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Abstract

Spectral imaging and Artificial Intelligence in precision horticulture are commonly used
for a variety of applications ranging from disease detection to quality estimation. However,
most of the available solutions require deep understanding of software engineering and
they mostly focus on disease detection and post-harvest applications.

This study aimed to (i)develop Artificial Intelligence models utilizing spectral data that
can identify different fertilisation levels, (ii)develop Artificial Intelligence models utilizing
spectral data capable of identifying plant water deficit, (ii)compare the performance of
traditional machine learning algorithms with novel user-friendly Auto Machine Learning
(AutoML) techniques and(iv)evaluate the feasibility of developing a generalisation-
capable Al model utilizing spectral data.

Towards that end, a progressive methodology was implemented to gather data and
develop the required methodologies. During the first year spectral data from broccoli
plants that were submitted to different fertilization schemes were collected, while during
the second year spectral data were collected from broccoli plants that were submitted to
different irrigation schemes. Besides spectral data during both years, dry matter
measurements were conducted not only for broccoli but also for apple, leek and
mushroom. Finally, during the third year, all Al methodologies were developed, and Al
experiments were conducted.

Throughout these three years, this study evaluated and compared traditional Artificial
Intelligence approaches with AutoML systems towards water/ acclimation and nutrient
deficiency stress identification using spectral imaging. For both types of stress, AutoML
was compared to a traditional machine learning approach (Partial Least Squares —
Discriminant Analysis) used for classification of spectral data. On both occasions, data
were captured with the use of the IMEC snapscan Visible Near Infrared hyperspectral
camera (400-900nm). Moreover, the study aimed to investigate generalisation
capabilities of spectral imaging and how each step of the “traditional” pre-processing
pipeline followed for spectral data modelling affects its generalisation capabilities and
performance. The pipeline, followed by both stress experiments and tested for its
generalisation capabilities, consisted of the following steps: Outlier removal->Data
smoothing>Data  Scaling>Feature  selection>Feature  Extraction->Modelling.
Techniques used for various steps across the pipeline included Savitzky Golay
smoothing, Standard and Min Max scaling, f and mutual info regression for feature
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selection, umap, autoencoeder and PCA feature extraction and various machine learning
models ranging from linear to quadratic models and reaching the complexity of neural
networks.

For identifying nutrient stress, the AutoML system achieved results that were superior
to those achieved by the Partial Least Squares — Discriminant Analysis (PLS-DA)
algorithm. Namely, an accuracy of 0.72 was achieved when using the CIELAB colour
space and 0.94 when combining the CIELAB colour space with the hyperspectral data.

When using the hyperspectral data standalone, the results improved (accuracy 1.00),
this performance was achieved using all 150 bands, however, it is worth mentioning that
the same performance was maintained even when using the single statistically most
important wavelength (874 nm). On the other hand, for the identification of
water/acclimation stressed plants, both the Automated Machine Learning system and the
PLSDA algorithm achieved an accuracy of 1.00 across all stress levels. Finally,
hyperspectral imaging has proven capable of generalizing across different fruits and
vegetables, achieving an (RMSEP) = 0.0137 using the Partial Least Squares Regression
algorithm on a 10x5-fold cross-validation protocol.

Overall, the results suggest that Automated Machine Learning can achieve and even
outperform traditional spectral imaging machine learning approaches for detecting water/
acclimation and nutrient deficiency stress. Moreover, the use of the CIELAB colour space
for training the models failed to match the performance of using the spectral data, while
combining the two did not lead to a performance increase compared to just using the
spectral data. The evaluated techniques used for preprocessing affected the two
regression algorithms, Automatic Relevance Determination Regression (ARD) and Partial
Least Squares Regression (PLSR) in a different way, with the best performance achieved
when the complete pipeline was used. Furthermore, feature selection appeared to be the
preprocessing technique that had the most negative impact on the linear regression
performance when used standalone. However, its use to fit a quadratic transformation of
the features was found to be a good compromise. Overall, the pipeline using either ARD
algorithm or PLSR algorithm showed strong generalization and performance in the Visible
Near Infrared wavelength based dry matter content estimation across diverse crops.

To conclude, the use of Spectral imaging with AutoML solutions may provide a user
friendly and cost-effective method for detecting plant stress, while at the same time,
spectral imaging model generalisation can be achieved provided that a universal data
acquisition protocol is followed, with promising results even without following complex
data preprocessing pipelines. Finally, it should be noted that the present study did not
examine the lag factor. It is assumed that with the prevalence of water or nutrient scarcity,
the change in spectral data will not be automatic.

Scientific area: Agricultural Engineering
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Algpelivnon TWV £QAPHOYWYV GACHATOOKOTTIOG KAl TEXVNTHAG VONUOOUVNG OTNV
Aaxavokopia (yewpyia) akpifeiag

Tunua Aélomroinong @uaoikwv MNépwv & ewpyikng Mnxavikng
Epyaormnpio 'ewpyiki¢ MnyxavoAoyiag

MepiAnyn

H @aopartikr ameikdévion kal n Texvnt) Nonuoouvn otn Aayxavokopia (yewpyia)
aKpIBEiag XpnoiPoTToIouvVTal CUVABWG yia pIa TTOIKIAIG EQAPPOYWYV TTOU KudaivovTal atro
TNV QViXVeuon aoBeveIWV EwG TNV EKTIUNON TNG TTOIOTNTAS. QOTOCO, Ol TTEPICOOTEPES ATTO
TIG OIaB€01ueG AUOEIC aTTaiTouv  BaBid kaTavonon TnG MPNXOVIKAG HABnong  Kai
ETTIKEVTPWVOVTAI KUPIWG OTNV QVIXVEUO AC0BEVEIWV KAl O€ EQAPUOYEG META T GUYKOMION.

AUTA N PEAETN €ixe wg OTOXO: (i) TNV AVATITUEN MOVTEAWYV TEXVNTHG vonuoouvng
TTOU XPNOILOTTOIOUV PACHATIKA OEDONEVA KAl UTTOPOUV va TTPOCDIOPICOUV dIAQOPETIKA
etTitreda Aitravong, (i) Tnv avartuén HOVTEAWYV TEXVNTAG vonuoouvng TToU XPNOIKNOTTOIoUV
@aouaTIka dedouéva Kal gival Ikava va TTpoadlopicouv To EAAEIMUA vEPOU TwV QUTWV, (iii)
TN OUYKPION TWV €TIOOCEWV TWV TTAPABOCIAKWY AAYOPIBUWY PUNXAVIKNG HABNoNG UE VEES
QINIKEG TTPOG TOV XPNOTN TEXVIKEG AuTOUOTNG MNnXxavikig MaBnong, kai (iv) Tnv agloAdynon
TNG duvaTOTNTAG QAVATITUENG €VOC MOVTEAOU TEXVNTAG vonuoouvng deE duvatotnta
YEVIKEUONG TTOU XPNOIKOTIOIEI PACHUATIKA OedOEVA.

Mpog 10 OKOTTO aUTO, £QAPUOOTNKE I TTPOOJEUTIKA pEBodoAoyia yia T cuAloyn
0eBOUEVWV KAl TNV AVATITUEN TwV aTTaITOUPEVWY ueBodoAoyiwy. Katd To TTpwTo £TOG
OUANAEXBNKaV  @aouaTika Oedopéva attd QUTA PTTPOKOAOU TTou UTTORARBNKav o€
OIAPOPETIKEG METAXEIPIOEIG AITTAVONG, VW KATA TO OEUTEPO £TOC CUAAEXBNKAV PACUATIKA
o0edopéva amd @QuUTA PTTPOKOAOU TTou UTTOPARBNKaV O€¢ BIAPOPETIKEG WETAXEIPIOEIS
apdeuong. EkTog atmd 1a @acpatik@ dedopéva KaTd Tn OIAPKEIA KAl Twv OUO ETWV
TTPAYMATOTTOINBNKAV JETPACEIS ENPAG ouaiag Xl JOVO yia TO UTTPOKOAO OAAG Kai yia TO
MAAO, TO TTPACO KAl TO PavITApPL. TEAOG, KT Tn dIGPKEIQ TOU TPITOU £TOUG avaTITUXONKAaV
OAeg o1 peBodOAOYiEG TEXVNTAG vONUOOUVNG Kal TTPAYUATOTTOINONKAV Kal TO avTioToIXA
TTEIpAuaTa.

Katd mn OIdpKEId QUTWV TWV TPIWV E€TWV N TTapouca HEAETN agloAdynoe Kal
OUVEKPIVE TIC TTAPAOOOCIAKEG TTPOOEVYIOEIC TEXVNTAG VONUOOUVNG ME T OUCTAMATA
Autoéuatng Mnxavikic MaBnong yia Tov evIOTIONO TNG KaTatmmovnong Adyw EAAEIYNG
VEPOU/EYKAINOTIOPOU Kal BPETITIKWYV OTOIXEIWV WE TN XPHON QAoUATIKAG aTTEIKOVIONG. Kal
yla Toug duo TUTTOUG KaTtatrévnong n Autouarn Mnxavikrp MaGBnon ouykpibnke ue pia
TTapadooiaKkr TTPOCEyyIon PNXaVIKAG pdabnong,Partial Least Squares — Discriminant
Analysis (PLSDA), TTou XpnOIKOTTOIEITAI YIO TNV TAEIVOUNOT @aouaTiKwy dedouévwy. Kal
OTIG OUO TTEPITITWOEIG Ta Oedopéva APONKav Pe TN XPAON TG UTTEPQACHATIKAG KAPEPAG
IMEC snapscan Visible Near Infrared (400-900nm). ETriTTAé0v, N JEAETN OTTOOKOTTNOE OTN
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dlEpEUVNON TWV BUVATOTATWY YEVIKEUONG TNG QPACHATIKAG ATTEIKOVIONG KAl TOU TPOTTOU UE
TOV OTT0i0 KABE Bripa TnG "TUTTIKAG" d1adIKACIAG TTPOETTECEPYATIOG TTOU AKOAOUBEITal yia
TN MOVTEAOTTOINON QACHATIKWY OEOONEVWY ETTNPEACEI TIG dUVATOTNTEG KAl TIG ETTIOOCEIG
TNG yevikeuong. H diadikaoia TTou akoAouBrBnke 1600 aTTO Ta TTEIPAPATA KATATTOVNONG
000 Kal aTrd Tov €AEyXO TwV OUVATOTATWY YEVIKEUONG aTTOTEAEITAl OTTO Ta akOAouBa
Briuata: ATmopydkpuvon  eKTOTTWV  TINWV->EEopdAuvon  dedopévwv—>KAiudkwon
oedopévwv—>ETAoy XapakTtnpioTiKwv—>EEaywyh XapaktnpioTikwv->MovTehotroinon.
O1 TeXVIKEG TIOU Xpnolyotroibnkav yia Ta Oidgopa  PrAPara TnG  diadikaoiag
mepIhaupBavouv  e€opdAuvon  SavitzkyGolay, kAipakwon Standard kar MinMax,
TTaAivopounon f kal mutualinfo yia €TTIAOYr XAPOKTNPIOTIKWY, £6AYWY XAPOKTNPIOTIKWY
umap, autoencoeder kai pca Kal d1aQopPaA JOVTEAQ PNXAVIKAG pdBnong TTou KuuaivovTal
aTT0 YPOAUMIKA €WG TETPAYWVIKA HOVTEAA KAl @TAVOUV OTNV TTOAUTTAOKOTNTA TWV
VEUPWVIKWYV OIKTUWV.

MNa Tov evIOTIONS TNG BPETITIKAG KATATTOVNONG TO OUCTNHA AUTOUATNG MNXAVIKAG
MABNOoNG TTETUXE ATTOTEAEOUATA TTOU €ival AVWTEPO ATTO €KEIVA TTOU TTETUXE N avAAuon
Partial Least Squares — Discriminant Analysis. ZuyKekpiuéva, €mTEUXONKE aKpiela
(accuracy) 0,72 o6tav XpnoiyoTroIROnke o Xpwpatikdg xwpog CIELAB kar 0,94 étav
OUVOUAOTNKE O XPWHATIKOG Xwpog CIELAB pe Ta uttEp@acaTIKG dedopéva. Katd Tn
XPAON TWV UTTEPQACHATIKWY OeOOPEVWV AUTOTEAWG, TA OTTOTEAEOUATA BEATILWONKAV
(akpiBeia 1,00), n etTidoon auTr ETTITEUXONKE PE TN XPon Kal Twv 150 eacpdaTwy, woTtdoo
agiCel va avagepOei 611 n idia eTidoon dlaTneABNKe akdun Kal 6Tav XpNolJoTToIRndnkKe 10
MOvVadIKO OTATIOTIKA ONUAVTIKOTEPO @acua (874 nm, near infrared).

ATTO TV AAAN TTAEUPA, VIO TNV TAUTOTTOINGT TWV QUTWYV TTOU €XOUV UTTOOTEI OTPEG
ammd vePO/KAIMATIONO, TOOCO TO CUCTAPO QUTOPATNG MNXOVIKAG pGBnong 600 Kal o
aAyopiBuog PLSDA. Emétuxav akpifeia 1,00 oe 6Aa T1a emimeda oTpeg. TEAOG, n
UTTEPPACUOTIKY OTTEIKOVION aTTodEiXBnKe KAV va YevIKeEUEl o€ diIdpopa @pouTa Kal
Aaxavikd, emrTuyxavoviag Méon Terpaywviky ammokhion (RMSEP) = 0.0137
xpnoigotolwvtag mTalivopounon Partial Least Squares Regression o€ TTPWTOKOAAO
dlacTaupoupevng TIKUpwong 10x5 gopég.

2UVOAIKA, Ta atroTeAéopata uttodnAwvouv OTI n auTtOuaTtn PNXaviki paénon
MTTOPEI va ETTITUXEI KAl AKOUN KAl va EETTEPATEN TIC TTAPAdOCIOKES TTPOCEYYIOEIS UNXAVIKAG
MABNOoNG PACPATIKAG ATTEIKOVIONG VIO TNV AVIXVEUCOT TOU OTPEG TOU VEPOU/EYKAINOTIOHOU
Kal TNG BPETITIKAG aveTTdpkelag. ETITTAoV, n xprion Tou xpwpuaTikou Xwpou CIELAB yia
TNV EKTTaideuon TwWV HOVTEAWV aTTETUXE va @TACEl TV ammodoon Tng XPAong Twv
QAOUATIKWY OEOOUEVWY, €V O OUVOUOOWOG Twv dUo dev odynoe o€ auénon Tng
a1TOd00NG 0€ OUYKPION KE TN XPNON MOVO TWV QACUATIKWY OEQOUEVWY. TEAOG, Ol TEXVIKEG
TTpo emegepyacoiag mou aglohoyndnkav emrnpéacav dIAQOPETIKA TOUuG dUO aAyopiBuoug
TTaAivopounong (Automatic Relevance Determination kai Partial Least Squares), pe ta
KOAUTEPQ OTTOTEAEOUATA VA ETTITUYXAVOVTAI OTAV XPNOIYOTTOIRONKE n TTARPNGS diadikaaoia.
EmmAéov, n €TIAOY XQPOKTNPIOTIKWY QAVNKE VO €ival N TEXVIKH TTPO £TTECEPYATIOG TTOU
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EXEl TOV TTIO APVNTIKO QVTIKTUTTO OTNV ATTO000N TNG YPAMMIKNAG TTaAIvOpounong oTtav
XPNOIJOTIoIEITAl PeEPOVWUEVA. QOTO0O, N XPNRon TG Yia TNV TIPOCAPHUOYr €vOg
TETPAYWVIKOU PETAOYXNMATIOMOU TWV XAPAKTNPIOTIKWY OIATTIOTWONKE OTI aTToTEAEI évav
KaAd ocupBIBacpd. ZuvoAikd, n diadikaoia TTou xpnoluoTroinoe €ite Tnv Automatic
Relevance Determination traAivépounon e€ite Tnv Partial Least Squares Regression
TTOAIVOPOUNOCN TTAPOUCIiacE 10XUPN atrddoon Kal YEVIKEUON YIa TNV EKTIUNON TG &NPNAS
UANG pe BAon 10 opaTd Kal KOVTIVO UTTEPUBPO o€ BIA@Oopa GPOUTA Kal AaXAVIKA.
2UNTTEPACUATIKA, N XPAon NG QACPATIKAG ATTEIKOVIONG PE AUOEIG AuTOUATNG
Mnxavikig MaBnong PTTopei va TTapEXEl Pia QIAIKI TTPOG TOV XPHOTN KOl OIKOVOUIKA
atrodoTIK) MEBODO yIa TNV AViXVEUOTN TNG KATATIOVNONG TWV QUTWYV, EVW TAUTOXPOVA
MTTOpEI va  ETTITEUXOEI YEVIKEUON TOU MOVTEAOU QAOCMATIKAG QATTEIKOVIONG, €QOCOV
akoAouBeiTal Eva KABOAIKO TTPWTOKOANO ATTOKTNONG dEBOUEVWY, PE TTOANG uTTOOXOPEVA
QTTOTEAEOUATA OKOPN KAl XwpPic va akoAouBouvtal TTOAUTTAOKEG OWANVWOEIG TTPO
emmegepyaaiag Ocdopévwy. TEAOG, TTPETTEI va ONUEIWBEI OTI N TTapouoa PEAETN Oev eCETAOE
ToV TTapdyovTa uoTépnong. EKTIgAtal TTwg pe TNV €mMKPATNON €AAEIWNG VEPOU Kal
BOPETTITIKWYV CUCTATIKWYV N METABOAN TWV QacuaTIKwy dedouévwy dev Ba gival autdpaTn.

EmioTnpoviki mrepioxn: MNewpyikrp Mnxaviki

Aégeig kAa1dia: ewpyia akpifeiag; Texvnti Nonuoouvn; ®acpaTtookoTria, AutOuaTn
Mnxaviky M&Bnon; TnAemmiokétnon; Aitravon; Apdeuon; ABIOTIKO 0TpeG, MNpoocapuoaTIKO
oT1peg, Mevikeuon, MNepiekTiIKOTNTA OE NPl UAN, MoAuwvupikn TaAivdépounon, E€aywyn
XOPAKTNPIOTIKWV

MveupaTikn 1810KTNOIA
© lwavvng MaAouvag, 2024
Me eTipUAAgN TTAVTOG BIKAIWPATOG.
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Executive Summary

Precision agriculture aims to optimize and improve primary production through the
use of modern technological solutions. The majority of those solutions require big
amounts of data and as a result, precision agriculture heavily relies on a variety of sensors
for data collection, such as spectral cameras. Moreover, Atrtificial Intelligence (Al) is
crucial as it enables data analyses of these large amounts of data in an efficient and
accurate way, enabling data driven decision making.

Chapter 1 begins with an introduction to precision agriculture and broccoli
production. It continues by providing the fundamental principles and knowledge around
Spectral Imaging and Atrtificial Intelligence and ends by introducing the main sources of
variability in agriculture and how spectral imaging and Al have contributed towards
improving primary production in terms of resource efficiency, yield and quality
improvements. The chapter also highlights the synergies and trade-offs between all
technologies described.

Chapter 2 gives an overview of the materials and methods with information on the
selected experimental decision and equipment used. It then focuses on the data collection
protocols and the various techniques used for data preprocessing, analyses and sample
classification. In this study, data from water acclimated/stressed plants and nutrient
deficient plants were collected using spectral imaging. Finally, a hyperspectral dataset for
dry matter estimation comprising of a variety of crops was constructed and a plethora of
preprocessing methods were evaluated towards improving spectral model generalisation
performance.

Chapter 3 presents the research fundings of this Ph.D. dissertation. An exploratory
analysis and evaluation of the spectra collected, and the various techniques used are
presented. Spectral imaging was found to be superior to just using the CIELAB colour
space for identification of stressed plants, while at the same time AutoML reached
excellent performance comparable to the use of traditional machine learning techniques
(PLS-DA) that require in depth knowledge of software engineering. Moreover, this study
concluded that just normalizing spectral data can improve the generalisation capabilities
of machine learning models that make use of Spectral data, while at the same time adding
more data can allow for algorithms to uncover previously hidden patterns. Finally, the
synergistic effect of various spectral preprocessing techniques was proven towards
improving the performance of generalized spectral data models as well as the effect of
sample size on improving model performance even when data are heterogeneous.

Chapter 4 discusses the contributions of the three research papers produced as
part of this PhD thesis: 1. Testing the Suitability of Automated Machine Learning,
hyperspectral imaging and CIELAB colour space for proximal in situ fertilisation level
classification, 2. Early detection of broccoli drought acclimation/stress in agricultural
environments utilising proximal hyperspectral imaging and AutoML and 3. Evaluation of
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a hyperspectral image pipeline toward building a generalization capable crop dry matter
content prediction model.

Chapters 5, conclusions and 6, future work, are the final segments of this
dissertation. They are interrelated, built on each other and collectively draw conclusions
regarding the aforementioned objectives. They also delve into potential avenues for future
investigation concerning the application of precision agriculture, spectral imaging, and
Artificial Intelligence.
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Chapter 1 — Introduction

1.1 Problem statement

The agricultural sector is facing significant challenges and will undergo substantial
transformations in the near future. The consequences of climate change, such as rising
global temperatures, increases in heavy precipitation, and widespread water shortage,
directly impact food production and threaten the future of farming. On the other hand,
agriculture is a primary driver of climate change. Current primary production practices
contribute to air, water and soil pollution, with agriculture being responsible for 10.3% of
the EU’s Green House Gas emissions(European Environment Agency and European
Commission, 2022), while consuming excessive amounts of natural resources and
energy. Moreover, pesticides and fertilisers overuse severely affects humans and other
life forms as well as the environment. Two examples of fertiliser overuse are the nitrogen
and phosphorus cycles, which exceed their safe operating space in Europe by a factor of
3.3 and 2 respectively(European Environment Agency, 2020),

Furthermore, by 2050, agriculture will have to produce 70% to 100% more food.
Food production will need to be accompanied by sustainable management of agricultural
lands to stop or slow down the negative impacts on the quality and quantity of water and
soil resources, land degradation, greenhouse gas emissions and biodiversity (Gomiero
et al., 2011). However, this shift will not be easy as it will need to take place in a highly
uncertain, variable, and constantly changing agricultural landscape. To address these
challenges technological disruption is required.

The technological advancements in the field of precision agriculture technologies
and agri-environmental monitoring over the last years have been staggering in terms of
hardware (variety of available sensors and platforms, edge devices) and software
processing power, resulting in an unprecedented collection of daily observations of crop
status and environmental conditions(Glass and Gonzalez, 2022).

These technologies empower farmers to optimize management practices such as
fertilisation, irrigation, and plant protection product application, enabling significant cost
reduction, improved crop quality and yield, and increased competitiveness(Sharma et al.,
2020). With precision agriculture, data are collected to assist farmers in making data-
guided sub-field decisions, including applications of fertilisers and pesticides, distribution
densities for seeds, irrigation application rates, and tillage regimes(Taylor, 2023).

Summing up, precision agriculture technologies are considered one of the most
promising ways to deal with agriculture uncertainty and variability, improve its
performance sustainably, reduce its environmental impact, and help it achieve
sustainable food production.
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1.2 Uncertainty and variability in agriculture

Food security, being able to provide all people, at all times, with physical and
economic access to sufficient, safe, and nutritious food that meets their dietary needs and
food preferences for an active and healthy life (Shaw, 2007), is one of the most significant
problems the world is facing. Ensuring food security has become crucial to numerous
countries with different degrees of economic development, with the agricultural sector
playing a strategic role in improving food availability(Pawlak and Kotodziejczak, 2020).
However, achieving food security under climate change is a complex public policy issue
or a so-called "wicked problem.” (Vermeulen et al., 2013). The main reason behind all
previous statements is modern agriculture's high uncertainty and variability. Agriculture
does not suffer from a single source of uncertainty and risk; instead, it has to face multiple
and diverse ones ranging from climate and weather-related events to fluctuations in the
prices of agriculture inputs such as fertilisers.

Financial uncertainties and policy and regulatory changes also pose severe threats
to modern production systems. Diving deeper into each one, farmers first have to deal
with the natural uncertainty and risks that directly impact production and are
uncontrollable; examples are diseases and weather. Secondly, they have to deal with
market uncertainty as the majority of decisions in agriculture are made in advance when
the market price for the output is usually unknown. Thirdly, farmers have to face policy
uncertainty with economic and environmental policies having a direct impact, such as the
mandated reduction of fertiliser use or indirect impact with their effect on taxes and
provision of public goods (Aimin, 2010).

Over the past couple of years, the agricultural landscape structure has been
shifting towards a simpler one via changes in management, land use, agricultural
development, modernisation, and intensification (Benton et al., 2003). However, it
remains far more complex compared to the environment of other industries, such as
warehouses and factories, where the majority of the variables, such as illumination,
obstacles, and landmarks, remain unchanged, with this environment complexity not
foreseen to be simplified in the near future. On the contrary, on some occasions, it is
predicted to become more complex, with policies aimed at enhancing landscape
complexity to increase biodiversity being introduced (Commission and Environment,
2017). It becomes, therefore, apparent that modern agriculture solutions will have to work
in such environments. The following paragraphs present a breakdown of the primary
sources of agricultural variability, namely, i) soil, ii) climate, iii) illumination, and iv) plant
growth.

According to the USDA soil taxonomy, there are 12 major soil types, each with its
own taxonomy (Great Group, Subgroup, and Family)(Natural Resources Conservation
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Service. U.S. Department of Agriculture, 1999) and its characteristics such as colour and
texture, thus making it more difficult for precision agriculture solutions and machinery to
work universally. On top of that, specific soil parameters such as soil organic matter and
soil total nitrogen are also affected by the farming practices used (Huang et al., 2007),
introducing another variable that precision agriculture solutions have to consider. To
conclude, spatial variability plays a crucial role in advancing precision agriculture, as site-
specific management is currently treated on an average basis(Lopez-Granados et al.,
2002).

Climate change is one of the most critical problems the modern world faces, with
agriculture being extremely vulnerable. This also leads to new challenges for the
agricultural technology industry, as machinery needs to operate in more unpredictable
and harsher environments. One of the climate change factors that affect agriculture is
higher temperatures, which, besides decreasing yield, they promote weed and pest
expansion, rapidly changing the environment where machinery have to work. The second
factor is precipitation patterns, primarily affecting irrigated crops(Nelson et al., 2009),
which once again challenge disease and plant management. Despite that, climate change
will also affect irrigation demands as the physiology and phenology of the plant change
(Shahid, 2011). Therefore, precision irrigation management will become more critical to
achieving stable yields in constantly changing conditions.

Moreover, precision agriculture solutions have to overcome specific challenges
closely related to the technologies being used. For vision-based applications, the
constantly changing illumination conditions outdoors represent a significant factor
contributing to variability in image quality. In open fields, illumination can vary from direct
solar light to diffuse light caused by clouds, from sunrise to sunset, and from sloping winter
to straight summer sunlight(Ruiz et al., 2009). Such variations can potentially modify the
appearance of objects or the overall content captured in the image(Silwal et al., 2021).

Finally, plant growth is an additional source of uncertainty and variability as it is not
restricted to strict guidelines, with the predominance of branch and leaf shade in
agricultural environments posing an additional challenge(Sun et al., 2023).
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1.3 Agricultural inputs and their effects

Agriculture relies on various inputs to sustain production and growth in order to
meet the increasing population's needs. These inputs include fertilisers, irrigation water,
seeds, pesticides, and energy for farm machinery and equipment use, with each input
category showcasing constant technological developments (Sheahan and Barrett, 2017).
This dissertationhas focused on fertilisation and irrigation, and as a result, these two
inputs have been further analysed in the next sub-sections.

Fertilisers are maybe the most critical input to increase yield, with studies reporting
a coefficient of 7.85, which means that a 1 kg/ha increase in fertiliser is associated with
higher yields of nearly 8 kg/ha; this coefficient is the highest among other agricultural
inputs(McArthur and McCord, 2017). Besides directly increasing vyield, fertilisers are
linked to improved quality (Siavoshi et al., 2011) and enhanced growth (Nkaa et al., 2014).
However, the most important fertiliser pollution concerns are associated with nitrogen-
based fertilisers. This type of pollution stands out as a significant environmental concern
in the 21st century, playing a role in air and water pollution, climate change, and
stratospheric ozone depletion with agriculture being one of the predominant sources of it
(Kanter et al., 2015). Additionally, the per capita nitrogen is not going to decrease in the
near future. On the contrary, conservative projections estimate that it will remain
unchanged, while high projections estimate an increase of more than 33% by 2050 (Lim
et al.,, 2021). It, therefore, becomes crucial to optimize fertiliser use and increase
efficiency in order to maintain and even increase yields while at the same time making
sure to minimize the environmental footprint of their use. Studies suggest that in some
applications fertiliser use efficiency can be as low as 0.60, indicating that, on average,
half of the fertiliser utilized is excessive(HU et al., 2019). On the bright side, knowledge
of potential crop Nitrogen demand could reduce fertilisation rates by 3 to 10%. Meanwhile,
site-specific management could lead to substantial reductions without yield loss in various
cropping systems, thus increasing profitability and environmental quality.

As mentioned earlier, the population increase and the improvement of living
standards will result in a sharp increase in food demand during the following decades,
raising questions about food security. The majority of this increase in food production will
be covered by irrigated agriculture (Playan and Mateos, 2006). Irrigation provides water,
which is vital for plant growth, with water stress being linked to yield reduction by
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diminishing crop growth of canopy and biomass (Marutani and Cruz, 1989). As a result,
irrigation helps agriculture achieve higher production, which is linked to lower crop failure
risk, while improving quality. Moreover, irrigation has (i)allowed farmers to switch from
low-value subsistence production to high-value market-oriented production, (ii)enabled
smallholders to adopt diversified cropping patterns, and (iii) made food more available
and affordable to people experiencing poverty (Hussain and Hanjra, 2004). However,
over-irrigation could have the opposite effects, making irrigation planning crucial (Yuan et
al., 2003).

Despite the importance of irrigation, special attention should be paid to its
optimization, as water resources are finite and there is competition between agricultural,
industrial, and urban consumers, making it an expensive input (Sarwar et al.,
2010).Despite the cost, water scarcity and environmental concerns also necessitate the
reduction of water input per irrigated area unit. Modern agricultural solutions promise to
help achieve that goal by optimizing irrigation and increasing water productivity (Playan
and Mateos, 2006).
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1.4 Precision Agriculture

"Precision agriculture” or "smart farming" is a farming management strategy that
makes use of data, communication technologies (ICTs) and equipment such as sensors,
drones and GPS to increase agriculture’s productivity and efficiency(Linaza et al., 2021).

Precision agriculture methodologies focus on gathering information on crops and
their surroundings through the use of proximal and remote sensors, global positioning
systems (GPS), and other technologies. Upon data collection, optimum resource and crop
management practices are defined. Examples of such practices are the determination of
the best time to irrigate fertilise and harvest.

Advancements of GPS technology in the 1980s led to the conception of precision
agriculture, however, farmer adoption did not begin until the late 1990s and early 2000s.
Nowadays, precision agriculture software is becoming more and more available, while at
the same time GPS and IoT technologies are becoming less expensive. This has resulted
in GPS guidance being used by 82% of agricultural retailers, and in GPS-enabled sprayer
booms adoption increasing from 39% in 2011 to 53% in 2013(Franzen and Mulla, 2015).
Moreover, resource optimization through precision agriculture is currently offering many
advantages, the most popular of which are: i) higher crop vyields; ii) decreased
environmental impact; iii) enhanced profitability; and iv) increased sustainability.

Precision agriculture relies heavily on sensors, GPS, and ICTs. There is a variety
of sensors on the market suitable for precision agriculture applications. These might be
as simple as soil humidity sensors and colour cameras, or they can be more complex like
spectral cameras and internal microchip implants for plants. Such sensors are used to
gather data on crops and their surroundings, in a proximal or remote way. These data
include information about crop health, yield, nutrient levels, and soil moisture. Moreover,
innovations and novel technologies such as miniaturized computer components, GIS,
mobile computing and automatic control have expanded the precision agriculture
applications leading to a new era of increased agricultural productivity(Pathak et al.,
2019). Lastly, ICTs are used for communication purposes, as well as for collection,
storing, and analysing data from sensors and GPS. As previously said, ICTs range in
complexity from simple networking devices to Artificial Intelligence and 5G technology,
depending on the needs of the farmer and the use case.

Up until now, precision agriculture has focused on applications with a high Return
On Investment (ROI), as since its early years its economic feasibility has been questioned
by farmers and researchers alike (Mulla and Khosla, 2016). Some of the applications that
have received the majority of attention are the following: i) crop monitoring for growth and
development as well as for pest and disease detection; ii) irrigation by directing water to
the plants and areas where it is most needed to improve water use efficiency; iii)
fertilisation by directing nutrients to the plants and areas where they are most needed to
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improve fertiliser use efficiency; and finally iv) harvesting by determining which parts of
the field are ready to be harvested in terms of maturity.

Precision agriculture has gained popularity over the last year, but there are still
many obstacles to overcome. The first is high costs as precision agriculture equipment
can be costly to both install and operate, leading to lengthy depreciation periods and high
acquisition prices. The second is that most solutions are tough to use and maintain, and
to make matters worse, there is a lack of knowledge regarding such novel technologies
in the agricultural sector, which makes it challenging for non-experts like farmers to accept
and comprehend them. Lastly, because of the fact that precision agriculture produces
vast volumes of data that are challenging to manually process and interpret, it heavily
relies on the use of Artificial Intelligence (Al) systems to perform analysis quickly and
effectively. Al technologies with a focus on agriculture are still lacking compared to other
industries while at the same time farmers are not familiar with them, thus leading to further
adoption difficulties and mistrust. On the bright side, Al breakthroughs are already
speeding up development of such solutions (Redhu et al., 2022). A general overview of
the precision agriculture cycle is presented in the figure below.
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1.5 Artificial Intelligence

Intelligence is the ability to learn, understand, solve problems, and make decisions.
Artificial Intelligence (Al) aims to enable machines to perform tasks requiring intelligence
as if performed by humans(Boden, 1980). Artificial Intelligence can, in turn, be divided
into smaller subsets, namely Machine Learning and Deep Learning (Figure 2).

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data

Figure 2. Subsets of Al. Source: towardsdatascience

The term "machine learning" refers to a broad category of approaches and
strategies that systems use to learn from data and become more efficient at a task. The
main concept of machine learning is to facilitate computers to discover patterns and come
to conclusions or forecasts without having to be specifically trained to do so. AutoML, a
subset of machine learning, is the application of automated tools and methods to
automate the process of learning with the aim of increasing accessibility to machine
learning for people with little to no background in software engineering. It aims to do so
by helping them choose and configure the best algorithms for a given use case, as well
as automate a number of steps in the machine learning pipeline, including feature
selection, model selection, hyperparameter tweaking, and deployment.
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Deep learning, another branch of machine learning, focuses specifically on neural
networks with numerous layers, also referred to as deep neural networks. By attempting
to mimic the structure of the human brain, deep learning algorithms enable machines to
automatically learn and represent data in hierarchical levels. Deep learning can
automatically learn complex features and representations from raw data, and therefore
can replace laborious feature engineering, which has led to its rise in popularity. Common
deep learning designs include Convolutional Neural Networks (CNNs) for image
processing and Recurrent Neural Networks (RNNs) for sequential data. In conclusion,
deep learning is a subset of machine learning that uses deep neural networks, machine
learning is the broad area that encompasses many learning methodologies, and AutoML
is a collection of tools and methods intended to automate and streamline the machine
learning process.

At this point it is crucial to note that Al like all other technologies can be categorized
into several eras, each marked by significant advancements and changes in Al research
and technology. The commonly recognized eras of Al include(Council of Europe, 2024):

» Birth of Al (1940s-1960s): The period between 1940 and 1960 was strongly
marked by rapid technological developments and the ambition to merge the
functioning of machines and humans. However, hardware limitations at the time
made the use of computer language difficult. Despite these limitations some
foundations still present today were developed. Examples are LTM (logic theorist
machine) which was developed as early as 1956.

> Expert systems (1980s-1990s): The development of the first microprocessors at
the end of 1970 led Al to take off, thus leading to the golden age of expert systems.
Examples of such systems are the DENDRAL (expert system specialized in
molecular chemistry) developed by MIT in 1965 and the MYCIN (system
specialized in the diagnosis of blood diseases and prescription drugs) developed
at Stanford University in 1972.

» Data and computing power boom (2010-Present): The main factors leading this
era are the easy access to massive volumes of data and the vast improvements in
the efficiency of computer graphics card processors which accelerated the
calculation of learning algorithms.

These eras represent a broad overview, and it is essential to note that Al is continually
evolving, with ongoing research and developments shaping its trajectory.

10



Investigating the application of spectral imaging and Al in precision horticulture (agriculture)
PhD Dissertation |. Malounas

Machine learning (ML) is one of the largest subsets of Al with three main areas of
focus: 1) task-oriented studies aimed towards analysing learning systems to increase
their performance in a predetermined set of tasks, 2) cognitive simulation, which involves
the investigation and computer simulation of human learning processes and 3) theoretical
analysis which is the theoretical investigation of possible learning methods and algorithms
independent of the application domain(Michalski et al., 2013). Machine learning has many
applications in modern life; examples are social network content filtering, object detection
by autonomous vehicles, and speech to text transcription(LeCun et al., 2015). Moreover,
its application is not limited to a single domain; on the contrary, ML algorithms are used
in multiple scientific fields, for example, genetics and genomics(Libbrecht and Noble,
2015),medicine(Kourou et al., 2015), remote sensing (Belgiu and Dragut, 2016) and
agriculture(Gao et al., 2019). A short definition of machine learning would be the use of
algorithms to learn from existing data and make predictions about unseen data (Figure
3).

MACHINE LEARNING

INPUT FEATURE EXTRACTION CLASSIFICATION OUTPUT

Figure 3. Machine learning representation. Source: dltlabs

The two main machine learning configurations are supervised and unsupervised
learning (Figure 4). In supervised learning, the algorithm is presented with the input
variables(x) and an output variable(y) and is asked to learn the mapping function from the
input to the output y=f(x). In supervised machine learning, the algorithm is provided with
known quantities to support future judgments and is usually used for classification
problems where the association between input and output labels is sought or for
regression problems where the aim is to map an input to a continuous output. For the
classification problem, the goal is to create a mapping function (f) from input variables (x)
to discrete output variables (y) such as 'apple' or 'banana,’ ‘green’ or 'red.' In regression
problems, the algorithm needs to create a function(f) that maps input variables(x) to a
continuous output variable(y), such as the 'salary' or 'weight' of a person.
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On the other hand, unsupervised learning is a technique used when only the input
data (x) are available with the aim of finding patterns in them. The algorithm tries to model
the structure or distribution in the data in order to learn more about them and to infer
patterns from a dataset without labelled outcomes. An example of unsupervised learning
could be a market survey. The responses are gathered, and the market manager can
choose whether to cluster the customers using their demographic variables (age, sex,
education level, income level) or to cluster the responses according to changes in price.

supervised learning

Input data

b Prediction

~ ltsan
~ apple!
Annotations 4- Mod;i |
These are |
apples
?

unsupervised learning

-  ewew

3 52 PO®

XX - “vd

Figure 4. The two types of machine learning techniques. Source: (Ma et al., 2018)

Automated Machine Learning (AutoML) is a paradigm-shifting technique in the field
of Artificial Intelligence that primarily focuses on supervised learning tasks, such as
regression and classification and addresses the challenges and complications associated
with putting machine learning models into real-world applications. As the need for
machine learning solutions grows across a variety of industries, AutoML emerged as a
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critical tool that democratizes the application of advanced analytical techniques through
model creation automation. It essentially makes use of automated tools and procedures
to streamline and optimize the entire machine-learning pipeline. Without AutoML, every
step in a typical data science pipeline, such as data preprocessing, feature engineering,
and hyperparameter optimization, is executed manually by machine learning experts. On
the other hand, using AutoML allows a simpler development process where a few lines of
code can generate the code necessary to begin developing amachine
learning model(IBM, 2024). Thus, making previously labour-intensive procedures less
complicated and ultimately making machine learning more accessible to a larger
audience, including those with little to no prior experience in the field.

Every AutoML solution consists of several key components (Figure 5):

1. Feature Preprocessing: AutoML tools automate transformation, and normalization
of raw data, ensuring it is appropriately prepared for the modelling phase.

2. Feature Selection: Leveraging advanced algorithms, AutoML assists in the
automatic extraction of relevant features from raw data, reducing the need for
manual intervention and domain expertise.

3. Model Selection: AutoML algorithms intelligently explore a range of machine
learning models, selecting the most suitable architecture for a given dataset and
problem.

4. Feature construction: Creating new features from existing data, which designed to
be more informative helping the model learn better and ultimately being more
accurate.

5. Parameter optimization: The optimization of model hyperparameters, a crucial and
often intricate task, is automated through AutoML, enhancing the performance of
the selected model.
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Figure 5. AutoML pipeline, Source: https://towardsdatascience.com/automated-machine-
learning-d8568857bdal

As a result, AutoML holds a significant promise in democratizing machine learning by
lowering the barriers to entry for practitioners. Its automated nature reduces the
dependency on domain-specific expertise, allowing stakeholders to use machine learning
more efficiently and cost-effectively. Moreover, by accelerating the model development
lifecycle, AutoML enables rapid prototyping and iteration, which is crucial in dynamic
environments where timely decision-making is imperative.

To sum up, AutoML stands at the forefront of advancing the application of machine
learning techniques, offering a comprehensive and accessible solution to practitioners
across diverse domains, including agriculture. As the field continues to evolve, the
integration of AutoML into standard data science workflows promises to revolutionize the
landscape of predictive analytics, empowering experts and non-experts alike to unlock
insights from their data with unprecedented efficiency.
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1.6 Artificial Intelligence in agriculture

Artificial Intelligence (Al) is rapidly transforming various industries, and agriculture is
no exception. With the global population expected to reach 9.7 billion by 2050 and the
demand for food increasing at an unprecedented rate, Al-powered solutions hold the
promise to increase food quality and production by enhancing agricultural productivity,
sustainability, and resource efficiency(Javaid et al., 2023). As mentioned earlier, precision
agriculture is a farming management approach that uses various sensors and different
data types to improve the efficiency and effectiveness of agricultural production. However,
as the number of data points and the complexity of the data gathered increases, humans
cannot cope with data processing. One of the most promising solutions is the use of Al
algorithms that can quickly analyse vast amounts of data from sensors, drones, and
satellites to identify areas that require specific attention. The use of Al, therefore, causes
agriculture to shift from empirical decision-making to data-driven decision-making,
allowing farmers to make informed decisions that maximize resource use and minimize
environmental impact. The major subdomains of agriculture that Al techniques have
found application are the following (Bannerjee et al., 2018):

e General crop management

e Pest management

e Disease management

e Agricultural product monitoring and storage control
e Soil and irrigation management

e Weed management

e Yield prediction

Al applications have increased in popularity, with numerous academic and commercial
solutions having been presented over the years, with a systematic review identifying
more than 150 papers based on the existing automation applications in agriculture from
1960 to 2021 (Wakchaure et al., 2023).

As mentioned in the previous chapters, irrigation is one of the most critical
agricultural inputs for achieving high-quality products and high yields; as a result, it has
drawn the attention of many Al researchers. Numerous publications can be found using
a variety of sensors and cameras as well as various Al algorithms.

Estimating water stress using satellite imagery is one of the most popular
approaches, as it allows for large spatial coverage with minimal manual labour. Al is
crucial in this approach as it allows for fast data processing. Various ML and Al algorithms
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have been used, such as Genetic Algorithms (Hassan-Esfahani et al., 2015), and
Gaussian mixture models (Huang et al., 2007)(Sun et al., 2017), all with promising results.

Another source of data is UAV, where multispectral imagery is used to produce
various vegetation indices that, in turn, are used for water status estimation using Al
algorithms such as Atrtificial Neural Networks (ANN) (Romero et al., 2018)(Poblete et al.,
2017). Besides multispectral data, colour (RGB) data captured from UAV systems have
also been used to characterize water stress in combination with ANN(Chandel et al.,
2022). However, as Al algorithms become more sophisticated and computational power
cheaper, more complex approaches, such as fusing thermal and RGB UAV-captured
images, are being investigated (Aversano et al., 2022).

A completely different approach that has received much consideration is using Al
algorithms to estimate Evapotranspiration (ET) (Virnodkar et al., 2020). Once again, ANN
and SVM are among the most commonly used algorithms (Dou and Yang, 2018), with
additional state-of-the-art algorithms such as extreme learning machine (ELM) and
adaptive neuro-fuzzy inference system (ANFIS) being tested (Dou and Yang, 2018).

Finally, a different approach towards identifying water stress was to use canopy
temperature calculations (Andrade et al., 2018) or Crop Water Stress Indices (CWSI)
together with ML algorithms such as Bayesian regularized neural network (BRNN), SVM
with radial basis function (RBF) kernel, least absolute shrinkage and selection operator
(LASSO), ridge regression, generalized linear model (GLM), multivariate adaptive
regression splines (MARS), conditional inference tree (CIT), RF, eXtreme gradient
boosting and cubist (Xu et al., 2018).

Fertilisation is another crucial input to achieve high quality and yield. However,
overuse of fertilisers can lead to environmental pollution. Therefore, researchers have
focused on the problem of fertilisation determination and quantification with nitrogen((Cilia
et al., 2014)(Quemada et al., 2014)(Argento et al., 2021)(Bagheri et al., 2013)(Link et al.,
2004)(Yi et al., 2007)(Lammel et al., 2001)(Basso et al., 2016)) and phosphorus
(Siedliska et al., 2021) being the most commonly studied nutrients. Moreover, studies
focusing on fertilisation intensity and not on specific nutrients have also been conducted
(Hollberg and Schellberg, 2017)(Papadopoulos et al., 2023).

UAV and satellite imagery are widely used as data acquisition platforms for
fertilisation applications, with data processing approaches including various Al agents. An
example of this is the use of spectral and vegetation indices in conjunction with the
Spectral angle mapper classifier (SAM)(Bagheri et al., 2013), quadratic linear regression
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(Argento et al., 2021), Linear regression(Quemada et al., 2014) to estimate nitrogen
status and create fertilisation maps (Cilia et al., 2014).

Despite the sizeable spatial resolution of satellite and UAV imagery, proximal
sensing appears to be the most common approach when determining fertilisation levels.
Various sensors have been used depending on the wavelengths of interest and the
environment in which the data acquisition occurred. One approach suggests the use of
spectroradiometers in lab conditions combined with MLR (multiple linear regression) and
ANN (artificial neural network) modelling(Yi et al., 2007). Another one, is the use of
spectral proximal sensing and supervised classification (Backpropagation Neural
Network, Random Forest, Naive Bayes, and Support Vector Machine) (Siedliska et al.,
2021). Moreover, spectral sensors have also been mounted to tractors as an alternative
to UAVs or satellites to cover large areas (Link et al., 2004)(Lammel et al., 2001), while
the Vegetation indices approach has also been tested for proximal remote sensing
applications in combination with a random forests classifier(Hollberg and Schellberg,
2017).

Building upon the previous chapters, it becomes apparent that Al is a crucial part
of modern precision agriculture. As a result of the rapid growth of precision agriculture
solutions, numerous systematic reviews have emerged in recent years, trying to
encapsulate and present the latest trends in the use of Al and ML in agriculture. Based
on those reviews, some of the most important and widely used algorithms are showcased
below.

Table 1. Summary of Al algorithms used in agriculture

Reference Title Algorithms Conclusions
(Review) presented
(Gupta et al., 2022) | Analysis of Some e ANN e Al promotes
Popular Al & ML e GA agricultural
Algorithms Used in e Fuzzy logic growth
Agriculture e SVM e SVM
e KNN provides
more
accurate
results
(Wakchaure et al., | Application of Al e Fuzzy logic o FL, ANN,
2023) techniques and e Genetic and GA are
robotics in algorithm widely
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agriculture:
review

A

ANN

Particle
swarm
optimization
Ant colony
optimization
Firefly
algorithm

Bat algorithm
Artificial
potential field
approach
Artificial  bee
colony
algorithm
Harmony
search
algorithm

Cell
decomposition
Simulated
annealing.

accepted in
the field of
agriculture
Most  robot
applications
are
developed
using FL,
GA, and
ANN

(Megeto
2021)

et

al.,

Artificial
Intelligence

applications in the

agriculture 4.0

CNN
Vector
guantization
Gaussian
mixture
models
(GMMs)
SVM
Random
Forest
Hidden
Markov
Models
Multilayer
Perceptron

SVMs and
small NN are
very popular

18



Investigating the application of spectral imaging and Al in precision horticulture (agriculture)
PhD Dissertation |. Malounas

(Eli-Chukwu, 2019) | Applications of e Median of Al improved the

Artificial Medians agricultural
Intelligence in e Fuzzy logic sector
Agriculture: e ANN Below the
A Review e Genetic average impact
algorithm compared to its
e SVM impact in other
sectors
(Bannerjee et al., | Atrtificial e Expert e Since 1990,
2018) Intelligence in systems ANNSs and fuzzy
Agriculture: A e ANN inference
Literature e Fuzzy logic systems have
Survey e K-means been the most
popular.

e Recently, hybrid
systems, neuro-
fuzzy or image
processing
coupled with
ANN are gaining

popularity.
(Bhat and Huang, | Big Data and Al e ANN ¢ CNNs have
2021) Revolution in e Random been gaining
Precision Forest popularity
Agriculture: Survey e Decision
and Challenges Trees
e SVM
e CNN

Based on the above findings, the most popular Al algorithms in agriculture are
Artificial Neural Networks (ANN) and Support Vector Machines (SVM). There are several
reasons why these algorithms are chosen on many occasions.

ANNSs offer the following advantages and characteristics:

e Fault Tolerance: Even if one or more of their cells are faulty, ANNs can still
operate. The spread nature of information storage throughout the network
is the cause of this fault tolerance.
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e Parallel Processing: ANNs can process information in parallel, they can
handle numerous tasks at once. This enables them to effectively manage
challenging jobs.

e Training and Learning: ANNs are capable of learning from events and
inferring patterns from them to make judgments. They can adjust to new
data and withstand extended training periods.

e Gradual Corruption: ANNs do not corrode or malfunction right away. Rather,
individuals experience a slow deterioration over time that is controllable.

e Speed: When it is important to quickly evaluate the taught target function,
artificial neural networks (ANNs) come in handy. They are able to make
decisions instantly and assimilate information quickly.

e Effective Visual Analysis: Similar to how humans interpret images, ANNs
can conduct efficient visual analysis. They can therefore be applied to
applications such as picture recognition and classification.

e Processing Unorganized Data: An important advantage in today's data-
driven environment is that ANNs can handle and organize disorganized
data. They are fast and effective at organizing and classifying data.

e Adaptive Structure: Because of their adaptable structure, artificial neural
networks (ANNs) can change how they behave depending on the task they
are assigned. They are adaptable and helpful in a variety of applications
because of this.

While SVMs, in turn, come with their advantages:

e Effective in High-Dimensional Spaces: SVMs perform well in high-
dimensional feature spaces, making them suitable for tasks where the data
may have many features.

e Kernel Trick: SVMs can use the kernel trick to transform the input data into
a higher-dimensional space, allowing them to handle non-linear
relationships between features.

e Global Optimization: SVMs aim to find the hyperplane that maximally
separates different classes, leading to a global optimization objective. This
contributes to robust and well-generalized models.

e Margin Maximization: SVMs focus on maximizing the margin between
different classes, which helps achieve better generalisation and resilience
to noise in the data.

e Versatility: SVMs can be adapted for classification and regression tasks,
making them versatile for various machine-learning applications.

In summary, ANNs are popular for their ability to process information in parallel
and handle unorganized data, while SVMs are valued for their effectiveness in high-
dimensional spaces, global optimization objectives, and versatility in handling different
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types of tasks. However, both algorithms require deep knowledge and extensive
experience to optimize them and achieve good performance results.
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1.7 Spectral imaging

Spectral imaging is an imaging technique employed that involves acquiring and
analysing spectral data across a range of wavelengths. This method provides a detailed
and comprehensive understanding of the electromagnetic spectrum's interaction with a
given object or scene. By capturing information beyond what is visible to the human eye,
spectral imaging enables researchers to discern subtle differences in material
composition, identify specific chemical components, and gain insights into biological
specimens' structural and functional characteristics. The combination of such sensors
with Al algorithms facilitates the extraction of valuable spectral signatures, contributing to
advancements in various fields, including agriculture. The precision and versatility
spectral imaging provides a significant promise for better understanding complex
phenomena and fostering innovative solutions across various scientific domains.

When referring to spectral imaging, both hyperspectral and multispectral sensors
are included. The exact thresholds for what is considered "multispectral” or
"hyperspectral" can vary, but the key distinction lies in the density and granularity of the
spectral information captured. Multispectral sensors can generally capture a limited
number of discrete bands, often ranging from a few (e.g., 3 to 10) to several dozen. On
the other hand, hyperspectral sensors can usually capture a much larger number of
spectral bands, ranging from tens to hundreds or more.

Finally, it is worth mentioning that although the modern practice is to use
aggressive designations such as multi and hyper added to “spectral imaging” to
characterize the number of wavelength bands, it is proposed to avoid using such vague
adjectives and use scientifically sound terminology instead, such as “imaging
spectroscopy” or “spectral imaging”(Polder and Gowen, 2021).

As mentioned above, there is a common distinction between multi- and hyper-
spectral imaging, with a multispectral image consisting of limited specific wavelength
ranges. Multispectral imaging aspires to allow the fast acquisition of spatial and spectral
information, which can be processed by simple image processing and decision-making
algorithms. The increased efficiency compared to other spectral imaging methods results
from the reduction of the total size of the data, achieved with relatively low spatial
resolution (capturing selected wavelengths). Three are the main capturing/scan methods:
1) The point scan, 2) The line scan, and 3) The area scan. Because of the fast image
capture constraint, the point-scan method is not used in practice, as scanning along two
dimensions is time-consuming. The line-scan and area-scan methods (Figure 6) are used
with minor adjustments, while they can be both tuned to capture images at selected
wavelengths. For the line-scan method, specifying the positions of all the useful tracks
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along the spectral dimension of the detector allows for the collection of fewer
wavelengths. As a result, only the information from the specified tracks is collected,
reducing the capturing time and the size of every line-scan image (y, A). On the other
hand, the area-scan method reduces capturing time by simultaneously allowing single-
band image capturing at multiple selected wavelengths (Qin et al., 2013).

Line Scan Camera Area Scan Camera

Captures pixels line by line Captures all pixelsin a block

Figure 6. Line scan vs Area scan cameras. Source: Fainstec

Compared to multispectral imaging, hyperspectral imaging allows the capturing of
more extensive spatial and spectral information(Table 2) and is one the most promising
areas in remote sensing, proximal sensing, close-range sensing, etc. (Gowen et al.,
2007). This promise enabled the development of improved optics and sensor
technologies that have not only improved the spatial and spectral resolution of those
cameras but also reduced their size and cost(Monteiro et al., 2007).
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Table 2. Comparison of RGB imaging near-infrared spectroscopy (NIRS), multispectral imaging
(MSI), and hyperspectral imaging (HSI).

Feature RGB imaging NIRS MmSI HSI
Spatial information v v v
Spectral Information v Limited v
Multi-constituent information Limited v Limited v
Sensitivity to minor Limited v
components

A hyperspectral image can be described as a cube consisting of two spatial
dimensions and one wavelength dimension(Lu and Chen, 1999). The wavelength
dimension is specified by hundreds of contiguous wavebands (Figure 7). This results in
each image pixel being a column vector with dimensions equal to the number of
wavebands. More spectral bands, therefore, result in richer spectral information.
Continuing the multi- and hyper-spectral comparison, as the size of the third dimension
is considerably larger in the hyperspectral images, it can be argued that each pixel vector
contains more spectral information, an attribute crucial for data analysis(Gowen et al.,
2007). However, using more information-dense images comes with a trade-off:
computational time increase. Primarily, this is counteracted by the continuous
advancements in computer science, both hardware, and software, that have enabled the
use of information-rich images without sacrificing much time. Despite the advancements,
the accuracy speed trade-off will always exist, with increased accuracy coming from a
sacrifice of speed(Huang et al., 2017).
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Figure 7. Schematic representation of hyperspectral image cube Source:(Stamatas et al., 2003)
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Similarly to multispectral imaging, three are the main approaches for obtaining
hyperspectral images: two spatial scan methods (point-scan and line-scan) and one
spectral-scan method(area-scan) (Figure 8). In the point-scan or whiskbroom method, a
single point is scanned along the two spatial dimensions (x, y) by moving the object or
the sensor. The single spectrum of each pixel is then captured using a point detector-
equipped spectrophotometer. Using this method, the hyperspectral image is assembled
pixel by pixel. The second approach is the line scan or pushbroom method, an extension
of the point-scan method. Using this method for every spatial point in the linear field of
view (FOV), a slit of spatial information as well as complete spectral information is
acquired simultaneously. This results in a two-dimensional image with one spatial
dimension (y) and a spectral dimension (A) captured each time. The hypercube is
progressively completed as the slit is scanned in the direction of motion (x). Both scan
methods provide good quality results but have very low efficiency, with long integration
times being a prerequisite to obtaining a full hyperspectral image. The last method is the
area-scan or band sequential method, which captures a two-dimensional single-band
greyscale image (x, y) with full spatial information at once. The hypercube is completed
by stacking single-band images as the scan is performed. One of the main benefits of this
method is that it does not require movement between the object and the sensor(Qin et
al., 2013).
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Figure 8. Methods of spectral image acquisitions with left image: point scan, middle image line
scan, and right image area scan. Source: (Qin et al. 2013)

Despite the three different methods used to build a hyperspectral cube, a
hyperspectral device usually consists of the following parts: a monochrome charged
couple device (CCD) or complementary metal oxide semiconductor (CMOS) image
sensor which is used to acquire the spectral image, and a dispersive means (prism or
grating) which is integrated into the optical system. The drawback of dispersive means is
that the image is analysed per line, and the mechanics are integrated into the optical train.
Optical band-pass filters, tunable or fixed, e.g., rotary filter wheels, liquid crystal tunable
filters, and acousto-optic tunable filters, are a solid alternative (Schelkanova et al., 2015).
Using optical band-pass filters to acquire hyperspectral images means the spectrum must
be scanned in steps. Finally, a third method to obtain the spectrum of a light source is the
Fourier transform spectroscopy. In this measurement technique, spectra are collected
based on measurements of the coherence of a radiative source, using time-domain or
space-domain measurements of electromagnetic radiation or another type of
radiation(Pisani and Zucco, 2009).

As mentioned earlier, spectral imaging in agriculture has emerged as a powerful
tool, leveraging advanced technology to enhance various aspects of crop management
and monitoring. Recapping: this imaging technique involves capturing and processing a
broad spectrum of wavelengths, providing detailed information about the composition and
health of crops.

One of the primary applications of spectral imaging in agriculture is precision
farming. By analysing the reflected light from crops across different spectral bands,
farmers can gain insights into the nutritional status, moisture levels, and overall health of
plants. This enables precise and targeted interventions, such as optimized irrigation and
fertilisation, ultimately improving crop yield and resource efficiency. On this topic (Ruett
et al., 2022) investigated the applicability of spectral imaging for determining the vitality
of shoots and roots in ornamental plant production, while (Kim et al., 2010) used spectral
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imaging for the detection of water stress in apple trees and (Williams et al., 2023) for
differentiating between biotic and abiotic stress in raspberry plants.

Moreover, spectral imaging plays a crucial role in disease detection and pest
management. The unique spectral signatures of diseased plants or infestations can be
identified, allowing for early detection and timely intervention. Disease detection has been
among the most researched topics as each disease requires a different treatment and, if
left untreated, can cause a reduction in yield and quality and, on some occasions, put at
risk human health (e.qg., Aflatoxin produced by the fungi Aspergillus flavus and Aspergillus
parasiticus in crops such as corn). According to the Scopus statistics, there are 412
relevant papers from 2005 to 2020 where ‘plant disease’ and ‘hyperspectral’ are used as
keywords for the search (Cheshkova, 2022). The focus has not been on a single crop but
instead spread on multiple ones depending on each researcher's topic of interest. The
following table presents a short list of publications on various crops and disease
combinations to showcase the variability in crops and diseases.

Table 3. Diseases and crops where spectral imaging has been used.

Crop Disease Reference
Tomato Gray mold (Xie et al., 2017)
Wheat Powdery mildew (Khan et al., 2021)
Apple Apple scab (Gorretta et al., 2019)
Strawberry Gray mold and | (Zhang et al., 2023)

anthracnose
Tea plants Anthracnose (Yuan et al., 2019)
Grapevine Ochratoxin A (Templalexis et al., 2023)
Squash Powdery mildew (Abdulridha et al., 2020)
Pistachios Aspergilus Flavus (Mastrodimos et al., 2022)
Palm trees BSR disease (Lee et al., 2022)
Rice Sheath blight (J. Zhang et al., 2021)
Banana Black Sigatoka (Ugarte Fajardo et al.,
2020)

Another significant benefit of spectral imaging is its capacity to assess soil health.
By analysing the spectral information reflected from the soil surface, farmers can gather
data on soil composition, moisture content, and nutrient levels. This information guides
informed decisions on soil management practices, helping to optimize crop growth
conditions and reduce environmental impact. (Jia et al., 2017) used spectral imaging to
classify soil types and determine soil total nitrogen, (Nanni et al., 2021) used it to map
organic matter and soil particle size, while (Haijun et al. 2017) used it to predict soil
moisture.

Furthermore, spectral imaging supports crop phenotyping, which involves the
comprehensive analysis of plant traits. Researchers and agronomists can utilize this
technology to study and understand the genetic characteristics and variations in different
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crop varieties. This information is invaluable for crop breeding programs, enabling the
development of more resilient and productive plant varieties.(Bodner et al., 2018) used
spectral imaging for characterizing the root system architecture, (Banerjee et al., 2020)
used it to derive biomarkers for genotypic nitrogen response, while (Pandey et al., 2017)
focused on the analysis of plant leaf chemical properties.

To sum up, spectral imaging in agriculture had found uses in a variety of tasks
ranging from crop phenotyping and soil health assessment to precision farming and
disease detection. By incorporating spectral imaging into farming methods output and
resource efficiency improvements are expected as well as resilience and sustainability
strengthening of modern farming systems.
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1.8 CIELAB Colour space

Colour is defined as the aspect of things caused by differing qualities of light being
reflected or emitted by them. It is explicitly associated with electromagnetic radiation of a
specific range of wavelengths visible to the human eye. Colour is a perception of energy
and specific wavelengths of light that reach our eyes. Perceived colour can vary based
on a person's biology and how their brain receives signals, so two people may not see an
object as the same colour(Nassau, 2024).

Colour is perceived differently by each person, like smells or sounds, so it is a
subjective stimulus to which many factors contribute, such as the light source, the mood,
the angle of observation, and the colour sensitivity of the observer. Despite their
subjectivity, however, colours can be compared objectively as long as the conditions in
which they are viewed are stable and independent of external factors. Three basic
properties characterize colour:

- The hue refers to an object's primary colour and is the first criterion for distinguishing
colour.

- The chromatic saturation (chroma) describes the colour's purity.

- The brightness when the hue is held constant, and the three components of the colour
(red, green, blue) are reduced simultaneously while maintaining their proportion, reducing
the brightness of the colour.

Various colour coordinate systems can describe the colour of an object. Some of
the most widely used systems are Munsel, RGB (red-R, green-G, blue-B), and the
Comission Internationale de I'Eclairage's-CIE): CIEL*a*b* (Figure 9), CIEXYZ, CIEL*u*v*,
CIEYxy and CIELCh. According to the CIE, the human eye has three receptors: red,
green, and blue, and all colours result from the combination of these three primary
colours. The amounts of red, green, and blue required to form any colour are called
tristimulus factors and are denoted respectively by the letters X, Y, and Z (Pathare et al.,
2013)

Value
—* Hue

Chroma l

Purple-Blue Blue
Blue-Green

Figure 9. Left: Munsell colour space, Centre: RGB colour space, Right: CIEL*a*b* colour space
Sources: Munsell colour, 2013, Centre, Hernandez 2007, OPI 2013
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The CIE introduced the CIELAB or L*a*b* colour model in 1976, derived from the
CIE XYZ colour space. It is a visually uniform colour space that best approximates the
human perception of colour differences of all colour systems. Each colour is described by
three factors as in the RGB colour model and is influenced by the Munsell colour system.

In CIELAB, the colour factors are called L*, a*, and b* and are represented in a 3D
Cartesian coordinate system. The L* (Lightness) factor carries the information of the
brightness of the image and takes values from 0 (black) to 100 (white), while the a* and
b* factors, respectively, carry the following colour information without any numerical
boundaries for them. Positive values of a* represent shades of red, and negative values
represent shades of green. Positive values of b* represent shades of yellow, and negative
values represent shades of blue(Schanda, 2007). These values can be placed in the
three-dimensional CIE colour coordinate space, so that each colour-hue is characterized
by a distinct point in it.

In other words, CIEL*a*b* compares a sample with a standard colour sample and
performs a numerical determination based on their colour differences. The difference in
luminance L* when positive means the sample is brighter than the standard, and when
negative, darker. The difference a* when positive is redder than the standard and when
negative is greener than the standard. Similarly, when the difference b* is positive, the
sample is more yellow, and when negative, it is bluer than the standard.

The CIEL*a*b* colour model can also be represented in a cylindrical polar
coordinate system with the CIEL*C*h* model (Figure 10). Where L* is the luminance, C*
is the chromatic saturation, which defines the intensity or purity of the colour, and h* is
the hue, which is measured in degrees and defines the hue by taking values of 0° for red,
90° for yellow, 180° for blue-green and 270° for blue.

lightness =————p»
lightness =

0 \J
Figure 10. CIE L*a*b* (Left) and CIE L*C*h* (Right) colour spaces, Source: OHWEB, 2013.
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When the C difference is positive, the colour has a higher density, while when
negative it has a lower density than the standard. Finally, the difference h when positive
will be closer to the opposite colour than the standard, for example, for a red sample, the
colour will be bluer than the standard.

Each of the above-mentioned values is calculated using one of the following equations:

Cr=y@7+ (®n [
h = tan™(2) 2]
h=0 3]

h=90whena*=0and b*>0 [4]
h = 180° + tan"'(Z)  [5]

h =270 when a* = 0 and b*<0 [6]
h = 360° + tan‘l(g) when a*>0 abd b* <0 [7]

The following equation can determine the total change in colour between two points in
space:

AE = J(AL %)% + (4da %) + (Ab *)? [8]

Where AL, Aa kai Ab are, respectively, the differences from an original colour point or
reference point. However, as the human eye cannot distinguish such colours, a* and b*,
the data are converted into colour functions of hue and chroma (Bartz and Brecht, 2002).
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The CIELAB colour space has valuable applications in various fields, including
agriculture. This colour space is based on human perception of colour, making it more
perceptually uniform compared to other colour models like RGB or CMYK. In agriculture,
where colour can be indicative of crop health, quality, and ripeness, utilizing CIELAB
offers several advantages.

One significant application of the CIELAB colour space in agriculture is crop
monitoring and management. Farmers and researchers can assess crop health and
detect potential issues such as nutrient deficiencies, diseases, or pest infestations by
analysing colour variations in plant leaves, fruits, and other agricultural products. The
perceptual uniformity of CIELAB allows for more accurate and consistent colour
measurements across different lighting conditions and environments, enhancing the
reliability of such assessments. Examples of such applications are growth monitoring of
onion and garlic (Kim et al., 2023), generic plant disease detection (El Sghair et al., 2017),
detection of unhealthy citrus leaves(Goyal et al., 2022) and leaf blight (Fayyaz et al.,
2022)

Moreover, CIELAB facilitates the development of colour-based sorting and grading
systems for agricultural products. By establishing standardized colour thresholds based
on Lab values, sorting machines can efficiently categorize produce according to quality
parameters such as ripeness, size, and blemishes. This not only improves the efficiency
of pre and post-harvest processing but also ensures uniformity in product quality,
benefiting both producers and consumers. More precisely, CIELAB has been used for
determining the maturity of pomegranate(Pérez, 2021), lemons (Conesa Martinez et al.,
2019) and peaches (Ferrer et al., 2005), for evaluation of tobacco leaves towards
automatic harvesting (Guru and Mallikarjuna, 2010), for quality grading (Pandey et al.,
2014) and defect detection such as browning in mango (Zheng and Lu, 2012).

In addition to crop monitoring and sorting, the CIELAB colour space is instrumental
in agricultural research and development. Researchers leverage Lab values to quantify
and compare colour attributes of different plant varieties, helping identify traits associated
with desirable characteristics such as flavour, nutritional content, and shelf-life. This
knowledge informs breeding programs and agronomic practices aimed at enhancing crop
yield, resilience, and marketability. One commonly studied colour pigment is anthocyanin,
found in the berry skin of grapes (Liang et al., 2011) and plums (Rampackova et al., 2021)

Furthermore, CIELAB-based colour analysis supports precision agriculture
technigues by enabling targeted interventions at the plant level. By precisely identifying
areas of concern based on colour deviations, farmers can implement localized treatments
such as fertilisation or pesticide application, optimizing resource utilization and minimizing
environmental impact. Applications such as weed recognition (Dyrmann and Jgrgensen,
2015), identifying and segmentation of vegetation (Setyawan et al., 2018)(Concepcion Il
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et al., 2021), and evaluation of nitrogen status in wheat (Yakushev and Kanash, 2011)
are just some examples.

Finally, CIELAB has also found more niche applications such as land use and land
cover classification (Vignesh et al., n.d.), soil classification and determination of its
physical, chemical, and biological properties based on colour(Baek et al., 2022)(Roy et
al., 2006)(Ibafez-Asensio et al., 2013) and even in situ detection of glyphosate on plant
tissues in combination with cysteamine-modified gold nanoparticles(Tu et al., 2019).

Overall, the adoption of the CIELAB colour space in agriculture is wide and
underscores its significance in advancing crop management practices, quality control
measures, and scientific research within the agricultural sector. Its perceptual uniformity,
coupled with advancements in technology and data analysis, has led to novel
opportunities for improving productivity, sustainability, and profitability in farming systems
worldwide.
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1.9 Spectral Imaging vs. CIELAB: Unveiling the differences

Understanding colour goes beyond perceiving its basic hue. Both spectral imaging
and the CIELAB colour space delve into the world of colour but through vastly different
approaches. Choosing the proper technique depends on the specific needs and desired
information.

Spectral imaging does not capture just an image, but an entire spectrum of light
reflected from each pixel, gathering light information across hundreds of narrow
wavelength bands and providing detailed spectral fingerprints for every point in the image.
This "spectral data" unlocks a wealth of information beyond simple colour perception.

Spectral imaging can thus facilitate applications such as:

« Material differentiation: Identify subtle differences in visually identical
materials based on their unique spectral signatures.

e« Chemical analysis: Analyse the presence and concentration of specific
chemicals based on their absorption patterns in the spectrum.

e Non-destructive testing: Analyse objects without physically altering them.

However, there is a trade-off to the information-dense images it can capture. To name a
few:

« Data complexity: Analysing large datasets with hundreds of spectral bands
requires specialized software and expertise.

o Cost: Hyperspectral cameras and associated equipment can be expensive
investments.

o Real-time limitations: Processing such vast data volumes often limits real-time
applications.

On the other hand, CIELAB colour space, as mentioned earlier, aims to quantify colour
perception in a way that closely resembles human vision, providing some unique
characteristics:

« Simplicity: Easy to understand and use, requires only three values to represent
colour. However, it is worth noting that there also many complex indices such as
Bl and YI which integrate the L,a,b in a more complex way.

« Standardization: Widely adopted across various industries, enabling meaningful
comparisons across different measurements.

« Computational efficiency: Data analysis is relatively straightforward, making it
suitable for real-time applications.

On the contrary, to spectral imaging, the simplicity of the images comes with its
weaknesses:
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e Limited information: Only perceived colour is represented, lacking spectral
details captured by spectral imaging.

o Material differentiation limitations: Unable to distinguish materials based on
subtle spectral differences invisible to the human eye.

Thus, the choice between hyperspectral imaging and CIELAB depends on the specific
use case and goals. Spectral imaging is most suitable if detailed material analysis,
chemical identification, or non-destructive testing is required. However, if quantifying
perceived colour is only needed, then CIELAB is a suitable option, providing ease of use
and efficiency. Finally, both techniques are often combined, with CIELAB providing initial
colour classification and hyperspectral imaging offering a more profound analysis of
specific areas of interest.

1.10 Spectral imaging and Artificial Intelligence: a perfect fit

Spectral imaging, a technology capturing a wide range of electromagnetic
wavelengths, seamlessly aligns with Artificial Intelligence's (Al) capabilities due to its
inherent ability to provide rich and detailed spectral information. This synergy between
spectral imaging and Al is particularly advantageous for various applications.

Firstly, the vast amount of spectral data acquired by spectral sensors serves as a
robust foundation for Al algorithms. The high spectral resolution enables the identification
and discrimination of subtle differences, enhancing the precision of Al models. This
comprehensive spectral information provides a nuanced understanding of the target,
allowing for more accurate classification and analysis.

Secondly, spectral imaging complements Al by addressing the challenges posed
by complex and dynamic environments. Spectral imaging excels in capturing detailed
information about scenes with diverse and overlapping objects, a scenario where
conventional imaging may fall short. When integrated with spectral data, Al algorithms
can navigate through intricate datasets, discerning patterns and features that might be
imperceptible to the human eye.

Moreover, the synergy between spectral imaging and Al facilitates automation and
efficiency. Al algorithms can be trained to process and interpret spectral data rapidly,
expediting crop monitoring, disease detection, and environmental assessment. This
streamlined automation not only reduces manual effort but also enhances the scalability
of applications across diverse domains.

Furthermore, combining spectral imaging and Al contributes to improved decision-
making processes. The detailed spectral signatures captured by spectral sensors enable
Al models to generate insightful analyses, aiding in informed decision-making across
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agriculture and environmental monitoring. This amalgamation of technologies empowers
users with actionable insights derived from a deeper understanding of the data.

In conclusion, spectral imaging and Al compatibility lie in the former's ability to
capture rich spectral information, which serves as a valuable input for Al algorithms. This
fusion enhances precision, allows for complex environment applications, automates
processes, and facilitates data driven decision-making. Spectral imaging and Al
integration emerge as a powerful combination, promising advancements in diverse fields
through high resolution data and efficient data analysis.
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1.11 Common problems with spectral imaging and Al

One of the most common problems of spectral sensors is the large amounts of
data generated due to their large spectral resolutions (hundreds of bands) and
considerable spatial resolution (Adé&o et al., 2017). From an Al perspective, this would be
considered a benefit; however, these amounts of data are linked to relatively few samples,
with one image/sample containing lots of information but being used only once by the Al
models. Another side effect is the significant increase in the resources and computational
time required for extracting main features from the spectral images (Mahesh et al., 2015),
which makes handling it cumbersome. Both the resources required as well as the
complexity of data acquisition and analysis hinder the use of spectral imaging(Adéao et
al., 2017).

All the previous can be summarised to what is known as the dimensionality
problem of spectral imaging, which has been identified by numerous researchers (Khan
et al., 2022)(Liu et al., 2015) and that guides the research community to develop cost-
effective and efficient algorithms to speed up spectral data processing while increasing
model performance. There are two ways towards that goal: band selection and feature
selection. Bands that contain more information, show less data correlation, and present
good separability are preserved. Feature extraction indexes and methods that are easy
to implement and with high extraction accuracy are then used .(Yu et al., 2022)

Finally, another major problem is model generalisation, which refers to the
challenge of applying spectral imaging techniques across different conditions,
environments, or contexts. Most of the results published that utilise hyperspectral imaging
follow a common methodology with minor adjustments to achieve good results. The
common methodology used for data processing once the hyperspectral images have
been acquired can be summarized in a specific number of steps, as presented by (Wang
et al., 2015):

1. Pretreatment (e.g., Derivative correction, Smoothing)
2. Methods for Variable selection

3. Discriminant methods
4

. Calibration of the model
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5. Evaluation of the model

The algorithms selected and what extent they are used is use case specific and
can vary. (Medic, 2023) made use Partial Least Square (PLS) regression algorithm and
spectral smoothing, namely Savitzky—Golay, to achieve a coefficient of determinationR?
of 0.91 for estimation of DM in apples. Apples were also been the focus of studies by
(Zhang et al., 2019) that achieved similar results using feature extraction (Principal
Component Analysis) and PLS algorithm and (Kavuncuoglu et al., 2023), that made use
of feature selection (Bootstrap Random Forest) and Artificial Neural Networks.
Furthermore, (Taghizadeh et al., 2009) used PLS regression, spectrum smoothing
(Savitsky—Golay) and normalization (Standard Normal Variate) for moisture content
prediction in white button mushrooms, with a performance of R? of 0.8. Lastly,
(Muruganantham et al., 2022) by focusing on unpeeled whole potato tubers achieved an
R? of 0.53 using PLS and feature selection (B-coefficient and VIP).

Despite the excellent results, all previously mentioned research focuses on single
fruit/ vegetable/crop. Currently, models capable of generalizing additional crops have not
been at the center of research.

The most important factors that impede generalizability are the following:

1. Variability: Different crops, varieties, regions, high intra-class spectral-spatial
variability, atmospheric and daylight conditions make spectral models lack
universality (Signoroni et al., 2019).

2. Calibration: Spectral imaging and chroma meter systems require precise
calibration to ensure accurate and reliable measurements. However, variations in
sensor response, illumination sources, and environmental factors can introduce
calibration errors, leading to inaccuracies in spectral data interpretation.

3. Limited Training Data: Training spectral imaging algorithms typically requires
large volumes of labelled data to learn complex patterns and relationships.
However, such datasets are limited, and collecting and annotating such data can
be labour-intensive and costly, particularly for niche or specialized applications,
leading to a scarcity of training data and potential overfitting issues.

4. Transferability: Spectral imaging models trained on data from specific
environments or conditions may struggle to generalize to new, unseen scenarios.
This lack of transferability can limit the practical utility of spectral imaging
technologies, particularly in applications where adaptability to diverse operating
conditions is essential.

As a result of the above, the generalisation and applicability of spectral imaging
developed methods have yet to be explored(Shuai et al., 2024).
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1.12 Broccoli

The crop of selection for this dissertation is broccoli. The selection of broccoli as
the focal point of this dissertation stems from a multifaceted rationale ranging from its
importance to modern agriculture and human nutrition to the challenges its morphology
poses to precision agriculture solutions. In essence, the selection of broccoli as the
subject of this dissertation is driven by a commitment to advancing agricultural knowledge
and addressing the pressing challenges precision agriculture is facing.

Broccoli has been of considerable interest worldwide in recent decades, and its
consumption has increased significantly during the winter months due to the publicity it
has received for its dietary qualities as well as its medicinal properties for the prevention
of various forms of cancer in humans. Large quantities of broccoli are produced in the
USA, lItaly, northern European countries, and cold regions of the Far East (Olympios,
2015).

Broccoli is considered a native plant of southern Europe and the eastern
Mediterranean, a popular vegetable of the Italians since Roman times, who consumed it
raw or cooked, but mainly for medicinal purposes. Today, there is still confusion about
the origin of broccoli and cauliflower. The most widely accepted view is that broccoli is
the ancestor of the early cauliflowers grown today. It is one of the few vegetables that
have become very popular worldwide in recent years. Until 1920 it was not popular in the
U.S. until Italian immigrants brought it to California and began growing it (Olympios,
2015).

In Greece today, mainly varieties with green flower heads and much less varieties
with violet flower heads are cultivated. The head or edible part of the broccoli consists of
densely arranged flower buds in an inflorescence and tender parts of the stem end, dark
green or violet in colour, depending on the variety, with the stem being about 15 cm long
(Olympios, 2015).

Broccoli is an annual or biennial dicotyledonous, herbaceous plant and belongs to
the family Cruciferae in the Brassica oleracea var italica species. The plant grows to a
size of 50-90 cm and forms larger spaces between shoots compared to cabbage and
cauliflower. During its growth, a short stem is formed, the top of which is divided into a
number of secondary shoots that enlarge, become fleshy, form closed flowers, and
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together form the marketable head. The leaves first appear in a rosette, and later, the
space between leaves spaces become elongated. The leaves have a strong central nerve
which is colourless-greyish-green. A central flower head develops in the centre of the
plant on the unbranched central stem. The flower head appears branched, and a compact
hemispherical head is formed. The colour of the head is green or violet, depending on the
variety, and is surrounded by leaves without being entirely covered by them. In broccoli,
after the central head has been removed, lateral floral inflorescences of smaller size
develop at the bases of the lower leaves. The dominance of the top flower head influences
the development of the secondary flower heads. After the top flower head is harvested,
the secondary develops and is harvested later (Olympios, 2015).

The cultivated varieties of broccoli are divided into five categories:

i. Depending on their earliness, i.e., the time required from sowing to harvesting
the final product. They are divided into early, medium and late.

ii. Depending on the growing season, they are divided into autumn, winter and
spring varieties.

iii. Depending on the flower head size, large heads are preferred for the fresh
market and small heads for the frozen market.

iv. Depending on their ability to form only one flower head, the central one, or to
form lateral (second-order) flower heads on the axils (bases) of the leaves
(parapillar bracts).

v. Depending on the colour of the flower head (dark or light green or red-violet).

The essential quality characteristics sought in broccoli cultivars and hybrids are
the shape, color, consistency of the flower head, the size of the individual flower buds of
the florets, the extent of branching, the length of the intercalary spaces, the production or
not of lateral flower heads, the ability of the flower heads to flower and after harvest and
disease resistance.

The main varieties and hybrids cultivated in Greece today are the following:

- Marathon: a popular variety that grows mainly in August or October. It is a
popular crop grown in most parts of the world, mainly in autumn, and it shows
resistance to powdery mildew.

- Parthenon: with a biological cycle of 105 days and grown in autumn
(September-October). This variety is resistant to low temperatures.

- Fidel F1: Hybrid with very consistent, heavy-weight heads and high quality. It
has high cold hardiness and is resistance to powdery mildew. Its Biological
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cycle duration is 95-105 days. Recommended growing season: summer and
autumn (August-October).

- Milady F1: Hybrid with dark green small flowers. It shows resistance to stem
formation. It has a long biological cycle of 65 days. Harvested in April-June
and September-November.

- Mon Top F1: Hybrid with a biological cycle of 65-70 days.

(Olympios, 2015)

Broccoli is a cool season plant, and for a good quality product, the average monthly
temperature should not exceed 16 °C. At higher temperatures, the plant generally stops
growing. Also, low temperatures during the early stages of the plant's growth cause the
formation of early immature flower heads, and the plant grows very slowly when the
temperature is below 5 °C. The plant is sensitive and is damaged by freezing
temperatures after forming flower heads. Finally, there are variations between varieties
in terms of the need for exposure to low temperatures to form flower stems (Olympios,
2015).

Broccoli (Brassica oleracea var. ltalica) is a crop that requires irrigation and
fertilisation to reach high yields. Both play a vital role as they determine productivity and
quality (Wien and Wurr, 1997)(Vagen et al., 2004)(Thompson et al., 2002). However,
despite the crop being highly responsive to N fertilisation, excessive amounts can cause
guality degradation(Doerge, 1991)(Stivers et al.,, 1993). Moreover, the nutritional
demands are not constant, and they change depending on the broccoli phenology, with
fewer nutrients required in the first two weeks after transplanting and demand increasing
as the plant grows(Carranza et al., 2008)(Cecilio Filho et al., 2017). It therefore, becomes
clear that to increase production, a well-scheduled nitrogen and irrigation plan is required
throughout the growing season to provide the plant with the required nutrients, water and
soil moisture (Erdem et al., 2010).
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Yellowing of flower spikes may occur in over-ripe broccoli when stored at higher
than optimum temperatures or in response to exposure to ethylene. The presence of
yellow florets reduces the marketability of broccoli. There is sometimes confusion
between the yellow florets associated with aging and the peripheral head florets, which
are yellow to light green and are also affected by shading by overlying flower tissue.
Something typical for tissues not exposed to light during head development. Also, a
disorder called "black spot" on stems occurs in stored broccoli, with some varieties being
more susceptible than others. Finally, broccoli is very susceptible to bruising (Vasilakakis,
2006).

The time from sowing or transplanting to harvest is influenced by the variety,
season, prevailing climatic conditions, soil nutrient availability, and moisture availability
during cultivation and usually ranges from 90-150 days after transplanting. The central
flower head (top) is harvested when it has reached the marketable size (desired size,
small and closed flowers, the head is immature, compact, and cohesive (tight)). Removing
the central flower head allows the development of the lateral flower heads, which are
small and short-stemmed and harvested when they have reached the right size (same
stage of maturity as the central flower head). At harvest, the flower heads are cut with a
knife or small sickle (pruning shears) with part of the stem (shoot) about 15-25 cm long
(Figure 11), with mechanical and robotic harvesting solutions being in the research and
development stage. Manual harvesting from a plantation takes 1-2 months and is
completed in 5-10 rounds. The harvesting period starts in September and continues until
April. The central flower heads vary in weight from 100-1000 g and in diameter from 10-
20 cm (Olympios, 2015).
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Figure 11. Broccoli harvesting.

Commercial maturity is based on the diameter of the head; super-mature heads
are characterized by open florets or enlarged florets on the verge of opening, resulting in
a loose flower head (Vasilakakis, 2006). High-quality broccoli is either dark or bright green
with closed florets. The head should be firm and compact when pressed by hand, and the
stem should be cleanly cut to the appropriate length for a given quality standard (USDA,
2016). Broccoli sold as a "whole flower head" should be tight and well-developed. Upon
harvest leaves are removed, and heads are sold by the piece or weight (Vasilakakis,
2006).

Broccoli is one of the most affluent vegetables in vitamin A (Table 4). The dark
green colour is an indication of high carotenoid content. Although they have a slightly
bitter taste, broccoli leaves are edible and contain a high concentration of vitamin A. They
also contain vitamins B1, B2, B3, B6, iron, magnesium, potassium, and zinc. Frozen
broccoli contains more beta-carotene than fresh broccoli because it consists mainly of
flowers. However, the stems also contain considerable amounts of calcium, iron,
thiamine, riboflavin, niacin, and vitamin C. The darker the colour of the inflorescences,
the more vitamins A and C they contain. Broccoli contains sulforaphane, which helps
antioxidants such as vitamins C and E (Vasilakakis, 2006).
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Table 4. Broccoli nutritional value (per 100 g fresh weight) (Vasilakakis 2006)

Nutritional Value Amount
Energy (Kcal) 24
Carbohydrates (%) 5.8
Protein (%) 3
Fat (%) 0
Vitamin A (mg) 874
Folic acid (mg) 40
Calcium (mg) 27
Vitamin C (mg) 113

Folk traditional medicine and pharmacology, but especially the latest research,
show the vital contribution of the cultivated vegetables of the cruciferous vegetable group
in preventing various forms of cancer, i.e., they act against carcinogenesis and mutations.
It is also noted that broccoli helps to reduce cholesterol in the blood (Olympios, 2015).
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1.13 Precision agriculture applications in broccoli production

Precision agriculture has found applications in a variety of horticultural crops. Most
of those solutions are suitable and can be applied to most crops (e.g., NDVI mapping)
without significant modifications, while others are tailored for specific crops (e.g., robotic
harvesting, yield prediction models). Despite the popularity of broccoli in recent years, the
precision agriculture applications tailored to its cultivation are still limited compared to
other crops such as maize, wheat, and strawberries.

However, solutions have been developed for the whole primary broccoli production
process. Starting with phenotyping (Chengquan et al., 2020), moving to growth monitoring
(Psiroukis et al., 2022)(Lee et al., 2023),quality monitoring (Zhou et al., 2020),yield
estimation (Noé et al., 2002)(Zhou et al., 2022),weeding (Pallottino et al., 2018), irrigation
(Kumar et al., 2021), pest damage evaluation (Zou et al., 2021), stress monitoring (El-
Shikha et al., 2007)(Tremblay et al., 2008)(Graeff et al., 2008) and ending with selective
harvesting (Garcia-Manso et al., 2021)(Montes et al., 2020).

As mentioned earlier, broccoli has not been at the centre of precision agriculture
research. The same can be said for Al solutions, with numerous solutions having been
developed for a variety of crops ranging from model plants such as lettuce (Rahimikhoob
et al., 2023) to crops farmed intensively such as wheat (Mehta et al., 2023) and from
apple orchards (Mazzia et al., 2020) to vineyards (Fraiwan et al., 2022).

The lack of Al/ machine learning research on broccoli is further proven by conducting
a quick search in the Scopus database using the keywords “Machine learning” plus the”
Crop of interest.” At the moment the search was conducted (January 2024), broccoli
yielded the least number of results among the crops investigated (Table 5) accounting for
only 0.4% of the documents among 10 crops.

Table 5. Results per crop searching the Scopus database ranked in ascending order.

Crop Documents found
Broccoli 22
Cucumber 98
Lettuce 117
Strawberry 170
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Grape 396
Potato 422
Tomato 690
Maize 948
Apple 954
Wheat 1,257

The lack of research interest could be attributed to a combination of factors such as:

1. Complexity of Plant Biology: Broccoli has complex biological processes that
govern its growth, development, and response to environmental factors. Moreover,
its morphology and geometry pose significant challenges.

2. Data Availability and Quality: Al algorithms rely heavily on data for training and
validation. However, comprehensive and high-quality data specific to broccoli
cultivation are scarce and not readily accessible.

3. Resource Allocation: Research focuses on major staple crops like rice, wheat, or
corn with high economic significance and broader impact.

4. Industry Priorities: The direction of Al research in agriculture is influenced by
industry priorities and market demands. If broccoli production does not represent
a significant market opportunity or there is limited demand for Al-driven solutions
in this sector, research efforts may be directed toward other crops or agricultural
applications.

From the Al solutions investigated for broccoli, autonomous harvesting is the most
popular with multiple publications, such as (Ramirez, 2006)that developed a computer
vision system to locate and classify mature and immature broccoli heads for selective
harvesting, (Montes and Cielniak, 2022) that used 3D point cloud for multiple broccoli
head detection and tracking, (Kusumam et al., 2017) that besides detection went a step
further as also to assess the broccoli size and (Blok et al., 2021)who suggested a novel
image-based size estimation to overcome occlusion problems.

Besides tasks related to harvesting, disease detection has also been investigated.
(Ferdinand and Al Maki, 2022) used Al to classify broccoli leaf diseases.(Pineda et al.,
2022) introduced novel vegetation indices to identify broccoli plants infected with
Xanthomonas campestris. Finally, (Zou et al., 2019) used machine vision to discriminate
between broccoli seedlings and weeds and to estimate pest damage (Zou et al., 2021),
while (Makino and Amino, 2020) focused on the post-harvest evaluating broccoli
freshness. However, besides their importance for broccoli cultivation, Al solutions
focusing on fertilisation and irrigation have yet to be investigated.
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The same that applied to Al research and broccoli production applies and for
spectral imaging research. It is, however, worth noting that from the limited studies
available for broccoli production, the majority focuses on the post-harvest stage, and only
a few on the pre-harvest stage, more specifically only 29% of the studies found focuses
on the pre-harvest. The limited studies available for the pre-harvest stage focus on
disease and pest damage detection. Table 6 presents an overview of the available
research on combining broccoli and spectral imaging at the post-harvest and pre-harvest
stages to allow for direct comparisons.

Table 6. Pre- and post-harvest broccoli characteristics investigated with the use of spectral

imaging.

Growth stage

Investigated characteristic

Reference

Post-harvest

1.

Senescence

(Guo et al., 2022)

2.

Total glucosinolates

(Hernandez-Hierro et al.,
2014)

3. Pesticide residue (Gui et al., 2019)
4. Degradation rate (Hosaka et al., 2012)
5. Degreening velocity | (Makino and Kousaka,

2020)

Pre-harvest

1. Seedling pest | (Zou et al., 2021)
damage
2. Disease detection (Pineda et al., 2022)
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Aim and Objectives

This research aims to offer a meaningful addition to the domain of precision
agriculture by investigating the capabilities of spectral imaging and Atrtificial Intelligence
(Al) for optimizing fertilisation and irrigation. To achieve this, the research aimed at
accomplishing the following objectives:

(1) Develop Al models utilizing spectral data that can identify different fertilisation
levels.
(i) Develop Al models utilizing spectral data capable of identifying plant water
deficit.
(i)  Compare the performance of traditional machine learning algorithms with novel
user-friendly AutoML techniques.
(iv)  Evaluate the feasibility of developing a generalisation-capable Al model utilizing
spectral data.
The results of this research provide advantages that reach beyond academia, providing
valuable assistance to diverse groups, such as researchers, farmers, and stakeholders
engaged in decisions regarding agricultural inputs distribution, food security, and
sustainable agricultural practices.
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Chapter 2 — Materials and Methods

2.1 Workflow overview

This study followed a parallel exploratory methodology (Figure 12). One line of
experiments was focused on the pre-harvest stage while the second on model
generalisation. The primary focus of this research which expanded over three years was
to investigate i) the potential of spectral imaging and Artificial Intelligence in optimizing
pre-harvest stage primary production and ii) the generalisation capability of spectral
models.

During the first year, the emphasis was on fertilisation and whether spectral
imaging can identify different fertilisation levels among plants grown under the exact same
conditions. Moreover, the same year, dry matter measurements were conducted across
a variety of fruits and vegetables, namely apple, broccoli, leek, and mushrooms in
cooperation with partners from abroad.

Through these joint measurements, we aimed to understand Spectral Imaging and
Artificial Intelligence better and share novel ideas, opinions, and thoughts with fellow
researchers and PhD students. Moreover, it allowed us to investigate and test the
generalisation capabilities of Al models developed using spectral imaging datasets. It is
worth mentioning that the different treatments used for studying the preharvest stage
proved invaluable for dry matter estimation as they resulted in variations among the grown
broccoli plants, providing the necessary variability in the collected data to develop robust
Artificial Intelligence algorithms.

During the second year the focus was on irrigation. Namely, the spectral response
of plants being exposed to water stress was investigated. During the third year, the
generalisation capabilities of models trained with spectral data were evaluated using the
large joint effort spectral dataset (Malounas et al., 2024) collected in year one. More
precisely, the steps followed throughout the typical development of an Artificial
Intelligence model used for spectral imaging data processing were evaluated. This
approach yielded a better understanding of how data size affects model performance and
how different data-preprocessing techniques influence the generalisation capabilities of
Al models.
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YEAR 1

Fertilization Experiment Dry matter data collection

YEAR 2
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Figure 12. Workflow followed by this study. With light grey the pre-harvest stage, while with dark
grey the experiments related to model generalisation.
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2.2 Description of the study area

The study was conducted during 2021 - 2023 in a glasshouse (Figurel4) located at
the Agricultural University of Athens premises, Athens, Greece (37.986039570505596,
23.706417286906994) with a surface area of 100 m?(Figure 13).

Figure 13. The glasshouse position (red dot) at the Agricultural University of Athens (Google
Earth, 2024)
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2.3 Growing conditions

The study covered two growing seasons: winter 2021-2022 and winter 2022-2023.
Some growing conditions were kept the same during both growing seasons, while others
were adapted based on the agricultural input under investigation.
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Figure 14. Broccoli glasshouse

The unchanged growing conditions were the broccoli variety, the substrate, the
fertiliser, the irrigation water, and the temperature. More precisely, the Nerone variety, a
60-day variety suitable for the climate conditions of Greece, was selected. The variety
selection was made for the short time it requires to reach maturity, as most broccoli
varieties require between 70 and 100 days. The brief time to reach maturity was a
prerequisite as the ideal growing condition for broccoli is between 18-24 °C and not higher
than 27 °C, which can be maintained only during the winter months in a glasshouse in
Greece with no active cooling only. The fertiliser used was a balanced fertiliser (20-20-
20) containing approximately equal proportions of the three primary nutrients essential
for plant growth: nitrogen (N), phosphorus (P), and potassium (K). The tap water supply
system was used for irrigation purposes. Finally, to ensure that the temperature was kept
within the desired threshold, the automated window system was set to open when the
temperature inside the glasshouse reached 22 degrees °C and close again once it
dropped down to 18 degrees.
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During the first growing season, 90 plants were grown, and fertilisation deficiency
was investigated. The fertiliser used was a typical 20/20/20 N/P/K fertiliser as described
above. However, three different fertilisation schemes were followed. The first one followed
the typical dosage followed by commercial broccoli farms (15 g of granular fertiliser/
plant), the second one used the typical dosage cut in half (7.5 g of granular fertiliser/
plant), while the plants under the third fertilisation scheme did not receive any fertiliser (O
g/ plant), with the plant relying entirely on the soil substrate. To that end, the soil substrate
used was a typical soil used for growing vegetables that also covered the needs of
broccoli growth in order to simulate real-life growing conditions as closely as possible.
More precisely, it was loamy soil (a balanced mix of sand, silt, and clay) with a pH of
around 7. Finally, regarding irrigation, a drip irrigation system supplied water daily until
soil moisture saturation was reached.

During the second growing season, 60 plants were grown, and irrigation and water
acclimation/stress were investigated. To that end, the irrigation scheme had to allow for
precision measurements. Irrigation was carried out manually, maintaining the soil at 40%
of field capacity through daily weighing. Finally, the recommended dosage (15 g granular
fertiliser 20-20-20 / plant) was applied to all plants.

53



Investigating the application of spectral imaging and Al in precision horticulture (agriculture)
PhD Dissertation |. Malounas

2.4 Data Collection

During both growing seasons spectral images were captured in-situ inside the
glasshouse. The setup used consisted of the following components. A hyperspectral
camera (IMEC snapscan VNIR) (Figure 15) and

Figure 15. Imec snapscan VNIR hyperspectral camera

a three-wheel platform (Figure 16), which provided the necessary mobility to the system,
allowing it to move on rough terrain and narrow rows while simultaneously allowing all
individual components to be mounted.
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Figure 16. Three-wheeled platform

The components fitted to the platform besides the camera were the following: a three-
joint arm where the camera was mounted, which allowed the adjustment of the height of
the camera as well as the angle at which the images are captured, a 12-volt battery, a
power inverter used to provide the needed power to the spectral camera and finally the
laptop used to control the camera functions (Figure 17). The system did not involve an
illumination system; instead, it relied on the sun's presence for the necessary illumination.
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Figure 17. Three wheeled platform with all components mounted.

5 —

The camera specifications are presented in the table below.

Table 7. Imec Snapscan product specifications

Spatial resolution

up to 3650 x 2048 pixels (7Mpx RAW per band)

Spectral resolution

150+ bands

Spectral range

470-900nm

FWHM

~10-15nm (collimated)

Acquisition speed

~200ms — 20 seconds, depending on acquisition parameters,
lighting and
object (without including pre- and post-processing time)

SNR

>100-200, flat SNR over spectral range

Dynamic range

8/10 bit

Optics

Schneider Kreuznach Apo-Xenoplan lens, 2.0,
Focal length: 35 mm lens

Dimensions 10x7x7 cm (WxDxH)
Weight 5809 (camera without optics)
Input voltage 24V DC 2.7A (external controller)

Additionally, once the spectral imaging took place, CIELAB colour measurements
were conducted using the Lovibond RT300 spectrophotometer (Figure 18).
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Figure 18. Lovibond RT300 spectrophotometer

The spectrophotometer specifications can be found in the table below.

Table 8 Lovibond RT300 product specifications

Spectral Interval 10 nm - measured; 10nm - output
Measurement Range 0 to 200 % reflectance

Spectral Range 400 - 700 nm

CIE L* a* b Scale resolution 0.01

For both growing seasons during the spectral imaging sessions no artificial
illumination was used; instead, sunlight was utilised for the necessary illumination.
Imaging sessions took place during midday to ensure the best possible illumination
conditions. Before each imaging session, integration time and gain were set to optimal,
and a white reference was acquired to estimate the incident radiant flux density and a
dark reference to minimize the camera sensor's inherent imperfections. The white
reference was a Zenith Lite™ diffuse target (Spectralon, Labsphere) (Figure 19), which
reflects 95% of the incident radiation. The dark reference was captured by completely
closing the camera's mechanical shutter.
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Figure 19. Spectralon diffuse target

Upon image and reference acquisition, spectral images were radiometrically corrected
using the calibration function below:

Re =225 100 [9]
wW-D

where Ro is the raw spectral image, W is the image of a white reference object of uniform,
stable, and high reflectance standard (~100% reflectance), D is the dark image/reference
(~0% reflectance), and Rc is the corrected spectral image. Moreover, to obtain the
extracted spectra, spikes and dead pixels, were excluded using thresholding and more
precisely by using fixed values. Finally, the background removal was conducted using
background removal techniques (e.g. Otsu algorithm) or manually.
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2.4.2 Plant physiology measurements

During the second growing season, in order to validate that plants were under drought
stress, gas exchange parameters were measured prior to imaging with the focus being
onthe photosynthetic rate of each plant. The measurements were conducted using the
LC pro+ gas analyser under ambient environmental conditions (25.5 °C and 425 ppm
CO0O2) and saturating light levels.

Figure 20. LC pro+ gas analyser
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Once the spectral measurements were completed, the samples were immediately
transported for dry matter measurements. All samples were weighed to measure their
fresh weight and then placed in an oven, convective air dryer, up to the moment that their
mass reached a constant value following the dry matter estimation protocol established
by (Cunniff and Washington, 1997)

Based on fresh weight of each sample and their final constant mass (final weight),
their moisture content was calculated using the following equation.

Fresh weight—Dry matter

Moisture content (%) = x 100 [10]

Fresh weight

One moisture content value (% wet basis (w.b.)) was recorded for each sample, and then
the dry matter was calculated by subtracting moisture percentage (%) from 100%.
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Four datasets were compiled during this 3-year study: the first focused on
fertilisation, the second on irrigation, the third on broccoli dry matter and the last one on
dry matter estimation of multiple crops. At this point it should be pointed out that the
multiple crop dry matter dataset includes measurements of apple, broccoli, leek and
mushroom. The decision to create this dataset was made in order to investigate the
generalisation capabilities of spectral datasets across a variety of crops. Therefore, crops
belonging to different families, and with different color and shape characteristics were
chosen.

Each of the four datasets consists of more than one type of measurements besides
spectral measurements. Additional measurements were gathered either to validate
findings or to investigate novel applications and approaches. A detailed overview of the
datasets is presented in the table and in the following sections.

Table 9. Used datasets overview

Experiment Dataset Type of data Number  of | Number of
samples features
(bands)
Fertilisation Spectral e Spectral 49 150
images
Fertilisation CIELAB e CIELAB colour | 49 3
measurements
Fertilisation Spectral + e Spectral 49 153
CIELAB Images
e CIELAB colour
measurements
Irrigation Drought onset e Spectral 60 150
images
e Physiological
measurements
(validation)
Irrigation Drought e Spectral 60 150
acclimated images
e Physiological
measurements
(validation)
Irrigation Drought onset e Spectral 120 150
+ Drought images
acclimated
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e Physiological

measurements

(validation)
Dry matter | Dry ~ matter e Spectral 250 109
model (Broccoli) images
generalisation e Dry matter

measurements
Dry matter | Dry ~ matter e Spectral 779 109
model (various fruit images
generalisation | and e Dry matter

vegetables) measurements

Fertilisation dataset

For the fertilisation experiment three datasets were used. The first consisted only
of spectral measurements and the second one only of CIELAB measurements. The
reason for acquiring the two datasets is that hyperspectral imaging relies on chlorophyll
absorption while CIELAB on the phenomenological background of chlorophyll (green
colour). A third dataset was produced by merging the two. By combining both types of
measurements, machine vision systems can achieve more accurate colour perception,
leading to improved classification accuracy, and quality control. Finally, as measurements
took place in situ, using the sun as an illumination source, the integration of spectral and
CIELAB measurements allowed for colour consistency and accuracy across the varying
illumination conditions, leading to more robust models.

Plants were cultivated until the harvestable vegetative plant parts reached 60-70%
of their final head diameter (BBCH 46-47) and then imaging took place. The zero
fertilisation plants failed to reach this stage as they did not develop the harvestable
vegetative plant parts and were discarded. Regarding the half and full fertilisation plants,
broccoli plants that showed defects (e.g. yellowing, flowering) were rejected as well. The
harvested broccoli from both fertilizer applications did not differ in appearance (figure 22).
The only difference was the average weight with the full fertilisation broccoli weighing
20% more on average. The distance between the camera and the highest point of the
sample (broccoli) was kept constant (60cm) while avoiding movement to prevent motion
blur. Moreover, to facilitate a top-down view the camera was constantly perpendicular to
the broccoli head.
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Figure 21. Broccoli with full fertilization dosage left and with half fertilization dosage right. No visible
differences.

After spectral imaging, CIELAB measurements were carried out. For each sample,
5 points, selected to cover as much of the broccoli head color and shape variation, were
measured and averaged to achieve a sample colour representation as complete as
possible.

Each of the three datasets consisted of 49 samples (21 samples from the half
deficiency class and 28 from the recommended fertilisation class. A 70/30 train test split
was used resulting in 34 samples/images for training and 15 samples/images used for
testing. The hyperspectral dataset had 150 features (bands) per sample, the CIELAB
dataset had 3 features (L*, a*, b) while the merged dataset 153.

Irrigation dataset

For the irrigation experiment, plants were divided into two treatments (drought and
control). Two datasets consisting of 60 images were constructed. For the first dataset
imaging took place at the phenological stage were 70% of the expected head diameter
was reached (BBCH-scale 47) and for the second when the typical size and form had
been reached and the head remained tightly closed (BBCH-scale 49). The first dataset of
Images was captured after the broccoli were not irrigated for 4 days and while the
substrate water content reached 40% of its pot capacity, while the second dataset was
captured 12 days later, maintaining (with daily weighing) the substrate water content at
40% of its pot capacity over the duration of these days. The images were acquired in situ
(inside the greenhouse) as top views of each plant. Prior to imaging, gas exchange
parameters were measured using the LC pro+ gas analyser under ambient environmental
conditions (25.5 °C, and 425 ppm CO3) and saturating light levels. Upon image acquisition
outliers (single images) were detected and removed, Table 10 shows the final datasets
used for the experiments. From the first dataset of images (drought onset), a total of forty-
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two (42) out of sixty (60) images were kept, and from the second dataset (drought short-
term acclimation), forty-eight (48) out of sixty (60) images. Finally, the two datasets were
integrated into a third one including both drought onset, drought acclimated and control
broccoli plants.
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Table 10. Irrigation experiment Image dataset before and after outliers’ removal.

Dataset

No. of images with
outliers

No. of images without
outliers

drought onset 60 42
drought acclimated 60 48
mixed 120 90

Both the drought onset dataset and the drought acclimated dataset were
unbalanced. The drought onset dataset contained more drought samples while the
drought acclimated dataset contained more control samples. More precisely, the drought
onset dataset contained seventeen (17) control and twenty-five (25) drought broccoli
images, and the drought acclimated dataset, twenty-seven (27) control and twenty-one
(21) drought acclimated broccoli images. Lastly, the combined dataset contained forty-
four (44) control, twenty-five (25) drought onset and twenty-one (21) drought acclimated
plant images. Table 11 shows the distribution between the different classes for each

dataset.

Table 11. Data distribution among the datasets described in %.

drought
Dataset control drought onset acclimated
drought onset 40% 60% -
drought acclimated 56% ) 44%
mixed 49% 28% 23%
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Multiple crop and vegetable dry matter dataset

The dataset consists of three different crops, Apple, Broccoli and Leek, captured
with different sensors covering the VIS-NIR range of 700-900nm. To acquire reflectance
spectra the samples (edible parts of the crops) were placed in an environment that was
illumination-controlled in order to maximize the dynamic range of all the sensors used for
each sample. Across the three crops, the same acquisition protocol was followed to
ensure the consistency of all measurements. The protocol consisted of the following
actions: i) imaging mode set to Reflectance, ii) use halogen lamps (Apple: 150W from
lllumination Technologies; Broccoli and Leek: 50W from Osram;) with excellent
performance at VIS-NIR range of 400-900 nm, together with a stabilized DC power
supply, iii) capture dark and white reference images using a high reflectance and stable
standard (~100% reflectance) and a ~0% reflectance standard, respectively iv) maintain
a constant distance between sample and sensor throughout the imaging campaign. The
distance was kept the same for each imaging experiment; however, it differed for each
crop and camera setup to optimize data acquisition quality based on the specific
characteristics of each camera (e.g., linescan, snapscan) and crop (e.g., shape). To
minimize sample exposure to the heat produced by the halogen lamps they were placed
in the image acquisition stage only once the setup was ready for capturing. The sensors,
crops and specific details of all use cases can be found in the table below. Broccoli image
acquisition was conducted by Agricultural University of Athens, while the apple and leek
image acquisition were conducted by Leibniz Institute of Agricultural Engineering and Bio-
economy and the Flanders Research Institute for Agriculture, Fisheries and Food
respectively.

For the broccoli dataset the previously described Imec Snapscan hyperspectral
camera was used, while for the apple dataset the Cubert ULTRIS S20 hyperspectral
camera. The specific hyperspectral camera comes with a global shutter, a spectral
resolution of 141 bands and a FWHM of 12nm. Finally for the leek measurements the
Specim FX10 hyperspectral camera was used. The FX10 operates in the region of 400-
100nm with a FWHM of 2.62-2.82nm capturing in total 224 concrete spectral bands. The
specifications of all hyperspectral cameras can be found in the table below.

Table 12. Technical specifications of the hyperspectral cameras used for the dry matter content
dataset

Crop Apple Broccoli Leek
Camera Cubert ULTRIS Imec Snapscan Specim FX10
S20
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Distance between 50cm 30cm 60cm
sample and camera

Spectral range 430-990nm 470-900nm 398-931 nm
Spectral 141 150 224
resolution/No. of

bands

Full  width  half 12nm 10-15nm 2.62-2.82 nm
maximum (FWHM).

Number of 240 250 288
measurements

However, the use of various hyperspectral sensors, lead to a difference in the
centre wavelength value, number of bands and available wavelength for each of the
selected crop.

Namely the spectral resolution/ No. of wavelength bands was the following for
each of the crops: apple/ 141, Broccoli/ 150, and Leek/ 421. Moreover, spectral range for
apple/ 430-990nm, broccoli/ 470-900nm, and Leek/ 398-1717nm. As a result, if a band
differed more than 2nm was discarded, taking into account the Full Width at Half
Maximum and the centre wavelength value of the sensors used. Once those bands were
discarded each consisted of 109 discrete bands whose wavelength ranged from 469 to
900 nm. The spectral signature of all three (3) crops in the VIS-NIR region can be seen
in the figure below with their standard deviation in brackets.

67



Investigating the application of spectral imaging and Al in precision horticulture (agriculture)
PhD Dissertation |. Malounas

Reflectance [ ]

O 0 00000 0000000000000 00000 oo o
R R RN =R Rl Il c I I B i - I e i I C IR I I I IR S IR S I S =
O M~ MO O M e= N M M~ < G O M 0 W O~ = M O W ™ M~ < = 0O O
M~ 00 O = M wu O 0 & = ™~ = 0 M~ O~m™N=FuwtlM~ OO~ muuwmiM~ o o
= = WV LW W W W W W WD WD WO WD M~ M~~~ 00 ) 0D D D
Wavelength [nm]
— Apple Broccoli Leek

Figure 22. Multi crop dataset averaged spectral signatures.

The spectral measurements were accompanied with dry matter measurements
(%). The Min, Max, and Average dry matter content (DMC) of each crop, following proper
irrigation and fertilisation, can be found in the table below.

Table 13. Dry matter content (DMC, %) per crop

DMC in % Apple Broccoli Leek
Min 14 % 12% 8.1%
Max 17 % 20% 19%
Average 15 % 15% 12%
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2.5 Spectral Data Pre-Processing

For the purposes of this dissertation Python programming language code was
developed to conduct the spectral data preprocessing. The pipeline used in this study
which is also the typical pre-processing pipeline (Wieme et al., 2022) used to handle
spectral data, is presented in the figure below.

Smoothing —> Scaling
Univariate Feature Recursive Feature
Selection Elimination

Feature Extraction ——» Polynomie!l
Transformation

Figure 23. Common spectral data pre-processing pipeline

All the components shown in Figure 23 are explained in detail in the upcoming
subsections. The Recursive feature elimination and polynomial transformation steps
were skipped for the irrigation and fertilisation experiments as excellent results were
achieved without them, thus they would be just adding complexity to the machine
learning pipeline.

The first pipeline component was smoothing. For the fertilisation and dry matter
experiment the Savitzky-Golay filter (Press and Teukolsky, 1990) was used for data
smoothing. Savitzky-Golay is a smoothing algorithm used in signal processing and data
analysis that applies a convolution operation with a polynomial window to the input data,
intending to smooth noisy signals through successive subsets fitting of data points that
are adjacent together with a polynomial of low-degree using the method of linear least
squares. This filter is commonly used in signal processing and data analysis (Vivo-
Truyols and Schoenmakers, 2006). The reason for that is it diminishes high-frequency
signals, such as noise, while simultaneously maintaining essential characteristics of the
signals, such as relative peaks, troughs, height, and width(Zimmermann and Kohler,
2013). Moreover, it is computationally efficient. For the irrigation experiment the
LOWESS method was used (Locally Weighted Scatterplot Smoothing), a non-
parametric regression technique used for smoothing data points, which works by fitting
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a weighted polynomial regression to localized subsets of the data and adjusting the
weights based on proximity.

The aim of this stage was (i) smoothing of different bands signal and (ii) to reduce
noise. This was essential as overfitting can be caused by noise damaging, in the end,
the ability of the model to generalize new previously unseen data. Moreover, the filter
aids highlighting the underlying trends and patterns in the signal data. The Savitzky-
Golay filter can be adjusted by changing the window size and the polynomial order
according to the dataset characteristics and the machine-learning task requirements.

An important preprocessing step in machine learning is data scaling. This step
adjusts the data attributes range to make sure that the contribution of each is equal to
the learning process. Various machine learning algorithms, and more specifically the
ones that involve distance calculations or gradient descent-based algorithms such as
linear regression and neural networks, presume that all features have the same scale.
In case of the opposite, it may lead to some features dominating the calculations for the
distance or the steps of gradient descent, therefore leading to models that are biased
and that prioritize these features. Moreover, scaling makes sure that all variables are
affected by the regularization term equally and that the kernel functions calculate
similarities based on a standardized feature space. Selecting the correct scaling method
depends on the specific requirements of the machine learning model being used and the
nature of the data and. For the generalisation experiment three (3) different strategies
for scaling were tested: (i) no scaling (i) Standardization and (ii) 0-1 Scaling
(Normalization). Normalization transforms each feature individually so that it falls in the
zero- one range while Standardization adjusts the features so that they have standard
normal distribution properties with a mean of zero (0) and a standard deviation of one
(1). Combining Normalization and Standardization was not evaluated to avoid importing
redundancy in the pipeline. Furthermore, these two strategies may cause an increased
sensitivity to outliers, and as result distort performance metrics, or they may reduce how
comparable the performance of each algorithm is as each algorithm has lower or greater
compatibility with the scaling techniques listed. Finally, for the irrigation and fertilisation
experiments scaling was conducted using normalization.
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Recursive Feature Elimination (RFE) technique is used in regression problems to
select a small set of relevant features to be used for model construction through the
repeated elimination of features according to the scores of a fitted model. This
dissertation selected a Bayesia-based regressor to obtain the scores. The process of
selection was repeated till half the original features were eliminated or until the model's
performance stopped improving significantly.

Univariate feature selection was used in this dissertation to refine processing of
data by removing redundant or irrelevant attributes. Techniques such as this prevent
overfitting by selection of the most important wavelengths and increase the efficiency of
the selected ML models. Univariate approaches evaluate the relationship of each pair of
individual feature and its target variable. Two univariate filter methods were used for the
dry matter content generalization study: (i) Mutual information and (i) F-test for
regression. The first one assesses the linear association between a feature and its target
variable and reports the F-statistic and its corresponding p-values which show the linear
relationship strength. Features with higher F-statistics and lower p-values are considered
significant features and are selected. Mutual information quantifies the level to which the
knowledge of one variable lowers the uncertainty regarding another variable by
calculating the mutual information of each feature and its target. A benefit of Mutual
information is that it can identify nonlinear associations. Finally, both irrigation and
fertilisation experiments made use of only the F-test.

In the next step of the data pre-processing pipeline followed in this dissertation, a
feature extraction step was used to reduce data dimensions. Firstly, as the number of
dimensions increases, the data required to adequately represent and generalize patterns
grows exponentially (Hughes, 1968). As a result, ML models might struggle to find
meaningful patterns due to sparsity, leading to overfitting or increased computational
complexity. Secondly, multidimensional data often contain redundant or irrelevant
features. This can confuse models, impacting their ability to distinguish between relevant
and noisy information, potentially reducing predictive accuracy (Loggenberg et al., 2018).
Lastly, high-dimensional data can make models more complex, leading to longer training
times, increased computational resource requirements, and challenges in model
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interpretability(Cozzolino et al., 2010). This step apart from feature selection, could also
reduce computational load and noise. For the fertilisation and irrigation experiments
Principal Component Analysis (PCA) was used. In the generalisation experiment three
(3) methods were evaluated for feature extraction: (i) Uniform Manifold Approximation
and Projection (UMAP), (ii) Autoencoder, and (iii) Principal Component Analysis (PCA).

PCA reduces complexity of the dataset by retaining the most important principal
components, with their ranking being based on dataset variance they account for. The
principal components, derived from PCA, are intentionally uncorrelated. This lack of
correlation ensures that each component provides unique information, leading to a more
concise representation of the data. This concise representation simplifies the dataset,
enhancing the efficiency and clarity of subsequent analyses. UMAP is another technique
for reducing dimensions in a nonlinear way, whose aim is to maintain both the global and
local structures of data that is high-dimensional. UMAP highlights the local proximity of
data points, thus preserving nonlinear correlations and intricate patterns that are ignored
by other methods such as PCA. Finally, Autoencoders, are neural networks designed for
unsupervised learning. They consist of two parts, the encoder which compresses data
into a condensed latent-space representation, and the decoder which reconstructs the
data from this latent representation. During the training process, the network ensures
that the latent space depicts the most important data characteristics by minimizing the
difference between the original data and its reconstruction. Due to the nonlinearity of its
transformations, more insightful embeddings could be achieved compared to PCA. The
selected architecture for the generalisation experiment consisted of two (2) layers in the
encoder. The first layer duplicated the original component number, and the second layer
projected the components into a feature space of 8, 16, 24, or 32. The decoder was used
to reconstruct the original features and had symmetrical architecture.

A way to significantly enhance the model's ability to capture complex relationships
within the data is through the use of polynomial feature transformation. Datasets often
contain non-linear relationships which a simple linear model cannot capture effectively.
Moreover, polynomial features include the interaction terms between different features
as well as the higher degree terms of those individual features. These terms can provide
valuable information about the combined effect of two or more variables on the target
variable. This dissertation evaluated only the quadratic transformation since, in early
experiments, higher-degree polynomial features led to overfitting, and the performance
was poor on the test set. Furthermore, adding polynomial features can rapidly increase
features number, especially with higher degrees and with datasets that contain many
original features. This was the case in this dissertation. As a result, the use of all original
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features with the polynomial regression was producing an unstable experimental pipeline
whose reproducibility was heavily affected by the computational costs and the reiterative
crashes after hours of execution without reporting a single result.

An overview of all the pre-processing methods used across all three experiments

is shown below:

Table 14. Pre-processing methods used for the experiments (part 1)

Experiment Smoothing Scaling
Fertilisation e Savitzky-Golay filter e Normalization
Irrigation e LOWESS e Normalization

Dry matter/Generalisation

e Savitzky-Golay filter

e No scaling
e Normalization
e Standardization

Table 15. Pre-processing methods used for the experiments (part 2)

Experiment Recursive Feature | Univariate Feature
Elimination selection

Fertilisation e N/A o F-test

Irrigation e N/A e F-test

Dry mater/Generalisation e Yes o F-test

e Mutual Information

Table 16. Pre-processing methods used for the experiments (part 3)

e Autoencoder

Experiment Feature extraction Polynomial
Transformation
Fertilisation e N/A e N/A
Irrigation e PCA e N/A
Dry mater/Generalisation e PCA e Quadratic
e UMAP transformation
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2.6 Model generalisation pipeline configuration developed for
dry matter estimation

To investigate whether the generalisation performance of models trained using a
multi class dataset could be further improved by introducing data pre-processing steps.
The different stages of data processing were evaluated towards reporting which
components were empirically the most best performing ones. The pre-processing steps
(Figure 24) include data smoothing, data scaling, feature selection and extraction, and
finally feature polynomial transformation. The target of the integration of the previously
mentioned components is boosting performance in an iterative way while at the same
time allowing the understanding of how each of the elements negatively or positively
affects the regression problem. It is crucial to note that despite the potential of each
component to improve performance, the interaction among each of them and the nature
of the dataset used in this particular research could result in negative performance that
could open the discussion for its use or not.

Different preprocessing method orders were used during the experiments. For
instance, the polynomial transformation was also evaluated before applying feature
extraction. However, as they failed to achieve high performance, they are not shown in
Figure 24, which depicts a synthetic version of the most reliable pipeline. Additional
details are presented in the Discussion section.

/ Preprocessing \

Smoothing — Scaling
Univariate Feature Recursive Feature > Regression @
Selection Elimination
Feature Extraction |—» _ "olynomial
Transformation

o /

Figure 24. Proposed dry-matter analysis pipeline procedure set up during this study.

Different values and algorithms could be used for each of the preprocessing steps.
The configurations used and tested in this particular study are listed in the table below.
Finally, it is essential to emphasize that each time a processing step was added to the
pipeline, the whole pipeline was executed from the beginning. As a result, the selection
of the hyper-parameters and algorithms achieving the best results could be different.

74



Investigating the application of spectral imaging and Al in precision horticulture (agriculture)
PhD Dissertation |. Malounas

Table 17. Evaluated configurations for each pre processing stage for the dry matter content
generalisation experiment.

Preprocessing Stage Value

Smoothing [Window sizes] [0, 4, 10]

[Standardization, 0-1

Scaling techniques Normalization]

Univariate Feature

Selection [Criteria] [Mutual Information, F-Test]

Univariate Feature
Selection [Output [8, 16, 24, 32]
Features]

Feature Extraction

[Algorithms] [UMAP, PCA, Autoencoder]

[Selected Features / 4,

Feature Extraction [Output Selected Features / 2,

Features]

2 * Selected Features / 3]
Polynomial [Quadratic / No
Transformations Transformation]

Regression Algorithms [ARD / PLS]
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2.7 Machine learning experimentation framework

AutoML was evaluated for the irrigation and fertilisation experiments. In recent
years, various Automated Machine Learning (AutoML) frameworks have emerged that
enable computers to autonomously discover the most appropriate machine learning
pipeline tailored to a particular task and dataset. AutoML solutions can either be cloud-
based, such as Microsoft Azure Machine Learning(Barnes, 2015), Google Cloud AutoML
Vision(Bisong and Bisong, 2019), , and Apple's Create ML, or open-source such as
PyCaret AutoKeras(Jin et al., 2023), , Auto-WEKA 2.0 (Kotthoff et al., 2017), H20
AutoML(LeDell and Poirier, 2020), AutoSklearn (Feurer et al., 2015), TPOT(Le et al.,
2020), autoxgboost(Thomas et al., 2018), and OBOE(Yang et al.,, 2019). For this
dissertation, PyCaret (Ali, 2020) was the AutoML framework of choice.

PyCaret is a Python-based, low-code machine learning library designed to
streamline the experimental model building and deployment process. It offers a wide array
of algorithms and automated processes for feature engineering, model selection,
hyperparameter tuning, and model evaluation, covering the entire machine learning
workflow. PyCaret offers significant advantages to both beginners and experts, providing
a range of features for quick experimentation and comparative analysis across different
models and datasets. This allows users to concentrate on model conceptualization and
analysis rather than coding intricacies.

For the Classification task, PyCaret searched for the best machine learning
algorithm from a list of 14 algorithms, which ranged from simple to more complex ones.
Specifically, PyCaret searched through. Linear classifiers (Logistic Regression and Ridge
Classifier with L2 regularization). Tree-based models such as Random Forest, Extra
Trees, Gradient Boosting, and Decision Tree classifiers, using them independently or in
an ensemble to make predictions Instance-based classifiers (K Neighbours Classifier)
classifying samples based on the majority class among their nearest neighbours.
Boosting algorithms (Ada Boost and Light Gradient Boosting Machine) to sequentially
build weak classifiers to form a robust model. Hyperplane based classifiers (Support
Vector Machine with a linear kernel) to separate classes. Dimensionality reduction and
linear discrimination classifiers (Linear Discriminant Analysis and Quadratic Discriminant
Analysis) and the Naive Bayes classifier which utilizes probabilistic methods based on
Bayes' theorem with the "naive" independence assumption.

Finally, for the AutoML experiments, a StratifiedKFold with 10 folds was used to
evaluate the models based on accuracy, recall, precision, and F1l-score. The model
evaluation metrics were recorded, and then the AutoML system searched for a possibly
better-performing solution by executing automated hyperparameter tuning. However,
while AutoML can operate without specific configurations, setting experimental
constraints becomes necessary to extract insights into this process and understand both
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its limitations and advantages. The AutoML framework used is presented in the figure
below.

Backgroupd Data extraction
segmentation

Y
a AutoML \

Model Model creation
comparison

O— |

Model evaluation Model tuning

- S

A4

A 4

Data smoothing

h 4

A

Figure 25. AutoML framework pipeline used in the fertilization experiment

For classification experiments (fertilisation and water stress/ acclimation
experiments), the results of the AutoML system were compared with Partial Least
Squares Discriminant Analysis (PLS-DA). PLS-DA is a multivariate statistical technique
used to analyse high-dimensional data to discriminate or classify between categories/
groups and is a widely used machine learning algorithm for hyperspectral imaging
applications.

PLS-DA operates by establishing components/latent variables, which are linear
combinations of the original predictors. These components/ latent variables are derived
in a way that maximizes the covariance between predictor variables (independent) and
categorical class variables (dependent). This process enables PLS-DA to identify
underlying structures that differentiate between classes while taking into consideration
multicollinearity issues commonly encountered in high-dimensional data.

As a result, PLS-DA achieves dimensionality reduction of the dataset while
retaining essential information crucial to the classification task. Moreover, it facilitates the
prediction of categorical outcomes for new observations using the learned associations
between predictors and class labels.

Two PLS-DA algorithm versions have been developed, PLS1-DA(Cozzolino et al.,
2010)(Liu et al., 2008)(Lee and Jemain, 2019)(Pan et al., 2015)(Xia et al., 2019) and
PLS2-DA(Vieira et al., 2020)(Marquetti et al., 2016)(Bronzi et al., 2020)(Manheim et al.,
2016). PLS2-DA is applied when the objective is to discriminate among multiple groups
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simultaneously and when the dataset contains multiple sets of response variables
associated with the same set of predictors. In this dissertation, PLS1-DA was selected to
discriminate between a set of response variables (control — test).

Regarding the regression experiment (dry matter estimation), two (2) regression
methods were tested: Automatic Relevance Determination (ARD) (Wipf and Nagarajan,
2007) and Partial Least Squares Regression (PLS) (Wold et al., 2001). ARD regression
is a type of linear regression that differentiates itself from typical linear regression by
incorporating Bayesian inference. ARD Regression introduces another Gaussian prior on
each regression model weight. These priors’ variance enables the model to automatically
adjust each feature relevance. Features that show nearly zero variances have their
weights reduced toward zero, thus eliminating them from the model.

PLS Regression is an algorithm that projects the input features and the target to a
different space to find a linear regression model. It achieves better results on occasions
where the predictor matrix consists of more variables than observations and when input
values show multicollinearity. The main advantage of PLS Regression is its ability to
handle cases with numerous correlated predictors and cases with more predictors than
observations.

For the dry matter regression problem, the experiments were executed ten (10)
times using a 5-fold cross-validation setting (10x5-fold cv) to further enhance precision of
the final performance assessments.

Finally, for all experiments, data processing was carried out by programming in
Python 3.10, while data preprocessing was conducted using scikit-learn 1.3.2 and SciPy
v.14.1. For each experiment different code was written and used. The irrigation and
fertilization experiments further used PyCaret 3.0 for the data analysis, while the dry
matter generalization experiments made additional use of the UMAP library. For
background removal and scikit-image 0.21.0 was used.
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2.8 Evaluation metrics

The performance of all tested classification models was evaluated using Accuracy,
the most common way to evaluate a classification model, which works well when the
dataset is balanced.

tp+tn

Accuracy =100x m

[11]

However, since the datasets for the water stress and the fertilisation were
unbalanced, it was crucial to compute the micro-averaged F1 score for comparative
purposes. This study favours this specific aggregation technique over the macro-average,
especially when dealing with class imbalances, as observed in all datasets.

2 X precision X recall

F1Score = [12]

precision+recall

Recall measures the proportion of accurately identified categories from the original
dataset,

— tp
Recall = 100 x . [13]

while precision gauges the accuracy of labels in the classifier’s output

Precision = 100 x —2 [14]
tp+fp

where tp = true positives, fp = false positives, tn = true negatives, and fn = false negatives

Finally, the dry matter content estimation study assessed the different
preprocessing components towards enhancing the modelling abilities of the two selected
and tested regression methods. Root Mean Squared Error on Prediction (RMSEP) was
used to measure prediction accuracy. Moreover, to improve the accuracy of the
assessments, experiments were conducted ten (10) times under a 5-fold cross-validation
setting (10x5-fold cv). Additionally, R? the adjusted coefficient of determination, was
utilized for removing the pipelines that did not manage to report in a constant way
performances above the mean of the dry matter output. Lastly, it's important to note that
the whole pipeline run from the start whenever a new processing step was introduced.
This meant that the optimal combination of algorithms and hyperparameters could vary
at each stage, depending on the adjustments made.
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2.9 Statistical analysis

Pearson’s correlation coefficient (r) calculations were conducted to explore the
relationships between CIELAB and Spectral wavelengths. The objective was to assess
whether there is relationship between the two types of optical measurements. Descriptive
statistics, including average, min, max and standard deviation, were computed for the
broccoli weight during first year to provide a comprehensive overview of broccoli
production under different fertilisation schemes.
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Chapter 3 Results

3.1 Testing the Suitability of Automated Machine Learning,
hyperspectral imaging and CIELAB color space for proximal in
situ fertilisation level classification

Over the first year, two different fertilization levels were investigated, full
fertilisation (control) and half fertilisation with the first class consisting of 28
plants/samples and the second one of 21 plants/ samples summing up to a total of 49
samples. Hyperspectral and CIELAB measurements were conducted for each of the
broccoli plants, and three datasets were constructed. The first comprised only of
hyperspectral data, the second only of CIELAB data and the third one was the result of
merging the two. Each of those datasets was then used to train artificial intelligence
classification models either using traditional algorithms and namely PLS-DA or AutoML
solutions and the PyCaret library.

In Figure 26, each fertilisation class's extracted average spectra (spectral
signature) are visualized. In contrast to the color image, differences between the two
classes in the red-edge (660-760 nm) and NIR wavelengths (>770 nm) are observable.
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Figure 26. Spectral signature (average spectra) for the two fertilization classes
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For the classification task the AutoML system, achieved an accuracy and F1-score
of 1.00 using the hyperspectral dataset, outperforming the CIELAB dataset, which
achieved an accuracy of 0.72 and F1-score of 0.68. Table 18 lists the best-performing

machine learning algorithms compared by PyCaret.

Table 18. Best-performing PyCaret algorithms

Dataset ML algorithm | Accuracy Recall Precision F1-
score

CIELAB MLP 0.72 0.65 0.75 0.68

CIELAB Gaussian 0.67 0.70 0.63 0.64
Process
Classifier

CIELAB Logistic 0.66 0.55 0.60 0.57
Regression

CIELAB SVM - Radial | 0.64 0.60 0.67 0.60
Kernel

Hyperspectral Ada Boost | 1.00 1.00 1.00 1.00
Classifier

Hyperspectral Decision 1.00 1.00 1.00 1.00
Trees

Hyperspectral Extra Trees 1.00 1.00 1.00 1.00

Hyperspectral Random 1.00 1.00 1.00 1.00
Forest

Hyperspectral Extreme 1.00 1.00 1.00 1.00
Gradient
Boosting

Hyperspectral CatBoost 1.00 1.00 1.00 1.00

Hyperspectral Gradient 1.00 1.00 1.00 1.00
Boosting

The hyperspectral dataset yielded the best results with the Decision Trees, Extra
Trees, Random Forest, Ada Boost Classifier, CatBoost, Extreme Gradient Boosting and
Gradient Boosting algorithms. Meanwhile, the MLP algorithm performed the best on the
CIELAB dataset, followed by the Gaussian Process Classifier, Logistic Regression, and
SVM - Radial Kernel.
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The study also explored the interaction between hyperspectral and CIELAB color
data, aiming to provide a more comprehensive analysis of the subject. The results
demonstrated that the combined dataset offered better performance than the CIELAB
data alone, though it did not surpass the hyperspectral dataset in accuracy. The three
top-performing algorithms were Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis (QDA), and the MLP Classifier. Among these, LDA performed the
best, achieving an accuracy of 0.94 and an F1l-score of 0.87. Table 19 presents the
performance metrics of all three algorithms for the combined dataset.

Table 19. Combined dataset performance

Dataset ML algorithm | Accuracy Recall Precision F1-
score

Hyperspectral + | LDA 0.94 0.85 0.90 0.87

CIELAB

Hyperspectral + | QDA 0.77 0.70 0.58 0.63

CIELAB

Hyperspectral + | MLP 0.71 0.55 0.65 0.55

CIELAB

Upon finishing the training and evaluation of both datasets using the AutoML
pipeline, the hyperspectral dataset, the best-performing dataset, was used to train a PLS-
DA model. PLS-DA is a machine learning algorithm commonly used in hyperspectral
imaging applications and can serve as a benchmark for comparing AutoML classification
performance. Figure 27 presents the PLS latent variable cross-decomposition plot. The
cross-decomposition graph of latent variables serves as a visual tool that illustrates the
relationships between the latent variables and the variability present in the original
dataset. This type of graph helps to uncover patterns and connections that may not be
immediately evident, offering deeper insights into how the latent variables capture the
underlying structure of the data.

Figure 27 shows that the two classes can be effectively distinguished by using
latent variables 1 and 2. In the lower left quadrant the half fertilisation samples are
gathered, with the full fertilisation samples being scattered in the upper left and lower right
guadrants.
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Figure 27. PLS cross-decomposition Score plot. The red dots represent half fertilization
samples, and the blue dots represent the full fertilization samples.

However, the performance of the PLS-DA algorithm does not match that of the
AutoML system, achieving an accuracy and F1-score of 0.91, compared to the perfect
score of 1.00 achieved by the AutoML system for both performance metrics. Table20
contains the detailed performance evaluation for the PLS-DA.

Table 20. PLS-DA algorithm performance

Dataset ML algorithm | Accuracy Recall Precision F1-
score
Hyperspectral PLS-DA 0.91 0.88 0.95 0.91

84



Investigating the application of spectral imaging and Al in precision horticulture (agriculture)
PhD Dissertation |. Malounas

The performance of the AutoML system was further assessed using a dataset with
a single feature, building on the strong results previously obtained with the full
hyperspectral dataset. Feature selection was conducted with the scikit-learn library,
utilizing the ANOVA F-statistic as the scoring function to narrow down the dimensions of
the hyperspectral data.

The possibility of achieving good classification performance with just one
wavelength was explored by setting the number of desired wavelengths to 1. The chosen
wavelength based on the Anova F-statistic was in the near-infrared (NIR) region,
specifically at 874 nm.

The AutoML system accurately classified all samples, achieving an accuracy and
F1-score of 1.00. The top-performing algorithms were the Extra Trees Classifier, Decision
Tree Classifier, Ada Boost Classifier, CatBoost Classifier, Random Forest Classifier,
Gradient Boosting Classifier, and Extreme Gradient Boosting. These classifiers also
performed the best when using the full hyperspectral dataset (Table 21).
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Table 21. Single feature dataset performance

Dataset ML algorithm | Accuracy Recall Precision F1-
score

Hyperspectral Decision Tree | 1.00 1.00 1.00 1.00

single Classifier

wavelength

Hyperspectral Ada Boost | 1.00 1.00 1.00 1.00

single Classifier

wavelength

Hyperspectral Random 1.00 1.00 1.00 1.00

single Forest

wavelength Classifier

Hyperspectral CatBoost 1.00 1.00 1.00 1.00

single Classifier

wavelength

Hyperspectral Extra Trees | 1.00 1.00 1.00 1.00

single Classifier

wavelength

Hyperspectral Gradient 1.00 1.00 1.00 1.00

single Boosting

wavelength Classifier

Hyperspectral Extreme 1.00 1.00 1.00 1.00

single Gradient

wavelength Boosting
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3.2 Early detection of broccoli drought acclimation/stress in
agricultural environments utilising proximal hyperspectral
imaging and AutoML

During the second year the focus was on detecting drought acclimation/stress.
Two different irrigation schemes were used, which in turn led to the creation of two
datasets, drought onset dataset and drought acclimated dataset, each consisting of two
classes control and drought onset/ drought acclimated respectively. The drought onset
dataset consisted of 42 images/samples while the drought acclimated of 48. Finally, a
third dataset was created by merging the two datasets. The merged dataset contained 90
images/samples of all three classes control, drought onset and drought acclimated. All
datasets were used to train artificial intelligence classification models. The models were
trained either traditional algorithms and namely PLS-DA or AutoML and the PyCaret
library.

This section presents the classification results using PLS1-DA and the AutoML
framework on all three datasets. Various pre-processing techniques (smoothing
combined with either dimensionality reduction or feature selection) were evaluated
separately to determine how they affect both the PLS1-DA and AutoML classification
metrics.

The extracted spectral signatures are visualized in the following figures to provide
insight into the data used for classification purposes. Namely, Figure 28 displays the
average spectral signatures of the plants imaged at the drought onset, and Figure 29 the
average spectral signatures of the plants imaged at the drought acclimation stage.
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Figure 28. Mean spectral signature of broccoli canopy at the drought onset. With red is depicted
the control group, and with green the drought. 95% CI are also presented.
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Figure 29. Mean spectral signature of broccoli canopy at the drought acclimation. With green is
depicted the control group, and with blue the drought. 95% CI are also presented.
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Statistically significant differences (independent t-test at a = 0.05) are observed
within both datasets in the NIR region, as opposed to the visible spectrum (including red-
edge), in which statistically significant differences are found only in the onset of drought
dataset. Between the different datasets, statistically significant differences (paired t-test
at a = 0.05) are observed for the control group only in the visible spectrum and for the
drought group in the full measured spectrum. At the onset of drought, the maximum
photosynthetic rate (p-value = 0.06 at a = 0.05) and the stomatal conductance (p-value =
0.055 at a = 0.05) were nearly significant, while the transpiration rate was statistically
significant (p-value = 0.03 at a = 0.05) between the treatments, indicating a drought stress
onset. This could be attributed to the timing of hyper-spectral imaging and gas exchange
sampling. The drought group did not receive any irrigation for four days, from which the
initial three were cloudy (low evapotranspiration), in contrast to the fourth day which was
particularly hot (high evapotranspiration, limited available substrate water content).
Physiological parameters were measured early in the morning of the fourth day to validate
the onset of the short-term drought acclimation that progressed due to the environmental
conditions, in an early loss of turgor late in the afternoon, when imaging took place. Based
on the laboratory measurements, drought stress did not occur on any date. Though,
statistically significant differences were observed in the stomatal conductance, maximum
photosynthetic rate, and the transpiration rate between the treatments 16 days after
drought initiation. From the previous can be concluded that the drought group was
acclimated due to the drought conditions. On that day, hyper-spectral imaging and
physiological measurements were conducted within a two-hour difference in the morning.

Although this dissertation provides preliminary insights into drought acclimation
level, the observed difference in spectral signatures requires further investigation in future
research to draw solid conclusions. Prior to training the model PCA was used due to the
high collinearity of the spectral data collected (figures 30 and 31).
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Figure 30. Correlation matrix of drought onset dataset. Highly correlated data appear in red.
Should be noted that the baseline of the correlation coefficient for this dataset is 0.825.
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Figure 31. Correlation matrix of drought acclimated dataset. Highly correlated (1.0) data appear
in red, while the least correlated in whitish blue (0.0).
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The AutoML framework evaluated 14 different classifiers. Each classifier was
cross-validated and fine-tuned using PyCaret, which automatically searches and applies
the best hyperparameter configurations.

The AutoML framework managed to accurately classify between both drought
onset/ control and drought acclimated/control plants, accuracy and F1-score of 1.00 on
the hold-out subset regardless of the drought level. All the pre-processing techniques and
combinations achieved excellent performance (accuracy > 0.90). The use of only the five
least correlated wavelengths (~478nm, ~530nm, ~672nm, ~770nm, ~850nm) instead of
all 150, provided similar perfomance for most of the classifiers evaluated by the AutoML
framework, underlining the impact of multicollinearity in hyperspectral data.

Table 22 presents the highest performing classifiers within the 5-fold cross
validation (CV-val) of the train subset using AutoML across both acclimation levels and
using the various pre-processing techniques. Because of the imbalance in the two classes
both F1-score and accuracy are presented. CV-train metrics (mean validation results
within the 5-fold cross validation by using the training folds) were calculated as well but
not presented for simplicity. Both CV-train and CV-val performance was quite similar,
indicating non-overfitted data.

Table 22. AutoML CV-val performance across both drought levels and pre-processing
techniques. The standard deviation (SD) is provided in parentheses

Pre-processing

Dataset . Architecture Accuracy F1-Score
technique
gda/ridge/
drought onset | LOWESS 1.00 (0.00) 1.00 (0.00)
svm/lda
: 0.9667
drought onset | LOWESS & PCA |ridge/et (0.067) 0.971 (0.057)
LOWESS . 0.9600 0.9333
drought onset (5 features) gda/nb/ridge (0.0800) (0.1333)
Ir/knn/nb
drought LOWESS 1.00 (0.00) | 1.00 (0.00)
acclimated qda/ridge/et/lda
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drought LOWESS & PCA |all classifiers 1.00 (0.00) | 1.00 (0.00)
acclimated

drought LOWESS Ir/knn/qda/nb/ridg

acclimated (5 features) elet/svm/lda 1.00 (0.00) 1.00 (0.00)

The trained classifiers were ultimately validated on a subset of data that the model
had never encountered before. This step provided an unbiased evaluation of the model's
ability to perform on unseen data, helping to identify potential overfitting and offering a
more accurate estimate of the model’s real-world performance prior to deployment. The
performance on the never seen data (Table 23) was comparable to the performance of
the mean hold-out fold (CV-val) metrics thus model overfitting probability is minimal.

Table 23. AutoML hold-out subset performance across both drought levels and pre-processing

techniques.
Dataset Pre-processmg Architecture Accuracy F1-Score
technique
drought onset | LOWESS zdb"j‘c/”b/etlsvm/dt/ "11.00 1.00
drought onset | LOWESS & PCA | & classifiers | ; 1.00
except et/knn
LOWESS i
drought onset adalridge/et/durfig 1.00 1.00
(5 features) be
drought LOWESS Ir/lknn/ada/qda/ridg 1.00 1.00
acclimated elet/lda/svm
drought o
. LOWESS & PCA |all classifiers 1.00 1.00
acclimated
LOWESS i
drou_ght Ir/lknn/gda/nb/ridge 1.00 1.00
acclimated /et/lda

(5 features)
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Only the best performing classifiers are presented in the tables in terms of
accuracy and F1-score with classifiers performing slightly worse being omitted.

Finally, the mixed dataset comprising of both drought onset and drought
acclimated plants was used to evaluate the discrimination capabilities of the AutoML
classifiers between the three classes (control - drought onset- drought acclimated). The
performance achieved was slightly lower compared to the binary classification problems
but still excellent achieving an F1-score and accuracy of 1.00 on the hold-out subset

(Table 24).

Table 24. AutoML performance for the mixed dataset. In total three classes were used for
classification. The standard deviation (SD) is provided within parentheses.

Pre-processing

Dataset . Architecture Accuracy F1-Score
technique

mixed 0.9679 0.9673

(CV-val) LOWESS Ir/lknn/qda/ svm/Ida (0.0393) (0.0402)

mixed 0.9679

(CV-val) LOWESS & PCA Ir/knn/qda/rf/gbc (0.0393) 0.966 (0.0402)

mixed LOWESS /abc 0.9679 0.9673

(CV-val) (5 features) g (0.0393) (0.0402)

mixed .

(hold-out) LOWESS ridge/lda 1.00 1.00

mixed LOWESS & PCA | et/lda/dt 1.00 1.00

(hold-out)

mixed LOWESS

(hold-out) (5 features) svm 0.9643 0.9647
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The second algorithm used was PLS-DA. Table 25 presents the accuracy, and F1-
score achieved using PLS1-DA for both the CV-val and hold-out subsets. Cross validation
(CV-val) achieved an accuracy and F1-score of 0.966 on the drought onset dataset, and
1.00 on the drought end dataset. Finally, for the mixed dataset, cross validation accuracy
and F1-score were 0.922 and 0.934, respectively. The results on the hold-out subset were
similar (slightly better), suggesting that the PLS1-DA model does not overfit the data.

Table 25. PLS1-DA performance for both acclimation levels and pre-processing techniques. The
standard deviation is provided within parentheses.

Dataset Pre-processing Architecture Accuracy F1-Score
technique
drought onset 0.966 (0.076) |0.966 (0.076)
(CV-val)
LOWESS PLS1-DA
drought onset
(hold-out) 1.00 1.00
drought
acclimated 1.00 (0.00) |1.00 (0.00)
(CV-val)
LOWESS PLS1-DA
drought
acclimated 1.00 1.00
(hold-out)
mixed (CV-val) 0.922 (0.053) |0.934 (0.037)
; .| LOWESS PLS1-DA
Zﬂﬁed (hold 1.00 1.00
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3.3 Evaluation of a hyperspectral image pipeline toward building
a generalisation capable crop dry matter content prediction
model

The third year further capabilities of the artificial intelligence regression models and
spectral data were investigated. Namely their ability to generalize across heterogeneous
data. As a result, a multi-crop and vegetable dry matter dataset was constructed. The
dataset consisted of three different crops (apple, broccoli, and leek) with hyperspectral
data collected using different hyperspectral cameras in the VIS-NIR range. The dataset
consisted of 779 pairs of dry matter and hyperspectral measurements. Additionally,
besides investigating the generalisation capabilities of the model, the effect of various
preprocessing techniques as well as the effect of the dataset size were investigated.

In the upcoming tables, an extra preprocessing step is added as a column
transitioning from a single step pipeline to the full six step pipeline: 1) Smoothing, 2)
Scaling, 3) Recursive Feature Elimination, 4) Univariate Feature Selection, 5) Feature
Extraction, 6) Polynomial Transformation. The first table (Table 26) consists of three (3)
columns. The first column contains the first preprocessing step configuration, column two
(2) and three (3) contain the algorithm performance for the pipeline evaluation. The last
table (Table 31) consists of eight (8) columns, one column for each of the preprocessing
steps, six in total) and two that contain the model performance. The following tables are
sorted based on the ARD algorithm performance in descending order. The order of each
table may be different, as the best performing combination and value of the preprocessing
steps may differ.

Table 26 contains the performance of using all the available (wavelengths)
features in order to predict dry matter content without applying any smoothing filter and
with the application of one (window size 8 and 16). Various window sizes were evaluated,
however, the no smoothing configuration reported higher performances for both the ARD
and PLS algorithms compared to any smoothing. ARD regression achieved a better
performance than PLS with RMSEP=0.0162. This served as the baseline for all following
subsequent processing stages.

Table 26. RMSEP without and with smoothing. Dry Matter Min. Content Value = 0.0811; Max.
Value = 0.2019

Smoothing Window |ARD PLS
- 0.0162 |0.0163
3 0.0165 |0.0167
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16 0.0168 |0.0172

The use of scaling improved the performance of the ARD regression (Table 27). A
minimum RMSEP=0.0151 was achieved with standardization, and an improvement of
RMSEP=0.0153 was achieved when using normalization. PLS showcased the same
pattern in the best performances: Standardization (0.0152), normalization (0.0153). Once
again, smoothing caused a decrease in performance.

Table 27. RMSEP upon the addition of the scaling step. Dry Matter Content Min. Value =
0.0811; Max. Value = 0.2019

Smoothing

\Window Scaling ARD PLS

- Standardization|0.0151 0.0152
- Normalization (0.0154 0.0153
3 Standardization|0.0155 0.0154
te] Normalization [0.0156 0.0157
16 Normalization [0.0161 0.0159
16 Standardization|0.0162 0.0161

The addition of the RFE preprocessing stage further improved performance (Table
28). ARD achieved RMSEP = 0.0147, while PLS RMSEP = 0.0149. For one more time,
smoothing failed to improve performance. On the contrary, integrating feature scaling with
RFE achieved better performance compared to tests conducted without any feature
scaling.

Table 28. RMSEP upon the addition of the recursive feature elimination step,. Dry Matter Content
Min. Value = 0.0811; Max. Value = 0.2019

Smoothing

\Window Scaling RFE ARD PLS

- Standardization|Yes 0.0147 0.0149
- Normalization |Yes 0.0150 0.0150
- StandardizationNo 0.0151 0.0152
- - Yes 0.0152 0.0150
- Normalization |No 0.0154 0.0153
te] Normalization [Yes 0.0155 0.0151
3 Standardization|Yes 0.0157 0.0154
- - No 0.0161 0.0155
16 - Yes 0.0162 0.0157
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As shown in Table 29, including a feature selection step improved the overall
performance and PLSR achieved RMSEP = 0.0137. The inclusion of a feature selection
step also managed to improve the ARD regression performance (RMSEP = 0.0140) for
the first time. The best feature selection algorithm was permutation which showed a better
performance over its two competitors (Mutual Information and F-statistic). Pipeline
performance increased only when using permutation as both the F-statistic and Mutual
Information criteria led to a decrease in performance.

Table 29. Top-10 RMSEP upon the addition of the univariate feature selection step. Dry Matter
Content Min. Value = 0.0811; Max. Value = 0.2019

No. of features

selected by the
Smoothing Feature Feature selection
\Window Scaling RFE |[selection criteria ARD PLS
- Standardization |Yes [32 Permutation 0.0140 |0.0137
- Standardization |[No 32 Permutation 0.0141 |0.0139
- Standardization |Yes |24 Permutation 0.0142 |0.0143
- Normalization Yes [32 F-statistic 0.0143 |0.0148
3 Standardization |No 32 Permutation 0.0144 |0.0150
- Normalization Yes [32 Permutation 0.0145 (0.0145
- - Yes 32 Permutation 0.0148 |0.0147
- - Yes [24 permutation 0.0149 |0.0143
- Standardization |Yes |32 F-statistic 0.0150 [0.0148
3 Standardization [Yes [32 Mutual Information [0.0152 |0.0145

Including a feature extraction stage decreased performance pattern, in contrast to
the previous pre-processing stages (Table 30). Additionally, both Autoencoder and the
UMAP algorithms failed to achieve one of the best performances, making PCA the best
performing feature extraction algorithm. The best performance when including feature
extraction was achieved with PLS regression (RMSEP = 0.0148), however it fell back to
the performance of only using the feature selection preprocessing stage.
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Table 30. Top-10 RMSEP upon the addition of the feature extraction step. Dry Matter Content

Min. Value = 0.0811; Max. Value = 0.2019.

No. of features|

selected  byFeature Feature
Smoothing the featureselection Extraction
Window  |Scaling RFE selection criteria Algorithm|ARD  |PLS
Mutual
8 - Yes 32 Information |PCA 0.0149 |0.0148
0 - No 32 Permutation PCA 0.0152 |0.0152
0 - Yes 32 Permutation PCA 0.0153 0.0151
0 Normalization|Yes 24 Permutation PCA 0.0155 |0.0154
Mutual
0 Normalization|Yes 24 Information |PCA 0.0156 |0.0153
8 - No 32 Permutation PCA 0.0158 [0.0151
8 - Yes 32 Permutation PCA 0.0160 |0.0150
Mutual
8 Normalization|Yes 24 Information |PCA 0.0161 |0.0153
Mutual
0 - Yes 32 Information |PCA 0.0163 |0.0155
0 - Yes 24 Permutation PCA 0.0164 |0.0157

Table 31 summarises the ten (10) preprocessing pipelines that achieved the worst
performances. They all showcased a noticeable pattern regarding the selection of the
minimum number of features. Namely eight (8) features were selected by the F-statistic
as the criteria. Finally, using PCA worsened the performance by reducing the number of
selected features to four (4).

Table 31. The worst 10 RMSEP upon the addition of all the steps. Dry Matter Content Min. Value
=0.0811; Max. Value = 0.2019.

No. of features

selected by thelFeature Feature
Smoothing feature selection Extraction
Window  |Scaling RFE [selection criteria Algorithm |ARD PLS
0.022
16 Standardization|Yes 8 F-statistic PCA 0.0235 2
0.020
16 Standardization[Yes 8 F-statistic PCA 0.0217 5
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0.020
- Standardization|Yes 8 F-statistic PCA 0.0219 4
0.020
3 Standardization|Yes 8 F-statistic PCA 0.0219 4
0.020
0 Standardization|Yes 8 F-statistic PCA 0.0216 |1
3 Standardization|Yes 8 F-statistic PCA 0.0215 [0.02
0.019
- - No 8 F-statistic PCA 0.0194 4
0.019
16 - No 8 F-statistic PCA 0.0193 3
0.019
0 Normalization No |8 F-statistic PCA 0.02 3
0.019
16 Normalization No |8 F-statistic PCA 0.02 3

In addition to examining the preprocessing steps that could result in the most effective
pipeline for dry matter content prediction, analysing the wavelengths most commonly
chosen by the top-performing models could help identify the regions of the
electromagnetic spectrum that contain the most valuable information. This insight could
be crucial for refining the prediction process and enhancing model accuracy. In Fig. 32
the most commonly used wavelengths which reported a RMSEP lower than 0.0140 can
be seen. Notably, all 19 highest score wavelengths are located in the visible (VIS) region
of the spectrum. This indicates that the VIS region contains the most informative features
for the analysis. This pattern is rather stable with the exception of wavelength 538 nm,
which was selected less compared to the 535nm wavelength which is larger. It is worth
mentioning that wavelengths longer than 543nm were not selected frequently.
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Figure 32. Most commonly selected wavelengths by the best-performing pipelines

3.3 Individual crop dry matter prediction

The same methodology used for the generalization experiments was also applied
to single crops. In Table 32, the results for leek are shown. Permutation for the feature
selection stage and not feature extraction was most important for achieving the lowest
RMSEP. Again, neither Autoencoder nor UMAP was able to provide high performances
as observed within the whole dataset. On the other hand, a key difference compared to
using the entire dataset was that selecting 8 features, rather than 32, consistently resulted
in a lower RMSEP, with the exception of when PCA was applied without RFE and scaling.
This suggests that a more focused selection of features can improve model performance,
though specific preprocessing techniques may influence the outcome. It is also worth
noting that the best performance was obtained by PLS RMSEP = 0.0154.

Table 32. Top-10 RMSEP for leek upon the addition of the feature extraction step. Dry Matter
Content Min. Value = 0.0811; Max. Value = 0.1910.

No. of features|

selected by Feature

the univariatelFeature Extraction
Smoothing feature selection Algorithm
Window  |Scaling RFE selection criteria Output |ARD PLS
- Normalization [Yes te] Permutation |- 0.0162 1|0.0163
- - No 24 Permutation PCA 0.0163 |0.0166
16 Normalization [No te] Permutation |- 0.0164 [0.0164
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Mutual
16 Standardization [Yes 8 Information |- 0.0165 |0.0154
8 Normalization |[No 8 Permutation |- 0.0166 |0.0165
- Standardization [No 8 Permutation |- 0.0168 |0.0167
8 Standardization [Yes 8 Permutation |- 0.0170 1|0.0169
Mutual
- Normalization |Yes 8 Information |- 0.0171 (0.0163
- Standardization [Yes 8 Permutation |- 0.0173 1|0.0167
- Normalization |Yes 8 Permutation |- 0.0174 1|0.0169

Broccoli showed a similar pattern to leek for permutation and low number selected bands
eight (8) (Table 33). Use of large smoothing windows failed to achieve good
performances. Finally, feature extraction algorithms failed to place themselves among the
best performing pipelines. PLS performed the best with average RMSEP = 0.0103.

Table 33. Top-10 RMSEP for broccoli upon the addition of the feature extraction step. Dry Matter
Content Min. Value = 0.1187; Max. Value = 0.2019

No. of features

selected by the Feature

univariate Feature Extraction
Smoothing feature selection Algorithm
Window  [Scaling RFE |[selection criteria Output  |ARD PLS
te] Standardization [No te] Permutation |- 0.0104 1|0.0103
0 Standardization |No te] Permutation |- 0.0105 1|0.0105
0 Normalization Yes 8 Permutation |- 0.0106 [0.0107
0 - Yes 8 Permutation |- 0.0107 1|0.0108
0 Standardization [Yes [8 F-statistic - 0.0108 1|0.0109
0 Standardization [Yes [8 Permutation |- 0.0109 1|0.0107
0 Normalization Yes 8 F-statistic - 0.0111 1|0.0108
te] Standardization [Yes [8 Permutation |- 0.0113 [0.0111
8 Normalization Yes 8 Permutation |- 0.0114 |0.0110
0 - No te] Permutation |- 0.0115 1|0.0109
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Apple showcased the same patterns for feature selection. Low number of selected
spectral bands and permutation as the selection criteria (Table 34). Moreover, using
feature extraction did not improve the RMSEP obtained. As it was the case for broccoli,
applying large window sizes for smoothing did not improve performance and using feature
scaling and RFE did not show a clear pattern. The lower RMSEP values compared to the
other crops and the whole dataset are caused by the different dry matter contents of each
crop.

Table 34. Top-10 RMSEP for apple upon the addition of feature extraction step. Dry Matter
Content Min. Value = 0.1349; Max. Value = 0.1743.

No. of features

selected by Feature

the univariatefFeature Extraction
Smoothing feature selection Algorithm
Window  [Scaling RFE selection criteria Output |ARD |PLS
0 Normalization [Yes te] Permutation |- 0.0075 [0.0073
0 - No te] Permutation |- 0.0077 [0.0074
te] Standardization |Yes te] Permutation |- 0.0078 [0.0076
8 - No te] Permutation |- 0.0079 [0.0075
te] Standardization |No te] Permutation |- 0.0080 [0.0077
0 Standardization No te] Permutation |- 0.0081 [0.0076
0 Standardization [Yes te] Permutation |- 0.0082 [0.0080
0 - Yes 8 Permutation |- 0.0084 (0.0081
8 - Yes te] Permutation |- 0.0086 [0.0079

Mutual
8 - Yes 8 Information |- 0.0089 [0.0082
3.4 External validation

Real generalization (external validation) was evaluated by training the algorithms on pairs
of crops and testing on the remaining crop. Table 35 depicts the performances achieved
using all possible configurations. It is crucial to highlight that all crop pairs were evaluated
as training data: apple-leek, apple-broccoli and broccoli-leek. However, only training on
the pair of apples and broccoli and using the leek as the test set consistently reported
performances with a positive R? (adjusted coefficient of determination). A performance of
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RMSEP = 0.0224 was achieved using the F-statistic selection criteria and twenty-four (24)

wavelengths as input variables.

Table 35. RMSEP on holdout dataset upon the addition of the feature extraction step.

No. of features

selected by Feature
the univariateFeature Extraction
Smoothing feature selection |Algorithm
Window  |Scaling RFE selection criteria Output ARD |PLS
0 - No 24 F-statistic |- 0.0224 (0.0226
0 - Yes 24 F-statistic |- 0.0226 (0.0227
Normalizatio
16 n No 24 F-statistic [PCA 0.0232 (0.0234
Normalizatio
16 n Yes 24 F-statistic |PCA 0.0235 [0.0236
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3.5 Statistical analysis results

For the fertilisation experiment agronomic data were also collected besides the
spectral. This diverse collection of data allowed for more traditional statistical analysis.
Pearson correlation was calculated for the CIELAB and Spectral Bands. This was
conducted to explore the possibility of reducing spectral data complexity through
replacing selected bands with CIELAB values. Possible correlations would mean that
spectral data could be compressed and simplified while preserving the most relevant
information to human vision, ultimately leading to faster analysis and reduced storage
requirements.

No strong correlations were found. However, it is worth pointing out that for the
wavelengths between 470-480nm the correlation for the a*, and b* value was the same
but opposite, 0.2 and -0.2. At the same time there was a negative correlation of -0.72
among the a* and b* values.

Moreover, a detailed comparison for the broccoli weights among the different
fertilisation treatments is provided in the table below.

Table 36. Broccoli weight statistical analysis

Treatment Average Weight | Min weight Max weight Weight
St.dev

Full Fertilisation 125.3 97.3 183.9 15.2

Half Fertilisation 95.1 69.6 134.2 22.6
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Chapter 4 - Discussion and contributions

This research aimed to offer a meaningful addition to Precision Agriculture by
investigating the capabilities of spectral imaging and Artificial Intelligence for model
generalisation as well as fertilisation and irrigation optimization. Towards that end, this
study compared novel user-friendly machine learning tools with traditional techniques,
investigated whether spectral imaging and Al can identify different fertilisation and
irrigation treatments and finally dived deeper into one of the most prominent problems
spectral imaging faces: model generalisation.

4.1 Testing the Suitability of Automated Machine Learning,
hyperspectral imaging and CIELAB colour space for proximal in
situ fertilisation level classification

The study compared the performance of PyCaret, an open-source AutoML
framework to PLS-DA algorithm, which is a norm for spectra classification, using fertiliser
level classification as a potential use case. Both approaches performed well, with PyCaret
showing a slight performance advantage over PLS-DA. This study provides evidence of
the effectiveness and efficiency of modern ML architectures for classification tasks.
Moreover, the potential of combining CIELAB colour space with hyperspectral data for
fertiliser level classification was tested and compared to using only hyperspectral imaging.
Both cases showed promising results but slightly lower when using the combined
approach.

The CIELAB colour space achieved the best classification performance when used
alone with PyCaret, with an accuracy of 0.72 using a fine-tuned MLP algorithm. When
combined with the hyperspectral data, the accuracy improved to 0.94 using the LDA
algorithm. These results are consistent with previous studies that have found a correlation
between the CIELAB colour space and nitrogen status in barley (Christ et al., 2021),
wheat (Yakushev and Kanash, 2016), and broccoli (Graeff et al., 2008). None of these
studies reports classification metrics, making direct comparisons impossible. Instead,
they focus on establishing a correlation between the two variables. However, colour and
most precisely HSV values have been used to determine fertilisation levels using rice
leaves (Sari and Alkaff, 2020). This particular study achieved an accuracy of 0.825. It is
worth noting that in this occasion imaging took place under controlled laboratory
conditions. From the above mentioned discussion it could be argued that colour
information could yield satisfactory results when classifying different fertilisation dosages.
After all the visual identification of either nutrient deficiencies or phytopathological cases
is the current tool of an agronomist.
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Nonetheless, the classification results obtained from the CIELAB dataset are
inferior to those derived from the hyperspectral imaging dataset. The PLS-DA algorithm
applied to the hyperspectral data produced excellent results with an accuracy of 0.91.
Combining PLS-DA with hyperspectral data is known to provide excellent
performance(Lee et al., 2024)(Tunny et al., 2023). The technology has been utilized in
agriculture for various tasks. For instance, it has been used to detect decay lesions in
citrus fruit with a classification rate of 0.91 (Folch-Fortuny et al., 2016), identify rice seed
cultivars with classification rates over 0.8 (Kong et al., 2013), and predict viability and
vigour in muskmelon seeds with a classification accuracy of 0.95 (Kandpal et al., 2016).

However, the most accurate results were achieved by combining the hyperspectral
dataset and PyCaret analysis tool, resulting in an accuracy of 1.00, with minimal user
intervention required, limited to data preprocessing. It is important to note that due to the
relatively small sample size, the models may be overfitting the data(Hawkins, 2004),
despite the measures taken to prevent this from affecting the performance metrics such
as using a Stratified KFold cross validation to provide a more representative and unbiased
evaluation of the model's performance across different folds. However, it is not surprising
that perfect classification rates are achieved when combining machine learning and
hyperspectral imaging for fertilisation estimation tasks, as other studies have reported
similar results. For instance, in tea plants fertilisation experiments, perfect classification
rates (100% accuracy) have been achieved (Wang et al., 2018), while accuracies of 75%
and 80% have been reported for bok choy and spinach fertilisation studies respectively
(Nguyen et al., 2020). Moreover, experiments on fertilisation in corn and cucumbers have
reported accuracies of 99.46% (Goel et al., 2003) and 96.14%(Sabzi et al., 2021)
respectively. Although potentially more powerful machine learning approaches, such as
CNNs, were not investigated due to an insufficiently large dataset, evidence suggests
that they could outperform the PLS(Mishra and Passos, 2022).

It is important to note that combining hyperspectral data with CIELAB data had an
adverse effect on the classification performance in this particular use case, despite the
contrary being reported for grape samples(Rodriguez-Pulido et al., 2021). The lack of a
strong enough synergistic effect may explain why the potential noise introduced by the
CIELAB measurements could not be overcome.

Moreover, the dataset using a single wavelength (874 nm) matched the
performance of using the whole hyperspectral dataset. This signifies that the AutoML
system is strong enough to classify samples even when fewer wavelengths are available.
Additionally, the NIR region is the most promising in detecting fertilisation deficiencies.
This could be attributed to the fact that water is a strong absorber of infrared (IR) energy
(Tsenkova, 2010). When a plant is under stress such as nutrient deficiency, its water
content can change, leading to alterations in its NIR reflectance spectrum. This, also,
explains the poor performance of the CIELAB dataset, which captures information in the
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visible region. The importance of the NIR region is also supported by additional research
that focused on fertilisation (Gémez-Casero et al., 2007)

Finally, the weaker performance of the CIELAB dataset compared to the
hyperspectral one could be attributed to the fact that hyperspectral imaging focuses on
chlorophyll absorption, which refers to the process by which chlorophyll molecules absorb
light energy during photosynthesis and it involves the absorption of specific wavelengths
of light by chlorophyll pigments, which allows them to convert light energy into chemical
energy. More specifically chlorophyll content is calculated using wavelengths 663 and
645 according to the Lambert-Beer law (Liu et al., n.d.). On the other hand, CIELAB
focuses on the phenomenological background of chlorophyll, which refers to the overall
influence of various factors, such as the surrounding environment and the presence of
other pigments. In more detail, the increase ina"has been linked exclusively to
chlorophyll in the absence of anthocyanin pigments (Ferrer et al., 2005). Ultimately, these
factors can affect the overall absorption spectrum of chlorophyll and contribute to the
background noise or interference in the measurement of chlorophyll absorption.
Additionally, CIELAB and the phenomenological background of chlorophyll (green colour)
exhibit a hysteresis effect (Peng et al., 2017)which can manifest itself in various ways,
such as non-linearities in colour transitions or differences in perceived colour changes at
different points in the colour space. This effect is important and can add complexity to
image processing applications, thus lowering the model performance.

All of the aforementioned studies employ complex ML and DL techniques that
necessitate a thorough comprehension of ML concepts to create and refine algorithms.
However, this study has achieved comparable outcomes using an AutoML framework and
PyCaret analysis tool. AutoML systems, have demonstrated their capabilities in
agriculture tasks, as shown in studies using AutoML for weed identification (Espejo-
Garcia et al., 2021)(Jiang et al., 2020), pest identification (Hayashi et al., 2019), stress
detection (Karthickmanoj et al., 2021), and yield prediction (Duan et al., 2022). Therefore,
AutoML holds the potential to replace labour-intensive manual tasks.
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4.2 Early detection of broccoli drought acclimation/stress in
agricultural environments utilising proximal hyperspectral
imaging and AutoML

In the context of short-term drought effect classification, this study explored the
efficacy of the open-source AutoML framework PyCaret, along with the Partial Least
Squares Discriminant Analysis (PLS1-DA) algorithm, a typical method for spectra
classification. Both PyCaret and PLS1-DA exhibited commendable outcomes,
demonstrating that the classification of drought acclimated broccoli is feasible even at the
beginning of drought. PyCaret classifiers showcased very similar results with PLS1-DA,
achieving accuracy and F1-score of 1.00 for every evaluated dataset. It is worth pointing
out that longer drought periods (further developed water stress/acclimation) lead to better
classification performance. This could be explained by the higher SD of the drought onset
dataset. All tested methods performed excellent in the binary classifications (drought
onset - control, drought acclimated - control), while for the mixed dataset containing
drought onset, drought acclimated and control samples, results were slightly worse.
These findings are further supported by additional research that has shown that is
possible to determine water stress using spectral reflectance on sweet corn (Genc et al.,
2013). While (W. Zhang et al., 2021) reported accuracy of around 0.9 for classifying
greenhouse tomato plants under water stress using visible near-infrared and (Nampally
et al., 2023) accuracy of 0.91 for water stress classification in maize once again looking
at visible near-infrared (VIS-NIR) region.

These results encourage research for identifying water stress using spectral data.
However, they also showcase the complexity of the interpretation of water dynamics on
plant material and the potential of hyperspectral imaging. As in the current work, non-
stressed short-term acclimated broccoli plants showcased outstanding classification
results, emphasizing the high sensitivity of this method. Moreover, further research is
required on how the relative or gravimetric leaf water content and/or the dynamic cuticle
of broccoli plants influence the reflectance.

It is worth pointing out that similar results have also been achieved using colour
imaging, with accuracies higher than 0.95 being reported for maize (An et al., 2019) and
sunagoke moss (Ondimu and Murase, 2008). These results further support the use of the
VIS-NIR region for water stress identification, thus enabling possible future low-cost
solutions that do not rely upon expensive high sensitivity cameras.

Finally, the excellent results achieved using the AutoML framework, which requires
minimal user intervention and not prior knowledge regarding ML algorithm come as no
surprise as they align with prior studies leveraging AutoML and hyperspectral imaging
which achieved excellent results (accuracy >90%) for plant phenotyping(Koh et al., 2021)
and crop yield and mass estimation (Ondimu and Murase, 2008). Additionally, the
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successful application of AutoML solutions in achieving comparable outcomes to widely
used algorithms such as PLS-DA and complex machine learning methods, underscores
the versatility and potential of AutoML systems in streamlining ML algorithm development
for agricultural tasks. The validity of the results and the possible problem of overfitting
were set to the test using a holdout dataset, in which the proposed model performed
equally well. Consequently, AutoML framework emerges as a potential candidate for
replacing or become valuable aid to labour-intensive manual plant monitoring in
agriculture.

However, it should be noted that due to the nature of spectral imaging, solutions
that have been developed for a specific crop-problem pair cannot be expanded and
generalized to other crops. Moreover, to the best of our knowledge, no generalisation-
capable hyperspectral models have been developed yet due to various reasons such as
limited data availability. Despite the developed solution's limitations, its value to the
primary production industry is substantial as it provides a proof of concept for developing
water stress detection software, thus facilitating irrigation optimization while protecting
crops from yield and quality losses related to water stress.
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4.3 Evaluation of a hyperspectral image pipeline toward building
a generalisation capable crop dry matter content prediction
model

The performance of using an incremental pipeline towards establishing a baseline
methodology for developing a global spectral model for various crops was presented in
this research. The study focuses on predicting dry matter content in various crops and
serves as a baseline for generalization-capable regression models. PLSR reported the
best performance of RMSEP = 0.0137 against the RMSEP = 0.0140 of ARD. However,
the external validation was worse, RMSEP = 0.024, as the model tries to model unseen
data. It is worth pointing out that the dataset containing all three (3) crops achieved better
performance compared to the leek model, RMSEP = 0.0154.

Another valuable remark is that RMSEP is highly influenced by the dry matter
content range of each crop, making a fair comparison more challenging. For example, it
is not easy to say if the larger size of the combined dataset allows better performances
since the dry matter content range is also larger and more challenging. However, both
the leek subset and the combined dataset exhibited similar ranges, though the combined
dataset had a much lower RMSEP. This reduction in RMSEP could be attributed to two
factors: the increased diversity of information in the combined dataset, and the
complementary nature of the different data sources, which likely enhanced the model's
ability to capture relevant patterns more effectively: Namely: the lower values of the dry
matter content in apple and broccoli or the emergence of better statistical properties in
specific wavelengths allowed the creation of better regressor at the cost of using more
features.

The caveat with agricultural produce, which was also validated in this study, is that
each crop has its own particularities in colour, size and shape making it hard for Al
solutions to identify patterns. Moreover, when diving deeper, using the higher spectral
resolution hyperspectral imaging offers can make matters even more complicated.
Despite the three (3) main pigment groups: i) carotenoids, ii) chlorophylls, and iii)
flavonoids, scientists calculate that there could be up to 4,000 different phytonutrients.
The model developed in this study had to cope with various pigments. In apples, the main
flavonoids present are carotenoids and anthocyanins; in leek, chlorophylls and flavonoids
and in broccoli, carotenoids and chlorophylis.

One of the goals of this paper was to understand how different preprocessing
stages influence the regression problem. It could be discussed that the use of feature
extraction with this dataset caused a performance drop. This behaviour could be
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attributed to various reasons such as (i) nonlinear relationships, (ii) removal of variables
that are not highly correlated but show a synergistic effect with other variables, (iii) loss
of valuable information, and (iv) sampling variability. However, feature extraction could
be necessary in other situations.

Another important insight was that a stage (e.g., using RFE) reporting the best
performance under one specific scenario/setting could be beaten by the opposite
approach upon including another post-processing step (e.g., feature selection). This can
be observed after the integration of the feature extraction stage, when the Mutual
Information criteria for feature selection reported the best performance. This was the
opposite behaviour compared to previous results, where mutual information never was
among the best pipelines. In other words, discarding non-working preprocessing stages
can damage the final performance if new processing stages are added afterwards. Similar
behaviour can arise when using specific preprocessing stages that reduce the relevance
of previous stages.

Contrary to (Medic, 2023) the results of this study showed that the Savitzky-Golay
filter was not a good match for this problem. Although using the smallest window size
eight (8) reported the highest performance, overall, avoiding the use of smoothing was a
better solution. Furthermore, this pattern was made more apparent because of the low
performance achieved by large window sizes. There were two (2) reasons for using this
filter: (i) to smooth too steep changes (wavelengths between 678 nm to 741 nm), possible
meaningless peaks ( seen in the initial spectrum of broccoli), or random noise in the input,
and (ii) to reveal potential unexpected performances upon integration of this pre-
processing stage with next processing stages. However, the spectral data used in this
study are relatively smooth in their raw nature, and therefore, using an extra filter could
delete critical information towards building the dry matter content regression. Regarding
the appearance of unexpected behaviors, while integrating new processing stages to the
image smoothing, it could be argued that its performance for single crops is more variable
with a tendency to be higher, but this could be a consequence of the inability to find strong
statistical patterns by the machine learning pipeline and of the smaller dataset size.

One of the main problems of using the proposed methodology is that the number
of combinations while integrating the different processing components, their hyper-
parameters, and their specific order may give a combinatorial explosion. Therefore, some
a priori decisions were made to accomplish realistic research that could provide robust
insights. Some of these decisions were based on early exploration experiments. Despite
that, the complete evaluation of all components should be conducted since their
performances, although initially less promising, could converge into the best or most
reliable performance. For example, many regressors were not covered (e.g., Support
Vector Regressor, tree-based regressors). Additionally, more powerful machine learning
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approaches, such as Convolutional Neural Networks (CNNs), were not investigated
despite evidence that they could perform better than PLS (Mishra and Passos, 2022).
The insufficiently large dataset required for training complex regression models was the
driving force of the decision. Early experiments utilising polynomial transformation were
used to explore its potential improvement in performance. However, although the RMSEP
slightly decreased, the large number of created features compared to the dataset size
deserved a deeper investigation, which was out of the scope of this study. It is essential
to highlight that polynomial features include the higher-degree terms of individual features
and the interaction terms between different features. On the other hand, the goal of this
research was not to achieve state-of-the-art performance through exhaustive grid search
optimization of components and hyperparameters. Instead, the focus was on gaining an
empirical understanding of how each component in the pipeline influences the others,
either positively or negatively, and to establish a baseline for future studies.

Finally, it is worth noting that the most significant wavelengths were in the VIS
region, which appears counterintuitive considering that the presence of water, as
absorption bands of the O-H group, is observed at the NIR region, namely 740, 840, 960,
and 1,440 nm(Sun et al., 2020). This behaviour could be attributed to the heterogeneity
of pigments among the different crops, thus enabling the model to focus on a spectral
region where data shows a higher variability. Furthermore, on some occasions, changes
in dry matter content might be accompanied by changes in pigment concentration. This
procedure takes place in olives, where during ripening dry matter increases and colour
changes (Conde et al., 2008)(Conde et al., 2008).
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4.5 Statistical analysis agronomical insights

As mentioned previously the main difference between the two fertilisation levels
was the size of the broccoli head when measurements were conducted. From the data
collected it can be concluded that optimal fertilisation does not only provide larger broccoli
heads but also more homogeneous plants. Despite the above, weight alone cannot be
used for determining fertilisation levels as broccoli size is plant density and cultivar
besides fertilization dependent (Schellenberg et al., 2009). During the irrigation
experiment, no agronomical data were recorded.
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Chapter 5 - Conclusions

Two of the main objectives of this study were to Develop Artificial Intelligence
models utilizing spectral data capable of identifying different fertilisation levels and
to Compare the performance of traditional machine learning algorithms with novel
user friendly AutoML techniques. Both were achieved by Testing the Suitability of
Automated Machine Learning, hyperspectral imaging and CIELAB color space for
proximal in situ fertilisation level classification. The research findings demonstrate that
AutoML outperforms PLS-DA, a traditional machine learning approach. Additionally, the
results indicate that hyperspectral data are capable of identifying different fertilisation
levels. Diving deeper, the use of hyperspectral data outperformed both the use of CIELAB
data and the combination of them. Hyperspectral imaging datasets analysed with the
Partial Least Squares Discriminant Analysis (PLS-DA) are often used as a robust starting
point for computer vision tasks, yielding promising results. However, effective
implementation of PLS-DA requires machine learning and statistics proficiency. AutoML,
an upcoming field in machine learning, offers a promising alternative, automating many
of the intricate processes involved and thus making it accessible to both experienced
practitioners and those new to the domain. The proliferation of portable multi- and hyper-
spectral sensors across ground-based and aerial platforms is driving a surge in the
agricultural application of spectral imaging. This promising field presents an opportunity
for the deployment of AutoML. Moreover, as AutoML solutions continue to evolve,
incorporating increasingly sophisticated machine learning and deep learning algorithms,
their potential applications within agriculture and beyond are poised to expand
significantly.” Additionally, the simplicity of training these models provides an
unprecedented opportunity to create bespoke machine learning models that are tailored
to specific sites and problems, overcoming one of the most persistent challenges in
machine learning and hyperspectral imaging: model generalisation. The study’s results
provide a foundation for using hyperspectral imaging and AutoML in precision agriculture
tasks related to fertilisation.

Another objective was to develop Artificial Intelligence models utilizing
spectral data that are capable of identifying plant water deficit. This objective was
achieved by investigating the early detection of broccoli drought acclimation/stress in
agricultural environments utilising proximal hyperspectral imaging and AutoML.
Moreover, this publication supports the previous claims that novel user-friendly AutoML
technigues can match the performance of traditional machine learning algorithms. To
further elaborate, the study's findings demonstrate that the AutoML framework matched
the performance of the PLS1-DA and that hyperspectral data can facilitate drought
stress/acclimation identification in broccoli plants. Within the domain of computer vision,
hyperspectral imaging datasets coupled with Partial Least Squares Discriminant Analysis
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(PLS1-DA) often serve as a reliable starting point, yielding excellent results. However,
effective implementation of PLS1-DA requires a degree of technical proficiency.
Additionally, AutoML demonstrated exceptional performance in discriminating between
control and acclimated plants. Therefore, AutoML frameworks offer a promising
alternative to traditional manual machine learning approaches, catering to users of
varying skill levels. As the concerns of water scarcity are continuously increasing together
with the imperative for efficient irrigation management, the integration of hyperspectral
imaging with machine learning and deep learning algorithms presents a promising
solution. The widespread adoption of spectral sensors in proximal and remote agricultural
applications further underscores the potential of spectral data. As mentioned earlier,
AutoML, by automating many of the intricate processes involved in model development,
offers a valuable tool for both experienced practitioners and those new to the field. By
doing so it enables the rapid experimentation with diverse architectures and
hyperparameters. To conclude, the findings of this study establish a foundation for
advocating and implementing AutoML and hyperspectral imaging in precision agriculture
and irrigation management. Additionally, it underscores the importance of caution when
interpreting plant material water dynamics through spectral data.

Finally, the last objective of this study was to evaluate the feasibility of
developing a generalisation capable Al model utilizing spectral data. This was
achieved by evaluating of a hyperspectral image pipeline toward building a generalization
capable crop dry matter content prediction model. Pre-processing and modelling
components were incrementally evaluated, resulting in a performance of RMSEP=0.0140
using ARD and RMSEP=0.0137 using PLSR.

Testing the proposed pipelines and algorithms on an open-access dataset
highlighted the limitations of machine learning pipelines in effectively generalizing
complex, non-uniform data. This revealed challenges in adapting models to diverse data
patterns, underscoring the need for further refinement in pipeline design for better
generalization. On the other hand, the results on a dataset with multiple crops showed a
lower RMSEP than the single crop leek subset, where the dry matter range was similar.
This could be attributed to the emergence of statistical properties only available for
multiple crops. Testing with additional datasets should be conducted to validate further
the proposed pipeline's ability to generalise. Moreover, there is more space for
improvement since other algorithms like Support Vector Regressor, tree-based methods,
or deep learning techniques could complement each proposed component and regressor.

However, as the complexity of the algorithms increases, so do the time and
computational resources needed to determine the optimal architecture for a given
problem. More sophisticated models demand greater processing power and longer
training times, significantly raising the cost of model development and optimization.
Additionally, the complexity added by those algorithms is expected to further hinder the
identification of the effects of each pipeline component on the model performance and
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the model explainability. However, training and implementation of both selected
algorithms (ARD and PLSR) are straightforward once the pipeline and optimal
architecture are found.
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Chapter 6 - Future work

Precision agriculture is an evolving field that employs technology and data-driven
methodologies to optimize crop production and enhance quality. The integration of
various technologies, including geospatial technologies, Internet of Things (1oT), Big Data
analysis, and Artificial Intelligence (Al), offers opportunities for informed decision-making
to enhance crop production. Precision agriculture encompasses the utilization of these
technologies to optimize agricultural inputs, thereby increasing production and minimizing
losses. In recent decades, Remote sensing technologies have seen significant growth in
precision agriculture, driven by the widespread availability of high-resolution satellite
images. These images have facilitated numerous precision agriculture applications,
including crop monitoring, irrigation management, nutrient application, disease and pest
management, and yield prediction. Commercial agriculture has already integrated
remote-sensing-based PA technologies like variable fertiliser rate application systems
such as Green Seeker and Crop Circle. The use of unmanned aerial vehicles (UAVS) has
surged due to their cost-effectiveness and ability to capture high-resolution images, which
are essential for precision agriculture. Additionally, the abundance of satellite and spectral
data has spurred researchers to explore advanced data storage and processing methods
such as cloud computing and machine learning.

Precision agriculture, spectral imaging and Al have the potential to enhance the
efficiency, sustainability, and profitability of small and medium-sized farms by enabling
informed decision-making regarding irrigation, fertilisation, and other management
practices. This can result in cost savings and increased yields. Moreover, it can replace
manual inspection of crops with automated solutions, thus relieving workers from a
tedious and strenuous activity while at the same time making enabling the monitoring and
investigation of large sample sizes and even whole batch instead of the random sampling
currently performed to assess the quality of fruit and vegetable.

Despite the extensive research on spectral imaging applications in precision
agriculture, there is a notable absence of established techniques or frameworks that are
both accurate and reproducible across various climatic, soil, crop, and management
conditions. The accuracy of those methods depends on several factors, including image
resolution (spatial, spectral, and temporal), atmospheric conditions, weather patterns,
crop growth stages, land cover, and the analysis technique employed (e.g., regression-
based, machine learning, physically based modelling). Further research is required to
comprehend the spatio-temporal patterns of uncertainty in estimating biotic and abiotic
stress and other crop parameters. Further elaborating on that, an irrigation or fertilisation
deficiency detection method may perform well under controlled experimental conditions
but may not exhibit similar performance in real-world scenarios where various stressors
influence crop response.

118



Investigating the application of spectral imaging and Al in precision horticulture (agriculture)
PhD Dissertation |. Malounas

Moreover, Al solutions need to cope with several challenges to facilitate their
adoption and implementation. Firstly, as mentioned earlier, the diversity and variability of
agricultural environments, including different crops, soil types, weather patterns, and
management practices, pose significant hurdles to developing Al models that are
universally applicable and capable of generalisation. Additionally, the interpretability and
trustworthiness of Al models in making critical decisions regarding crop management and
resource allocation remain essential concerns for farmers and stakeholders. Moreover,
the need for continuous model adaptation and validation to accommodate evolving
agricultural conditions further complicates Al adoption in precision agriculture.

Therefore, future research in spectral imaging and Al for precision agriculture
should focus on developing robust, generalisation capable and interpretable models that
can effectively handle the complexity and variability of agricultural systems. As well as
developing solutions that are easy to use by non-experts, while trying to maintain
acquisition costs of those future solutions low enough to allow adoption by middle sized
farmers. Ultimately, increasing their impact and transforming modern primary production
systems.
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