiovascular, inflammatory, and 

neurodegenerative disorders as well as cancers, are attributed to the dysregulation of 

protein kinase signalling (Roskoski, 2019). Estimating that approximately 20–33% of all 

drug discovery programs target protein kinases, highlights their importance in various 

pathogenesis (Roskoski, 2019). These enzymes catalyze the following reaction: 

MgATP1– + protein–O:H → protein–O:PO32– + MgADP + H+ 

Enzymes are classified as either protein-tyrosine or protein-serine/threonine kinases 

depending on the substrate with which they interact. Dual-specificity protein kinases, such 

as MEK1/2, which can phosphorylate both tyrosine and threonine in the activation 

segment of ERK1/2, constitute a small group of these enzymes. Despite their unique 

ability to interact with both substrates, they are still considered protein-serine/threonine 

kinases based on their evolutionary development (Roskoski, 2019). 
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Description of the ERK pathway 

 

Figure 5. Schematic representation of the evolutionarily conserved Ras-Raf-MEK-ERK MAP kinase 

pathway. 

 

The Raf enzymes, which are a type of protein-serine/threonine kinases, facilitate the 

phosphorylation and activation of MEK1 and MEK2, both of which are referred to as 

MAP/ERK Kinases. Consequently, MEK proteins then phosphorylate and activate ERK1 

and ERK2, which belong to the family of Extracellular Signal-Regulated protein Kinases 

(ERK). Due to their narrow substrate specificity, the A/B/C-Raf enzymes and MEK1/2 can 

only interact with a limited range of substrates. Therefore, MEK1/2 are only known to act 

upon ERK1/2, and Raf enzymes only have MEK1/2 as their substrates (Roskoski, 2019) 

ERK1/2 belongs to the mitogen-activated protein kinase (MAPK) family, which plays a 

role in signalling cascades and transmits extracellular signals to intracellular targets. 
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Basic processes like cell proliferation, differentiation and stress responses are regulated 

by central intracellular signalling elements like the MAPK cascades. The MAPK layer 

consists of four cascades: ERK1/2, c-Jun N-terminal kinase (JNK), p38 MAPK and ERK5. 

The first cascade regulates cell metabolism and function, by activating through 

phosphorylation, various transcription factors, when transferred to the nucleus, such as 

proto-oncogene c-Fos, proto-oncogene c-Jun, ETS domain-containing protein Elk-1, 

proto-oncogene c-Myc and cyclic AMP-dependent transcription factor ATF2 (fig5.) 

(Buonato & Lazzara, 2014). To decrease the metastatic properties of cancer it is 

proposed to activate the reverse, mesenchymal to epithelial transition (MET). Evidence 

shows that activation of the ERK1/2 and ERK5 pathways mediate EMT, the inhibition of 

those, found to promote MET which should additionally inhibit cellular proliferation, may 

mitigate risks associated with proliferation of micro-metastases (Buonato & Lazzara, 

2014). 

JUN 

JUN expresses the transcription factor c-jun, an important component of the AP-1 

complex, which plays a crucial role in gene regulation by binding to promoters of various 

genes, including CD44. More specifically, Lamp et al. (1997) showed that AP-1-directed 

increased expression of CD44 is necessary to mediate fibroblast invasion. Along with 

controlling gene expression, the AP-1 family is also shown to have an impact on cancer 

cell migration and invasion through angiogenesis. The relationship between c-jun 

activation and distant metastasis of breast cancer was proposed in vivo, for the luminal A 

subtype (Gee et al., 2000). 

C-Jun transcription is also upregulated by its own product, as its promoter region contains 

high affinity binding sites for the AP-1 complex (Angel et al., 1988). However, JUN’s 

activity is tightly controlled, and is suggested to be modulated by both transcriptional and 

post-translational modifications (Nam et al., 2015). For instance, the JNK pathway, once 

activated by a variety of extracellular stimuli such as stress cytokines, phosphorylates and 

activates c-Jun N-terminal kinases. The c-Jun N-terminal kinases (JNKs), are identified 

as kinases that activate JUN by phosphorylating Ser-63 and Ser-73 within its 

transcriptional activation domain (Kayahara et al., 2005). Similarly to ERK1/2, activated 

JNKs are involved in processes, including proliferation, differentiation, apoptosis, and 

survival, by acting on associated substrates (Papa et al., 2019). 

ERK pathway also acts as a JUN regulator, since the pathway`s activation increases the 

expression and stability of JUN (Brennan et al., 2020). This process further enhances the 

regulatory function of AP-1 in controlling gene expression, cellular proliferation, and 

differentiation. Additionally, ERK can also indirectly regulate the AP-1 pathway by 

targeting other proteins that modulate AP-1`s activity, such as c-Fos and Elk-1 (Roskoski, 

2019). Therefore, ERK plays a pivotal role in regulating the function of the AP-1 complex, 
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and its downstream targets. Thus, understanding the intricate regulatory mechanisms of 

c-Jun is crucial to better understand the impact of the AP-1 family on cellular and 

biological activities, including cancer. 

CD44 

The CD44 gene encodes for a transmembrane glycoprotein that plays a crucial role in 

cell-cell and cell-matrix interactions. The primary binding partner for CD44 is hyaluronic 

acid (HA), a prevalent substance found in the extracellular matrix (ECM) produced by 

both stromal and cancer cells (Banerjee et al., 2016). HA attaches to the CD44 ligand 

binding domain, prompting structural alterations that facilitate the attachment of adaptor 

proteins or cytoskeletal components to inner cellular regions. This, in turn, triggers the 

activation of diverse signaling pathways, ultimately influencing cell proliferation, adhesion, 

migration, and invasion (Nam et al., 2015). Such pathways involve the stimulation of 

receptor kinases like Erb2n, EGFR, and TGF-beta receptors (Bourguignon & Chen, 

2014). TGF-beta for example, was found to upregulate Versican (VCAN) in ovarian 

cancer, increasing its aggressiveness (Yeung et al., 2013). VCAN is a chondroitin sulfate 

proteoglycan known to form structural aggregations of HA. Moreover, VCAN upregulation 

was shown to upregulate the expression of CD44 and receptor of hyaluronic acid-

mediated motility (RHAMM), leading to enhanced motility and invasion of ovarian cancer 

cells (Yeung et al., 2013). 

ERK pathway was found to be activated by CD44, by interacting with growth factors and 

integrins, promoting their downstream signaling. Activation of the ERK pathway can in 

turn stimulate the phosphorylation/activation of CD44, which has been shown to enhance 

its binding to hyaluronic acid (Judd et al., 2012). Furthermore, ERK activation has been 

linked to increased secretion of matrix metalloproteinases (MMPs) (Tanimura et al., 

2003). MMPs can degrade type 1 collagen and release collagen-derived peptides that 

are shown to increase the expression of hyaluronic acid synthase mRNA (Zhao et al, 

2021). This hyaluronic acid increase can enhance its own signaling, promoting cell 

migration and invasion (Zhao et al, 2021). 

Notably, Bourguignon & Chen (2014) reported that CD44-HA interaction is closely 

associated with JNK and c-Jun activation in TNBC cell line MDA-MB-468. The CD44-HA 

interaction was observed to promote the translocation of JUN to the nucleus 

(Bourguignon & Chen, 2014). Then, JUN can interact with an upstream/enhancer region, 

containing AP-1 binding sites, of the miR-21 promoter, upregulating miR-21`s expression 

(Bourguignon & Chen, 2014). The overexpressed miR-21 in turn positively contributes to 

the expression of genes Bcl2, ABCB1 and IAP. Resulting in MDA-MB-468 cells acquiring 

anti-apoptosis/survival and chemoresistance properties (Bourguignon & Chen, 2014). 

Therefore, CD44's interaction with HA, and the downstream activation of the ERK 

pathway play an important role in cancer cell migration and invasion. 

https://www.sciencedirect.com/topics/chemistry/hyaluronic-acid
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/synthase
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TGFBR2 

TGFBR2 (Transforming growth factor, beta receptor II) encodes a member of the 

serine/threonine protein kinase family and the TGFB receptor subfamily. Physiologically, 

in normal and premalignant cells TGF-beta stimulates cytostasis and apoptosis, showing 

tumour suppression capabilities (Hao et al., 2019). However, with cancer progression, 

TGF-Beta transforms to tumour promoter by stimulating tumour cells to undergo the EMT 

(Hao et al., 2019). Both TGF-β-induced cell cycle arrest and EMT were shown to be 

facilitated by the ERK pathway (Principe et al., 2017).  Cancer cells, during their 

transformation, get resistant to TGF-β-induced growth arrest, by their acquired mutations 

(Hao et al., 2019). However, while TGF-β and ERK appear to diverge with respect to the 

cell cycle arrest, ERK still drives TGFβ-induced EMT (Principe et al., 2017). TGF-β 

receptors directly phosphorylate ShcA on serine and tyrosine to induce its complex 

formation with Grb2/Sos (Lee et al., 2007). The resulting complex converts Ras into its 

active GTP-bound form, ultimately leading to the sequential activation of c-Raf, MEK and 

ERK1/2 (Lee et al., 2007). 

The data suggests a positive regulation chain reaction between JUN, CD44 and TGFBR2, 

primarily through the activation of ERK pathway (fig4.), which is a shared effect in all 

three nodes. The influential nodes and their suggested interactions will be used as a 

reference for the rest of the results. This reference will be used to verify their possible 

effect/linkage to CL via associations to its genetic signature, while trying to interpret their 

possible mechanism of action. 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Serine/threonine_protein_kinase
https://en.wikipedia.org/wiki/Serine/threonine_protein_kinase
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4.3 Disease areas covered in the drug lists 

 

Figure 6. A) The grouping of the CM FDA approved compound list, consisting of 38 entries. B) The grouping 

of the Autodock Vina compound list of 203 FDA approved drugs. 

 

After gaining more theoretical understanding, the upregulated signature of CL was 

analyzed in Connectivity Map (CM) query.io tool to determine a list of compounds able to 

reverse it. In addition, a structural analysis was conducted for ANPEP protein to 
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determine compounds able to physically interact and inhibit its action. ANPEP is 

associated with metastasis on a broader level, as it is found to be overexpressed in a 

variety of cancers, while the CM analysis will provide more specific results associated 

with the metastatic ability and phenotype of CL. The CM and Vina compound lists of FDA 

approved molecules were grouped based on their respective disease area. Both lists 

show that the majority of them are found in the common groups, infectious diseases, 

psychiatry, endocrinology, oncology and gastroenterology (fig6.). From the CM analysis, 

a drug list specific to the MCF7 cell line was isolated, as it is taken from the epithelial cells 

of breast tissue with metastatic adenocarcinoma and is the most widely used line in breast 

cancer (Lee et al., 2015). Dermatology and ophthalmology refer to compounds for 

external application, so they were excluded from further analysis. Furthermore, oncology 

refers to compounds already used as cancer treatments, and although they may be 

potential soft repurposing candidates, their mechanism of action is already characterized. 

Neurology 

The psychiatry/neurology disease area is known to be associated with oncology, as both 

cancer and neurodegenerative disorders are attributed to dysregulated protein kinase 

signaling (Roskoski, 2019). JNKs, previously referred for their role in JUN regulation, are 

also found to be overexpressed in patients with Alzheimer’s disease. More specifically, 

JNK3 is correlated with the rate of cognitive decline, as found overexpressed and 

activated in brain tissue (Ramon Yarza, 2016). Moreover, the gene ANPEP was found to 

be overexpressed in Parkinson’s disease (PD) cases compared to control subjects 

(Lowes et al., 2020). Interestingly, ANPEP levels were also significantly elevated in 

prodromal individuals compared with healthy control subjects (Lowes et al., 2020). 

Elevated ANPEP expression is a characteristic feature of inflammation and has been 

detected in neurodegenerative conditions. Decreasing its function has been explored as 

a potential treatment for reducing inflammation (Lowes et al., 2020). 

 

Infectious diseases 

Infectious diseases refer to compounds like antibiotics. There is evidence regarding their 

applications in cancer, showing anti-proliferative and pro-apoptotic capabilities.  

Anticancer antibiotics are able to inhibit the proliferation of cancer cells by killing them in 

all stages of proliferation, even cells in G0 stage, which are often omitted by conventional 

anticancer drugs (Gao et al., 2020).  Furthermore, anticancer antibiotics were shown to 

promote apoptosis by targeting the pro survival B cell lymphoma-2 (Bcl-2), apoptotic pro-

Bcl-2-associated x (Bax), caspase-3/8/9 and P53 (Gao et al., 2020). Beberok et al. (2018) 

reported that ciprofloxacin inhibition of the Bax/Bcl-2-dependent pathway induces 

apoptosis in human TNBC MDA-MB-231 cells, by the loss of the mitochondrial 

transmembrane potential. Moreover, combination of the antibiotics metformin and 

salinomycin was shown to inhibit EMT induced cell migration by blocking the tumour 
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growth factor (TGF), in non-small cell lung cancer (NSCLC) cell lines (Sánchez-Tilló et 

al., 2014). 

 

Endocrinology 

TNBC is a subtype of breast cancer known not to be influenced by estrogen or 

progesterone hormones. Consequently, traditional endocrine therapies targeting these 

hormones are not effective in treating TNBC. However, there is growing interest in an 

alternative receptor known as androgen receptors (AR) that could potentially serve as a 

target for therapeutic interventions (Lacopetta et al., 2012). Although primarily associated 

with prostate cancer, androgen receptors are also found in breast cancer cells, including 

TNBC. Ongoing clinical trials have provided evidence suggesting that patients with AR-

positive luminal-type (LAR) TNBC may derive benefits from anti-androgen drugs 

commonly used in the treatment of prostate cancer (Lacopetta et al., 2012). These 

findings have sparked interest in exploring the potential of targeting androgen receptors 

as a viable therapeutic strategy for TNBC patients who do not respond to traditional 

endocrine therapies. 

 

Gastroenterology 

The efficiency of most breast cancer treatments is usually impaired by limitations like 

cytotoxicity and the emergence of drug resistance. For example, invasiveness and 

chemoresistance are conferred by a common feature of tumour cells, the surrounding 

acidic environment. Proton pump inhibitors (PPIs) function by blocking the secretion of 

gastric acid through the inhibition of the H+/K+-ATPase enzyme in parietal cells. They are 

widely used as drugs of choice for the treatment of acid-related conditions, like the 

gastroesophageal reflux disease (GERD) (Joo et al., 2019). PPI examples like 

lansoprazole, omeprazole, and Pantoprazole were shown to inhibit the growth of MDA-

MB-231, MCF7, and T47D breast cancer cells, through apoptosis induction (Ihraiz et al., 

2020). More specifically, in MDA-MB-231 cells, PPIs treatment also significantly inhibited 

cell migration (Ihraiz et al., 2020). 
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4.4 Evaluation and selection of the shared drugs 

among the lists 

 
Figure 7. The genes targeted by Pantoprazole and Olanzapine were added to the CL genetic signature 

network to determine possible associations. 

 

CM analysis generated a list of 38 compounds taking into account the summary of six 

different cell lines. The procedure was repeated considering only the cell line MCF7, 

which is widely used in breast cancer research, showing a total of 66 potential 

compounds. The docking analysis of ANPEP generated a list of 204 compounds, setting 

a threshold of the affinity score of the known FDA-approved ANPEP-inhibitor compound 

Ezetimibe, showing 30 heavy atoms and binding affinity of -9.713. The drugs appearing 

in all three lists were identified to further narrow down to the most promising repurposing 

candidates. The common compounds were identified to be GOSERELIN, LAPATINIB, 

PANTOPRAZOLE, and OLANZAPINE. The first two of them are antineoplastic and they 

are already used in breast cancer, showing no soft-repurposing value. More specifically, 

Lapatinib is an antineoplastic medication used in the treatment of advanced or metastatic 

HER-positive breast cancer. Goserelin, on the other hand, is a synthetic analog of 

luteinizing hormone-releasing hormone, primarily employed in the management of breast 

cancer and prostate cancer. 
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Pantoprazole 

As a proton pump inhibitor (PPI), Pantoprazole functions by blocking the secretion of 

gastric acid through the inhibition of the H+/K+-ATPase enzyme in parietal cells. The 

network in fig7 shows a connection between the Pantoprazole target ATP4A and the CL 

gene PTGS2.  ATP4A and ATP4B subunits of the gastric proton pump were detected in 

the larynx of patients with laryngeal squamous cell carcinoma (McCormick et al., 2021). 

McCormick et al. (2021) research supports the contribution of laryngeal-expressed H+/K+ 

ATPase to local inflammation and carcinogenesis. More specifically, increased 

expression of inflammation and laryngeal cancer-related genes, such as IL1B, PTGS2, 

and TNFA, was shown because of the ectopic expression of the proton pump (McCormick 

et al., 2021). When gastric H+/K+ ATPase was expressed in hypopharyngeal cells, it led 

to mitochondrial damage through cristae degradation. However, no evidence of 

mitochondrial damage or alterations in gene expression was observed when only a single 

subunit was expressed, suggesting that the secretion of acid by functional proton pumps 

in the upper airway mucosa could induce local cellular and molecular changes associated 

with inflammation and cancer (McCormick et al., 2021). 

 

Several studies have suggested that Pantoprazole (PPZ) has the potential to inhibit the 

progression of TNBC by inducing cell cycle arrest and apoptosis, as reported by Ihraiz et 

al. (2020) and Goh et al. (2014). Yeo et al (2008) hypothesized that PPIs are possible to 

induce apoptosis in gastric cancer (GC) cells, as pre-treatment with PPI resulted in total 

inhibition of ERK1/2. Later, Feng et al. (2016) showed that Pantoprazole was able to 

decrease the relative expression levels of stem cell markers, including CD44, known to 

possess a crucial role in cancer initiation, progression, recurrence, and resistance to 

chemotherapy. Cancer stem cells (CSCs) have the ability to self-renew and differentiate 

into multiple cell types, thus contributing to tumour development. Traditional 

chemotherapies primarily target the bulk of cancer cells, leaving behind CSCs that can 

lead to tumour relapse (Gupta et al., 2009). Feng et al. (2016) study indicates that the 

treatment with PPZ enhances the chemosensitivity of cells, potentially targeting CSCs 

and reducing their sphere-forming ability and expression of stem cell markers. In the 

context of CSCs, it is important to highlight the involvement of two key signaling pathways: 

epithelial-to-mesenchymal transition (EMT) and Wnt/β-catenin signaling. These pathways 

are known to contribute to the stemness of CSCs. EMT, in particular, plays a significant 

role in promoting CSC formation in various solid tumours. It is associated with the 

upregulation of stem cell-related transcription factors and an increase in tumourigenic 

potential (Lichner et al., 2015). 

 

It was observed that the treatment of spheres with PPZ resulted in the inhibition of EMT 

progression and the suppression of β-catenin activation to some extent (Feng et al., 

2016). These findings indicate that PPZ exerts its antitumour effects by targeting CSCs 
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through the EMT/β-catenin signaling pathways. This suggests that PPZ may disrupt the 

mechanisms that maintain CSC stemness and contribute to tumour progression. 

Furthermore, Pommier et al. (2020) reported that the activation of the RAS/MAPK 

pathway is a recurring feature in CL breast cancers, and certain subsets of these cancers 

that possess stem cell characteristics exhibit exceptionally high RAS signaling. This 

highlights the importance of the RAS pathway in claudin-low breast cancer and its 

association with stem cell features. Understanding the intricate interplay between 

signaling pathways, such as EMT, Wnt/β-catenin, and RAS/MAPK, in regulating CSCs is 

crucial for developing targeted therapies that can effectively eliminate CSCs and improve 

patient outcomes (Feng et al., 2016). 

 

Olanzapine 

Olanzapine is an antipsychotic drug that acts as an antagonist for various neuronal 

receptors like the dopamine (DRD) and serotonin receptors (5-HT). Downregulation of 

DRD2 and 5-HT2A receptor activities were found beneficial in cancer chemotherapeutics. 

In addition, inhibition of DRD4 has been shown to reduce cellular migration in breast 

cancer cells, although the mechanisms remain unclear (Rosas-Cruz et al., 2022). 

Olanzapine targets two receptors that appear to be associated with the CL network, 

CHRM1 and DRD2, which interact with JUN and SNCA, respectively (fig7.). The CHRM1 

receptor is a G protein-coupled receptor that activates intracellular signaling pathways 

when bound by acetylcholine (Calaf et al., 2022). The downstream signaling pathways of 

CHRM1 receptors are diverse and include the MAPK/ERK signaling pathway, which is 

responsible for JUN activation. Therefore, it is possible that Olanzapine-mediated 

regulation of CHRM1 expression could indirectly affect the activity of JUN and the 

MAPK/ERK signaling pathway (Calaf et al., 2022). 

 

Regarding the interaction between DRD2 and SNCA, there is currently no clear 

information available. In an experiment, conducted by Filatova et al. (2017), targeting the 

GABA alpha receptors of neuroblastoma IMR-32 cells with Olanzapine and the anxiolytic 

peptide selank, showed that the mRNA of SNCA was found significantly increased. On 

the other hand, the most significant decrease in expression was observed in the genes 

CSF2 and JUNB (Filatova et al., 2017). More specifically, the observed decrease was 6.3 

and 6.7 times after incubation with the same compounds (Filatova et al., 2017). JUNB is 

an AP-1 family member, found to have both an antagonistic and compensatory relation 

with c-Jun (Novoszel et al., 2021). Finch et al. (2002) showed that by decreasing the 

expression of JUNB in malignant mouse keratinocytes, the activity of AP-1 was increased, 

resulting in a positive effect on tumour cell proliferation. 
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4.5 Gene Ontologies of the genes targeted by the drug lists 
 

 
 
Figure 8. Functional annotation clustering of all the genes targeted by the compounds of the three different 

drug lists MCF7/Vina/CM. The analysis showed that ontology terms regarding Receptors and ion channels 

are shared among cluster 2 of MCF7, cluster 4 of Vina, and cluster 3 of CM. The most specific term 

appeared is the GABA alpha-receptor activity. 

 

 

The three compound lists were processed to determine all genes that are targeted by the 

compounds. Then, DAVID functional annotation clustering was employed to determine 

the gene ontology terms of those genes. The first cluster of all three analyses is 

associated with kinases and protein phosphorylation, known to be key procedures 

targeted in cancer, and cardiovascular, inflammatory, and neurodegenerative disorders. 

The second most common cluster among them is related to transmembrane proteins 

(receptors) that allow ion transportation, in response to ligand binding. The common 

clusters in the gene ontology analysis show GABA alpha receptor (GABAAR) activity as 

the most specific term, enriched in all sets of genes (fig8.). The fact that the term also 

appears in the list of ANPEP suggests that affecting GABAAR activity may be of broader 

interest for cancer treatment, than just reversing CL signature. 
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4.6 GABA receptor and its association with ERK pathway 

The MAPK pathway is implicated as a negative modulator of GABAAR function, and it 

may have an impact on GABA-gated currents via phosphorylation of the alpha subunit 

(Bell-horner et al., 2006). The GABAAR is a ligand-gated ion channel whose activity and 

function can be controlled either directly by ligand binding or indirectly by the 

phosphorylation of certain subunits that make up the receptor ́s pentamer. The alpha 

subunit's function as a pertinent target of signalling kinases is largely unclear, even 

though the majority of studies on phosphorylation have concentrated on either beta or 

gamma subunits. 

When GABA molecules or similar substances bind to the receptor and trigger its 

activation, the channel briefly opens, enabling the movement of ions, like chloride ions 

(Cl−), from outside the cell to its interior (Bhattacharya et al., 2021). Benzodiazepines, 

like diazepam, are positive allosteric modulators of the receptors and act to enhance 

movement of chloride anions when GABA is bound to the receptor (Bhattacharya et al., 

2021). GABA, a neurotransmitter, exhibits widespread distribution in various tissues 

throughout the body. Expression of GABAAR subunits, which form the GABA receptor, 

has been observed in diverse tissues including lung, pancreas, kidney, intestine, prostate, 

testis, ovary, liver, thyroid, and skin (Bhattacharya et al., 2021). Previous studies have 

emphasized the significance of GABA signaling in cellular processes such as 

proliferation, migration, and differentiation (Leonzino et al, 2016). Notably, GABA and 

GABAAR may play crucial roles in the immune system and stem cell development, which 

could be linked to their importance in cancer biology. More specifically, GABA signaling, 

whether through autocrine or paracrine mechanisms, exerts an inhibitory effect on the 

proliferation of embryonic stem (ES) cells and peripheral neural crest stem (NCS) cells. 

Ion channels, including GABAAR, play crucial roles in regulating various physiological 

functions such as cellular excitability, ion homeostasis, and cell migration (Bhattacharya 

et al., 2021). Dysfunctions in ion channels are associated with disorders known as 

channelopathies. In the context of cancer, ion channels may contribute to invasive tumour 

metastasis and the development and progression of tumours (Bhattacharya et al., 2021). 

Rapidly proliferating cancer cells often exhibit a depolarized membrane potential 

compared to non-proliferating cells, which can drive cell proliferation (Yang & 

Brackenbury, 2013). GABAARs, like other ion channels, may contribute to the 

development and maintenance of cancers. Genes encoding subunits of GABAAR have 

been implicated in various types of cancers, including those of the central nervous system 

(gliomas, medulloblastoma, and neuroblastoma) as well as systemic cancers affecting 

the lung, breast, pancreas, liver, colon, prostate, thyroid, ovaries, and skin (Bhattacharya 

et al., 2021). 
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GABAAR in cancer 

Enhanced expression of the GABRA3 gene, responsible for the α-3 subunit expression 

of GABAAR, plays a crucial role in breast cancer, contributing to the migration and 

invasive characteristics of cancer cells (Bhattacharya et al., 2021). GABAARs containing 

the α-3 subunit activate Akt, a protein involved in regulating cell proliferation and migration 

in cancer cells (Bhattacharya et al., 2021). This increased activation of Akt may explain 

the heightened metastatic potential observed in breast cancer cells with elevated 

GABRA3 expression. Moreover, the a-5 subunit was also shown to contribute to cancer 

growth, as knockdown of GABRA5 reduced the growth of patient-derived 

medulloblastoma cells (Bhattacharya et al., 2021). In breast cancer, besides GABRA3 

and GABRA5, there is increased expression of the GABAAR subunit pi, encoded by the 

GABRP gene. This enhanced expression of GABRP is specifically observed in basal-like 

breast cancer (BLB-C subtype) (Sizemore et al., 2014). It is associated with metastases 

to the brain and correlates with a poorer prognosis for patients. Mechanistically, GABAAR 

containing the pi subunit seems to play a role in maintaining the expression of basal-like 

cytokeratins, phosphorylation and activation of ERK1/2 (Sizemore et al., 2014). In 

addition, Juvale et al. (2021) identified the overexpression of γ-aminobutyric acid receptor 

subunit π (GABRP) in circulating breast cancer cells. Particularly, patients with metastatic 

breast cancer were shown to express it eight times higher than in patients with no 

evidence of metastasis of stages II-IV (Juvale et al., 2021). When GABRP was 

overexpressed, there was a marked increase in cell migration and invasion, as well as an 

upregulation of MMP expression due to the activation of the ERK pathway. Moreover, 

Sung et al. (2017) observed that GABRP knockdown diminished the migration and 

invasion of SK-OV-3 cells and reduced ERK activation. 

Kleinerman et al. (1984) first showed perturbing tumour formation and/or cancer 

proliferation by disrupting GABAergic signaling.  In the 1984 study, a retrospective 

analysis of breast cancer patients and benzodiazepine usage (specifically diazepam) was 

conducted. The study revealed that the use of diazepam correlated with reduced primary 

tumour size and a lower incidence of lymph node involvement. One possible explanation 

is that patients who took diazepam experienced better outcomes due to the use of an 

anxiolytic agent that helped them cope with the anxiety associated with their condition 

(Bhattacharya et al., 2021). Alternatively, it is possible that the BC tumour cells or the 

cells within the tumour microenvironment were responsive to diazepam in a way that 

contributed to an anti-cancer effect. A series of benzodiazepine analogs, that bind to 

GABAAR, containing the GABRA5 subunit, were demonstrated to inhibit the viability of 

medulloblastoma cells in culture (Jonas et al., 2016). More importantly, Jonas et al. (2016) 

stated that “the effect in vivo was more significant and specific than standard-of-care 

chemotherapeutic”. In a follow up study, single-cell electrophysiology was conducted to 

determine the etiology of the impairment of medulloblastoma cells by benzodiazepines. 
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The benzodiazepines analogs tested, including diazepam, were found to cause 

depolarization of the mitochondrial membrane by inducing chloride anion efflux to the 

cells, resulting in mitochondrial fission (Kallay et al., 2019). In conclusion, GABAAR may 

indeed contribute to cancer development, as it is found to be overexpressed in many 

cancers. However, the significant chloride anion efflux resulting from benzodiazepine 

binding to GABAAR elicits a stress response (Kallay et al., 2019). As a result, it triggers 

an apoptotic reaction through the intrinsic (mitochondrial) pathway, which entails the 

activation of the pro-apoptotic protein BAD, known as the BCL2 associated agonist of 

death (Kallay et al., 2019) 

 

4.7 ANPEP and its structural analysis 
ANPEP functions as a zinc-dependent metalloproteinase, facilitating the breakdown of 

peptide bonds located at the N-terminal end of neutral residues. The enzymatic process 

of ANPEP is delineated as follows: Glu406, His383, and His387 bind with the Zn2+ ion, 

converting a water molecule into a catalyst; subsequently, a proton is transferred to 

Glu384, and ultimately, this proton is transferred to the nitrogen group of the protein (Qu 

et al., 2015). A tumour-inducing (carcinogenic) function of ANPEP that lies beyond its 

aminopeptidase activity, is its participation in tumour cell motility and adhesion (Datar et 

al., 2004). Stable expression of ANPEP on tumour cell surfaces greatly increases their 

migratory capacity (Mina-Osorio, 2008). Although the specificity for ANPEP is not well 

studied, knocking it out or using anti-ANPEP antibodies was shown to block tumour 

migration (Mina-Osorio, 2008). In Hepatocellular carcinoma (HCC), Zhai et al. (2020) 

showed that ANPEP phosphorylates the Branched chain ketoacid dehydrogenase kinase 

(BCKDK), which interacts and activates ERK1/2, suggesting that ANPEP may act as an 

indirect positive regulator of ERK pathway. The mechanisms whereby ANPEP mediates 

tumour migration have been partially linked to its aminopeptidase activity, as it was shown 

that it degrades extracellular matrix proteins. This suggests that neutral ANPEP plays a 

crucial role in matrix degradation and invasion by tumour cells and that its inhibitors may 

be useful for preventing the spread of malignant cells (Datar et al., 2004). 
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Figure 9. The panels show the active site of ANPEP protein (green), containing a Zinc ion (grey), 

complexed with different conformations of two shared drugs and an already characterised ligand. A) Shows 

the three different conformations of Pantoprazole in the active site of ANPEP. B) Shows three different 

conformations of Olanzapine to be tested with MD simulations. C) Finally, is the experimentally 

characterised complex of ANPEP with Bestatin (Blue). 

 

The starting poses of Pantoprazole and Olanzapine, for the molecular dynamics 

simulations were selected from the Autodock Vina results (fig9A-B.). In addition, Bestatin 

is used as reference to compare the interactions of the ligands to the protein (fig9C.). 

Bestatin was found to form hydrogen bonds with Glu326, Gln150 and Tyr414, pi-pi 

interaction with Phe409, and metal interaction with the zinc ion (fig10.).  
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Figure 10. Shows the 2D representation, generated by the PoseView, of the interaction profile between the 

ligand Bestatin and the ANPEP protein. 

 

The interaction profiles between the different conformations of the candidate ligands 

shown in fig11 are described below: Panto02 forms pi-pi interactions with His325 and 

Phe409, and a hydrogen bond with Gln148. Panto10 forms three hydrogen bonds with 

Tyr414, Gln148, and Gln150. Panto15 forms a hydrogen bond with Ala290, a pi-pi 

interaction with Tyr414. The Pantoprazole conformations show to make pi-pi interactions, 

hydrogen bond, hydrophobic contacts, and metal interaction with the zinc ion. The Olan20 

and Olan13 conformations don’t form a metal interaction with the zinc ion. Olan13 forms 

a hydrogen bond with Ala290, pi-pi interactions with Tyr414 and His325, and finally an 

ionic interaction with Glu292. Olan20 forms a hydrogen bond with Gln150 and a pi-pi 

interaction with Phe409. All three conformations show hydrophobic contacts, with only 

Olan01 interacting with the zinc ion. 

 

 

Bestatin 
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Figure 11. Graphical 2D representations of the interaction profile between, Pantoprazole conformations 

(left) and Olanzapine conformations (right), with the ANPEP protein. 
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Table 2. shows the respective residues that each ligand interacts with. 

 

The 3D structure of the ANPEP protein represents its active and closed conformation. 

Bestatin is an already characterised inhibitor of the closed conformation. The rest of 

ligand conformations, with their interacting residues except of hydrophobic interactions, 

are shown in table2. Panto10 shows 60% percent residue interaction similarity with 

Bestatin, while Olan20 shows 40%. Apart from the active form, it has also been suggested 

that the inactive open conformation can also play a functional role by binding to the 

exposed N terminus of proteins that wouldn’t be accessible to ANPEP in the closed 

conformation. The potential interaction of ANPEP’s inactive form with extracellular matrix 

proteins and cell-surface proteins may confer unknown functions around cell motility and 

adhesion (Chen et al., 2012). This was tested by Chen et al. (2012) showing the 

interaction between ANPEP and TNF, and the possible inhibition of ANPEP by using 

ligands to compete with the exposed N terminus of TNF. In this concept, the distinct 

residue interactions of Olanzapine and Pantoprazole with ANPEP may unveil a different 

mode of inhibition. 

 

 

 

 

 

Zn905 His325 Gln148 Phe409 Tyr414 Gln150 Ala290 Glu292 Gln326

Bestatin X X X X X

Panto02 X X X X

Panto10 X X X X

Panto15 X X X

Olan01 X

Olan13 X X X X

Olan20 X X

Interacting Residue
L
ig

a
n

d
s



40 
 

ANALYSIS OF MOLECECULAR DYNAMICS 

Figure 12. Three graphs generated from the molecular dynamics simulation of ANPEP-Bestatin complex 

for 50ns. Namely, (left) the Root-mean-square deviation (RMSD), (right) the root-mean-square fluctuation 

(RMSF), and (centre) the radius of gyration (rGyr). 
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Figure 13. The root-mean-square fluctuation (RMSF) measures the average deviation of the protein over 

50 ns time from the reference position. 
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Figure 14. The radius of gyration (rGyr) graphs of the complexes for a total of 50ns. 
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Figure 15. Shows the assessment of 50 ns MD simulation trajectories for the ANPEP-Pantoprazole 

complexes by superposing various orientation of ligand attained during MD simulation, and the Root-mean-

square deviation (RMSD) graphs of atomic positions for a total of 50ns. The spheres represent the zinc ion. 
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Figure 16. Shows the assessment of 50 ns MD simulation trajectories for the ANPEP-Olanzapine 

complexes by superposing various orientation of ligand attained during MD simulation, and the Root-mean-

square deviation (RMSD) graphs of atomic positions for a total of 50ns. The spheres represent the zinc ion. 

 

The MD simulation of the complexes was performed to evaluate their stability and 

interactions over time. The RMSD and RMSF are common measures of biomolecules’ 

spatial variations in a MD simulation. RMSD describes the molecule’s overall discrepancy 

with respect to a reference conformation, while RMSF measures the displacement of a 

particular atom or Molecular Diversity group of atoms relative to the reference structure.  
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The poses attained by the ligand at an interval of 10 ns timeframe of the 50 ns simulation 

for the docked complex of ANPEP-Pantoprazole are shown in fig15. Fig16 shows the 

same for the docked complex of ANPEP-Olanzapine. The RMSD plots of all complexes 

showed that the protein and ligand structures were stable throughout the simulation, with 

values below 3 Å for the protein. The average RMSD values of olan1, olan13, panto2 

panto10, panto15 and Bestatin complexes were lower than <2 Å suggesting that the 

complexes are stable (fig15.) (fig16.). It is important to highlight the need for longer 

simulations, as the poses of conformations from both Olanzapine and Pantoprazole show 

deviation from each other, in the binding pocket.  The RMSF plots revealed that both 

ligands induced similar fluctuations in the protein backbone, with higher values observed 

for some residues in the active site (fig13.).  

The radius of gyration (rGyr) is another parameter that reflects the compactness of a 

protein structure. The rGyr plots of both complexes showed that the protein–ligand 

systems maintained a similar degree of compactness throughout the simulation, 

indicating that no major conformational changes occurred upon ligand binding. These 

findings are consistent with the docking results, which showed that Olanzapine and 

Pantoprazole have similar binding modes and energies with ANPEP. The rGyr offers 

insights into the compactness of system’s structure. It was found to be lower than 2.9 Å 

in ANPEP-Bestatin (fig12.). The other complexes have a slightly higher maximum rGyr 

around 2.92 Å, except panto15 which had the highest (fig14.), suggesting a broader 

distribution of the ligand within the active site of ANPEP and indicating potentially more 

effective engagement and interactions with the active site residues. These results suggest 

that both Olanzapine and Pantoprazole bind to ANPEP with comparable affinity and 

flexibility, and that they share some key interactions with the active site residues.  
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DISCUSSION 
ERK pathway 

The analysis of the upregulated genetic signature of claudin low showed that the most 

influential nodes were TGFBR2, JUN and CD44. These genes participate in a positive 

feedback loop between powered primarily by the activation of the ERK pathway whose 

downstream events favor the continuous expression of the genes. Furthermore, the gene 

ontology terms of the genes targeted by the suggested compound lists were analyzed, 

indicating that the “GABA alpha receptor activity” term is shared among all the results. 

The GABAAR possesses phosphorylation sites for ERK in its alpha subunits, indicating 

a possible association with the ERK pathway. 

There is currently a lot of interest in finding ways to develop effective inhibitors for ERK1/2 

as a potential therapy for various cancers. Since Raf and MEK inhibitors have been found 

to be successful and the MAP kinase pathway follows a linear pathway (Ras-Raf-MEK-

ERK), it makes sense to target ERK, which is the terminal kinase of the pathway 

(Roskoski, 2019). Furthermore, cancers can become resistant to Raf and MEK inhibitors 

due to reactivation of the signaling module, making it necessary to target ERK as an 

additional approach to prevent acquired resistance and achieve a primary therapeutic 

response. Although ERK is a potential target for drug development, there has been slower 

progress in developing clinically effective inhibitors for it compared to Raf and MEK 

inhibitors (Roskoski, 2019). ERK has a highly conserved structure, making it difficult to 

directly target it specifically without affecting other kinases with similar structures (Roberts 

& Der, 2007; Roskoski, 2012). Finally, ERK is involved in a variety of cellular processes, 

including cell proliferation, differentiation, and survival, which makes it harder to target it 

without causing significant side effects (Roberts & Der, 2007; Roskoski, 2012). 

Inhibition of the π-subunit of GABAAR represents an alternative approach to work around 

this problem to reduce Claudin-low development, reducing ERK’s activation without 

directly targeting it. Another approach showed that tumour invasiveness and proliferation 

of CNS and other systemic malignancies can be reduced by boosting GABAergic 

signaling by using GABAAR positive allosteric modulators such as benzodiazepines 

(Bhattacharya et al., 2021). Additionally, increased activation of GABAAR is shown to can 

make cancer cells more susceptible to radiation, chemotherapeutic agents, and immune 

checkpoint inhibitors (Bhattacharya et al., 2021). A brain-penetrant anxiolytic that is 

therapeutically available and has the potential to treat cancer should be a welcome 

addition to the anti-cancer toolbox. As obvious as it seems that phosphorylation affects 

GABAAR allosteric modulation, the molecular mechanisms governing these activities are 

currently unknown. Moreover, it is still unknown whether phosphorylation affects 

modulator-induced alterations to channel gating or whether it promotes the binding of 

allosteric modulators to receptors. However, undoubtedly phosphorylation adds more 
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variety to how GABAARs and allosteric modulators interact (Nakamura et al., 2015). 

Finally, the potential association of GABAAR with the development and progression of 

CLBC should be further investigated. 

 

Drug categories 

The CM and MCF7 compound lists from Connectivity Map analysis (Supplementary 

Table1 & Table2) include compounds able to reverse the upregulated gene expression 

pattern associated with the claudin-low subtype, while the compounds of the structurally 

determined list of Autodock Vina (Supplementary Table1) have the potential to interact 

and inhibit the ANPEP protein. With further analysis of the suggested compound lists, 

most compounds (>50%) were found to fall in one of the four general disease areas 

(psychiatric, infectious, endocrinology, and gastroenterology). These areas may provide 

a starting point to identify more compounds able to combat CL and determine relevant 

mechanisms of action. 

Antipsychotic medications' great potential as neo-adjuvants and potential 

chemotherapeutics in single or multimodal treatment approaches is demonstrated by their 

capacity to modulate a variety of signaling pathways and multidrug resistance-conferring 

proteins that improve the efficacy of chemotherapeutic drugs with minimal side effects 

(Kamarudin & Parhar, 2019). Molecules that have been identified as GABAAR targets fall 

under the psychiatric category. For instance, benzodiazepines, like diazepam, have 

antiproliferative effects on breast cancer cells both in vitro and in vivo (Kamarudin & 

Parhar, 2019).  

The infectious disease category includes molecules like antibiotics having anti-

proliferative, anti-apoptotic, and anti-EMT effect. However, the resulting disturbance of 

intestine flora is a double-edged blade for the effective treatment of cancer. The area of 

endocrinology is an equally important category, since it employs hormones for the 

targeting of specific receptors of the autocrine system intercellular communication. 

Finally, the gastroenterology area, that also includes Pantoprazole and other drugs with 

similar proton pump inhibitory action, are proposed in literature for repurposing in breast 

cancer, as they can offer drug sensitivity by altering the pH of the stomach (Wang et al., 

2021). The stomach's acidic environment can impact the absorption and efficacy of 

certain medications (Wang et al., 2021). By reducing stomach acid production, PPIs can 

increase the bioavailability of some drugs, allowing for more efficient absorption and 

potentially enhancing their effectiveness. Drugs in these areas show most potential of 

showing an effect on CL subtype and its migratory capabilities. 
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Olanzapine and Pantoprazole 

ANPEP participates in tumour cell motility and is overexpressed in many cancers 

including colorectal, pancreatic, and liver cancer (Mina-osorio, 2008). In addition, claudin-

low breast cancer is mostly characterized by its migratory capabilities. Olanzapine and 

Pantoprazole are both found to bind/inhibit ANPEP, while also reversing the genetic 

signature of CL. This overlap suggests that these drugs could be relevant in reducing the 

migratory effect of claudin-low breast cancer. 

Olanzapine, an atypical benzodiazepine, was found to have weak affinity with the 

GABAAR, but showed some contradictory expression effects, as it positively regulates 

SNCA, and might increase the activity of AP-1 complex, in neuroblastoma cells (Filatova 

et al., 2017) (Finch et al., 2002). However, benzodiazepines act as allosteric modulators 

to GABAARs, enhancing the effect of GABA (Bhattacharya et al., 2021) and eliciting a 

chloride efflux, able to induce apoptosis of cells in melanoma and medulloblastoma, by 

depolarizing their mitochondria (Bhattacharya et al., 2021). They mediate a significant 

regression in tumour size, even at a concentration equivalent to what an adult would take 

as an anxiolytic. Nevertheless, the effect of Olanzapine on the viability of TNBC cells 

hasn't been demonstrated yet, requiring more physiological experiments to test their 

response in Olanzapine treatment. 

Pantoprazole has already been characterized as a potential candidate drug for TNBC, 

without referring to any association with GABAAR. Even though PPZ is not a 

benzodiazepine compound, docking analysis should be conducted to determine any 

allosteric modulatory capabilities in GABAAR. Feng et al. (2016) proposed that the use 

of PPZ treatment shows potential in fighting against CSCs and preventing tumour 

recurrence. Moreover, research conducted by Andang et al. (2008) demonstrated that 

GABAAR signaling induces the accumulation of stem cells in the S phase, resulting in a 

significant decrease in cell proliferation. However, the broader implications of GABA and 

GABAAR in cellular signaling outside of synapses have not been extensively explored. 

Therefore, it is crucial to further investigate the mechanisms through which PPZ affects 

CSCs and determine potential direct or indirect connections with GABAAR signaling. 

Such investigations would contribute to the development of more efficient therapies 

targeting these cells. 
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CONCLUSION 
The suggested molecules, Pantoprazole, and Olanzapine may be candidate repurposed 

drugs. However, it is important to note that structural interaction alone does not guarantee 

therapeutic efficacy, and further experimental validation is required to confirm the 

effectiveness of the identified drugs. Conducting in vitro experiments on cancer cells 

derived from the claudin-low subtype can help confirm the potential effectiveness of the 

prioritized drugs in targeting the specific upregulated genes. Overall, the drug lists and 

the disease-area summary provide complementary information that can help guide further 

experimental investigation into potential therapeutic candidates for the CL subtype. 
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SUPPLMENTARY INFO 
Table 1. A list of the FDA approved drugs ranked based on their affinity to ANPEP, including the 

specific model of the compound and the heavy atoms. 

drug heavyAtoms model affinity 

BACITRACIN 100 2_01 -23.99 

GRAMICIDIN 82 3_01 -23.08 

HISTRELIN 96 4_01 -21.5 

EVEROLIMUS 68 3_01 -21.11 

BREMELANOTIDE 74 2_01 -20.04 

GOSERELIN 91 4_01 -20.04 

LANREOTIDE 77 1_01 -19.15 

GANIRELIX 112 3_01 -18.77 

PASIREOTIDE 77 2_01 -18.64 

OCTREOTIDE 71 4_01 -18.16 

LEUPROLIDE 87 1_01 -18.11 

PIMECROLIMUS 56 4_01 -17.51 

OXYTOCIN 69 3_01 -17.2 

AFAMELANOTIDE 118 4_01 -17.14 

ICATIBANT 92 3_01 -16.97 

CANDESARTAN_CILEXETIL 45 3_01 -15.46 

ISAVUCONAZONIUM 51 4_01 -15.38 

LAPATINIB 40 4_01 -15.23 

OLMESARTAN_MEDOXOMIL 41 3_01 -15.01 

EVEROLIMUS 68 1_30 -14.71 

IMATINIB 37 1_01 -14.65 

AZITHROMYCIN 52 1_01 -14.64 

NETARSUDIL 34 3_01 -14.37 

LEDIPASVIR 65 4_01 -14.33 

ARGATROBAN 35 3_01 -14.24 

IRBESARTAN 32 2_01 -14.22 

FEDRATINIB 37 4_01 -14.13 

NINTEDANIB 40 1_01 -14 

BEROTRALSTAT 41 1_01 -13.91 

PALIPERIDONE 31 3_01 -13.89 

NERATINIB 40 4_01 -13.72 

PALIPERIDONE_PALMITATE 48 2_01 -13.64 

GRAMICIDIN 82 4_29 -13.64 

AFATINIB 34 2_01 -13.56 

OSIMERTINIB 37 2_01 -13.51 

PAZOPANIB 31 1_01 -13.49 
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AXITINIB 28 2_01 -13.47 

ILOPERIDONE 31 3_01 -13.4 

AZELASTINE 27 1_01 -13.38 

GLIPIZIDE 31 3_01 -13.35 

NILOTINIB 39 2_01 -13.22 

BOSUTINIB 36 3_01 -13.16 

FEXOFENADINE 37 4_01 -13.14 

ALISKIREN 39 4_01 -13.14 

IVERMECTIN 62 4_01 -13.04 

ABEMACICLIB 37 3_01 -13.01 

KETOCONAZOLE 36 4_01 -12.95 

OLAPARIB 32 1_01 -12.92 

CARFILZOMIB 52 4_01 -12.92 

ACALABRUTINIB 35 1_01 -12.91 

CABOZANTINIB 37 3_01 -12.9 

OLMESARTAN 33 2_01 -12.84 

ABIRATERONE 26 1_01 -12.8 

PEXIDARTINIB 29 1_01 -12.8 

ITRACONAZOLE 49 2_01 -12.74 

NETUPITANT 41 1_01 -12.73 

GILTERITINIB 40 1_01 -12.68 

BRIGATINIB 40 3_01 -12.54 

IRINOTECAN 43 3_01 -12.49 

GLASDEGIB 28 3_01 -12.47 

LIFITEGRAST 41 4_01 -12.46 

ISAVUCONAZOLE 31 3_01 -12.45 

PALBOCICLIB 33 2_01 -12.45 

CABERGOLINE 33 3_01 -12.37 

PIMAVANSERIN 31 1_01 -12.36 

LENVATINIB 30 4_01 -12.33 

IVABRADINE 34 2_01 -12.32 

BLEOMYCIN 96 1_01 -12.29 

ALFENTANIL 30 1_01 -12.28 

NICARDIPINE 35 1_01 -12.26 

PARICALCITOL 30 3_01 -12.24 

IBUTILIDE 26 1_01 -12.19 

BUSPIRONE 28 4_01 -12.18 

AVANAFIL 34 1_01 -12.1 

FOSTAMATINIB 40 2_01 -12.1 

CANDESARTAN_CILEXETIL 45 3_27 -12.1 

NORELGESTROMIN 24 4_01 -12.09 
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PANOBINOSTAT 26 2_01 -12.08 

LASMIDITAN 27 4_01 -12.08 

AMIODARONE 31 2_01 -12.08 

ACRIVASTINE 26 1_01 -12.04 

GLYBURIDE 33 4_01 -11.98 

OXICONAZOLE 26 4_01 -11.95 

NEFAZODONE 33 1_01 -11.94 

CALCITRIOL 30 2_01 -11.92 

PIOGLITAZONE 25 2_01 -11.89 

GLIMEPIRIDE 34 1_01 -11.89 

IVOSIDENIB 41 3_01 -11.89 

OXACILLIN 28 3_01 -11.81 

ISRADIPINE 27 1_01 -11.8 

IXABEPILONE 35 3_01 -11.8 

BARICITINIB 26 4_01 -11.79 

LAROTRECTINIB 31 4_01 -11.78 

LABETALOL 24 2_01 -11.77 

PENTAMIDINE 25 3_01 -11.74 

OXYBUTYNIN 26 1_01 -11.74 

ALMOTRIPTAN 23 1_01 -11.71 

IDARUBICIN 36 2_01 -11.64 

FAMOTIDINE 20 1_01 -11.59 

PERAMPANEL 27 2_01 -11.59 

OLOPATADINE 25 3_01 -11.56 

GENTAMICIN 33 4_01 -11.55 

GEFITINIB 31 1_01 -11.49 

PALONOSETRON 22 4_01 -11.47 

NIRAPARIB 24 2_01 -11.47 

AVATROMBOPAG 42 3_01 -11.44 

INDAPAMIDE 24 3_01 -11.41 

IBRUTINIB 33 3_01 -11.36 

NORGESTIMATE 27 1_01 -11.28 

IMATINIB 37 3_27 -11.26 

PIMOZIDE 34 1_01 -11.23 

ARIPIPRAZOLE 30 1_01 -11.21 

NILOTINIB 39 3_29 -11.19 

ONDANSETRON 22 3_01 -11.18 

BOSENTAN 39 3_01 -11.18 

PACLITAXEL 62 4_01 -11.16 

HYDROXYCHLOROQUINE 23 2_01 -11.14 

BREXPIPRAZOLE 31 2_01 -11.13 
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FLURAZEPAM 27 1_01 -11.12 

FORMOTEROL 25 3_01 -11.1 

CALCIFEDIOL 29 3_01 -11.1 

PAROXETINE 24 3_01 -11.08 

CARVEDILOL 30 1_01 -11.08 

IDELALISIB 31 3_01 -11.08 

PIROXICAM 23 3_01 -11.05 

OLMESARTAN_MEDOXOMIL 41 1_27 -11.05 

BAZEDOXIFENE 35 4_01 -11.04 

ACEBUTOLOL 24 2_01 -11.01 

ARFORMOTEROL 25 3_01 -11.01 

FLAVOXATE 29 2_01 -11 

ALPELISIB 30 4_01 -11 

AMITRIPTYLINE 21 2_01 -10.98 

LEMBOREXANT 30 2_01 -10.93 

BROMOCRIPTINE 43 1_01 -10.93 

BRINZOLAMIDE 23 2_01 -10.89 

ISOCARBOXAZID 17 3_01 -10.86 

PERPHENAZINE 27 4_01 -10.83 

AMISULPRIDE 25 3_01 -10.82 

PANCURONIUM 41 1_01 -10.82 

ALECTINIB 36 4_01 -10.78 

ALOSETRON 22 1_01 -10.77 

BUTENAFINE 24 3_01 -10.77 

BEPOTASTINE 27 3_01 -10.77 

BROMPHENIRAMINE 19 1_01 -10.75 

ALOGLIPTIN 25 2_01 -10.73 

CABAZITAXEL 60 1_01 -10.73 

OLODATEROL 28 1_01 -10.67 

ALPRAZOLAM 22 2_01 -10.66 

BREMELANOTIDE 74 3_30 -10.66 

BACITRACIN 100 2_30 -10.65 

LETROZOLE 22 4_01 -10.63 

ALCAFTADINE 23 4_01 -10.63 

APALUTAMIDE 33 1_01 -10.63 

BIMATOPROST 30 1_01 -10.58 

PHENTOLAMINE 21 3_01 -10.56 

BETAXOLOL 22 3_01 -10.52 

BENZPHETAMINE 18 1_01 -10.47 

FINGOLIMOD 22 4_01 -10.47 

LATANOPROST 31 1_01 -10.47 
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HALOPERIDOL 26 4_01 -10.45 

CANAGLIFLOZIN 31 4_01 -10.43 

NORTRIPTYLINE 20 4_01 -10.41 

ANASTROZOLE 22 2_01 -10.41 

BINIMETINIB 27 4_01 -10.41 

LEVOBETAXOLOL 22 4_01 -10.4 

BICALUTAMIDE 29 3_01 -10.38 

NIZATIDINE 21 3_01 -10.33 

KETOTIFEN 22 2_01 -10.33 

CABERGOLINE 33 4_27 -10.28 

LAMOTRIGINE 16 1_01 -10.27 

LEVAMLODIPINE 28 2_01 -10.25 

FULVESTRANT 41 4_01 -10.24 

NERATINIB 40 4_28 -10.23 

LEVOBUNOLOL 21 1_01 -10.22 

CARIPRAZINE 28 3_01 -10.21 

PEMETREXED 31 3_01 -10.2 

ABACAVIR 21 1_01 -10.18 

ATOVAQUONE 26 3_01 -10.18 

BELINOSTAT 22 1_01 -10.13 

BISOPROLOL 23 1_01 -10.13 

LEVOTHYROXINE 24 1_01 -10.13 

LANSOPRAZOLE 25 3_01 -10.1 

ACLIDINIUM 33 4_01 -10.1 

PANTOPRAZOLE 26 4_01 -10.08 

LAPATINIB 40 4_28 -10.08 

IMIPRAMINE 21 2_01 -10.07 

ASENAPINE 20 1_01 -10.04 

CARTEOLOL 21 2_01 -10.04 

FLUPHENAZINE 30 2_01 -10.03 

BEROTRALSTAT 41 3_27 -10.01 

AMOXAPINE 22 1_01 -10 

FLUOXETINE 22 1_01 -9.996 

PIMECROLIMUS 56 4_30 -9.994 

AFATINIB 34 3_21 -9.993 

GRANISETRON 23 3_01 -9.988 

FENOLDOPAM 21 3_01 -9.986 

FOSINOPRIL 39 4_01 -9.959 

ABEMACICLIB 37 3_27 -9.947 

ADAPALENE 31 1_01 -9.946 

FEDRATINIB 37 1_26 -9.941 
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OSIMERTINIB 37 4_28 -9.932 

ATOMOXETINE 19 2_01 -9.915 

ATORVASTATIN 41 2_01 -9.909 

NETARSUDIL 34 1_24 -9.907 

CARBINOXAMINE 20 4_01 -9.901 

APREPITANT 37 3_01 -9.9 

AMCINONIDE 36 2_01 -9.892 

ALVIMOPAN 31 2_01 -9.887 

PALIPERIDONE_PALMITATE 48 1_27 -9.876 

IVOSIDENIB 41 1_25 -9.858 

HYDROCHLOROTHIAZIDE 17 3_01 -9.857 

PHENIRAMINE 18 2_01 -9.843 

APIXABAN 34 3_01 -9.834 

GLIPIZIDE 31 1_30 -9.821 

ATENOLOL 19 3_01 -9.792 

LEDIPASVIR 65 1_26 -9.79 

LEFLUNOMIDE 19 2_01 -9.778 

OLANZAPINE 22 2_01 -9.767 

HYDRALAZINE 12 4_01 -9.76 

HISTRELIN 96 2_30 -9.749 

APOMORPHINE 20 3_01 -9.742 

ISAVUCONAZONIUM 51 4_29 -9.736 

BARICITINIB 26 4_23 -9.714 
EZETIMIBE 30 3_01 -9.713 
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Table 2. List of the FDA approved molecules suggested by connectivity map to reverse the 

genetic signature of the upregulated genes of Claudin Low Breast Cancer. (Summary of all cell 

lines) 

SCORE ID NAME DESCRIPTION 

-99.93 BRD-K16508793 diazepam Benzodiazepine receptor agonist 

-99.82 BRD-K56614220 clofazimine GK0582 inhibitor 

-98.98 BRD-A22380646 Pantoprazole ATPase inhibitor 

-98.77 BRD-A29644307 nomifensine Dopamine uptake inhibitor 

-98.7 BRD-K32398298 alprazolam Benzodiazepine receptor agonist 

-98.63 BRD-M07438658 lapatinib EGFR inhibitor 

-98.45 BRD-K02130563 panobinostat HDAC inhibitor 

-98.38 BRD-K18895904 Olanzapine Dopamine receptor antagonist 

-97.96 BRD-K88560311 rucaparib PARP inhibitor 

-97.92 BRD-K19416115 sitagliptin Dipeptidyl peptidase inhibitor 

-96.55 BRD-A15297126 fluocinonide Glucocorticoid receptor agonist 

-96.37 BRD-A23637604 oxymetholone Androgen receptor agonist 

-96.31 BRD-K00532621 midazolam Benzodiazepine receptor agonist 

-96 BRD-K67174588 toremifene Estrogen receptor antagonist 

-95.43 BRD-A35108200 
dexamethason
e Glucocorticoid receptor agonist 

-95.42 BRD-K20285085 fostamatinib SYK inhibitor 

-95.23 BRD-A78391468 prednisolone Glucocorticoid receptor agonist 

-95.14 BRD-A33168282 sotalol Adrenergic receptor antagonist 

-95.03 BRD-A65280694 molindone Dopamine receptor antagonist 

-94.87 BRD-K28761384 zuclopenthixol Dopamine receptor antagonist 

-94.07 BRD-K51485625 ritonavir HIV protease inhibitor 

-94.05 BRD-K50388907 fenofibrate PPAR receptor agonist 

-93.76 BRD-K38003476 clocortolone Glucocorticoid receptor agonist 

-93.66 BRD-A62434282 goserelin Gonadotropin releasing factor hormone receptor agonist 

-93.66 BRD-K81709173 halcinonide Glucocorticoid receptor agonist 

-93.4 BRD-A83237092 fulvestrant Estrogen receptor antagonist 

-93.13 BRD-A67438293 treprostinil Prostacyclin analog 

-93.06 BRD-A07000685 hydrocortisone Glucocorticoid receptor agonist 

-92.46 BRD-A16754160 ampicillin Bacterial cell wall synthesis inhibitor 

-92.45 BRD-K95309561 dienestrol Estrogen receptor agonist 

-92.29 BRD-A54596827 solifenacin Acetylcholine receptor antagonist 

-92.11 BRD-A83892713 rifampicin RNA polymerase inhibitor 

-92.11 BRD-K13514097 everolimus MTOR inhibitor 

-91.65 BRD-K08924299 palonosetron Serotonin receptor antagonist 

-91.41 BRD-A51820102 econazole Bacterial cell wall synthesis inhibitor 

-91.16 BRD-K44094599 tacrolimus Calcineurin inhibitor 

-90.96 BRD-A14395271 mesoridazine Dopamine receptor antagonist 

-90.27 BRD-A79803969 memantine Glutamate receptor antagonist 
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Table 3. List of the FDA approved molecules suggested by connectivity map to reverse the 

genetic signature of the upregulated genes of Claudin Low Breast Cancer. (MCF7 cell line) 

SCORE ID NAME DESCRIPTION 

-99.98 BRD-A83892713 rifampicin RNA polymerase inhibitor 

-99.96 BRD-K19416115 sitagliptin Dipeptidyl peptidase inhibitor 

-99.95 BRD-K18895904 Olanzapine Dopamine receptor antagonist 

-99.94 BRD-K59456551 methotrexate Dihydrofolate reductase inhibitor 

-99.79 BRD-A91699651 chloroquine Antimalarial 

-99.73 BRD-K44876623 zolpidem Benzodiazepine receptor agonist 

-99.72 BRD-A02759312 betaxolol Adrenergic receptor antagonist 

-99.65 BRD-K44779798 miglitol Glucosidase inhibitor 

-99.64 BRD-A34751532 homosalate HSP inducer 

-99.57 BRD-K70778732 trazodone Adrenergic receptor antagonist 

-99.55 BRD-K51485625 ritonavir HIV protease inhibitor 

-99.5 BRD-K05926469 lenalidomide Antineoplastic 

-99.44 BRD-K13926615 vardenafil Phosphodiesterase inhibitor 

-99.34 BRD-K50938786 ropivacaine Sodium channel blocker 

-99.3 BRD-K11399644 phenformin AMPK activator 

-99.15 BRD-A90515964 guaifenesin Expectorant 

-99.04 BRD-K97810537 beclometasone Glucocorticoid receptor agonist 

-98.97 BRD-K27721098 clopidogrel Purinergic receptor antagonist 

-98.96 BRD-A90131694 alclometasone Glucocorticoid receptor agonist 

-98.9 BRD-A90799790 isradipine Calcium channel blocker 

-98.79 BRD-A62434282 goserelin 
Gonadotropin releasing factor hormone 
receptor agonist 

-98.72 BRD-A09533288 verapamil Calcium channel blocker 

-98.71 BRD-A67438293 treprostinil Prostacyclin analog 

-98.67 BRD-K80396088 gliquidone Sulfonylurea 

-98.65 BRD-K54416256 methimazole Antithyroid 

-98.58 BRD-K37798499 etoposide Topoisomerase inhibitor 

-98.31 BRD-K28761384 zuclopenthixol Dopamine receptor antagonist 

-98.14 BRD-A22256192 terazosin Adrenergic receptor antagonist 

-97.69 BRD-K00673382 famotidine Histamine receptor antagonist 

-97.66 BRD-A22380646 Pantoprazole ATPase inhibitor 

-97.51 BRD-K32830106 guanfacine Adrenergic receptor agonist 

-97.44 BRD-A94543220 bifonazole Sterol demethylase inhibitor 

-97.39 BRD-K61341215 vecuronium Acetylcholine receptor antagonist 

-97.28 BRD-K52080565 rilmenidine Imidazoline receptor agonist 

-96.96 BRD-K79254416 decitabine DNA methyltransferase inhibitor 

-96.76 BRD-A82371568 clofarabine Ribonucleoside reductase inhibitor 

-96.72 BRD-A44008656 doxylamine Histamine receptor antagonist 

-96.52 BRD-K74514084 pazopanib KIT inhibitor 
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-96.51 BRD-M07438658 lapatinib EGFR inhibitor 

-96.35 BRD-K10852020 tolcapone Catechol O methyltransferase inhibitor 

-96.34 BRD-K35941380 methysergide Serotonin receptor antagonist 

-96.29 BRD-K91315211 betahistine Histamine receptor agonist 

-96.16 BRD-A65280694 molindone Dopamine receptor antagonist 

-95.92 BRD-M00539986 formoterol Adrenergic receptor agonist 

-95.84 BRD-K90789829 nefazodone Adrenergic inhibitor 

-95.24 BRD-K68132782 terbinafine Fungal squalene epoxidase inhibitor 

-94.91 BRD-A10715913 sulpiride Dopamine receptor antagonist 

-94.3 BRD-A20239487 atenolol Adrenergic receptor antagonist 

-92.69 BRD-A17448384 beclometasone Glucocorticoid receptor agonist 

-92.69 BRD-K36616567 doxepin Histamine receptor antagonist 

-92.45 BRD-K73978287 hydrocortisone Glucocorticoid receptor agonist 

-92.17 BRD-A65076780 
dihydroergocristin
e Adrenergic receptor antagonist 

-92.08 BRD-A14395271 mesoridazine Dopamine receptor antagonist 

-91.77 BRD-K33211335 dextromethorphan Glutamate receptor antagonist 

-91.65 BRD-A61793559 metolazone Carbonic anhydrase inhibitor 

-91.22 BRD-K14965640 ibuprofen Cyclooxygenase inhibitor 

-91.21 BRD-M30523314 vinorelbine Tubulin inhibitor 

-91.16 BRD-A35912562 pregnenolone Glutamate receptor modulator 

-91.06 BRD-K50938287 sumatriptan Serotonin receptor agonist 

-91.02 BRD-K27184429 levocetirizine Histamine receptor antagonist 

-90.95 BRD-A62525898 prednisone Glucocorticoid receptor agonist 

-90.83 BRD-K12994359 valdecoxib Cyclooxygenase inhibitor 

-90.43 BRD-A97739905 ketoprofen Cyclooxygenase inhibitor 

-90.32 BRD-A99411506 esculin Antioxidant 

-90.18 BRD-K16508793 diazepam Benzodiazepine receptor agonist 

-90.16 BRD-K67977190 eprosartan Angiotensin receptor antagonist 

 


