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Investigating the application of spectral imaging and AI in precision horticulture 

(agriculture) 

Department of Natural Resources Management & Agricultural Engineering 

Laboratory of Farm Machine Systems 

 

 

Abstract 
 

Spectral imaging and Artificial Intelligence in precision horticulture are commonly used 

for a variety of applications ranging from disease detection to quality estimation. However, 

most of the available solutions require deep understanding of software engineering and 

they mostly focus on disease detection and post-harvest applications.  

This study aimed to (i)develop Artificial Intelligence models utilizing spectral data that 

can identify different fertilisation levels, (ii)develop Artificial Intelligence models utilizing 

spectral data capable of identifying plant water deficit, (iii)compare the performance of 

traditional machine learning algorithms with novel user-friendly Auto Machine Learning 

(AutoML) techniques and(iv)evaluate the feasibility of developing a generalisation-

capable AI model utilizing spectral data. 

Towards that end, a progressive methodology was implemented to gather data and 

develop the required methodologies. During the first year spectral data from broccoli 

plants that were submitted to different fertilization schemes were collected, while during 

the second year spectral data were collected from broccoli plants that were submitted to 

different irrigation schemes. Besides spectral data during both years, dry matter 

measurements were conducted not only for broccoli but also for apple, leek and 

mushroom. Finally, during the third year, all AI methodologies were developed, and AI 

experiments were conducted. 

Throughout these three years, this study evaluated and compared traditional Artificial 

Intelligence approaches with AutoML systems towards water/ acclimation and nutrient 

deficiency stress identification using spectral imaging. For both types of stress, AutoML 

was compared to a traditional machine learning approach (Partial Least Squares – 

Discriminant Analysis) used for classification of spectral data. On both occasions, data 

were captured with the use of the IMEC snapscan Visible Near Infrared hyperspectral 

camera (400-900nm). Moreover, the study aimed to investigate generalisation 

capabilities of spectral imaging and how each step of the “traditional” pre-processing 

pipeline followed for spectral data modelling affects its generalisation capabilities and 

performance. The pipeline, followed by both stress experiments and tested for its 

generalisation capabilities, consisted of the following steps: Outlier removal→Data 

smoothing→Data Scaling→Feature selection→Feature Extraction→Modelling. 

Techniques used for various steps across the pipeline included Savitzky Golay 

smoothing, Standard and Min Max scaling, f and mutual info regression for feature 
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selection, umap, autoencoeder and PCA feature extraction and various machine learning 

models ranging from linear to quadratic models and reaching the complexity of neural 

networks.   

For identifying nutrient stress, the AutoML system achieved results that were superior 

to those achieved by the Partial Least Squares – Discriminant Analysis (PLS-DA) 

algorithm. Namely, an accuracy of 0.72 was achieved when using the CIELAB colour 

space and 0.94 when combining the CIELAB colour space with the hyperspectral data.  

When using the hyperspectral data standalone, the results improved (accuracy 1.00), 

this performance was achieved using all 150 bands, however, it is worth mentioning that 

the same performance was maintained even when using the single statistically most 

important wavelength (874 nm). On the other hand, for the identification of 

water/acclimation stressed plants, both the Automated Machine Learning system and the 

PLSDA algorithm achieved an accuracy of 1.00 across all stress levels. Finally, 

hyperspectral imaging has proven capable of generalizing across different fruits and 

vegetables, achieving an (RMSEP) = 0.0137 using the Partial Least Squares Regression 

algorithm on a 10x5-fold cross-validation protocol.  

Overall, the results suggest that Automated Machine Learning can achieve and even 

outperform traditional spectral imaging machine learning approaches for detecting water/ 

acclimation and nutrient deficiency stress. Moreover, the use of the CIELAB colour space 

for training the models failed to match the performance of using the spectral data, while 

combining the two did not lead to a performance increase compared to just using the 

spectral data. The evaluated techniques used for preprocessing affected the two 

regression algorithms, Automatic Relevance Determination Regression (ARD) and Partial 

Least Squares Regression (PLSR) in a different way, with the best performance achieved 

when the complete pipeline was used. Furthermore, feature selection appeared to be the 

preprocessing technique that had the most negative impact on the linear regression 

performance when used standalone. However, its use to fit a quadratic transformation of 

the features was found to be a good compromise. Overall, the pipeline using either ARD 

algorithm or PLSR algorithm showed strong generalization and performance in the Visible 

Near Infrared wavelength based dry matter content estimation across diverse crops. 

To conclude, the use of Spectral imaging with AutoML solutions may provide a user 

friendly and cost-effective method for detecting plant stress, while at the same time, 

spectral imaging model generalisation can be achieved provided that a universal data 

acquisition protocol is followed, with promising results even without following complex 

data preprocessing pipelines. Finally, it should be noted that the present study did not 

examine the lag factor. It is assumed that with the prevalence of water or nutrient scarcity, 

the change in spectral data will not be automatic. 
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Διερεύνηση των εφαρμογών φασματοσκοπίας και τεχνητής νοημοσύνης στην 

λαχανοκομία (γεωργία) ακριβείας 

 

Τμήμα Αξιοποίησης Φυσικών Πόρων &ι Γεωργικής Μηχανικής 

Εργαστήριο Γεωργικής Μηχανολογίας 

 

 

Περίληψη 

 

Η φασματική απεικόνιση και η Τεχνητή Νοημοσύνη στη λαχανοκομία (γεωργία) 

ακριβείας χρησιμοποιούνται συνήθως για μια ποικιλία εφαρμογών που κυμαίνονται από 

την ανίχνευση ασθενειών έως την εκτίμηση της ποιότητας. Ωστόσο, οι περισσότερες από 

τις διαθέσιμες λύσεις απαιτούν βαθιά κατανόηση της μηχανικής μάθησης και 

επικεντρώνονται κυρίως στην ανίχνευση ασθενειών και σε εφαρμογές μετά τη συγκομιδή.  

Αυτή η μελέτη είχε ως στόχο: (i) την ανάπτυξη μοντέλων τεχνητής νοημοσύνης 

που χρησιμοποιούν φασματικά δεδομένα και μπορούν να προσδιορίσουν διαφορετικά 

επίπεδα λίπανσης, (ii) την ανάπτυξη μοντέλων τεχνητής νοημοσύνης που χρησιμοποιούν 

φασματικά δεδομένα και είναι ικανά να προσδιορίσουν το έλλειμμα νερού των φυτών, (iii) 

τη σύγκριση των επιδόσεων των παραδοσιακών αλγορίθμων μηχανικής μάθησης με νέες 

φιλικές προς τον χρήστη τεχνικές Αυτόματης Μηχανικής Μάθησης, και (iv) την αξιολόγηση 

της δυνατότητας ανάπτυξης ενός μοντέλου τεχνητής νοημοσύνης με δυνατότητα 

γενίκευσης που χρησιμοποιεί φασματικά δεδομένα.  

Προς το σκοπό αυτό, εφαρμόστηκε μια προοδευτική μεθοδολογία για τη συλλογή 

δεδομένων και την ανάπτυξη των απαιτούμενων μεθοδολογιών. Κατά το πρώτο έτος 

συλλέχθηκαν φασματικά δεδομένα από φυτά μπρόκολου που υποβλήθηκαν σε 

διαφορετικές μεταχειρίσεις λίπανσης, ενώ κατά το δεύτερο έτος συλλέχθηκαν φασματικά 

δεδομένα από φυτά μπρόκολου που υποβλήθηκαν σε διαφορετικές μεταχειρίσεις 

άρδευσης. Εκτός από τα φασματικά δεδομένα κατά τη διάρκεια και των δύο ετών 

πραγματοποιήθηκαν μετρήσεις ξηρής ουσίας όχι μόνο για το μπρόκολο αλλά και για το 

μήλο, το πράσο και το μανιτάρι. Τέλος, κατά τη διάρκεια του τρίτου έτους αναπτύχθηκαν 

όλες οι μεθοδολογίες τεχνητής νοημοσύνης και πραγματοποιήθηκαν και τα αντίστοιχα 

πειράματα. 

Κατά τη διάρκεια αυτών των τριών ετών η παρούσα μελέτη αξιολόγησε και 

συνέκρινε τις παραδοσιακές προσεγγίσεις τεχνητής νοημοσύνης με τα συστήματα 

Αυτόματης Μηχανικής Μάθησης για τον εντοπισμό της καταπόνησης λόγω έλλειψης 

νερού/εγκλιματισμού και θρεπτικών στοιχείων με τη χρήση φασματικής απεικόνισης. Και 

για τους δύο τύπους καταπόνησης η Αυτόματη Μηχανική Μάθηση συγκρίθηκε με μια 

παραδοσιακή προσέγγιση μηχανικής μάθησης,Partial Least Squares – Discriminant 

Analysis (PLSDA), που χρησιμοποιείται για την ταξινόμηση φασματικών δεδομένων. Και 

στις δύο περιπτώσεις τα δεδομένα λήφθηκαν με τη χρήση της υπερφασματικής κάμερας 

IMEC snapscan Visible Near Infrared (400-900nm). Επιπλέον, η μελέτη αποσκόπησε στη 
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διερεύνηση των δυνατοτήτων γενίκευσης της φασματικής απεικόνισης και του τρόπου με 

τον οποίο κάθε βήμα της "τυπικής" διαδικασίας προεπεξεργασίας που ακολουθείται για 

τη μοντελοποίηση φασματικών δεδομένων επηρεάζει τις δυνατότητες και τις επιδόσεις 

της γενίκευσης. Η διαδικασία που ακολουθήθηκε τόσο από τα πειράματα καταπόνησης 

όσο και από τον έλεγχο των δυνατοτήτων γενίκευσης αποτελείται από τα ακόλουθα 

βήματα: Απομάκρυνση εκτόπων τιμών→Εξομάλυνση δεδομένων→Κλιμάκωση 

δεδομένων→Επιλογή χαρακτηριστικών→Εξαγωγή χαρακτηριστικών→Μοντελοποίηση. 

Οι τεχνικές που χρησιμοποιήθηκαν για τα διάφορα βήματα της διαδικασίας 

περιλαμβάνουν εξομάλυνση SavitzkyGolay, κλιμάκωση Standard και MinMax, 

παλινδρόμηση f και mutualinfo για επιλογή χαρακτηριστικών, εξαγωγή χαρακτηριστικών 

umap, autoencoeder και pca και διάφορα μοντέλα μηχανικής μάθησης που κυμαίνονται 

από γραμμικά έως τετραγωνικά μοντέλα και φτάνουν στην πολυπλοκότητα των 

νευρωνικών δικτύων. 

Για τον εντοπισμό της θρεπτικής καταπόνησης το σύστημα αυτόματης μηχανικής 

μάθησης πέτυχε αποτελέσματα που είναι ανώτερα από εκείνα που πέτυχε η ανάλυση 

Partial Least Squares – Discriminant Analysis. Συγκεκριμένα, επιτεύχθηκε ακρίβεια 

(accuracy) 0,72 όταν χρησιμοποιήθηκε ο χρωματικός χώρος CIELAB και 0,94 όταν 

συνδυάστηκε ο χρωματικός χώρος CIELAB με τα υπερφασματικά δεδομένα. Κατά τη 

χρήση των υπερφασματικών δεδομένων αυτοτελώς, τα αποτελέσματα βελτιώθηκαν 

(ακρίβεια 1,00), η επίδοση αυτή επιτεύχθηκε με τη χρήση και των 150 φασμάτων, ωστόσο 

αξίζει να αναφερθεί ότι η ίδια επίδοση διατηρήθηκε ακόμη και όταν χρησιμοποιήθηκε το 

μοναδικό στατιστικά σημαντικότερο φάσμα (874 nm, near infrared). 

Από την άλλη πλευρά, για την ταυτοποίηση των φυτών που έχουν υποστεί στρες 

από νερό/κλιματισμό, τόσο το σύστημα αυτόματης μηχανικής μάθησης όσο και ο 

αλγόριθμος PLSDΑ. Eπέτυχαν ακρίβεια 1,00 σε όλα τα επίπεδα στρες. Tέλος, η 

υπερφασματική απεικόνιση αποδείχθηκε ικανή να γενικεύει σε διάφορα φρούτα και 

λαχανικά, επιτυγχάνοντας Μέση Τετραγωνική απόκλιση (RMSEP) = 0.0137 

χρησιμοποιώντας παλινδρόμηση Partial Least Squares Regression σε πρωτόκολλο 

διασταυρούμενης επικύρωσης 10x5 φορές. 

Συνολικά, τα αποτελέσματα υποδηλώνουν ότι η αυτόματη μηχανική μάθηση 

μπορεί να επιτύχει και ακόμη και να ξεπεράσει τις παραδοσιακές προσεγγίσεις μηχανικής 

μάθησης φασματικής απεικόνισης για την ανίχνευση του στρες του νερού/εγκλιματισμού 

και της θρεπτικής ανεπάρκειας. Επιπλέον, η χρήση του χρωματικού χώρου CIELAB για 

την εκπαίδευση των μοντέλων απέτυχε να φτάσει την απόδοση της χρήσης των 

φασματικών δεδομένων, ενώ ο συνδυασμός των δύο δεν οδήγησε σε αύξηση της 

απόδοσης σε σύγκριση με τη χρήση μόνο των φασματικών δεδομένων.  Τέλος, οι τεχνικές 

προ επεξεργασίας που αξιολογήθηκαν επηρέασαν διαφορετικά τους δύο αλγορίθμους 

παλινδρόμησης (Automatic Relevance Determination και Partial Least Squares), με τα 

καλύτερα αποτελέσματα να επιτυγχάνονται όταν χρησιμοποιήθηκε η πλήρης διαδικασία. 

Επιπλέον, η επιλογή χαρακτηριστικών φάνηκε να είναι η τεχνική προ επεξεργασίας που 
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έχει τον πιο αρνητικό αντίκτυπο στην απόδοση της γραμμικής παλινδρόμησης όταν 

χρησιμοποιείται μεμονωμένα. Ωστόσο, η χρήση της για την προσαρμογή ενός 

τετραγωνικού μετασχηματισμού των χαρακτηριστικών διαπιστώθηκε ότι αποτελεί έναν 

καλό συμβιβασμό. Συνολικά, η διαδικασία που χρησιμοποίησε είτε την Automatic 

Relevance Determination παλινδρόμηση είτε την Partial Least Squares Regression 

παλινδρόμηση παρουσίασε ισχυρή απόδοση και γενίκευση για την εκτίμηση της ξηρής 

ύλης με βάση το ορατό και κοντινό υπέρυθρο σε διάφορα φρούτα και λαχανικά. 

Συμπερασματικά, η χρήση της φασματικής απεικόνισης με λύσεις Αυτόματης 

Μηχανικής Μάθησης μπορεί να παρέχει μια φιλική προς τον χρήστη και οικονομικά 

αποδοτική μέθοδο για την ανίχνευση της καταπόνησης των φυτών, ενώ ταυτόχρονα 

μπορεί να επιτευχθεί γενίκευση του μοντέλου φασματικής απεικόνισης, εφόσον 

ακολουθείται ένα καθολικό πρωτόκολλο απόκτησης δεδομένων, με πολλά υποσχόμενα 

αποτελέσματα ακόμη και χωρίς να ακολουθούνται πολύπλοκες σωληνώσεις προ 

επεξεργασίας δεδομένων. Τέλος, πρέπει να σημειωθεί ότι η παρούσα μελέτη δεν εξέτασε 

τον παράγοντα υστέρησης. Εκτιμάται πως με την επικράτηση έλλειψης νερού και 

θρεπτικών συστατικών η μεταβολή των φασματικών δεδομένων δεν θα είναι αυτόματη. 
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Executive Summary 
 

Precision agriculture aims to optimize and improve primary production through the 

use of modern technological solutions. The majority of those solutions require big 

amounts of data and as a result, precision agriculture heavily relies on a variety of sensors 

for data collection, such as spectral cameras. Moreover, Artificial Intelligence (AI) is 

crucial as it enables data analyses of these large amounts of data in an efficient and 

accurate way, enabling data driven decision making. 

Chapter 1 begins with an introduction to precision agriculture and broccoli 

production. It continues by providing the fundamental principles and knowledge around 

Spectral Imaging and Artificial Intelligence and ends by introducing the main sources of 

variability in agriculture and how spectral imaging and AI have contributed towards 

improving primary production in terms of resource efficiency, yield and quality 

improvements. The chapter also highlights the synergies and trade-offs between all 

technologies described. 

Chapter 2 gives an overview of the materials and methods with information on the 

selected experimental decision and equipment used. It then focuses on the data collection 

protocols and the various techniques used for data preprocessing, analyses and sample 

classification. In this study, data from water acclimated/stressed plants and nutrient 

deficient plants were collected using spectral imaging. Finally, a hyperspectral dataset for 

dry matter estimation comprising of a variety of crops was constructed and a plethora of 

preprocessing methods were evaluated towards improving spectral model generalisation 

performance.  

Chapter 3 presents the research fundings of this Ph.D. dissertation. An exploratory 

analysis and evaluation of the spectra collected, and the various techniques used are 

presented. Spectral imaging was found to be superior to just using the CIELAB colour 

space for identification of stressed plants, while at the same time AutoML reached 

excellent performance comparable to the use of traditional machine learning techniques 

(PLS-DA) that require in depth knowledge of software engineering. Moreover, this study 

concluded that just normalizing spectral data can improve the generalisation capabilities 

of machine learning models that make use of Spectral data, while at the same time adding 

more data can allow for algorithms to uncover previously hidden patterns. Finally, the 

synergistic effect of various spectral preprocessing techniques was proven towards 

improving the performance of generalized spectral data models as well as the effect of 

sample size on improving model performance even when data are heterogeneous. 

Chapter 4 discusses the contributions of the three research papers produced as 

part of this PhD thesis: 1. Testing the Suitability of Automated Machine Learning, 

hyperspectral imaging and CIELAB colour space for proximal in situ fertilisation level 

classification, 2. Early detection of broccoli drought acclimation/stress in agricultural 

environments utilising proximal hyperspectral imaging and AutoML and 3. Evaluation of 
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a hyperspectral image pipeline toward building a generalization capable crop dry matter 

content prediction model. 

Chapters 5, conclusions and 6, future work, are the final segments of this 

dissertation. They are interrelated, built on each other and collectively draw conclusions 

regarding the aforementioned objectives. They also delve into potential avenues for future 

investigation concerning the application of precision agriculture, spectral imaging, and 

Artificial Intelligence.  
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Chapter 1 – Introduction 

1.1 Problem statement 
 

The agricultural sector is facing significant challenges and will undergo substantial 

transformations in the near future. The consequences of climate change, such as rising 

global temperatures, increases in heavy precipitation, and widespread water shortage, 

directly impact food production and threaten the future of farming. On the other hand, 

agriculture is a primary driver of climate change. Current primary production practices 

contribute to air, water and soil pollution, with agriculture being responsible for 10.3% of 

the EU’s Green House Gas emissions(European Environment Agency and European 

Commission, 2022), while consuming excessive amounts of natural resources and 

energy. Moreover, pesticides and fertilisers overuse severely affects humans and other 

life forms as well as the environment. Two examples of fertiliser overuse are the nitrogen 

and phosphorus cycles, which exceed their safe operating space in Europe by a factor of 

3.3 and 2 respectively(European Environment Agency, 2020), 

Furthermore, by 2050, agriculture will have to produce 70% to 100% more food. 

Food production will need to be accompanied by sustainable management of agricultural 

lands to stop or slow down the negative impacts on the quality and quantity of water and 

soil resources, land degradation, greenhouse gas emissions and biodiversity (Gomiero 

et al., 2011). However, this shift will not be easy as it will need to take place in a highly 

uncertain, variable, and constantly changing agricultural landscape. To address these 

challenges technological disruption is required. 

The technological advancements in the field of precision agriculture technologies 

and agri-environmental monitoring over the last years have been staggering in terms of 

hardware (variety of available sensors and platforms, edge devices) and software 

processing power, resulting in an unprecedented collection of daily observations of crop 

status and environmental conditions(Glass and Gonzalez, 2022). 

These technologies empower farmers to optimize management practices such as 

fertilisation, irrigation, and plant protection product application, enabling significant cost 

reduction, improved crop quality and yield, and increased competitiveness(Sharma et al., 

2020). With precision agriculture, data are collected to assist farmers in making data-

guided sub-field decisions, including applications of fertilisers and pesticides, distribution 

densities for seeds, irrigation application rates, and tillage regimes(Taylor, 2023). 

Summing up, precision agriculture technologies are considered one of the most 

promising ways to deal with agriculture uncertainty and variability, improve its 

performance sustainably, reduce its environmental impact, and help it achieve 

sustainable food production.  
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1.2 Uncertainty and variability in agriculture 
 

 Food security, being able to provide all people, at all times, with physical and 

economic access to sufficient, safe, and nutritious food that meets their dietary needs and 

food preferences for an active and healthy life (Shaw, 2007), is one of the most significant 

problems the world is facing. Ensuring food security has become crucial to numerous 

countries with different degrees of economic development, with the agricultural sector 

playing a strategic role in improving food availability(Pawlak and Kołodziejczak, 2020). 

However, achieving food security under climate change is a complex public policy issue 

or a so-called "wicked problem." (Vermeulen et al., 2013). The main reason behind all 

previous statements is modern agriculture's high uncertainty and variability. Agriculture 

does not suffer from a single source of uncertainty and risk; instead, it has to face multiple 

and diverse ones ranging from climate and weather-related events to fluctuations in the 

prices of agriculture inputs such as fertilisers. 

Financial uncertainties and policy and regulatory changes also pose severe threats 

to modern production systems. Diving deeper into each one, farmers first have to deal 

with the natural uncertainty and risks that directly impact production and are 

uncontrollable; examples are diseases and weather. Secondly, they have to deal with 

market uncertainty as the majority of decisions in agriculture are made in advance when 

the market price for the output is usually unknown. Thirdly, farmers have to face policy 

uncertainty with economic and environmental policies having a direct impact, such as the 

mandated reduction of fertiliser use or indirect impact with their effect on taxes and 

provision of public goods (Aimin, 2010).  

 Over the past couple of years, the agricultural landscape structure has been 

shifting towards a simpler one via changes in management, land use, agricultural 

development, modernisation, and intensification (Benton et al., 2003). However, it 

remains far more complex compared to the environment of other industries, such as 

warehouses and factories, where the majority of the variables, such as illumination, 

obstacles, and landmarks, remain unchanged, with this environment complexity not 

foreseen to be simplified in the near future. On the contrary, on some occasions, it is 

predicted to become more complex, with policies aimed at enhancing landscape 

complexity to increase biodiversity being introduced (Commission and Environment, 

2017). It becomes, therefore, apparent that modern agriculture solutions will have to work 

in such environments. The following paragraphs present a breakdown of the primary 

sources of agricultural variability, namely, i) soil, ii) climate, iii) illumination, and iv) plant 

growth. 

 According to the USDA soil taxonomy, there are 12 major soil types, each with its 

own taxonomy (Great Group, Subgroup, and Family)(Natural Resources Conservation 



Investigating the application of spectral imaging and AI in precision horticulture (agriculture) 

PhD Dissertation I. Malounas 

 

3 
 

Service. U.S. Department of Agriculture, 1999) and its characteristics such as colour and 

texture, thus making it more difficult for precision agriculture solutions and machinery to 

work universally. On top of that, specific soil parameters such as soil organic matter and 

soil total nitrogen are also affected by the farming practices used (Huang et al., 2007), 

introducing another variable that precision agriculture solutions have to consider. To 

conclude, spatial variability plays a crucial role in advancing precision agriculture, as site-

specific management is currently treated on an average basis(López-Granados et al., 

2002). 

 Climate change is one of the most critical problems the modern world faces, with 

agriculture being extremely vulnerable. This also leads to new challenges for the 

agricultural technology industry, as machinery needs to operate in more unpredictable 

and harsher environments. One of the climate change factors that affect agriculture is 

higher temperatures, which, besides decreasing yield, they promote weed and pest 

expansion, rapidly changing the environment where machinery have to work. The second 

factor is precipitation patterns, primarily affecting irrigated crops(Nelson et al., 2009), 

which once again challenge disease and plant management. Despite that, climate change 

will also affect irrigation demands as the physiology and phenology of the plant change 

(Shahid, 2011). Therefore, precision irrigation management will become more critical to 

achieving stable yields in constantly changing conditions.  

 Moreover, precision agriculture solutions have to overcome specific challenges 

closely related to the technologies being used. For vision-based applications, the 

constantly changing illumination conditions outdoors represent a significant factor 

contributing to variability in image quality. In open fields, illumination can vary from direct 

solar light to diffuse light caused by clouds, from sunrise to sunset, and from sloping winter 

to straight summer sunlight(Ruiz et al., 2009). Such variations can potentially modify the 

appearance of objects or the overall content captured in the image(Silwal et al., 2021). 

Finally, plant growth is an additional source of uncertainty and variability as it is not 

restricted to strict guidelines, with the predominance of branch and leaf shade in 

agricultural environments posing an additional challenge(Sun et al., 2023). 
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1.3 Agricultural inputs and their effects 
 

 Agriculture relies on various inputs to sustain production and growth in order to 

meet the increasing population's needs. These inputs include fertilisers, irrigation water, 

seeds, pesticides, and energy for farm machinery and equipment use, with each input 

category showcasing constant technological developments (Sheahan and Barrett, 2017). 

This dissertationhas focused on fertilisation and irrigation, and as a result, these two 

inputs have been further analysed in the next sub-sections. 

 

1.3.1 Fertilisation 
 

 Fertilisers are maybe the most critical input to increase yield, with studies reporting 

a coefficient of 7.85, which means that a 1 kg/ha increase in fertiliser is associated with 

higher yields of nearly 8 kg/ha; this coefficient is the highest among other agricultural 

inputs(McArthur and McCord, 2017). Besides directly increasing yield, fertilisers are 

linked to improved quality (Siavoshi et al., 2011) and enhanced growth (Nkaa et al., 2014). 

However, the most important fertiliser pollution concerns are associated with nitrogen-

based fertilisers. This type of pollution stands out as a significant environmental concern 

in the 21st century, playing a role in air and water pollution, climate change, and 

stratospheric ozone depletion with agriculture being one of the predominant sources of it 

(Kanter et al., 2015). Additionally, the per capita nitrogen is not going to decrease in the 

near future. On the contrary, conservative projections estimate that it will remain 

unchanged, while high projections estimate an increase of more than 33% by 2050 (Lim 

et al., 2021). It, therefore, becomes crucial to optimize fertiliser use and increase 

efficiency in order to maintain and even increase yields while at the same time making 

sure to minimize the environmental footprint of their use. Studies suggest that in some 

applications fertiliser use efficiency can be as low as 0.60, indicating that, on average, 

half of the fertiliser utilized is excessive(HU et al., 2019). On the bright side, knowledge 

of potential crop Nitrogen demand could reduce fertilisation rates by 3 to 10%. Meanwhile, 

site-specific management could lead to substantial reductions without yield loss in various 

cropping systems, thus increasing profitability and environmental quality.  

 

1.3.2 Irrigation 
 

As mentioned earlier, the population increase and the improvement of living 

standards will result in a sharp increase in food demand during the following decades, 

raising questions about food security. The majority of this increase in food production will 

be covered by irrigated agriculture (Playán and Mateos, 2006). Irrigation provides water, 

which is vital for plant growth, with water stress being linked to yield reduction by 
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diminishing crop growth of canopy and biomass (Marutani and Cruz, 1989). As a result, 

irrigation helps agriculture achieve higher production, which is linked to lower crop failure 

risk, while improving quality. Moreover, irrigation has (i)allowed farmers to switch from 

low-value subsistence production to high-value market-oriented production, (ii)enabled 

smallholders to adopt diversified cropping patterns, and (iii) made food more available 

and affordable to people experiencing poverty (Hussain and Hanjra, 2004). However, 

over-irrigation could have the opposite effects, making irrigation planning crucial (Yuan et 

al., 2003). 

Despite the importance of irrigation, special attention should be paid to its 

optimization, as water resources are finite and there is competition between agricultural, 

industrial, and urban consumers, making it an expensive input (Sarwar et al., 

2010).Despite the cost, water scarcity and environmental concerns also necessitate the 

reduction of water input per irrigated area unit. Modern agricultural solutions promise to 

help achieve that goal by optimizing irrigation and increasing water productivity (Playán 

and Mateos, 2006).  
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1.4 Precision Agriculture 
 

"Precision agriculture" or "smart farming" is a farming management strategy that 

makes use of data, communication technologies (ICTs) and equipment such as sensors, 

drones and GPS  to increase agriculture’s productivity and efficiency(Linaza et al., 2021). 

Precision agriculture methodologies focus on gathering information on crops and 

their surroundings through the use of proximal and remote sensors, global positioning 

systems (GPS), and other technologies. Upon data collection, optimum resource and crop 

management practices are defined. Examples of such practices are the determination of 

the best time to irrigate fertilise and harvest. 

Advancements of GPS technology in the 1980s led to the conception of precision 

agriculture, however, farmer adoption did not begin until the late 1990s and early 2000s. 

Nowadays, precision agriculture software is becoming more and more available, while at 

the same time GPS and IoT technologies are becoming less expensive. This has resulted 

in GPS guidance being used by 82% of agricultural retailers, and in GPS-enabled sprayer 

booms adoption increasing from 39% in 2011 to 53% in 2013(Franzen and Mulla, 2015). 

Moreover, resource optimization through precision agriculture is currently offering many 

advantages, the most popular of which are: i) higher crop yields; ii) decreased 

environmental impact; iii) enhanced profitability; and iv) increased sustainability.  

Precision agriculture relies heavily on sensors, GPS, and ICTs. There is a variety 

of sensors on the market suitable for precision agriculture applications. These might be 

as simple as soil humidity sensors and colour cameras, or they can be more complex like 

spectral cameras and internal microchip implants for plants. Such sensors are used to 

gather data on crops and their surroundings, in a proximal or remote way. These data 

include information about crop health, yield, nutrient levels, and soil moisture. Moreover, 

innovations and novel technologies such as miniaturized computer components, GIS, 

mobile computing and automatic control have expanded the precision agriculture 

applications leading to a new era of increased agricultural productivity(Pathak et al., 

2019). Lastly, ICTs are used for communication purposes, as well as for collection, 

storing, and analysing data from sensors and GPS. As previously said, ICTs range in 

complexity from simple networking devices to Artificial Intelligence and 5G technology, 

depending on the needs of the farmer and the use case. 

Up until now, precision agriculture has focused on applications with a high Return 

On Investment (ROI), as since its early years its economic feasibility has been questioned 

by farmers and researchers alike (Mulla and Khosla, 2016). Some of the applications that 

have received the majority of attention are the following: i) crop monitoring for growth and 

development as well as for pest and disease detection; ii) irrigation by directing water to 

the plants and areas where it is most needed to improve water use efficiency; iii) 

fertilisation by directing nutrients to the plants and areas where they are most needed to 
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improve fertiliser use efficiency; and finally iv) harvesting by determining which parts of 

the field are ready to be harvested in terms of maturity. 

 Precision agriculture has gained popularity over the last year, but there are still 

many obstacles to overcome. The first is high costs as precision agriculture equipment 

can be costly to both install and operate, leading to lengthy depreciation periods and high 

acquisition prices. The second is that most solutions are tough to use and maintain, and 

to make matters worse, there is a lack of knowledge regarding such novel technologies 

in the agricultural sector, which makes it challenging for non-experts like farmers to accept 

and comprehend them. Lastly, because of the fact that precision agriculture produces 

vast volumes of data that are challenging to manually process and interpret, it heavily 

relies on the use of Artificial Intelligence (AI) systems to perform analysis quickly and 

effectively. AI technologies with a focus on agriculture are still lacking compared to other 

industries while at the same time farmers are not familiar with them, thus leading to further 

adoption difficulties and mistrust. On the bright side, AI breakthroughs are already 

speeding up development of such solutions (Redhu et al., 2022). A general overview of 

the precision agriculture cycle is presented in the figure below. 
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Figure 1. Precision agriculture cycle, Source:(Gebbers and Adamchuk, 2010)  
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1.5 Artificial Intelligence 
 

Intelligence is the ability to learn, understand, solve problems, and make decisions. 

Artificial Intelligence (AI) aims to enable machines to perform tasks requiring intelligence 

as if performed by humans(Boden, 1980). Artificial Intelligence can, in turn, be divided 

into smaller subsets, namely Machine Learning and Deep Learning (Figure 2). 

 

Figure 2. Subsets of AI. Source: towardsdatascience 

 The term "machine learning" refers to a broad category of approaches and 

strategies that systems use to learn from data and become more efficient at a task. The 

main concept of machine learning is to facilitate computers to discover patterns and come 

to conclusions or forecasts without having to be specifically trained to do so. AutoML, a 

subset of machine learning, is the application of automated tools and methods to 

automate the process of learning with the aim of increasing accessibility to machine 

learning for people with little to no background in software engineering. It aims to do so 

by helping them choose and configure the best algorithms for a given use case, as well 

as automate a number of steps in the machine learning pipeline, including feature 

selection, model selection, hyperparameter tweaking, and deployment. 
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Deep learning, another branch of machine learning, focuses specifically on neural 

networks with numerous layers, also referred to as deep neural networks. By attempting 

to mimic the structure of the human brain, deep learning algorithms enable machines to 

automatically learn and represent data in hierarchical levels. Deep learning can 

automatically learn complex features and representations from raw data, and therefore 

can replace laborious feature engineering, which has led to its rise in popularity. Common 

deep learning designs include Convolutional Neural Networks (CNNs) for image 

processing and Recurrent Neural Networks (RNNs) for sequential data. In conclusion, 

deep learning is a subset of machine learning that uses deep neural networks, machine 

learning is the broad area that encompasses many learning methodologies, and AutoML 

is a collection of tools and methods intended to automate and streamline the machine 

learning process. 

At this point it is crucial to note that AI like all other technologies can be categorized 

into several eras, each marked by significant advancements and changes in AI research 

and technology. The commonly recognized eras of AI include(Council of Europe, 2024): 

➢ Birth of AI (1940s-1960s): The period between 1940 and 1960 was strongly 

marked by rapid technological developments and the ambition to merge the 

functioning of machines and humans. However, hardware limitations at the time 

made the use of computer language difficult. Despite these limitations some 

foundations still present today were developed. Examples are LTM (logic theorist 

machine) which was developed as early as 1956. 

➢ Expert systems (1980s-1990s): The development of the first microprocessors at 

the end of 1970 led AI to take off, thus leading to the golden age of expert systems. 

Examples of such systems are the DENDRAL (expert system specialized in 

molecular chemistry) developed by MIT in 1965 and the MYCIN (system 

specialized in the diagnosis of blood diseases and prescription drugs) developed 

at Stanford University in 1972.  

➢ Data and computing power boom (2010-Present): The main factors leading this 

era are the easy access to massive volumes of data and the vast improvements in 

the efficiency of computer graphics card processors which accelerated the 

calculation of learning algorithms. 

These eras represent a broad overview, and it is essential to note that AI is continually 

evolving, with ongoing research and developments shaping its trajectory. 
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1.5.1 Machine learning 
 

Machine learning (ML) is one of the largest subsets of AI with three main areas of 

focus: 1) task-oriented studies aimed towards analysing learning systems to increase 

their performance in a predetermined set of tasks, 2) cognitive simulation, which involves 

the investigation and computer simulation of human learning processes and 3) theoretical 

analysis which is the theoretical investigation of possible learning methods and algorithms 

independent of the application domain(Michalski et al., 2013). Machine learning has many 

applications in modern life; examples are social network content filtering, object detection 

by autonomous vehicles, and speech to text transcription(LeCun et al., 2015). Moreover, 

its application is not limited to a single domain; on the contrary, ML algorithms are used 

in multiple scientific fields, for example, genetics and genomics(Libbrecht and Noble, 

2015),medicine(Kourou et al., 2015), remote sensing (Belgiu and Drăguţ, 2016) and 

agriculture(Gao et al., 2019). A short definition of machine learning would be the use of 

algorithms to learn from existing data and make predictions about unseen data (Figure 

3). 

 

 
Figure 3. Machine learning representation. Source: dltlabs 

 

The two main machine learning configurations are supervised and unsupervised 

learning (Figure 4). In supervised learning, the algorithm is presented with the input 

variables(x) and an output variable(y) and is asked to learn the mapping function from the 

input to the output y=f(x). In supervised machine learning, the algorithm is provided with 

known quantities to support future judgments and is usually used for classification 

problems where the association between input and output labels is sought or for 

regression problems where the aim is to map an input to a continuous output. For the 

classification problem, the goal is to create a mapping function (f) from input variables (x) 

to discrete output variables (y) such as 'apple' or 'banana,' 'green' or 'red.' In regression 

problems, the algorithm needs to create a function(f) that maps input variables(x) to a 

continuous output variable(y), such as the 'salary' or 'weight' of a person. 
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On the other hand, unsupervised learning is a technique used when only the input 

data (x) are available with the aim of finding patterns in them. The algorithm tries to model 

the structure or distribution in the data in order to learn more about them and to infer 

patterns from a dataset without labelled outcomes. An example of unsupervised learning 

could be a market survey. The responses are gathered, and the market manager can 

choose whether to cluster the customers using their demographic variables (age, sex, 

education level, income level) or to cluster the responses according to changes in price. 
 

 
Figure 4. The two types of machine learning techniques. Source: (Ma et al., 2018) 

 

1.5.2 Automated Machine Learning (AutoML) 
 

Automated Machine Learning (AutoML) is a paradigm-shifting technique in the field 

of Artificial Intelligence that primarily focuses on supervised learning tasks, such as 

regression and classification and addresses the challenges and complications associated 

with putting machine learning models into real-world applications. As the need for 

machine learning solutions grows across a variety of industries, AutoML emerged as a 
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critical tool that democratizes the application of advanced analytical techniques through 

model creation automation. It essentially makes use of automated tools and procedures 

to streamline and optimize the entire machine-learning pipeline. Without AutoML, every 

step in a typical data science pipeline, such as data preprocessing, feature engineering, 

and hyperparameter optimization, is executed manually by machine learning experts.  On 

the other hand, using AutoML allows a simpler development process where a few lines of 

code can generate the code necessary to begin developing a machine 

learning model(IBM, 2024). Thus, making previously labour-intensive procedures less 

complicated and ultimately making machine learning more accessible to a larger 

audience, including those with little to no prior experience in the field. 

Every AutoML solution consists of several key components (Figure 5): 

1. Feature Preprocessing: AutoML tools automate transformation, and normalization 

of raw data, ensuring it is appropriately prepared for the modelling phase. 

2. Feature Selection: Leveraging advanced algorithms, AutoML assists in the 

automatic extraction of relevant features from raw data, reducing the need for 

manual intervention and domain expertise. 

3. Model Selection: AutoML algorithms intelligently explore a range of machine 

learning models, selecting the most suitable architecture for a given dataset and 

problem. 

4. Feature construction: Creating new features from existing data, which designed to 

be more informative helping the model learn better and ultimately being more 

accurate. 

5. Parameter optimization: The optimization of model hyperparameters, a crucial and 

often intricate task, is automated through AutoML, enhancing the performance of 

the selected model. 
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Figure 5. AutoML pipeline, Source: https://towardsdatascience.com/automated-machine-
learning-d8568857bda1 

 

As a result, AutoML holds a significant promise in democratizing machine learning by 

lowering the barriers to entry for practitioners. Its automated nature reduces the 

dependency on domain-specific expertise, allowing stakeholders to use machine learning 

more efficiently and cost-effectively. Moreover, by accelerating the model development 

lifecycle, AutoML enables rapid prototyping and iteration, which is crucial in dynamic 

environments where timely decision-making is imperative. 

To sum up, AutoML stands at the forefront of advancing the application of machine 

learning techniques, offering a comprehensive and accessible solution to practitioners 

across diverse domains, including agriculture. As the field continues to evolve, the 

integration of AutoML into standard data science workflows promises to revolutionize the 

landscape of predictive analytics, empowering experts and non-experts alike to unlock 

insights from their data with unprecedented efficiency. 

  

https://towardsdatascience.com/automated-machine-learning-d8568857bda1
https://towardsdatascience.com/automated-machine-learning-d8568857bda1
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1.6 Artificial Intelligence in agriculture 
 

Artificial Intelligence (AI) is rapidly transforming various industries, and agriculture is 

no exception. With the global population expected to reach 9.7 billion by 2050 and the 

demand for food increasing at an unprecedented rate, AI-powered solutions hold the 

promise to increase food quality and production by enhancing agricultural productivity, 

sustainability, and resource efficiency(Javaid et al., 2023). As mentioned earlier, precision 

agriculture is a farming management approach that uses various sensors and different 

data types to improve the efficiency and effectiveness of agricultural production. However, 

as the number of data points and the complexity of the data gathered increases, humans 

cannot cope with data processing. One of the most promising solutions is the use of AI 

algorithms that can quickly analyse vast amounts of data from sensors, drones, and 

satellites to identify areas that require specific attention. The use of AI, therefore, causes 

agriculture to shift from empirical decision-making to data-driven decision-making, 

allowing farmers to make informed decisions that maximize resource use and minimize 

environmental impact. The major subdomains of agriculture that AI techniques have 

found application are the following (Bannerjee et al., 2018): 

• General crop management 

• Pest management 

• Disease management 

• Agricultural product monitoring and storage control  

• Soil and irrigation management 

• Weed management 

• Yield prediction 

AI applications have increased in popularity, with numerous academic and commercial 

solutions  having been presented over the years, with a systematic review identifying 

more than 150 papers based on the existing automation applications in agriculture from 

1960 to 2021(Wakchaure et al., 2023). 

 

1.6.1 Artificial Intelligence for water stress detection 
 

 As mentioned in the previous chapters, irrigation is one of the most critical 

agricultural inputs for achieving high-quality products and high yields; as a result, it has 

drawn the attention of many AI researchers. Numerous publications can be found using 

a variety of sensors and cameras as well as various AI algorithms. 

 Estimating water stress using satellite imagery is one of the most popular 

approaches, as it allows for large spatial coverage with minimal manual labour. AI is 

crucial in this approach as it allows for fast data processing. Various ML and AI algorithms 
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have been used, such as Genetic Algorithms (Hassan-Esfahani et al., 2015), and 

Gaussian mixture models (Huang et al., 2007)(Sun et al., 2017), all with promising results. 

 Another source of data is UAV, where multispectral imagery is used to produce 

various vegetation indices that, in turn, are used for water status estimation using AI 

algorithms such as Artificial Neural Networks (ANN)  (Romero et al., 2018)(Poblete et al., 

2017). Besides multispectral data, colour (RGB) data captured from UAV systems have 

also been used to characterize water stress in combination with ANN(Chandel et al., 

2022). However, as AI algorithms become more sophisticated and computational power 

cheaper, more complex approaches, such as fusing thermal and RGB UAV-captured 

images, are being investigated (Aversano et al., 2022). 

 A completely different approach that has received much consideration is using AI 

algorithms to estimate Evapotranspiration (ET) (Virnodkar et al., 2020). Once again, ANN 

and SVM are among the most commonly used algorithms (Dou and Yang, 2018), with 

additional state-of-the-art algorithms such as extreme learning machine (ELM) and 

adaptive neuro-fuzzy inference system (ANFIS) being tested (Dou and Yang, 2018). 

 Finally, a different approach towards identifying water stress was to use canopy 

temperature calculations (Andrade et al., 2018) or Crop Water Stress Indices (CWSI)  

together with ML algorithms such as Bayesian regularized neural network (BRNN), SVM 

with radial basis function (RBF) kernel, least absolute shrinkage and selection operator 

(LASSO), ridge regression, generalized linear model (GLM), multivariate adaptive 

regression splines (MARS), conditional inference tree (CIT), RF, eXtreme gradient 

boosting and cubist (Xu et al., 2018). 

 

1.6.2 Artificial Intelligence for fertilisation 
 

 Fertilisation is another crucial input to achieve high quality and yield. However, 

overuse of fertilisers can lead to environmental pollution. Therefore, researchers have 

focused on the problem of fertilisation determination and quantification with nitrogen((Cilia 

et al., 2014)(Quemada et al., 2014)(Argento et al., 2021)(Bagheri et al., 2013)(Link et al., 

2004)(Yi et al., 2007)(Lammel et al., 2001)(Basso et al., 2016)) and phosphorus 

(Siedliska et al., 2021) being the most commonly studied nutrients. Moreover, studies 

focusing on fertilisation intensity and not on specific nutrients have also been conducted 

(Hollberg and Schellberg, 2017)(Papadopoulos et al., 2023). 

 UAV and satellite imagery are widely used as data acquisition platforms for 

fertilisation applications, with data processing approaches including various AI agents. An 

example of this is the use of spectral and vegetation indices in conjunction with the 

Spectral angle mapper classifier (SAM)(Bagheri et al., 2013), quadratic linear regression 



Investigating the application of spectral imaging and AI in precision horticulture (agriculture) 

PhD Dissertation I. Malounas 

 

17 
 

(Argento et al., 2021), Linear regression(Quemada et al., 2014) to estimate nitrogen 

status and create fertilisation maps (Cilia et al., 2014). 

 Despite the sizeable spatial resolution of satellite and UAV imagery, proximal 

sensing appears to be the most common approach when determining fertilisation levels. 

Various sensors have been used depending on the wavelengths of interest and the 

environment in which the data acquisition occurred. One approach suggests the use of 

spectroradiometers in lab conditions combined with MLR (multiple linear regression) and 

ANN (artificial neural network) modelling(Yi et al., 2007). Another one, is the use of 

spectral proximal sensing and supervised classification (Backpropagation Neural 

Network, Random Forest, Naive Bayes, and Support Vector Machine) (Siedliska et al., 

2021). Moreover, spectral sensors have also been mounted to tractors as an alternative 

to UAVs or satellites to cover large areas (Link et al., 2004)(Lammel et al., 2001), while 

the Vegetation indices approach has also been tested for proximal remote sensing 

applications in combination with a random forests classifier(Hollberg and Schellberg, 

2017). 

 

1.6.3 Most common AI algorithms in agriculture 
 

 Building upon the previous chapters, it becomes apparent that AI is a crucial part 

of modern precision agriculture. As a result of the rapid growth of precision agriculture 

solutions, numerous systematic reviews have emerged in recent years, trying to 

encapsulate and present the latest trends in the use of AI and ML in agriculture. Based 

on those reviews, some of the most important and widely used algorithms are showcased 

below.  

Table 1. Summary of AI algorithms used in agriculture 

Reference 

(Review) 

Title Algorithms 

presented 

Conclusions 

(Gupta et al., 2022) Analysis of Some 

Popular AI & ML 

Algorithms Used in 

Agriculture 

• ANN 

• GA 

• Fuzzy logic 

• SVM 

• KNN 

• AI promotes 

agricultural 

growth 

• SVM 

provides 

more 

accurate 

results 

(Wakchaure et al., 

2023) 

Application of AI 

techniques and 

robotics in 

• Fuzzy logic 

• Genetic 

algorithm 

• FL, ANN, 

and GA are 

widely 
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agriculture: A 

review 

• ANN 

• Particle 

swarm 

optimization 

• Ant colony 

optimization 

• Firefly 

algorithm 

• Bat algorithm 

• Artificial 

potential field 

approach 

• Artificial bee 

colony 

algorithm 

• Harmony 

search 

algorithm 

• Cell 

decomposition 

• Simulated 

annealing. 

accepted in 

the field of 

agriculture 

• Most robot 

applications 

are 

developed 

using FL, 

GA, and 

ANN 

(Megeto et al., 

2021) 

Artificial 

Intelligence 

applications in the 

agriculture 4.0 

• CNN 

• Vector 

quantization  

• Gaussian 

mixture 

models 

(GMMs) 

• SVM 

• Random 

Forest 

• Hidden 

Markov 

Models 

• Multilayer 

Perceptron 

• SVMs and 

small NN are 

very popular 
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(Eli-Chukwu, 2019) Applications of 

Artificial 

Intelligence in 

Agriculture: 

A Review 

• Median of 

Medians 

• Fuzzy logic 

• ANN 

• Genetic 

algorithm 

• SVM 

• AI improved the 

agricultural 

sector 

• Below the 

average impact 

compared to its 

impact in other 

sectors 

. 

(Bannerjee et al., 

2018) 

Artificial 

Intelligence in 

Agriculture: A 

Literature 

Survey 

• Expert 

systems 

• ANN 

• Fuzzy logic 

• K-means 

• Since 1990, 

ANNs and fuzzy 

inference 

systems have 

been the most 

popular. 

• Recently, hybrid 

systems, neuro-

fuzzy or image 

processing 

coupled with 

ANN are gaining 

popularity. 

(Bhat and Huang, 

2021) 

Big Data and AI 

Revolution in 

Precision 

Agriculture: Survey 

and Challenges 

• ANN 

• Random 

Forest 

• Decision 

Trees 

• SVM 

• CNN 

• CNNs have 

been gaining 

popularity 

 

Based on the above findings, the most popular AI algorithms in agriculture are 

Artificial Neural Networks (ANN) and Support Vector Machines (SVM). There are several 

reasons why these algorithms are chosen on many occasions.  

ANNs offer the following advantages and characteristics: 

• Fault Tolerance: Even if one or more of their cells are faulty, ANNs can still 

operate. The spread nature of information storage throughout the network 

is the cause of this fault tolerance. 
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• Parallel Processing: ANNs can process information in parallel, they can 

handle numerous tasks at once. This enables them to effectively manage 

challenging jobs. 

• Training and Learning: ANNs are capable of learning from events and 

inferring patterns from them to make judgments. They can adjust to new 

data and withstand extended training periods. 

• Gradual Corruption: ANNs do not corrode or malfunction right away. Rather, 

individuals experience a slow deterioration over time that is controllable. 

• Speed: When it is important to quickly evaluate the taught target function, 

artificial neural networks (ANNs) come in handy. They are able to make 

decisions instantly and assimilate information quickly. 

• Effective Visual Analysis: Similar to how humans interpret images, ANNs 

can conduct efficient visual analysis. They can therefore be applied to 

applications such as picture recognition and classification. 

• Processing Unorganized Data: An important advantage in today's data-

driven environment is that ANNs can handle and organize disorganized 

data. They are fast and effective at organizing and classifying data. 

• Adaptive Structure: Because of their adaptable structure, artificial neural 

networks (ANNs) can change how they behave depending on the task they 

are assigned. They are adaptable and helpful in a variety of applications 

because of this. 

While SVMs, in turn, come with their advantages: 

• Effective in High-Dimensional Spaces: SVMs perform well in high-

dimensional feature spaces, making them suitable for tasks where the data 

may have many features. 

• Kernel Trick: SVMs can use the kernel trick to transform the input data into 

a higher-dimensional space, allowing them to handle non-linear 

relationships between features. 

• Global Optimization: SVMs aim to find the hyperplane that maximally 

separates different classes, leading to a global optimization objective. This 

contributes to robust and well-generalized models. 

• Margin Maximization: SVMs focus on maximizing the margin between 

different classes, which helps achieve better generalisation and resilience 

to noise in the data. 

• Versatility: SVMs can be adapted for classification and regression tasks, 

making them versatile for various machine-learning applications. 

In summary, ANNs are popular for their ability to process information in parallel 

and handle unorganized data, while SVMs are valued for their effectiveness in high-

dimensional spaces, global optimization objectives, and versatility in handling different 
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types of tasks. However, both algorithms require deep knowledge and extensive 

experience to optimize them and achieve good performance results. 
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1.7 Spectral imaging 
 

Spectral imaging is an imaging technique employed that involves acquiring and 

analysing spectral data across a range of wavelengths. This method provides a detailed 

and comprehensive understanding of the electromagnetic spectrum's interaction with a 

given object or scene. By capturing information beyond what is visible to the human eye, 

spectral imaging enables researchers to discern subtle differences in material 

composition, identify specific chemical components, and gain insights into biological 

specimens' structural and functional characteristics. The combination of such sensors 

with AI algorithms facilitates the extraction of valuable spectral signatures, contributing to 

advancements in various fields, including agriculture. The precision and versatility 

spectral imaging provides a significant promise for better understanding complex 

phenomena and fostering innovative solutions across various scientific domains. 

When referring to spectral imaging, both hyperspectral and multispectral sensors 

are included. The exact thresholds for what is considered "multispectral" or 

"hyperspectral" can vary, but the key distinction lies in the density and granularity of the 

spectral information captured. Multispectral sensors can generally capture a limited 

number of discrete bands, often ranging from a few (e.g., 3 to 10) to several dozen. On 

the other hand, hyperspectral sensors can usually capture a much larger number of 

spectral bands, ranging from tens to hundreds or more. 

Finally, it is worth mentioning that although the modern practice is to use 

aggressive designations such as multi and hyper added to “spectral imaging” to 

characterize the number of wavelength bands, it is proposed to avoid using such vague 

adjectives and use scientifically sound terminology instead, such as “imaging 

spectroscopy” or “spectral imaging”(Polder and Gowen, 2021). 

 

1.7.1 Multispectral Imaging 
 

As mentioned above, there is a common distinction between multi- and hyper-

spectral imaging, with a multispectral image consisting of limited specific wavelength 

ranges. Multispectral imaging aspires to allow the fast acquisition of spatial and spectral 

information, which can be processed by simple image processing and decision-making 

algorithms. The increased efficiency compared to other spectral imaging methods results 

from the reduction of the total size of the data, achieved with relatively low spatial 

resolution (capturing selected wavelengths). Three are the main capturing/scan methods: 

1) The point scan, 2) The line scan, and 3) The area scan. Because of the fast image 

capture constraint, the point-scan method is not used in practice, as scanning along two 

dimensions is time-consuming. The line-scan and area-scan methods (Figure 6) are used 

with minor adjustments, while they can be both tuned to capture images at selected 

wavelengths. For the line-scan method, specifying the positions of all the useful tracks 
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along the spectral dimension of the detector allows for the collection of fewer 

wavelengths. As a result, only the information from the specified tracks is collected, 

reducing the capturing time and the size of every line-scan image (y, λ). On the other 

hand, the area-scan method reduces capturing time by simultaneously allowing single-

band image capturing at multiple selected wavelengths (Qin et al., 2013). 

 

Figure 6. Line scan vs Area scan cameras. Source: Fainstec 

 

1.7.2 Hyperspectral Imaging 
 

Compared to multispectral imaging, hyperspectral imaging allows the capturing of 

more extensive spatial and spectral information(Table 2) and is one the most promising 

areas in remote sensing, proximal sensing, close-range sensing, etc. (Gowen et al., 

2007). This promise enabled the development of improved optics and sensor 

technologies that have not only improved the spatial and spectral resolution of those 

cameras but also reduced their size and cost(Monteiro et al., 2007). 
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Table 2. Comparison of RGB imaging near-infrared spectroscopy (NIRS), multispectral imaging 
(MSI), and hyperspectral imaging (HSI). 

Feature RGB imaging NIRS MSI HSI 

Spatial information ✔  ✔ ✔ 

Spectral Information  ✔ Limited ✔ 

Multi-constituent information Limited ✔ Limited ✔ 

Sensitivity to minor 
components 

  Limited ✔ 

 

A hyperspectral image can be described as a cube consisting of two spatial 

dimensions and one wavelength dimension(Lu and Chen, 1999). The wavelength 

dimension is specified by hundreds of contiguous wavebands (Figure 7). This results in 

each image pixel being a column vector with dimensions equal to the number of 

wavebands. More spectral bands, therefore, result in richer spectral information. 

Continuing the multi- and hyper-spectral comparison, as the size of the third dimension 

is considerably larger in the hyperspectral images, it can be argued that each pixel vector 

contains more spectral information, an attribute crucial for data analysis(Gowen et al., 

2007). However, using more information-dense images comes with a trade-off: 

computational time increase. Primarily, this is counteracted by the continuous 

advancements in computer science, both hardware, and software, that have enabled the 

use of information-rich images without sacrificing much time. Despite the advancements, 

the accuracy speed trade-off will always exist, with increased accuracy coming from a 

sacrifice of speed(Huang et al., 2017). 
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Figure 7. Schematic representation of hyperspectral image cube Source:(Stamatas et al., 2003) 

Similarly to multispectral imaging, three are the main approaches for obtaining 

hyperspectral images: two spatial scan methods (point-scan and line-scan) and one 

spectral-scan method(area-scan) (Figure 8). In the point-scan or whiskbroom method, a 

single point is scanned along the two spatial dimensions (x, y) by moving the object or 

the sensor. The single spectrum of each pixel is then captured using a point detector-

equipped spectrophotometer. Using this method, the hyperspectral image is assembled 

pixel by pixel. The second approach is the line scan or pushbroom method, an extension 

of the point-scan method. Using this method for every spatial point in the linear field of 

view (FOV), a slit of spatial information as well as complete spectral information is 

acquired simultaneously. This results in a two-dimensional image with one spatial 

dimension (y) and a spectral dimension (λ) captured each time. The hypercube is 

progressively completed as the slit is scanned in the direction of motion (x). Both scan 

methods provide good quality results but have very low efficiency, with long integration 

times being a prerequisite to obtaining a full hyperspectral image. The last method is the 

area-scan or band sequential method, which captures a two-dimensional single-band 

greyscale image (x, y) with full spatial information at once. The hypercube is completed 

by stacking single-band images as the scan is performed. One of the main benefits of this 

method is that it does not require movement between the object and the sensor(Qin et 

al., 2013). 
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Figure 8. Methods of spectral image acquisitions with left image: point scan, middle image line 
scan, and right image area scan. Source: (Qin et al. 2013) 

 

Despite the three different methods used to build a hyperspectral cube, a 

hyperspectral device usually consists of the following parts: a monochrome charged 

couple device (CCD) or complementary metal oxide semiconductor (CMOS) image 

sensor which is used to acquire the spectral image, and a dispersive means (prism or 

grating) which is integrated into the optical system. The drawback of dispersive means is 

that the image is analysed per line, and the mechanics are integrated into the optical train. 

Optical band-pass filters, tunable or fixed, e.g., rotary filter wheels, liquid crystal tunable 

filters, and acousto-optic tunable filters, are a solid alternative (Schelkanova et al., 2015). 

Using optical band-pass filters to acquire hyperspectral images means the spectrum must 

be scanned in steps. Finally, a third method to obtain the spectrum of a light source is the 

Fourier transform spectroscopy. In this measurement technique, spectra are collected 

based on measurements of the coherence of a radiative source, using time-domain or 

space-domain measurements of electromagnetic radiation or another type of 

radiation(Pisani and Zucco, 2009). 

 

1.7.3 Spectral imaging in agriculture 
 

As mentioned earlier, spectral imaging in agriculture has emerged as a powerful 

tool, leveraging advanced technology to enhance various aspects of crop management 

and monitoring. Recapping: this imaging technique involves capturing and processing a 

broad spectrum of wavelengths, providing detailed information about the composition and 

health of crops.  

One of the primary applications of spectral imaging in agriculture is precision 

farming. By analysing the reflected light from crops across different spectral bands, 

farmers can gain insights into the nutritional status, moisture levels, and overall health of 

plants. This enables precise and targeted interventions, such as optimized irrigation and 

fertilisation, ultimately improving crop yield and resource efficiency. On this topic (Ruett 

et al., 2022) investigated the applicability of spectral imaging for determining the vitality 

of shoots and roots in ornamental plant production, while (Kim et al., 2010) used spectral 
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imaging for the detection of water stress in apple trees and (Williams et al., 2023) for 

differentiating between biotic and abiotic stress in raspberry plants. 

Moreover, spectral imaging plays a crucial role in disease detection and pest 

management. The unique spectral signatures of diseased plants or infestations can be 

identified, allowing for early detection and timely intervention. Disease detection has been 

among the most researched topics as each disease requires a different treatment and, if 

left untreated, can cause a reduction in yield and quality and, on some occasions, put at 

risk human health (e.g., Aflatoxin produced by the fungi Aspergillus flavus and Aspergillus 

parasiticus in crops such as corn). According to the Scopus statistics, there are 412 

relevant papers from 2005 to 2020 where ‘plant disease’ and ‘hyperspectral’ are used as 

keywords for the search (Cheshkova, 2022). The focus has not been on a single crop but 

instead spread on multiple ones depending on each researcher's topic of interest. The 

following table presents a short list of publications on various crops and disease 

combinations to showcase the variability in crops and diseases. 

Table 3. Diseases and crops where spectral imaging has been used. 

Crop Disease Reference 

Tomato Gray mold (Xie et al., 2017) 

Wheat Powdery mildew (Khan et al., 2021) 

Apple Apple scab  (Gorretta et al., 2019) 

Strawberry Gray mold and 

anthracnose 

(Zhang et al., 2023) 

Tea plants Anthracnose (Yuan et al., 2019) 

Grapevine Ochratoxin A (Templalexis et al., 2023) 

Squash Powdery mildew (Abdulridha et al., 2020) 

Pistachios Aspergilus Flavus (Mastrodimos et al., 2022) 

Palm trees BSR disease (Lee et al., 2022) 

Rice Sheath blight (J. Zhang et al., 2021) 

Banana Black Sigatoka (Ugarte Fajardo et al., 

2020) 

 

Another significant benefit of spectral imaging is its capacity to assess soil health. 

By analysing the spectral information reflected from the soil surface, farmers can gather 

data on soil composition, moisture content, and nutrient levels. This information guides 

informed decisions on soil management practices, helping to optimize crop growth 

conditions and reduce environmental impact. (Jia et al., 2017) used spectral imaging to 

classify soil types and determine soil total nitrogen, (Nanni et al., 2021) used it to map 

organic matter and soil particle size, while (Haijun et al. 2017) used it to predict soil 

moisture. 

Furthermore, spectral imaging supports crop phenotyping, which involves the 

comprehensive analysis of plant traits. Researchers and agronomists can utilize this 

technology to study and understand the genetic characteristics and variations in different 
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crop varieties. This information is invaluable for crop breeding programs, enabling the 

development of more resilient and productive plant varieties.(Bodner et al., 2018) used 

spectral imaging for characterizing the root system architecture, (Banerjee et al., 2020) 

used it to derive biomarkers for genotypic nitrogen response, while (Pandey et al., 2017) 

focused on the analysis of plant leaf chemical properties. 

To sum up, spectral imaging in agriculture had found uses in a variety of tasks 

ranging from crop phenotyping and soil health assessment to precision farming and 

disease detection. By incorporating spectral imaging into farming methods output and 

resource efficiency improvements are expected as well as resilience and sustainability 

strengthening of modern farming systems.  
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1.8 CIELAB Colour space 
 

 Colour is defined as the aspect of things caused by differing qualities of light being 

reflected or emitted by them. It is explicitly associated with electromagnetic radiation of a 

specific range of wavelengths visible to the human eye. Colour is a perception of energy 

and specific wavelengths of light that reach our eyes. Perceived colour can vary based 

on a person's biology and how their brain receives signals, so two people may not see an 

object as the same colour(Nassau, 2024).  

 Colour is perceived differently by each person, like smells or sounds, so it is a 

subjective stimulus to which many factors contribute, such as the light source, the mood, 

the angle of observation, and the colour sensitivity of the observer. Despite their 

subjectivity, however, colours can be compared objectively as long as the conditions in 

which they are viewed are stable and independent of external factors. Three basic 

properties characterize colour: 

- The hue refers to an object's primary colour and is the first criterion for distinguishing 

colour. 

- The chromatic saturation (chroma) describes the colour's purity. 

- The brightness when the hue is held constant, and the three components of the colour 

(red, green, blue) are reduced simultaneously while maintaining their proportion, reducing 

the brightness of the colour. 

 Various colour coordinate systems can describe the colour of an object. Some of 

the most widely used systems are Munsel, RGB (red-R, green-G, blue-B), and the 

Comission Internationale de l'Eclairage's-CIE): CIEL*a*b* (Figure 9), CIEXYZ, CIEL*u*v*, 

CIEYxy and CIELCh. According to the CIE, the human eye has three receptors: red, 

green, and blue, and all colours result from the combination of these three primary 

colours. The amounts of red, green, and blue required to form any colour are called 

tristimulus factors and are denoted respectively by the letters X, Y, and Z (Pathare et al., 

2013) 

 

Figure 9. Left: Munsell colour space, Centre: RGB colour space, Right: CIEL*a*b* colour space 
Sources: Munsell colour, 2013, Centre, Hernandez 2007, OPI 2013 
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The CIE introduced the CIELAB or L*a*b* colour model in 1976, derived from the 

CIE XYZ colour space. It is a visually uniform colour space that best approximates the 

human perception of colour differences of all colour systems. Each colour is described by 

three factors as in the RGB colour model and is influenced by the Munsell colour system. 

In CIELAB, the colour factors are called L*, a*, and b* and are represented in a 3D 

Cartesian coordinate system. The L* (Lightness) factor carries the information of the 

brightness of the image and takes values from 0 (black) to 100 (white), while the a* and 

b* factors, respectively, carry the following colour information without any numerical 

boundaries for them. Positive values of a* represent shades of red, and negative values 

represent shades of green. Positive values of b* represent shades of yellow, and negative 

values represent shades of blue(Schanda, 2007). These values can be placed in the 

three-dimensional CIE colour coordinate space, so that each colour-hue is characterized 

by a distinct point in it.  

In other words, CIEL*a*b* compares a sample with a standard colour sample and 

performs a numerical determination based on their colour differences. The difference in 

luminance L* when positive means the sample is brighter than the standard, and when 

negative, darker. The difference a* when positive is redder than the standard and when 

negative is greener than the standard. Similarly, when the difference b* is positive, the 

sample is more yellow, and when negative, it is bluer than the standard. 

The CIEL*a*b* colour model can also be represented in a cylindrical polar 

coordinate system with the CIEL*C*h* model (Figure 10). Where L* is the luminance, C* 

is the chromatic saturation, which defines the intensity or purity of the colour, and h* is 

the hue, which is measured in degrees and defines the hue by taking values of 0º for red, 

90º for yellow, 180º for blue-green and 270º for blue. 

 
Figure 10. CIE L*a*b* (Left) and CIE L*C*h* (Right) colour spaces, Source: ΟΗWEB, 2013. 
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When the C difference is positive, the colour has a higher density, while when 

negative it has a lower density than the standard. Finally, the difference h when positive 

will be closer to the opposite colour than the standard, for example, for a red sample, the 

colour will be bluer than the standard.  

Each of the above-mentioned values is calculated using one of the following equations: 

 

C ∗ =  √(a ∗)2 +  (b ∗) [1] 

 

ℎ =  𝑡𝑎𝑛−1(
𝑏∗

𝑎∗
)  [2]  

 

h = 0   [3] 

 

h = 90 when a* = 0 and b* > 0  [4] 

 

h =  180o +  tan−1(
b∗

a∗
) [5] 

 

h = 270 when a* = 0 and b*<0 [6] 

h =  360o +  tan−1(
b∗

a∗
) when a*>0 abd b* <0  [7] 

The following equation can determine the total change in colour between two points in 

space: 

 

𝛥𝛦 =  √(𝛥𝐿 ∗)2 + (𝛥𝑎 ∗)2 + (𝛥𝑏 ∗)2  [8] 

 

Where ΔL, Δα και Δb are, respectively, the differences from an original colour point or 

reference point. However, as the human eye cannot distinguish such colours, a* and b*, 

the data are converted into colour functions of hue and chroma (Bartz and Brecht, 2002). 
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1.8.1 CIELAB in agriculture 
 

 The CIELAB colour space has valuable applications in various fields, including 

agriculture. This colour space is based on human perception of colour, making it more 

perceptually uniform compared to other colour models like RGB or CMYK. In agriculture, 

where colour can be indicative of crop health, quality, and ripeness, utilizing CIELAB 

offers several advantages. 

 One significant application of the CIELAB colour space in agriculture is crop 

monitoring and management. Farmers and researchers can assess crop health and 

detect potential issues such as nutrient deficiencies, diseases, or pest infestations by 

analysing colour variations in plant leaves, fruits, and other agricultural products. The 

perceptual uniformity of CIELAB allows for more accurate and consistent colour 

measurements across different lighting conditions and environments, enhancing the 

reliability of such assessments. Examples of such applications are growth monitoring of 

onion and garlic (Kim et al., 2023), generic plant disease detection (El Sghair et al., 2017), 

detection of unhealthy citrus leaves(Goyal et al., 2022) and leaf blight (Fayyaz et al., 

2022) 

Moreover, CIELAB facilitates the development of colour-based sorting and grading 

systems for agricultural products. By establishing standardized colour thresholds based 

on Lab values, sorting machines can efficiently categorize produce according to quality 

parameters such as ripeness, size, and blemishes. This not only improves the efficiency 

of pre and post-harvest processing but also ensures uniformity in product quality, 

benefiting both producers and consumers. More precisely, CIELAB has been used for 

determining the maturity of pomegranate(Pérez, 2021), lemons (Conesa Martinez et al., 

2019) and peaches (Ferrer et al., 2005), for evaluation of tobacco leaves towards 

automatic harvesting (Guru and Mallikarjuna, 2010), for quality grading (Pandey et al., 

2014) and defect detection such as browning in mango (Zheng and Lu, 2012). 

In addition to crop monitoring and sorting, the CIELAB colour space is instrumental 

in agricultural research and development. Researchers leverage Lab values to quantify 

and compare colour attributes of different plant varieties, helping identify traits associated 

with desirable characteristics such as flavour, nutritional content, and shelf-life. This 

knowledge informs breeding programs and agronomic practices aimed at enhancing crop 

yield, resilience, and marketability. One commonly studied colour pigment is anthocyanin, 

found in the berry skin of grapes (Liang et al., 2011) and plums (Rampáčková et al., 2021) 

Furthermore, CIELAB-based colour analysis supports precision agriculture 

techniques by enabling targeted interventions at the plant level. By precisely identifying 

areas of concern based on colour deviations, farmers can implement localized treatments 

such as fertilisation or pesticide application, optimizing resource utilization and minimizing 

environmental impact. Applications such as weed recognition (Dyrmann and Jørgensen, 

2015), identifying and segmentation of vegetation (Setyawan et al., 2018)(Concepcion II 
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et al., 2021), and evaluation of nitrogen status in wheat (Yakushev and Kanash, 2011) 

are just some examples. 

Finally, CIELAB has also found more niche applications such as land use and land 

cover classification (Vignesh et al., n.d.), soil classification and determination of its 

physical, chemical, and biological properties based on colour(Baek et al., 2022)(Roy et 

al., 2006)(Ibáñez-Asensio et al., 2013) and even in situ detection of glyphosate on plant 

tissues in combination with cysteamine-modified gold nanoparticles(Tu et al., 2019). 

Overall, the adoption of the CIELAB colour space in agriculture is wide and 

underscores its significance in advancing crop management practices, quality control 

measures, and scientific research within the agricultural sector. Its perceptual uniformity, 

coupled with advancements in technology and data analysis, has led to novel 

opportunities for improving productivity, sustainability, and profitability in farming systems 

worldwide.  
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1.9 Spectral Imaging vs. CIELAB: Unveiling the differences 
 

Understanding colour goes beyond perceiving its basic hue. Both spectral imaging 

and the CIELAB colour space delve into the world of colour but through vastly different 

approaches. Choosing the proper technique depends on the specific needs and desired 

information. 

Spectral imaging does not capture just an image, but an entire spectrum of light 

reflected from each pixel, gathering light information across hundreds of narrow 

wavelength bands and providing detailed spectral fingerprints for every point in the image. 

This "spectral data" unlocks a wealth of information beyond simple colour perception. 

Spectral imaging can thus facilitate applications such as: 

• Material differentiation: Identify subtle differences in visually identical 

materials based on their unique spectral signatures. 

• Chemical analysis: Analyse the presence and concentration of specific 

chemicals based on their absorption patterns in the spectrum. 

• Non-destructive testing: Analyse objects without physically altering them. 

However, there is a trade-off to the information-dense images it can capture. To name a 

few: 

• Data complexity: Analysing large datasets with hundreds of spectral bands 

requires specialized software and expertise. 

• Cost: Hyperspectral cameras and associated equipment can be expensive 

investments. 

• Real-time limitations: Processing such vast data volumes often limits real-time 

applications. 

On the other hand, CIELAB colour space, as mentioned earlier, aims to quantify colour 

perception in a way that closely resembles human vision, providing some unique 

characteristics:  

• Simplicity: Easy to understand and use, requires only three values to represent 

colour. However, it is worth noting that there also many complex indices such as 

BI and YI which integrate the L,a,b in a  more complex way. 

• Standardization: Widely adopted across various industries, enabling meaningful 

comparisons across different measurements. 

• Computational efficiency: Data analysis is relatively straightforward, making it 

suitable for real-time applications. 

On the contrary, to spectral imaging, the simplicity of the images comes with its 

weaknesses: 
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• Limited information: Only perceived colour is represented, lacking spectral 

details captured by spectral imaging. 

• Material differentiation limitations: Unable to distinguish materials based on 

subtle spectral differences invisible to the human eye. 

Thus, the choice between hyperspectral imaging and CIELAB depends on the specific 

use case and goals. Spectral imaging is most suitable if detailed material analysis, 

chemical identification, or non-destructive testing is required. However, if quantifying 

perceived colour is only needed, then CIELAB is a suitable option, providing ease of use 

and efficiency. Finally, both techniques are often combined, with CIELAB providing initial 

colour classification and hyperspectral imaging offering a more profound analysis of 

specific areas of interest. 

 

1.10 Spectral imaging and Artificial Intelligence: a perfect fit 
 

Spectral imaging, a technology capturing a wide range of electromagnetic 

wavelengths, seamlessly aligns with Artificial Intelligence's (AI) capabilities due to its 

inherent ability to provide rich and detailed spectral information. This synergy between 

spectral imaging and AI is particularly advantageous for various applications. 

Firstly, the vast amount of spectral data acquired by spectral sensors serves as a 

robust foundation for AI algorithms. The high spectral resolution enables the identification 

and discrimination of subtle differences, enhancing the precision of AI models. This 

comprehensive spectral information provides a nuanced understanding of the target, 

allowing for more accurate classification and analysis. 

Secondly, spectral imaging complements AI by addressing the challenges posed 

by complex and dynamic environments. Spectral imaging excels in capturing detailed 

information about scenes with diverse and overlapping objects, a scenario where 

conventional imaging may fall short. When integrated with spectral data, AI algorithms 

can navigate through intricate datasets, discerning patterns and features that might be 

imperceptible to the human eye. 

Moreover, the synergy between spectral imaging and AI facilitates automation and 

efficiency. AI algorithms can be trained to process and interpret spectral data rapidly, 

expediting crop monitoring, disease detection, and environmental assessment. This 

streamlined automation not only reduces manual effort but also enhances the scalability 

of applications across diverse domains. 

Furthermore, combining spectral imaging and AI contributes to improved decision-

making processes. The detailed spectral signatures captured by spectral sensors enable 

AI models to generate insightful analyses, aiding in informed decision-making across 
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agriculture and environmental monitoring. This amalgamation of technologies empowers 

users with actionable insights derived from a deeper understanding of the data. 

In conclusion, spectral imaging and AI compatibility lie in the former's ability to 

capture rich spectral information, which serves as a valuable input for AI algorithms. This 

fusion enhances precision, allows for complex environment applications, automates 

processes, and facilitates data driven decision-making. Spectral imaging and AI 

integration emerge as a powerful combination, promising advancements in diverse fields 

through high resolution data and efficient data analysis. 

  



Investigating the application of spectral imaging and AI in precision horticulture (agriculture) 

PhD Dissertation I. Malounas 

 

37 
 

1.11 Common problems with spectral imaging and AI 
 

1.11.1Big data  
 

One of the most common problems of spectral sensors is the large amounts of 

data generated due to their large spectral resolutions (hundreds of bands) and 

considerable spatial resolution (Adão et al., 2017). From an AI perspective, this would be 

considered a benefit; however, these amounts of data are linked to relatively few samples, 

with one image/sample containing lots of information but being used only once by the AI 

models. Another side effect is the significant increase in the resources and computational 

time required for extracting main features from the spectral images (Mahesh et al., 2015), 

which makes handling it cumbersome. Both the resources required as well as the 

complexity of data acquisition and analysis hinder the use of spectral imaging(Adão et 

al., 2017). 

All the previous can be summarised to what is known as the dimensionality 

problem of spectral imaging, which has been identified by numerous researchers (Khan 

et al., 2022)(Liu et al., 2015) and that guides the research community to develop cost-

effective and efficient algorithms to speed up spectral data processing while increasing 

model performance. There are two ways towards that goal: band selection and feature 

selection. Bands that contain more information, show less data correlation, and present 

good separability are preserved. Feature extraction indexes and methods that are easy 

to implement and with high extraction accuracy are then used .(Yu et al., 2022) 

 

1.11.2 Model generalisation 
 

Finally, another major problem is model generalisation, which refers to the 

challenge of applying spectral imaging techniques across different conditions, 

environments, or contexts. Most of the results published that utilise hyperspectral imaging 

follow a common methodology with minor adjustments to achieve good results. The 

common methodology used for data processing once the hyperspectral images have 

been acquired can be summarized in a specific number of steps, as presented by (Wang 

et al., 2015): 

1. Pretreatment (e.g., Derivative correction, Smoothing) 

2. Methods for Variable selection 

3. Discriminant methods 

4. Calibration of the model  
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5. Evaluation of the model 

The algorithms selected and what extent they are used is use case specific and 

can vary. (Medic, 2023) made use Partial Least Square (PLS) regression algorithm and 

spectral smoothing, namely Savitzky–Golay, to achieve a coefficient of determinationR2 

of 0.91 for estimation of DM in apples. Apples were also been the focus of studies by 

(Zhang et al., 2019) that achieved similar results using feature extraction (Principal 

Component Analysis) and PLS algorithm and (Kavuncuoğlu et al., 2023), that made use 

of feature selection (Bootstrap Random Forest) and Artificial Neural Networks. 

Furthermore, (Taghizadeh et al., 2009) used PLS regression, spectrum smoothing 

(Savitsky–Golay) and normalization (Standard Normal Variate) for moisture content 

prediction in white button mushrooms, with a performance of R2 of 0.8. Lastly, 

(Muruganantham et al., 2022) by focusing on unpeeled whole potato tubers achieved an 

R2 of 0.53 using PLS and feature selection (β-coefficient and VIP).  

Despite the excellent results, all previously mentioned research focuses on single 

fruit/ vegetable/crop. Currently, models capable of generalizing additional crops have not 

been at the center of research. 

The most important factors that impede generalizability are the following: 

1. Variability: Different crops, varieties, regions, high intra-class spectral-spatial 

variability, atmospheric and daylight conditions make spectral models lack 

universality (Signoroni et al., 2019). 

2. Calibration: Spectral imaging and chroma meter systems require precise 

calibration to ensure accurate and reliable measurements. However, variations in 

sensor response, illumination sources, and environmental factors can introduce 

calibration errors, leading to inaccuracies in spectral data interpretation. 

3. Limited Training Data: Training spectral imaging algorithms typically requires 

large volumes of labelled data to learn complex patterns and relationships. 

However, such datasets are limited, and collecting and annotating such data can 

be labour-intensive and costly, particularly for niche or specialized applications, 

leading to a scarcity of training data and potential overfitting issues. 

4. Transferability: Spectral imaging models trained on data from specific 

environments or conditions may struggle to generalize to new, unseen scenarios. 

This lack of transferability can limit the practical utility of spectral imaging 

technologies, particularly in applications where adaptability to diverse operating 

conditions is essential. 

As a result of the above, the generalisation and applicability of spectral imaging 

developed methods have yet to be explored(Shuai et al., 2024). 
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1.12 Broccoli 
 

The crop of selection for this dissertation is broccoli. The selection of broccoli as 

the focal point of this dissertation stems from a multifaceted rationale ranging from its 

importance to modern agriculture and human nutrition to the challenges its morphology 

poses to precision agriculture solutions. In essence, the selection of broccoli as the 

subject of this dissertation is driven by a commitment to advancing agricultural knowledge 

and addressing the pressing challenges precision agriculture is facing. 

 

1.12.1 General Information 
 

Broccoli has been of considerable interest worldwide in recent decades, and its 

consumption has increased significantly during the winter months due to the publicity it 

has received for its dietary qualities as well as its medicinal properties for the prevention 

of various forms of cancer in humans. Large quantities of broccoli are produced in the 

USA, Italy, northern European countries, and cold regions of the Far East (Olympios, 

2015). 

Broccoli is considered a native plant of southern Europe and the eastern 

Mediterranean, a popular vegetable of the Italians since Roman times, who consumed it 

raw or cooked, but mainly for medicinal purposes. Today, there is still confusion about 

the origin of broccoli and cauliflower. The most widely accepted view is that broccoli is 

the ancestor of the early cauliflowers grown today. It is one of the few vegetables that 

have become very popular worldwide in recent years. Until 1920 it was not popular in the 

U.S. until Italian immigrants brought it to California and began growing it (Olympios, 

2015). 

 In Greece today, mainly varieties with green flower heads and much less varieties 

with violet flower heads are cultivated. The head or edible part of the broccoli consists of 

densely arranged flower buds in an inflorescence and tender parts of the stem end, dark 

green or violet in colour, depending on the variety, with the stem being about 15 cm long 

(Olympios, 2015). 

 

1.12.2Botanical Characteristics 
 

Broccoli is an annual or biennial dicotyledonous, herbaceous plant and belongs to 

the family Cruciferae in the Brassica oleracea var italica species. The plant grows to a 

size of 50-90 cm and forms larger spaces between shoots compared to cabbage and 

cauliflower. During its growth, a short stem is formed, the top of which is divided into a 

number of secondary shoots that enlarge, become fleshy, form closed flowers, and 
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together form the marketable head. The leaves first appear in a rosette, and later, the 

space between leaves spaces become elongated. The leaves have a strong central nerve 

which is colourless-greyish-green. A central flower head develops in the centre of the 

plant on the unbranched central stem. The flower head appears branched, and a compact 

hemispherical head is formed. The colour of the head is green or violet, depending on the 

variety, and is surrounded by leaves without being entirely covered by them. In broccoli, 

after the central head has been removed, lateral floral inflorescences of smaller size 

develop at the bases of the lower leaves. The dominance of the top flower head influences 

the development of the secondary flower heads. After the top flower head is harvested, 

the secondary develops and is harvested later (Olympios, 2015). 

 

1.12.3 Varieties 
 

The cultivated varieties of broccoli are divided into five categories:  

i. Depending on their earliness, i.e., the time required from sowing to harvesting 

the final product. They are divided into early, medium and late. 

ii. Depending on the growing season, they are divided into autumn, winter and 

spring varieties. 

iii. Depending on the flower head size, large heads are preferred for the fresh 

market and small heads for the frozen market. 

iv. Depending on their ability to form only one flower head, the central one, or to 

form lateral (second-order) flower heads on the axils (bases) of the leaves 

(parapillar bracts).  

v. Depending on the colour of the flower head (dark or light green or red-violet). 

The essential quality characteristics sought in broccoli cultivars and hybrids are 

the shape, color, consistency of the flower head, the size of the individual flower buds of 

the florets, the extent of branching, the length of the intercalary spaces, the production or 

not of lateral flower heads, the ability of the flower heads to flower and after harvest and 

disease resistance. 

The main varieties and hybrids cultivated in Greece today are the following: 

- Marathon: a popular variety that grows mainly in August or October. It is a 

popular crop grown in most parts of the world, mainly in autumn, and it shows 

resistance to powdery mildew. 

- Parthenon: with a biological cycle of 105 days and grown in autumn 

(September-October). This variety is resistant to low temperatures. 

- Fidel F1: Hybrid with very consistent, heavy-weight heads and high quality. It 

has high cold hardiness and is resistance to powdery mildew. Its Biological 
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cycle duration is 95-105 days. Recommended growing season: summer and 

autumn (August-October). 

- Milady F1: Hybrid with dark green small flowers. It shows resistance to stem 

formation. It has a long biological cycle of 65 days. Harvested in April-June 

and September-November. 

- Mon Top F1: Hybrid with a biological cycle of 65-70 days. 

(Olympios, 2015) 

 

1.12.4 Climatic requirements 
 

Broccoli is a cool season plant, and for a good quality product, the average monthly 

temperature should not exceed 16 oC. At higher temperatures, the plant generally stops 

growing. Also, low temperatures during the early stages of the plant's growth cause the 

formation of early immature flower heads, and the plant grows very slowly when the 

temperature is below 5 ºC. The plant is sensitive and is damaged by freezing 

temperatures after forming flower heads. Finally, there are variations between varieties 

in terms of the need for exposure to low temperatures to form flower stems (Olympios, 

2015). 

 

1.12.5 Agricultural inputs 
 

Broccoli (Brassica oleracea var. Italica) is a crop that requires irrigation and 

fertilisation to reach high yields. Both  play a vital role as they determine productivity and 

quality (Wien and Wurr, 1997)(Vågen et al., 2004)(Thompson et al., 2002). However, 

despite the crop being highly responsive to N fertilisation, excessive amounts can cause 

quality degradation(Doerge, 1991)(Stivers et al., 1993). Moreover, the nutritional 

demands are not constant, and they change depending on the broccoli phenology, with 

fewer nutrients required in the first two weeks after transplanting and demand increasing 

as the plant grows(Carranza et al., 2008)(Cecílio Filho et al., 2017). It therefore, becomes 

clear that to increase production, a well-scheduled nitrogen and irrigation plan is required 

throughout the growing season to provide the plant with the required nutrients, water and 

soil moisture (Erdem et al., 2010).  
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1.12.6 Physiological disorders 
 

Yellowing of flower spikes may occur in over-ripe broccoli when stored at higher 

than optimum temperatures or in response to exposure to ethylene. The presence of 

yellow florets reduces the marketability of broccoli. There is sometimes confusion 

between the yellow florets associated with aging and the peripheral head florets, which 

are yellow to light green and are also affected by shading by overlying flower tissue. 

Something typical for tissues not exposed to light during head development. Also, a 

disorder called "black spot" on stems occurs in stored broccoli, with some varieties being 

more susceptible than others. Finally, broccoli is very susceptible to bruising (Vasilakakis, 

2006). 

 

1.12.7 Harvest 
 

The time from sowing or transplanting to harvest is influenced by the variety, 

season, prevailing climatic conditions, soil nutrient availability, and moisture availability 

during cultivation and usually ranges from 90-150 days after transplanting. The central 

flower head (top) is harvested when it has reached the marketable size (desired size, 

small and closed flowers, the head is immature, compact, and cohesive (tight)). Removing 

the central flower head allows the development of the lateral flower heads, which are 

small and short-stemmed and harvested when they have reached the right size (same 

stage of maturity as the central flower head). At harvest, the flower heads are cut with a 

knife or small sickle (pruning shears) with part of the stem (shoot) about 15-25 cm long 

(Figure 11), with mechanical and robotic harvesting solutions being in the research and 

development stage. Manual harvesting from a plantation takes 1-2 months and is 

completed in 5-10 rounds. The harvesting period starts in September and continues until 

April. The central flower heads vary in weight from 100-1000 g and in diameter from 10-

20 cm (Olympios, 2015). 
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Figure 11. Broccoli harvesting. 

 Commercial maturity is based on the diameter of the head; super-mature heads 

are characterized by open florets or enlarged florets on the verge of opening, resulting in 

a loose flower head (Vasilakakis, 2006). High-quality broccoli is either dark or bright green 

with closed florets. The head should be firm and compact when pressed by hand, and the 

stem should be cleanly cut to the appropriate length for a given quality standard (USDA, 

2016). Broccoli sold as a "whole flower head" should be tight and well-developed. Upon 

harvest leaves are removed, and heads are sold by the piece or weight (Vasilakakis, 

2006). 

 

1.12.8 Nutritional value 
 

Broccoli is one of the most affluent vegetables in vitamin A (Table 4). The dark 

green colour is an indication of high carotenoid content. Although they have a slightly 

bitter taste, broccoli leaves are edible and contain a high concentration of vitamin A. They 

also contain vitamins B1, B2, B3, B6, iron, magnesium, potassium, and zinc. Frozen 

broccoli contains more beta-carotene than fresh broccoli because it consists mainly of 

flowers. However, the stems also contain considerable amounts of calcium, iron, 

thiamine, riboflavin, niacin, and vitamin C. The darker the colour of the inflorescences, 

the more vitamins A and C they contain. Broccoli contains sulforaphane, which helps 

antioxidants such as vitamins C and E (Vasilakakis, 2006). 
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Table 4. Broccoli nutritional value (per 100 g fresh weight) (Vasilakakis 2006) 

Nutritional Value Amount 

Energy (Kcal) 24 

Carbohydrates (%) 5.8 

Protein (%) 3 

Fat (%) 0 

Vitamin Α (mg) 874 

Folic acid (mg) 40 

Calcium (mg) 27 

Vitamin C (mg) 113 

 

Folk traditional medicine and pharmacology, but especially the latest research, 

show the vital contribution of the cultivated vegetables of the cruciferous vegetable group 

in preventing various forms of cancer, i.e., they act against carcinogenesis and mutations. 

It is also noted that broccoli helps to reduce cholesterol in the blood (Olympios, 2015). 
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1.13 Precision agriculture applications in broccoli production 
 

 Precision agriculture has found applications in a variety of horticultural crops. Most 

of those solutions are suitable and can be applied to most crops (e.g., NDVI mapping) 

without significant modifications, while others are tailored for specific crops (e.g., robotic 

harvesting, yield prediction models). Despite the popularity of broccoli in recent years, the 

precision agriculture applications tailored to its cultivation are still limited compared to 

other crops such as maize, wheat, and strawberries.  

 However, solutions have been developed for the whole primary broccoli production 

process. Starting with phenotyping (Chengquan et al., 2020), moving to growth monitoring 

(Psiroukis et al., 2022)(Lee et al., 2023),quality monitoring (Zhou et al., 2020),yield 

estimation (Noé et al., 2002)(Zhou et al., 2022),weeding (Pallottino et al., 2018), irrigation 

(Kumar et al., 2021), pest damage evaluation (Zou et al., 2021), stress monitoring (El-

Shikha et al., 2007)(Tremblay et al., 2008)(Graeff et al., 2008) and ending with selective 

harvesting (Garcia-Manso et al., 2021)(Montes et al., 2020). 

 

1.13.1 AI and broccoli 
 

 As mentioned earlier, broccoli has not been at the centre of precision agriculture 

research. The same can be said for AI solutions, with numerous solutions having been 

developed for a variety of crops ranging from model plants such as lettuce (Rahimikhoob 

et al., 2023) to crops farmed intensively such as wheat (Mehta et al., 2023) and from 

apple orchards (Mazzia et al., 2020) to vineyards (Fraiwan et al., 2022).  

The lack of AI/ machine learning research on broccoli is further proven by conducting 

a quick search in the Scopus database using the keywords “Machine learning” plus the” 

Crop of interest.” At the moment the search was conducted (January 2024), broccoli 

yielded the least number of results among the crops investigated (Table 5) accounting for 

only 0.4% of the documents among 10 crops. 

 

Table 5. Results per crop searching the Scopus database ranked in ascending order. 

Crop Documents found 

Broccoli 22 

Cucumber 98 

Lettuce 117 

Strawberry 170 
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Grape 396 

Potato 422 

Tomato 690 

Maize 948 

Apple 954 

Wheat 1,257 

 

The lack of research interest could be attributed to a combination of factors such as: 

1. Complexity of Plant Biology: Broccoli has complex biological processes that 

govern its growth, development, and response to environmental factors. Moreover, 

its morphology and geometry pose significant challenges. 

2. Data Availability and Quality: AI algorithms rely heavily on data for training and 

validation. However, comprehensive and high-quality data specific to broccoli 

cultivation are scarce and not readily accessible. 

3. Resource Allocation: Research focuses on major staple crops like rice, wheat, or 

corn with high economic significance and broader impact. 

4. Industry Priorities: The direction of AI research in agriculture is influenced by 

industry priorities and market demands. If broccoli production does not represent 

a significant market opportunity or there is limited demand for AI-driven solutions 

in this sector, research efforts may be directed toward other crops or agricultural 

applications. 

From the AI solutions investigated for broccoli, autonomous harvesting is the most 

popular with multiple publications, such as (Ramirez, 2006)that developed a computer 

vision system to locate and classify mature and immature broccoli heads for selective 

harvesting, (Montes and Cielniak, 2022) that used 3D point cloud for multiple broccoli 

head detection and tracking, (Kusumam et al., 2017) that besides detection went a step 

further as also to assess the broccoli size and (Blok et al., 2021)who suggested a novel 

image-based size estimation to overcome occlusion problems.  

Besides tasks related to harvesting, disease detection has also been investigated. 

(Ferdinand and Al Maki, 2022) used AI to classify broccoli leaf diseases.(Pineda et al., 

2022) introduced novel vegetation indices to identify broccoli plants infected with 

Xanthomonas campestris. Finally, (Zou et al., 2019) used machine vision to discriminate 

between broccoli seedlings and weeds and to estimate pest damage (Zou et al., 2021), 

while (Makino and Amino, 2020) focused on the post-harvest evaluating broccoli 

freshness. However, besides their importance for broccoli cultivation, AI solutions 

focusing on fertilisation and irrigation have yet to be investigated. 
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1.13.2 Spectral imaging and broccoli 
 

 The same that applied to AI research and broccoli production applies and for 

spectral imaging research. It is, however, worth noting that from the limited studies 

available for broccoli production, the majority focuses on the post-harvest stage, and only 

a few on the pre-harvest stage, more specifically only 29% of the studies found focuses 

on the pre-harvest. The limited studies available for the pre-harvest stage focus on 

disease and pest damage detection. Table 6 presents an overview of the available 

research on combining broccoli and spectral imaging at the post-harvest and pre-harvest 

stages to allow for direct comparisons. 

 

Table 6. Pre- and post-harvest broccoli characteristics investigated with the use of spectral 
imaging. 

Growth stage Investigated characteristic Reference 

 

 

Post-harvest 

1. Senescence (Guo et al., 2022) 

2. Total glucosinolates (Hernández-Hierro et al., 

2014) 

3. Pesticide residue (Gui et al., 2019) 

4. Degradation rate (Hosaka et al., 2012) 

5. Degreening velocity (Makino and Kousaka, 

2020) 

 

 

Pre-harvest 

1. Seedling pest 

damage 

(Zou et al., 2021) 

2. Disease detection (Pineda et al., 2022) 
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Aim and Objectives 
 

 This research aims to offer a meaningful addition to the domain of precision 

agriculture by investigating the capabilities of spectral imaging and Artificial Intelligence 

(AI) for optimizing fertilisation and irrigation. To achieve this, the research aimed at 

accomplishing the following objectives: 

(i) Develop AI models utilizing spectral data that can identify different fertilisation 

levels. 

(ii) Develop AI models utilizing spectral data capable of identifying plant water 

deficit. 

(iii) Compare the performance of traditional machine learning algorithms with novel 

user-friendly AutoML techniques. 

(iv) Evaluate the feasibility of developing a generalisation-capable AI model utilizing 

spectral data. 

The results of this research provide advantages that reach beyond academia, providing 

valuable assistance to diverse groups, such as researchers, farmers, and stakeholders 

engaged in decisions regarding agricultural inputs distribution, food security, and 

sustainable agricultural practices. 
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Chapter 2 – Materials and Methods 
 

2.1 Workflow overview 
 

This study followed a parallel exploratory methodology (Figure 12). One line of 

experiments was focused on the pre-harvest stage while the second on model 

generalisation. The primary focus of this research which expanded over three years was 

to investigate i) the potential of spectral imaging and Artificial Intelligence in optimizing 

pre-harvest stage primary production and ii) the generalisation capability of spectral 

models.  

During the first year, the emphasis was on fertilisation and whether spectral 

imaging can identify different fertilisation levels among plants grown under the exact same 

conditions. Moreover, the same year, dry matter measurements were conducted across 

a variety of fruits and vegetables, namely apple, broccoli, leek, and mushrooms in 

cooperation with partners from abroad. 

Through these joint measurements, we aimed to understand Spectral Imaging and 

Artificial Intelligence better and share novel ideas, opinions, and thoughts with fellow 

researchers and PhD students. Moreover, it allowed us to investigate and test the 

generalisation capabilities of AI models developed using spectral imaging datasets. It is 

worth mentioning that the different treatments used for studying the preharvest stage 

proved invaluable for dry matter estimation as they resulted in variations among the grown 

broccoli plants, providing the necessary variability in the collected data to develop robust 

Artificial Intelligence algorithms. 

During the second year the focus was on irrigation. Namely, the spectral response 

of plants being exposed to water stress was investigated. During the third year, the 

generalisation capabilities of models trained with spectral data were evaluated using the 

large joint effort spectral dataset (Malounas et al., 2024) collected in year one. More 

precisely, the steps followed throughout the typical development of an Artificial 

Intelligence model used for spectral imaging data processing were evaluated. This 

approach yielded a better understanding of how data size affects model performance and 

how different data-preprocessing techniques influence the generalisation capabilities of 

AI models.  
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Figure 12. Workflow followed by this study. With light grey the pre-harvest stage, while with dark 
grey the experiments related to model generalisation. 
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2.2 Description of the study area 
 

The study was conducted during 2021 - 2023 in a glasshouse (Figure14) located at 

the Agricultural University of Athens premises, Athens, Greece (37.986039570505596, 

23.706417286906994) with a surface area of 100 m2(Figure 13). 

 

Figure 13. The glasshouse position (red dot) at the Agricultural University of Athens (Google 
Earth, 2024) 
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2.3 Growing conditions 
 

 The study covered two growing seasons: winter 2021-2022 and winter 2022-2023. 

Some growing conditions were kept the same during both growing seasons, while others 

were adapted based on the agricultural input under investigation. 

 

Figure 14. Broccoli glasshouse 

 The unchanged growing conditions were the broccoli variety, the substrate, the 

fertiliser, the irrigation water, and the temperature. More precisely, the Nerone variety, a 

60-day variety suitable for the climate conditions of Greece, was selected. The variety 

selection was made for the short time it requires to reach maturity, as most broccoli 

varieties require between 70 and 100 days. The brief time to reach maturity was a 

prerequisite as the ideal growing condition for broccoli is between 18-24 oC and not higher 

than 27 oC, which can be maintained only during the winter months in a glasshouse in 

Greece with no active cooling only. The fertiliser used was a balanced fertiliser (20-20-

20) containing approximately equal proportions of the three primary nutrients essential 

for plant growth: nitrogen (N), phosphorus (P), and potassium (K). The tap water supply 

system was used for irrigation purposes. Finally, to ensure that the temperature was kept 

within the desired threshold, the automated window system was set to open when the 

temperature inside the glasshouse reached 22 degrees oC and close again once it 

dropped down to 18 degrees. 
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 During the first growing season, 90 plants were grown, and fertilisation deficiency 

was investigated. The fertiliser used was a typical 20/20/20 N/P/K fertiliser as described 

above. However, three different fertilisation schemes were followed. The first one followed 

the typical dosage followed by commercial broccoli farms (15 g of granular fertiliser/ 

plant), the second one used the typical dosage cut in half (7.5 g of granular fertiliser/ 

plant), while the plants under the third fertilisation scheme did not receive any fertiliser (0 

g / plant), with the plant relying entirely on the soil substrate. To that end, the soil substrate 

used was a typical soil used for growing vegetables that also covered the needs of 

broccoli growth in order to simulate real-life growing conditions as closely as possible. 

More precisely, it was loamy soil (a balanced mix of sand, silt, and clay) with a pH of 

around 7. Finally, regarding irrigation, a drip irrigation system supplied water daily until 

soil moisture saturation was reached. 

 During the second growing season, 60 plants were grown, and irrigation and water 

acclimation/stress were investigated. To that end, the irrigation scheme had to allow for 

precision measurements. Irrigation was carried out manually, maintaining the soil at 40% 

of field capacity through daily weighing. Finally, the recommended dosage (15 g granular 

fertiliser 20-20-20 / plant) was applied to all plants. 
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2.4 Data Collection 

2.4.1 Remote sensing equipment 
 

 During both growing seasons spectral images were captured in-situ inside the 

glasshouse. The setup used consisted of the following components. Α hyperspectral 

camera (IMEC snapscan VNIR) (Figure 15) and 

 
Figure 15. Imec snapscan VNIR hyperspectral camera 

a three-wheel platform (Figure 16), which provided the necessary mobility to the system, 

allowing it to move on rough terrain and narrow rows while simultaneously allowing all 

individual components to be mounted. 
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Figure 16. Three-wheeled platform 

The components fitted to the platform besides the camera were the following: a three-

joint arm where the camera was mounted, which allowed the adjustment of the height of 

the camera as well as the angle at which the images are captured, a 12-volt battery, a 

power inverter used to provide the needed power to the spectral camera and finally the 

laptop used to control the camera functions (Figure 17). The system did not involve an 

illumination system; instead, it relied on the sun's presence for the necessary illumination.  
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Figure 17. Three wheeled platform with all components mounted. 

 The camera specifications are presented in the table below. 

 

Table 7. Imec Snapscan product specifications 

Spatial resolution up to 3650 x 2048 pixels (7Mpx RAW per band) 

Spectral resolution 150+ bands 

Spectral range 470-900nm  

FWHM ~10-15nm (collimated) 

Acquisition speed ~200ms – 20 seconds, depending on acquisition parameters, 

lighting and  

object (without including pre- and post-processing time) 

SNR >100-200, flat SNR over spectral range 

Dynamic range 8/10 bit 

Optics Schneider Kreuznach Apo-Xenoplan lens, f2.0,  

Focal length: 35 mm lens 

Dimensions  10x7x7 cm (WxDxH) 

Weight 580g (camera without optics) 

Input voltage 24V DC 2.7A (external controller) 

 

 

Additionally, once the spectral imaging took place, CIELAB colour measurements 

were conducted using the Lovibond RT300 spectrophotometer (Figure 18).  
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Figure 18. Lovibond RT300 spectrophotometer 

The spectrophotometer specifications can be found in the table below. 

 

Table 8 Lovibond RT300 product specifications 

Spectral Interval 10 nm - measured; 10nm - output 

Measurement Range   0 to 200 % reflectance 

Spectral Range 400 - 700 nm 

CIE L* a* b Scale resolution 0.01 

 

For both growing seasons during the spectral imaging sessions no artificial 

illumination was used; instead, sunlight was utilised for the necessary illumination. 

Imaging sessions took place during midday to ensure the best possible illumination 

conditions. Before each imaging session, integration time and gain were set to optimal, 

and a white reference was acquired to estimate the incident radiant flux density and a 

dark reference to minimize the camera sensor's inherent imperfections. The white 

reference was a Zenith Lite™ diffuse target (Spectralon, Labsphere) (Figure 19), which 

reflects 95% of the incident radiation. The dark reference was captured by completely 

closing the camera's mechanical shutter. 
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Figure 19. Spectralon diffuse target 

Upon image and reference acquisition, spectral images were radiometrically corrected 

using the calibration function below:  

 

𝑅𝑐 =
𝑅o−𝐷

𝑊−𝐷
𝑥 100 [9] 

where Ro is the raw spectral image, W is the image of a white reference object of uniform, 

stable, and high reflectance standard (∼100% reflectance), D is the dark image/reference 

(∼0% reflectance), and Rc is the corrected spectral image. Moreover, to obtain the 

extracted spectra, spikes and dead pixels, were excluded using thresholding and more 

precisely by using fixed values. Finally, the background removal was conducted using 

background removal techniques (e.g. Otsu algorithm) or manually. 
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2.4.2 Plant physiology measurements 

During the second growing season, in order to validate that plants were under drought 

stress, gas exchange parameters were measured prior to imaging with the focus being 

onthe photosynthetic rate of each plant. The measurements were conducted using the 

LC pro+ gas analyser under ambient environmental conditions (25.5 °C and 425 ppm 

CO2) and saturating light levels. 

 

 

Figure 20. LC pro+ gas analyser 
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2.4.3 Dry matter measurements 
 

Once the spectral measurements were completed, the samples were immediately 

transported for dry matter measurements. All samples were weighed to measure their 

fresh weight and then placed in an oven, convective air dryer, up to the moment that their 

mass reached a constant value following the dry matter estimation protocol established 

by  (Cunniff and Washington, 1997) 

Based on fresh weight of each sample and their final constant mass (final weight), 

their moisture content was calculated using the following equation. 

 

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%) =
Fresh weight−Dry matter

Fresh weight
𝑥 100 [10] 

 

One moisture content value (% wet basis (w.b.)) was recorded for each sample, and then 

the dry matter was calculated by subtracting moisture percentage (%) from 100%.  
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2.4.5 Datasets used 
 Four datasets were compiled during this 3-year study: the first focused on 

fertilisation, the second on irrigation, the third on broccoli dry matter and the last one on 

dry matter estimation of multiple crops. At this point it should be pointed out that the 

multiple crop dry matter dataset includes measurements of apple, broccoli, leek and 

mushroom. The decision to create this dataset was made in order to investigate the 

generalisation capabilities of spectral datasets across a variety of crops. Therefore, crops 

belonging to different families, and with different color and shape characteristics were 

chosen.  

Each of the four datasets consists of more than one type of measurements besides 

spectral measurements. Additional measurements were gathered either to validate 

findings or to investigate novel applications and approaches. A detailed overview of the 

datasets is presented in the table and in the following sections. 

Table 9. Used datasets overview 

Experiment Dataset Type of data Number of 

samples 

Number of 

features 

(bands) 

Fertilisation Spectral • Spectral 

images 

49 150 

Fertilisation CIELAB • CIELAB colour 

measurements 

49 3 

Fertilisation Spectral + 

CIELAB 

• Spectral 

Images 

• CIELAB colour 

measurements 

49 153 

Irrigation Drought onset  • Spectral 

images 

• Physiological 

measurements 

(validation) 

60 150 

Irrigation Drought 

acclimated 

• Spectral 

images 

• Physiological 

measurements 

(validation) 

60 150 

Irrigation Drought onset 

+ Drought 

acclimated 

• Spectral 

images 

120 150 
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• Physiological 

measurements 

(validation) 

Dry matter 

model 

generalisation 

Dry matter 

(Broccoli) 

• Spectral 

images 

• Dry matter 

measurements 

250 109 

Dry matter 

model 

generalisation 

Dry matter 

(various fruit 

and 

vegetables) 

• Spectral 

images 

• Dry matter 

measurements 

779 109 

 

Fertilisation dataset 

 

For the fertilisation experiment three datasets were used. The first consisted only 

of spectral measurements and the second one only of CIELAB measurements. The 

reason for acquiring the two datasets is that hyperspectral imaging relies on chlorophyll 

absorption while CIELAB on the phenomenological background of chlorophyll (green 

colour). A third dataset was produced by merging the two. By combining both types of 

measurements, machine vision systems can achieve more accurate colour perception, 

leading to improved classification accuracy, and quality control. Finally, as measurements 

took place in situ, using the sun as an illumination source, the integration of spectral and 

CIELAB measurements allowed for colour consistency and accuracy across the varying 

illumination conditions, leading to more robust models. 

Plants were cultivated until the harvestable vegetative plant parts reached 60-70% 

of their final head diameter (BBCH 46-47) and then imaging took place. The zero 

fertilisation plants failed to reach this stage as they did not develop the harvestable 

vegetative plant parts and were discarded. Regarding the half and full fertilisation plants, 

broccoli plants that showed defects (e.g. yellowing, flowering) were rejected as well. The 

harvested broccoli from both fertilizer applications did not differ in appearance (figure 22). 

The only difference was the average weight with the full fertilisation broccoli weighing 

20% more on average. The distance between the camera and the highest point of the 

sample (broccoli) was kept constant (60cm) while avoiding movement to prevent motion 

blur. Moreover, to facilitate a top-down view the camera was constantly perpendicular to 

the broccoli head. 
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After spectral imaging, CIELAB measurements were carried out. For each sample, 

5 points, selected to cover as much of the broccoli head color and shape variation, were 

measured and averaged to achieve a sample colour representation as complete as 

possible. 

Each of the three datasets consisted of 49 samples (21 samples from the half 

deficiency class and 28 from the recommended fertilisation class. A 70/30 train test split 

was used resulting in 34 samples/images for training and 15 samples/images used for 

testing. The hyperspectral dataset had 150 features (bands) per sample, the CIELAB 

dataset had 3 features (L*, a*, b) while the merged dataset 153. 

 

Irrigation dataset 

For the irrigation experiment, plants were divided into two treatments (drought and 

control). Two datasets consisting of 60 images were constructed. For the first dataset 

imaging took place at the phenological stage were 70% of the expected head diameter 

was reached (BBCH-scale 47) and for the second when the typical size and form had 

been reached and the head remained tightly closed (BBCH-scale 49). The first dataset of 

images was captured after the broccoli were not irrigated for 4 days and while the 

substrate water content reached 40% of its pot capacity, while the second dataset was 

captured 12 days later, maintaining (with daily weighing) the substrate water content at 

40% of its pot capacity over the duration of these days. The images were acquired in situ 

(inside the greenhouse) as top views of each plant. Prior to imaging, gas exchange 

parameters were measured using the LC pro+ gas analyser under ambient environmental 

conditions (25.5 °C, and 425 ppm CO2) and saturating light levels. Upon image acquisition 

outliers (single images) were detected and removed, Table 10 shows the final datasets 

used for the experiments. From the first dataset of images (drought onset), a total of forty-

Figure 21. Broccoli with full fertilization dosage left and with half fertilization dosage right. No visible 
differences. 
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two (42) out of sixty (60) images were kept, and from the second dataset (drought short-

term acclimation), forty-eight (48) out of sixty (60) images. Finally, the two datasets were 

integrated into a third one including both drought onset, drought acclimated and control 

broccoli plants. 
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Table 10. Irrigation experiment Image dataset before and after outliers’ removal. 

Dataset No. of images with 

outliers 

No. of images without 

outliers 

drought onset 60 42 

drought acclimated 60 48 

mixed 120 90 

 

Both the drought onset dataset and the drought acclimated dataset were 

unbalanced. The drought onset dataset contained more drought samples while the 

drought acclimated dataset contained more control samples. More precisely, the drought 

onset dataset contained seventeen (17) control and twenty-five (25) drought broccoli 

images, and the drought acclimated dataset, twenty-seven (27) control and twenty-one 

(21) drought acclimated broccoli images. Lastly, the combined dataset contained forty-

four (44) control, twenty-five (25) drought onset and twenty-one (21) drought acclimated 

plant images. Table 11 shows the distribution between the different classes for each 

dataset. 

 

Table 11. Data distribution among the datasets described in %. 

Dataset control drought onset 
drought 

acclimated 

drought onset 40% 60% - 

drought acclimated 
56% - 44% 

mixed 49% 28% 23% 
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Multiple crop and vegetable dry matter dataset 

 The dataset consists of three different crops, Apple, Broccoli and Leek, captured 

with different sensors covering the VIS-NIR range of 700-900nm. To acquire reflectance 

spectra the samples (edible parts of the crops) were placed in an environment that was 

illumination-controlled in order to maximize the dynamic range of all the sensors used for 

each sample. Across the three crops, the same acquisition protocol was followed to 

ensure the consistency of all measurements. The protocol consisted of the following 

actions: i) imaging mode set to Reflectance, ii) use halogen lamps (Apple: 150W from 

Illumination Technologies; Broccoli and Leek: 50W from Osram;) with excellent 

performance at VIS-NIR range of 400-900 nm, together with a stabilized DC power 

supply, iii) capture dark and white reference images using a high reflectance and stable 

standard (∼100% reflectance) and a ∼0% reflectance standard, respectively iv) maintain 

a constant distance between sample and sensor throughout the imaging campaign. The 

distance was kept the same for each imaging experiment; however, it differed for each 

crop and camera setup to optimize data acquisition quality based on the specific 

characteristics of each camera (e.g., linescan, snapscan) and crop (e.g., shape). To 

minimize sample exposure to the heat produced by the halogen lamps they were placed 

in the image acquisition stage only once the setup was ready for capturing. The sensors, 

crops and specific details of all use cases can be found in the table below. Broccoli image 

acquisition was conducted by Agricultural University of Athens, while the apple and leek 

image acquisition were conducted by Leibniz Institute of Agricultural Engineering and Bio-

economy and the Flanders Research Institute for Agriculture, Fisheries and Food 

respectively. 

 For the broccoli dataset the previously described Imec Snapscan hyperspectral 

camera was used, while for the apple dataset the Cubert ULTRIS S20 hyperspectral 

camera. The specific hyperspectral camera comes with a global shutter, a spectral 

resolution of 141 bands and a FWHM of 12nm. Finally for the leek measurements the 

Specim FX10 hyperspectral camera was used. The FX10 operates in the region of 400-

100nm with a FWHM of 2.62-2.82nm capturing in total 224 concrete spectral bands. The 

specifications of all hyperspectral cameras can be found in the table below. 

 

Table 12. Technical specifications of the hyperspectral cameras used for the dry matter content 
dataset  

Crop Apple Broccoli Leek 

Camera Cubert ULTRIS 

S20 

Imec Snapscan Specim FX10 
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Distance between 

sample and camera 

50cm 30cm 60cm 

Spectral range 430-990nm 470-900nm 398-931 nm 

Spectral 

resolution/No. of 

bands 

141 150 224 

Full width half 

maximum (FWHM). 

12nm 10-15nm 2.62-2.82 nm 

Number of 

measurements 

240 250 288 

  

However, the use of various hyperspectral sensors, lead to a difference in the 

centre wavelength value, number of bands and available wavelength for each of the 

selected crop. 

 Namely the spectral resolution/ No. of wavelength bands was the following for 

each of the crops: apple/ 141, Broccoli/ 150, and Leek/ 421. Moreover, spectral range for 

apple/ 430-990nm, broccoli/ 470-900nm, and Leek/ 398-1717nm. As a result, if a band 

differed more than 2nm was discarded, taking into account the Full Width at Half 

Maximum and the centre wavelength value of the sensors used. Once those bands were 

discarded each consisted of 109 discrete bands whose wavelength ranged from 469 to 

900 nm. The spectral signature of all three (3) crops in the VIS-NIR region can be seen 

in the figure below with their standard deviation in brackets. 
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Figure 22. Multi crop dataset averaged spectral signatures. 

 

The spectral measurements were accompanied with dry matter measurements 

(%). The Min, Max, and Average dry matter content (DMC) of each crop, following proper 

irrigation and fertilisation, can be found in the table below. 

 

Table 13. Dry matter content (DMC, %) per crop 

DMC in % Apple Broccoli Leek 

Min 14 % 12% 8.1% 

Max 17 % 20% 19% 

Average 15 % 15% 12% 
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2.5 Spectral Data Pre-Processing 

 For the purposes of this dissertation Python programming language code was 

developed to conduct the spectral data preprocessing. The pipeline used in this study 

which is also the typical pre-processing pipeline (Wieme et al., 2022) used to handle 

spectral data, is presented in the figure below. 

 

 

Figure 23. Common spectral data pre-processing pipeline 

 

All the components shown in Figure 23 are explained in detail in the upcoming 

subsections. The Recursive feature elimination and polynomial transformation steps 

were skipped for the irrigation and fertilisation experiments as excellent results were 

achieved without them, thus they would be just adding complexity to the machine 

learning pipeline. 

 

2.5.1 Smoothing 
 

The first pipeline component was smoothing. For the fertilisation and dry matter 

experiment the Savitzky-Golay filter (Press and Teukolsky, 1990) was used for data 

smoothing. Savitzky-Golay is a smoothing algorithm used in signal processing and data 

analysis that applies a convolution operation with a polynomial window to the input data, 

intending to smooth noisy signals through successive subsets fitting of data points that 

are adjacent together with a polynomial of low-degree using the method of linear least 

squares. This filter is commonly used in signal processing and data analysis (Vivó-

Truyols and Schoenmakers, 2006). The reason for that is it diminishes high-frequency 

signals, such as noise, while simultaneously maintaining essential characteristics of the 

signals, such as relative peaks, troughs, height, and width(Zimmermann and Kohler, 

2013). Moreover, it is computationally efficient. For the irrigation experiment the 

LOWESS method was used (Locally Weighted Scatterplot Smoothing), a non-

parametric regression technique used for smoothing data points, which works by fitting 
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a weighted polynomial regression to localized subsets of the data and adjusting the 

weights based on proximity. 

The aim of this stage was (i) smoothing of different bands signal and (ii) to reduce 

noise. This was essential as overfitting can be caused by noise damaging, in the end, 

the ability of the model to generalize new previously unseen data. Moreover, the filter 

aids highlighting the underlying trends and patterns in the signal data. The Savitzky-

Golay filter can be adjusted by changing the window size and the polynomial order 

according to the dataset characteristics and the machine-learning task requirements. 

 

2.5.2 Scaling 
 

An important preprocessing step in machine learning is data scaling. This step 

adjusts the data attributes range to make sure that the contribution of each is equal to 

the learning process. Various machine learning algorithms, and more specifically the 

ones that involve distance calculations or gradient descent-based algorithms such as 

linear regression and neural networks, presume that all features have the same scale. 

In case of the opposite, it may lead to some features dominating the calculations for the 

distance or the steps of gradient descent, therefore leading to models that are biased 

and that prioritize these features. Moreover, scaling makes sure that all variables are 

affected by the regularization term equally and that the kernel functions calculate 

similarities based on a standardized feature space. Selecting the correct scaling method 

depends on the specific requirements of the machine learning model being used and the 

nature of the data and. For the generalisation experiment three (3) different strategies 

for scaling were tested: (i) no scaling (ii) Standardization and (iii) 0-1 Scaling 

(Normalization). Normalization transforms each feature individually so that it falls in the 

zero- one range while Standardization adjusts the features so that they have standard 

normal distribution properties with a mean of zero (0) and a standard deviation of one 

(1). Combining Normalization and Standardization was not evaluated to avoid importing 

redundancy in the pipeline. Furthermore, these two strategies may cause an increased 

sensitivity to outliers, and as result distort performance metrics, or they may reduce how 

comparable the performance of each algorithm is as each algorithm has lower or greater 

compatibility with the scaling techniques listed. Finally, for the irrigation and fertilisation 

experiments scaling was conducted using normalization. 
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2.5.3 Recursive Feature Elimination 
 

Recursive Feature Elimination (RFE) technique is used in regression problems to 

select a small set of relevant features to be used for model construction through the 

repeated elimination of features according to the scores of a fitted model. This 

dissertation selected a Bayesia-based regressor to obtain the scores. The process of 

selection was repeated till half the original features were eliminated or until the model's 

performance stopped improving significantly. 

 

2.5.4 Univariate Feature Selection 
 

Univariate feature selection was used in this dissertation to refine processing of 

data by removing redundant or irrelevant attributes. Techniques such as this prevent 

overfitting by selection of the most important wavelengths and increase the efficiency of 

the selected ML models. Univariate approaches evaluate the relationship of each pair of 

individual feature and its target variable. Two univariate filter methods were used for the 

dry matter content generalization study: (i) Mutual information and (ii) F-test for 

regression. The first one assesses the linear association between a feature and its target 

variable and reports the F-statistic and its corresponding p-values which show the linear 

relationship strength. Features with higher F-statistics and lower p-values are considered 

significant features and are selected. Mutual information quantifies the level to which the 

knowledge of one variable lowers the uncertainty regarding another variable by 

calculating the mutual information of each feature and its target. A benefit of Mutual 

information is that it can identify nonlinear associations. Finally, both irrigation and 

fertilisation experiments made use of only the F-test. 

 

2.5.5 Feature Extraction 
 

In the next step of the data pre-processing pipeline followed in this dissertation, a 

feature extraction step was used to reduce data dimensions. Firstly, as the number of 

dimensions increases, the data required to adequately represent and generalize patterns 

grows exponentially (Hughes, 1968). As a result, ML models might struggle to find 

meaningful patterns due to sparsity, leading to overfitting or increased computational 

complexity. Secondly, multidimensional data often contain redundant or irrelevant 

features. This can confuse models, impacting their ability to distinguish between relevant 

and noisy information, potentially reducing predictive accuracy (Loggenberg et al., 2018). 

Lastly, high-dimensional data can make models more complex, leading to longer training 

times, increased computational resource requirements, and challenges in model 
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interpretability(Cozzolino et al., 2010). This step apart from feature selection, could also 

reduce computational load and noise. For the fertilisation and irrigation experiments 

Principal Component Analysis (PCA) was used. In the generalisation experiment three 

(3) methods were evaluated for feature extraction: (i) Uniform Manifold Approximation 

and Projection (UMAP), (ii) Autoencoder, and (iii) Principal Component Analysis (PCA).  

PCA reduces complexity of the dataset by retaining the most important principal 

components, with their ranking being based on dataset variance they account for. The 

principal components, derived from PCA, are intentionally uncorrelated. This lack of 

correlation ensures that each component provides unique information, leading to a more 

concise representation of the data. This concise representation simplifies the dataset, 

enhancing the efficiency and clarity of subsequent analyses. UMAP is another technique 

for reducing dimensions in a nonlinear way, whose aim is to maintain both the global and 

local structures of data that is high-dimensional. UMAP highlights the local proximity of 

data points, thus preserving nonlinear correlations and intricate patterns that are ignored 

by other methods such as PCA. Finally, Autoencoders, are neural networks designed for 

unsupervised learning. They consist of two parts, the encoder which compresses data 

into a condensed latent-space representation, and the decoder which reconstructs the 

data from this latent representation. During the training process, the network ensures 

that the latent space depicts the most important data characteristics by minimizing the 

difference between the original data and its reconstruction. Due to the nonlinearity of its 

transformations, more insightful embeddings could be achieved compared to PCA. The 

selected architecture for the generalisation experiment consisted of two (2) layers in the 

encoder. The first layer duplicated the original component number, and the second layer 

projected the components into a feature space of 8, 16, 24, or 32. The decoder was used 

to reconstruct the original features and had symmetrical architecture. 

 

2.5.6 Polynomial Transformation 
 

A way to significantly enhance the model's ability to capture complex relationships 

within the data is through the use of polynomial feature transformation. Datasets often 

contain non-linear relationships which a simple linear model cannot capture effectively. 

Moreover, polynomial features include the interaction terms between different features 

as well as the higher degree terms of those individual features. These terms can provide 

valuable information about the combined effect of two or more variables on the target 

variable. This dissertation evaluated only the quadratic transformation since, in early 

experiments, higher-degree polynomial features led to overfitting, and the performance 

was poor on the test set. Furthermore, adding polynomial features can rapidly increase 

features number, especially with higher degrees and with datasets that contain many 

original features. This was the case in this dissertation. As a result, the use of all original 
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features with the polynomial regression was producing an unstable experimental pipeline 

whose reproducibility was heavily affected by the computational costs and the reiterative 

crashes after hours of execution without reporting a single result. 

An overview of all the pre-processing methods used across all three experiments 

is shown below: 

Table 14. Pre-processing methods used for the experiments (part 1) 

Experiment Smoothing Scaling 

Fertilisation • Savitzky-Golay filter • Normalization 

Irrigation • LOWESS • Normalization 

Dry matter/Generalisation • Savitzky-Golay filter • No scaling 

• Normalization 

• Standardization  

 

Table 15. Pre-processing methods used for the experiments (part 2) 

Experiment Recursive Feature 

Elimination 

Univariate Feature 

selection 

Fertilisation • N/A • F-test 

Irrigation • N/A • F-test 

Dry mater/Generalisation • Yes • F-test 

• Mutual Information 

 

Table 16. Pre-processing methods used for the experiments (part 3) 

Experiment Feature extraction Polynomial 

Transformation 

Fertilisation • N/A • N/A 

Irrigation • PCA • N/A 

Dry mater/Generalisation • PCA 

• UMAP 

• Autoencoder 

• Quadratic 

transformation 
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2.6 Model generalisation pipeline configuration developed for 

dry matter estimation 
 

 To investigate whether the generalisation performance of models trained using a 

multi class dataset could be further improved by introducing data pre-processing steps. 

The different stages of data processing were evaluated towards reporting which 

components were empirically the most best performing ones. The pre-processing steps 

(Figure 24) include data smoothing, data scaling, feature selection and extraction, and 

finally feature polynomial transformation. The target of the integration of the previously 

mentioned components is boosting performance in an iterative way while at the same 

time allowing the understanding of how each of the elements negatively or positively 

affects the regression problem. It is crucial to note that despite the potential of each 

component to improve performance, the interaction among each of them and the nature 

of the dataset used in this particular research could result in negative performance that 

could open the discussion for its use or not. 

Different preprocessing method orders were used during the experiments. For 

instance, the polynomial transformation was also evaluated before applying feature 

extraction. However, as they failed to achieve high performance, they are not shown in 

Figure 24, which depicts a synthetic version of the most reliable pipeline. Additional 

details are presented in the Discussion section. 

 

 

Figure 24. Proposed dry-matter analysis pipeline procedure set up during this study. 

 

Different values and algorithms could be used for each of the preprocessing steps. 

The configurations used and tested in this particular study are listed in the table below. 

Finally, it is essential to emphasize that each time a processing step was added to the 

pipeline, the whole pipeline was executed from the beginning. As a result, the selection 

of the hyper-parameters and algorithms achieving the best results could be different. 
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Table 17. Evaluated configurations for each pre processing stage for the dry matter content 
generalisation experiment. 

Preprocessing Stage Value 

  

Smoothing [Window sizes] [0, 4, 10] 

Scaling techniques 
[Standardization, 0-1 

Normalization] 

Univariate Feature 

Selection [Criteria] 
[Mutual Information, F-Test] 

Univariate Feature 

Selection [Output 

Features] 

[8, 16, 24, 32] 

Feature Extraction 

[Algorithms] 
[UMAP, PCA, Autoencoder] 

Feature Extraction [Output 

Features] 

[Selected Features / 4,  

  Selected Features / 2,  

  2 * Selected Features / 3] 

Polynomial 

Transformations 

[Quadratic / No 

Transformation] 

Regression Algorithms [ARD / PLS] 
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2.7 Machine learning experimentation framework 

AutoML was evaluated for the irrigation and fertilisation experiments. In recent 

years, various Automated Machine Learning (AutoML) frameworks have emerged that 

enable computers to autonomously discover the most appropriate machine learning 

pipeline tailored to a particular task and dataset. AutoML solutions can either be cloud-

based, such as Microsoft Azure Machine Learning(Barnes, 2015), Google Cloud AutoML 

Vision(Bisong and Bisong, 2019), , and Apple's Create ML, or open-source such as 

PyCaret AutoKeras(Jin et al., 2023), , Auto-WEKA 2.0 (Kotthoff et al., 2017), H2O 

AutoML(LeDell and Poirier, 2020), AutoSklearn (Feurer et al., 2015), TPOT(Le et al., 

2020), autoxgboost(Thomas et al., 2018), and OBOE(Yang et al., 2019). For this 

dissertation, PyCaret (Ali, 2020) was the AutoML framework of choice. 

PyCaret is a Python-based, low-code machine learning library designed to 

streamline the experimental model building and deployment process. It offers a wide array 

of algorithms and automated processes for feature engineering, model selection, 

hyperparameter tuning, and model evaluation, covering the entire machine learning 

workflow. PyCaret offers significant advantages to both beginners and experts, providing 

a range of features for quick experimentation and comparative analysis across different 

models and datasets. This allows users to concentrate on model conceptualization and 

analysis rather than coding intricacies. 

For the Classification task, PyCaret searched for the best machine learning 

algorithm from a list of 14 algorithms, which ranged from simple to more complex ones. 

Specifically, PyCaret searched through. Linear classifiers (Logistic Regression and Ridge 

Classifier with L2 regularization). Tree-based models such as Random Forest, Extra 

Trees, Gradient Boosting, and Decision Tree classifiers, using them independently or in 

an ensemble to make predictions Instance-based classifiers (K Neighbours Classifier) 

classifying samples based on the majority class among their nearest neighbours. 

Boosting algorithms (Ada Boost and Light Gradient Boosting Machine) to sequentially 

build weak classifiers to form a robust model. Hyperplane based classifiers (Support 

Vector Machine with a linear kernel) to separate classes. Dimensionality reduction and 

linear discrimination classifiers (Linear Discriminant Analysis and Quadratic Discriminant 

Analysis) and the Naive Bayes classifier which utilizes probabilistic methods based on 

Bayes' theorem with the "naive" independence assumption. 

Finally, for the AutoML experiments, a StratifiedKFold with 10 folds was used to 

evaluate the models based on accuracy, recall, precision, and F1-score. The model 

evaluation metrics were recorded, and then the AutoML system searched for a possibly 

better-performing solution by executing automated hyperparameter tuning. However, 

while AutoML can operate without specific configurations, setting experimental 

constraints becomes necessary to extract insights into this process and understand both 
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its limitations and advantages. The AutoML framework used is presented in the figure 

below. 

 

 

For classification experiments (fertilisation and water stress/ acclimation 

experiments), the results of the AutoML system were compared with Partial Least 

Squares Discriminant Analysis (PLS-DA). PLS-DA is a multivariate statistical technique 

used to analyse high-dimensional data to discriminate or classify between categories/ 

groups and is a widely used machine learning algorithm for hyperspectral imaging 

applications. 

PLS-DA operates by establishing components/latent variables, which are linear 

combinations of the original predictors. These components/ latent variables are derived 

in a way that maximizes the covariance between predictor variables (independent) and 

categorical class variables (dependent). This process enables PLS-DA to identify 

underlying structures that differentiate between classes while taking into consideration 

multicollinearity issues commonly encountered in high-dimensional data. 

As a result, PLS-DA achieves dimensionality reduction of the dataset while 

retaining essential information crucial to the classification task. Moreover, it facilitates the 

prediction of categorical outcomes for new observations using the learned associations 

between predictors and class labels. 

Two PLS-DA algorithm versions have been developed, PLS1-DA(Cozzolino et al., 

2010)(Liu et al., 2008)(Lee and Jemain, 2019)(Pan et al., 2015)(Xia et al., 2019) and 

PLS2-DA(Vieira et al., 2020)(Marquetti et al., 2016)(Bronzi et al., 2020)(Manheim et al., 

2016). PLS2-DA is applied when the objective is to discriminate among multiple groups 

Figure 25. AutoML framework pipeline used in the fertilization experiment 
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simultaneously and when the dataset contains multiple sets of response variables 

associated with the same set of predictors. In this dissertation, PLS1-DA was selected to 

discriminate between a set of response variables (control – test). 

Regarding the regression experiment (dry matter estimation), two (2) regression 

methods were tested: Automatic Relevance Determination (ARD) (Wipf and Nagarajan, 

2007) and Partial Least Squares Regression (PLS) (Wold et al., 2001). ARD regression 

is a type of linear regression that differentiates itself from typical linear regression by 

incorporating Bayesian inference. ARD Regression introduces another Gaussian prior on 

each regression model weight. These priors’ variance enables the model to automatically 

adjust each feature relevance. Features that show nearly zero variances have their 

weights reduced toward zero, thus eliminating them from the model. 

PLS Regression is an algorithm that projects the input features and the target to a 

different space to find a linear regression model. It achieves better results on occasions 

where the predictor matrix consists of more variables than observations and when input 

values show multicollinearity. The main advantage of PLS Regression is its ability to 

handle cases with numerous correlated predictors and cases with more predictors than 

observations. 

For the dry matter regression problem, the experiments were executed ten (10) 

times using a 5-fold cross-validation setting (10x5-fold cv) to further enhance precision of 

the final performance assessments. 

Finally, for all experiments, data processing was carried out by programming in 

Python 3.10, while data preprocessing was conducted using scikit-learn 1.3.2 and SciPy 

v.14.1. For each experiment different code was written and used. The irrigation and 

fertilization experiments further used PyCaret 3.0 for the data analysis, while the dry 

matter generalization experiments made additional use of the UMAP library. For 

background removal and scikit-image 0.21.0 was used. 
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2.8 Evaluation metrics 
The performance of all tested classification models was evaluated using Accuracy, 

the most common way to evaluate a classification model, which works well when the 

dataset is balanced. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 x 
tp+tn

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛 
 [11] 

 

However, since the datasets for the water stress and the fertilisation were 

unbalanced, it was crucial to compute the micro-averaged F1 score for comparative 

purposes. This study favours this specific aggregation technique over the macro-average, 

especially when dealing with class imbalances, as observed in all datasets.  

 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 [12] 

 

Recall measures the proportion of accurately identified categories from the original 

dataset, 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 100 x 
tp

𝑡𝑝+𝑓𝑛 
 [13] 

 

while precision gauges the accuracy of labels in the classifier’s output 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 100 x 
tp

𝑡𝑝+𝑓𝑝 
  [14]  

 

where tp = true positives, fp = false positives, tn = true negatives, and fn = false negatives 

 

 Finally, the dry matter content estimation study assessed the different 

preprocessing components towards enhancing the modelling abilities of the two selected 

and tested regression methods. Root Mean Squared Error on Prediction (RMSEP) was 

used to measure prediction accuracy. Moreover, to improve the accuracy of the 

assessments, experiments were conducted ten (10) times under a 5-fold cross-validation 

setting (10x5-fold cv). Additionally, R2 ,the adjusted coefficient of determination, was 

utilized for removing the pipelines that did not manage to report in a constant way 

performances above the mean of the dry matter output. Lastly, it’s important to note that 

the whole pipeline run from the start whenever a new processing step was introduced. 

This meant that the optimal combination of algorithms and hyperparameters could vary 

at each stage, depending on the adjustments made. 
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2.9 Statistical analysis 
 

Pearson’s correlation coefficient (r) calculations were conducted to explore the 

relationships between CIELAB and Spectral wavelengths. The objective was to assess 

whether there is relationship between the two types of optical measurements. Descriptive 

statistics, including average, min, max and standard deviation, were computed for the 

broccoli weight during first year to provide a comprehensive overview of broccoli 

production under different fertilisation schemes.  
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Chapter 3 Results 
 

3.1 Testing the Suitability of Automated Machine Learning, 

hyperspectral imaging and CIELAB color space for proximal in 

situ fertilisation level classification 
 

Over the first year, two different fertilization levels were investigated, full 

fertilisation (control) and half fertilisation with the first class consisting of 28 

plants/samples and the second one of 21 plants/ samples summing up to a total of 49 

samples. Hyperspectral and CIELAB measurements were conducted for each of the 

broccoli plants, and three datasets were constructed. The first comprised only of 

hyperspectral data, the second only of CIELAB data and the third one was the result of 

merging the two. Each of those datasets was then used to train artificial intelligence 

classification models either using traditional algorithms and namely PLS-DA or AutoML 

solutions and the PyCaret library. 

In Figure 26, each fertilisation class's extracted average spectra (spectral 

signature) are visualized. In contrast to the color image, differences between the two 

classes in the red-edge (660-760 nm) and NIR wavelengths (>770 nm) are observable.  
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Figure 26. Spectral signature (average spectra) for the two fertilization classes 
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3.1.1 Training using AutoML 
 

For the classification task the AutoML system, achieved an accuracy and F1-score 

of 1.00 using the hyperspectral dataset, outperforming the CIELAB dataset, which 

achieved an accuracy of 0.72 and F1-score of 0.68. Table 18 lists the best-performing 

machine learning algorithms compared by PyCaret. 

 

Table 18. Best-performing PyCaret algorithms 

 

The hyperspectral dataset yielded the best results with the Decision Trees, Extra 

Trees, Random Forest, Ada Boost Classifier, CatBoost, Extreme Gradient Boosting and 

Gradient Boosting algorithms. Meanwhile, the MLP algorithm performed the best on the 

CIELAB dataset, followed by the Gaussian Process Classifier, Logistic Regression, and 

SVM - Radial Kernel. 

Dataset  ML algorithm Accuracy Recall  Precision F1-

score 

CIELAB MLP 0.72 0.65 0.75 0.68 

CIELAB Gaussian 

Process 

Classifier 

0.67 0.70 0.63 0.64 

CIELAB Logistic 

Regression 

0.66 0.55 0.60 0.57 

CIELAB SVM - Radial 

Kernel 

0.64 0.60 0.67 0.60 

Hyperspectral Ada Boost 

Classifier 

1.00 1.00 1.00 1.00 

Hyperspectral Decision 

Trees 

1.00 1.00 1.00 1.00 

Hyperspectral Extra Trees 1.00 1.00 1.00 1.00 

Hyperspectral Random 

Forest 

1.00 1.00 1.00 1.00 

Hyperspectral Extreme 

Gradient 

Boosting 

1.00 1.00 1.00 1.00 

Hyperspectral CatBoost 1.00 1.00 1.00 1.00 

Hyperspectral Gradient 

Boosting 

1.00 1.00 1.00 1.00 
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The study also explored the interaction between hyperspectral and CIELAB color 

data, aiming to provide a more comprehensive analysis of the subject. The results 

demonstrated that the combined dataset offered better performance than the CIELAB 

data alone, though it did not surpass the hyperspectral dataset in accuracy. The three 

top-performing algorithms were Linear Discriminant Analysis (LDA), Quadratic 

Discriminant Analysis (QDA), and the MLP Classifier. Among these, LDA performed the 

best, achieving an accuracy of 0.94 and an F1-score of 0.87. Table 19 presents the 

performance metrics of all three algorithms for the combined dataset. 

Table 19. Combined dataset performance 

 

3.1.2 Training using PLS-DA 
 

Upon finishing the training and evaluation of both datasets using the AutoML 

pipeline, the hyperspectral dataset, the best-performing dataset, was used to train a PLS-

DA model. PLS-DA is a machine learning algorithm commonly used in hyperspectral 

imaging applications and can serve as a benchmark for comparing AutoML classification 

performance. Figure 27 presents the PLS latent variable cross-decomposition plot. The 

cross-decomposition graph of latent variables serves as a visual tool that illustrates the 

relationships between the latent variables and the variability present in the original 

dataset. This type of graph helps to uncover patterns and connections that may not be 

immediately evident, offering deeper insights into how the latent variables capture the 

underlying structure of the data.  

Figure 27 shows that the two classes can be effectively distinguished by using 

latent variables 1 and 2. In the lower left quadrant the half fertilisation samples are 

gathered, with the full fertilisation samples being scattered in the upper left and lower right 

quadrants. 

 

 

 

Dataset  ML algorithm Accuracy Recall  Precision F1-

score 

Hyperspectral + 

CIELAB 

LDA 0.94 0.85 0.90 0.87 

Hyperspectral + 

CIELAB 

QDA 0.77 0.70 0.58 0.63 

Hyperspectral + 

CIELAB 

MLP 0.71 0.55 0.65 0.55 
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However, the performance of the PLS-DA algorithm does not match that of the 

AutoML system, achieving an accuracy and F1-score of 0.91, compared to the perfect 

score of 1.00 achieved by the AutoML system for both performance metrics. Table20 

contains the detailed performance evaluation for the PLS-DA. 

 

Table 20. PLS-DA algorithm performance 

 

  

Dataset  ML algorithm Accuracy Recall  Precision F1-

score 

Hyperspectral PLS-DA 0.91 0.88 0.95 0.91 

Figure 27. PLS cross-decomposition Score plot. The red dots represent half fertilization 
samples, and the blue dots represent the full fertilization samples. 
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3.1.3 Training using AutoML and a single-feature dataset 
 

The performance of the AutoML system was further assessed using a dataset with 

a single feature, building on the strong results previously obtained with the full 

hyperspectral dataset. Feature selection was conducted with the scikit-learn library, 

utilizing the ANOVA F-statistic as the scoring function to narrow down the dimensions of 

the hyperspectral data. 

The possibility of achieving good classification performance with just one 

wavelength was explored by setting the number of desired wavelengths to 1. The chosen 

wavelength based on the Anova F-statistic was in the near-infrared (NIR) region, 

specifically at 874 nm. 

The AutoML system accurately classified all samples, achieving an accuracy and 

F1-score of 1.00. The top-performing algorithms were the Extra Trees Classifier, Decision 

Tree Classifier, Ada Boost Classifier, CatBoost Classifier, Random Forest Classifier, 

Gradient Boosting Classifier, and Extreme Gradient Boosting. These classifiers also 

performed the best when using the full hyperspectral dataset (Table 21). 
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Table 21. Single feature dataset performance 

 

  

Dataset  ML algorithm Accuracy Recall  Precision F1-

score 

Hyperspectral 

single 

wavelength 

Decision Tree 

Classifier 

1.00 1.00 1.00 1.00 

Hyperspectral 

single 

wavelength 

Ada Boost 

Classifier 

1.00 1.00 1.00 1.00 

Hyperspectral 

single 

wavelength 

Random 

Forest 

Classifier 

1.00 1.00 1.00 1.00 

Hyperspectral 

single 

wavelength 

CatBoost 

Classifier 

1.00 1.00 1.00 1.00 

Hyperspectral 

single 

wavelength 

Extra Trees 

Classifier 

1.00 1.00 1.00 1.00 

Hyperspectral 

single 

wavelength 

Gradient 

Boosting 

Classifier 

1.00 1.00 1.00 1.00 

Hyperspectral 

single 

wavelength 

Extreme 

Gradient 

Boosting 

1.00 1.00 1.00 1.00 
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3.2 Early detection of broccoli drought acclimation/stress in 

agricultural environments utilising proximal hyperspectral 

imaging and AutoML 
 

During the second year the focus was on detecting drought acclimation/stress. 

Two different irrigation schemes were used, which in turn led to the creation of two 

datasets, drought onset dataset and drought acclimated dataset, each consisting of two 

classes control and drought onset/ drought acclimated respectively. The drought onset 

dataset consisted of 42 images/samples while the drought acclimated of 48. Finally, a 

third dataset was created by merging the two datasets. The merged dataset contained 90 

images/samples of all three classes control, drought onset and drought acclimated. All 

datasets were used to train artificial intelligence classification models. The models were 

trained either traditional algorithms and namely PLS-DA or AutoML and the PyCaret 

library. 

This section presents the classification results using PLS1-DA and the AutoML 

framework on all three datasets. Various pre-processing techniques (smoothing 

combined with either dimensionality reduction or feature selection) were evaluated 

separately to determine how they affect both the PLS1-DA and AutoML classification 

metrics. 

The extracted spectral signatures are visualized in the following figures to provide 

insight into the data used for classification purposes. Namely, Figure 28 displays the 

average spectral signatures of the plants imaged at the drought onset, and Figure 29 the 

average spectral signatures of the plants imaged at the drought acclimation stage. 
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Figure 28. Mean spectral signature of broccoli canopy at the drought onset. With red is depicted 
the control group, and with green the drought. 95% CI are also presented.

 

Figure 29. Mean spectral signature of broccoli canopy at the drought acclimation. With green is 
depicted the control group, and with blue the drought. 95% CI are also presented. 
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Statistically significant differences (independent t-test at α = 0.05) are observed 

within both datasets in the NIR region, as opposed to the visible spectrum (including red-

edge), in which statistically significant differences are found only in the onset of drought 

dataset. Between the different datasets, statistically significant differences (paired t-test 

at α = 0.05) are observed for the control group only in the visible spectrum and for the 

drought group in the full measured spectrum. At the onset of drought, the maximum 

photosynthetic rate (p-value = 0.06 at α = 0.05) and the stomatal conductance (p-value = 

0.055 at α = 0.05) were nearly significant, while the transpiration rate was statistically 

significant (p-value = 0.03 at α = 0.05) between the treatments, indicating a drought stress 

onset. This could be attributed to the timing of hyper-spectral imaging and gas exchange 

sampling. The drought group did not receive any irrigation for four days, from which the 

initial three were cloudy (low evapotranspiration), in contrast to the fourth day which was 

particularly hot (high evapotranspiration, limited available substrate water content). 

Physiological parameters were measured early in the morning of the fourth day to validate 

the onset of the short-term drought acclimation that progressed due to the environmental 

conditions, in an early loss of turgor late in the afternoon, when imaging took place. Based 

on the laboratory measurements, drought stress did not occur on any date. Though, 

statistically significant differences were observed in the stomatal conductance, maximum 

photosynthetic rate, and the transpiration rate between the treatments 16 days after 

drought initiation.  From the previous can be concluded that the drought group was 

acclimated due to the drought conditions. On that day, hyper-spectral imaging and 

physiological measurements were conducted within a two-hour difference in the morning. 

 Although this dissertation provides preliminary insights into drought acclimation 

level, the observed difference in spectral signatures requires further investigation in future 

research to draw solid conclusions. Prior to training the model PCA was used due to the 

high collinearity of the spectral data collected (figures 30 and 31). 



Investigating the application of spectral imaging and AI in precision horticulture (agriculture) 

PhD Dissertation I. Malounas 

 

90 
 

 

Figure 30. Correlation matrix of drought onset dataset. Highly correlated data appear in red. 
Should be noted that the baseline of the correlation coefficient for this dataset is 0.825. 
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Figure 31. Correlation matrix of drought acclimated dataset. Highly correlated (1.0) data appear 
in red, while the least correlated in whitish blue (0.0). 
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3.2.1 Training using AutoML 
The AutoML framework evaluated 14 different classifiers. Each classifier was 

cross-validated and fine-tuned using PyCaret, which automatically searches and applies 

the best hyperparameter configurations. 

The AutoML framework managed to accurately classify between both drought 

onset/ control and drought acclimated/control plants, accuracy and F1-score of 1.00 on 

the hold-out subset regardless of the drought level. All the pre-processing techniques and 

combinations achieved excellent performance (accuracy > 0.90). The use of only the five 

least correlated wavelengths (~478nm, ~530nm, ~672nm, ~770nm, ~850nm) instead of 

all 150, provided similar perfomance for most of the classifiers evaluated by the AutoML 

framework, underlining the impact of multicollinearity in hyperspectral data.  

Table 22 presents the highest performing classifiers within the 5-fold cross 

validation (CV-val) of the train subset using AutoML across both acclimation levels and 

using the various pre-processing techniques. Because of the imbalance in the two classes 

both F1-score and accuracy are presented. CV-train metrics (mean validation results 

within the 5-fold cross validation by using the training folds) were calculated as well but 

not presented for simplicity. Both CV-train and CV-val performance was quite similar, 

indicating non-overfitted data. 

 

Table 22. AutoML CV-val performance across both drought levels and pre-processing 
techniques. The standard deviation (SD) is provided in parentheses 

Dataset 
Pre-processing 

technique 
Architecture Accuracy F1-Score 

drought onset  LOWESS 
qda/ridge/ 

svm/lda 
1.00 (0.00) 1.00 (0.00) 

drought onset  LOWESS & PCA ridge/et 
0.9667 

(0.067) 
0.971 (0.057) 

drought onset  
LOWESS  

(5 features) 
qda/nb/ridge 

0.9600 

(0.0800) 

0.9333 

(0.1333) 

drought 

acclimated  
LOWESS 

lr/knn/nb 

qda/ridge/et/lda 
1.00 (0.00) 1.00 (0.00) 
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drought 

acclimated 
LOWESS & PCA all classifiers  1.00 (0.00) 1.00 (0.00) 

drought 

acclimated 

LOWESS 

(5 features) 

lr/knn/qda/nb/ridg

e/et/svm/lda 
1.00 (0.00) 1.00 (0.00) 

 

The trained classifiers were ultimately validated on a subset of data that the model 

had never encountered before. This step provided an unbiased evaluation of the model's 

ability to perform on unseen data, helping to identify potential overfitting and offering a 

more accurate estimate of the model’s real-world performance prior to deployment. The 

performance on the never seen data (Table 23) was comparable to the performance of 

the mean hold-out fold (CV-val) metrics thus model overfitting probability is minimal.  

 

Table 23. AutoML hold-out subset performance across both drought levels and pre-processing 
techniques. 

Dataset 
Pre-processing 

technique 
Architecture Accuracy F1-Score 

drought onset  LOWESS 
ada/nb/et/svm/dt/rf

/gbc 
1.00  1.00  

drought onset  LOWESS & PCA 
all classifiers 

except et/knn 
1.00  1.00  

drought onset  
LOWESS  

(5 features) 

ada/ridge/et/dt/rf/g

bc 
1.00  1.00  

drought 

acclimated 
LOWESS 

lr/knn/ada/qda/ridg

e/et/lda/svm 
1.00  1.00  

drought 

acclimated 
LOWESS & PCA all classifiers  1.00  1.00  

drought 

acclimated 

LOWESS  

(5 features) 

lr/knn/qda/nb/ridge

/et/lda 
1.00  1.00  
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Only the best performing classifiers are presented in the tables in terms of 

accuracy and F1-score with classifiers performing slightly worse being omitted. 

Finally, the mixed dataset comprising of both drought onset and drought 

acclimated plants was used to evaluate the discrimination capabilities of the AutoML 

classifiers between the three classes (control - drought onset- drought acclimated). The 

performance achieved was slightly lower compared to the binary classification problems 

but still excellent achieving an F1-score and accuracy of 1.00 on the hold-out subset 

(Table 24). 

 

Table 24. AutoML performance for the mixed dataset. In total three classes were used for 
classification. The standard deviation (SD) is provided within parentheses. 

Dataset 
Pre-processing 

technique 
Architecture Accuracy F1-Score 

mixed 

(CV-val) 
LOWESS lr/knn/qda/  svm/lda 

0.9679 

(0.0393)  

0.9673 

(0.0402)  

mixed 

(CV-val) 
LOWESS & PCA lr/knn/qda/rf/gbc 

0.9679 

(0.0393)  
0.966 (0.0402)  

mixed 

(CV-val) 

LOWESS 

(5 features) 
rf/gbc 

0.9679 

(0.0393)  

0.9673 

(0.0402)  

mixed 

(hold-out) 
LOWESS ridge/lda 1.00  1.00  

mixed  

(hold-out) 
LOWESS & PCA et/lda/dt 1.00  1.00  

mixed 

(hold-out) 

LOWESS 

(5 features) 
svm 0.9643  0.9647  
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3.2.2 Training using PLS1-DA 
 

The second algorithm used was PLS-DA. Table 25 presents the accuracy, and F1-

score achieved using PLS1-DA for both the CV-val and hold-out subsets. Cross validation 

(CV-val) achieved an accuracy and F1-score of 0.966 on the drought onset dataset, and 

1.00 on the drought end dataset. Finally, for the mixed dataset, cross validation accuracy 

and F1-score were 0.922 and 0.934, respectively. The results on the hold-out subset were 

similar (slightly better), suggesting that the PLS1-DA model does not overfit the data. 

 

Table 25. PLS1-DA performance for both acclimation levels and pre-processing techniques. The 
standard deviation is provided within parentheses. 

Dataset Pre-processing 

technique 

Architecture Accuracy F1-Score 

drought onset   

(CV-val) 

 

drought onset 

 (hold-out) 

LOWESS PLS1-DA  

0.966 (0.076) 

 

 

1.00 

0.966 (0.076) 

 

 

1.00 

drought 

acclimated            

(CV-val) 

 

drought 

acclimated 

 (hold-out) 

LOWESS PLS1-DA  

1.00    (0.00) 

 

 

1.00 

1.00 (0.00) 

 

 

1.00 

mixed (CV-val) 

 

mixed (hold-

out) 

 

LOWESS 

 

PLS1-DA  

0.922 (0.053) 

 

1.00 

0.934 (0.037) 

 

1.00 
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3.3 Evaluation of a hyperspectral image pipeline toward building 

a generalisation capable crop dry matter content prediction 

model 
 

The third year further capabilities of the artificial intelligence regression models and 

spectral data were investigated. Namely their ability to generalize across heterogeneous 

data. As a result, a multi-crop and vegetable dry matter dataset was constructed. The 

dataset consisted of three different crops (apple, broccoli, and leek) with hyperspectral 

data collected using different hyperspectral cameras in the VIS-NIR range. The dataset 

consisted of 779 pairs of dry matter and hyperspectral measurements. Additionally, 

besides investigating the generalisation capabilities of the model, the effect of various 

preprocessing techniques as well as the effect of the dataset size were investigated. 

In the upcoming tables, an extra preprocessing step is added as a column 

transitioning from a single step pipeline to the full six step pipeline: 1) Smoothing, 2) 

Scaling, 3) Recursive Feature Elimination, 4) Univariate Feature Selection, 5) Feature 

Extraction, 6) Polynomial Transformation. The first table (Table 26) consists of three (3) 

columns. The first column contains the first preprocessing step configuration, column two 

(2) and three (3) contain the algorithm performance for the pipeline evaluation. The last 

table (Table 31) consists of eight (8) columns, one column for each of the preprocessing 

steps, six in total) and two that contain the model performance. The following tables are 

sorted based on the ARD algorithm performance in descending order. The order of each 

table may be different, as the best performing combination and value of the preprocessing 

steps may differ.  

Table 26 contains the performance of using all the available (wavelengths) 

features in order to predict dry matter content without applying any smoothing filter and 

with the application of one (window size 8 and 16). Various window sizes were evaluated, 

however, the no smoothing configuration reported higher performances for both the ARD 

and PLS algorithms compared to any smoothing. ARD regression achieved a better 

performance than PLS with RMSEP=0.0162. This served as the baseline for all following 

subsequent processing stages. 

 

Table 26. RMSEP without and with smoothing. Dry Matter Min. Content Value = 0.0811; Max. 
Value = 0.2019 

Smoothing Window ARD PLS 

- 0.0162 0.0163 

8 0.0165 0.0167 
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16 0.0168 0.0172 

 

The use of scaling improved the performance of the ARD regression (Table 27). A 

minimum RMSEP=0.0151 was achieved with standardization, and an improvement of 

RMSEP=0.0153 was achieved when using normalization. PLS showcased the same 

pattern in the best performances: Standardization (0.0152), normalization (0.0153). Once 

again, smoothing caused a decrease in performance. 

 

Table 27. RMSEP upon the addition of the scaling step. Dry Matter Content Min. Value = 
0.0811; Max. Value = 0.2019 

Smoothing 

Window Scaling ARD PLS 

- Standardization 0.0151 0.0152 

- Normalization 0.0154 0.0153 

8 Standardization 0.0155 0.0154 

8 Normalization 0.0156 0.0157 

16 Normalization 0.0161 0.0159 

16 Standardization 0.0162 0.0161 

 

The addition of the RFE preprocessing stage further improved performance (Table 

28). ARD achieved RMSEP = 0.0147, while PLS RMSEP = 0.0149. For one more time, 

smoothing failed to improve performance. On the contrary, integrating feature scaling with 

RFE achieved better performance compared to tests conducted without any feature 

scaling.  

 

Table 28. RMSEP upon the addition of the recursive feature elimination step,. Dry Matter Content 

Min. Value = 0.0811; Max. Value = 0.2019 

Smoothing 

Window Scaling 

 

RFE ARD PLS 

- Standardization Yes 0.0147 0.0149 

- Normalization Yes 0.0150 0.0150 

- Standardization No 0.0151 0.0152 

- - Yes 0.0152 0.0150 

- Normalization No 0.0154 0.0153 

8 Normalization Yes 0.0155 0.0151 

8 Standardization Yes 0.0157 0.0154 

- - No 0.0161 0.0155 

16 - Yes 0.0162 0.0157 
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As shown in Table 29, including a feature selection step improved the overall 

performance and PLSR achieved RMSEP = 0.0137. The inclusion of a feature selection 

step also managed to improve the ARD regression performance (RMSEP = 0.0140) for 

the first time. The best feature selection algorithm was permutation which showed a better 

performance over its two competitors (Mutual Information and F-statistic). Pipeline 

performance increased only when using permutation as both the F-statistic and Mutual 

Information criteria led to a decrease in performance. 

Table 29. Top-10 RMSEP upon the addition of the univariate feature selection step. Dry Matter 

Content Min. Value = 0.0811; Max. Value = 0.2019 

 

Smoothing 

Window Scaling RFE 

No. of features 

selected by the 

Feature 

selection 

Feature selection 

criteria  ARD PLS 

- Standardization Yes 32 Permutation 0.0140 0.0137 

- Standardization No 32 Permutation 0.0141 0.0139 

- Standardization Yes 24 Permutation 0.0142 0.0143 

- Normalization Yes 32 F-statistic 0.0143 0.0148 

8 Standardization No 32 Permutation 0.0144 0.0150 

- Normalization Yes 32 Permutation 0.0145 0.0145 

- - Yes 32 Permutation 0.0148 0.0147 

- - Yes 24 permutation 0.0149 0.0143 

- Standardization Yes 32 F-statistic 0.0150 0.0148 

8 Standardization Yes 32 Mutual Information 0.0152 0.0145 

 

Including a feature extraction stage decreased performance pattern, in contrast to 

the previous pre-processing stages (Table 30). Additionally, both Autoencoder and the 

UMAP algorithms failed to achieve one of the best performances, making PCA the best 

performing feature extraction algorithm. The best performance when including feature 

extraction was achieved with PLS regression (RMSEP = 0.0148), however it fell back to 

the performance of only using the feature selection preprocessing stage. 
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Table 30. Top-10 RMSEP upon the addition of the feature extraction step. Dry Matter Content 

Min. Value = 0.0811; Max. Value = 0.2019. 

 

Table 31 summarises the ten (10) preprocessing pipelines that achieved the worst 

performances. They all showcased a noticeable pattern regarding the selection of the 

minimum number of features. Namely eight (8) features were selected by the F-statistic 

as the criteria. Finally, using PCA worsened the performance by reducing the number of 

selected features to four (4). 

 

Table 31. The worst 10 RMSEP upon the addition of all the steps. Dry Matter Content Min. Value 

= 0.0811; Max. Value = 0.2019. 

 

Smoothing 

Window Scaling RFE 

No. of features 

selected by 

the feature 

selection 

Feature 

selection 

criteria 

Feature 

Extraction 

Algorithm ARD PLS 

8 - Yes 32 

Mutual 

Information PCA 0.0149 0.0148 

0 - No 32 Permutation PCA 0.0152 0.0152 

0 - Yes 32 Permutation PCA 0.0153 0.0151 

0 Normalization Yes 24 Permutation PCA 0.0155 0.0154 

0 Normalization Yes 24 

Mutual 

Information PCA 0.0156 0.0153 

8 - No 32 Permutation PCA 0.0158 0.0151 

8 - Yes 32 Permutation PCA 0.0160 0.0150 

8 Normalization Yes 24 

Mutual 

Information PCA 0.0161 0.0153 

0 - Yes 32 

Mutual 

Information PCA 0.0163 0.0155 

0 - Yes 24 Permutation PCA 0.0164 0.0157 

Smoothing 

Window Scaling RFE 

No. of features 

selected by the 

feature 

selection 

Feature 

selection 

criteria 

Feature 

Extraction 

Algorithm ARD PLS 

16 Standardization Yes 8 F-statistic PCA 0.0235 

0.022

2 

16 Standardization Yes 8 F-statistic PCA 0.0217 

0.020

5 
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In addition to examining the preprocessing steps that could result in the most effective 

pipeline for dry matter content prediction, analysing the wavelengths most commonly 

chosen by the top-performing models could help identify the regions of the 

electromagnetic spectrum that contain the most valuable information. This insight could 

be crucial for refining the prediction process and enhancing model accuracy. In Fig. 32 

the most commonly used wavelengths which reported a RMSEP lower than 0.0140 can 

be seen. Notably, all 19 highest score wavelengths are located in the visible (VIS) region 

of the spectrum. This indicates that the VIS region contains the most informative features 

for the analysis. This pattern is rather stable with the exception of wavelength 538 nm, 

which was selected less compared to the 535nm wavelength which is larger. It is worth 

mentioning that wavelengths longer than 543nm were not selected frequently. 

- Standardization Yes 8 F-statistic PCA 0.0219 

0.020

4 

8 Standardization Yes 8 F-statistic PCA 0.0219 

0.020

4 

0 Standardization Yes 8 F-statistic PCA 0.0216 

0.020

1 

8 Standardization Yes 8 F-statistic PCA 0.0215 0.02 

- - No 8 F-statistic PCA 0.0194 

0.019

4 

16 - No 8 F-statistic PCA 0.0193 

0.019

3 

0 Normalization No 8 F-statistic PCA 0.02 

0.019

3 

16 Normalization No 8 F-statistic PCA 0.02 

0.019

3 
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Figure 32. Most commonly selected wavelengths by the best-performing pipelines 

3.3 Individual crop dry matter prediction 
 The same methodology used for the generalization experiments was also applied 

to single crops. In Table 32, the results for leek are shown. Permutation for the feature 

selection stage and not feature extraction was most important for achieving the lowest 

RMSEP. Again, neither Autoencoder nor UMAP was able to provide high performances 

as observed within the whole dataset. On the other hand, a key difference compared to 

using the entire dataset was that selecting 8 features, rather than 32, consistently resulted 

in a lower RMSEP, with the exception of when PCA was applied without RFE and scaling. 

This suggests that a more focused selection of features can improve model performance, 

though specific preprocessing techniques may influence the outcome. It is also worth 

noting that the best performance was obtained by PLS RMSEP = 0.0154. 

Table 32. Top-10 RMSEP for leek upon the addition of the feature extraction step. Dry Matter 
Content Min. Value = 0.0811; Max. Value = 0.1910. 

Smoothing 

Window Scaling RFE 

No. of features 

selected by 

the univariate 

feature 

selection 

Feature 

selection 

criteria 

Feature 

Extraction 

Algorithm 

Output ARD PLS 

- Normalization Yes 8 Permutation - 0.0162 0.0163 

- - No 24 Permutation PCA 0.0163 0.0166 

16 Normalization No 8 Permutation - 0.0164 0.0164 
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Broccoli showed a similar pattern to leek for permutation and low number selected bands 

eight (8) (Table 33). Use of large smoothing windows failed to achieve good 

performances. Finally, feature extraction algorithms failed to place themselves among the 

best performing pipelines. PLS performed the best with average RMSEP = 0.0103.  

Table 33. Top-10 RMSEP for broccoli upon the addition of the feature extraction step. Dry Matter 
Content Min. Value = 0.1187; Max. Value = 0.2019 

 

16 Standardization Yes 8 

Mutual 

Information - 0.0165 0.0154 

8 Normalization No 8 Permutation - 0.0166 0.0165 

- Standardization No 8 Permutation - 0.0168 0.0167 

8 Standardization Yes 8 Permutation - 0.0170 0.0169 

- Normalization Yes 8 

Mutual 

Information - 0.0171 0.0163 

- Standardization Yes 8 Permutation - 0.0173 0.0167 

- Normalization Yes 8 Permutation - 0.0174 0.0169 

Smoothing 

Window Scaling RFE 

No. of features 

selected by the 

univariate 

feature 

selection 

Feature 

selection 

criteria 

Feature 

Extraction 

Algorithm 

Output ARD PLS 

8 Standardization No 8 Permutation - 0.0104 0.0103 

0 Standardization No 8 Permutation - 0.0105 0.0105 

0 Normalization Yes 8 Permutation - 0.0106 0.0107 

0 - Yes 8 Permutation - 0.0107 0.0108 

0 Standardization Yes 8 F-statistic - 0.0108 0.0109 

0 Standardization Yes 8 Permutation - 0.0109 0.0107 

0 Normalization Yes 8 F-statistic - 0.0111 0.0108 

8 Standardization Yes 8 Permutation - 0.0113 0.0111 

8 Normalization Yes 8 Permutation - 0.0114 0.0110 

0 - No 8 Permutation - 0.0115 0.0109 
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Apple showcased the same patterns for feature selection. Low number of selected 

spectral bands and permutation as the selection criteria (Table 34). Moreover, using 

feature extraction did not improve the RMSEP obtained. As it was the case for broccoli, 

applying large window sizes for smoothing did not improve performance and using feature 

scaling and RFE did not show a clear pattern. The lower RMSEP values compared to the 

other crops and the whole dataset are caused by the different dry matter contents of each 

crop. 

Table 34. Top-10 RMSEP for apple upon the addition of feature extraction step. Dry Matter 
Content Min. Value = 0.1349; Max. Value = 0.1743. 

 

3.4 External validation 
Real generalization (external validation) was evaluated by training the algorithms on pairs 

of crops and testing on the remaining crop. Table 35 depicts the performances achieved 

using all possible configurations. It is crucial to highlight that all crop pairs were evaluated 

as training data: apple-leek, apple-broccoli and broccoli-leek. However, only training on 

the pair of apples and broccoli and using the leek as the test set consistently reported 

performances with a positive R2 (adjusted coefficient of determination). A performance of 

Smoothing 

Window Scaling RFE 

No. of features 

selected by 

the univariate 

feature 

selection 

Feature 

selection 

criteria 

Feature 

Extraction 

Algorithm 

Output ARD PLS 

0 Normalization Yes 8 Permutation - 0.0075 0.0073 

0 - No 8 Permutation - 0.0077 0.0074 

8 Standardization Yes 8 Permutation - 0.0078 0.0076 

8 - No 8 Permutation - 0.0079 0.0075 

8 Standardization No 8 Permutation - 0.0080 0.0077 

0 Standardization No 8 Permutation - 0.0081 0.0076 

0 Standardization Yes 8 Permutation - 0.0082 0.0080 

0 - Yes 8 Permutation - 0.0084 0.0081 

8 - Yes 8 Permutation - 0.0086 0.0079 

8 - Yes 8 

Mutual 

Information - 0.0089 0.0082 
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RMSEP = 0.0224 was achieved using the F-statistic selection criteria and twenty-four (24) 

wavelengths as input variables. 

 

Table 35. RMSEP on holdout dataset upon the addition of the feature extraction step. 

 

  

Smoothing 

Window Scaling RFE 

No. of features 

selected by 

the univariate 

feature 

selection 

Feature 

selection 

criteria 

Feature 

Extraction 

Algorithm 

Output ARD PLS 

0 - No 24 F-statistic - 0.0224 0.0226 

0 - Yes 24 F-statistic - 0.0226 0.0227 

16 

Normalizatio

n No 24 F-statistic PCA 0.0232 0.0234 

16 

Normalizatio

n Yes 24 F-statistic PCA 0.0235 0.0236 
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3.5 Statistical analysis results 
 For the fertilisation experiment agronomic data were also collected besides the 

spectral. This diverse collection of data allowed for more traditional statistical analysis. 

Pearson correlation was calculated for the CIELAB and Spectral Bands. This was 

conducted to explore the possibility of reducing spectral data complexity through 

replacing selected bands with CIELAB values. Possible correlations would mean that 

spectral data could be compressed and simplified while preserving the most relevant 

information to human vision, ultimately leading to faster analysis and reduced storage 

requirements. 

 No strong correlations were found. However, it is worth pointing out that for the 

wavelengths between 470-480nm the correlation for the a*, and b* value was the same 

but opposite, 0.2 and -0.2. At the same time there was a negative correlation of -0.72 

among the a* and b* values. 

Moreover, a detailed comparison for the broccoli weights among the different 

fertilisation treatments is provided in the table below. 

 

Table 36. Broccoli weight statistical analysis 

Treatment Average Weight Min weight  Max weight Weight 

St.dev 

Full Fertilisation 125.3 97.3 183.9 15.2 

Half Fertilisation 95.1 69.6 134.2 22.6 
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Chapter 4 - Discussion and contributions 
 

This research aimed to offer a meaningful addition to Precision Agriculture by 

investigating the capabilities of spectral imaging and Artificial Intelligence for model 

generalisation as well as fertilisation and irrigation optimization. Towards that end, this 

study compared novel user-friendly machine learning tools with traditional techniques, 

investigated whether spectral imaging and AI can identify different fertilisation and 

irrigation treatments and finally dived deeper into one of the most prominent problems 

spectral imaging faces: model generalisation. 

 

4.1 Testing the Suitability of Automated Machine Learning, 

hyperspectral imaging and CIELAB colour space for proximal in 

situ fertilisation level classification 
 

The study compared the performance of PyCaret, an open-source AutoML 

framework to PLS-DA algorithm, which is a norm for spectra classification, using fertiliser 

level classification as a potential use case. Both approaches performed well, with PyCaret 

showing a slight performance advantage over PLS-DA. This study provides evidence of 

the effectiveness and efficiency of modern ML architectures for classification tasks. 

Moreover, the potential of combining CIELAB colour space with hyperspectral data for 

fertiliser level classification was tested and compared to using only hyperspectral imaging. 

Both cases showed promising results but slightly lower when using the combined 

approach.  

The CIELAB colour space achieved the best classification performance when used 

alone with PyCaret, with an accuracy of 0.72 using a fine-tuned MLP algorithm. When 

combined with the hyperspectral data, the accuracy improved to 0.94 using the LDA 

algorithm. These results are consistent with previous studies that have found a correlation 

between the CIELAB colour space and nitrogen status in barley (Christ et al., 2021), 

wheat (Yakushev and Kanash, 2016), and broccoli (Graeff et al., 2008). None of these 

studies reports classification metrics, making direct comparisons impossible. Instead, 

they focus on establishing a correlation between the two variables. However, colour and 

most precisely HSV values have been used to determine fertilisation levels using rice 

leaves (Sari and Alkaff, 2020). This particular study achieved an accuracy of 0.825. It is 

worth noting that in this occasion imaging took place under controlled laboratory 

conditions. From the above mentioned discussion it could be argued that colour 

information could yield satisfactory results when classifying different fertilisation dosages. 

After all the visual identification of either nutrient deficiencies or phytopathological cases 

is the current tool of an agronomist. 
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Nonetheless, the classification results obtained from the CIELAB dataset are 

inferior to those derived from the hyperspectral imaging dataset. The PLS-DA algorithm 

applied to the hyperspectral data produced excellent results with an accuracy of 0.91. 

Combining PLS-DA with hyperspectral data is known to provide excellent 

performance(Lee et al., 2024)(Tunny et al., 2023). The technology has been utilized in 

agriculture for various tasks. For instance, it has been used to detect decay lesions in 

citrus fruit with a classification rate of 0.91 (Folch-Fortuny et al., 2016), identify rice seed 

cultivars with classification rates over 0.8 (Kong et al., 2013), and predict viability and 

vigour in muskmelon seeds with a classification accuracy of 0.95 (Kandpal et al., 2016).  

However, the most accurate results were achieved by combining the hyperspectral 

dataset and PyCaret analysis tool, resulting in an accuracy of 1.00, with minimal user 

intervention required, limited to data preprocessing. It is important to note that due to the 

relatively small sample size, the models may be overfitting the data(Hawkins, 2004), 

despite the measures taken to prevent this from affecting the performance metrics such 

as using a Stratified KFold cross validation to provide a more representative and unbiased 

evaluation of the model's performance across different folds. However, it is not surprising 

that perfect classification rates are achieved when combining machine learning and 

hyperspectral imaging for fertilisation estimation tasks, as other studies have reported 

similar results. For instance, in tea plants fertilisation experiments, perfect classification 

rates (100% accuracy) have been achieved (Wang et al., 2018), while accuracies of 75% 

and 80% have been reported for bok choy and spinach fertilisation studies respectively 

(Nguyen et al., 2020). Moreover, experiments on fertilisation in corn and cucumbers have 

reported accuracies of 99.46% (Goel et al., 2003) and 96.14%(Sabzi et al., 2021) 

respectively. Although potentially more powerful machine learning approaches, such as 

CNNs, were not investigated due to an insufficiently large dataset, evidence suggests 

that they could outperform the PLS(Mishra and Passos, 2022). 

It is important to note that combining hyperspectral data with CIELAB data had an 

adverse effect on the classification performance in this particular use case, despite the 

contrary being reported for grape samples(Rodríguez-Pulido et al., 2021). The lack of a 

strong enough synergistic effect may explain why the potential noise introduced by the 

CIELAB measurements could not be overcome. 

Moreover, the dataset using a single wavelength (874 nm) matched the 

performance of using the whole hyperspectral dataset. This signifies that the AutoML 

system is strong enough to classify samples even when fewer wavelengths are available. 

Additionally, the NIR region is the most promising in detecting fertilisation deficiencies. 

This could be attributed to the fact that water is a strong absorber of infrared (IR) energy 

(Tsenkova, 2010). When a plant is under stress such as nutrient deficiency, its water 

content can change, leading to alterations in its NIR reflectance spectrum. This, also, 

explains the poor performance of the CIELAB dataset, which captures information in the 
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visible region. The importance of the NIR region is also supported by additional research 

that focused on fertilisation (Gómez-Casero et al., 2007) 

Finally, the weaker performance of the CIELAB dataset compared to the 

hyperspectral one could be attributed to the fact that hyperspectral imaging focuses on 

chlorophyll absorption, which refers to the process by which chlorophyll molecules absorb 

light energy during photosynthesis and it involves the absorption of specific wavelengths 

of light by chlorophyll pigments, which allows them to convert light energy into chemical 

energy. More specifically chlorophyll content is calculated using wavelengths 663 and 

645 according to the Lambert-Beer law (Liu et al., n.d.). On the other hand, CIELAB 

focuses on the phenomenological background of chlorophyll, which refers to the overall 

influence of various factors, such as the surrounding environment and the presence of 

other pigments. In more detail, the increase in a* has been linked exclusively to 

chlorophyll in the absence of anthocyanin pigments (Ferrer et al., 2005). Ultimately, these 

factors can affect the overall absorption spectrum of chlorophyll and contribute to the 

background noise or interference in the measurement of chlorophyll absorption. 

Additionally, CIELAB and the phenomenological background of chlorophyll (green colour) 

exhibit a hysteresis effect (Peng et al., 2017)which can manifest itself in various ways, 

such as non-linearities in colour transitions or differences in perceived colour changes at 

different points in the colour space. This effect is important and can add complexity to 

image processing applications, thus lowering the model performance. 

All of the aforementioned studies employ complex ML and DL techniques that 

necessitate a thorough comprehension of ML concepts to create and refine algorithms. 

However, this study has achieved comparable outcomes using an AutoML framework and 

PyCaret analysis tool. AutoML systems, have demonstrated their capabilities in 

agriculture tasks, as shown in studies using AutoML for weed identification (Espejo-

Garcia et al., 2021)(Jiang et al., 2020), pest identification (Hayashi et al., 2019), stress 

detection (Karthickmanoj et al., 2021), and yield prediction (Duan et al., 2022). Therefore, 

AutoML holds the potential to replace labour-intensive manual tasks. 
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4.2 Early detection of broccoli drought acclimation/stress in 

agricultural environments utilising proximal hyperspectral 

imaging and AutoML 
 

In the context of short-term drought effect classification, this study explored the 

efficacy of the open-source AutoML framework PyCaret, along with the Partial Least 

Squares Discriminant Analysis (PLS1-DA) algorithm, a typical method for spectra 

classification. Both PyCaret and PLS1-DA exhibited commendable outcomes, 

demonstrating that the classification of drought acclimated broccoli is feasible even at the 

beginning of drought. PyCaret classifiers showcased very similar results with PLS1-DA, 

achieving accuracy and F1-score of 1.00 for every evaluated dataset. It is worth pointing 

out that longer drought periods (further developed water stress/acclimation) lead to better 

classification performance. This could be explained by the higher SD of the drought onset 

dataset. All tested methods performed excellent in the binary classifications (drought 

onset - control, drought acclimated - control), while for the mixed dataset containing 

drought onset, drought acclimated and control samples, results were slightly worse. 

These findings are further supported by additional research that has shown that is 

possible to determine water stress using spectral reflectance on sweet corn (Genc et al., 

2013). While (W. Zhang et al., 2021) reported accuracy of around 0.9 for classifying 

greenhouse tomato plants under water stress using visible near-infrared and (Nampally 

et al., 2023) accuracy of 0.91 for water stress classification in maize once again looking 

at visible near-infrared (VIS-NIR) region. 

These results encourage research for identifying water stress using spectral data. 

However, they also showcase the complexity of the interpretation of water dynamics on 

plant material and the potential of hyperspectral imaging. As in the current work, non-

stressed short-term acclimated broccoli plants showcased outstanding classification 

results, emphasizing the high sensitivity of this method. Moreover, further research is 

required on how the relative or gravimetric leaf water content and/or the dynamic cuticle 

of broccoli plants influence the reflectance. 

 It is worth pointing out that similar results have also been achieved using colour 

imaging, with accuracies higher than 0.95 being reported for maize (An et al., 2019) and 

sunagoke moss (Ondimu and Murase, 2008). These results further support the use of the 

VIS-NIR region for water stress identification, thus enabling possible future low-cost 

solutions that do not rely upon expensive high sensitivity cameras.  

Finally, the excellent results achieved using the AutoML framework, which requires 

minimal user intervention and not prior knowledge regarding ML algorithm come as no 

surprise as they align with prior studies leveraging AutoML and hyperspectral imaging 

which achieved excellent results (accuracy >90%) for plant phenotyping(Koh et al., 2021) 

and crop yield and mass estimation (Ondimu and Murase, 2008). Additionally, the 
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successful application of AutoML solutions in achieving comparable outcomes to widely 

used algorithms such as PLS-DA and complex machine learning methods, underscores 

the versatility and potential of AutoML systems in streamlining ML algorithm development 

for agricultural tasks. The validity of the results and the possible problem of overfitting 

were set to the test using a holdout dataset, in which the proposed model performed 

equally well. Consequently, AutoML framework emerges as a potential candidate for 

replacing or become valuable aid to labour-intensive manual plant monitoring in 

agriculture. 

However, it should be noted that due to the nature of spectral imaging, solutions 

that have been developed for a specific crop-problem pair cannot be expanded and 

generalized to other crops. Moreover, to the best of our knowledge, no generalisation-

capable hyperspectral models have been developed yet due to various reasons such as 

limited data availability. Despite the developed solution's limitations, its value to the 

primary production industry is substantial as it provides a proof of concept for developing 

water stress detection software, thus facilitating irrigation optimization while protecting 

crops from yield and quality losses related to water stress. 
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4.3 Evaluation of a hyperspectral image pipeline toward building 

a generalisation capable crop dry matter content prediction 

model 
 

The performance of using an incremental pipeline towards establishing a baseline 

methodology for developing a global spectral model for various crops was presented in 

this research. The study focuses on predicting dry matter content in various crops and 

serves as a baseline for generalization-capable regression models. PLSR reported the 

best performance of RMSEP = 0.0137 against the RMSEP = 0.0140 of ARD. However, 

the external validation was worse, RMSEP = 0.024, as the model tries to model unseen 

data. It is worth pointing out that the dataset containing all three (3) crops achieved better 

performance compared to the leek model, RMSEP = 0.0154.  

Another valuable remark is that RMSEP is highly influenced by the dry matter 

content range of each crop, making a fair comparison more challenging. For example, it 

is not easy to say if the larger size of the combined dataset allows better performances 

since the dry matter content range is also larger and more challenging. However, both 

the leek subset and the combined dataset exhibited similar ranges, though the combined 

dataset had a much lower RMSEP. This reduction in RMSEP could be attributed to two 

factors: the increased diversity of information in the combined dataset, and the 

complementary nature of the different data sources, which likely enhanced the model's 

ability to capture relevant patterns more effectively: Namely: the lower values of the dry 

matter content in apple and broccoli or the emergence of better statistical properties in 

specific wavelengths allowed the creation of better regressor at the cost of using more 

features. 

The caveat with agricultural produce, which was also validated in this study, is that 

each crop has its own particularities in colour, size and shape making it hard for AI 

solutions to identify patterns. Moreover, when diving deeper, using the higher spectral 

resolution hyperspectral imaging offers can make matters even more complicated. 

Despite the three (3) main pigment groups: i) carotenoids, ii) chlorophylls, and iii) 

flavonoids, scientists calculate that there could be up to 4,000 different phytonutrients. 

The model developed in this study had to cope with various pigments. In apples, the main 

flavonoids present are carotenoids and anthocyanins; in leek, chlorophylls and flavonoids 

and in broccoli, carotenoids and chlorophylls.  

One of the goals of this paper was to understand how different preprocessing 

stages influence the regression problem. It could be discussed that the use of feature 

extraction with this dataset caused a performance drop. This behaviour could be 
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attributed to various reasons such as (i) nonlinear relationships, (ii) removal of variables 

that are not highly correlated but show a synergistic effect with other variables, (iii) loss 

of valuable information, and (iv) sampling variability. However, feature extraction could 

be necessary in other situations. 

Another important insight was that a stage (e.g., using RFE) reporting the best 

performance under one specific scenario/setting could be beaten by the opposite 

approach upon including another post-processing step (e.g., feature selection). This can 

be observed after the integration of the feature extraction stage, when the Mutual 

Information criteria for feature selection reported the best performance. This was the 

opposite behaviour compared to previous results, where mutual information never was 

among the best pipelines. In other words, discarding non-working preprocessing stages 

can damage the final performance if new processing stages are added afterwards. Similar 

behaviour can arise when using specific preprocessing stages that reduce the relevance 

of previous stages. 

Contrary to (Medic, 2023) the results of this study showed that the Savitzky-Golay 

filter was not a good match for this problem. Although using the smallest window size 

eight (8) reported the highest performance, overall, avoiding the use of smoothing was a 

better solution. Furthermore, this pattern was made more apparent because of the low 

performance achieved by large window sizes. There were two (2) reasons for using this 

filter: (i) to smooth too steep changes (wavelengths between 678 nm to 741 nm), possible 

meaningless peaks ( seen in the initial spectrum of broccoli), or random noise in the input, 

and (ii) to reveal potential unexpected performances upon integration of this pre-

processing stage with next processing stages. However, the spectral data used in this 

study are relatively smooth in their raw nature, and therefore, using an extra filter could 

delete critical information towards building the dry matter content regression. Regarding 

the appearance of unexpected behaviors, while integrating new processing stages to the 

image smoothing, it could be argued that its performance for single crops is more variable 

with a tendency to be higher, but this could be a consequence of the inability to find strong 

statistical patterns by the machine learning pipeline and of the smaller dataset size.  

One of the main problems of using the proposed methodology is that the number 

of combinations while integrating the different processing components, their hyper-

parameters, and their specific order may give a combinatorial explosion. Therefore, some 

a priori decisions were made to accomplish realistic research that could provide robust 

insights. Some of these decisions were based on early exploration experiments. Despite 

that, the complete evaluation of all components should be conducted since their 

performances, although initially less promising, could converge into the best or most 

reliable performance. For example, many regressors were not covered (e.g., Support 

Vector Regressor, tree-based regressors). Additionally, more powerful machine learning 
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approaches, such as Convolutional Neural Networks (CNNs), were not investigated 

despite evidence that they could perform better than PLS (Mishra and Passos, 2022). 

The insufficiently large dataset required for training complex regression models was the 

driving force of the decision. Early experiments utilising polynomial transformation were 

used to explore its potential improvement in performance. However, although the RMSEP 

slightly decreased, the large number of created features compared to the dataset size 

deserved a deeper investigation, which was out of the scope of this study. It is essential 

to highlight that polynomial features include the higher-degree terms of individual features 

and the interaction terms between different features. On the other hand, the goal of this 

research was not to achieve state-of-the-art performance through exhaustive grid search 

optimization of components and hyperparameters. Instead, the focus was on gaining an 

empirical understanding of how each component in the pipeline influences the others, 

either positively or negatively, and to establish a baseline for future studies. 

Finally, it is worth noting that the most significant wavelengths were in the VIS 

region, which appears counterintuitive considering that the presence of water, as 

absorption bands of the O-H group, is observed at the NIR region, namely 740, 840, 960, 

and 1,440 nm(Sun et al., 2020). This behaviour could be attributed to the heterogeneity 

of pigments among the different crops, thus enabling the model to focus on a spectral 

region where data shows a higher variability. Furthermore, on some occasions, changes 

in dry matter content might be accompanied by changes in pigment concentration. This 

procedure takes place in  olives, where during ripening dry matter increases and colour 

changes (Conde et al., 2008)(Conde et al., 2008).  
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4.5 Statistical analysis agronomical insights 
 As mentioned previously the main difference between the two fertilisation levels 

was the size of the broccoli head when measurements were conducted. From the data 

collected it can be concluded that optimal fertilisation does not only provide larger broccoli 

heads but also more homogeneous plants. Despite the above, weight alone cannot be 

used for determining fertilisation levels as broccoli size is plant density and cultivar 

besides fertilization dependent (Schellenberg et al., 2009). During the irrigation 

experiment, no agronomical data were recorded.  
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Chapter 5 - Conclusions 
 

Two of the main objectives of this study were to Develop Artificial Intelligence 

models utilizing spectral data capable of identifying different fertilisation levels and 

to Compare the performance of traditional machine learning algorithms with novel 

user friendly AutoML techniques. Both were achieved by Testing the Suitability of 

Automated Machine Learning, hyperspectral imaging and CIELAB color space for 

proximal in situ fertilisation level classification. The research findings demonstrate that 

AutoML outperforms PLS-DA, a traditional machine learning approach. Additionally, the 

results indicate that hyperspectral data are capable of identifying different fertilisation 

levels. Diving deeper, the use of hyperspectral data outperformed both the use of CIELAB 

data and the combination of them. Hyperspectral imaging datasets analysed with the 

Partial Least Squares Discriminant Analysis (PLS-DA) are often used as a robust starting 

point for computer vision tasks, yielding promising results. However, effective 

implementation of PLS-DA requires machine learning and statistics proficiency. AutoML, 

an upcoming field in machine learning, offers a promising alternative, automating many 

of the intricate processes involved and thus making it accessible to both experienced 

practitioners and those new to the domain. The proliferation of portable multi- and hyper- 

spectral sensors across ground-based and aerial platforms is driving a surge in the 

agricultural application of spectral imaging. This promising field presents an opportunity 

for the deployment of AutoML. Moreover, as AutoML solutions continue to evolve, 

incorporating increasingly sophisticated machine learning and deep learning algorithms, 

their potential applications within agriculture and beyond are poised to expand 

significantly." Additionally, the simplicity of training these models provides an 

unprecedented opportunity to create bespoke machine learning models that are tailored 

to specific sites and problems, overcoming one of the most persistent challenges in 

machine learning and hyperspectral imaging: model generalisation. The study’s results 

provide a foundation for using hyperspectral imaging and AutoML in precision agriculture 

tasks related to fertilisation. 

Another objective was to develop Artificial Intelligence models utilizing 

spectral data that are capable of identifying plant water deficit. This objective was 

achieved by investigating the early detection of broccoli drought acclimation/stress in 

agricultural environments utilising proximal hyperspectral imaging and AutoML. 

Moreover, this publication supports the previous claims that novel user-friendly AutoML 

techniques can match the performance of traditional machine learning algorithms. To 

further elaborate, the study's findings demonstrate that the AutoML framework matched 

the performance of the PLS1-DA and that hyperspectral data can facilitate drought 

stress/acclimation identification in broccoli plants. Within the domain of computer vision, 

hyperspectral imaging datasets coupled with Partial Least Squares Discriminant Analysis 
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(PLS1-DA) often serve as a reliable starting point, yielding excellent results. However, 

effective implementation of PLS1-DA requires a degree of technical proficiency. 

Additionally, AutoML demonstrated exceptional performance in discriminating between 

control and acclimated plants. Therefore, AutoML frameworks offer a promising 

alternative to traditional manual machine learning approaches, catering to users of 

varying skill levels. As the concerns of water scarcity are continuously increasing together 

with the imperative for efficient irrigation management, the integration of hyperspectral 

imaging with machine learning and deep learning algorithms presents a promising 

solution. The widespread adoption of spectral sensors in proximal and remote agricultural 

applications further underscores the potential of spectral data. As mentioned earlier, 

AutoML, by automating many of the intricate processes involved in model development, 

offers a valuable tool for both experienced practitioners and those new to the field. By 

doing so it enables the rapid experimentation with diverse architectures and 

hyperparameters. To conclude, the findings of this study establish a foundation for 

advocating and implementing AutoML and hyperspectral imaging in precision agriculture 

and irrigation management. Additionally, it underscores the importance of caution when 

interpreting plant material water dynamics through spectral data.  

Finally, the last objective of this study was to evaluate the feasibility of 

developing a generalisation capable AI model utilizing spectral data. This was 

achieved by evaluating of a hyperspectral image pipeline toward building a generalization 

capable crop dry matter content prediction model. Pre-processing and modelling 

components were incrementally evaluated, resulting in a performance of RMSEP=0.0140 

using ARD and RMSEP=0.0137 using PLSR.  

Testing the proposed pipelines and algorithms on an open-access dataset 

highlighted the limitations of machine learning pipelines in effectively generalizing 

complex, non-uniform data. This revealed challenges in adapting models to diverse data 

patterns, underscoring the need for further refinement in pipeline design for better 

generalization. On the other hand, the results on a dataset with multiple crops showed a 

lower RMSEP than the single crop leek subset, where the dry matter range was similar. 

This could be attributed to the emergence of statistical properties only available for 

multiple crops. Testing with additional datasets should be conducted to validate further 

the proposed pipeline's ability to generalise. Moreover, there is more space for 

improvement since other algorithms like Support Vector Regressor, tree-based methods, 

or deep learning techniques could complement each proposed component and regressor.  

However, as the complexity of the algorithms increases, so do the time and 

computational resources needed to determine the optimal architecture for a given 

problem. More sophisticated models demand greater processing power and longer 

training times, significantly raising the cost of model development and optimization. 

Additionally, the complexity added by those algorithms is expected to further hinder the 

identification of the effects of each pipeline component on the model performance and 
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the model explainability. However, training and implementation of both selected 

algorithms (ARD and PLSR) are straightforward once the pipeline and optimal 

architecture are found. 
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Chapter 6 - Future work 
Precision agriculture is an evolving field that employs technology and data-driven 

methodologies to optimize crop production and enhance quality. The integration of 

various technologies, including geospatial technologies, Internet of Things (IoT), Big Data 

analysis, and Artificial Intelligence (AI), offers opportunities for informed decision-making 

to enhance crop production. Precision agriculture encompasses the utilization of these 

technologies to optimize agricultural inputs, thereby increasing production and minimizing 

losses. In recent decades, Remote sensing technologies have seen significant growth in 

precision agriculture, driven by the widespread availability of high-resolution satellite 

images. These images have facilitated numerous precision agriculture applications, 

including crop monitoring, irrigation management, nutrient application, disease and pest 

management, and yield prediction. Commercial agriculture has already integrated 

remote-sensing-based PA technologies like variable fertiliser rate application systems 

such as Green Seeker and Crop Circle. The use of unmanned aerial vehicles (UAVs) has 

surged due to their cost-effectiveness and ability to capture high-resolution images, which 

are essential for precision agriculture. Additionally, the abundance of satellite and spectral 

data has spurred researchers to explore advanced data storage and processing methods 

such as cloud computing and machine learning. 

Precision agriculture, spectral imaging and AI have the potential to enhance the 

efficiency, sustainability, and profitability of small and medium-sized farms by enabling 

informed decision-making regarding irrigation, fertilisation, and other management 

practices. This can result in cost savings and increased yields. Moreover, it can replace 

manual inspection of crops with automated solutions, thus relieving workers from a 

tedious and strenuous activity while at the same time making enabling the monitoring and 

investigation of large sample sizes and even whole batch instead of the random sampling 

currently performed to assess the quality of fruit and vegetable. 

Despite the extensive research on spectral imaging applications in precision 

agriculture, there is a notable absence of established techniques or frameworks that are 

both accurate and reproducible across various climatic, soil, crop, and management 

conditions. The accuracy of those methods depends on several factors, including image 

resolution (spatial, spectral, and temporal), atmospheric conditions, weather patterns, 

crop growth stages, land cover, and the analysis technique employed (e.g., regression-

based, machine learning, physically based modelling). Further research is required to 

comprehend the spatio-temporal patterns of uncertainty in estimating biotic and abiotic 

stress and other crop parameters. Further elaborating on that, an irrigation or fertilisation 

deficiency detection method may perform well under controlled experimental conditions 

but may not exhibit similar performance in real-world scenarios where various stressors 

influence crop response.  
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Moreover, AI solutions need to cope with several challenges to facilitate their 

adoption and implementation. Firstly, as mentioned earlier, the diversity and variability of 

agricultural environments, including different crops, soil types, weather patterns, and 

management practices, pose significant hurdles to developing AI models that are 

universally applicable and capable of generalisation. Additionally, the interpretability and 

trustworthiness of AI models in making critical decisions regarding crop management and 

resource allocation remain essential concerns for farmers and stakeholders. Moreover, 

the need for continuous model adaptation and validation to accommodate evolving 

agricultural conditions further complicates AI adoption in precision agriculture. 

Therefore, future research in spectral imaging and AI for precision agriculture 

should focus on developing robust, generalisation capable and interpretable models that 

can effectively handle the complexity and variability of agricultural systems. As well as 

developing solutions that are easy to use by non-experts, while trying to maintain 

acquisition costs of those future solutions low enough to allow adoption by middle sized 

farmers. Ultimately, increasing their impact and transforming modern primary production 

systems. 
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